Skip to content
Snippets Groups Projects
Commit d82f680e authored by Cristian Lalescu's avatar Cristian Lalescu
Browse files

update for new testing approach

parent c1aa3c7a
No related branches found
No related tags found
No related merge requests found
......@@ -58,84 +58,19 @@ def plain(opt):
opt.niter_todo = 2*opt.niter_todo//3
c2 = launch(opt, dt = c0.parameters['dt'])
c2.compute_statistics()
# plot energy and enstrophy
fig = plt.figure(figsize = (12, 12))
a = fig.add_subplot(221)
c0.set_plt_style({'label' : '1',
'dashes' : (None, None),
'color' : (1, 0, 0)})
c1.set_plt_style({'label' : '2',
'dashes' : (2, 2),
'color' : (0, 0, 1)})
c2.set_plt_style({'label' : '3',
'dashes' : (3, 3),
'color' : (0, 1, 0)})
for c in [c0, c1, c2]:
a.plot(c.statistics['t'],
c.statistics['energy(t)'],
label = c.style['label'],
dashes = c.style['dashes'],
color = c.style['color'])
a.set_title('energy')
a.legend(loc = 'best')
a = fig.add_subplot(222)
for c in [c0, c1, c2]:
a.plot(c.statistics['t'],
c.statistics['enstrophy(t)'],
dashes = c.style['dashes'],
color = c.style['color'])
a.set_title('enstrophy')
a = fig.add_subplot(223)
for c in [c0, c1, c2]:
a.plot(c.statistics['t'],
c.statistics['kM']*c.statistics['etaK(t)'],
dashes = c.style['dashes'],
color = c.style['color'])
a.set_title('$k_M \\eta_K$')
a = fig.add_subplot(224)
for c in [c0, c1, c2]:
a.plot(c.statistics['t'],
c.statistics['vel_max(t)'] * (c.parameters['dt'] * c.parameters['dkx'] /
(2*np.pi / c.parameters['nx'])),
dashes = c.style['dashes'],
color = c.style['color'])
a.set_title('$\\frac{\\Delta t \\| u \\|_\infty}{\\Delta x}$')
fig.savefig('plain_stats_{0}.pdf'.format(opt.precision), format = 'pdf')
fig = plt.figure(figsize = (12, 12))
a = fig.add_subplot(221)
a.plot(c0.statistics['t'],
c0.statistics['energy(t)'] - c1.statistics['energy(t)'])
a.set_title('energy')
a = fig.add_subplot(222)
a.plot(c0.statistics['t'],
c0.statistics['enstrophy(t)'] - c1.statistics['enstrophy(t)'])
a.set_title('enstrophy')
a = fig.add_subplot(223)
a.plot(c0.statistics['t'],
c0.statistics['kM']*c0.statistics['etaK(t)'] - c1.statistics['kM']*c1.statistics['etaK(t)'])
a.set_title('$k_M \\eta_K$')
a = fig.add_subplot(224)
data0 = c0.statistics['vel_max(t)'] * (c0.parameters['dt'] * c0.parameters['dkx'] /
(2*np.pi / c0.parameters['nx']))
data1 = c1.statistics['vel_max(t)'] * (c1.parameters['dt'] * c1.parameters['dkx'] /
(2*np.pi / c1.parameters['nx']))
a.plot(c0.statistics['t'],
data0 - data1)
a.set_title('$\\frac{\\Delta t \\| u \\|_\infty}{\\Delta x}$')
fig.savefig('plain_stat_diffs_{0}.pdf'.format(opt.precision), format = 'pdf')
# plot trajectory differences
for i in range(c0.particle_species):
fig = plt.figure(figsize=(12, 4))
for j in range(3):
a = fig.add_subplot(131 + j)
for t in range(c0.parameters['nparticles']):
a.plot(c0.trajectories[i][:, t, j] - c1.trajectories[i][:, t, j])
fig.savefig('traj_s{0}_{1}.pdf'.format(i, opt.precision), format = 'pdf')
compare_stats(opt, c0, c1)
return None
if __name__ == '__main__':
opt = parser.parse_args()
opt = parser.parse_args(
['-n', '32',
'--run',
'--ncpu', '2',
'--nparticles', '1000',
'--niter_todo', '48',
'--precision', 'single',
'--multiplejob',
'--wd', 'data/single'] +
sys.argv[1:])
plain(opt)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment