Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
TurTLE
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
TurTLE
TurTLE
Commits
068de907
Commit
068de907
authored
10 years ago
by
Cristian Lalescu
Browse files
Options
Downloads
Patches
Plain Diff
remove ipython notebooks
parent
5051398d
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
test.ipynb
+0
-153
0 additions, 153 deletions
test.ipynb
test_shuffling.ipynb
+0
-270
0 additions, 270 deletions
test_shuffling.ipynb
with
0 additions
and
423 deletions
test.ipynb
deleted
100644 → 0
+
0
−
153
View file @
5051398d
{
"metadata": {
"name": "",
"signature": "sha256:70c4b065d524fe79b51e885d5e77aec8982c6ae0996146ba76aa979790c214b7"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"import subprocess\n",
"import pyfftw"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def generate_data_3D(\n",
" n,\n",
" dtype = np.complex128,\n",
" p = 1.5):\n",
" \"\"\"\n",
" generate something that has the proper shape\n",
" \"\"\"\n",
" assert(n % 2 == 0)\n",
" a = np.zeros((n, n, n/2+1), dtype = dtype)\n",
" a[:] = np.random.randn(*a.shape) + 1j*np.random.randn(*a.shape)\n",
" k, j, i = np.mgrid[-n/2+1:n/2+1, -n/2+1:n/2+1, 0:n/2+1]\n",
" k = (k**2 + j**2 + i**2)**.5\n",
" k = np.roll(k, n//2+1, axis = 0)\n",
" k = np.roll(k, n//2+1, axis = 1)\n",
" a /= k**p\n",
" a[0, :, :] = 0\n",
" a[:, 0, :] = 0\n",
" a[:, :, 0] = 0\n",
" ii = np.where(k == 0)\n",
" a[ii] = 0\n",
" ii = np.where(k > n/3)\n",
" a[ii] = 0\n",
" return a\n",
"\n",
"n = 32\n",
"\n",
"Kdata0 = generate_data_3D(n, p = 2).astype(np.complex64)\n",
"Kdata0.tofile(\"Kdata0\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"-c:15: RuntimeWarning: divide by zero encountered in divide\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def compute_cpp_data(\n",
" branch = None):\n",
" if not (type(branch) == type(None)):\n",
" subprocess.call(['git', 'checkout', branch])\n",
" if subprocess.call(['make', 'main_fluid_solver.elf']) == 0:\n",
" subprocess.call(['time',\n",
" 'mpirun',\n",
" '-np',\n",
" '4',\n",
" './main_fluid_solver.elf'])\n",
" return np.fromfile('Kdata1')\n",
" else:\n",
" print ('compilation error')\n",
" return None\n",
"\n",
"Kdata1 = compute_cpp_data()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": true,
"input": [
"distance = np.max(np.abs(Rdata_py - Rdata), axis = (1, 2, 3, 4))\n",
"print(np.max(distance))\n",
"if np.max(distance) > 1e-5:\n",
" ax = plt.figure(figsize=(6,2)).add_subplot(111)\n",
" ax.plot(distance)\n",
" i0 = np.random.randint(8)\n",
" i1 = np.random.randint(8)\n",
" i2 = np.random.randint(8)\n",
" z = cm.grid3D_to_zindex(np.array([i0, i1, i2]))\n",
" #z = 0\n",
" print(cm.zindex_to_grid3D(z))\n",
" s = np.max(np.abs(Rdata_py[None, z, :, :, :, 1] - Rdata[..., 1]),\n",
" axis = (1, 2, 3))\n",
" z1 = np.argmin(s)\n",
" print(z, z1, s[z1])\n",
" #print(Rdata[z1] - Rdata_py[z1])\n",
" ta0 = Rdata_py.ravel()\n",
" ta1 = Rdata.ravel()\n",
" print (Rdata_py[254:259, 7, 4, 3, 1])\n",
" print (Rdata[254:259, 7, 4, 3, 1])\n",
" print (ta0[ta0.shape[0]/2-1:ta0.shape[0]/2+7])\n",
" print (ta1[ta1.shape[0]/2-1:ta1.shape[0]/2+7])\n",
"else:\n",
" print('distance is small')\n",
"print(np.max(np.abs(Rdata)))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.90735e-06\n",
"distance is small\n",
"15.316\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
test_shuffling.ipynb
deleted
100644 → 0
+
0
−
270
View file @
5051398d
{
"metadata": {
"name": "",
"signature": "sha256:46290caaf0d19fceaf2c8987f305c20f9083f9d3d3d0ee8ef3987689c3fccbf0"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"import subprocess\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pyfftw"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def generate_data_3D(\n",
" n,\n",
" dtype = np.complex128,\n",
" p = 1.5):\n",
" \"\"\"\n",
" generate something that has the proper shape\n",
" \"\"\"\n",
" assert(n % 2 == 0)\n",
" a = np.zeros((n, n, n/2+1), dtype = dtype)\n",
" a[:] = np.random.randn(*a.shape) + 1j*np.random.randn(*a.shape)\n",
" k, j, i = np.mgrid[-n/2+1:n/2+1, -n/2+1:n/2+1, 0:n/2+1]\n",
" k = (k**2 + j**2 + i**2)**.5\n",
" k = np.roll(k, n//2+1, axis = 0)\n",
" k = np.roll(k, n//2+1, axis = 1)\n",
" a /= k**p\n",
" a[0, :, :] = 0\n",
" a[:, 0, :] = 0\n",
" a[:, :, 0] = 0\n",
" ii = np.where(k == 0)\n",
" a[ii] = 0\n",
" ii = np.where(k > n/3)\n",
" a[ii] = 0\n",
" return a\n",
"\n",
"n = 31*4\n",
"N = 256\n",
"\n",
"Kdata0 = generate_data_3D(n, p = 2).astype(np.complex64)\n",
"Kdata1 = generate_data_3D(n, p = 2).astype(np.complex64)\n",
"Kdata2 = generate_data_3D(n, p = 2).astype(np.complex64)\n",
"Kdata0.T.copy().astype('>c8').tofile(\"Kdata0\")\n",
"Kdata1.T.copy().astype('>c8').tofile(\"Kdata1\")\n",
"Kdata2.T.copy().astype('>c8').tofile(\"Kdata2\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"-c:15: RuntimeWarning: divide by zero encountered in divide\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def padd_with_zeros(\n",
" a,\n",
" n,\n",
" odtype = None):\n",
" if (type(odtype) == type(None)):\n",
" odtype = a.dtype\n",
" assert(a.shape[0] <= n)\n",
" b = np.zeros((n, n, n/2 + 1), dtype = odtype)\n",
" m = a.shape[0]\n",
" b[ :m/2, :m/2, :m/2+1] = a[ :m/2, :m/2, :m/2+1]\n",
" b[ :m/2, n-m/2: , :m/2+1] = a[ :m/2, m-m/2: , :m/2+1]\n",
" b[n-m/2: , :m/2, :m/2+1] = a[m-m/2: , :m/2, :m/2+1]\n",
" b[n-m/2: , n-m/2: , :m/2+1] = a[m-m/2: , m-m/2: , :m/2+1]\n",
" return b\n",
"\n",
"def transform_py(bla):\n",
" b = padd_with_zeros(bla, N)\n",
" c = np.zeros((N, N, N), np.float32)\n",
" t = pyfftw.FFTW(\n",
" b, c,\n",
" axes = (0, 1, 2),\n",
" direction = 'FFTW_BACKWARD',\n",
" flags = ('FFTW_ESTIMATE',),\n",
" threads = 2)\n",
" t.execute()\n",
" return c\n",
"\n",
"import chichi_misc as cm\n",
"\n",
"def array_to_8cubes(\n",
" a,\n",
" odtype = None):\n",
" assert(len(a.shape) >= 3)\n",
" assert((a.shape[0] % 8 == 0) and\n",
" (a.shape[1] % 8 == 0) and\n",
" (a.shape[2] % 8 == 0))\n",
" if type(odtype) == type(None):\n",
" odtype = a.dtype\n",
" c = np.zeros(\n",
" ((((a.shape[0] // 8)*(a.shape[1] // 8)*(a.shape[2] // 8)),) +\n",
" (8, 8, 8) +\n",
" a.shape[3:]),\n",
" dtype = odtype)\n",
" zi = np.zeros( c.shape[0], dtype = np.int)\n",
" ri = np.zeros((c.shape[0], 3, 2), dtype = np.int)\n",
" ii = 0\n",
" for k in range(a.shape[0]//8):\n",
" for j in range(a.shape[1]//8):\n",
" for i in range(a.shape[2]//8):\n",
" tindex = np.array([k, j, i])\n",
" zi[ii] = cm.grid3D_to_zindex(tindex)\n",
" ri[ii, 0] = np.array([8*tindex[0], 8*(tindex[0]+1)])\n",
" ri[ii, 1] = np.array([8*tindex[1], 8*(tindex[1]+1)])\n",
" ri[ii, 2] = np.array([8*tindex[2], 8*(tindex[2]+1)])\n",
" ii += 1\n",
" for ii in range(zi.shape[0]):\n",
" c[zi[ii]] = a[ri[ii, 0, 0]:ri[ii, 0, 1],\n",
" ri[ii, 1, 0]:ri[ii, 1, 1],\n",
" ri[ii, 2, 0]:ri[ii, 2, 1]]\n",
" return c\n",
"\n",
"d0 = transform_py(Kdata0)\n",
"d1 = transform_py(Kdata1)\n",
"d2 = transform_py(Kdata2)\n",
"\n",
"Rdata_py_tmp = np.array([d0, d1, d2]).transpose((1, 2, 3, 0))\n",
"\n",
"Rdata_py = array_to_8cubes(Rdata_py_tmp)\n",
"\n",
"# i0 = np.random.randint(16)\n",
"# i1 = np.random.randint(16)\n",
"# i2 = np.random.randint(16)\n",
"# z = cm.grid3D_to_zindex(np.array([i0, i1, i2]))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def compute_cpp_data(\n",
" branch = None,\n",
" nfiles = 16):\n",
" if not (type(branch) == type(None)):\n",
" subprocess.call(['git', 'checkout', branch])\n",
" if subprocess.call(['make', 'full.elf']) == 0:\n",
" subprocess.call([#'valgrind',\n",
" #'--tool=callgrind',\n",
" #'--callgrind-out-file=tmp.txt',\n",
" 'time',\n",
" 'mpirun',\n",
" '-np',\n",
" '4',\n",
" './full.elf',\n",
" '{0}'.format(n),\n",
" '{0}'.format(N),\n",
" '{0}'.format(nfiles),\n",
" '3'])\n",
" else:\n",
" print ('compilation error')\n",
" return None\n",
" \n",
"def get_cpp_data(\n",
" branch = None,\n",
" run = True,\n",
" nfiles = 16):\n",
" if run:\n",
" for nf in range(nfiles):\n",
" subprocess.call(\n",
" ['rm',\n",
" 'Rdata_z{0:0>7x}'.format(nf*Rdata_py.shape[0]//nfiles)])\n",
" compute_cpp_data(branch, nfiles = nfiles)\n",
" Rdata = []\n",
" for nf in range(nfiles):\n",
" Rdata.append(np.fromfile(\n",
" 'Rdata_z{0:0>7x}'.format(nf*Rdata_py.shape[0]//nfiles),\n",
" dtype = np.float32).reshape(-1, 8, 8, 8, 3))\n",
" return np.concatenate(Rdata)\n",
"\n",
"#Rdata = get_cpp_data(branch = 'develop')\n",
"# develop says 30 secs, inplace fft is 28 secs\n",
"#Rdata = get_cpp_data(branch = 'feature-inplace_fft')\n",
"Rdata = get_cpp_data(run = True, nfiles = 16)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": true,
"input": [
"distance = np.max(np.abs(Rdata_py - Rdata), axis = (1, 2, 3, 4))\n",
"print(np.max(distance))\n",
"if np.max(distance) > 1e-5:\n",
" ax = plt.figure(figsize=(6,2)).add_subplot(111)\n",
" ax.plot(distance)\n",
" i0 = np.random.randint(8)\n",
" i1 = np.random.randint(8)\n",
" i2 = np.random.randint(8)\n",
" z = cm.grid3D_to_zindex(np.array([i0, i1, i2]))\n",
" #z = 0\n",
" print(cm.zindex_to_grid3D(z))\n",
" s = np.max(np.abs(Rdata_py[None, z, :, :, :, 1] - Rdata[..., 1]),\n",
" axis = (1, 2, 3))\n",
" z1 = np.argmin(s)\n",
" print(z, z1, s[z1])\n",
" #print(Rdata[z1] - Rdata_py[z1])\n",
" ta0 = Rdata_py.ravel()\n",
" ta1 = Rdata.ravel()\n",
" print (Rdata_py[254:259, 7, 4, 3, 1])\n",
" print (Rdata[254:259, 7, 4, 3, 1])\n",
" print (ta0[ta0.shape[0]/2-1:ta0.shape[0]/2+7])\n",
" print (ta1[ta1.shape[0]/2-1:ta1.shape[0]/2+7])\n",
"else:\n",
" print('distance is small')\n",
"print(np.max(np.abs(Rdata)))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"1.90735e-06\n",
"distance is small\n",
"15.316\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment