diff --git a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
index d716594d4f9b4ababaa23fa827ad6b038fc92663..7753d530847a391662f975cff3fedebc60603dff 100644
--- a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
+++ b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
@@ -26,20 +26,91 @@ namespace edd {
 
 typedef unsigned long long int uint64_cu;
 static_assert(sizeof(uint64_cu) == sizeof(uint64_t), "Long long int not of 64 bit! This is problematic for CUDA!");
+
+  typedef uint64_t RawVoltageType;
+  typedef float UnpackedVoltageType;
+  typedef float2 ChannelisedVoltageType;
+
+  typedef float IntegratedPowerType;
+  //typedef int8_t IntegratedPowerType;
+
+    // Input data and intermediate processing data for one polarization
+    struct PolarizationData
+    {
+        DoubleDeviceBuffer<RawVoltageType> _raw_voltage;
+        DoubleDeviceBuffer<uint64_t> _sideChannelData;
+
+        thrust::device_vector<UnpackedVoltageType> _baseLineG0;
+        thrust::device_vector<UnpackedVoltageType> _baseLineG1;
+        thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G0;
+        thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G1;
+
+        void swap()
+        {
+            _raw_voltage.swap();
+            _sideChannelData.swap();
+        }
+    };
+
+
+    // Outptu data for one gate
+    class StokesOutput
+    {
+        public:
+      DoubleDeviceBuffer<IntegratedPowerType> I;
+      DoubleDeviceBuffer<IntegratedPowerType> Q;
+      DoubleDeviceBuffer<IntegratedPowerType> U;
+      DoubleDeviceBuffer<IntegratedPowerType> V;
+
+      DoubleDeviceBuffer<uint64_cu> _noOfBitSets;
+
+      void reset(cudaStream_t &_proc_stream)
+      {
+        thrust::fill(thrust::cuda::par.on(_proc_stream),I.a().begin(), I.a().end(), 0.);
+        thrust::fill(thrust::cuda::par.on(_proc_stream),Q.a().begin(), Q.a().end(), 0.);
+        thrust::fill(thrust::cuda::par.on(_proc_stream),U.a().begin(), U.a().end(), 0.);
+        thrust::fill(thrust::cuda::par.on(_proc_stream),V.a().begin(), V.a().end(), 0.);
+
+        thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSets.a().begin(), _noOfBitSets.a().end(), 0L);
+      }
+
+      void swap()
+      {
+        I.swap();
+        Q.swap();
+        U.swap();
+        V.swap();
+        _noOfBitSets.swap();
+
+      }
+
+      void resize(size_t size, size_t blocks)
+      {
+        I.resize(size * blocks);
+        Q.resize(size * blocks);
+        U.resize(size * blocks);
+        V.resize(size * blocks);
+
+        _noOfBitSets.resize(blocks);
+      }
+    };
+
+
+
+
+
+
+
 /**
  @class GatedSpectrometer
  @brief Split data into two streams and create integrated spectra depending on
  bit set in side channel data.
 
  */
-template <class HandlerType, typename IntegratedPowerType> class GatedSpectrometer {
+template <class HandlerType> class GatedSpectrometer {
 public:
-  typedef uint64_t RawVoltageType;
-  typedef float UnpackedVoltageType;
-  typedef float2 ChannelisedVoltageType;
 
-//  typedef float IntegratedPowerType;
-  //typedef int8_t IntegratedPowerType;
+
 
 public:
   /**
@@ -90,11 +161,10 @@ public:
   bool operator()(RawBytes &block);
 
 private:
-  void process(thrust::device_vector<RawVoltageType> const &digitiser_raw,
-               thrust::device_vector<uint64_t> const &sideChannelData,
-               thrust::device_vector<IntegratedPowerType> &detected,
-               thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0,
-               thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1);
+  // gate the data and fft data per gate
+  void gated_fft(PolarizationData &data,
+  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
+  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1);
 
 private:
   DadaBufferLayout _dadaBufferLayout;
@@ -115,26 +185,20 @@ private:
   double _processing_efficiency;
 
   std::unique_ptr<Unpacker> _unpacker;
-  std::unique_ptr<DetectorAccumulator<IntegratedPowerType> > _detector;
 
-  // Input data
-  DoubleDeviceBuffer<RawVoltageType> _raw_voltage_db;
-  DoubleDeviceBuffer<uint64_t> _sideChannelData_db;
+  // Input data and per pol intermediate data
+  PolarizationData polarization0, polarization1;
 
   // Output data
-  DoubleDeviceBuffer<IntegratedPowerType> _power_db;
+  StokesOutput stokes_G0, stokes_G1;
 
-
-  DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G0;
-  DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G1;
   DoublePinnedHostBuffer<char> _host_power_db;
 
-  // Intermediate process steps
+  // Temporary processing block
+  // ToDo: Use inplace FFT to avoid temporary coltage array
   thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G0;
   thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G1;
-  thrust::device_vector<ChannelisedVoltageType> _channelised_voltage;
-  thrust::device_vector<UnpackedVoltageType> _baseLineNG0;
-  thrust::device_vector<UnpackedVoltageType> _baseLineNG1;
+
 
   cudaStream_t _h2d_stream;
   cudaStream_t _proc_stream;
@@ -142,11 +206,10 @@ private:
 };
 
 
-
 /**
    * @brief      Splits the input data depending on a bit set into two arrays.
    *
-   * @detail     The resulting gaps are filled with zeros in the other stream.
+   * @detail     The resulting gaps are filled with a given baseline value in the other stream.
    *
    * @param      GO Input data. Data is set to the baseline value if corresponding
    *             sideChannelData bit at bitpos os set.
@@ -177,6 +240,57 @@ __global__ void gating(float *G0, float *G1, const int64_t *sideChannelData,
                        uint64_cu* stats_G0,
                        uint64_cu* stats_G1);
 
+/**
+ * @brief calculate stokes IQUV from two complex valuies for each polarization
+ */
+//__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V);
+__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V)
+{
+    I = fabs(p1.x*p1.x + p1.y * p1.y) + fabs(p2.x*p2.x + p2.y * p2.y);
+    Q = fabs(p1.x*p1.x + p1.y * p1.y) - fabs(p2.x*p2.x + p2.y * p2.y);
+    U = 2 * (p1.x*p2.x + p1.y * p2.y);
+    V = -2 * (p1.y*p2.x - p1.x * p2.y);
+}
+
+
+
+
+/**
+ * @brief calculate stokes IQUV spectra pol1, pol2 are arrays of naccumulate
+ * complex spectra for individual polarizations
+ */
+__global__ void stokes_accumulate(float2 const __restrict__ *pol1,
+        float2 const __restrict__ *pol2, float *I, float* Q, float *U, float*V,
+        int nchans, int naccumulate)
+{
+
+  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < nchans);
+       i += blockDim.x * gridDim.x)
+  {
+      float rI = 0;
+      float rQ = 0;
+      float rU = 0;
+      float rV = 0;
+
+      for (int k=0; k < naccumulate; k++)
+      {
+        const float2 p1 = pol1[i + k * nchans];
+        const float2 p2 = pol2[i + k * nchans];
+
+        rI += fabs(p1.x * p1.x + p1.y * p1.y) + fabs(p2.x * p2.x + p2.y * p2.y);
+        rQ += fabs(p1.x * p1.x + p1.y * p1.y) - fabs(p2.x * p2.x + p2.y * p2.y);
+        rU += 2.f * (p1.x * p2.x + p1.y * p2.y);
+        rV += -2.f * (p1.y * p2.x - p1.x * p2.y);
+      }
+      I[i] += rI;
+      Q[i] += rQ;
+      U[i] += rU;
+      V[i] += rV;
+  }
+
+}
+
+
 
 
 
diff --git a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
index bd33eaecc2b0be867a8fe7d6768abf1c329ffcc1..50c0c9b04165fa21b3023835119af6d31d2c6199 100644
--- a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
+++ b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
@@ -17,8 +17,9 @@ namespace psrdada_cpp {
 namespace effelsberg {
 namespace edd {
 
+// Reduce thread local vatiable v in shared array x, so that x[0]
 template<typename T>
-__device__ void reduce(T *x, const T &v)
+__device__ void sum_reduce(T *x, const T &v)
 {
   x[threadIdx.x] = v;
   __syncthreads();
@@ -28,22 +29,33 @@ __device__ void reduce(T *x, const T &v)
       x[threadIdx.x] += x[threadIdx.x + s];
     __syncthreads();
   }
+}
 
 
+// If one of the side channel items is lsot, then both are considered as lost
+// here
+__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t* __restrict__ B, size_t N)
+{
+  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
+       i += blockDim.x * gridDim.x)
+  {
+    uint64_t v = A[i] || B[i];
+    A[i] = v;
+    B[i] = v;
+  }
 }
 
 
-__global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uint64_t* __restrict__ sideChannelData,
-                       size_t N, size_t heapSize, size_t bitpos,
-                       size_t noOfSideChannels, size_t selectedSideChannel,
-                       const float  baseLineG0,
-                       const float  baseLineG1,
-                       float* __restrict__ baseLineNG0,
-                       float* __restrict__ baseLineNG1,
-                       uint64_cu* stats_G0, uint64_cu* stats_G1) {
-//  float baseLineG0 = (*_baseLineNG0) / N;
- // float baseLineG1 = (*_baseLineNG1) / N;
-
+__global__ void gating(float* __restrict__ G0,
+        float* __restrict__ G1,
+        const uint64_t* __restrict__ sideChannelData,
+        size_t N, size_t heapSize, size_t bitpos,
+        size_t noOfSideChannels, size_t selectedSideChannel,
+        const float  baseLineG0,
+        const float  baseLineG1,
+        float* __restrict__ baseLineNG0,
+        float* __restrict__ baseLineNG1,
+        uint64_cu* stats_G0, uint64_cu* stats_G1) {
   // statistics values for samopels to G0, G1
   uint32_t _G0stats = 0;
   uint32_t _G1stats = 0;
@@ -55,12 +67,8 @@ __global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uin
        i += blockDim.x * gridDim.x) {
     const float v = G0[i];
 
-    const uint64_t sideChannelItem =
-        sideChannelData[((i / heapSize) * (noOfSideChannels)) +
-                        selectedSideChannel]; // Probably not optimal access as
-                                              // same data is copied for several
-                                              // threads, but maybe efficiently
-                                              // handled by cache?
+    const uint64_t sideChannelItem = sideChannelData[((i / heapSize) * (noOfSideChannels)) +
+                        selectedSideChannel];
 
     const unsigned int bit_set = TEST_BIT(sideChannelItem, bitpos);
     const unsigned int heap_lost = TEST_BIT(sideChannelItem, 63);
@@ -73,36 +81,38 @@ __global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uin
     baselineUpdateG1 += v * bit_set * (!heap_lost);
     baselineUpdateG0 += v * (!bit_set) *(!heap_lost);
   }
+
   __shared__ uint32_t x[1024];
 
   // Reduce G0, G1
-  reduce<uint32_t>(x, _G0stats);
+  sum_reduce<uint32_t>(x, _G0stats);
   if(threadIdx.x == 0)
     atomicAdd(stats_G0,  (uint64_cu) x[threadIdx.x]);
-
   __syncthreads();
-  reduce<uint32_t>(x, _G1stats);
+
+  sum_reduce<uint32_t>(x, _G1stats);
   if(threadIdx.x == 0)
     atomicAdd(stats_G1,  (uint64_cu) x[threadIdx.x]);
+  __syncthreads();
 
   //reuse shared array
   float *y = (float*) x;
-
   //update the baseline array
-  reduce<float>(y, baselineUpdateG0);
+  sum_reduce<float>(y, baselineUpdateG0);
   if(threadIdx.x == 0)
     atomicAdd(baseLineNG0, y[threadIdx.x]);
-
   __syncthreads();
-  reduce<float>(y, baselineUpdateG1);
+
+  sum_reduce<float>(y, baselineUpdateG1);
   if(threadIdx.x == 0)
     atomicAdd(baseLineNG1, y[threadIdx.x]);
+  __syncthreads();
 }
 
 
 
-template <class HandlerType, typename IntegratedPowerType>
-GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer(
+template <class HandlerType>
+GatedSpectrometer<HandlerType>::GatedSpectrometer(
     const DadaBufferLayout &dadaBufferLayout,
     std::size_t selectedSideChannel, std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate,
     std::size_t nbits, float input_level, float output_level,
@@ -171,36 +181,34 @@ GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer(
   cufftSetStream(_fft_plan, _proc_stream);
 
   BOOST_LOG_TRIVIAL(debug) << "Allocating memory";
-  _raw_voltage_db.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
-  _sideChannelData_db.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
+  polarization0._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
+  polarization1._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
+  polarization0._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
+  polarization1._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
   BOOST_LOG_TRIVIAL(debug) << "  Input voltages size (in 64-bit words): "
-                           << _raw_voltage_db.size();
+                           << polarization0._raw_voltage.size();
   _unpacked_voltage_G0.resize(_nsamps_per_buffer);
   _unpacked_voltage_G1.resize(_nsamps_per_buffer);
 
-  _baseLineNG0.resize(1);
-  _baseLineNG1.resize(1);
+  polarization0._baseLineG0.resize(1);
+  polarization0._baseLineG1.resize(1);
+  polarization1._baseLineG0.resize(1);
+  polarization1._baseLineG1.resize(1);
+
   BOOST_LOG_TRIVIAL(debug) << "  Unpacked voltages size (in samples): "
                            << _unpacked_voltage_G0.size();
-  _channelised_voltage.resize(_nchans * batch);
+  polarization0._channelised_voltage_G0.resize(_nchans * batch);
+  polarization0._channelised_voltage_G1.resize(_nchans * batch);
+  polarization1._channelised_voltage_G0.resize(_nchans * batch);
+  polarization1._channelised_voltage_G1.resize(_nchans * batch);
   BOOST_LOG_TRIVIAL(debug) << "  Channelised voltages size: "
-                           << _channelised_voltage.size();
-  _power_db.resize(_nchans * batch / (_naccumulate / nBlocks) * 2);  // hold on and off spectra to simplify output
-  thrust::fill(_power_db.a().begin(), _power_db.a().end(), 0.);
-  thrust::fill(_power_db.b().begin(), _power_db.b().end(), 0.);
-  BOOST_LOG_TRIVIAL(debug) << "  Powers size: " << _power_db.size() / 2;
-
-  _noOfBitSetsIn_G0.resize( batch / (_naccumulate / nBlocks));
-  _noOfBitSetsIn_G1.resize( batch / (_naccumulate / nBlocks));
-  thrust::fill(_noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L);
-  thrust::fill(_noOfBitSetsIn_G0.b().begin(), _noOfBitSetsIn_G0.b().end(), 0L);
-  thrust::fill(_noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L);
-  thrust::fill(_noOfBitSetsIn_G1.b().begin(), _noOfBitSetsIn_G1.b().end(), 0L);
-  BOOST_LOG_TRIVIAL(debug) << "  Bit set counter size: " << _noOfBitSetsIn_G0.size();
-
-  // on the host both power are stored in the same data buffer together with
-  // the number of bit sets
-  _host_power_db.resize( _power_db.size() * sizeof(IntegratedPowerType) + 2 * sizeof(size_t) * _noOfBitSetsIn_G0.size());
+                           << polarization0._channelised_voltage_G0.size();
+
+   stokes_G0.resize(_nchans, batch / (_naccumulate / nBlocks));
+   stokes_G1.resize(_nchans, batch / (_naccumulate / nBlocks));
+
+  // on the host full output is stored together with sci data in one buffer
+  _host_power_db.resize( 8 * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)) * batch / (_naccumulate / nBlocks));
 
   CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
   CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
@@ -208,13 +216,12 @@ GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer(
   CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));
 
   _unpacker.reset(new Unpacker(_proc_stream));
-  _detector.reset(new DetectorAccumulator<IntegratedPowerType>(_nchans, _naccumulate / nBlocks, scaling,
-                                          offset, _proc_stream));
 } // constructor
 
 
-template <class HandlerType, typename IntegratedPowerType>
-GatedSpectrometer<HandlerType, IntegratedPowerType>::~GatedSpectrometer() {
+
+template <class HandlerType>
+GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
   BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
   if (!_fft_plan)
     cufftDestroy(_fft_plan);
@@ -224,8 +231,9 @@ GatedSpectrometer<HandlerType, IntegratedPowerType>::~GatedSpectrometer() {
 }
 
 
-template <class HandlerType, typename IntegratedPowerType>
-void GatedSpectrometer<HandlerType, IntegratedPowerType>::init(RawBytes &block) {
+
+template <class HandlerType>
+void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
   BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
   std::stringstream headerInfo;
   headerInfo << "\n"
@@ -254,78 +262,82 @@ void GatedSpectrometer<HandlerType, IntegratedPowerType>::init(RawBytes &block)
 }
 
 
-template <class HandlerType, typename IntegratedPowerType>
-void GatedSpectrometer<HandlerType, IntegratedPowerType>::process(
-    thrust::device_vector<RawVoltageType> const &digitiser_raw,
-    thrust::device_vector<uint64_t> const &sideChannelData,
-    thrust::device_vector<IntegratedPowerType> &detected, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1) {
+
+template <class HandlerType>
+void GatedSpectrometer<HandlerType>::gated_fft(
+        PolarizationData &thispol,
+        PolarizationData &otherpol,
+  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
+  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1
+        )
+{
   BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
   switch (_nbits) {
   case 8:
-    _unpacker->unpack<8>(digitiser_raw, _unpacked_voltage_G0);
+    _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0);
     break;
   case 12:
-    _unpacker->unpack<12>(digitiser_raw, _unpacked_voltage_G0);
+    _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0);
     break;
   default:
     throw std::runtime_error("Unsupported number of bits");
   }
-  BOOST_LOG_TRIVIAL(debug) << "Calculate baseline";
-  //calculate baseline from previos block
-
-  BOOST_LOG_TRIVIAL(debug) << "Perform gating";
 
-  float baseLineG0 = _baseLineNG0[0];
-  float baseLineG1 = _baseLineNG1[0];
+  // Get baseline from previous block
+  float previous_baseLineG0 = data._baseLineG0[0];
+  float previous_baseLineG1 = data._baseLineG1[0];
 
   uint64_t NG0 = 0;
   uint64_t NG1 = 0;
 
   // Loop over outputblocks, for case of multiple output blocks per input block
-  for (size_t i = 0; i < noOfBitSetsIn_G0.size(); i++)
+  int step = data._sideChannelData.size() / _noOfBitSetsIn_G0.size();
+  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
   { // ToDo: Should be in one kernel call
   gating<<<1024, 1024, 0, _proc_stream>>>(
-      thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
-      thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
-      thrust::raw_pointer_cast(sideChannelData.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
-      _unpacked_voltage_G0.size() / noOfBitSetsIn_G0.size(), _dadaBufferLayout.getHeapSize(), _selectedBit, _dadaBufferLayout.getNSideChannels(),
+      thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap),
+      thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap),
+      thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step),
+      _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(),
+      _dadaBufferLayout.getHeapSize(),
+      _selectedBit,
+      _dadaBufferLayout.getNSideChannels(),
       _selectedSideChannel,
-      baseLineG0, baseLineG1,
-      thrust::raw_pointer_cast(_baseLineNG0.data()),
-      thrust::raw_pointer_cast(_baseLineNG1.data()),
-      thrust::raw_pointer_cast(noOfBitSetsIn_G0.data() + i),
-      thrust::raw_pointer_cast(noOfBitSetsIn_G1.data() + i)
+      previous_baseLineG0, previous_baseLineG1,
+      thrust::raw_pointer_cast(data._baseLineG0.data()),
+      thrust::raw_pointer_cast(data._baseLineG1.data()),
+      thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i),
+      thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i)
       );
-    NG0 += noOfBitSetsIn_G0[i];
-    NG1 += noOfBitSetsIn_G1[i];
+    NG0 += _noOfBitSetsIn_G0[i];
+    NG1 += _noOfBitSetsIn_G1[i];
   }
-  _baseLineNG0[0] /= NG0;
-  _baseLineNG1[0] /= NG1;
-  BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << baseLineG0 << " -> " << _baseLineNG0[0] << ", " << baseLineG1 << " -> " << _baseLineNG1[0] ;
+  data._baseLineG0[0] /= NG0;
+  data._baseLineG1[0] /= NG1;
+  BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << previous_baseLineG0 << " -> " << data._baseLineG0[0] << ", " << previous_baseLineG1 << " -> " << data._baseLineG1[0] ;
 
 
   BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
   UnpackedVoltageType *_unpacked_voltage_ptr =
       thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
   ChannelisedVoltageType *_channelised_voltage_ptr =
-      thrust::raw_pointer_cast(_channelised_voltage.data());
+      thrust::raw_pointer_cast(data._channelised_voltage_G0.data());
   CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                  (cufftComplex *)_channelised_voltage_ptr));
-  _detector->detect(_channelised_voltage, detected, 2, 0);
 
   BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
   _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
+  _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data());
   CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                  (cufftComplex *)_channelised_voltage_ptr));
 
-  _detector->detect(_channelised_voltage, detected, 2, 1);
   CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
   BOOST_LOG_TRIVIAL(debug) << "Exit processing";
 } // process
 
 
-template <class HandlerType, typename IntegratedPowerType>
-bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &block) {
+template <class HandlerType>
+bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
   ++_call_count;
   BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
                            << _call_count << ")";
@@ -340,20 +352,43 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b
 
   // Copy data to device
   CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
-  _raw_voltage_db.swap();
-  _sideChannelData_db.swap();
+ polarization0.swap();
+ polarization1.swap();
 
   BOOST_LOG_TRIVIAL(debug) << "   block.used_bytes() = " << block.used_bytes()
                            << ", dataBlockBytes = " << _dadaBufferLayout.sizeOfData() << "\n";
 
-  CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(_raw_voltage_db.a_ptr()),
-                                   static_cast<void *>(block.ptr()),
-                                   _dadaBufferLayout.sizeOfData() , cudaMemcpyHostToDevice,
-                                   _h2d_stream));
-  CUDA_ERROR_CHECK(cudaMemcpyAsync(
-      static_cast<void *>(_sideChannelData_db.a_ptr()),
-      static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
-      _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream));
+  // Copy the data with stride to the GPU:
+  // CPU: P1P2P1P2P1P2 ...
+  // GPU: P1P1P1 ... P2P2P2 ...
+  int heapsize_bytes = _nsamps_per_heap * _nbits / 8;
+  CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
+    static_cast<void *>(polarization0._raw_voltage.a_ptr()),
+      heapsize_bytes,
+      static_cast<void *>(block.ptr()),
+      2 * heapsize_bytes,
+      heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
+      cudaMemcpyHostToDevice, _h2d_stream));
+
+  CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
+    static_cast<void *>(polarization1._raw_voltage.a_ptr()),
+      heapsize_bytes,
+      static_cast<void *>(block.ptr()) + heapsize_bytes,
+      2 * heapsize_bytes,
+      heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
+      cudaMemcpyHostToDevice, _h2d_stream));
+
+// ToDo: Strided copy of side channel data
+//  CUDA_ERROR_CHECK(cudaMemcpyAsync(
+//      static_cast<void *>(polarization0._sideChannelData.a_ptr()),
+//      static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
+//      _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream));
+//
+//  CUDA_ERROR_CHECK(cudaMemcpyAsync(
+//      static_cast<void *>(polarization1._sideChannelData.a_ptr()),
+//      static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
+//      _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream));
+
   BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" <<   std::setw(16)
       << std::setfill('0') << std::hex <<
       (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData()
@@ -361,6 +396,7 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b
       std::dec;
 
 
+
   if (_call_count == 1) {
     return false;
   }
@@ -371,18 +407,42 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b
   bool newBlock = false;
   if (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0) // _call_count -1 because this is the block number on the device
   {
-    BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
-    newBlock = true;
-    _power_db.swap();
-    _noOfBitSetsIn_G0.swap();
-    _noOfBitSetsIn_G1.swap();
-    // move to specific stream!
-    thrust::fill(thrust::cuda::par.on(_proc_stream),_power_db.a().begin(), _power_db.a().end(), 0.);
-    thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L);
-    thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L);
+      BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
+      newBlock = true;
+      stokes_G0.swap();
+      stokes_G1.swap();
+      stokes_G0.reset(_proc_stream);
+      stokes_G1.reset(_proc_stream);
   }
 
-  process(_raw_voltage_db.b(), _sideChannelData_db.b(), _power_db.a(), _noOfBitSetsIn_G0.a(), _noOfBitSetsIn_G1.a());
+
+  mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(polarization0._sideChannelData.data()),
+          thrust::raw_pointer_cast(polarization1._sideChannelData.data()), polarization1._sideChannelData.size());
+
+  gated_fft(polarization0, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
+  gated_fft(polarization1, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
+
+  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
+          thrust::raw_pointer_cast(polarization0._channelised_voltage_G0.data()),
+          thrust::raw_pointer_cast(polarization1._channelised_voltage_G0.data()),
+          thrust::raw_pointer_cast(stokes_G0.I.a().data()),
+          thrust::raw_pointer_cast(stokes_G0.Q.a().data()),
+          thrust::raw_pointer_cast(stokes_G0.U.a().data()),
+          thrust::raw_pointer_cast(stokes_G0.V.a().data()),
+          _nchans, _naccumulate
+          );
+
+  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
+          thrust::raw_pointer_cast(polarization0._channelised_voltage_G1.data()),
+          thrust::raw_pointer_cast(polarization1._channelised_voltage_G1.data()),
+          thrust::raw_pointer_cast(stokes_G1.I.a().data()),
+          thrust::raw_pointer_cast(stokes_G1.Q.a().data()),
+          thrust::raw_pointer_cast(stokes_G1.U.a().data()),
+          thrust::raw_pointer_cast(stokes_G1.V.a().data()),
+          _nchans, _naccumulate
+          );
+
+
   CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
 
   if ((_call_count == 2) || (!newBlock)) {
@@ -392,29 +452,104 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b
   // copy data to host if block is finished
   CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
   _host_power_db.swap();
+  // OUTPUT MEMORY LAYOUT:
+  // I G0, IG1,Q G0, QG1, U G0,UG1,V G0,VG1, 8xSCI, ...
 
-  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
+  for (size_t i = 0; i < stokes_G0._noOfBitSets.size(); i++)
   {
-    size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
-    // copy 2x channel data
+    size_t memslicesize = (_nchans * sizeof(IntegratedPowerType));
+    size_t memOffset = 8 * i * (memslicesize +  + sizeof(size_t));
+    // Copy  II QQ UU VV
     CUDA_ERROR_CHECK(
         cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset) ,
-                        static_cast<void *>(_power_db.b_ptr() + 2 * i * _nchans),
-                        2 * _nchans * sizeof(IntegratedPowerType),
+                        static_cast<void *>(stokes_G0.I.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
+                        cudaMemcpyDeviceToHost, _d2h_stream));
+
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 1 * memslicesize) ,
+                        static_cast<void *>(stokes_G1.I.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
                         cudaMemcpyDeviceToHost, _d2h_stream));
 
-    // copy noOf bit set data
     CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)),
-          static_cast<void *>(_noOfBitSetsIn_G0.b_ptr() + i ),
+        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * memslicesize) ,
+                        static_cast<void *>(stokes_G0.Q.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
+                        cudaMemcpyDeviceToHost, _d2h_stream));
+
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 3 * memslicesize) ,
+                        static_cast<void *>(stokes_G1.Q.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
+                        cudaMemcpyDeviceToHost, _d2h_stream));
+
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 4 * memslicesize) ,
+                        static_cast<void *>(stokes_G0.U.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
+                        cudaMemcpyDeviceToHost, _d2h_stream));
+
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 5 * memslicesize) ,
+                        static_cast<void *>(stokes_G1.U.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
+                        cudaMemcpyDeviceToHost, _d2h_stream));
+
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 6 * memslicesize) ,
+                        static_cast<void *>(stokes_G0.V.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
+                        cudaMemcpyDeviceToHost, _d2h_stream));
+
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 7 * memslicesize) ,
+                        static_cast<void *>(stokes_G1.V.b_ptr() + i * memslicesize),
+                        _nchans * sizeof(IntegratedPowerType),
+                        cudaMemcpyDeviceToHost, _d2h_stream));
+
+    // Copy SCI
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize),
+          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
+            1 * sizeof(size_t),
+            cudaMemcpyDeviceToHost, _d2h_stream));
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 1 * sizeof(size_t)),
+          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
+            1 * sizeof(size_t),
+            cudaMemcpyDeviceToHost, _d2h_stream));
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 2 * sizeof(size_t)),
+          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
             1 * sizeof(size_t),
             cudaMemcpyDeviceToHost, _d2h_stream));
-
     CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)),
-          static_cast<void *>(_noOfBitSetsIn_G1.b_ptr() + i ),
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 3 * sizeof(size_t)),
+          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
             1 * sizeof(size_t),
             cudaMemcpyDeviceToHost, _d2h_stream));
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 4 * sizeof(size_t)),
+          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
+            1 * sizeof(size_t),
+            cudaMemcpyDeviceToHost, _d2h_stream));
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 5 * sizeof(size_t)),
+          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
+            1 * sizeof(size_t),
+            cudaMemcpyDeviceToHost, _d2h_stream));
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 6 * sizeof(size_t)),
+          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
+            1 * sizeof(size_t),
+            cudaMemcpyDeviceToHost, _d2h_stream));
+    CUDA_ERROR_CHECK(
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 7 * sizeof(size_t)),
+          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
+            1 * sizeof(size_t),
+            cudaMemcpyDeviceToHost, _d2h_stream));
+
   }
 
   BOOST_LOG_TRIVIAL(debug) << "Copy Data back to host";
@@ -424,28 +559,28 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b
   }
 
   // calculate off value
-  BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
-  size_t total_samples_lost = 0;
-  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
-  {
-    size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
-
-    size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
-    size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
-
-    size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
-    total_samples_lost += samples_lost;
-
-    BOOST_LOG_TRIVIAL(info) << "    Heap " << i << ":\n"
-      <<"                            Samples with  bit set  : " << *on_values << std::endl
-      <<"                            Samples without bit set: " << *off_values << std::endl
-      <<"                            Samples lost           : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
-  }
-  double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
-  double prev_average = _processing_efficiency / (_call_count- 3 - 1);
-  _processing_efficiency += efficiency;
-  double average = _processing_efficiency / (_call_count-3);
-  BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
+  //BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
+  //size_t total_samples_lost = 0;
+  //for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
+  //{
+  //  size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+
+  //  size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
+  //  size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+
+  //  size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
+  //  total_samples_lost += samples_lost;
+
+  //  BOOST_LOG_TRIVIAL(info) << "    Heap " << i << ":\n"
+  //    <<"                            Samples with  bit set  : " << *on_values << std::endl
+  //    <<"                            Samples without bit set: " << *off_values << std::endl
+  //    <<"                            Samples lost           : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
+  //}
+  //double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
+  //double prev_average = _processing_efficiency / (_call_count- 3 - 1);
+  //_processing_efficiency += efficiency;
+  //double average = _processing_efficiency / (_call_count-3);
+  //BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
 
   // Wrap in a RawBytes object here;
   RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()),
diff --git a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
index 21449edc3b16534aa64aa97dc7bc656a8446ce2b..390825af7951d1024acb5105723a9d19f9c73948 100644
--- a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
+++ b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
@@ -33,7 +33,7 @@ void launchSpectrometer(const effelsberg::edd::DadaBufferLayout &dadaBufferLayou
     if (output_type == "file")
     {
       SimpleFileWriter sink(filename);
-      effelsberg::edd::GatedSpectrometer<decltype(sink), T> spectrometer(dadaBufferLayout,
+      effelsberg::edd::GatedSpectrometer<decltype(sink)> spectrometer(dadaBufferLayout,
           selectedSideChannel, selectedBit,
           fft_length, naccumulate, nbits, input_level,
           output_level, sink);
@@ -45,7 +45,7 @@ void launchSpectrometer(const effelsberg::edd::DadaBufferLayout &dadaBufferLayou
     else if (output_type == "dada")
     {
       DadaOutputStream sink(string_to_key(filename), log);
-      effelsberg::edd::GatedSpectrometer<decltype(sink), T> spectrometer(dadaBufferLayout,
+      effelsberg::edd::GatedSpectrometer<decltype(sink)> spectrometer(dadaBufferLayout,
           selectedSideChannel, selectedBit,
           fft_length, naccumulate, nbits, input_level,
           output_level, sink);
@@ -185,13 +185,8 @@ int main(int argc, char **argv) {
 
     effelsberg::edd::DadaBufferLayout bufferLayout(input_key, speadHeapSize, nSideChannels);
 
-    if (output_bit_depth == 8)
-    {
-      launchSpectrometer<int8_t>(bufferLayout, output_type, filename,
-          selectedSideChannel, selectedBit,
-       fft_length, naccumulate, nbits, input_level, output_level);
-    }
-    else if (output_bit_depth == 32)
+    // ToDo: Supprot only single output depth
+    if (output_bit_depth == 32)
     {
       launchSpectrometer<float>(bufferLayout, output_type, filename,
           selectedSideChannel, selectedBit,
diff --git a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
index 163e8e9fba27da62bac0eee7654316ddbe61fee4..5ca344718bf909f9239540d952457a50f9348ebd 100644
--- a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
+++ b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
@@ -7,7 +7,6 @@
 #include "thrust/device_vector.h"
 #include "thrust/extrema.h"
 
-namespace {
 
 TEST(GatedSpectrometer, BitManipulationMacros) {
   for (int i = 0; i < 64; i++) {
@@ -23,31 +22,123 @@ TEST(GatedSpectrometer, BitManipulationMacros) {
   }
 }
 
-//
-//TEST(GatedSpectrometer, ParameterSanity) {
-//  ::testing::FLAGS_gtest_death_test_style = "threadsafe";
-//  psrdada_cpp::NullSink sink;
-//
-//  // 8 or 12 bit sampling
-//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 0, 0, 0, sink),
-//               "_nbits == 8");
-//  // naccumulate > 0
-//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 8, 0, 0, sink),
-//               "_naccumulate");
-//
-//  // selected side channel
-//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 1, 2, 0, 4096, 0, 1, 8, 0, 0, sink),
-//               "nSideChannels");
-//
-//  // selected bit
-//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 2, 1, 65, 4096, 0, 1, 8, 0, 0, sink),
-//               "selectedBit");
-//
-//  // valid construction
-//  psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink), int8_t> a(
-//      4096 * 4096, 2, 1, 63, 4096, 1024, 1, 8, 100., 100., sink);
-//}
-} // namespace
+
+TEST(GatedSpectrometer, stokes_IQUV)
+{
+    float I,Q,U,V;
+    // No field
+    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V);
+    EXPECT_FLOAT_EQ(I, 0);
+    EXPECT_FLOAT_EQ(Q, 0);
+    EXPECT_FLOAT_EQ(U, 0);
+    EXPECT_FLOAT_EQ(V, 0);
+
+    // For p1 = Ex, p2 = Ey
+    // horizontal polarized
+    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V);
+    EXPECT_FLOAT_EQ(I, 1);
+    EXPECT_FLOAT_EQ(Q, 1);
+    EXPECT_FLOAT_EQ(U, 0);
+    EXPECT_FLOAT_EQ(V, 0);
+
+
+    // vertical polarized
+    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){1.0f,0.0f}, I, Q, U, V);
+    EXPECT_FLOAT_EQ(I, 1);
+    EXPECT_FLOAT_EQ(Q, -1);
+    EXPECT_FLOAT_EQ(U, 0);
+    EXPECT_FLOAT_EQ(V, 0);
+
+    //linear +45 deg.
+    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V);
+    EXPECT_FLOAT_EQ(I, 1);
+    EXPECT_FLOAT_EQ(Q, 0);
+    EXPECT_FLOAT_EQ(U, 1);
+    EXPECT_FLOAT_EQ(V, 0);
+
+    //linear -45 deg.
+    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){-1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V);
+    EXPECT_FLOAT_EQ(I, 1);
+    EXPECT_FLOAT_EQ(Q, 0);
+    EXPECT_FLOAT_EQ(U, -1);
+    EXPECT_FLOAT_EQ(V, 0);
+
+
+
+    //left circular
+    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V);
+    EXPECT_FLOAT_EQ(I, 1);
+    EXPECT_FLOAT_EQ(Q, 0);
+    EXPECT_FLOAT_EQ(U, 0);
+    EXPECT_FLOAT_EQ(V, -1);
+
+    // right circular
+    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,-1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V);
+    EXPECT_FLOAT_EQ(I, 1);
+    EXPECT_FLOAT_EQ(Q, 0);
+    EXPECT_FLOAT_EQ(U, 0);
+    EXPECT_FLOAT_EQ(V, 1);
+
+}
+
+
+TEST(GatedSpectrometer, stokes_accumulate)
+{
+    size_t nchans = 8 * 1024 * 1024 + 1;
+    size_t naccumulate = 5;
+
+    thrust::device_vector<float2> P0(nchans * naccumulate);
+    thrust::device_vector<float2> P1(nchans * naccumulate);
+    thrust::fill(P0.begin(), P0.end(), (float2){0, 0});
+    thrust::fill(P1.begin(), P1.end(), (float2){0, 0});
+    thrust::device_vector<float> I(nchans);
+    thrust::device_vector<float> Q(nchans);
+    thrust::device_vector<float> U(nchans);
+    thrust::device_vector<float> V(nchans);
+    thrust::fill(I.begin(), I.end(), 0);
+    thrust::fill(Q.begin(), Q.end(), 0);
+    thrust::fill(U.begin(), U.end(), 0);
+    thrust::fill(V.begin(), V.end(), 0);
+
+    // This channel should be left circular polarized
+    size_t idx0 = 23;
+    for (int k = 0; k< naccumulate; k++)
+    {
+        size_t idx = idx0 + k * nchans;
+        P0[idx] = (float2){0.0f, 1.0f/std::sqrt(2)};
+        P1[idx] = (float2){1.0f/std::sqrt(2),0.0f};
+    }
+
+    psrdada_cpp::effelsberg::edd::stokes_accumulate<<<1024, 1024>>>(
+          thrust::raw_pointer_cast(P0.data()),
+          thrust::raw_pointer_cast(P1.data()),
+          thrust::raw_pointer_cast(I.data()),
+          thrust::raw_pointer_cast(Q.data()),
+          thrust::raw_pointer_cast(U.data()),
+          thrust::raw_pointer_cast(V.data()),
+          nchans,
+          naccumulate
+            );
+
+    thrust::pair<thrust::device_vector<float>::iterator, thrust::device_vector<float>::iterator> minmax;
+
+    minmax = thrust::minmax_element(I.begin(), I.end());
+    EXPECT_FLOAT_EQ(*minmax.first, 0);
+    EXPECT_FLOAT_EQ(*minmax.second, naccumulate);
+
+    minmax = thrust::minmax_element(Q.begin(), Q.end());
+    EXPECT_FLOAT_EQ(*minmax.first, 0);
+    EXPECT_FLOAT_EQ(*minmax.second, 0);
+
+    minmax = thrust::minmax_element(U.begin(), U.end());
+    EXPECT_FLOAT_EQ(*minmax.first, 0);
+    EXPECT_FLOAT_EQ(*minmax.second, 0);
+
+    minmax = thrust::minmax_element(V.begin(), V.end());
+    EXPECT_FLOAT_EQ(*minmax.first, -1. * naccumulate);
+    EXPECT_FLOAT_EQ(*minmax.second, 0);
+
+}
 
 
 TEST(GatedSpectrometer, GatingKernel)