diff --git a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh index d716594d4f9b4ababaa23fa827ad6b038fc92663..7753d530847a391662f975cff3fedebc60603dff 100644 --- a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh +++ b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh @@ -26,20 +26,91 @@ namespace edd { typedef unsigned long long int uint64_cu; static_assert(sizeof(uint64_cu) == sizeof(uint64_t), "Long long int not of 64 bit! This is problematic for CUDA!"); + + typedef uint64_t RawVoltageType; + typedef float UnpackedVoltageType; + typedef float2 ChannelisedVoltageType; + + typedef float IntegratedPowerType; + //typedef int8_t IntegratedPowerType; + + // Input data and intermediate processing data for one polarization + struct PolarizationData + { + DoubleDeviceBuffer<RawVoltageType> _raw_voltage; + DoubleDeviceBuffer<uint64_t> _sideChannelData; + + thrust::device_vector<UnpackedVoltageType> _baseLineG0; + thrust::device_vector<UnpackedVoltageType> _baseLineG1; + thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G0; + thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G1; + + void swap() + { + _raw_voltage.swap(); + _sideChannelData.swap(); + } + }; + + + // Outptu data for one gate + class StokesOutput + { + public: + DoubleDeviceBuffer<IntegratedPowerType> I; + DoubleDeviceBuffer<IntegratedPowerType> Q; + DoubleDeviceBuffer<IntegratedPowerType> U; + DoubleDeviceBuffer<IntegratedPowerType> V; + + DoubleDeviceBuffer<uint64_cu> _noOfBitSets; + + void reset(cudaStream_t &_proc_stream) + { + thrust::fill(thrust::cuda::par.on(_proc_stream),I.a().begin(), I.a().end(), 0.); + thrust::fill(thrust::cuda::par.on(_proc_stream),Q.a().begin(), Q.a().end(), 0.); + thrust::fill(thrust::cuda::par.on(_proc_stream),U.a().begin(), U.a().end(), 0.); + thrust::fill(thrust::cuda::par.on(_proc_stream),V.a().begin(), V.a().end(), 0.); + + thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSets.a().begin(), _noOfBitSets.a().end(), 0L); + } + + void swap() + { + I.swap(); + Q.swap(); + U.swap(); + V.swap(); + _noOfBitSets.swap(); + + } + + void resize(size_t size, size_t blocks) + { + I.resize(size * blocks); + Q.resize(size * blocks); + U.resize(size * blocks); + V.resize(size * blocks); + + _noOfBitSets.resize(blocks); + } + }; + + + + + + + /** @class GatedSpectrometer @brief Split data into two streams and create integrated spectra depending on bit set in side channel data. */ -template <class HandlerType, typename IntegratedPowerType> class GatedSpectrometer { +template <class HandlerType> class GatedSpectrometer { public: - typedef uint64_t RawVoltageType; - typedef float UnpackedVoltageType; - typedef float2 ChannelisedVoltageType; -// typedef float IntegratedPowerType; - //typedef int8_t IntegratedPowerType; + public: /** @@ -90,11 +161,10 @@ public: bool operator()(RawBytes &block); private: - void process(thrust::device_vector<RawVoltageType> const &digitiser_raw, - thrust::device_vector<uint64_t> const &sideChannelData, - thrust::device_vector<IntegratedPowerType> &detected, - thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0, - thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1); + // gate the data and fft data per gate + void gated_fft(PolarizationData &data, + thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0, + thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1); private: DadaBufferLayout _dadaBufferLayout; @@ -115,26 +185,20 @@ private: double _processing_efficiency; std::unique_ptr<Unpacker> _unpacker; - std::unique_ptr<DetectorAccumulator<IntegratedPowerType> > _detector; - // Input data - DoubleDeviceBuffer<RawVoltageType> _raw_voltage_db; - DoubleDeviceBuffer<uint64_t> _sideChannelData_db; + // Input data and per pol intermediate data + PolarizationData polarization0, polarization1; // Output data - DoubleDeviceBuffer<IntegratedPowerType> _power_db; + StokesOutput stokes_G0, stokes_G1; - - DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G0; - DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G1; DoublePinnedHostBuffer<char> _host_power_db; - // Intermediate process steps + // Temporary processing block + // ToDo: Use inplace FFT to avoid temporary coltage array thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G0; thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G1; - thrust::device_vector<ChannelisedVoltageType> _channelised_voltage; - thrust::device_vector<UnpackedVoltageType> _baseLineNG0; - thrust::device_vector<UnpackedVoltageType> _baseLineNG1; + cudaStream_t _h2d_stream; cudaStream_t _proc_stream; @@ -142,11 +206,10 @@ private: }; - /** * @brief Splits the input data depending on a bit set into two arrays. * - * @detail The resulting gaps are filled with zeros in the other stream. + * @detail The resulting gaps are filled with a given baseline value in the other stream. * * @param GO Input data. Data is set to the baseline value if corresponding * sideChannelData bit at bitpos os set. @@ -177,6 +240,57 @@ __global__ void gating(float *G0, float *G1, const int64_t *sideChannelData, uint64_cu* stats_G0, uint64_cu* stats_G1); +/** + * @brief calculate stokes IQUV from two complex valuies for each polarization + */ +//__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V); +__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V) +{ + I = fabs(p1.x*p1.x + p1.y * p1.y) + fabs(p2.x*p2.x + p2.y * p2.y); + Q = fabs(p1.x*p1.x + p1.y * p1.y) - fabs(p2.x*p2.x + p2.y * p2.y); + U = 2 * (p1.x*p2.x + p1.y * p2.y); + V = -2 * (p1.y*p2.x - p1.x * p2.y); +} + + + + +/** + * @brief calculate stokes IQUV spectra pol1, pol2 are arrays of naccumulate + * complex spectra for individual polarizations + */ +__global__ void stokes_accumulate(float2 const __restrict__ *pol1, + float2 const __restrict__ *pol2, float *I, float* Q, float *U, float*V, + int nchans, int naccumulate) +{ + + for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < nchans); + i += blockDim.x * gridDim.x) + { + float rI = 0; + float rQ = 0; + float rU = 0; + float rV = 0; + + for (int k=0; k < naccumulate; k++) + { + const float2 p1 = pol1[i + k * nchans]; + const float2 p2 = pol2[i + k * nchans]; + + rI += fabs(p1.x * p1.x + p1.y * p1.y) + fabs(p2.x * p2.x + p2.y * p2.y); + rQ += fabs(p1.x * p1.x + p1.y * p1.y) - fabs(p2.x * p2.x + p2.y * p2.y); + rU += 2.f * (p1.x * p2.x + p1.y * p2.y); + rV += -2.f * (p1.y * p2.x - p1.x * p2.y); + } + I[i] += rI; + Q[i] += rQ; + U[i] += rU; + V[i] += rV; + } + +} + + diff --git a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu index bd33eaecc2b0be867a8fe7d6768abf1c329ffcc1..50c0c9b04165fa21b3023835119af6d31d2c6199 100644 --- a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu +++ b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu @@ -17,8 +17,9 @@ namespace psrdada_cpp { namespace effelsberg { namespace edd { +// Reduce thread local vatiable v in shared array x, so that x[0] template<typename T> -__device__ void reduce(T *x, const T &v) +__device__ void sum_reduce(T *x, const T &v) { x[threadIdx.x] = v; __syncthreads(); @@ -28,22 +29,33 @@ __device__ void reduce(T *x, const T &v) x[threadIdx.x] += x[threadIdx.x + s]; __syncthreads(); } +} +// If one of the side channel items is lsot, then both are considered as lost +// here +__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t* __restrict__ B, size_t N) +{ + for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N); + i += blockDim.x * gridDim.x) + { + uint64_t v = A[i] || B[i]; + A[i] = v; + B[i] = v; + } } -__global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uint64_t* __restrict__ sideChannelData, - size_t N, size_t heapSize, size_t bitpos, - size_t noOfSideChannels, size_t selectedSideChannel, - const float baseLineG0, - const float baseLineG1, - float* __restrict__ baseLineNG0, - float* __restrict__ baseLineNG1, - uint64_cu* stats_G0, uint64_cu* stats_G1) { -// float baseLineG0 = (*_baseLineNG0) / N; - // float baseLineG1 = (*_baseLineNG1) / N; - +__global__ void gating(float* __restrict__ G0, + float* __restrict__ G1, + const uint64_t* __restrict__ sideChannelData, + size_t N, size_t heapSize, size_t bitpos, + size_t noOfSideChannels, size_t selectedSideChannel, + const float baseLineG0, + const float baseLineG1, + float* __restrict__ baseLineNG0, + float* __restrict__ baseLineNG1, + uint64_cu* stats_G0, uint64_cu* stats_G1) { // statistics values for samopels to G0, G1 uint32_t _G0stats = 0; uint32_t _G1stats = 0; @@ -55,12 +67,8 @@ __global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uin i += blockDim.x * gridDim.x) { const float v = G0[i]; - const uint64_t sideChannelItem = - sideChannelData[((i / heapSize) * (noOfSideChannels)) + - selectedSideChannel]; // Probably not optimal access as - // same data is copied for several - // threads, but maybe efficiently - // handled by cache? + const uint64_t sideChannelItem = sideChannelData[((i / heapSize) * (noOfSideChannels)) + + selectedSideChannel]; const unsigned int bit_set = TEST_BIT(sideChannelItem, bitpos); const unsigned int heap_lost = TEST_BIT(sideChannelItem, 63); @@ -73,36 +81,38 @@ __global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uin baselineUpdateG1 += v * bit_set * (!heap_lost); baselineUpdateG0 += v * (!bit_set) *(!heap_lost); } + __shared__ uint32_t x[1024]; // Reduce G0, G1 - reduce<uint32_t>(x, _G0stats); + sum_reduce<uint32_t>(x, _G0stats); if(threadIdx.x == 0) atomicAdd(stats_G0, (uint64_cu) x[threadIdx.x]); - __syncthreads(); - reduce<uint32_t>(x, _G1stats); + + sum_reduce<uint32_t>(x, _G1stats); if(threadIdx.x == 0) atomicAdd(stats_G1, (uint64_cu) x[threadIdx.x]); + __syncthreads(); //reuse shared array float *y = (float*) x; - //update the baseline array - reduce<float>(y, baselineUpdateG0); + sum_reduce<float>(y, baselineUpdateG0); if(threadIdx.x == 0) atomicAdd(baseLineNG0, y[threadIdx.x]); - __syncthreads(); - reduce<float>(y, baselineUpdateG1); + + sum_reduce<float>(y, baselineUpdateG1); if(threadIdx.x == 0) atomicAdd(baseLineNG1, y[threadIdx.x]); + __syncthreads(); } -template <class HandlerType, typename IntegratedPowerType> -GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer( +template <class HandlerType> +GatedSpectrometer<HandlerType>::GatedSpectrometer( const DadaBufferLayout &dadaBufferLayout, std::size_t selectedSideChannel, std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate, std::size_t nbits, float input_level, float output_level, @@ -171,36 +181,34 @@ GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer( cufftSetStream(_fft_plan, _proc_stream); BOOST_LOG_TRIVIAL(debug) << "Allocating memory"; - _raw_voltage_db.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t)); - _sideChannelData_db.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps()); + polarization0._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t)); + polarization1._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t)); + polarization0._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps()); + polarization1._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps()); BOOST_LOG_TRIVIAL(debug) << " Input voltages size (in 64-bit words): " - << _raw_voltage_db.size(); + << polarization0._raw_voltage.size(); _unpacked_voltage_G0.resize(_nsamps_per_buffer); _unpacked_voltage_G1.resize(_nsamps_per_buffer); - _baseLineNG0.resize(1); - _baseLineNG1.resize(1); + polarization0._baseLineG0.resize(1); + polarization0._baseLineG1.resize(1); + polarization1._baseLineG0.resize(1); + polarization1._baseLineG1.resize(1); + BOOST_LOG_TRIVIAL(debug) << " Unpacked voltages size (in samples): " << _unpacked_voltage_G0.size(); - _channelised_voltage.resize(_nchans * batch); + polarization0._channelised_voltage_G0.resize(_nchans * batch); + polarization0._channelised_voltage_G1.resize(_nchans * batch); + polarization1._channelised_voltage_G0.resize(_nchans * batch); + polarization1._channelised_voltage_G1.resize(_nchans * batch); BOOST_LOG_TRIVIAL(debug) << " Channelised voltages size: " - << _channelised_voltage.size(); - _power_db.resize(_nchans * batch / (_naccumulate / nBlocks) * 2); // hold on and off spectra to simplify output - thrust::fill(_power_db.a().begin(), _power_db.a().end(), 0.); - thrust::fill(_power_db.b().begin(), _power_db.b().end(), 0.); - BOOST_LOG_TRIVIAL(debug) << " Powers size: " << _power_db.size() / 2; - - _noOfBitSetsIn_G0.resize( batch / (_naccumulate / nBlocks)); - _noOfBitSetsIn_G1.resize( batch / (_naccumulate / nBlocks)); - thrust::fill(_noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L); - thrust::fill(_noOfBitSetsIn_G0.b().begin(), _noOfBitSetsIn_G0.b().end(), 0L); - thrust::fill(_noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L); - thrust::fill(_noOfBitSetsIn_G1.b().begin(), _noOfBitSetsIn_G1.b().end(), 0L); - BOOST_LOG_TRIVIAL(debug) << " Bit set counter size: " << _noOfBitSetsIn_G0.size(); - - // on the host both power are stored in the same data buffer together with - // the number of bit sets - _host_power_db.resize( _power_db.size() * sizeof(IntegratedPowerType) + 2 * sizeof(size_t) * _noOfBitSetsIn_G0.size()); + << polarization0._channelised_voltage_G0.size(); + + stokes_G0.resize(_nchans, batch / (_naccumulate / nBlocks)); + stokes_G1.resize(_nchans, batch / (_naccumulate / nBlocks)); + + // on the host full output is stored together with sci data in one buffer + _host_power_db.resize( 8 * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)) * batch / (_naccumulate / nBlocks)); CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream)); CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream)); @@ -208,13 +216,12 @@ GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer( CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream)); _unpacker.reset(new Unpacker(_proc_stream)); - _detector.reset(new DetectorAccumulator<IntegratedPowerType>(_nchans, _naccumulate / nBlocks, scaling, - offset, _proc_stream)); } // constructor -template <class HandlerType, typename IntegratedPowerType> -GatedSpectrometer<HandlerType, IntegratedPowerType>::~GatedSpectrometer() { + +template <class HandlerType> +GatedSpectrometer<HandlerType>::~GatedSpectrometer() { BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer"; if (!_fft_plan) cufftDestroy(_fft_plan); @@ -224,8 +231,9 @@ GatedSpectrometer<HandlerType, IntegratedPowerType>::~GatedSpectrometer() { } -template <class HandlerType, typename IntegratedPowerType> -void GatedSpectrometer<HandlerType, IntegratedPowerType>::init(RawBytes &block) { + +template <class HandlerType> +void GatedSpectrometer<HandlerType>::init(RawBytes &block) { BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called"; std::stringstream headerInfo; headerInfo << "\n" @@ -254,78 +262,82 @@ void GatedSpectrometer<HandlerType, IntegratedPowerType>::init(RawBytes &block) } -template <class HandlerType, typename IntegratedPowerType> -void GatedSpectrometer<HandlerType, IntegratedPowerType>::process( - thrust::device_vector<RawVoltageType> const &digitiser_raw, - thrust::device_vector<uint64_t> const &sideChannelData, - thrust::device_vector<IntegratedPowerType> &detected, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1) { + +template <class HandlerType> +void GatedSpectrometer<HandlerType>::gated_fft( + PolarizationData &thispol, + PolarizationData &otherpol, + thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0, + thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1 + ) +{ BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages"; switch (_nbits) { case 8: - _unpacker->unpack<8>(digitiser_raw, _unpacked_voltage_G0); + _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0); break; case 12: - _unpacker->unpack<12>(digitiser_raw, _unpacked_voltage_G0); + _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0); break; default: throw std::runtime_error("Unsupported number of bits"); } - BOOST_LOG_TRIVIAL(debug) << "Calculate baseline"; - //calculate baseline from previos block - - BOOST_LOG_TRIVIAL(debug) << "Perform gating"; - float baseLineG0 = _baseLineNG0[0]; - float baseLineG1 = _baseLineNG1[0]; + // Get baseline from previous block + float previous_baseLineG0 = data._baseLineG0[0]; + float previous_baseLineG1 = data._baseLineG1[0]; uint64_t NG0 = 0; uint64_t NG1 = 0; // Loop over outputblocks, for case of multiple output blocks per input block - for (size_t i = 0; i < noOfBitSetsIn_G0.size(); i++) + int step = data._sideChannelData.size() / _noOfBitSetsIn_G0.size(); + for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) { // ToDo: Should be in one kernel call gating<<<1024, 1024, 0, _proc_stream>>>( - thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()), - thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()), - thrust::raw_pointer_cast(sideChannelData.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()), - _unpacked_voltage_G0.size() / noOfBitSetsIn_G0.size(), _dadaBufferLayout.getHeapSize(), _selectedBit, _dadaBufferLayout.getNSideChannels(), + thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap), + thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap), + thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step), + _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(), + _dadaBufferLayout.getHeapSize(), + _selectedBit, + _dadaBufferLayout.getNSideChannels(), _selectedSideChannel, - baseLineG0, baseLineG1, - thrust::raw_pointer_cast(_baseLineNG0.data()), - thrust::raw_pointer_cast(_baseLineNG1.data()), - thrust::raw_pointer_cast(noOfBitSetsIn_G0.data() + i), - thrust::raw_pointer_cast(noOfBitSetsIn_G1.data() + i) + previous_baseLineG0, previous_baseLineG1, + thrust::raw_pointer_cast(data._baseLineG0.data()), + thrust::raw_pointer_cast(data._baseLineG1.data()), + thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i), + thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i) ); - NG0 += noOfBitSetsIn_G0[i]; - NG1 += noOfBitSetsIn_G1[i]; + NG0 += _noOfBitSetsIn_G0[i]; + NG1 += _noOfBitSetsIn_G1[i]; } - _baseLineNG0[0] /= NG0; - _baseLineNG1[0] /= NG1; - BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << baseLineG0 << " -> " << _baseLineNG0[0] << ", " << baseLineG1 << " -> " << _baseLineNG1[0] ; + data._baseLineG0[0] /= NG0; + data._baseLineG1[0] /= NG1; + BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << previous_baseLineG0 << " -> " << data._baseLineG0[0] << ", " << previous_baseLineG1 << " -> " << data._baseLineG1[0] ; BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1"; UnpackedVoltageType *_unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G0.data()); ChannelisedVoltageType *_channelised_voltage_ptr = - thrust::raw_pointer_cast(_channelised_voltage.data()); + thrust::raw_pointer_cast(data._channelised_voltage_G0.data()); CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr, (cufftComplex *)_channelised_voltage_ptr)); - _detector->detect(_channelised_voltage, detected, 2, 0); BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2"; _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data()); + _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data()); CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr, (cufftComplex *)_channelised_voltage_ptr)); - _detector->detect(_channelised_voltage, detected, 2, 1); CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream)); BOOST_LOG_TRIVIAL(debug) << "Exit processing"; } // process -template <class HandlerType, typename IntegratedPowerType> -bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &block) { +template <class HandlerType> +bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) { ++_call_count; BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = " << _call_count << ")"; @@ -340,20 +352,43 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b // Copy data to device CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream)); - _raw_voltage_db.swap(); - _sideChannelData_db.swap(); + polarization0.swap(); + polarization1.swap(); BOOST_LOG_TRIVIAL(debug) << " block.used_bytes() = " << block.used_bytes() << ", dataBlockBytes = " << _dadaBufferLayout.sizeOfData() << "\n"; - CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(_raw_voltage_db.a_ptr()), - static_cast<void *>(block.ptr()), - _dadaBufferLayout.sizeOfData() , cudaMemcpyHostToDevice, - _h2d_stream)); - CUDA_ERROR_CHECK(cudaMemcpyAsync( - static_cast<void *>(_sideChannelData_db.a_ptr()), - static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()), - _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream)); + // Copy the data with stride to the GPU: + // CPU: P1P2P1P2P1P2 ... + // GPU: P1P1P1 ... P2P2P2 ... + int heapsize_bytes = _nsamps_per_heap * _nbits / 8; + CUDA_ERROR_CHECK(cudaMemcpy2DAsync( + static_cast<void *>(polarization0._raw_voltage.a_ptr()), + heapsize_bytes, + static_cast<void *>(block.ptr()), + 2 * heapsize_bytes, + heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2, + cudaMemcpyHostToDevice, _h2d_stream)); + + CUDA_ERROR_CHECK(cudaMemcpy2DAsync( + static_cast<void *>(polarization1._raw_voltage.a_ptr()), + heapsize_bytes, + static_cast<void *>(block.ptr()) + heapsize_bytes, + 2 * heapsize_bytes, + heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2, + cudaMemcpyHostToDevice, _h2d_stream)); + +// ToDo: Strided copy of side channel data +// CUDA_ERROR_CHECK(cudaMemcpyAsync( +// static_cast<void *>(polarization0._sideChannelData.a_ptr()), +// static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()), +// _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream)); +// +// CUDA_ERROR_CHECK(cudaMemcpyAsync( +// static_cast<void *>(polarization1._sideChannelData.a_ptr()), +// static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()), +// _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream)); + BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" << std::setw(16) << std::setfill('0') << std::hex << (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData() @@ -361,6 +396,7 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b std::dec; + if (_call_count == 1) { return false; } @@ -371,18 +407,42 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b bool newBlock = false; if (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0) // _call_count -1 because this is the block number on the device { - BOOST_LOG_TRIVIAL(debug) << "Starting new output block."; - newBlock = true; - _power_db.swap(); - _noOfBitSetsIn_G0.swap(); - _noOfBitSetsIn_G1.swap(); - // move to specific stream! - thrust::fill(thrust::cuda::par.on(_proc_stream),_power_db.a().begin(), _power_db.a().end(), 0.); - thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L); - thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L); + BOOST_LOG_TRIVIAL(debug) << "Starting new output block."; + newBlock = true; + stokes_G0.swap(); + stokes_G1.swap(); + stokes_G0.reset(_proc_stream); + stokes_G1.reset(_proc_stream); } - process(_raw_voltage_db.b(), _sideChannelData_db.b(), _power_db.a(), _noOfBitSetsIn_G0.a(), _noOfBitSetsIn_G1.a()); + + mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(polarization0._sideChannelData.data()), + thrust::raw_pointer_cast(polarization1._sideChannelData.data()), polarization1._sideChannelData.size()); + + gated_fft(polarization0, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a()); + gated_fft(polarization1, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a()); + + stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>( + thrust::raw_pointer_cast(polarization0._channelised_voltage_G0.data()), + thrust::raw_pointer_cast(polarization1._channelised_voltage_G0.data()), + thrust::raw_pointer_cast(stokes_G0.I.a().data()), + thrust::raw_pointer_cast(stokes_G0.Q.a().data()), + thrust::raw_pointer_cast(stokes_G0.U.a().data()), + thrust::raw_pointer_cast(stokes_G0.V.a().data()), + _nchans, _naccumulate + ); + + stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>( + thrust::raw_pointer_cast(polarization0._channelised_voltage_G1.data()), + thrust::raw_pointer_cast(polarization1._channelised_voltage_G1.data()), + thrust::raw_pointer_cast(stokes_G1.I.a().data()), + thrust::raw_pointer_cast(stokes_G1.Q.a().data()), + thrust::raw_pointer_cast(stokes_G1.U.a().data()), + thrust::raw_pointer_cast(stokes_G1.V.a().data()), + _nchans, _naccumulate + ); + + CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream)); if ((_call_count == 2) || (!newBlock)) { @@ -392,29 +452,104 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b // copy data to host if block is finished CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream)); _host_power_db.swap(); + // OUTPUT MEMORY LAYOUT: + // I G0, IG1,Q G0, QG1, U G0,UG1,V G0,VG1, 8xSCI, ... - for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) + for (size_t i = 0; i < stokes_G0._noOfBitSets.size(); i++) { - size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); - // copy 2x channel data + size_t memslicesize = (_nchans * sizeof(IntegratedPowerType)); + size_t memOffset = 8 * i * (memslicesize + + sizeof(size_t)); + // Copy II QQ UU VV CUDA_ERROR_CHECK( cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset) , - static_cast<void *>(_power_db.b_ptr() + 2 * i * _nchans), - 2 * _nchans * sizeof(IntegratedPowerType), + static_cast<void *>(stokes_G0.I.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), + cudaMemcpyDeviceToHost, _d2h_stream)); + + CUDA_ERROR_CHECK( + cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 1 * memslicesize) , + static_cast<void *>(stokes_G1.I.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), cudaMemcpyDeviceToHost, _d2h_stream)); - // copy noOf bit set data CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)), - static_cast<void *>(_noOfBitSetsIn_G0.b_ptr() + i ), + cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * memslicesize) , + static_cast<void *>(stokes_G0.Q.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), + cudaMemcpyDeviceToHost, _d2h_stream)); + + CUDA_ERROR_CHECK( + cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 3 * memslicesize) , + static_cast<void *>(stokes_G1.Q.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), + cudaMemcpyDeviceToHost, _d2h_stream)); + + CUDA_ERROR_CHECK( + cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 4 * memslicesize) , + static_cast<void *>(stokes_G0.U.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), + cudaMemcpyDeviceToHost, _d2h_stream)); + + CUDA_ERROR_CHECK( + cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 5 * memslicesize) , + static_cast<void *>(stokes_G1.U.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), + cudaMemcpyDeviceToHost, _d2h_stream)); + + CUDA_ERROR_CHECK( + cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 6 * memslicesize) , + static_cast<void *>(stokes_G0.V.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), + cudaMemcpyDeviceToHost, _d2h_stream)); + + CUDA_ERROR_CHECK( + cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 7 * memslicesize) , + static_cast<void *>(stokes_G1.V.b_ptr() + i * memslicesize), + _nchans * sizeof(IntegratedPowerType), + cudaMemcpyDeviceToHost, _d2h_stream)); + + // Copy SCI + CUDA_ERROR_CHECK( + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize), + static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), + 1 * sizeof(size_t), + cudaMemcpyDeviceToHost, _d2h_stream)); + CUDA_ERROR_CHECK( + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 1 * sizeof(size_t)), + static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), + 1 * sizeof(size_t), + cudaMemcpyDeviceToHost, _d2h_stream)); + CUDA_ERROR_CHECK( + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 2 * sizeof(size_t)), + static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), 1 * sizeof(size_t), cudaMemcpyDeviceToHost, _d2h_stream)); - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)), - static_cast<void *>(_noOfBitSetsIn_G1.b_ptr() + i ), + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 3 * sizeof(size_t)), + static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), 1 * sizeof(size_t), cudaMemcpyDeviceToHost, _d2h_stream)); + CUDA_ERROR_CHECK( + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 4 * sizeof(size_t)), + static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), + 1 * sizeof(size_t), + cudaMemcpyDeviceToHost, _d2h_stream)); + CUDA_ERROR_CHECK( + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 5 * sizeof(size_t)), + static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), + 1 * sizeof(size_t), + cudaMemcpyDeviceToHost, _d2h_stream)); + CUDA_ERROR_CHECK( + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 6 * sizeof(size_t)), + static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), + 1 * sizeof(size_t), + cudaMemcpyDeviceToHost, _d2h_stream)); + CUDA_ERROR_CHECK( + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 7 * sizeof(size_t)), + static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), + 1 * sizeof(size_t), + cudaMemcpyDeviceToHost, _d2h_stream)); + } BOOST_LOG_TRIVIAL(debug) << "Copy Data back to host"; @@ -424,28 +559,28 @@ bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &b } // calculate off value - BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:"; - size_t total_samples_lost = 0; - for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) - { - size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); - - size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)); - size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); - - size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values); - total_samples_lost += samples_lost; - - BOOST_LOG_TRIVIAL(info) << " Heap " << i << ":\n" - <<" Samples with bit set : " << *on_values << std::endl - <<" Samples without bit set: " << *off_values << std::endl - <<" Samples lost : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl; - } - double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size()); - double prev_average = _processing_efficiency / (_call_count- 3 - 1); - _processing_efficiency += efficiency; - double average = _processing_efficiency / (_call_count-3); - BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")"; + //BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:"; + //size_t total_samples_lost = 0; + //for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) + //{ + // size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); + + // size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)); + // size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); + + // size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values); + // total_samples_lost += samples_lost; + + // BOOST_LOG_TRIVIAL(info) << " Heap " << i << ":\n" + // <<" Samples with bit set : " << *on_values << std::endl + // <<" Samples without bit set: " << *off_values << std::endl + // <<" Samples lost : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl; + //} + //double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size()); + //double prev_average = _processing_efficiency / (_call_count- 3 - 1); + //_processing_efficiency += efficiency; + //double average = _processing_efficiency / (_call_count-3); + //BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")"; // Wrap in a RawBytes object here; RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()), diff --git a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu index 21449edc3b16534aa64aa97dc7bc656a8446ce2b..390825af7951d1024acb5105723a9d19f9c73948 100644 --- a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu +++ b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu @@ -33,7 +33,7 @@ void launchSpectrometer(const effelsberg::edd::DadaBufferLayout &dadaBufferLayou if (output_type == "file") { SimpleFileWriter sink(filename); - effelsberg::edd::GatedSpectrometer<decltype(sink), T> spectrometer(dadaBufferLayout, + effelsberg::edd::GatedSpectrometer<decltype(sink)> spectrometer(dadaBufferLayout, selectedSideChannel, selectedBit, fft_length, naccumulate, nbits, input_level, output_level, sink); @@ -45,7 +45,7 @@ void launchSpectrometer(const effelsberg::edd::DadaBufferLayout &dadaBufferLayou else if (output_type == "dada") { DadaOutputStream sink(string_to_key(filename), log); - effelsberg::edd::GatedSpectrometer<decltype(sink), T> spectrometer(dadaBufferLayout, + effelsberg::edd::GatedSpectrometer<decltype(sink)> spectrometer(dadaBufferLayout, selectedSideChannel, selectedBit, fft_length, naccumulate, nbits, input_level, output_level, sink); @@ -185,13 +185,8 @@ int main(int argc, char **argv) { effelsberg::edd::DadaBufferLayout bufferLayout(input_key, speadHeapSize, nSideChannels); - if (output_bit_depth == 8) - { - launchSpectrometer<int8_t>(bufferLayout, output_type, filename, - selectedSideChannel, selectedBit, - fft_length, naccumulate, nbits, input_level, output_level); - } - else if (output_bit_depth == 32) + // ToDo: Supprot only single output depth + if (output_bit_depth == 32) { launchSpectrometer<float>(bufferLayout, output_type, filename, selectedSideChannel, selectedBit, diff --git a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu index 163e8e9fba27da62bac0eee7654316ddbe61fee4..5ca344718bf909f9239540d952457a50f9348ebd 100644 --- a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu +++ b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu @@ -7,7 +7,6 @@ #include "thrust/device_vector.h" #include "thrust/extrema.h" -namespace { TEST(GatedSpectrometer, BitManipulationMacros) { for (int i = 0; i < 64; i++) { @@ -23,31 +22,123 @@ TEST(GatedSpectrometer, BitManipulationMacros) { } } -// -//TEST(GatedSpectrometer, ParameterSanity) { -// ::testing::FLAGS_gtest_death_test_style = "threadsafe"; -// psrdada_cpp::NullSink sink; -// -// // 8 or 12 bit sampling -// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 0, 0, 0, sink), -// "_nbits == 8"); -// // naccumulate > 0 -// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 8, 0, 0, sink), -// "_naccumulate"); -// -// // selected side channel -// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 1, 2, 0, 4096, 0, 1, 8, 0, 0, sink), -// "nSideChannels"); -// -// // selected bit -// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 2, 1, 65, 4096, 0, 1, 8, 0, 0, sink), -// "selectedBit"); -// -// // valid construction -// psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink), int8_t> a( -// 4096 * 4096, 2, 1, 63, 4096, 1024, 1, 8, 100., 100., sink); -//} -} // namespace + +TEST(GatedSpectrometer, stokes_IQUV) +{ + float I,Q,U,V; + // No field + psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V); + EXPECT_FLOAT_EQ(I, 0); + EXPECT_FLOAT_EQ(Q, 0); + EXPECT_FLOAT_EQ(U, 0); + EXPECT_FLOAT_EQ(V, 0); + + // For p1 = Ex, p2 = Ey + // horizontal polarized + psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V); + EXPECT_FLOAT_EQ(I, 1); + EXPECT_FLOAT_EQ(Q, 1); + EXPECT_FLOAT_EQ(U, 0); + EXPECT_FLOAT_EQ(V, 0); + + + // vertical polarized + psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){1.0f,0.0f}, I, Q, U, V); + EXPECT_FLOAT_EQ(I, 1); + EXPECT_FLOAT_EQ(Q, -1); + EXPECT_FLOAT_EQ(U, 0); + EXPECT_FLOAT_EQ(V, 0); + + //linear +45 deg. + psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V); + EXPECT_FLOAT_EQ(I, 1); + EXPECT_FLOAT_EQ(Q, 0); + EXPECT_FLOAT_EQ(U, 1); + EXPECT_FLOAT_EQ(V, 0); + + //linear -45 deg. + psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){-1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V); + EXPECT_FLOAT_EQ(I, 1); + EXPECT_FLOAT_EQ(Q, 0); + EXPECT_FLOAT_EQ(U, -1); + EXPECT_FLOAT_EQ(V, 0); + + + + //left circular + psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V); + EXPECT_FLOAT_EQ(I, 1); + EXPECT_FLOAT_EQ(Q, 0); + EXPECT_FLOAT_EQ(U, 0); + EXPECT_FLOAT_EQ(V, -1); + + // right circular + psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,-1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V); + EXPECT_FLOAT_EQ(I, 1); + EXPECT_FLOAT_EQ(Q, 0); + EXPECT_FLOAT_EQ(U, 0); + EXPECT_FLOAT_EQ(V, 1); + +} + + +TEST(GatedSpectrometer, stokes_accumulate) +{ + size_t nchans = 8 * 1024 * 1024 + 1; + size_t naccumulate = 5; + + thrust::device_vector<float2> P0(nchans * naccumulate); + thrust::device_vector<float2> P1(nchans * naccumulate); + thrust::fill(P0.begin(), P0.end(), (float2){0, 0}); + thrust::fill(P1.begin(), P1.end(), (float2){0, 0}); + thrust::device_vector<float> I(nchans); + thrust::device_vector<float> Q(nchans); + thrust::device_vector<float> U(nchans); + thrust::device_vector<float> V(nchans); + thrust::fill(I.begin(), I.end(), 0); + thrust::fill(Q.begin(), Q.end(), 0); + thrust::fill(U.begin(), U.end(), 0); + thrust::fill(V.begin(), V.end(), 0); + + // This channel should be left circular polarized + size_t idx0 = 23; + for (int k = 0; k< naccumulate; k++) + { + size_t idx = idx0 + k * nchans; + P0[idx] = (float2){0.0f, 1.0f/std::sqrt(2)}; + P1[idx] = (float2){1.0f/std::sqrt(2),0.0f}; + } + + psrdada_cpp::effelsberg::edd::stokes_accumulate<<<1024, 1024>>>( + thrust::raw_pointer_cast(P0.data()), + thrust::raw_pointer_cast(P1.data()), + thrust::raw_pointer_cast(I.data()), + thrust::raw_pointer_cast(Q.data()), + thrust::raw_pointer_cast(U.data()), + thrust::raw_pointer_cast(V.data()), + nchans, + naccumulate + ); + + thrust::pair<thrust::device_vector<float>::iterator, thrust::device_vector<float>::iterator> minmax; + + minmax = thrust::minmax_element(I.begin(), I.end()); + EXPECT_FLOAT_EQ(*minmax.first, 0); + EXPECT_FLOAT_EQ(*minmax.second, naccumulate); + + minmax = thrust::minmax_element(Q.begin(), Q.end()); + EXPECT_FLOAT_EQ(*minmax.first, 0); + EXPECT_FLOAT_EQ(*minmax.second, 0); + + minmax = thrust::minmax_element(U.begin(), U.end()); + EXPECT_FLOAT_EQ(*minmax.first, 0); + EXPECT_FLOAT_EQ(*minmax.second, 0); + + minmax = thrust::minmax_element(V.begin(), V.end()); + EXPECT_FLOAT_EQ(*minmax.first, -1. * naccumulate); + EXPECT_FLOAT_EQ(*minmax.second, 0); + +} TEST(GatedSpectrometer, GatingKernel)