diff --git a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh index 02a64e6077c6ba054a833a7f94fe769f0f33923b..d716594d4f9b4ababaa23fa827ad6b038fc92663 100644 --- a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh +++ b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh @@ -26,105 +26,20 @@ namespace edd { typedef unsigned long long int uint64_cu; static_assert(sizeof(uint64_cu) == sizeof(uint64_t), "Long long int not of 64 bit! This is problematic for CUDA!"); - -typedef uint64_t RawVoltageType; -typedef float UnpackedVoltageType; -typedef float2 ChannelisedVoltageType; - -typedef float IntegratedPowerType; -//typedef int8_t IntegratedPowerType; - -/// Input data and intermediate processing data for one polarization -struct PolarizationData -{ - /// Raw ADC Voltage - DoubleDeviceBuffer<RawVoltageType> _raw_voltage; - /// Side channel data - DoubleDeviceBuffer<uint64_t> _sideChannelData; - - /// Baseline in gate 0 state - thrust::device_vector<UnpackedVoltageType> _baseLineG0; - /// Baseline in gate 1 state - thrust::device_vector<UnpackedVoltageType> _baseLineG1; - - /// Baseline in gate 0 state after update - thrust::device_vector<UnpackedVoltageType> _baseLineG0_update; - /// Baseline in gate 1 state after update - thrust::device_vector<UnpackedVoltageType> _baseLineG1_update; - - /// Channelized voltage in gate 0 state - thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G0; - /// Channelized voltage in gate 1 state - thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G1; - - /// Swaps input buffers - void swap() - { - _raw_voltage.swap(); - _sideChannelData.swap(); - } -}; - - -// Output data for one gate -struct StokesOutput -{ - /// Stokes parameters - DoubleDeviceBuffer<IntegratedPowerType> I; - DoubleDeviceBuffer<IntegratedPowerType> Q; - DoubleDeviceBuffer<IntegratedPowerType> U; - DoubleDeviceBuffer<IntegratedPowerType> V; - - /// Number of samples integrated in this output block - DoubleDeviceBuffer<uint64_cu> _noOfBitSets; - - /// Reset outptu for new integration - void reset(cudaStream_t &_proc_stream) - { - thrust::fill(thrust::cuda::par.on(_proc_stream),I.a().begin(), I.a().end(), 0.); - thrust::fill(thrust::cuda::par.on(_proc_stream),Q.a().begin(), Q.a().end(), 0.); - thrust::fill(thrust::cuda::par.on(_proc_stream),U.a().begin(), U.a().end(), 0.); - thrust::fill(thrust::cuda::par.on(_proc_stream),V.a().begin(), V.a().end(), 0.); - thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSets.a().begin(), _noOfBitSets.a().end(), 0L); - } - - /// Swap output buffers - void swap() - { - I.swap(); - Q.swap(); - U.swap(); - V.swap(); - _noOfBitSets.swap(); - } - - /// Resize all buffers - void resize(size_t size, size_t blocks) - { - I.resize(size * blocks); - Q.resize(size * blocks); - U.resize(size * blocks); - V.resize(size * blocks); - _noOfBitSets.resize(blocks); - } -}; - - - - - - - /** @class GatedSpectrometer @brief Split data into two streams and create integrated spectra depending on bit set in side channel data. */ -template <class HandlerType> class GatedSpectrometer { +template <class HandlerType, typename IntegratedPowerType> class GatedSpectrometer { public: + typedef uint64_t RawVoltageType; + typedef float UnpackedVoltageType; + typedef float2 ChannelisedVoltageType; - +// typedef float IntegratedPowerType; + //typedef int8_t IntegratedPowerType; public: /** @@ -175,10 +90,11 @@ public: bool operator()(RawBytes &block); private: - // gate the data and fft data per gate - void gated_fft(PolarizationData &data, - thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0, - thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1); + void process(thrust::device_vector<RawVoltageType> const &digitiser_raw, + thrust::device_vector<uint64_t> const &sideChannelData, + thrust::device_vector<IntegratedPowerType> &detected, + thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0, + thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1); private: DadaBufferLayout _dadaBufferLayout; @@ -199,20 +115,26 @@ private: double _processing_efficiency; std::unique_ptr<Unpacker> _unpacker; + std::unique_ptr<DetectorAccumulator<IntegratedPowerType> > _detector; - // Input data and per pol intermediate data - PolarizationData polarization0, polarization1; + // Input data + DoubleDeviceBuffer<RawVoltageType> _raw_voltage_db; + DoubleDeviceBuffer<uint64_t> _sideChannelData_db; // Output data - StokesOutput stokes_G0, stokes_G1; + DoubleDeviceBuffer<IntegratedPowerType> _power_db; + + DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G0; + DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G1; DoublePinnedHostBuffer<char> _host_power_db; - // Temporary processing block - // ToDo: Use inplace FFT to avoid temporary coltage array + // Intermediate process steps thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G0; thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G1; - + thrust::device_vector<ChannelisedVoltageType> _channelised_voltage; + thrust::device_vector<UnpackedVoltageType> _baseLineNG0; + thrust::device_vector<UnpackedVoltageType> _baseLineNG1; cudaStream_t _h2d_stream; cudaStream_t _proc_stream; @@ -220,10 +142,11 @@ private: }; + /** * @brief Splits the input data depending on a bit set into two arrays. * - * @detail The resulting gaps are filled with a given baseline value in the other stream. + * @detail The resulting gaps are filled with zeros in the other stream. * * @param GO Input data. Data is set to the baseline value if corresponding * sideChannelData bit at bitpos os set. @@ -247,63 +170,13 @@ private: __global__ void gating(float *G0, float *G1, const int64_t *sideChannelData, size_t N, size_t heapSize, size_t bitpos, size_t noOfSideChannels, size_t selectedSideChannel, - const float* __restrict__ _baseLineG0, - const float* __restrict__ _baseLineG1, + const float baseLineG0, + const float baseLineG1, float* __restrict__ baseLineNG0, float* __restrict__ baseLineNG1, uint64_cu* stats_G0, uint64_cu* stats_G1); -/** - * @brief calculate stokes IQUV from two complex valuies for each polarization - */ -//__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V); -__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V) -{ - I = fabs(p1.x*p1.x + p1.y * p1.y) + fabs(p2.x*p2.x + p2.y * p2.y); - Q = fabs(p1.x*p1.x + p1.y * p1.y) - fabs(p2.x*p2.x + p2.y * p2.y); - U = 2 * (p1.x*p2.x + p1.y * p2.y); - V = -2 * (p1.y*p2.x - p1.x * p2.y); -} - - - - -/** - * @brief calculate stokes IQUV spectra pol1, pol2 are arrays of naccumulate - * complex spectra for individual polarizations - */ -__global__ void stokes_accumulate(float2 const __restrict__ *pol1, - float2 const __restrict__ *pol2, float *I, float* Q, float *U, float*V, - int nchans, int naccumulate) -{ - - for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < nchans); - i += blockDim.x * gridDim.x) - { - float rI = 0; - float rQ = 0; - float rU = 0; - float rV = 0; - - for (int k=0; k < naccumulate; k++) - { - const float2 p1 = pol1[i + k * nchans]; - const float2 p2 = pol2[i + k * nchans]; - - rI += fabs(p1.x * p1.x + p1.y * p1.y) + fabs(p2.x * p2.x + p2.y * p2.y); - rQ += fabs(p1.x * p1.x + p1.y * p1.y) - fabs(p2.x * p2.x + p2.y * p2.y); - rU += 2.f * (p1.x * p2.x + p1.y * p2.y); - rV += -2.f * (p1.y * p2.x - p1.x * p2.y); - } - I[i] += rI; - Q[i] += rQ; - U[i] += rU; - V[i] += rV; - } - -} - diff --git a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu index 679b7fc261a2674c37bac70cf723aafa30c40dad..bd33eaecc2b0be867a8fe7d6768abf1c329ffcc1 100644 --- a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu +++ b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu @@ -17,9 +17,8 @@ namespace psrdada_cpp { namespace effelsberg { namespace edd { -// Reduce thread local vatiable v in shared array x, so that x[0] template<typename T> -__device__ void sum_reduce(T *x, const T &v) +__device__ void reduce(T *x, const T &v) { x[threadIdx.x] = v; __syncthreads(); @@ -29,40 +28,26 @@ __device__ void sum_reduce(T *x, const T &v) x[threadIdx.x] += x[threadIdx.x + s]; __syncthreads(); } -} -// If one of the side channel items is lsot, then both are considered as lost -// here -__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t* __restrict__ B, size_t N) -{ - for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N); - i += blockDim.x * gridDim.x) - { - uint64_t v = A[i] || B[i]; - A[i] = v; - B[i] = v; - } } -__global__ void gating(float* __restrict__ G0, - float* __restrict__ G1, - const uint64_t* __restrict__ sideChannelData, - size_t N, size_t heapSize, size_t bitpos, - size_t noOfSideChannels, size_t selectedSideChannel, - const float* __restrict__ _baseLineG0, - const float* __restrict__ _baseLineG1, - float* __restrict__ baseLineNG0, - float* __restrict__ baseLineNG1, - uint64_cu* stats_G0, uint64_cu* stats_G1) { +__global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uint64_t* __restrict__ sideChannelData, + size_t N, size_t heapSize, size_t bitpos, + size_t noOfSideChannels, size_t selectedSideChannel, + const float baseLineG0, + const float baseLineG1, + float* __restrict__ baseLineNG0, + float* __restrict__ baseLineNG1, + uint64_cu* stats_G0, uint64_cu* stats_G1) { +// float baseLineG0 = (*_baseLineNG0) / N; + // float baseLineG1 = (*_baseLineNG1) / N; + // statistics values for samopels to G0, G1 uint32_t _G0stats = 0; uint32_t _G1stats = 0; - const float baseLineG0 = _baseLineG0[0]; - const float baseLineG1 = _baseLineG1[0]; - float baselineUpdateG0 = 0; float baselineUpdateG1 = 0; @@ -70,8 +55,12 @@ __global__ void gating(float* __restrict__ G0, i += blockDim.x * gridDim.x) { const float v = G0[i]; - const uint64_t sideChannelItem = sideChannelData[((i / heapSize) * (noOfSideChannels)) + - selectedSideChannel]; + const uint64_t sideChannelItem = + sideChannelData[((i / heapSize) * (noOfSideChannels)) + + selectedSideChannel]; // Probably not optimal access as + // same data is copied for several + // threads, but maybe efficiently + // handled by cache? const unsigned int bit_set = TEST_BIT(sideChannelItem, bitpos); const unsigned int heap_lost = TEST_BIT(sideChannelItem, 63); @@ -84,72 +73,36 @@ __global__ void gating(float* __restrict__ G0, baselineUpdateG1 += v * bit_set * (!heap_lost); baselineUpdateG0 += v * (!bit_set) *(!heap_lost); } - __shared__ uint32_t x[1024]; // Reduce G0, G1 - sum_reduce<uint32_t>(x, _G0stats); - if(threadIdx.x == 0) { + reduce<uint32_t>(x, _G0stats); + if(threadIdx.x == 0) atomicAdd(stats_G0, (uint64_cu) x[threadIdx.x]); - } - __syncthreads(); - sum_reduce<uint32_t>(x, _G1stats); - if(threadIdx.x == 0) { - atomicAdd(stats_G1, (uint64_cu) x[threadIdx.x]); - } __syncthreads(); + reduce<uint32_t>(x, _G1stats); + if(threadIdx.x == 0) + atomicAdd(stats_G1, (uint64_cu) x[threadIdx.x]); //reuse shared array float *y = (float*) x; + //update the baseline array - sum_reduce<float>(y, baselineUpdateG0); - if(threadIdx.x == 0) { + reduce<float>(y, baselineUpdateG0); + if(threadIdx.x == 0) atomicAdd(baseLineNG0, y[threadIdx.x]); - } - __syncthreads(); - sum_reduce<float>(y, baselineUpdateG1); - if(threadIdx.x == 0) { - atomicAdd(baseLineNG1, y[threadIdx.x]); - } __syncthreads(); + reduce<float>(y, baselineUpdateG1); + if(threadIdx.x == 0) + atomicAdd(baseLineNG1, y[threadIdx.x]); } -// Updates the baselines of the gates for the polarization set for the next -// block -// only few output blocks per input block thus execution on only one thread. -// Important is that the execution is async on the GPU. -__global__ void update_baselines(float* __restrict__ baseLineG0, - float* __restrict__ baseLineG1, - float* __restrict__ baseLineNG0, - float* __restrict__ baseLineNG1, - uint64_cu* stats_G0, uint64_cu* stats_G1, - size_t N) -{ - size_t NG0 = 0; - size_t NG1 = 0; - - for (size_t i =0; i < N; i++) - { - NG0 += stats_G0[i]; - NG1 += stats_G1[i]; - } - - baseLineG0[0] = baseLineNG0[0] / NG0; - baseLineG1[0] = baseLineNG1[0] / NG1; - baseLineNG0[0] = 0; - baseLineNG1[0] = 0; -} - - - - - -template <class HandlerType> -GatedSpectrometer<HandlerType>::GatedSpectrometer( +template <class HandlerType, typename IntegratedPowerType> +GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer( const DadaBufferLayout &dadaBufferLayout, std::size_t selectedSideChannel, std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate, std::size_t nbits, float input_level, float output_level, @@ -218,38 +171,36 @@ GatedSpectrometer<HandlerType>::GatedSpectrometer( cufftSetStream(_fft_plan, _proc_stream); BOOST_LOG_TRIVIAL(debug) << "Allocating memory"; - polarization0._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t)); - polarization1._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t)); - polarization0._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps()); - polarization1._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps()); + _raw_voltage_db.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t)); + _sideChannelData_db.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps()); BOOST_LOG_TRIVIAL(debug) << " Input voltages size (in 64-bit words): " - << polarization0._raw_voltage.size(); + << _raw_voltage_db.size(); _unpacked_voltage_G0.resize(_nsamps_per_buffer); _unpacked_voltage_G1.resize(_nsamps_per_buffer); - polarization0._baseLineG0.resize(1); - polarization0._baseLineG0_update.resize(1); - polarization0._baseLineG1.resize(1); - polarization0._baseLineG1_update.resize(1); - polarization1._baseLineG0.resize(1); - polarization1._baseLineG0_update.resize(1); - polarization1._baseLineG1.resize(1); - polarization1._baseLineG1_update.resize(1); - + _baseLineNG0.resize(1); + _baseLineNG1.resize(1); BOOST_LOG_TRIVIAL(debug) << " Unpacked voltages size (in samples): " << _unpacked_voltage_G0.size(); - polarization0._channelised_voltage_G0.resize(_nchans * batch); - polarization0._channelised_voltage_G1.resize(_nchans * batch); - polarization1._channelised_voltage_G0.resize(_nchans * batch); - polarization1._channelised_voltage_G1.resize(_nchans * batch); + _channelised_voltage.resize(_nchans * batch); BOOST_LOG_TRIVIAL(debug) << " Channelised voltages size: " - << polarization0._channelised_voltage_G0.size(); - - stokes_G0.resize(_nchans, batch / (_naccumulate / nBlocks)); - stokes_G1.resize(_nchans, batch / (_naccumulate / nBlocks)); - - // on the host full output is stored together with sci data in one buffer - _host_power_db.resize( 8 * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)) * batch / (_naccumulate / nBlocks)); + << _channelised_voltage.size(); + _power_db.resize(_nchans * batch / (_naccumulate / nBlocks) * 2); // hold on and off spectra to simplify output + thrust::fill(_power_db.a().begin(), _power_db.a().end(), 0.); + thrust::fill(_power_db.b().begin(), _power_db.b().end(), 0.); + BOOST_LOG_TRIVIAL(debug) << " Powers size: " << _power_db.size() / 2; + + _noOfBitSetsIn_G0.resize( batch / (_naccumulate / nBlocks)); + _noOfBitSetsIn_G1.resize( batch / (_naccumulate / nBlocks)); + thrust::fill(_noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L); + thrust::fill(_noOfBitSetsIn_G0.b().begin(), _noOfBitSetsIn_G0.b().end(), 0L); + thrust::fill(_noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L); + thrust::fill(_noOfBitSetsIn_G1.b().begin(), _noOfBitSetsIn_G1.b().end(), 0L); + BOOST_LOG_TRIVIAL(debug) << " Bit set counter size: " << _noOfBitSetsIn_G0.size(); + + // on the host both power are stored in the same data buffer together with + // the number of bit sets + _host_power_db.resize( _power_db.size() * sizeof(IntegratedPowerType) + 2 * sizeof(size_t) * _noOfBitSetsIn_G0.size()); CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream)); CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream)); @@ -257,12 +208,13 @@ GatedSpectrometer<HandlerType>::GatedSpectrometer( CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream)); _unpacker.reset(new Unpacker(_proc_stream)); + _detector.reset(new DetectorAccumulator<IntegratedPowerType>(_nchans, _naccumulate / nBlocks, scaling, + offset, _proc_stream)); } // constructor - -template <class HandlerType> -GatedSpectrometer<HandlerType>::~GatedSpectrometer() { +template <class HandlerType, typename IntegratedPowerType> +GatedSpectrometer<HandlerType, IntegratedPowerType>::~GatedSpectrometer() { BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer"; if (!_fft_plan) cufftDestroy(_fft_plan); @@ -272,9 +224,8 @@ GatedSpectrometer<HandlerType>::~GatedSpectrometer() { } - -template <class HandlerType> -void GatedSpectrometer<HandlerType>::init(RawBytes &block) { +template <class HandlerType, typename IntegratedPowerType> +void GatedSpectrometer<HandlerType, IntegratedPowerType>::init(RawBytes &block) { BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called"; std::stringstream headerInfo; headerInfo << "\n" @@ -303,195 +254,135 @@ void GatedSpectrometer<HandlerType>::init(RawBytes &block) { } - -template <class HandlerType> -void GatedSpectrometer<HandlerType>::gated_fft( - PolarizationData &data, - thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0, - thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1 - ) -{ +template <class HandlerType, typename IntegratedPowerType> +void GatedSpectrometer<HandlerType, IntegratedPowerType>::process( + thrust::device_vector<RawVoltageType> const &digitiser_raw, + thrust::device_vector<uint64_t> const &sideChannelData, + thrust::device_vector<IntegratedPowerType> &detected, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1) { BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages"; switch (_nbits) { case 8: - _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0); + _unpacker->unpack<8>(digitiser_raw, _unpacked_voltage_G0); break; case 12: - _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0); + _unpacker->unpack<12>(digitiser_raw, _unpacked_voltage_G0); break; default: throw std::runtime_error("Unsupported number of bits"); } + BOOST_LOG_TRIVIAL(debug) << "Calculate baseline"; + //calculate baseline from previos block - // Loop over outputblocks, for case of multiple output blocks per input block - int step = data._sideChannelData.b().size() / _noOfBitSetsIn_G0.size(); + BOOST_LOG_TRIVIAL(debug) << "Perform gating"; - for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) + float baseLineG0 = _baseLineNG0[0]; + float baseLineG1 = _baseLineNG1[0]; + + uint64_t NG0 = 0; + uint64_t NG1 = 0; + + // Loop over outputblocks, for case of multiple output blocks per input block + for (size_t i = 0; i < noOfBitSetsIn_G0.size(); i++) { // ToDo: Should be in one kernel call gating<<<1024, 1024, 0, _proc_stream>>>( - thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap), - thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap), - thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step), - _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(), - _dadaBufferLayout.getHeapSize(), - _selectedBit, - _dadaBufferLayout.getNSideChannels(), + thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()), + thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()), + thrust::raw_pointer_cast(sideChannelData.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()), + _unpacked_voltage_G0.size() / noOfBitSetsIn_G0.size(), _dadaBufferLayout.getHeapSize(), _selectedBit, _dadaBufferLayout.getNSideChannels(), _selectedSideChannel, - thrust::raw_pointer_cast(data._baseLineG0.data()), - thrust::raw_pointer_cast(data._baseLineG1.data()), - thrust::raw_pointer_cast(data._baseLineG0_update.data()), - thrust::raw_pointer_cast(data._baseLineG1_update.data()), - thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i), - thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i) + baseLineG0, baseLineG1, + thrust::raw_pointer_cast(_baseLineNG0.data()), + thrust::raw_pointer_cast(_baseLineNG1.data()), + thrust::raw_pointer_cast(noOfBitSetsIn_G0.data() + i), + thrust::raw_pointer_cast(noOfBitSetsIn_G1.data() + i) ); + NG0 += noOfBitSetsIn_G0[i]; + NG1 += noOfBitSetsIn_G1[i]; } + _baseLineNG0[0] /= NG0; + _baseLineNG1[0] /= NG1; + BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << baseLineG0 << " -> " << _baseLineNG0[0] << ", " << baseLineG1 << " -> " << _baseLineNG1[0] ; - // only few output blocks per input block thus execution on only one thread. - // Important is that the execution is async on the GPU. - update_baselines<<<1,1,0, _proc_stream>>>( - thrust::raw_pointer_cast(data._baseLineG0.data()), - thrust::raw_pointer_cast(data._baseLineG1.data()), - thrust::raw_pointer_cast(data._baseLineG0_update.data()), - thrust::raw_pointer_cast(data._baseLineG1_update.data()), - thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data()), - thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data()), - _noOfBitSetsIn_G0.size() - ); BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1"; UnpackedVoltageType *_unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G0.data()); ChannelisedVoltageType *_channelised_voltage_ptr = - thrust::raw_pointer_cast(data._channelised_voltage_G0.data()); + thrust::raw_pointer_cast(_channelised_voltage.data()); CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr, (cufftComplex *)_channelised_voltage_ptr)); + _detector->detect(_channelised_voltage, detected, 2, 0); BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2"; _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data()); - _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data()); CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr, (cufftComplex *)_channelised_voltage_ptr)); + _detector->detect(_channelised_voltage, detected, 2, 1); CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream)); BOOST_LOG_TRIVIAL(debug) << "Exit processing"; } // process -template <class HandlerType> -bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) { - ++_call_count; - BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = " - << _call_count << ")"; - if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) { - // Stop on unexpected buffer size - BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got " - << block.used_bytes() << " byte, expected " - << _dadaBufferLayout.getBufferSize() << " byte)"; - CUDA_ERROR_CHECK(cudaDeviceSynchronize()); - cudaProfilerStop(); - return true; - } - - // Copy data to device - CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream)); - polarization0.swap(); - polarization1.swap(); - - BOOST_LOG_TRIVIAL(debug) << " block.used_bytes() = " << - block.used_bytes() << ", dataBlockBytes = " << - _dadaBufferLayout.sizeOfData() << "\n"; - - // Copy the data with stride to the GPU: - // CPU: P1P2P1P2P1P2 ... - // GPU: P1P1P1 ... P2P2P2 ... - // If this is a bottleneck the gating kernel could sort the layout out - // during copy - int heapsize_bytes = _nsamps_per_heap * _nbits / 8; - CUDA_ERROR_CHECK(cudaMemcpy2DAsync( - static_cast<void *>(polarization0._raw_voltage.a_ptr()), - heapsize_bytes, - static_cast<void *>(block.ptr()), - 2 * heapsize_bytes, - heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2, - cudaMemcpyHostToDevice, _h2d_stream)); - - CUDA_ERROR_CHECK(cudaMemcpy2DAsync( - static_cast<void *>(polarization1._raw_voltage.a_ptr()), - heapsize_bytes, - static_cast<void *>(block.ptr()) + heapsize_bytes, - 2 * heapsize_bytes, - heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2, - cudaMemcpyHostToDevice, _h2d_stream)); - - CUDA_ERROR_CHECK(cudaMemcpy2DAsync( - static_cast<void *>(polarization0._sideChannelData.a_ptr()), - sizeof(uint64_t), - static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()), - 2 * sizeof(uint64_t), - sizeof(uint64_t), - _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t), - cudaMemcpyHostToDevice, _h2d_stream)); - - CUDA_ERROR_CHECK(cudaMemcpy2DAsync( - static_cast<void *>(polarization1._sideChannelData.a_ptr()), - sizeof(uint64_t), - static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap() + sizeof(uint64_t)), - 2 * sizeof(uint64_t), - sizeof(uint64_t), - _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t), cudaMemcpyHostToDevice, _h2d_stream)); - - BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" << std::setw(16) - << std::setfill('0') << std::hex << - (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData() - + _dadaBufferLayout.sizeOfGap()))[0] << std::dec; +template <class HandlerType, typename IntegratedPowerType> +bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &block) { + ++_call_count; + BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = " + << _call_count << ")"; + if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) { /* Unexpected buffer size */ + BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got " + << block.used_bytes() << " byte, expected " + << _dadaBufferLayout.getBufferSize() << " byte)"; + CUDA_ERROR_CHECK(cudaDeviceSynchronize()); + cudaProfilerStop(); + return true; + } + + // Copy data to device + CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream)); + _raw_voltage_db.swap(); + _sideChannelData_db.swap(); + + BOOST_LOG_TRIVIAL(debug) << " block.used_bytes() = " << block.used_bytes() + << ", dataBlockBytes = " << _dadaBufferLayout.sizeOfData() << "\n"; + + CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(_raw_voltage_db.a_ptr()), + static_cast<void *>(block.ptr()), + _dadaBufferLayout.sizeOfData() , cudaMemcpyHostToDevice, + _h2d_stream)); + CUDA_ERROR_CHECK(cudaMemcpyAsync( + static_cast<void *>(_sideChannelData_db.a_ptr()), + static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()), + _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream)); + BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" << std::setw(16) + << std::setfill('0') << std::hex << + (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData() + + _dadaBufferLayout.sizeOfGap()))[0] << + std::dec; if (_call_count == 1) { return false; } - // process data - // check if new outblock is started: _call_count -1 because this is the block number on the device - bool newBlock = (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0); // only if a newblock is started the output buffer is swapped. Otherwise the // new data is added to it - if (newBlock) + bool newBlock = false; + if (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0) // _call_count -1 because this is the block number on the device { - BOOST_LOG_TRIVIAL(debug) << "Starting new output block."; - stokes_G0.swap(); - stokes_G1.swap(); - stokes_G0.reset(_proc_stream); - stokes_G1.reset(_proc_stream); + BOOST_LOG_TRIVIAL(debug) << "Starting new output block."; + newBlock = true; + _power_db.swap(); + _noOfBitSetsIn_G0.swap(); + _noOfBitSetsIn_G1.swap(); + // move to specific stream! + thrust::fill(thrust::cuda::par.on(_proc_stream),_power_db.a().begin(), _power_db.a().end(), 0.); + thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L); + thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L); } - mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(polarization0._sideChannelData.a().data()), - thrust::raw_pointer_cast(polarization1._sideChannelData.a().data()), polarization1._sideChannelData.a().size()); - - gated_fft(polarization0, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a()); - gated_fft(polarization1, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a()); - - stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>( - thrust::raw_pointer_cast(polarization0._channelised_voltage_G0.data()), - thrust::raw_pointer_cast(polarization1._channelised_voltage_G0.data()), - thrust::raw_pointer_cast(stokes_G0.I.a().data()), - thrust::raw_pointer_cast(stokes_G0.Q.a().data()), - thrust::raw_pointer_cast(stokes_G0.U.a().data()), - thrust::raw_pointer_cast(stokes_G0.V.a().data()), - _nchans, _naccumulate - ); - - stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>( - thrust::raw_pointer_cast(polarization0._channelised_voltage_G1.data()), - thrust::raw_pointer_cast(polarization1._channelised_voltage_G1.data()), - thrust::raw_pointer_cast(stokes_G1.I.a().data()), - thrust::raw_pointer_cast(stokes_G1.Q.a().data()), - thrust::raw_pointer_cast(stokes_G1.U.a().data()), - thrust::raw_pointer_cast(stokes_G1.V.a().data()), - _nchans, _naccumulate - ); - - + process(_raw_voltage_db.b(), _sideChannelData_db.b(), _power_db.a(), _noOfBitSetsIn_G0.a(), _noOfBitSetsIn_G1.a()); CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream)); if ((_call_count == 2) || (!newBlock)) { @@ -501,104 +392,29 @@ bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) { // copy data to host if block is finished CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream)); _host_power_db.swap(); - // OUTPUT MEMORY LAYOUT: - // I G0, IG1,Q G0, QG1, U G0,UG1,V G0,VG1, 8xSCI, ... - for (size_t i = 0; i < stokes_G0._noOfBitSets.size(); i++) + for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) { - size_t memslicesize = (_nchans * sizeof(IntegratedPowerType)); - size_t memOffset = 8 * i * (memslicesize + + sizeof(size_t)); - // Copy II QQ UU VV + size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); + // copy 2x channel data CUDA_ERROR_CHECK( cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset) , - static_cast<void *>(stokes_G0.I.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), + static_cast<void *>(_power_db.b_ptr() + 2 * i * _nchans), + 2 * _nchans * sizeof(IntegratedPowerType), cudaMemcpyDeviceToHost, _d2h_stream)); + // copy noOf bit set data CUDA_ERROR_CHECK( - cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 1 * memslicesize) , - static_cast<void *>(stokes_G1.I.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), - cudaMemcpyDeviceToHost, _d2h_stream)); - - CUDA_ERROR_CHECK( - cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * memslicesize) , - static_cast<void *>(stokes_G0.Q.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), - cudaMemcpyDeviceToHost, _d2h_stream)); - - CUDA_ERROR_CHECK( - cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 3 * memslicesize) , - static_cast<void *>(stokes_G1.Q.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), - cudaMemcpyDeviceToHost, _d2h_stream)); - - CUDA_ERROR_CHECK( - cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 4 * memslicesize) , - static_cast<void *>(stokes_G0.U.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), - cudaMemcpyDeviceToHost, _d2h_stream)); - - CUDA_ERROR_CHECK( - cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 5 * memslicesize) , - static_cast<void *>(stokes_G1.U.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), - cudaMemcpyDeviceToHost, _d2h_stream)); - - CUDA_ERROR_CHECK( - cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 6 * memslicesize) , - static_cast<void *>(stokes_G0.V.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), - cudaMemcpyDeviceToHost, _d2h_stream)); - - CUDA_ERROR_CHECK( - cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 7 * memslicesize) , - static_cast<void *>(stokes_G1.V.b_ptr() + i * memslicesize), - _nchans * sizeof(IntegratedPowerType), - cudaMemcpyDeviceToHost, _d2h_stream)); - - // Copy SCI - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize), - static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), - 1 * sizeof(size_t), - cudaMemcpyDeviceToHost, _d2h_stream)); - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 1 * sizeof(size_t)), - static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), - 1 * sizeof(size_t), - cudaMemcpyDeviceToHost, _d2h_stream)); - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 2 * sizeof(size_t)), - static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), - 1 * sizeof(size_t), - cudaMemcpyDeviceToHost, _d2h_stream)); - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 3 * sizeof(size_t)), - static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), - 1 * sizeof(size_t), - cudaMemcpyDeviceToHost, _d2h_stream)); - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 4 * sizeof(size_t)), - static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), - 1 * sizeof(size_t), - cudaMemcpyDeviceToHost, _d2h_stream)); - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 5 * sizeof(size_t)), - static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), - 1 * sizeof(size_t), - cudaMemcpyDeviceToHost, _d2h_stream)); - CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 6 * sizeof(size_t)), - static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ), + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)), + static_cast<void *>(_noOfBitSetsIn_G0.b_ptr() + i ), 1 * sizeof(size_t), cudaMemcpyDeviceToHost, _d2h_stream)); + CUDA_ERROR_CHECK( - cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 7 * sizeof(size_t)), - static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ), + cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)), + static_cast<void *>(_noOfBitSetsIn_G1.b_ptr() + i ), 1 * sizeof(size_t), cudaMemcpyDeviceToHost, _d2h_stream)); - } BOOST_LOG_TRIVIAL(debug) << "Copy Data back to host"; @@ -608,28 +424,28 @@ bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) { } // calculate off value - //BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:"; - //size_t total_samples_lost = 0; - //for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) - //{ - // size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); - - // size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)); - // size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); - - // size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values); - // total_samples_lost += samples_lost; - - // BOOST_LOG_TRIVIAL(info) << " Heap " << i << ":\n" - // <<" Samples with bit set : " << *on_values << std::endl - // <<" Samples without bit set: " << *off_values << std::endl - // <<" Samples lost : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl; - //} - //double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size()); - //double prev_average = _processing_efficiency / (_call_count- 3 - 1); - //_processing_efficiency += efficiency; - //double average = _processing_efficiency / (_call_count-3); - //BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")"; + BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:"; + size_t total_samples_lost = 0; + for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++) + { + size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); + + size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)); + size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)); + + size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values); + total_samples_lost += samples_lost; + + BOOST_LOG_TRIVIAL(info) << " Heap " << i << ":\n" + <<" Samples with bit set : " << *on_values << std::endl + <<" Samples without bit set: " << *off_values << std::endl + <<" Samples lost : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl; + } + double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size()); + double prev_average = _processing_efficiency / (_call_count- 3 - 1); + _processing_efficiency += efficiency; + double average = _processing_efficiency / (_call_count-3); + BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")"; // Wrap in a RawBytes object here; RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()), diff --git a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu index 08ec6a447407ba271374f859d079566779670c8d..bb1f876e0f22c0f1abb34f28b19e271607d560f6 100644 --- a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu +++ b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu @@ -25,7 +25,12 @@ const size_t ERROR_UNHANDLED_EXCEPTION = 2; template<typename T> -void launchSpectrometer(const effelsberg::edd::DadaBufferLayout &dadaBufferLayout, const std::string &output_type, const std::string &filename, size_t selectedSideChannel, size_t selectedBit, size_t fft_length, size_t naccumulate, unsigned int nbits, float input_level, float output_level) +void launchSpectrometer(const effelsberg::edd::DadaBufferLayout + &dadaBufferLayout, const std::string &output_type, + const std::string &filename, + size_t selectedSideChannel, size_t selectedBit, + size_t fft_length, size_t naccumulate, unsigned int nbits, + float input_level, float output_level) { MultiLog log("DadaBufferLayout"); diff --git a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu index 495375dde5c707fcedd7b30d3a1fdf7b7973d6bc..163e8e9fba27da62bac0eee7654316ddbe61fee4 100644 --- a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu +++ b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu @@ -7,6 +7,7 @@ #include "thrust/device_vector.h" #include "thrust/extrema.h" +namespace { TEST(GatedSpectrometer, BitManipulationMacros) { for (int i = 0; i < 64; i++) { @@ -22,121 +23,31 @@ TEST(GatedSpectrometer, BitManipulationMacros) { } } - -TEST(GatedSpectrometer, stokes_IQUV) -{ - float I,Q,U,V; - // No field - psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V); - EXPECT_FLOAT_EQ(I, 0); - EXPECT_FLOAT_EQ(Q, 0); - EXPECT_FLOAT_EQ(U, 0); - EXPECT_FLOAT_EQ(V, 0); - - // For p1 = Ex, p2 = Ey - // horizontal polarized - psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V); - EXPECT_FLOAT_EQ(I, 1); - EXPECT_FLOAT_EQ(Q, 1); - EXPECT_FLOAT_EQ(U, 0); - EXPECT_FLOAT_EQ(V, 0); - - // vertical polarized - psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){1.0f,0.0f}, I, Q, U, V); - EXPECT_FLOAT_EQ(I, 1); - EXPECT_FLOAT_EQ(Q, -1); - EXPECT_FLOAT_EQ(U, 0); - EXPECT_FLOAT_EQ(V, 0); - - //linear +45 deg. - psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V); - EXPECT_FLOAT_EQ(I, 1); - EXPECT_FLOAT_EQ(Q, 0); - EXPECT_FLOAT_EQ(U, 1); - EXPECT_FLOAT_EQ(V, 0); - - //linear -45 deg. - psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){-1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V); - EXPECT_FLOAT_EQ(I, 1); - EXPECT_FLOAT_EQ(Q, 0); - EXPECT_FLOAT_EQ(U, -1); - EXPECT_FLOAT_EQ(V, 0); - - //left circular - psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V); - EXPECT_FLOAT_EQ(I, 1); - EXPECT_FLOAT_EQ(Q, 0); - EXPECT_FLOAT_EQ(U, 0); - EXPECT_FLOAT_EQ(V, -1); - - // right circular - psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,-1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V); - EXPECT_FLOAT_EQ(I, 1); - EXPECT_FLOAT_EQ(Q, 0); - EXPECT_FLOAT_EQ(U, 0); - EXPECT_FLOAT_EQ(V, 1); -} - - -TEST(GatedSpectrometer, stokes_accumulate) -{ - CUDA_ERROR_CHECK(cudaDeviceSynchronize()); - size_t nchans = 8 * 1024 * 1024 + 1; - size_t naccumulate = 5; - - thrust::device_vector<float2> P0(nchans * naccumulate); - thrust::device_vector<float2> P1(nchans * naccumulate); - thrust::fill(P0.begin(), P0.end(), (float2){0, 0}); - thrust::fill(P1.begin(), P1.end(), (float2){0, 0}); - thrust::device_vector<float> I(nchans); - thrust::device_vector<float> Q(nchans); - thrust::device_vector<float> U(nchans); - thrust::device_vector<float> V(nchans); - thrust::fill(I.begin(), I.end(), 0); - thrust::fill(Q.begin(), Q.end(), 0); - thrust::fill(U.begin(), U.end(), 0); - thrust::fill(V.begin(), V.end(), 0); - - // This channel should be left circular polarized - size_t idx0 = 23; - for (int k = 0; k< naccumulate; k++) - { - size_t idx = idx0 + k * nchans; - P0[idx] = (float2){0.0f, 1.0f/std::sqrt(2)}; - P1[idx] = (float2){1.0f/std::sqrt(2),0.0f}; - } - - psrdada_cpp::effelsberg::edd::stokes_accumulate<<<1024, 1024>>>( - thrust::raw_pointer_cast(P0.data()), - thrust::raw_pointer_cast(P1.data()), - thrust::raw_pointer_cast(I.data()), - thrust::raw_pointer_cast(Q.data()), - thrust::raw_pointer_cast(U.data()), - thrust::raw_pointer_cast(V.data()), - nchans, - naccumulate - ); - - CUDA_ERROR_CHECK(cudaDeviceSynchronize()); - thrust::pair<thrust::device_vector<float>::iterator, thrust::device_vector<float>::iterator> minmax; - - minmax = thrust::minmax_element(I.begin(), I.end()); - EXPECT_FLOAT_EQ(*minmax.first, 0); - EXPECT_FLOAT_EQ(*minmax.second, naccumulate); - - minmax = thrust::minmax_element(Q.begin(), Q.end()); - EXPECT_FLOAT_EQ(*minmax.first, 0); - EXPECT_FLOAT_EQ(*minmax.second, 0); - - minmax = thrust::minmax_element(U.begin(), U.end()); - EXPECT_FLOAT_EQ(*minmax.first, 0); - EXPECT_FLOAT_EQ(*minmax.second, 0); - - minmax = thrust::minmax_element(V.begin(), V.end()); - EXPECT_FLOAT_EQ(*minmax.first, -1. * naccumulate); - EXPECT_FLOAT_EQ(*minmax.second, 0); -} - +// +//TEST(GatedSpectrometer, ParameterSanity) { +// ::testing::FLAGS_gtest_death_test_style = "threadsafe"; +// psrdada_cpp::NullSink sink; +// +// // 8 or 12 bit sampling +// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 0, 0, 0, sink), +// "_nbits == 8"); +// // naccumulate > 0 +// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 8, 0, 0, sink), +// "_naccumulate"); +// +// // selected side channel +// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 1, 2, 0, 4096, 0, 1, 8, 0, 0, sink), +// "nSideChannels"); +// +// // selected bit +// EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 2, 1, 65, 4096, 0, 1, 8, 0, 0, sink), +// "selectedBit"); +// +// // valid construction +// psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink), int8_t> a( +// 4096 * 4096, 2, 1, 63, 4096, 1024, 1, 8, 100., 100., sink); +//} +} // namespace TEST(GatedSpectrometer, GatingKernel) @@ -152,8 +63,6 @@ TEST(GatedSpectrometer, GatingKernel) thrust::device_vector<float> baseLineG0(1); thrust::device_vector<float> baseLineG1(1); - thrust::device_vector<float> baseLineG0_update(1); - thrust::device_vector<float> baseLineG1_update(1); thrust::fill(G0.begin(), G0.end(), 42); thrust::fill(G1.begin(), G1.end(), 23); thrust::fill(_sideChannelData.begin(), _sideChannelData.end(), 0); @@ -162,22 +71,18 @@ TEST(GatedSpectrometer, GatingKernel) { thrust::fill(_nG0.begin(), _nG0.end(), 0); thrust::fill(_nG1.begin(), _nG1.end(), 0); - baseLineG0[0] = -3; - baseLineG1[0] = -4; - baseLineG0_update[0] = 0; - baseLineG1_update[0] = 0; - + baseLineG0[0] = 0.; + baseLineG1[0] = 0.; const uint64_t *sideCD = (uint64_t *)(thrust::raw_pointer_cast(_sideChannelData.data())); psrdada_cpp::effelsberg::edd::gating<<<1024 , 1024>>>( thrust::raw_pointer_cast(G0.data()), thrust::raw_pointer_cast(G1.data()), sideCD, - G0.size(), blockSize, 0, 1, + G0.size(), G0.size(), 0, 1, 0, + -3., -4, thrust::raw_pointer_cast(baseLineG0.data()), thrust::raw_pointer_cast(baseLineG1.data()), - thrust::raw_pointer_cast(baseLineG0_update.data()), - thrust::raw_pointer_cast(baseLineG1_update.data()), thrust::raw_pointer_cast(_nG0.data()), thrust::raw_pointer_cast(_nG1.data()) ); @@ -194,31 +99,27 @@ TEST(GatedSpectrometer, GatingKernel) EXPECT_EQ(_nG0[0], G0.size()); EXPECT_EQ(_nG1[0], 0u); - EXPECT_FLOAT_EQ(42.f, baseLineG0_update[0] / (_nG0[0] + 1E-121)); - EXPECT_FLOAT_EQ(0.f, baseLineG1_update[0] / (_nG1[0] + 1E-121)); + EXPECT_FLOAT_EQ(baseLineG0[0] / (_nG0[0] + 1E-127), 42.f); + EXPECT_FLOAT_EQ(baseLineG1[0] / (_nG1[0] + 1E-127), 0.f); } // everything to G1 // with baseline -5 { thrust::fill(_nG0.begin(), _nG0.end(), 0); thrust::fill(_nG1.begin(), _nG1.end(), 0); - baseLineG0[0] = 5.; - baseLineG1[0] = -2; - baseLineG0_update[0] = 0; - baseLineG1_update[0] = 0; - + baseLineG0[0] = 0.; + baseLineG1[0] = 0.; thrust::fill(_sideChannelData.begin(), _sideChannelData.end(), 1L); const uint64_t *sideCD = (uint64_t *)(thrust::raw_pointer_cast(_sideChannelData.data())); psrdada_cpp::effelsberg::edd::gating<<<1024, 1024>>>( thrust::raw_pointer_cast(G0.data()), thrust::raw_pointer_cast(G1.data()), sideCD, - G0.size(), blockSize, 0, 1, + G0.size(), G0.size(), 0, 1, 0, + 5., -2., thrust::raw_pointer_cast(baseLineG0.data()), thrust::raw_pointer_cast(baseLineG1.data()), - thrust::raw_pointer_cast(baseLineG0_update.data()), - thrust::raw_pointer_cast(baseLineG1_update.data()), thrust::raw_pointer_cast(_nG0.data()), thrust::raw_pointer_cast(_nG1.data()) ); @@ -233,12 +134,13 @@ TEST(GatedSpectrometer, GatingKernel) EXPECT_EQ(_nG0[0], 0u); EXPECT_EQ(_nG1[0], G1.size()); - - EXPECT_FLOAT_EQ(0.f, baseLineG0_update[0] / (_nG0[0] + 1E-121)); - EXPECT_FLOAT_EQ(42.f, baseLineG1_update[0] / (_nG1[0] + 1E-121)); + EXPECT_FLOAT_EQ(baseLineG0[0] / (_nG0[0] + 1E-127), 0.); + EXPECT_FLOAT_EQ(baseLineG1[0] / (_nG1[0] + 1E-127), 42.); } } + + TEST(GatedSpectrometer, array_sum) { const size_t NBLOCKS = 16 * 32; @@ -261,3 +163,10 @@ TEST(GatedSpectrometer, array_sum) { EXPECT_EQ(size_t(blr[0]), inputLength); } + +int main(int argc, char **argv) { + ::testing::InitGoogleTest(&argc, argv); + + return RUN_ALL_TESTS(); +} +