diff --git a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
index 02a64e6077c6ba054a833a7f94fe769f0f33923b..d716594d4f9b4ababaa23fa827ad6b038fc92663 100644
--- a/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
+++ b/psrdada_cpp/effelsberg/edd/GatedSpectrometer.cuh
@@ -26,105 +26,20 @@ namespace edd {
 
 typedef unsigned long long int uint64_cu;
 static_assert(sizeof(uint64_cu) == sizeof(uint64_t), "Long long int not of 64 bit! This is problematic for CUDA!");
-
-typedef uint64_t RawVoltageType;
-typedef float UnpackedVoltageType;
-typedef float2 ChannelisedVoltageType;
-
-typedef float IntegratedPowerType;
-//typedef int8_t IntegratedPowerType;
-
-/// Input data and intermediate processing data for one polarization
-struct PolarizationData
-{
-    /// Raw ADC Voltage
-    DoubleDeviceBuffer<RawVoltageType> _raw_voltage;
-    /// Side channel data
-    DoubleDeviceBuffer<uint64_t> _sideChannelData;
-
-    /// Baseline in gate 0 state
-    thrust::device_vector<UnpackedVoltageType> _baseLineG0;
-    /// Baseline in gate 1 state
-    thrust::device_vector<UnpackedVoltageType> _baseLineG1;
-
-    /// Baseline in gate 0 state after update
-    thrust::device_vector<UnpackedVoltageType> _baseLineG0_update;
-    /// Baseline in gate 1 state after update
-    thrust::device_vector<UnpackedVoltageType> _baseLineG1_update;
-
-    /// Channelized voltage in gate 0 state
-    thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G0;
-    /// Channelized voltage in gate 1 state
-    thrust::device_vector<ChannelisedVoltageType> _channelised_voltage_G1;
-
-    /// Swaps input buffers
-    void swap()
-    {
-        _raw_voltage.swap();
-        _sideChannelData.swap();
-    }
-};
-
-
-// Output data for one gate
-struct StokesOutput
-{
-    /// Stokes parameters
-    DoubleDeviceBuffer<IntegratedPowerType> I;
-    DoubleDeviceBuffer<IntegratedPowerType> Q;
-    DoubleDeviceBuffer<IntegratedPowerType> U;
-    DoubleDeviceBuffer<IntegratedPowerType> V;
-
-    /// Number of samples integrated in this output block
-    DoubleDeviceBuffer<uint64_cu> _noOfBitSets;
-
-    /// Reset outptu for new integration
-    void reset(cudaStream_t &_proc_stream)
-    {
-      thrust::fill(thrust::cuda::par.on(_proc_stream),I.a().begin(), I.a().end(), 0.);
-      thrust::fill(thrust::cuda::par.on(_proc_stream),Q.a().begin(), Q.a().end(), 0.);
-      thrust::fill(thrust::cuda::par.on(_proc_stream),U.a().begin(), U.a().end(), 0.);
-      thrust::fill(thrust::cuda::par.on(_proc_stream),V.a().begin(), V.a().end(), 0.);
-      thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSets.a().begin(), _noOfBitSets.a().end(), 0L);
-    }
-
-    /// Swap output buffers
-    void swap()
-    {
-      I.swap();
-      Q.swap();
-      U.swap();
-      V.swap();
-      _noOfBitSets.swap();
-    }
-
-    /// Resize all buffers
-    void resize(size_t size, size_t blocks)
-    {
-      I.resize(size * blocks);
-      Q.resize(size * blocks);
-      U.resize(size * blocks);
-      V.resize(size * blocks);
-      _noOfBitSets.resize(blocks);
-    }
-};
-
-
-
-
-
-
-
 /**
  @class GatedSpectrometer
  @brief Split data into two streams and create integrated spectra depending on
  bit set in side channel data.
 
  */
-template <class HandlerType> class GatedSpectrometer {
+template <class HandlerType, typename IntegratedPowerType> class GatedSpectrometer {
 public:
+  typedef uint64_t RawVoltageType;
+  typedef float UnpackedVoltageType;
+  typedef float2 ChannelisedVoltageType;
 
-
+//  typedef float IntegratedPowerType;
+  //typedef int8_t IntegratedPowerType;
 
 public:
   /**
@@ -175,10 +90,11 @@ public:
   bool operator()(RawBytes &block);
 
 private:
-  // gate the data and fft data per gate
-  void gated_fft(PolarizationData &data,
-  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
-  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1);
+  void process(thrust::device_vector<RawVoltageType> const &digitiser_raw,
+               thrust::device_vector<uint64_t> const &sideChannelData,
+               thrust::device_vector<IntegratedPowerType> &detected,
+               thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0,
+               thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1);
 
 private:
   DadaBufferLayout _dadaBufferLayout;
@@ -199,20 +115,26 @@ private:
   double _processing_efficiency;
 
   std::unique_ptr<Unpacker> _unpacker;
+  std::unique_ptr<DetectorAccumulator<IntegratedPowerType> > _detector;
 
-  // Input data and per pol intermediate data
-  PolarizationData polarization0, polarization1;
+  // Input data
+  DoubleDeviceBuffer<RawVoltageType> _raw_voltage_db;
+  DoubleDeviceBuffer<uint64_t> _sideChannelData_db;
 
   // Output data
-  StokesOutput stokes_G0, stokes_G1;
+  DoubleDeviceBuffer<IntegratedPowerType> _power_db;
 
+
+  DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G0;
+  DoubleDeviceBuffer<uint64_cu> _noOfBitSetsIn_G1;
   DoublePinnedHostBuffer<char> _host_power_db;
 
-  // Temporary processing block
-  // ToDo: Use inplace FFT to avoid temporary coltage array
+  // Intermediate process steps
   thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G0;
   thrust::device_vector<UnpackedVoltageType> _unpacked_voltage_G1;
-
+  thrust::device_vector<ChannelisedVoltageType> _channelised_voltage;
+  thrust::device_vector<UnpackedVoltageType> _baseLineNG0;
+  thrust::device_vector<UnpackedVoltageType> _baseLineNG1;
 
   cudaStream_t _h2d_stream;
   cudaStream_t _proc_stream;
@@ -220,10 +142,11 @@ private:
 };
 
 
+
 /**
    * @brief      Splits the input data depending on a bit set into two arrays.
    *
-   * @detail     The resulting gaps are filled with a given baseline value in the other stream.
+   * @detail     The resulting gaps are filled with zeros in the other stream.
    *
    * @param      GO Input data. Data is set to the baseline value if corresponding
    *             sideChannelData bit at bitpos os set.
@@ -247,63 +170,13 @@ private:
 __global__ void gating(float *G0, float *G1, const int64_t *sideChannelData,
                        size_t N, size_t heapSize, size_t bitpos,
                        size_t noOfSideChannels, size_t selectedSideChannel,
-                       const float*  __restrict__ _baseLineG0,
-                       const float*  __restrict__ _baseLineG1,
+                       const float  baseLineG0,
+                       const float  baseLineG1,
                        float* __restrict__ baseLineNG0,
                        float* __restrict__ baseLineNG1,
                        uint64_cu* stats_G0,
                        uint64_cu* stats_G1);
 
-/**
- * @brief calculate stokes IQUV from two complex valuies for each polarization
- */
-//__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V);
-__host__ __device__ void stokes_IQUV(const float2 &p1, const float2 &p2, float &I, float &Q, float &U, float &V)
-{
-    I = fabs(p1.x*p1.x + p1.y * p1.y) + fabs(p2.x*p2.x + p2.y * p2.y);
-    Q = fabs(p1.x*p1.x + p1.y * p1.y) - fabs(p2.x*p2.x + p2.y * p2.y);
-    U = 2 * (p1.x*p2.x + p1.y * p2.y);
-    V = -2 * (p1.y*p2.x - p1.x * p2.y);
-}
-
-
-
-
-/**
- * @brief calculate stokes IQUV spectra pol1, pol2 are arrays of naccumulate
- * complex spectra for individual polarizations
- */
-__global__ void stokes_accumulate(float2 const __restrict__ *pol1,
-        float2 const __restrict__ *pol2, float *I, float* Q, float *U, float*V,
-        int nchans, int naccumulate)
-{
-
-  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < nchans);
-       i += blockDim.x * gridDim.x)
-  {
-      float rI = 0;
-      float rQ = 0;
-      float rU = 0;
-      float rV = 0;
-
-      for (int k=0; k < naccumulate; k++)
-      {
-        const float2 p1 = pol1[i + k * nchans];
-        const float2 p2 = pol2[i + k * nchans];
-
-        rI += fabs(p1.x * p1.x + p1.y * p1.y) + fabs(p2.x * p2.x + p2.y * p2.y);
-        rQ += fabs(p1.x * p1.x + p1.y * p1.y) - fabs(p2.x * p2.x + p2.y * p2.y);
-        rU += 2.f * (p1.x * p2.x + p1.y * p2.y);
-        rV += -2.f * (p1.y * p2.x - p1.x * p2.y);
-      }
-      I[i] += rI;
-      Q[i] += rQ;
-      U[i] += rU;
-      V[i] += rV;
-  }
-
-}
-
 
 
 
diff --git a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
index 679b7fc261a2674c37bac70cf723aafa30c40dad..bd33eaecc2b0be867a8fe7d6768abf1c329ffcc1 100644
--- a/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
+++ b/psrdada_cpp/effelsberg/edd/detail/GatedSpectrometer.cu
@@ -17,9 +17,8 @@ namespace psrdada_cpp {
 namespace effelsberg {
 namespace edd {
 
-// Reduce thread local vatiable v in shared array x, so that x[0]
 template<typename T>
-__device__ void sum_reduce(T *x, const T &v)
+__device__ void reduce(T *x, const T &v)
 {
   x[threadIdx.x] = v;
   __syncthreads();
@@ -29,40 +28,26 @@ __device__ void sum_reduce(T *x, const T &v)
       x[threadIdx.x] += x[threadIdx.x + s];
     __syncthreads();
   }
-}
 
 
-// If one of the side channel items is lsot, then both are considered as lost
-// here
-__global__ void mergeSideChannels(uint64_t* __restrict__ A, uint64_t* __restrict__ B, size_t N)
-{
-  for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; (i < N);
-       i += blockDim.x * gridDim.x)
-  {
-    uint64_t v = A[i] || B[i];
-    A[i] = v;
-    B[i] = v;
-  }
 }
 
 
-__global__ void gating(float* __restrict__ G0,
-        float* __restrict__ G1,
-        const uint64_t* __restrict__ sideChannelData,
-        size_t N, size_t heapSize, size_t bitpos,
-        size_t noOfSideChannels, size_t selectedSideChannel,
-        const float*  __restrict__ _baseLineG0,
-        const float*  __restrict__ _baseLineG1,
-        float* __restrict__ baseLineNG0,
-        float* __restrict__ baseLineNG1,
-        uint64_cu* stats_G0, uint64_cu* stats_G1) {
+__global__ void gating(float* __restrict__ G0, float* __restrict__ G1, const uint64_t* __restrict__ sideChannelData,
+                       size_t N, size_t heapSize, size_t bitpos,
+                       size_t noOfSideChannels, size_t selectedSideChannel,
+                       const float  baseLineG0,
+                       const float  baseLineG1,
+                       float* __restrict__ baseLineNG0,
+                       float* __restrict__ baseLineNG1,
+                       uint64_cu* stats_G0, uint64_cu* stats_G1) {
+//  float baseLineG0 = (*_baseLineNG0) / N;
+ // float baseLineG1 = (*_baseLineNG1) / N;
+
   // statistics values for samopels to G0, G1
   uint32_t _G0stats = 0;
   uint32_t _G1stats = 0;
 
-  const float baseLineG0 = _baseLineG0[0];
-  const float baseLineG1 = _baseLineG1[0];
-
   float baselineUpdateG0 = 0;
   float baselineUpdateG1 = 0;
 
@@ -70,8 +55,12 @@ __global__ void gating(float* __restrict__ G0,
        i += blockDim.x * gridDim.x) {
     const float v = G0[i];
 
-    const uint64_t sideChannelItem = sideChannelData[((i / heapSize) * (noOfSideChannels)) +
-                        selectedSideChannel];
+    const uint64_t sideChannelItem =
+        sideChannelData[((i / heapSize) * (noOfSideChannels)) +
+                        selectedSideChannel]; // Probably not optimal access as
+                                              // same data is copied for several
+                                              // threads, but maybe efficiently
+                                              // handled by cache?
 
     const unsigned int bit_set = TEST_BIT(sideChannelItem, bitpos);
     const unsigned int heap_lost = TEST_BIT(sideChannelItem, 63);
@@ -84,72 +73,36 @@ __global__ void gating(float* __restrict__ G0,
     baselineUpdateG1 += v * bit_set * (!heap_lost);
     baselineUpdateG0 += v * (!bit_set) *(!heap_lost);
   }
-
   __shared__ uint32_t x[1024];
 
   // Reduce G0, G1
-  sum_reduce<uint32_t>(x, _G0stats);
-  if(threadIdx.x == 0) {
+  reduce<uint32_t>(x, _G0stats);
+  if(threadIdx.x == 0)
     atomicAdd(stats_G0,  (uint64_cu) x[threadIdx.x]);
-  }
-  __syncthreads();
 
-  sum_reduce<uint32_t>(x, _G1stats);
-  if(threadIdx.x == 0) {
-    atomicAdd(stats_G1,  (uint64_cu) x[threadIdx.x]);
-  }
   __syncthreads();
+  reduce<uint32_t>(x, _G1stats);
+  if(threadIdx.x == 0)
+    atomicAdd(stats_G1,  (uint64_cu) x[threadIdx.x]);
 
   //reuse shared array
   float *y = (float*) x;
+
   //update the baseline array
-  sum_reduce<float>(y, baselineUpdateG0);
-  if(threadIdx.x == 0) {
+  reduce<float>(y, baselineUpdateG0);
+  if(threadIdx.x == 0)
     atomicAdd(baseLineNG0, y[threadIdx.x]);
-  }
-  __syncthreads();
 
-  sum_reduce<float>(y, baselineUpdateG1);
-  if(threadIdx.x == 0) {
-    atomicAdd(baseLineNG1, y[threadIdx.x]);
-  }
   __syncthreads();
+  reduce<float>(y, baselineUpdateG1);
+  if(threadIdx.x == 0)
+    atomicAdd(baseLineNG1, y[threadIdx.x]);
 }
 
 
 
-// Updates the baselines of the gates for the polarization set for the next
-// block
-// only few output blocks per input block thus execution on only one thread.
-// Important is that the execution is async on the GPU.
-__global__ void update_baselines(float*  __restrict__ baseLineG0,
-        float*  __restrict__ baseLineG1,
-        float* __restrict__ baseLineNG0,
-        float* __restrict__ baseLineNG1,
-        uint64_cu* stats_G0, uint64_cu* stats_G1,
-        size_t N)
-{
-    size_t NG0 = 0;
-    size_t NG1 = 0;
-
-    for (size_t i =0; i < N; i++)
-    {
-       NG0 += stats_G0[i];
-       NG1 += stats_G1[i];
-    }
-
-    baseLineG0[0] = baseLineNG0[0] / NG0;
-    baseLineG1[0] = baseLineNG1[0] / NG1;
-    baseLineNG0[0] = 0;
-    baseLineNG1[0] = 0;
-}
-
-
-
-
-
-template <class HandlerType>
-GatedSpectrometer<HandlerType>::GatedSpectrometer(
+template <class HandlerType, typename IntegratedPowerType>
+GatedSpectrometer<HandlerType, IntegratedPowerType>::GatedSpectrometer(
     const DadaBufferLayout &dadaBufferLayout,
     std::size_t selectedSideChannel, std::size_t selectedBit, std::size_t fft_length, std::size_t naccumulate,
     std::size_t nbits, float input_level, float output_level,
@@ -218,38 +171,36 @@ GatedSpectrometer<HandlerType>::GatedSpectrometer(
   cufftSetStream(_fft_plan, _proc_stream);
 
   BOOST_LOG_TRIVIAL(debug) << "Allocating memory";
-  polarization0._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
-  polarization1._raw_voltage.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
-  polarization0._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
-  polarization1._sideChannelData.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
+  _raw_voltage_db.resize(_dadaBufferLayout.sizeOfData() / sizeof(uint64_t));
+  _sideChannelData_db.resize(_dadaBufferLayout.getNSideChannels() * _dadaBufferLayout.getNHeaps());
   BOOST_LOG_TRIVIAL(debug) << "  Input voltages size (in 64-bit words): "
-                           << polarization0._raw_voltage.size();
+                           << _raw_voltage_db.size();
   _unpacked_voltage_G0.resize(_nsamps_per_buffer);
   _unpacked_voltage_G1.resize(_nsamps_per_buffer);
 
-    polarization0._baseLineG0.resize(1);
-    polarization0._baseLineG0_update.resize(1);
-    polarization0._baseLineG1.resize(1);
-    polarization0._baseLineG1_update.resize(1);
-    polarization1._baseLineG0.resize(1);
-    polarization1._baseLineG0_update.resize(1);
-    polarization1._baseLineG1.resize(1);
-    polarization1._baseLineG1_update.resize(1);
-
+  _baseLineNG0.resize(1);
+  _baseLineNG1.resize(1);
   BOOST_LOG_TRIVIAL(debug) << "  Unpacked voltages size (in samples): "
                            << _unpacked_voltage_G0.size();
-  polarization0._channelised_voltage_G0.resize(_nchans * batch);
-  polarization0._channelised_voltage_G1.resize(_nchans * batch);
-  polarization1._channelised_voltage_G0.resize(_nchans * batch);
-  polarization1._channelised_voltage_G1.resize(_nchans * batch);
+  _channelised_voltage.resize(_nchans * batch);
   BOOST_LOG_TRIVIAL(debug) << "  Channelised voltages size: "
-                           << polarization0._channelised_voltage_G0.size();
-
-   stokes_G0.resize(_nchans, batch / (_naccumulate / nBlocks));
-   stokes_G1.resize(_nchans, batch / (_naccumulate / nBlocks));
-
-  // on the host full output is stored together with sci data in one buffer
-  _host_power_db.resize( 8 * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t)) * batch / (_naccumulate / nBlocks));
+                           << _channelised_voltage.size();
+  _power_db.resize(_nchans * batch / (_naccumulate / nBlocks) * 2);  // hold on and off spectra to simplify output
+  thrust::fill(_power_db.a().begin(), _power_db.a().end(), 0.);
+  thrust::fill(_power_db.b().begin(), _power_db.b().end(), 0.);
+  BOOST_LOG_TRIVIAL(debug) << "  Powers size: " << _power_db.size() / 2;
+
+  _noOfBitSetsIn_G0.resize( batch / (_naccumulate / nBlocks));
+  _noOfBitSetsIn_G1.resize( batch / (_naccumulate / nBlocks));
+  thrust::fill(_noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L);
+  thrust::fill(_noOfBitSetsIn_G0.b().begin(), _noOfBitSetsIn_G0.b().end(), 0L);
+  thrust::fill(_noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L);
+  thrust::fill(_noOfBitSetsIn_G1.b().begin(), _noOfBitSetsIn_G1.b().end(), 0L);
+  BOOST_LOG_TRIVIAL(debug) << "  Bit set counter size: " << _noOfBitSetsIn_G0.size();
+
+  // on the host both power are stored in the same data buffer together with
+  // the number of bit sets
+  _host_power_db.resize( _power_db.size() * sizeof(IntegratedPowerType) + 2 * sizeof(size_t) * _noOfBitSetsIn_G0.size());
 
   CUDA_ERROR_CHECK(cudaStreamCreate(&_h2d_stream));
   CUDA_ERROR_CHECK(cudaStreamCreate(&_proc_stream));
@@ -257,12 +208,13 @@ GatedSpectrometer<HandlerType>::GatedSpectrometer(
   CUFFT_ERROR_CHECK(cufftSetStream(_fft_plan, _proc_stream));
 
   _unpacker.reset(new Unpacker(_proc_stream));
+  _detector.reset(new DetectorAccumulator<IntegratedPowerType>(_nchans, _naccumulate / nBlocks, scaling,
+                                          offset, _proc_stream));
 } // constructor
 
 
-
-template <class HandlerType>
-GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
+template <class HandlerType, typename IntegratedPowerType>
+GatedSpectrometer<HandlerType, IntegratedPowerType>::~GatedSpectrometer() {
   BOOST_LOG_TRIVIAL(debug) << "Destroying GatedSpectrometer";
   if (!_fft_plan)
     cufftDestroy(_fft_plan);
@@ -272,9 +224,8 @@ GatedSpectrometer<HandlerType>::~GatedSpectrometer() {
 }
 
 
-
-template <class HandlerType>
-void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
+template <class HandlerType, typename IntegratedPowerType>
+void GatedSpectrometer<HandlerType, IntegratedPowerType>::init(RawBytes &block) {
   BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer init called";
   std::stringstream headerInfo;
   headerInfo << "\n"
@@ -303,195 +254,135 @@ void GatedSpectrometer<HandlerType>::init(RawBytes &block) {
 }
 
 
-
-template <class HandlerType>
-void GatedSpectrometer<HandlerType>::gated_fft(
-        PolarizationData &data,
-  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G0,
-  thrust::device_vector<uint64_cu> &_noOfBitSetsIn_G1
-        )
-{
+template <class HandlerType, typename IntegratedPowerType>
+void GatedSpectrometer<HandlerType, IntegratedPowerType>::process(
+    thrust::device_vector<RawVoltageType> const &digitiser_raw,
+    thrust::device_vector<uint64_t> const &sideChannelData,
+    thrust::device_vector<IntegratedPowerType> &detected, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G0, thrust::device_vector<uint64_cu> &noOfBitSetsIn_G1) {
   BOOST_LOG_TRIVIAL(debug) << "Unpacking raw voltages";
   switch (_nbits) {
   case 8:
-    _unpacker->unpack<8>(data._raw_voltage.b(), _unpacked_voltage_G0);
+    _unpacker->unpack<8>(digitiser_raw, _unpacked_voltage_G0);
     break;
   case 12:
-    _unpacker->unpack<12>(data._raw_voltage.b(), _unpacked_voltage_G0);
+    _unpacker->unpack<12>(digitiser_raw, _unpacked_voltage_G0);
     break;
   default:
     throw std::runtime_error("Unsupported number of bits");
   }
+  BOOST_LOG_TRIVIAL(debug) << "Calculate baseline";
+  //calculate baseline from previos block
 
-  // Loop over outputblocks, for case of multiple output blocks per input block
-  int step = data._sideChannelData.b().size() / _noOfBitSetsIn_G0.size();
+  BOOST_LOG_TRIVIAL(debug) << "Perform gating";
 
-  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
+  float baseLineG0 = _baseLineNG0[0];
+  float baseLineG1 = _baseLineNG1[0];
+
+  uint64_t NG0 = 0;
+  uint64_t NG1 = 0;
+
+  // Loop over outputblocks, for case of multiple output blocks per input block
+  for (size_t i = 0; i < noOfBitSetsIn_G0.size(); i++)
   { // ToDo: Should be in one kernel call
   gating<<<1024, 1024, 0, _proc_stream>>>(
-      thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * step * _nsamps_per_heap),
-      thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * step * _nsamps_per_heap),
-      thrust::raw_pointer_cast(data._sideChannelData.b().data() + i * step),
-      _unpacked_voltage_G0.size() / _noOfBitSetsIn_G0.size(),
-      _dadaBufferLayout.getHeapSize(),
-      _selectedBit,
-      _dadaBufferLayout.getNSideChannels(),
+      thrust::raw_pointer_cast(_unpacked_voltage_G0.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
+      thrust::raw_pointer_cast(_unpacked_voltage_G1.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
+      thrust::raw_pointer_cast(sideChannelData.data() + i * sideChannelData.size() / noOfBitSetsIn_G0.size()),
+      _unpacked_voltage_G0.size() / noOfBitSetsIn_G0.size(), _dadaBufferLayout.getHeapSize(), _selectedBit, _dadaBufferLayout.getNSideChannels(),
       _selectedSideChannel,
-      thrust::raw_pointer_cast(data._baseLineG0.data()),
-      thrust::raw_pointer_cast(data._baseLineG1.data()),
-      thrust::raw_pointer_cast(data._baseLineG0_update.data()),
-      thrust::raw_pointer_cast(data._baseLineG1_update.data()),
-      thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data() + i),
-      thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data() + i)
+      baseLineG0, baseLineG1,
+      thrust::raw_pointer_cast(_baseLineNG0.data()),
+      thrust::raw_pointer_cast(_baseLineNG1.data()),
+      thrust::raw_pointer_cast(noOfBitSetsIn_G0.data() + i),
+      thrust::raw_pointer_cast(noOfBitSetsIn_G1.data() + i)
       );
+    NG0 += noOfBitSetsIn_G0[i];
+    NG1 += noOfBitSetsIn_G1[i];
   }
+  _baseLineNG0[0] /= NG0;
+  _baseLineNG1[0] /= NG1;
+  BOOST_LOG_TRIVIAL(debug) << "Updating Baselines\n G0: " << baseLineG0 << " -> " << _baseLineNG0[0] << ", " << baseLineG1 << " -> " << _baseLineNG1[0] ;
 
-    // only few output blocks per input block thus execution on only one thread.
-    // Important is that the execution is async on the GPU.
-    update_baselines<<<1,1,0, _proc_stream>>>(
-        thrust::raw_pointer_cast(data._baseLineG0.data()),
-        thrust::raw_pointer_cast(data._baseLineG1.data()),
-        thrust::raw_pointer_cast(data._baseLineG0_update.data()),
-        thrust::raw_pointer_cast(data._baseLineG1_update.data()),
-        thrust::raw_pointer_cast(_noOfBitSetsIn_G0.data()),
-        thrust::raw_pointer_cast(_noOfBitSetsIn_G1.data()),
-        _noOfBitSetsIn_G0.size()
-            );
 
   BOOST_LOG_TRIVIAL(debug) << "Performing FFT 1";
   UnpackedVoltageType *_unpacked_voltage_ptr =
       thrust::raw_pointer_cast(_unpacked_voltage_G0.data());
   ChannelisedVoltageType *_channelised_voltage_ptr =
-      thrust::raw_pointer_cast(data._channelised_voltage_G0.data());
+      thrust::raw_pointer_cast(_channelised_voltage.data());
   CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                  (cufftComplex *)_channelised_voltage_ptr));
+  _detector->detect(_channelised_voltage, detected, 2, 0);
 
   BOOST_LOG_TRIVIAL(debug) << "Performing FFT 2";
   _unpacked_voltage_ptr = thrust::raw_pointer_cast(_unpacked_voltage_G1.data());
-  _channelised_voltage_ptr = thrust::raw_pointer_cast(data._channelised_voltage_G1.data());
   CUFFT_ERROR_CHECK(cufftExecR2C(_fft_plan, (cufftReal *)_unpacked_voltage_ptr,
                                  (cufftComplex *)_channelised_voltage_ptr));
 
+  _detector->detect(_channelised_voltage, detected, 2, 1);
   CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
   BOOST_LOG_TRIVIAL(debug) << "Exit processing";
 } // process
 
 
-template <class HandlerType>
-bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
-    ++_call_count;
-    BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
-                             << _call_count << ")";
-    if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) {
-      // Stop on unexpected buffer size
-      BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
-                               << block.used_bytes() << " byte, expected "
-                               << _dadaBufferLayout.getBufferSize() << " byte)";
-      CUDA_ERROR_CHECK(cudaDeviceSynchronize());
-      cudaProfilerStop();
-      return true;
-    }
-
-    // Copy data to device
-    CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
-    polarization0.swap();
-    polarization1.swap();
-
-    BOOST_LOG_TRIVIAL(debug) << "   block.used_bytes() = " <<
-        block.used_bytes() << ", dataBlockBytes = " <<
-        _dadaBufferLayout.sizeOfData() << "\n";
-
-    // Copy the data with stride to the GPU:
-    // CPU: P1P2P1P2P1P2 ...
-    // GPU: P1P1P1 ... P2P2P2 ...
-    // If this is a bottleneck the gating kernel could sort the layout out
-    // during copy
-    int heapsize_bytes = _nsamps_per_heap * _nbits / 8;
-    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
-      static_cast<void *>(polarization0._raw_voltage.a_ptr()),
-        heapsize_bytes,
-        static_cast<void *>(block.ptr()),
-        2 * heapsize_bytes,
-        heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
-        cudaMemcpyHostToDevice, _h2d_stream));
-
-    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
-      static_cast<void *>(polarization1._raw_voltage.a_ptr()),
-        heapsize_bytes,
-        static_cast<void *>(block.ptr()) + heapsize_bytes,
-        2 * heapsize_bytes,
-        heapsize_bytes, _dadaBufferLayout.sizeOfData() / heapsize_bytes/ 2,
-        cudaMemcpyHostToDevice, _h2d_stream));
-
-    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
-        static_cast<void *>(polarization0._sideChannelData.a_ptr()),
-        sizeof(uint64_t),
-        static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
-        2 * sizeof(uint64_t),
-        sizeof(uint64_t),
-        _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t),
-        cudaMemcpyHostToDevice, _h2d_stream));
-
-    CUDA_ERROR_CHECK(cudaMemcpy2DAsync(
-        static_cast<void *>(polarization1._sideChannelData.a_ptr()),
-        sizeof(uint64_t),
-        static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap() + sizeof(uint64_t)),
-        2 * sizeof(uint64_t),
-        sizeof(uint64_t),
-        _dadaBufferLayout.sizeOfSideChannelData() / 2 / sizeof(uint64_t), cudaMemcpyHostToDevice, _h2d_stream));
-
-    BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" <<   std::setw(16)
-        << std::setfill('0') << std::hex <<
-        (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData()
-                                     + _dadaBufferLayout.sizeOfGap()))[0] << std::dec;
+template <class HandlerType, typename IntegratedPowerType>
+bool GatedSpectrometer<HandlerType, IntegratedPowerType>::operator()(RawBytes &block) {
+  ++_call_count;
+  BOOST_LOG_TRIVIAL(debug) << "GatedSpectrometer operator() called (count = "
+                           << _call_count << ")";
+  if (block.used_bytes() != _dadaBufferLayout.getBufferSize()) { /* Unexpected buffer size */
+    BOOST_LOG_TRIVIAL(error) << "Unexpected Buffer Size - Got "
+                             << block.used_bytes() << " byte, expected "
+                             << _dadaBufferLayout.getBufferSize() << " byte)";
+    CUDA_ERROR_CHECK(cudaDeviceSynchronize());
+    cudaProfilerStop();
+    return true;
+  }
+
+  // Copy data to device
+  CUDA_ERROR_CHECK(cudaStreamSynchronize(_h2d_stream));
+  _raw_voltage_db.swap();
+  _sideChannelData_db.swap();
+
+  BOOST_LOG_TRIVIAL(debug) << "   block.used_bytes() = " << block.used_bytes()
+                           << ", dataBlockBytes = " << _dadaBufferLayout.sizeOfData() << "\n";
+
+  CUDA_ERROR_CHECK(cudaMemcpyAsync(static_cast<void *>(_raw_voltage_db.a_ptr()),
+                                   static_cast<void *>(block.ptr()),
+                                   _dadaBufferLayout.sizeOfData() , cudaMemcpyHostToDevice,
+                                   _h2d_stream));
+  CUDA_ERROR_CHECK(cudaMemcpyAsync(
+      static_cast<void *>(_sideChannelData_db.a_ptr()),
+      static_cast<void *>(block.ptr() + _dadaBufferLayout.sizeOfData() + _dadaBufferLayout.sizeOfGap()),
+      _dadaBufferLayout.sizeOfSideChannelData(), cudaMemcpyHostToDevice, _h2d_stream));
+  BOOST_LOG_TRIVIAL(debug) << "First side channel item: 0x" <<   std::setw(16)
+      << std::setfill('0') << std::hex <<
+      (reinterpret_cast<uint64_t*>(block.ptr() + _dadaBufferLayout.sizeOfData()
+                                   + _dadaBufferLayout.sizeOfGap()))[0] <<
+      std::dec;
 
 
   if (_call_count == 1) {
     return false;
   }
-
   // process data
-  // check if new outblock is started:  _call_count -1 because this is the block number on the device
-  bool newBlock = (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0);
 
   // only if  a newblock is started the output buffer is swapped. Otherwise the
   // new data is added to it
-  if (newBlock)
+  bool newBlock = false;
+  if (((_call_count-1) * _nsamps_per_buffer) % _nsamps_per_output_spectra == 0) // _call_count -1 because this is the block number on the device
   {
-      BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
-      stokes_G0.swap();
-      stokes_G1.swap();
-      stokes_G0.reset(_proc_stream);
-      stokes_G1.reset(_proc_stream);
+    BOOST_LOG_TRIVIAL(debug) << "Starting new output block.";
+    newBlock = true;
+    _power_db.swap();
+    _noOfBitSetsIn_G0.swap();
+    _noOfBitSetsIn_G1.swap();
+    // move to specific stream!
+    thrust::fill(thrust::cuda::par.on(_proc_stream),_power_db.a().begin(), _power_db.a().end(), 0.);
+    thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G0.a().begin(), _noOfBitSetsIn_G0.a().end(), 0L);
+    thrust::fill(thrust::cuda::par.on(_proc_stream), _noOfBitSetsIn_G1.a().begin(), _noOfBitSetsIn_G1.a().end(), 0L);
   }
 
-  mergeSideChannels<<<1024, 1024, 0, _proc_stream>>>(thrust::raw_pointer_cast(polarization0._sideChannelData.a().data()),
-          thrust::raw_pointer_cast(polarization1._sideChannelData.a().data()), polarization1._sideChannelData.a().size());
-
-  gated_fft(polarization0, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
-  gated_fft(polarization1, stokes_G0._noOfBitSets.a(), stokes_G1._noOfBitSets.a());
-
-  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
-          thrust::raw_pointer_cast(polarization0._channelised_voltage_G0.data()),
-          thrust::raw_pointer_cast(polarization1._channelised_voltage_G0.data()),
-          thrust::raw_pointer_cast(stokes_G0.I.a().data()),
-          thrust::raw_pointer_cast(stokes_G0.Q.a().data()),
-          thrust::raw_pointer_cast(stokes_G0.U.a().data()),
-          thrust::raw_pointer_cast(stokes_G0.V.a().data()),
-          _nchans, _naccumulate
-          );
-
-  stokes_accumulate<<<1024, 1024, 0, _proc_stream>>>(
-          thrust::raw_pointer_cast(polarization0._channelised_voltage_G1.data()),
-          thrust::raw_pointer_cast(polarization1._channelised_voltage_G1.data()),
-          thrust::raw_pointer_cast(stokes_G1.I.a().data()),
-          thrust::raw_pointer_cast(stokes_G1.Q.a().data()),
-          thrust::raw_pointer_cast(stokes_G1.U.a().data()),
-          thrust::raw_pointer_cast(stokes_G1.V.a().data()),
-          _nchans, _naccumulate
-          );
-
-
+  process(_raw_voltage_db.b(), _sideChannelData_db.b(), _power_db.a(), _noOfBitSetsIn_G0.a(), _noOfBitSetsIn_G1.a());
   CUDA_ERROR_CHECK(cudaStreamSynchronize(_proc_stream));
 
   if ((_call_count == 2) || (!newBlock)) {
@@ -501,104 +392,29 @@ bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
   // copy data to host if block is finished
   CUDA_ERROR_CHECK(cudaStreamSynchronize(_d2h_stream));
   _host_power_db.swap();
-  // OUTPUT MEMORY LAYOUT:
-  // I G0, IG1,Q G0, QG1, U G0,UG1,V G0,VG1, 8xSCI, ...
 
-  for (size_t i = 0; i < stokes_G0._noOfBitSets.size(); i++)
+  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
   {
-    size_t memslicesize = (_nchans * sizeof(IntegratedPowerType));
-    size_t memOffset = 8 * i * (memslicesize +  + sizeof(size_t));
-    // Copy  II QQ UU VV
+    size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+    // copy 2x channel data
     CUDA_ERROR_CHECK(
         cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset) ,
-                        static_cast<void *>(stokes_G0.I.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
+                        static_cast<void *>(_power_db.b_ptr() + 2 * i * _nchans),
+                        2 * _nchans * sizeof(IntegratedPowerType),
                         cudaMemcpyDeviceToHost, _d2h_stream));
 
+    // copy noOf bit set data
     CUDA_ERROR_CHECK(
-        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 1 * memslicesize) ,
-                        static_cast<void *>(stokes_G1.I.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
-                        cudaMemcpyDeviceToHost, _d2h_stream));
-
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * memslicesize) ,
-                        static_cast<void *>(stokes_G0.Q.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
-                        cudaMemcpyDeviceToHost, _d2h_stream));
-
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 3 * memslicesize) ,
-                        static_cast<void *>(stokes_G1.Q.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
-                        cudaMemcpyDeviceToHost, _d2h_stream));
-
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 4 * memslicesize) ,
-                        static_cast<void *>(stokes_G0.U.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
-                        cudaMemcpyDeviceToHost, _d2h_stream));
-
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 5 * memslicesize) ,
-                        static_cast<void *>(stokes_G1.U.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
-                        cudaMemcpyDeviceToHost, _d2h_stream));
-
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 6 * memslicesize) ,
-                        static_cast<void *>(stokes_G0.V.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
-                        cudaMemcpyDeviceToHost, _d2h_stream));
-
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync(static_cast<void *>(_host_power_db.a_ptr() + memOffset + 7 * memslicesize) ,
-                        static_cast<void *>(stokes_G1.V.b_ptr() + i * memslicesize),
-                        _nchans * sizeof(IntegratedPowerType),
-                        cudaMemcpyDeviceToHost, _d2h_stream));
-
-    // Copy SCI
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize),
-          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
-            1 * sizeof(size_t),
-            cudaMemcpyDeviceToHost, _d2h_stream));
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 1 * sizeof(size_t)),
-          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
-            1 * sizeof(size_t),
-            cudaMemcpyDeviceToHost, _d2h_stream));
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 2 * sizeof(size_t)),
-          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
-            1 * sizeof(size_t),
-            cudaMemcpyDeviceToHost, _d2h_stream));
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 3 * sizeof(size_t)),
-          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
-            1 * sizeof(size_t),
-            cudaMemcpyDeviceToHost, _d2h_stream));
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 4 * sizeof(size_t)),
-          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
-            1 * sizeof(size_t),
-            cudaMemcpyDeviceToHost, _d2h_stream));
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 5 * sizeof(size_t)),
-          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
-            1 * sizeof(size_t),
-            cudaMemcpyDeviceToHost, _d2h_stream));
-    CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 6 * sizeof(size_t)),
-          static_cast<void *>(stokes_G0._noOfBitSets.b_ptr() + i ),
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType)),
+          static_cast<void *>(_noOfBitSetsIn_G0.b_ptr() + i ),
             1 * sizeof(size_t),
             cudaMemcpyDeviceToHost, _d2h_stream));
+
     CUDA_ERROR_CHECK(
-        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 8 * memslicesize + 7 * sizeof(size_t)),
-          static_cast<void *>(stokes_G1._noOfBitSets.b_ptr() + i ),
+        cudaMemcpyAsync( static_cast<void *>(_host_power_db.a_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t)),
+          static_cast<void *>(_noOfBitSetsIn_G1.b_ptr() + i ),
             1 * sizeof(size_t),
             cudaMemcpyDeviceToHost, _d2h_stream));
-
   }
 
   BOOST_LOG_TRIVIAL(debug) << "Copy Data back to host";
@@ -608,28 +424,28 @@ bool GatedSpectrometer<HandlerType>::operator()(RawBytes &block) {
   }
 
   // calculate off value
-  //BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
-  //size_t total_samples_lost = 0;
-  //for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
-  //{
-  //  size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
-
-  //  size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
-  //  size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
-
-  //  size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
-  //  total_samples_lost += samples_lost;
-
-  //  BOOST_LOG_TRIVIAL(info) << "    Heap " << i << ":\n"
-  //    <<"                            Samples with  bit set  : " << *on_values << std::endl
-  //    <<"                            Samples without bit set: " << *off_values << std::endl
-  //    <<"                            Samples lost           : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
-  //}
-  //double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
-  //double prev_average = _processing_efficiency / (_call_count- 3 - 1);
-  //_processing_efficiency += efficiency;
-  //double average = _processing_efficiency / (_call_count-3);
-  //BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
+  BOOST_LOG_TRIVIAL(info) << "Buffer block: " << _call_count-3 << " with " << _noOfBitSetsIn_G0.size() << "x2 output heaps:";
+  size_t total_samples_lost = 0;
+  for (size_t i = 0; i < _noOfBitSetsIn_G0.size(); i++)
+  {
+    size_t memOffset = 2 * i * (_nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+
+    size_t* on_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType));
+    size_t* off_values = reinterpret_cast<size_t*> (_host_power_db.b_ptr() + memOffset + 2 * _nchans * sizeof(IntegratedPowerType) + sizeof(size_t));
+
+    size_t samples_lost = _nsamps_per_output_spectra - (*on_values) - (*off_values);
+    total_samples_lost += samples_lost;
+
+    BOOST_LOG_TRIVIAL(info) << "    Heap " << i << ":\n"
+      <<"                            Samples with  bit set  : " << *on_values << std::endl
+      <<"                            Samples without bit set: " << *off_values << std::endl
+      <<"                            Samples lost           : " << samples_lost << " out of " << _nsamps_per_output_spectra << std::endl;
+  }
+  double efficiency = 1. - double(total_samples_lost) / (_nsamps_per_output_spectra * _noOfBitSetsIn_G0.size());
+  double prev_average = _processing_efficiency / (_call_count- 3 - 1);
+  _processing_efficiency += efficiency;
+  double average = _processing_efficiency / (_call_count-3);
+  BOOST_LOG_TRIVIAL(info) << "Total processing efficiency of this buffer block:" << std::setprecision(6) << efficiency << ". Run average: " << average << " (Trend: " << std::showpos << (average - prev_average) << ")";
 
   // Wrap in a RawBytes object here;
   RawBytes bytes(reinterpret_cast<char *>(_host_power_db.b_ptr()),
diff --git a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
index 08ec6a447407ba271374f859d079566779670c8d..bb1f876e0f22c0f1abb34f28b19e271607d560f6 100644
--- a/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
+++ b/psrdada_cpp/effelsberg/edd/src/GatedSpectrometer_cli.cu
@@ -25,7 +25,12 @@ const size_t ERROR_UNHANDLED_EXCEPTION = 2;
 
 
 template<typename T>
-void launchSpectrometer(const effelsberg::edd::DadaBufferLayout &dadaBufferLayout, const std::string &output_type, const std::string &filename, size_t selectedSideChannel, size_t selectedBit, size_t fft_length, size_t naccumulate, unsigned int nbits,  float input_level,  float output_level)
+void launchSpectrometer(const effelsberg::edd::DadaBufferLayout
+        &dadaBufferLayout, const std::string &output_type,
+        const std::string &filename,
+        size_t selectedSideChannel, size_t selectedBit,
+        size_t fft_length, size_t naccumulate, unsigned int nbits,
+        float input_level, float output_level)
 {
 
     MultiLog log("DadaBufferLayout");
diff --git a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
index 495375dde5c707fcedd7b30d3a1fdf7b7973d6bc..163e8e9fba27da62bac0eee7654316ddbe61fee4 100644
--- a/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
+++ b/psrdada_cpp/effelsberg/edd/test/src/GatedSpectrometerTest.cu
@@ -7,6 +7,7 @@
 #include "thrust/device_vector.h"
 #include "thrust/extrema.h"
 
+namespace {
 
 TEST(GatedSpectrometer, BitManipulationMacros) {
   for (int i = 0; i < 64; i++) {
@@ -22,121 +23,31 @@ TEST(GatedSpectrometer, BitManipulationMacros) {
   }
 }
 
-
-TEST(GatedSpectrometer, stokes_IQUV)
-{
-    float I,Q,U,V;
-    // No field
-    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V);
-    EXPECT_FLOAT_EQ(I, 0);
-    EXPECT_FLOAT_EQ(Q, 0);
-    EXPECT_FLOAT_EQ(U, 0);
-    EXPECT_FLOAT_EQ(V, 0);
-
-    // For p1 = Ex, p2 = Ey
-    // horizontal polarized
-    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f,0.0f}, (float2){0.0f,0.0f}, I, Q, U, V);
-    EXPECT_FLOAT_EQ(I, 1);
-    EXPECT_FLOAT_EQ(Q, 1);
-    EXPECT_FLOAT_EQ(U, 0);
-    EXPECT_FLOAT_EQ(V, 0);
-
-    // vertical polarized
-    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){0.0f,0.0f}, (float2){1.0f,0.0f}, I, Q, U, V);
-    EXPECT_FLOAT_EQ(I, 1);
-    EXPECT_FLOAT_EQ(Q, -1);
-    EXPECT_FLOAT_EQ(U, 0);
-    EXPECT_FLOAT_EQ(V, 0);
-
-    //linear +45 deg.
-    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V);
-    EXPECT_FLOAT_EQ(I, 1);
-    EXPECT_FLOAT_EQ(Q, 0);
-    EXPECT_FLOAT_EQ(U, 1);
-    EXPECT_FLOAT_EQ(V, 0);
-
-    //linear -45 deg.
-    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){-1.0f/std::sqrt(2),0.0f}, (float2){1.0f/std::sqrt(2),0.0f}, I, Q, U, V);
-    EXPECT_FLOAT_EQ(I, 1);
-    EXPECT_FLOAT_EQ(Q, 0);
-    EXPECT_FLOAT_EQ(U, -1);
-    EXPECT_FLOAT_EQ(V, 0);
-
-    //left circular
-    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V);
-    EXPECT_FLOAT_EQ(I, 1);
-    EXPECT_FLOAT_EQ(Q, 0);
-    EXPECT_FLOAT_EQ(U, 0);
-    EXPECT_FLOAT_EQ(V, -1);
-
-    // right circular
-    psrdada_cpp::effelsberg::edd::stokes_IQUV((float2){.0f,-1.0f/std::sqrt(2)}, (float2){1.0f/std::sqrt(2),.0f}, I, Q, U, V);
-    EXPECT_FLOAT_EQ(I, 1);
-    EXPECT_FLOAT_EQ(Q, 0);
-    EXPECT_FLOAT_EQ(U, 0);
-    EXPECT_FLOAT_EQ(V, 1);
-}
-
-
-TEST(GatedSpectrometer, stokes_accumulate)
-{
-    CUDA_ERROR_CHECK(cudaDeviceSynchronize());
-    size_t nchans = 8 * 1024 * 1024 + 1;
-    size_t naccumulate = 5;
-
-    thrust::device_vector<float2> P0(nchans * naccumulate);
-    thrust::device_vector<float2> P1(nchans * naccumulate);
-    thrust::fill(P0.begin(), P0.end(), (float2){0, 0});
-    thrust::fill(P1.begin(), P1.end(), (float2){0, 0});
-    thrust::device_vector<float> I(nchans);
-    thrust::device_vector<float> Q(nchans);
-    thrust::device_vector<float> U(nchans);
-    thrust::device_vector<float> V(nchans);
-    thrust::fill(I.begin(), I.end(), 0);
-    thrust::fill(Q.begin(), Q.end(), 0);
-    thrust::fill(U.begin(), U.end(), 0);
-    thrust::fill(V.begin(), V.end(), 0);
-
-    // This channel should be left circular polarized
-    size_t idx0 = 23;
-    for (int k = 0; k< naccumulate; k++)
-    {
-        size_t idx = idx0 + k * nchans;
-        P0[idx] = (float2){0.0f, 1.0f/std::sqrt(2)};
-        P1[idx] = (float2){1.0f/std::sqrt(2),0.0f};
-    }
-
-    psrdada_cpp::effelsberg::edd::stokes_accumulate<<<1024, 1024>>>(
-          thrust::raw_pointer_cast(P0.data()),
-          thrust::raw_pointer_cast(P1.data()),
-          thrust::raw_pointer_cast(I.data()),
-          thrust::raw_pointer_cast(Q.data()),
-          thrust::raw_pointer_cast(U.data()),
-          thrust::raw_pointer_cast(V.data()),
-          nchans,
-          naccumulate
-            );
-
-    CUDA_ERROR_CHECK(cudaDeviceSynchronize());
-    thrust::pair<thrust::device_vector<float>::iterator, thrust::device_vector<float>::iterator> minmax;
-
-    minmax = thrust::minmax_element(I.begin(), I.end());
-    EXPECT_FLOAT_EQ(*minmax.first, 0);
-    EXPECT_FLOAT_EQ(*minmax.second, naccumulate);
-
-    minmax = thrust::minmax_element(Q.begin(), Q.end());
-    EXPECT_FLOAT_EQ(*minmax.first, 0);
-    EXPECT_FLOAT_EQ(*minmax.second, 0);
-
-    minmax = thrust::minmax_element(U.begin(), U.end());
-    EXPECT_FLOAT_EQ(*minmax.first, 0);
-    EXPECT_FLOAT_EQ(*minmax.second, 0);
-
-    minmax = thrust::minmax_element(V.begin(), V.end());
-    EXPECT_FLOAT_EQ(*minmax.first, -1. * naccumulate);
-    EXPECT_FLOAT_EQ(*minmax.second, 0);
-}
-
+//
+//TEST(GatedSpectrometer, ParameterSanity) {
+//  ::testing::FLAGS_gtest_death_test_style = "threadsafe";
+//  psrdada_cpp::NullSink sink;
+//
+//  // 8 or 12 bit sampling
+//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 0, 0, 0, sink),
+//               "_nbits == 8");
+//  // naccumulate > 0
+//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 0, 0, 0, 4096, 0, 0, 8, 0, 0, sink),
+//               "_naccumulate");
+//
+//  // selected side channel
+//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 1, 2, 0, 4096, 0, 1, 8, 0, 0, sink),
+//               "nSideChannels");
+//
+//  // selected bit
+//  EXPECT_DEATH(psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink),int8_t > (0, 2, 1, 65, 4096, 0, 1, 8, 0, 0, sink),
+//               "selectedBit");
+//
+//  // valid construction
+//  psrdada_cpp::effelsberg::edd::GatedSpectrometer<decltype(sink), int8_t> a(
+//      4096 * 4096, 2, 1, 63, 4096, 1024, 1, 8, 100., 100., sink);
+//}
+} // namespace
 
 
 TEST(GatedSpectrometer, GatingKernel)
@@ -152,8 +63,6 @@ TEST(GatedSpectrometer, GatingKernel)
   thrust::device_vector<float> baseLineG0(1);
   thrust::device_vector<float> baseLineG1(1);
 
-  thrust::device_vector<float> baseLineG0_update(1);
-  thrust::device_vector<float> baseLineG1_update(1);
   thrust::fill(G0.begin(), G0.end(), 42);
   thrust::fill(G1.begin(), G1.end(), 23);
   thrust::fill(_sideChannelData.begin(), _sideChannelData.end(), 0);
@@ -162,22 +71,18 @@ TEST(GatedSpectrometer, GatingKernel)
   {
     thrust::fill(_nG0.begin(), _nG0.end(), 0);
     thrust::fill(_nG1.begin(), _nG1.end(), 0);
-    baseLineG0[0] = -3;
-    baseLineG1[0] = -4;
-    baseLineG0_update[0] = 0;
-    baseLineG1_update[0] = 0;
-
+    baseLineG0[0] = 0.;
+    baseLineG1[0] = 0.;
     const uint64_t *sideCD =
         (uint64_t *)(thrust::raw_pointer_cast(_sideChannelData.data()));
     psrdada_cpp::effelsberg::edd::gating<<<1024 , 1024>>>(
           thrust::raw_pointer_cast(G0.data()),
           thrust::raw_pointer_cast(G1.data()), sideCD,
-          G0.size(), blockSize, 0, 1,
+          G0.size(), G0.size(), 0, 1,
           0,
+          -3., -4,
           thrust::raw_pointer_cast(baseLineG0.data()),
           thrust::raw_pointer_cast(baseLineG1.data()),
-          thrust::raw_pointer_cast(baseLineG0_update.data()),
-          thrust::raw_pointer_cast(baseLineG1_update.data()),
           thrust::raw_pointer_cast(_nG0.data()),
           thrust::raw_pointer_cast(_nG1.data())
           );
@@ -194,31 +99,27 @@ TEST(GatedSpectrometer, GatingKernel)
     EXPECT_EQ(_nG0[0], G0.size());
     EXPECT_EQ(_nG1[0], 0u);
 
-    EXPECT_FLOAT_EQ(42.f, baseLineG0_update[0] / (_nG0[0] + 1E-121));
-    EXPECT_FLOAT_EQ(0.f, baseLineG1_update[0] / (_nG1[0] + 1E-121));
+    EXPECT_FLOAT_EQ(baseLineG0[0] / (_nG0[0] + 1E-127), 42.f);
+    EXPECT_FLOAT_EQ(baseLineG1[0] / (_nG1[0] + 1E-127), 0.f);
   }
 
   // everything to G1 // with baseline -5
   {
     thrust::fill(_nG0.begin(), _nG0.end(), 0);
     thrust::fill(_nG1.begin(), _nG1.end(), 0);
-    baseLineG0[0] = 5.;
-    baseLineG1[0] = -2;
-    baseLineG0_update[0] = 0;
-    baseLineG1_update[0] = 0;
-
+    baseLineG0[0] = 0.;
+    baseLineG1[0] = 0.;
     thrust::fill(_sideChannelData.begin(), _sideChannelData.end(), 1L);
     const uint64_t *sideCD =
         (uint64_t *)(thrust::raw_pointer_cast(_sideChannelData.data()));
     psrdada_cpp::effelsberg::edd::gating<<<1024, 1024>>>(
           thrust::raw_pointer_cast(G0.data()),
           thrust::raw_pointer_cast(G1.data()), sideCD,
-          G0.size(), blockSize, 0, 1,
+          G0.size(), G0.size(), 0, 1,
           0,
+          5., -2.,
           thrust::raw_pointer_cast(baseLineG0.data()),
           thrust::raw_pointer_cast(baseLineG1.data()),
-          thrust::raw_pointer_cast(baseLineG0_update.data()),
-          thrust::raw_pointer_cast(baseLineG1_update.data()),
           thrust::raw_pointer_cast(_nG0.data()),
           thrust::raw_pointer_cast(_nG1.data())
           );
@@ -233,12 +134,13 @@ TEST(GatedSpectrometer, GatingKernel)
 
     EXPECT_EQ(_nG0[0], 0u);
     EXPECT_EQ(_nG1[0], G1.size());
-
-    EXPECT_FLOAT_EQ(0.f, baseLineG0_update[0] / (_nG0[0] + 1E-121));
-    EXPECT_FLOAT_EQ(42.f, baseLineG1_update[0] / (_nG1[0] + 1E-121));
+    EXPECT_FLOAT_EQ(baseLineG0[0] / (_nG0[0] + 1E-127), 0.);
+    EXPECT_FLOAT_EQ(baseLineG1[0] / (_nG1[0] + 1E-127), 42.);
   }
 }
 
+
+
 TEST(GatedSpectrometer, array_sum) {
 
   const size_t NBLOCKS = 16 * 32;
@@ -261,3 +163,10 @@ TEST(GatedSpectrometer, array_sum) {
 
   EXPECT_EQ(size_t(blr[0]), inputLength);
 }
+
+int main(int argc, char **argv) {
+  ::testing::InitGoogleTest(&argc, argv);
+
+  return RUN_ALL_TESTS();
+}
+