complex_128bit_256bit_512bit_BLOCK_template.c 193 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
//    This file is part of ELPA.
//
//    The ELPA library was originally created by the ELPA consortium,
//    consisting of the following organizations:
//
//    - Max Planck Computing and Data Facility (MPCDF), formerly known as
//      Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG),
//    - Bergische Universität Wuppertal, Lehrstuhl für angewandte
//      Informatik,
//    - Technische Universität München, Lehrstuhl für Informatik mit
//      Schwerpunkt Wissenschaftliches Rechnen ,
//    - Fritz-Haber-Institut, Berlin, Abt. Theorie,
//    - Max-Plack-Institut für Mathematik in den Naturwissenschaften,
//      Leipzig, Abt. Komplexe Strukutren in Biologie und Kognition,
//      and
//    - IBM Deutschland GmbH
//
//
//    This particular source code file contains additions, changes and
//    enhancements authored by Intel Corporation which is not part of
//    the ELPA consortium.
//
//    More information can be found here:
//    http://elpa.mpcdf.mpg.de/
//
//    ELPA is free software: you can redistribute it and/or modify
//    it under the terms of the version 3 of the license of the
//    GNU Lesser General Public License as published by the Free
//    Software Foundation.
//
//    ELPA is distributed in the hope that it will be useful,
//    but WITHOUT ANY WARRANTY; without even the implied warranty of
//    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//    GNU Lesser General Public License for more details.
//
//    You should have received a copy of the GNU Lesser General Public License
//    along with ELPA. If not, see <http://www.gnu.org/licenses/>
//
//    ELPA reflects a substantial effort on the part of the original
//    ELPA consortium, and we ask you to respect the spirit of the
//    license that we chose: i.e., please contribute any changes you
//    may have back to the original ELPA library distribution, and keep
//    any derivatives of ELPA under the same license that we chose for
//    the original distribution, the GNU Lesser General Public License.
//
// Author: Andreas Marek, MPCDF, based on the double precision case of A. Heinecke
//
#include "config-f90.h"

#define CONCAT_8ARGS(a, b, c, d, e, f, g, h) CONCAT2_8ARGS(a, b, c, d, e, f, g, h)
#define CONCAT2_8ARGS(a, b, c, d, e, f, g, h) a ## b ## c ## d ## e ## f ## g ## h

#define CONCAT_7ARGS(a, b, c, d, e, f, g) CONCAT2_7ARGS(a, b, c, d, e, f, g)
#define CONCAT2_7ARGS(a, b, c, d, e, f, g) a ## b ## c ## d ## e ## f ## g

#define CONCAT_6ARGS(a, b, c, d, e, f) CONCAT2_6ARGS(a, b, c, d, e, f)
#define CONCAT2_6ARGS(a, b, c, d, e, f) a ## b ## c ## d ## e ## f

#define CONCAT_5ARGS(a, b, c, d, e) CONCAT2_5ARGS(a, b, c, d, e)
#define CONCAT2_5ARGS(a, b, c, d, e) a ## b ## c ## d ## e

#define CONCAT_4ARGS(a, b, c, d) CONCAT2_4ARGS(a, b, c, d)
#define CONCAT2_4ARGS(a, b, c, d) a ## b ## c ## d

#define CONCAT_3ARGS(a, b, c) CONCAT2_3ARGS(a, b, c)
#define CONCAT2_3ARGS(a, b, c) a ## b ## c

//define instruction set numbers
#define SSE_128 128
70
#define AVX_256 256
71
#define AVX_512 512
72
73
#define NEON_ARCH64_128 1285

74
#if VEC_SET == SSE_128 || VEC_SET == AVX_256 || VEC_SET == AVX_512
75
76
#include <x86intrin.h>
#ifdef BLOCK2
77
#if VEC_SET == SSE_128 
78
79
#include <pmmintrin.h>
#endif
80
#endif
81
82
83

#define __forceinline __attribute__((always_inline))

84
#endif /* VEC_SET == SSE_128 || VEC_SET == AVX_256 || VEC_SET == AVX_512 */
85

86
87
88
#if VEC_SET == NEON_ARCH64_128
#include <arm_neon.h>
#endif
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

#include <complex.h>

#include <stdio.h>
#include <stdlib.h>

#ifdef BLOCK2
#define PREFIX double
#define BLOCK 2
#endif

#ifdef BLOCK1
#define PREFIX single
#define BLOCK 1
#endif

#if VEC_SET == SSE_128
#define SIMD_SET SSE
#endif

109
110
111
112
#if VEC_SET == NEON_ARCH64_128
#define SIMD_SET NEON_ARCH64
#endif

113
114
115
116
#if VEC_SET == AVX_256
#define SIMD_SET AVX_AVX2
#endif

117
118
119
120
121
#if VEC_SET == AVX_512
#define SIMD_SET AVX512
#endif


122
123
#if VEC_SET == SSE_128

124
125
126
127
128
129
#ifdef DOUBLE_PRECISION_COMPLEX
#define offset 2
#define __SIMD_DATATYPE __m128d
#define _SIMD_LOAD _mm_load_pd
#define _SIMD_LOADU _mm_loadu_pd
#define _SIMD_STORE _mm_store_pd
130
#define _SIMD_STOREU _mm_storeu_pd
131
132
133
134
135
136
#define _SIMD_MUL _mm_mul_pd
#define _SIMD_ADD _mm_add_pd
#define _SIMD_XOR _mm_xor_pd
#define _SIMD_ADDSUB _mm_addsub_pd
#define _SIMD_SHUFFLE _mm_shuffle_pd
#define _SHUFFLE _MM_SHUFFLE2(0,1)
137
138
139

#ifdef __ELPA_USE_FMA__
#define _SIMD_FMSUBADD _mm_maddsub_pd
140
#endif
141
142
#endif /* DOUBLE_PRECISION_COMPLEX */

143
144
145
146
147
148
#ifdef SINGLE_PRECISION_COMPLEX
#define offset 4
#define __SIMD_DATATYPE __m128
#define _SIMD_LOAD _mm_load_ps
#define _SIMD_LOADU _mm_loadu_ps
#define _SIMD_STORE _mm_store_ps
149
#define _SIMD_STOREU _mm_storeu_ps
150
151
152
153
154
155
#define _SIMD_MUL _mm_mul_ps
#define _SIMD_ADD _mm_add_ps
#define _SIMD_XOR _mm_xor_ps
#define _SIMD_ADDSUB _mm_addsub_ps
#define _SIMD_SHUFFLE _mm_shuffle_ps
#define _SHUFFLE 0xb1
156
157
158

#ifdef __ELPA_USE_FMA__
#define _SIMD_FMSUBADD _mm_maddsub_ps
159
160
#endif

161
162
#endif /* SINGLE_PRECISION_COMPLEX */

163
164
#endif /* VEC_SET == SSE_128 */

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#if VEC_SET == NEON_128

#ifdef DOUBLE_PRECISION_COMPLEX
#define offset 2
#define __SIMD_DATATYPE __Float64x2_t
#define _SIMD_LOAD vld1q_f64
#define _SIMD_LOADU _mm_loadu_pd
#define _SIMD_STORE vst1q_f64
#define _SIMD_STOREU _mm_storeu_pd
#define _SIMD_MUL vmulq_f64
#define _SIMD_ADD vaddq_f64
#define _SIMD_XOR _mm_xor_pd
#define _SIMD_ADDSUB _mm_addsub_pd
#define _SIMD_SHUFFLE _mm_shuffle_pd
#define _SHUFFLE _MM_SHUFFLE2(0,1)

#ifdef __ELPA_USE_FMA__
#define _SIMD_FMSUBADD _mm_maddsub_pd
#endif
#endif /* DOUBLE_PRECISION_COMPLEX */

#ifdef SINGLE_PRECISION_COMPLEX
#define offset 4
#define __SIMD_DATATYPE __m128
#define _SIMD_LOAD _mm_load_ps
#define _SIMD_LOADU _mm_loadu_ps
#define _SIMD_STORE _mm_store_ps
#define _SIMD_STOREU _mm_storeu_ps
#define _SIMD_MUL _mm_mul_ps
#define _SIMD_ADD _mm_add_ps
#define _SIMD_XOR _mm_xor_ps
#define _SIMD_ADDSUB _mm_addsub_ps
#define _SIMD_SHUFFLE _mm_shuffle_ps
#define _SHUFFLE 0xb1

#ifdef __ELPA_USE_FMA__
#define _SIMD_FMSUBADD _mm_maddsub_ps
#endif

#endif /* SINGLE_PRECISION_COMPLEX */

#endif /* VEC_SET == NEON_128 */

208
209
210
211
212
213
214
215
216
217
218
219
220
#if VEC_SET == AVX_256

#ifdef DOUBLE_PRECISION_COMPLEX
#define offset 4
#define __SIMD_DATATYPE __m256d
#define _SIMD_LOAD _mm256_load_pd
#define _SIMD_LOADU 1
#define _SIMD_STORE _mm256_store_pd
#define _SIMD_STOREU 1
#define _SIMD_MUL _mm256_mul_pd
#define _SIMD_ADD _mm256_add_pd
#define _SIMD_XOR _mm256_xor_pd
#define _SIMD_BROADCAST _mm256_broadcast_sd
221
#define _SIMD_SET1 _mm256_set1_pd
222
223
224
#define _SIMD_ADDSUB _mm256_addsub_pd
#define _SIMD_SHUFFLE _mm256_shuffle_pd
#define _SHUFFLE 0x5
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#ifdef HAVE_AVX2

#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_pd(a,b,c) _mm256_maddsub_pd(a,b,c)
#define _mm256_FMSUBADD_pd(a,b,c) _mm256_msubadd_pd(a,b,c)
#endif

#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_pd(a,b,c) _mm256_fmaddsub_pd(a,b,c)
#define _mm256_FMSUBADD_pd(a,b,c) _mm256_fmsubadd_pd(a,b,c)
#endif

#define _SIMD_FMADDSUB _mm256_FMADDSUB_pd
#define _SIMD_FMSUBADD _mm256_FMSUBADD_pd
Andreas Marek's avatar
Andreas Marek committed
242
#endif /* HAVE_AVX2 */
243
244
245
246
247
248
249
250
251
252
253
254
255
256

#endif /* DOUBLE_PRECISION_COMPLEX */

#ifdef SINGLE_PRECISION_COMPLEX
#define offset 8
#define __SIMD_DATATYPE __m256
#define _SIMD_LOAD _mm256_load_ps
#define _SIMD_LOADU 1
#define _SIMD_STORE _mm256_store_ps
#define _SIMD_STOREU 1
#define _SIMD_MUL _mm256_mul_ps
#define _SIMD_ADD _mm256_add_ps
#define _SIMD_XOR _mm256_xor_ps
#define _SIMD_BROADCAST  _mm256_broadcast_ss
257
#define _SIMD_SET1 _mm256_set1_ps
258
#define _SIMD_ADDSUB _mm256_addsub_ps
259
#define _SIMD_SHUFFLE _mm256_shuffle_ps
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
#define _SHUFFLE 0xb1

#ifdef HAVE_AVX2

#ifdef __FMA4__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_ps(a,b,c) _mm256_maddsub_ps(a,b,c)
#define _mm256_FMSUBADD_ps(a,b,c) _mm256_msubadd_ps(a,b,c)
#endif

#ifdef __AVX2__
#define __ELPA_USE_FMA__
#define _mm256_FMADDSUB_ps(a,b,c) _mm256_fmaddsub_ps(a,b,c)
#define _mm256_FMSUBADD_ps(a,b,c) _mm256_fmsubadd_ps(a,b,c)
#endif

#define _SIMD_FMADDSUB _mm256_FMADDSUB_ps
#define _SIMD_FMSUBADD _mm256_FMSUBADD_ps
Andreas Marek's avatar
Andreas Marek committed
278
#endif /* HAVE_AVX2 */
279
280
281
282
283

#endif /* SINGLE_PRECISION_COMPLEX */

#endif /* VEC_SET == AVX_256 */

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#if VEC_SET == AVX_512

#ifdef DOUBLE_PRECISION_COMPLEX
#define offset 8
#define __SIMD_DATATYPE __m512d
#define _SIMD_LOAD _mm512_load_pd
#define _SIMD_LOADU 1
#define _SIMD_STORE _mm512_store_pd
#define _SIMD_STOREU 1
#define _SIMD_MUL _mm512_mul_pd
#define _SIMD_ADD _mm512_add_pd
#ifdef HAVE_AVX512_XEON
#define _SIMD_XOR _mm512_xor_pd
#endif
#define _SIMD_BROADCAST 1
#define _SIMD_SET1 _mm512_set1_pd
300
#define _SIMD_SET _mm512_set_pd
301
302
303
#define _SIMD_XOR_EPI _mm512_xor_epi64
#define _SIMD_ADDSUB 1
#define _SIMD_SHUFFLE _mm512_shuffle_pd
304
#define _SIMD_MASK_STOREU _mm512_mask_storeu_pd
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#define _SHUFFLE 0x55

#ifdef HAVE_AVX512
#define __ELPA_USE_FMA__
#define _mm512_FMADDSUB_pd(a,b,c) _mm512_fmaddsub_pd(a,b,c)
#define _mm512_FMSUBADD_pd(a,b,c) _mm512_fmsubadd_pd(a,b,c)

#define _SIMD_FMADDSUB _mm512_FMADDSUB_pd
#define _SIMD_FMSUBADD _mm512_FMSUBADD_pd
#endif /* HAVE_AVX512 */

#endif /* DOUBLE_PRECISION_COMPLEX */

#ifdef SINGLE_PRECISION_COMPLEX
#define offset 16
#define __SIMD_DATATYPE __m512
#define _SIMD_LOAD _mm512_load_ps
#define _SIMD_LOADU 1
#define _SIMD_STORE _mm512_store_ps
#define _SIMD_STOREU 1
#define _SIMD_MUL _mm512_mul_ps
#define _SIMD_ADD _mm512_add_ps
#ifdef HAVE_AVX512_XEON
#define _SIMD_XOR _mm512_xor_ps
#endif
#define _SIMD_BROADCAST 1
#define _SIMD_SET1 _mm512_set1_ps
332
#define _SIMD_SET _mm512_set_ps
333
334
#define _SIMD_ADDSUB 1
#define _SIMD_SHUFFLE _mm512_shuffle_ps
335
#define _SIMD_MASK_STOREU _mm512_mask_storeu_ps
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#define _SIMD_XOR_EPI _mm512_xor_epi32
#define _SHUFFLE 0xb1

#ifdef HAVE_AVX512

#define __ELPA_USE_FMA__
#define _mm512_FMADDSUB_ps(a,b,c) _mm512_fmaddsub_ps(a,b,c)
#define _mm512_FMSUBADD_ps(a,b,c) _mm512_fmsubadd_ps(a,b,c)

#define _SIMD_FMADDSUB _mm512_FMADDSUB_ps
#define _SIMD_FMSUBADD _mm512_FMSUBADD_ps
#endif /* HAVE_AVX512 */

#endif /* SINGLE_PRECISION_COMPLEX */

#endif /* VEC_SET == AVX_512 */


354
355


356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#define __forceinline __attribute__((always_inline))

#ifdef HAVE_SSE_INTRINSICS
#undef __AVX__
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
#define WORD_LENGTH double
#define DATA_TYPE double complex
#define DATA_TYPE_PTR double complex*
#define DATA_TYPE_REAL double
#define DATA_TYPE_REAL_PTR double*
#endif

#ifdef SINGLE_PRECISION_COMPLEX
#define WORD_LENGTH single
#define DATA_TYPE float complex
#define DATA_TYPE_PTR float complex*
#define DATA_TYPE_REAL float
#define DATA_TYPE_REAL_PTR float*
#endif


379
380
//Forward declaration

381
382
383
384
385
386
387
388
389
390
391
#if VEC_SET  == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 6
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 12
#endif
#endif /* VEC_SET  == SSE_128 */

392
393
394
395
396
397
398
399
400
401
402
#if VEC_SET  == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 24
#endif
#endif /* VEC_SET  == AVX_256 */

403
404
405
406
407
408
409
410
411
412
#if VEC_SET  == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 48
#endif
#endif /* VEC_SET  == AVX_512 */
413
414
415
416
417
418
419
420
static __forceinline void CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH)(DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq 
#ifdef BLOCK1
		                       );
#endif
#ifdef BLOCK2
                                       ,int ldh, DATA_TYPE s);
#endif

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
#if VEC_SET  == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 5
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 10
#endif
#endif /* VEC_SET  == SSE_128 */

#if VEC_SET  == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 10
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 20
#endif
#endif /* VEC_SET  == AVX_256 */

443
444
445
446
447
448
449
450
451
452
#if VEC_SET  == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 20
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 40
#endif
#endif /* VEC_SET  == AVX_512 */
453
454
455
456
457
458
459
460
461
462

static __forceinline void CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH)(DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq
#ifdef BLOCK1
		                       );
#endif
#ifdef BLOCK2
                                       ,int ldh, DATA_TYPE s);
#endif


463
464
465
466
467
468
469
470
471
472
#if VEC_SET  == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET  == SSE_128 */
473
474
475
476
477
478
479
480
481
482
483
484

#if VEC_SET  == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET  == AVX_256 */

485
486
487
488
489
490
491
492
493
494
#if VEC_SET  == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 16
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET  == AVX_512 */
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

static __forceinline void CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH)(DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq
#ifdef BLOCK1
		                       );
#endif
#ifdef BLOCK2
                                       ,int ldh, DATA_TYPE s);
#endif

#if VEC_SET  == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 3
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 6
#endif
#endif /* VEC_SET  == SSE_128 */

#if VEC_SET  == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 6
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 12
#endif
#endif /* VEC_SET  == AVX_256 */

526
527
528
529
530
531
532
533
534
535
#if VEC_SET  == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 24
#endif
#endif /* VEC_SET  == AVX_512 */
536

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
static __forceinline void CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH)(DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq
#ifdef BLOCK1
		                       );
#endif
#ifdef BLOCK2
                                       ,int ldh, DATA_TYPE s);
#endif

#if VEC_SET  == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 4
#endif
#endif /* VEC_SET  == SSE_128 */
555
556
557
558
559
560
561
562
563
564
565
566

#if VEC_SET  == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET  == AVX_256 */

567
568
569
570
571
572
573
574
575
576
#if VEC_SET  == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET  == AVX_512 */
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

static __forceinline void CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH)(DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq
#ifdef BLOCK1
		                       );
#endif
#ifdef BLOCK2
                                       ,int ldh, DATA_TYPE s);
#endif

#if VEC_SET  == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 1
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 2
#endif
#endif /* VEC_SET  == SSE_128 */

#if VEC_SET  == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 4
#endif
#endif /* VEC_SET  == AVX_256 */

608
609
610
611
612
613
614
615
616
617
618
#if VEC_SET  == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#undef ROW_LENGTH 
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET  == AVX_512 */

619
620
621
622
623
624
625
626
static __forceinline void CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH)(DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq
#ifdef BLOCK1
		                       );
#endif
#ifdef BLOCK2
                                       ,int ldh, DATA_TYPE s);
#endif

627

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine single_hh_trafo_complex_SSE_1hv_double(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_SSE_1hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
!f>     ! complex(kind=c_double_complex)     :: q(*)
!f>     type(c_ptr), value                   :: q
!f>     complex(kind=c_double_complex)     :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine single_hh_trafo_complex_SSE_1hv_single(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_SSE_1hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
!f>     ! complex(kind=c_float_complex)   :: q(*)
!f>     type(c_ptr), value                :: q
!f>     complex(kind=c_float_complex)   :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

658

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine single_hh_trafo_complex_AVX_AVX2_1hv_double(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_AVX_AVX2_1hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
!f>     ! complex(kind=c_double_complex)     :: q(*)
!f>     type(c_ptr), value                   :: q
!f>     complex(kind=c_double_complex)       :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine single_hh_trafo_complex_AVX_AVX2_1hv_single(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_AVX_AVX2_1hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
!f>     ! complex(kind=c_float_complex)   :: q(*)
!f>     type(c_ptr), value              :: q
!f>     complex(kind=c_float_complex)   :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine single_hh_trafo_complex_AVX512_1hv_double(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_AVX512_1hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
!f>     ! complex(kind=c_double_complex)     :: q(*)
!f>     type(c_ptr), value                 :: q
!f>     complex(kind=c_double_complex)     :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine single_hh_trafo_complex_AVX512_1hv_single(q, hh, pnb, pnq, pldq) &
!f>                             bind(C, name="single_hh_trafo_complex_AVX512_1hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq
!f>     ! complex(kind=c_float_complex)     :: q(*)
!f>     type(c_ptr), value                  :: q
!f>     complex(kind=c_float_complex)     :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/


720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine double_hh_trafo_complex_SSE_2hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="double_hh_trafo_complex_SSE_2hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     ! complex(kind=c_double_complex)     :: q(*)
!f>     type(c_ptr), value                   :: q
!f>     complex(kind=c_double_complex)     :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#ifdef HAVE_SSE_INTRINSICS
!f> interface
!f>   subroutine double_hh_trafo_complex_SSE_2hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="double_hh_trafo_complex_SSE_2hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     ! complex(kind=c_float_complex)   :: q(*)
!f>     type(c_ptr), value                :: q
!f>     complex(kind=c_float_complex)   :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

Andreas Marek's avatar
Andreas Marek committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine double_hh_trafo_complex_AVX_AVX2_2hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                                bind(C, name="double_hh_trafo_complex_AVX_AVX2_2hv_double")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        ! complex(kind=c_double_complex)     :: q(*)
!f>        type(c_ptr), value                     :: q
!f>        complex(kind=c_double_complex)           :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#if defined(HAVE_AVX) || defined(HAVE_AVX2)
!f> interface
!f>   subroutine double_hh_trafo_complex_AVX_AVX2_2hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                                bind(C, name="double_hh_trafo_complex_AVX_AVX2_2hv_single")
!f>        use, intrinsic :: iso_c_binding
!f>        integer(kind=c_int)        :: pnb, pnq, pldq, pldh
!f>        ! complex(kind=c_float_complex)   :: q(*)
!f>        type(c_ptr), value                  :: q
!f>        complex(kind=c_float_complex)        :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine double_hh_trafo_complex_AVX512_2hv_double(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="double_hh_trafo_complex_AVX512_2hv_double")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     ! complex(kind=c_double_complex)     :: q(*)
!f>     type(c_ptr), value                   :: q
!f>     complex(kind=c_double_complex)     :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/

/*
!f>#if defined(HAVE_AVX512)
!f> interface
!f>   subroutine double_hh_trafo_complex_AVX512_2hv_single(q, hh, pnb, pnq, pldq, pldh) &
!f>                             bind(C, name="double_hh_trafo_complex_AVX512_2hv_single")
!f>     use, intrinsic :: iso_c_binding
!f>     integer(kind=c_int)     :: pnb, pnq, pldq, pldh
!f>     ! complex(kind=c_float_complex)     :: q(*)
!f>     type(c_ptr), value                  :: q
!f>     complex(kind=c_float_complex)     :: hh(pnb,2)
!f>   end subroutine
!f> end interface
!f>#endif
*/


811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
void CONCAT_7ARGS(PREFIX,_hh_trafo_complex_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int* pnb, int* pnq, int* pldq
#ifdef BLOCK1
		  )
#endif
#ifdef BLOCK2
                  ,int* pldh)
#endif
{

     int i, worked_on;
     int nb = *pnb;
     int nq = *pldq;
     int ldq = *pldq;
#ifdef BLOCK2
     int ldh = *pldh;

     DATA_TYPE s = conj(hh[(ldh)+1])*1.0;

     for (i = 2; i < nb; i++)
     {
             s += hh[i-1] * conj(hh[(i+ldh)]);
     }
#endif

     worked_on = 0;
836

837
838
#ifdef BLOCK1

839
#if VEC_SET == SSE_128
840
841
842
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 6
#define STEP_SIZE 6
843
#define UPPER_BOUND 5
844
845
846
847
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#define STEP_SIZE 12
848
849
850
851
852
853
854
855
856
857
858
859
860
861
#define UPPER_BOUND 10
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#define STEP_SIZE 12
#define UPPER_BOUND 10
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 24
#define STEP_SIZE 24
#define UPPER_BOUND 20
862
#endif
863
864
#endif /* VEC_SET == AVX_256 */

865
866
867
868
869
870
871
872
873
874
875
876
877
878
#if VEC_SET == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 24
#define STEP_SIZE 24
#define UPPER_BOUND 20
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 48
#define STEP_SIZE 48
#define UPPER_BOUND 40
#endif
#endif /* VEC_SET == AVX_512 */


879
880
881
882
883
884
        for (i = 0; i < nq - UPPER_BOUND; i+= STEP_SIZE)
        {

            CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq);
	    worked_on += ROW_LENGTH;
        }
885

886
887
888
889
        if (nq == i) {
          return;
        }

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
#if VEC_SET == SSE_128
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 5
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 10
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 10
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 20
#endif
#endif /* VEC_SET == AVX_256 */

910
911
912
913
914
915
916
917
918
919
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 20
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 40
#endif
#endif /* VEC_SET == AVX_512 */

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
        if (nq-i == ROW_LENGTH)
        {
            CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq);
	    worked_on += ROW_LENGTH;
        }

#if VEC_SET == SSE_128
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == AVX_256 */

946
947
948
949
950
951
952
953
954
955
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 16
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 32
#endif
#endif /* VEC_SET == AVX_512 */

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
        if (nq-i == ROW_LENGTH)
        {
            CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq);
	    worked_on += ROW_LENGTH;
        }

#if VEC_SET == SSE_128
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 3
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 6
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 6
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#endif
#endif /* VEC_SET == AVX_256 */

982
983
984
985
986
987
988
989
990
991
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 24
#endif
#endif /* VEC_SET == AVX_512 */

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        if (nq-i == ROW_LENGTH)
        {
            CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq);
	    worked_on += ROW_LENGTH;
        }

#if VEC_SET == SSE_128
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
1009
1010
1011
1012
1013
1014
1015
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
1016
1017
#endif /* VEC_SET == AVX_256 */

1018
1019
1020
1021
1022
1023
1024
1025
1026
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == AVX_512 */
1027

1028
1029
1030
1031
1032
1033
        if (nq-i == ROW_LENGTH)
        {
            CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq);
	    worked_on += ROW_LENGTH;
        }

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
#if VEC_SET == SSE_128
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 1
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 2
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
1045
1046
1047
1048
1049
1050
1051
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
1052
#endif /* VEC_SET == AVX_256 */
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET == AVX_512 */

1064
1065
1066
1067
1068
        if (nq-i == ROW_LENGTH)
        {
            CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq);
	    worked_on += ROW_LENGTH;
        }
1069

1070
1071
1072
1073
#endif /* BLOCK1 */

#ifdef BLOCK2

1074
#if VEC_SET == SSE_128
1075
1076
1077
1078
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#define STEP_SIZE 4
1079
#define UPPER_BOUND 3
1080
1081
1082
1083
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#define STEP_SIZE 8
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
#define UPPER_BOUND 6
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#define STEP_SIZE 8
#define UPPER_BOUND 6
1094
#endif
1095
1096
1097
1098
1099
1100
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 16
#define STEP_SIZE 16
#define UPPER_BOUND 12
#endif
#endif /* VEC_SET == AVX_256 */
1101

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 16
#define STEP_SIZE 16
#define UPPER_BOUND 12
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 32
#define STEP_SIZE 32
#define UPPER_BOUND 24
#endif
#endif /* VEC_SET == AVX_512 */

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    for (i = 0; i < nq - UPPER_BOUND; i+=STEP_SIZE)
    {
         CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
	 worked_on +=ROW_LENGTH;
    }
 
    if (nq == i)
    {
      return;
    }
1126
    
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
#if VEC_SET == SSE_128
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 3
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 6
#endif
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 6
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#endif
#endif /* VEC_SET == AVX_256 */

1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 24
#endif
#endif /* VEC_SET == AVX_512 */

1157
1158
1159
1160
1161
1162
1163
    if (nq-i == ROW_LENGTH)
    {
        CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
        worked_on += ROW_LENGTH;
    }

#if VEC_SET == SSE_128
1164
1165
1166
1167
1168
1169
1170
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET == AVX_256 */

1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 16
#endif
#endif /* VEC_SET == AVX_512 */

1193
1194
1195
1196
1197
    if (nq-i == ROW_LENGTH)
    {
        CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
        worked_on += ROW_LENGTH;
    }
1198

1199
#if VEC_SET == SSE_128
1200
1201
1202
1203
1204
1205
1206
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 1
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 2
#endif
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 2
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
#endif /* VEC_SET == AVX_256 */

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
#if VEC_SET == AVX_512
#undef ROW_LENGTH
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 4
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 8
#endif
#endif /* VEC_SET == AVX_512 */

1229
1230
1231
1232
1233
    if (nq-i == ROW_LENGTH)
    {
        CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (&q[i], hh, nb, ldq, ldh, s);
        worked_on += ROW_LENGTH;
    }
1234

1235
1236
#endif /* BLOCK2 */

Andreas Marek's avatar
Andreas Marek committed
1237
#ifdef WITH_DEBUG
1238
1239
1240
1241
1242
    if (worked_on != nq)
    {
      printf("Error in complex SIMD_SET BLOCK BLOCK kernel %d %d\n", worked_on, nq);
      abort();
    }
Andreas Marek's avatar
Andreas Marek committed
1243
#endif
1244
1245
1246

}

1247
#if VEC_SET == SSE_128
1248
1249
1250
1251
1252
1253
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 6
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#endif
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 12
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 24
#endif
#endif /* VEC_SET == AVX_256 */

1265
1266
1267
1268
1269
1270
1271
1272
#if VEC_SET == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
#define ROW_LENGTH 24
#endif
#ifdef SINGLE_PRECISION_COMPLEX
#define ROW_LENGTH 48
#endif
#endif /* VEC_SET == AVX_512 */
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
static __forceinline void CONCAT_8ARGS(hh_trafo_complex_kernel_,ROW_LENGTH,_,SIMD_SET,_,BLOCK,hv_,WORD_LENGTH) (DATA_TYPE_PTR q, DATA_TYPE_PTR hh, int nb, int ldq
#ifdef BLOCK1
		)
#endif
#ifdef BLOCK2
                ,int ldh, DATA_TYPE s)
#endif
{

    DATA_TYPE_REAL_PTR q_dbl = (DATA_TYPE_REAL_PTR)q;
    DATA_TYPE_REAL_PTR hh_dbl = (DATA_TYPE_REAL_PTR)hh;
#ifdef BLOCK2
    DATA_TYPE_REAL_PTR s_dbl = (DATA_TYPE_REAL_PTR)(&s);
#endif

    __SIMD_DATATYPE x1, x2, x3, x4, x5, x6;
    __SIMD_DATATYPE q1, q2, q3, q4, q5, q6;
#ifdef BLOCK2
    __SIMD_DATATYPE y1, y2, y3, y4, y5, y6;
    __SIMD_DATATYPE h2_real, h2_imag;
#endif
    __SIMD_DATATYPE h1_real, h1_imag;
    __SIMD_DATATYPE tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
    int i=0;

#if VEC_SET == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
    __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm_set_epi64x(0x8000000000000000, 0x8000000000000000);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
    __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000);
#endif
#endif /* VEC_SET == SSE_128 */

1307
1308
1309
1310
1311
1312
1313
1314
1315
#if VEC_SET == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
    __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm256_set_epi64x(0x8000000000000000, 0x8000000000000000, 0x8000000000000000, 0x8000000000000000);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
    __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000);
#endif
#endif /* VEC_SET == AVX_256 */

1316
1317
#if VEC_SET == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
1318
        __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm512_set1_epi64(0x8000000000000000);
1319
1320
1321
1322
1323
1324
#endif
#ifdef SINGLE_PRECISION_COMPLEX
        __SIMD_DATATYPE sign = (__SIMD_DATATYPE)_mm512_set1_epi32(0x80000000);
#endif
#endif /* VEC_SET == AVX_512 */

1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
#ifdef BLOCK2
     x1 = _SIMD_LOAD(&q_dbl[(2*ldq)+0]);
     x2 = _SIMD_LOAD(&q_dbl[(2*ldq)+offset]);
     x3 = _SIMD_LOAD(&q_dbl[(2*ldq)+2*offset]);
     x4 = _SIMD_LOAD(&q_dbl[(2*ldq)+3*offset]);
     x5 = _SIMD_LOAD(&q_dbl[(2*ldq)+4*offset]);
     x6 = _SIMD_LOAD(&q_dbl[(2*ldq)+5*offset]);

#if VEC_SET == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
     h2_real = _mm_loaddup_pd(&hh_dbl[(ldh+1)*2]);
     h2_imag = _mm_loaddup_pd(&hh_dbl[((ldh+1)*2)+1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     h2_real = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[(ldh+1)*2]) )));
     h2_imag = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[((ldh+1)*2)+1]) )));
#endif
#endif /* VEC_SET == SSE_128 */

1344
1345
1346
1347
1348
#if VEC_SET == AVX_256
     h2_real = _SIMD_BROADCAST(&hh_dbl[(ldh+1)*2]);
     h2_imag = _SIMD_BROADCAST(&hh_dbl[((ldh+1)*2)+1]);
#endif /* VEC_SET == AVX_256 */

1349
1350
1351
1352
1353
#if VEC_SET == AVX_512
     h2_real = _SIMD_SET1(hh_dbl[(ldh+1)*2]);
     h2_imag = _SIMD_SET1(hh_dbl[((ldh+1)*2)+1]);
#endif /*  VEC_SET == AVX_512 */

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
#ifndef __ELPA_USE_FMA__
     // conjugate
     h2_imag = _SIMD_XOR(h2_imag, sign);
#endif

     y1 = _SIMD_LOAD(&q_dbl[0]);
     y2 = _SIMD_LOAD(&q_dbl[offset]);
     y3 = _SIMD_LOAD(&q_dbl[2*offset]);
     y4 = _SIMD_LOAD(&q_dbl[3*offset]);
     y5 = _SIMD_LOAD(&q_dbl[4*offset]);
     y6 = _SIMD_LOAD(&q_dbl[5*offset]);

     tmp1 = _SIMD_MUL(h2_imag, x1);
#ifdef __ELPA_USE_FMA__
1368
     y1 = _SIMD_ADD(y1, _SIMD_FMSUBADD(h2_real, x1, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
1369
1370
1371
1372
1373
#else
     y1 = _SIMD_ADD(y1, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x1), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
#endif
     tmp2 = _SIMD_MUL(h2_imag, x2);
#ifdef __ELPA_USE_FMA__
1374
     y2 = _SIMD_ADD(y2, _SIMD_FMSUBADD(h2_real, x2, _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
1375
1376
1377
1378
1379
1380
#else
     y2 = _SIMD_ADD(y2, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x2), _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
#endif

     tmp3 = _SIMD_MUL(h2_imag, x3);
#ifdef __ELPA_USE_FMA__
1381
     y3 = _SIMD_ADD(y3, _SIMD_FMSUBADD(h2_real, x3, _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
1382
1383
1384
1385
1386
#else
     y3 = _SIMD_ADD(y3, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x3), _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
#endif
     tmp4 = _SIMD_MUL(h2_imag, x4);
#ifdef __ELPA_USE_FMA__
1387
     y4 = _SIMD_ADD(y4, _SIMD_FMSUBADD(h2_real, x4, _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
1388
1389
1390
1391
1392
1393
#else
     y4 = _SIMD_ADD(y4, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x4), _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
#endif

     tmp5 = _SIMD_MUL(h2_imag, x5);
#ifdef __ELPA_USE_FMA__
1394
     y5 = _SIMD_ADD(y5, _SIMD_FMSUBADD(h2_real, x5, _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
1395
1396
1397
1398
1399
#else
     y5 = _SIMD_ADD(y5, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x5), _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
#endif
     tmp6 = _SIMD_MUL(h2_imag, x6);
#ifdef __ELPA_USE_FMA__
1400
     y6 = _SIMD_ADD(y6, _SIMD_FMSUBADD(h2_real, x6, _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
#else
     y6 = _SIMD_ADD(y6, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x6), _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
#endif

#endif /* BLOCK2 */

#ifdef BLOCK1
    x1 = _SIMD_LOAD(&q_dbl[0]);
    x2 = _SIMD_LOAD(&q_dbl[offset]);
    x3 = _SIMD_LOAD(&q_dbl[2*offset]);
    x4 = _SIMD_LOAD(&q_dbl[3*offset]);
    x5 = _SIMD_LOAD(&q_dbl[4*offset]);
    x6 = _SIMD_LOAD(&q_dbl[5*offset]);
#endif

    for (i = BLOCK; i < nb; i++)
    {

#if VEC_SET == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
        h1_real = _mm_loaddup_pd(&hh_dbl[(i-BLOCK+1)*2]);
        h1_imag = _mm_loaddup_pd(&hh_dbl[((i-BLOCK+1)*2)+1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
        h1_real = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[(i-BLOCK+1)*2]) )));
        h1_imag = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[((i-BLOCK+1)*2)+1]) )));
#endif
#endif /* VEC_SET == SSE_128 */

1430
1431
1432
1433
1434
#if VEC_SET == AVX_256
       h1_real = _SIMD_BROADCAST(&hh_dbl[(i-BLOCK+1)*2]);
       h1_imag = _SIMD_BROADCAST(&hh_dbl[((i-BLOCK+1)*2)+1]);
#endif /* VEC_SET == AVX_256 */

1435
1436
1437
1438
1439
#if VEC_SET == AVX_512
       h1_real = _SIMD_SET1(hh_dbl[(i-BLOCK+1)*2]);
       h1_imag = _SIMD_SET1(hh_dbl[((i-BLOCK+1)*2)+1]);
#endif /* VEC_SET == AVX_512 */

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
#ifndef __ELPA_USE_FMA__
        // conjugate
        h1_imag = _SIMD_XOR(h1_imag, sign);
#endif

        q1 = _SIMD_LOAD(&q_dbl[(2*i*ldq)+0]);
        q2 = _SIMD_LOAD(&q_dbl[(2*i*ldq)+offset]);
        q3 = _SIMD_LOAD(&q_dbl[(2*i*ldq)+2*offset]);
        q4 = _SIMD_LOAD(&q_dbl[(2*i*ldq)+3*offset]);
        q5 = _SIMD_LOAD(&q_dbl[(2*i*ldq)+4*offset]);
        q6 = _SIMD_LOAD(&q_dbl[(2*i*ldq)+5*offset]);

        tmp1 = _SIMD_MUL(h1_imag, q1);
#ifdef __ELPA_USE_FMA__
1454
        x1 = _SIMD_ADD(x1, _SIMD_FMSUBADD(h1_real, q1, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
1455
1456
1457
1458
1459
#else
        x1 = _SIMD_ADD(x1, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q1), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
#endif
        tmp2 = _SIMD_MUL(h1_imag, q2);
#ifdef __ELPA_USE_FMA__
1460
        x2 = _SIMD_ADD(x2, _SIMD_FMSUBADD(h1_real, q2, _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
1461
1462
1463
1464
1465
#else
        x2 = _SIMD_ADD(x2, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q2), _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
#endif
        tmp3 = _SIMD_MUL(h1_imag, q3);
#ifdef __ELPA_USE_FMA__
1466
        x3 = _SIMD_ADD(x3, _SIMD_FMSUBADD(h1_real, q3, _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
1467
1468
1469
1470
1471
1472
#else
        x3 = _SIMD_ADD(x3, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q3), _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
#endif

        tmp4 = _SIMD_MUL(h1_imag, q4);
#ifdef __ELPA_USE_FMA__
1473
        x4 = _SIMD_ADD(x4, _SIMD_FMSUBADD(h1_real, q4, _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
1474
1475
1476
1477
1478
#else
        x4 = _SIMD_ADD(x4, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q4), _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
#endif
        tmp5 = _SIMD_MUL(h1_imag, q5);
#ifdef __ELPA_USE_FMA__
1479
        x5 = _SIMD_ADD(x5, _SIMD_FMSUBADD(h1_real, q5, _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
1480
1481
1482
1483
1484
#else
        x5 = _SIMD_ADD(x5, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q5), _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
#endif
        tmp6 = _SIMD_MUL(h1_imag, q6);
#ifdef __ELPA_USE_FMA__
1485
        x6 = _SIMD_ADD(x6, _SIMD_FMSUBADD(h1_real, q6, _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
#else
        x6 = _SIMD_ADD(x6, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q6), _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
#endif

#ifdef BLOCK2

#if VEC_SET == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
          h2_real = _mm_loaddup_pd(&hh_dbl[(ldh+i)*2]);
          h2_imag = _mm_loaddup_pd(&hh_dbl[((ldh+i)*2)+1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
          h2_real = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[(ldh+i)*2]) )));
          h2_imag = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[((ldh+i)*2)+1]) )));
#endif
#endif /* VEC_SET == SSE_128 */

1503
1504
1505
1506
1507
#if VEC_SET == AVX_256
          h2_real = _SIMD_BROADCAST(&hh_dbl[(ldh+i)*2]);
          h2_imag = _SIMD_BROADCAST(&hh_dbl[((ldh+i)*2)+1]);
#endif /* VEC_SET == AVX_256 */

1508
1509
1510
1511
1512
1513
#if VEC_SET == AVX_512
          h2_real = _SIMD_SET1(hh_dbl[(ldh+i)*2]);
          h2_imag = _SIMD_SET1(hh_dbl[((ldh+i)*2)+1]);
#endif /* VEC_SET == AVX_512 */


1514
1515
1516
1517
1518
1519
1520
#ifndef __ELPA_USE_FMA__
          // conjugate
          h2_imag = _SIMD_XOR(h2_imag, sign);
#endif

          tmp1 = _SIMD_MUL(h2_imag, q1);
#ifdef __ELPA_USE_FMA__
1521
          y1 = _SIMD_ADD(y1, _SIMD_FMSUBADD(h2_real, q1, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
1522
1523
1524
1525
1526
#else
          y1 = _SIMD_ADD(y1, _SIMD_ADDSUB( _SIMD_MUL(h2_real, q1), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
#endif
          tmp2 = _SIMD_MUL(h2_imag, q2);
#ifdef __ELPA_USE_FMA__
1527
          y2 = _SIMD_ADD(y2, _SIMD_FMSUBADD(h2_real, q2, _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
1528
1529
1530
1531
1532
1533
#else
          y2 = _SIMD_ADD(y2, _SIMD_ADDSUB( _SIMD_MUL(h2_real, q2), _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
#endif

          tmp3 = _SIMD_MUL(h2_imag, q3);
#ifdef __ELPA_USE_FMA__
1534
          y3 = _SIMD_ADD(y3, _SIMD_FMSUBADD(h2_real, q3, _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
1535
1536
1537
1538
1539
#else
          y3 = _SIMD_ADD(y3, _SIMD_ADDSUB( _SIMD_MUL(h2_real, q3), _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
#endif
          tmp4 = _SIMD_MUL(h2_imag, q4);
#ifdef __ELPA_USE_FMA__
1540
          y4 = _SIMD_ADD(y4, _SIMD_FMSUBADD(h2_real, q4, _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
1541
1542
1543
1544
1545
1546
#else
          y4 = _SIMD_ADD(y4, _SIMD_ADDSUB( _SIMD_MUL(h2_real, q4), _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
#endif

          tmp5 = _SIMD_MUL(h2_imag, q5);
#ifdef __ELPA_USE_FMA__
1547
          y5 = _SIMD_ADD(y5, _SIMD_FMSUBADD(h2_real, q5, _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
1548
1549
1550
1551
1552
#else
          y5 = _SIMD_ADD(y5, _SIMD_ADDSUB( _SIMD_MUL(h2_real, q5), _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
#endif
          tmp6 = _SIMD_MUL(h2_imag, q6);
#ifdef __ELPA_USE_FMA__
1553
          y6 = _SIMD_ADD(y6, _SIMD_FMSUBADD(h2_real, q6, _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
#else
          y6 = _SIMD_ADD(y6, _SIMD_ADDSUB( _SIMD_MUL(h2_real, q6), _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
#endif
	
#endif /* BLOCK2 */

    }

#ifdef BLOCK2

1564
#if VEC_SET == SSE_128
1565
1566
1567
1568
1569
1570
1571
1572
#ifdef DOUBLE_PRECISION_COMPLEX
     h1_real = _mm_loaddup_pd(&hh_dbl[(nb-1)*2]);
     h1_imag = _mm_loaddup_pd(&hh_dbl[((nb-1)*2)+1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     h1_real = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[(nb-1)*2]) )));
     h1_imag = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[((nb-1)*2)+1]) )));
#endif
1573
1574
1575
1576
1577
1578
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
     h1_real = _SIMD_BROADCAST(&hh_dbl[(nb-1)*2]);
     h1_imag = _SIMD_BROADCAST(&hh_dbl[((nb-1)*2)+1]);
#endif /* VEC_SET == AVX_256 */
1579

1580
1581
1582
1583
1584
#if VEC_SET == AVX_512
     h1_real = _SIMD_SET1(hh_dbl[(nb-1)*2]);
     h1_imag = _SIMD_SET1(hh_dbl[((nb-1)*2)+1]);
#endif /* VEC_SET == AVX_512 */

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
#ifndef __ELPA_USE_FMA__
     // conjugate
     h1_imag = _SIMD_XOR(h1_imag, sign);
#endif

     q1 = _SIMD_LOAD(&q_dbl[(2*nb*ldq)+0]);
     q2 = _SIMD_LOAD(&q_dbl[(2*nb*ldq)+offset]);
     q3 = _SIMD_LOAD(&q_dbl[(2*nb*ldq)+2*offset]);
     q4 = _SIMD_LOAD(&q_dbl[(2*nb*ldq)+3*offset]);
     q5 = _SIMD_LOAD(&q_dbl[(2*nb*ldq)+4*offset]);
     q6 = _SIMD_LOAD(&q_dbl[(2*nb*ldq)+5*offset]);

     tmp1 = _SIMD_MUL(h1_imag, q1);
#ifdef __ELPA_USE_FMA__
1599
     x1 = _SIMD_ADD(x1, _SIMD_FMSUBADD(h1_real, q1, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
1600
1601
1602
1603
1604
#else
     x1 = _SIMD_ADD(x1, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q1), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
#endif
     tmp2 = _SIMD_MUL(h1_imag, q2);
#ifdef __ELPA_USE_FMA__
1605
     x2 = _SIMD_ADD(x2, _SIMD_FMSUBADD(h1_real, q2, _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
1606
1607
1608
1609
1610
1611
#else
     x2 = _SIMD_ADD(x2, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q2), _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
#endif

     tmp3 = _SIMD_MUL(h1_imag, q3);
#ifdef __ELPA_USE_FMA__
1612
     x3 = _SIMD_ADD(x3, _SIMD_FMSUBADD(h1_real, q3, _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
1613
1614
1615
1616
1617
#else
     x3 = _SIMD_ADD(x3, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q3), _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE)));
#endif
     tmp4 = _SIMD_MUL(h1_imag, q4);
#ifdef __ELPA_USE_FMA__
1618
     x4 = _SIMD_ADD(x4, _SIMD_FMSUBADD(h1_real, q4, _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
1619
1620
1621
1622
1623
1624
#else
     x4 = _SIMD_ADD(x4, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q4), _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE)));
#endif

     tmp5 = _SIMD_MUL(h1_imag, q5);
#ifdef __ELPA_USE_FMA__
1625
     x5 = _SIMD_ADD(x5, _SIMD_FMSUBADD(h1_real, q5, _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
1626
1627
1628
1629
1630
#else
     x5 = _SIMD_ADD(x5, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q5), _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE)));
#endif
     tmp6 = _SIMD_MUL(h1_imag, q6);
#ifdef __ELPA_USE_FMA__
1631
     x6 = _SIMD_ADD(x6, _SIMD_FMSUBADD(h1_real, q6, _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
#else
     x6 = _SIMD_ADD(x6, _SIMD_ADDSUB( _SIMD_MUL(h1_real, q6), _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE)));
#endif

#endif /* BLOCK2 */

#if VEC_SET == SSE_128
#ifdef DOUBLE_PRECISION_COMPLEX
    h1_real = _mm_loaddup_pd(&hh_dbl[0]);
    h1_imag = _mm_loaddup_pd(&hh_dbl[1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
    h1_real = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[0]) )));
    h1_imag = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[1]) )));
#endif
#endif /*  VEC_SET == SSE_128 */

1649
1650
1651
1652
1653
#if VEC_SET == AVX_256
    h1_real = _SIMD_BROADCAST(&hh_dbl[0]);
    h1_imag = _SIMD_BROADCAST(&hh_dbl[1]);
#endif /* VEC_SET == AVX_256 */

1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
#if VEC_SET == AVX_512
    h1_real = _SIMD_SET1(hh_dbl[0]);
    h1_imag = _SIMD_SET1(hh_dbl[1]);

#ifdef HAVE_AVX512_XEON_PHI
#ifdef DOUBLE_PRECISION_COMPLEX
        h1_real = (__SIMD_DATATYPE) _SIMD_XOR_EPI((__m512i) h1_real, (__m512i) sign);
        h1_imag = (__SIMD_DATATYPE) _SIMD_XOR_EPI((__m512i) h1_imag, (__m512i) sign);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
        h1_real = (__SIMD_DATATYPE) _SIMD_XOR_EPI((__m512i) h1_real, (__m512i) sign);
        h1_imag = (__SIMD_DATATYPE) _SIMD_XOR_EPI((__m512i) h1_imag, (__m512i) sign);
#endif
#endif
#ifdef HAVE_AVX512_XEON
#if defined(DOUBLE_PRECISION_COMPLEX) || defined(SINGLE_PRECISION_COMPLEX)
        h1_real = _SIMD_XOR(h1_real, sign);
        h1_imag = _SIMD_XOR(h1_imag, sign);
#endif
#endif

#endif /* VEC_SET == AVX_512 */

#if VEC_SET != AVX_512
1678
1679
    h1_real = _SIMD_XOR(h1_real, sign);
    h1_imag = _SIMD_XOR(h1_imag, sign);
1680
#endif /* VEC_SET != AVX_512 */
1681
1682
1683

    tmp1 = _SIMD_MUL(h1_imag, x1);
#ifdef __ELPA_USE_FMA__
1684
    x1 = _SIMD_FMADDSUB(h1_real, x1, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE));
1685
1686
1687
1688
1689
#else
    x1 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, x1), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE));
#endif
    tmp2 = _SIMD_MUL(h1_imag, x2);
#ifdef __ELPA_USE_FMA__
1690
    x2 = _SIMD_FMADDSUB(h1_real, x2, _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE));
1691
1692
1693
1694
1695
#else
    x2 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, x2), _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE));
#endif
    tmp3 = _SIMD_MUL(h1_imag, x3);
#ifdef __ELPA_USE_FMA__
1696
    x3 = _SIMD_FMADDSUB(h1_real, x3, _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE));
1697
1698
1699
1700
1701
1702
#else
    x3 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, x3), _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE));
#endif

    tmp4 = _SIMD_MUL(h1_imag, x4);
#ifdef __ELPA_USE_FMA__
1703
    x4 = _SIMD_FMADDSUB(h1_real, x4, _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE));
1704
1705
1706
1707
1708
#else
    x4 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, x4), _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE));
#endif
    tmp5 = _SIMD_MUL(h1_imag, x5);
#ifdef __ELPA_USE_FMA__
1709
    x5 = _SIMD_FMADDSUB(h1_real, x5, _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE));
1710
1711
1712
1713
1714
#else
    x5 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, x5), _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE));
#endif
    tmp6 = _SIMD_MUL(h1_imag, x6);
#ifdef __ELPA_USE_FMA__
1715
    x6 = _SIMD_FMADDSUB(h1_real, x6, _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE));
1716
1717
1718
1719
1720
#else
    x6 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, x6), _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE));
#endif

#ifdef BLOCK2
1721
1722

#if VEC_SET == SSE_128    
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
#ifdef DOUBLE_PRECISION_COMPLEX
     h1_real = _mm_loaddup_pd(&hh_dbl[ldh*2]);
     h1_imag = _mm_loaddup_pd(&hh_dbl[(ldh*2)+1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     h1_real = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[ldh*2]) )));
     h1_imag = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[(ldh*2)+1]) )));
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
     h2_real = _mm_loaddup_pd(&hh_dbl[ldh*2]);
     h2_imag = _mm_loaddup_pd(&hh_dbl[(ldh*2)+1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     h2_real = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[ldh*2]) )));
     h2_imag = _mm_moveldup_ps(_mm_castpd_ps(_mm_loaddup_pd( (double *)(&hh_dbl[(ldh*2)+1]) )));
#endif
1740
1741
1742
1743
1744
1745
1746
1747
#endif /* VEC_SET == 128 */

#if VEC_SET == AVX_256
     h1_real = _SIMD_BROADCAST(&hh_dbl[ldh*2]);
     h1_imag = _SIMD_BROADCAST(&hh_dbl[(ldh*2)+1]);
     h2_real = _SIMD_BROADCAST(&hh_dbl[ldh*2]);
     h2_imag = _SIMD_BROADCAST(&hh_dbl[(ldh*2)+1]);
#endif /* VEC_SET == AVX_256 */
1748

1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
#if VEC_SET == AVX_512
     h1_real = _SIMD_SET1(hh_dbl[ldh*2]);
     h1_imag = _SIMD_SET1(hh_dbl[(ldh*2)+1]);
     h2_real = _SIMD_SET1(hh_dbl[ldh*2]);
     h2_imag = _SIMD_SET1(hh_dbl[(ldh*2)+1]);

#ifdef HAVE_AVX512_XEON_PHI

#ifdef DOUBLE_PRECISION_COMPLEX
     h1_real = (__SIMD_DATATYPE) _mm512_xor_epi64((__m512i) h1_real, (__m512i) sign);
     h1_imag = (__SIMD_DATATYPE) _mm512_xor_epi64((__m512i) h1_imag, (__m512i) sign);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     h1_real = (__SIMD_DATATYPE) _mm512_xor_epi32((__m512i) h1_real, (__m512i) sign);
     h1_imag = (__SIMD_DATATYPE) _mm512_xor_epi32((__m512i) h1_imag, (__m512i) sign);
#endif

#ifdef DOUBLE_PRECISION_COMPLEX
     h2_real = (__SIMD_DATATYPE) _mm512_xor_epi64((__m512i) h2_real, (__m512i) sign);
     h2_imag = (__SIMD_DATATYPE) _mm512_xor_epi64((__m512i) h2_imag, (__m512i) sign);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     h2_real = (__SIMD_DATATYPE) _mm512_xor_epi32((__m512i) h2_real, (__m512i) sign);
     h2_imag = (__SIMD_DATATYPE) _mm512_xor_epi32((__m512i) h2_imag, (__m512i) sign);
#endif
#endif /* HAVE_AVX512_XEON_PHI */

#ifdef HAVE_AVX512_XEON
#if defined(DOUBLE_PRECISION_COMPLEX) || defined(SINGLE_PRECISION_COMPLEX)
        h1_real = _SIMD_XOR(h1_real, sign);
        h1_imag = _SIMD_XOR(h1_imag, sign);
        h2_real = _SIMD_XOR(h2_real, sign);
        h2_imag = _SIMD_XOR(h2_imag, sign);
#endif
#endif     
#endif /* VEC_SET == AVX_512 */

#if VEC_SET != AVX_512
1787
1788
1789
1790
     h1_real = _SIMD_XOR(h1_real, sign);
     h1_imag = _SIMD_XOR(h1_imag, sign);
     h2_real = _SIMD_XOR(h2_real, sign);
     h2_imag = _SIMD_XOR(h2_imag, sign);
1791
#endif /* VEC_SET != AVX_512 */
1792

1793
#if VEC_SET == SSE_128
1794
1795
1796
1797
1798
#ifdef SINGLE_PRECISION_COMPLEX
     tmp2 = _mm_castpd_ps(_mm_load_pd1((double *) s_dbl));
#else
     tmp2 = _SIMD_LOADU(s_dbl);
#endif
1799
#endif /* VEC_SET == SSE_128 */
1800

1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
#if VEC_SET == AVX_256
#ifdef DOUBLE_PRECISION_COMPLEX
     tmp2 = _mm256_set_pd(s_dbl[1], s_dbl[0], s_dbl[1], s_dbl[0]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     tmp2 = _mm256_set_ps(s_dbl[1], s_dbl[0], s_dbl[1], s_dbl[0],
                             s_dbl[1], s_dbl[0], s_dbl[1], s_dbl[0]);
#endif
#endif /* VEC_SET == AVX_256 */

1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
#if VEC_SET == AVX_512
#ifdef DOUBLE_PRECISION_COMPLEX
     tmp2 = _SIMD_SET(s_dbl[1], s_dbl[0],
                        s_dbl[1], s_dbl[0],
                        s_dbl[1], s_dbl[0],
                        s_dbl[1], s_dbl[0]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     tmp2 = (__SIMD_DATATYPE) _mm512_set1_pd(*(double*)(&s_dbl[0]));
#endif
#endif /* VEC_SET == AVX_512 */

1823
     tmp1 = _SIMD_MUL(h2_imag, tmp2);
1824
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1825
     tmp2 = _SIMD_FMADDSUB(h2_real, tmp2, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE));
1826
1827
1828
1829
#else
     tmp2 = _SIMD_ADDSUB( _SIMD_MUL(h2_real, tmp2), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE));
#endif

1830
1831
1832
1833
1834
1835
1836
#if VEC_SET == AVX_512
     _SIMD_MASK_STOREU(s_dbl, 0x01 + 0x02, tmp2);

     h2_real = _SIMD_SET1(s_dbl[0]);
     h2_imag = _SIMD_SET1(s_dbl[1]);
#endif /* VEC_SET == AVX_512 */

1837
#if VEC_SET == SSE_128
1838
1839
1840
1841
1842
1843
1844
1845
#ifdef DOUBLE_PRECISION_COMPLEX
     h2_real = _mm_movedup_pd(tmp2);
     h2_imag = _mm_set1_pd(tmp2[1]);
#endif
#ifdef SINGLE_PRECISION_COMPLEX
     h2_real = _mm_moveldup_ps(tmp2);
     h2_imag = _mm_movehdup_ps(tmp2);
#endif
1846
1847
1848
1849
1850
1851
#endif /* VEC_SET == SSE_128 */

#if VEC_SET == AVX_256
     h2_real = _SIMD_SET1(tmp2[0]);
     h2_imag = _SIMD_SET1(tmp2[1]);
#endif /* VEC_SET == AVX_256 */
1852
1853
1854

     tmp1 = _SIMD_MUL(h1_imag, y1);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1855
     y1 = _SIMD_FMADDSUB(h1_real, y1, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE));
1856
1857
1858
1859
1860
#else
     y1 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, y1), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE));
#endif
     tmp2 = _SIMD_MUL(h1_imag, y2);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1861
     y2 = _SIMD_FMADDSUB(h1_real, y2, _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE));
1862
1863
1864
1865
1866
1867
#else
     y2 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, y2), _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE));
#endif

     tmp3 = _SIMD_MUL(h1_imag, y3);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1868
     y3 = _SIMD_FMADDSUB(h1_real, y3, _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE));
1869
1870
1871
1872
1873
#else
     y3 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, y3), _SIMD_SHUFFLE(tmp3, tmp3, _SHUFFLE));
#endif
     tmp4 = _SIMD_MUL(h1_imag, y4);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1874
     y4 = _SIMD_FMADDSUB(h1_real, y4, _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE));
1875
1876
1877
1878
1879
1880
#else
     y4 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, y4), _SIMD_SHUFFLE(tmp4, tmp4, _SHUFFLE));
#endif

     tmp5 = _SIMD_MUL(h1_imag, y5);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1881
     y5 = _SIMD_FMADDSUB(h1_real, y5, _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE));
1882
1883
1884
1885
1886
#else
     y5 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, y5), _SIMD_SHUFFLE(tmp5, tmp5, _SHUFFLE));
#endif
     tmp6 = _SIMD_MUL(h1_imag, y6);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1887
     y6 = _SIMD_FMADDSUB(h1_real, y6, _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE));
1888
1889
1890
1891
1892
1893
#else
     y6 = _SIMD_ADDSUB( _SIMD_MUL(h1_real, y6), _SIMD_SHUFFLE(tmp6, tmp6, _SHUFFLE));
#endif

     tmp1 = _SIMD_MUL(h2_imag, x1);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1894
     y1 = _SIMD_ADD(y1, _SIMD_FMADDSUB(h2_real, x1, _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
1895
1896
1897
1898
1899
#else
     y1 = _SIMD_ADD(y1, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x1), _SIMD_SHUFFLE(tmp1, tmp1, _SHUFFLE)));
#endif
     tmp2 = _SIMD_MUL(h2_imag, x2);
#ifdef __ELPA_USE_FMA__
Andreas Marek's avatar
Andreas Marek committed
1900
     y2 = _SIMD_ADD(y2, _SIMD_FMADDSUB(h2_real, x2, _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
1901
1902
1903
1904
1905
1906
#else
     y2 = _SIMD_ADD(y2, _SIMD_ADDSUB( _SIMD_MUL(h2_real, x2), _SIMD_SHUFFLE(tmp2, tmp2, _SHUFFLE)));
#endif

     tmp3 = _SIMD_MUL(h2_imag, x3);
#ifdef __ELPA_USE_FMA__