diff --git a/_sources/intro.md b/_sources/intro.md index df85e7e41d28e14bbdd7753b6cb34990e3dcef51..6893c02199ea6a6ccc31ce694855a05d67b7be4a 100644 --- a/_sources/intro.md +++ b/_sources/intro.md @@ -6,5 +6,8 @@ Today the computation of large numbers of DFT data are becoming a routine task, At the three-day workshop we will provide tutorials and hands-on classes that cover the complete chain from high-throughput electronic structure calculations to the computation of phase diagrams. Day 1 will focus on automated workflows for the generation of DFT data. On day 2 we will discuss the parameterization and validation of interatomic potentials from DFT reference data. Day 3 will then introduce the methods and tools for the computation of thermodynamic properties and phase diagrams. +<iframe width="560" height="315" src="https://www.youtube.com/embed/8NP3DpUkg6U" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> + + ```{tableofcontents} ``` diff --git a/_sources/introduction/Intro.md b/_sources/introduction/Intro.md index 6c161bad5ecd51314e034bf62face2e543e3b67b..855e0efdaaae1bee39d08dcdfd631c2d5aa3099e 100644 --- a/_sources/introduction/Intro.md +++ b/_sources/introduction/Intro.md @@ -10,7 +10,12 @@ Jörg Neugebauer (MPIE Düsseldorf) Workflow management with pyiron (motivation, intro to workflows and pyiron, computation of the properties that were introduced in the first tutorial with pyiron) Marvin Poul (MPIE Düsseldorf) +<iframe width="560" height="315" src="https://www.youtube.com/embed/5BUQY1TQs2M" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ### <font style="color:#B71C1C" face="Helvetica" > Hands-on </font> Setting up workflows and computing materials properties with pyiron -Marvin Poul (MPIE Düsseldorf) \ No newline at end of file +Marvin Poul (MPIE Düsseldorf) + +<iframe width="560" height="315" src="https://www.youtube.com/embed/tEqCQD7b3oE" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> + +<iframe width="560" height="315" src="https://www.youtube.com/embed/PIFz6qXHjIo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> \ No newline at end of file diff --git a/_sources/phase_diagram/Intro.md b/_sources/phase_diagram/Intro.md index 6e6796441633f43c4dd47c49668532721e673ac0..b95499c4408b132015105316ba05b7cc53a4180f 100644 --- a/_sources/phase_diagram/Intro.md +++ b/_sources/phase_diagram/Intro.md @@ -4,10 +4,16 @@ Statistical mechanics applied to phase diagrams (basic thermodynamics for phase diagrams, statistical mechanics for free energy computation, thermodynamic integration, reversible scaling, nested sampling, examples for computed phase diagrams) Mike Finnis (Imperial College London) +<iframe width="560" height="315" src="https://www.youtube.com/embed/9UFZ_xKHl7Q" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> + ### <font style="color:#B71C1C" face="Helvetica" > Tutorial VI </font> Computing thermodynamic properties and phase diagrams (motivation, free energies, calphy scope and workflow, examples of computed phase diagrams) Sarath Menon (MPIE Düsseldorf) +<iframe width="560" height="315" src="https://www.youtube.com/embed/CESz9J_AJfw" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> + ### <font style="color:#B71C1C" face="Helvetica" > Hands-on </font> Thermodynamic properties and phase diagrams from interatomic potentials -Sarath Menon (MPIE Düsseldorf) \ No newline at end of file +Sarath Menon (MPIE Düsseldorf) + +<iframe width="560" height="315" src="https://www.youtube.com/embed/YShOouzL3ug" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> \ No newline at end of file diff --git a/_sources/potentials/Intro.md b/_sources/potentials/Intro.md index 6cc9744b46221da6642510197d48533ae0d8abb6..7634b0290720202904a66d7700b759ac5829fc5d 100644 --- a/_sources/potentials/Intro.md +++ b/_sources/potentials/Intro.md @@ -5,15 +5,25 @@ Atomic interactions - from classical to machine learning potentials (background and motivation, short history of interatomic potentials), creating and validating interatomic potentials (application range, validation tests, active learning) Ralf Drautz (RUB Bochum) +<iframe width="560" height="315" src="https://www.youtube.com/embed/zISqYTfQN4w" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ### <font style="color:#B71C1C" face="Helvetica" > Tutorial IV </font> Three classes of interatomic potentials and their parameterization (EAM - atomicrex, NNP-runner and ACE-pacemaker) Niklas Leimeroth (TU Darmstadt), Alexander Knoll (Georg-August-Universität Göttingen), Moritz Schäfer (Georg-August-Universität Göttingen), Yury Lysogorskiy (RUB Bochum) +<iframe width="560" height="315" src="https://www.youtube.com/embed/ATfGcrv5kUU" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> + +<iframe width="560" height="315" src="https://www.youtube.com/embed/dZYjEw_huOg" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ### <font style="color:#B71C1C" face="Helvetica" > Hands-on: Fitting three classes of interatomic potentials and their parameterization </font> Creating and validating EAM (atomicrex), NNP (runner) and ACE (pacemaker) Niklas Leimeroth (TU Darmstadt), Alexander Knoll (Georg-August-Universität Göttingen), Moritz Schäfer (Georg-August-Universität Göttingen), Yury Lysogorskiy (RUB Bochum) +<iframe width="560" height="315" src="https://www.youtube.com/embed/aZrzKA4ncVQ" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> + +<iframe width="560" height="315" src="https://www.youtube.com/embed/XehDHBqKK6Q" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> + ### <font style="color:#B71C1C" face="Helvetica" > Hands-on: Validation of interatomic potentials </font> -Minaam Qamar (RUB Bochum) \ No newline at end of file +Minaam Qamar (RUB Bochum) + +<iframe width="560" height="315" src="https://www.youtube.com/embed/R1oLtBvFVSA" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> \ No newline at end of file diff --git a/intro.html b/intro.html index d7ec0783ea2981bd8670123d9bb21098e68a6dd4..60685a6321530c7f2323f1c6bf28219363e751f5 100644 --- a/intro.html +++ b/intro.html @@ -375,6 +375,7 @@ title="Print to PDF" <p>Phase diagrams are of ubiquitous importance for materials design. Current materials design workflows in industry and academia employ CALPHAD-computed phase diagrams that to a large extent rely on assessed experimental data.</p> <p>Today the computation of large numbers of DFT data are becoming a routine task, due to efficient DFT codes, efficient workflow management and powerful high-performance computing. Together with progress in interatomic potentials, in particular the development of machine learning potentials as well as efficient implementations and parameterization codes, this means that interatomic potentials with near-DFT accuracy are now available. When combined with efficient sampling for the computation of free energies, it is therefore possible to estimate phase diagrams directly from DFT data and to supplement and assess experimental input.</p> <p>At the three-day workshop we will provide tutorials and hands-on classes that cover the complete chain from high-throughput electronic structure calculations to the computation of phase diagrams. Day 1 will focus on automated workflows for the generation of DFT data. On day 2 we will discuss the parameterization and validation of interatomic potentials from DFT reference data. Day 3 will then introduce the methods and tools for the computation of thermodynamic properties and phase diagrams.</p> +<iframe width="560" height="315" src="https://www.youtube.com/embed/8NP3DpUkg6U" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> <div class="toctree-wrapper compound"> <ul> <li class="toctree-l1"><a class="reference internal" href="introduction/Intro.html"><font style="color:#B71C1C" face="Helvetica" > Day 1: DFT database and workflow management with pyiron </font></a></li> diff --git a/introduction/Intro.html b/introduction/Intro.html index 8757a8a39672e6a4fa898457b267712449d01d67..6e669dfdba75f9cdfa2b906011a08123d37ffdca 100644 --- a/introduction/Intro.html +++ b/introduction/Intro.html @@ -452,12 +452,14 @@ Jörg Neugebauer (MPIE Düsseldorf)</p> <h2><font style="color:#B71C1C" face="Helvetica" > Tutorial II </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-tutorial-ii-font" title="Permalink to this headline">#</a></h2> <p>Workflow management with pyiron (motivation, intro to workflows and pyiron, computation of the properties that were introduced in the first tutorial with pyiron)<br /> Marvin Poul (MPIE Düsseldorf)</p> +<iframe width="560" height="315" src="https://www.youtube.com/embed/5BUQY1TQs2M" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </section> <section id="font-style-color-b71c1c-face-helvetica-hands-on-font"> <h2><font style="color:#B71C1C" face="Helvetica" > Hands-on </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-hands-on-font" title="Permalink to this headline">#</a></h2> <p>Setting up workflows and computing materials properties with pyiron<br /> Marvin Poul (MPIE Düsseldorf)</p> -</section> +<iframe width="560" height="315" src="https://www.youtube.com/embed/tEqCQD7b3oE" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> +<iframe width="560" height="315" src="https://www.youtube.com/embed/PIFz6qXHjIo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe></section> <div class="toctree-wrapper compound"> </div> </section> diff --git a/phase_diagram/Intro.html b/phase_diagram/Intro.html index 5f1e5ad1d0f9e371a83a22395e30f532a9824a1a..4e83b98650fbce5f306b09bb4bb89cf004d21d7b 100644 --- a/phase_diagram/Intro.html +++ b/phase_diagram/Intro.html @@ -446,17 +446,19 @@ title="Print to PDF" <h2><font style="color:#B71C1C" face="Helvetica" > Tutorial V </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-tutorial-v-font" title="Permalink to this headline">#</a></h2> <p>Statistical mechanics applied to phase diagrams (basic thermodynamics for phase diagrams, statistical mechanics for free energy computation, thermodynamic integration, reversible scaling, nested sampling, examples for computed phase diagrams)<br /> Mike Finnis (Imperial College London)</p> +<iframe width="560" height="315" src="https://www.youtube.com/embed/9UFZ_xKHl7Q" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </section> <section id="font-style-color-b71c1c-face-helvetica-tutorial-vi-font"> <h2><font style="color:#B71C1C" face="Helvetica" > Tutorial VI </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-tutorial-vi-font" title="Permalink to this headline">#</a></h2> <p>Computing thermodynamic properties and phase diagrams (motivation, free energies, calphy scope and workflow, examples of computed phase diagrams)<br /> Sarath Menon (MPIE Düsseldorf)</p> +<iframe width="560" height="315" src="https://www.youtube.com/embed/CESz9J_AJfw" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </section> <section id="font-style-color-b71c1c-face-helvetica-hands-on-font"> <h2><font style="color:#B71C1C" face="Helvetica" > Hands-on </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-hands-on-font" title="Permalink to this headline">#</a></h2> <p>Thermodynamic properties and phase diagrams from interatomic potentials<br /> Sarath Menon (MPIE Düsseldorf)</p> -</section> +<iframe width="560" height="315" src="https://www.youtube.com/embed/YShOouzL3ug" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe></section> <div class="toctree-wrapper compound"> </div> </section> diff --git a/potentials/02-HDNNP/handson.html b/potentials/02-HDNNP/handson.html index 1efded9b0e60d54d8bce3f6554a06333e0ce1219..705ac4f99cb32dc1bff847ddadb04f8e84426f21 100644 --- a/potentials/02-HDNNP/handson.html +++ b/potentials/02-HDNNP/handson.html @@ -738,8 +738,8 @@ The most recent version of RuNNer is <a class="reference external" href="https:/ <section id="architecture-of-an-hdnnp"> <h3>Architecture of an HDNNP<a class="headerlink" href="#architecture-of-an-hdnnp" title="Permalink to this headline">#</a></h3> <p><strong>RuNNer</strong> is a stand-alone Fortran program for the construction of high-dimensional neural network potentials (HDNNPs), written mainly by Jörg Behler. The central assumption made in constructing a HDNNP is that the total energy of the system <span class="math notranslate nohighlight">\(E_{\mathrm{tot}}\)</span> <a class="reference external" href="https://www.doi.org/10.1103/PhysRevLett.98.146401">can be separated into atomic contributions <span class="math notranslate nohighlight">\(E_i\)</span></a>. HDNNP relates the local environment of the atoms to their atomic energies <span class="math notranslate nohighlight">\(E_i\)</span>, which contribute to the sum of all <span class="math notranslate nohighlight">\(N\)</span> atomic energies, resulting in the total energy of the system <span class="math notranslate nohighlight">\(E_\mathrm{tot}\)</span>.</p> -<div class="amsmath math notranslate nohighlight" id="equation-a138f2dd-5eae-413a-be5f-08b041fb6c05"> -<span class="eqno">(1)<a class="headerlink" href="#equation-a138f2dd-5eae-413a-be5f-08b041fb6c05" title="Permalink to this equation">#</a></span>\[\begin{align} +<div class="amsmath math notranslate nohighlight" id="equation-39f08426-154e-459a-adaa-d01c6fcbe11c"> +<span class="eqno">(1)<a class="headerlink" href="#equation-39f08426-154e-459a-adaa-d01c6fcbe11c" title="Permalink to this equation">#</a></span>\[\begin{align} E_\mathrm{tot} = \sum_{i}^{N}E_i\notag \end{align}\]</div> <p>Every atomic energy is described by an atomic neural network (NN), which is element-specific. The entirety of all atomic NNs composes a HDNNP, whose general architecture is shown below for a binary system.</p> @@ -758,8 +758,8 @@ E_\mathrm{tot} = \sum_{i}^{N}E_i\notag <section id="cutoff-functions"> <h4>Cutoff Functions<a class="headerlink" href="#cutoff-functions" title="Permalink to this headline">#</a></h4> <p>The cutoff function <span class="math notranslate nohighlight">\(f_{\mathrm{c}}\)</span> ensures that only the neighbors within one atomic environment counts towards the symmetry function values. The cutoff radius <span class="math notranslate nohighlight">\(R_\mathrm{c}\)</span> (usually <span class="math notranslate nohighlight">\(12\,\mathrm{bohr}\)</span>) defines how much of the local atomic environment is considered. All SFs and their derivatives will decrease to zero if the pairwise distance is larger than <span class="math notranslate nohighlight">\(R_\mathrm{c}\)</span>. There are several cutoff funtions defined in <strong>RuNNer</strong> and we will use here</p> -<div class="amsmath math notranslate nohighlight" id="equation-6e14c31b-6b5a-4b1b-8163-84c0141834d7"> -<span class="eqno">(2)<a class="headerlink" href="#equation-6e14c31b-6b5a-4b1b-8163-84c0141834d7" title="Permalink to this equation">#</a></span>\[\begin{align} +<div class="amsmath math notranslate nohighlight" id="equation-326103a3-fdca-4da2-9337-55268d12f25c"> +<span class="eqno">(2)<a class="headerlink" href="#equation-326103a3-fdca-4da2-9337-55268d12f25c" title="Permalink to this equation">#</a></span>\[\begin{align} f_{c}(R_{ij}) = \begin{cases} 0.5 \cdot [\cos(\pi x) + 1]& ~ \text{for $R_{ij} \leq R_\mathrm{c}$},\\ @@ -773,8 +773,8 @@ E_\mathrm{tot} = \sum_{i}^{N}E_i\notag <section id="radial-symmetry-functions"> <h4>Radial Symmetry Functions<a class="headerlink" href="#radial-symmetry-functions" title="Permalink to this headline">#</a></h4> <p>To define the parameters for the radial SFs, it is important to know the shortest bond distance for each element combination in your data set. Usually, 5-6 radial SF are used for any element pair, with different <span class="math notranslate nohighlight">\(\eta\)</span> values to increase the resolution for structure description. It is possible to shift the maximum of the radial SF <span class="math notranslate nohighlight">\(G^2\)</span> by <span class="math notranslate nohighlight">\(R_{s}\)</span>.</p> -<div class="amsmath math notranslate nohighlight" id="equation-d355f09e-de80-433d-9891-afaf2fdfb7d3"> -<span class="eqno">(3)<a class="headerlink" href="#equation-d355f09e-de80-433d-9891-afaf2fdfb7d3" title="Permalink to this equation">#</a></span>\[\begin{align} +<div class="amsmath math notranslate nohighlight" id="equation-b75a6748-dcd5-4688-9fb4-745deb0adf53"> +<span class="eqno">(3)<a class="headerlink" href="#equation-b75a6748-dcd5-4688-9fb4-745deb0adf53" title="Permalink to this equation">#</a></span>\[\begin{align} G_{i}^{2} = \sum_{j}^{}e^{-\eta (R_{ij} - R_{s})^2} \cdot f_{c}(R_{ij}). \end{align}\]</div> <p>In most applications, the Gaussian exponents <span class="math notranslate nohighlight">\(\eta\)</span> for the radial SFs are chosen such that the SF turning points are equally distributed between the cutoff radius and specific minimum pairwise distance in the training dataset (small eta <span class="math notranslate nohighlight">\(\eta\)</span> = max. contraction). In RuNNer, you can either define element pair specific SF or define global SF which are used for every element combination. It is also possible to define different cutoff radii for the SF, even though this is rarely helpful and therefore not recommended.</p> @@ -784,8 +784,8 @@ E_\mathrm{tot} = \sum_{i}^{N}E_i\notag <section id="angular-symmetry-functions"> <h4>Angular Symmetry Functions<a class="headerlink" href="#angular-symmetry-functions" title="Permalink to this headline">#</a></h4> <p>The same rules apply to the angular SFs. Here, however, three atomic positions are included in the calculation.</p> -<div class="amsmath math notranslate nohighlight" id="equation-8d4ce744-4e68-4ff7-bd60-737f2429e687"> -<span class="eqno">(4)<a class="headerlink" href="#equation-8d4ce744-4e68-4ff7-bd60-737f2429e687" title="Permalink to this equation">#</a></span>\[\begin{align} +<div class="amsmath math notranslate nohighlight" id="equation-4aa01c79-79d9-41c4-b3f0-cd7778dca77c"> +<span class="eqno">(4)<a class="headerlink" href="#equation-4aa01c79-79d9-41c4-b3f0-cd7778dca77c" title="Permalink to this equation">#</a></span>\[\begin{align} G_{i}^{3} = 2^{\zeta - 1}\sum_{j}^{} \sum_{k}^{} \left[( 1 + \lambda \cdot cos \theta_{ijk})^{\zeta} \cdot e^{-\eta (R_{ij}^2 + R_{ik}^2 + R_{jk}^2)} \cdot f_{\mathrm{c}}(R_{ij}) \cdot f_{\mathrm{c}}(R_{ik}) \cdot f_{\mathrm{c}}(R_{jk}) \right] \end{align}\]</div> <p>The angle <span class="math notranslate nohighlight">\(\theta_{ijk} = \frac{\mathbf{R}_{ij} \cdot \mathbf{R}_{ik}}{R_{ij} \cdot R_{ik}}\)</span> is centered at atom <span class="math notranslate nohighlight">\(i\)</span>. For most system, we use permutations of <span class="math notranslate nohighlight">\(\zeta = \{1, 2, 4, 16\}\)</span>, <span class="math notranslate nohighlight">\(\eta = 0\)</span>, and <span class="math notranslate nohighlight">\(\lambda\)</span> = <span class="math notranslate nohighlight">\(\{+1, -1\}\)</span>. If many atoms of each element are present, angular SFs are usually not critical and a default set of SFs can be used.</p> @@ -2062,8 +2062,8 @@ The job fit_mode1 was saved and received the ID: 238 </tbody> </table> <p>During the fitting process of the NN, the error function <span class="math notranslate nohighlight">\(\Gamma\)</span> is minimized, which is defined as</p> -<div class="amsmath math notranslate nohighlight" id="equation-8e07069b-3e9a-4d38-bd89-00ff6edee632"> -<span class="eqno">(5)<a class="headerlink" href="#equation-8e07069b-3e9a-4d38-bd89-00ff6edee632" title="Permalink to this equation">#</a></span>\[\begin{equation} +<div class="amsmath math notranslate nohighlight" id="equation-cce05c77-f166-4084-a19a-4613c762692b"> +<span class="eqno">(5)<a class="headerlink" href="#equation-cce05c77-f166-4084-a19a-4613c762692b" title="Permalink to this equation">#</a></span>\[\begin{equation} \Gamma = \mathrm{RMSE}(E)=\frac{1}{N_\mathrm{struct}} \sum_{i}^{N_\mathrm{\mathrm{struct}}} (E_{\mathrm{NN}}^{i} - E_{\mathrm{ref}}^{i})^2, \end{equation}\]</div> <p>if only energy fitting is used, which defines simultaneously the root-mean squared error of the energies <span class="math notranslate nohighlight">\(\mathrm{RMSE}(E)\)</span>. This defines the differences of the reference data and the NNP predictions.</p> diff --git a/potentials/Intro.html b/potentials/Intro.html index 2864ea4ee9ede140acefc8b7f725e859a0b306da..8e8ca60bf70c44306e3c2555215b104675328717 100644 --- a/potentials/Intro.html +++ b/potentials/Intro.html @@ -460,21 +460,26 @@ title="Print to PDF" <h2><font style="color:#B71C1C" face="Helvetica" > Tutorial III </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-tutorial-iii-font" title="Permalink to this headline">#</a></h2> <p>Atomic interactions - from classical to machine learning potentials (background and motivation, short history of interatomic potentials), creating and validating interatomic potentials (application range, validation tests, active learning)<br /> Ralf Drautz (RUB Bochum)</p> +<iframe width="560" height="315" src="https://www.youtube.com/embed/zISqYTfQN4w" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </section> <section id="font-style-color-b71c1c-face-helvetica-tutorial-iv-font"> <h2><font style="color:#B71C1C" face="Helvetica" > Tutorial IV </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-tutorial-iv-font" title="Permalink to this headline">#</a></h2> <p>Three classes of interatomic potentials and their parameterization (EAM - atomicrex, NNP-runner and ACE-pacemaker)<br /> Niklas Leimeroth (TU Darmstadt), Alexander Knoll (Georg-August-Universität Göttingen), Moritz Schäfer (Georg-August-Universität Göttingen), Yury Lysogorskiy (RUB Bochum)</p> +<iframe width="560" height="315" src="https://www.youtube.com/embed/ATfGcrv5kUU" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> +<iframe width="560" height="315" src="https://www.youtube.com/embed/dZYjEw_huOg" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </section> <section id="font-style-color-b71c1c-face-helvetica-hands-on-fitting-three-classes-of-interatomic-potentials-and-their-parameterization-font"> <h2><font style="color:#B71C1C" face="Helvetica" > Hands-on: Fitting three classes of interatomic potentials and their parameterization </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-hands-on-fitting-three-classes-of-interatomic-potentials-and-their-parameterization-font" title="Permalink to this headline">#</a></h2> <p>Creating and validating EAM (atomicrex), NNP (runner) and ACE (pacemaker)<br /> Niklas Leimeroth (TU Darmstadt), Alexander Knoll (Georg-August-Universität Göttingen), Moritz Schäfer (Georg-August-Universität Göttingen), Yury Lysogorskiy (RUB Bochum)</p> +<iframe width="560" height="315" src="https://www.youtube.com/embed/aZrzKA4ncVQ" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> +<iframe width="560" height="315" src="https://www.youtube.com/embed/XehDHBqKK6Q" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </section> <section id="font-style-color-b71c1c-face-helvetica-hands-on-validation-of-interatomic-potentials-font"> <h2><font style="color:#B71C1C" face="Helvetica" > Hands-on: Validation of interatomic potentials </font><a class="headerlink" href="#font-style-color-b71c1c-face-helvetica-hands-on-validation-of-interatomic-potentials-font" title="Permalink to this headline">#</a></h2> <p>Minaam Qamar (RUB Bochum)</p> -</section> +<iframe width="560" height="315" src="https://www.youtube.com/embed/R1oLtBvFVSA" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe></section> <div class="toctree-wrapper compound"> </div> </section>