Commit 8b0e9435 authored by Yury Lysogorski's avatar Yury Lysogorski
Browse files

Query Cu-fcc surface energies from atomsitictools.org

parent 5b047da9
%% Cell type:markdown id:removable-insert tags: %% Cell type:markdown id: tags:
# [**Workflows for atomistic simulations**](http://potentials.rub.de/) # [**Workflows for atomistic simulations**](http://potentials.rub.de/)
%% Cell type:markdown id:median-patch tags: %% Cell type:markdown id: tags:
## **Day 3 - Validation of various potentials** ## **Day 3 - Validation of various potentials**
### **Exercise 1: Validation of generated potentials using pyiron based workflows** ### **Exercise 1: Validation of generated potentials using pyiron based workflows**
...@@ -16,47 +16,47 @@ ...@@ -16,47 +16,47 @@
The aim of this exercise is to make you familiar with: The aim of this exercise is to make you familiar with:
* Potential validation workflows * Potential validation workflows
%% Cell type:markdown id:worth-monitoring tags: %% Cell type:markdown id: tags:
## **Importing the modules and creating the project** ## **Importing the modules and creating the project**
%% Cell type:code id:welsh-lafayette tags: %% Cell type:code id: tags:
``` python ``` python
import numpy as np import numpy as np
%matplotlib inline %matplotlib inline
import matplotlib.pylab as plt import matplotlib.pylab as plt
import pandas as pd import pandas as pd
``` ```
%% Cell type:code id:western-waterproof tags: %% Cell type:code id: tags:
``` python ``` python
from pyiron import Project from pyiron import Project
``` ```
%% Cell type:code id:historic-murray tags: %% Cell type:code id: tags:
``` python ``` python
pr = Project("validation") pr = Project("validation")
``` ```
%% Cell type:code id:numerous-engagement tags: %% Cell type:code id: tags:
``` python ``` python
# Potentials from fit the previous day # Potentials from fit the previous day
potential_list = ['df1_cut5_pyace', 'EAM', 'RuNNer-Cu'] potential_list = ['df1_cut5_pyace', 'EAM', 'RuNNer-Cu']
# Typical EAM and well fit potentials # Typical EAM and well fit potentials
potential_list = ['2012--Mendelev-M-I--Cu--LAMMPS--ipr1', '2004--Zhou-X-W--Cu-Ag-Au--LAMMPS--ipr2', potential_list = ['2012--Mendelev-M-I--Cu--LAMMPS--ipr1', '2004--Zhou-X-W--Cu-Ag-Au--LAMMPS--ipr2',
'Cu-ace', 'Cu-runner-df4', 'Cu-atomicrex-df1-107-25'] #, 'Cu-runner-df1', 'Cu-atomicrex-df1-0-13'] 'Cu-ace', 'Cu-runner-df4', 'Cu-atomicrex-df1-107-25'] #, 'Cu-runner-df1', 'Cu-atomicrex-df1-0-13']
``` ```
%% Cell type:code id:educational-fourth tags: %% Cell type:code id: tags:
``` python ``` python
# Function to return appropriate potentials generated yesterday # Function to return appropriate potentials generated yesterday
def get_pyiron_potential(potential): def get_pyiron_potential(potential):
...@@ -71,25 +71,25 @@ ...@@ -71,25 +71,25 @@
# to returns potentials already in DB # to returns potentials already in DB
else: else:
return potential return potential
``` ```
%% Cell type:markdown id:hidden-lodging tags: %% Cell type:markdown id: tags:
## **Step 1: Get the equilibrium Cu lattice constant determined by the potentials** ## **Step 1: Get the equilibrium Cu lattice constant determined by the potentials**
First we compute energy-volume curves to get the equilibrium lattice constants determined by each potential First we compute energy-volume curves to get the equilibrium lattice constants determined by each potential
%% Cell type:code id:rational-operations tags: %% Cell type:code id: tags:
``` python ``` python
# Necessary to remove wierd characters in the potential name # Necessary to remove wierd characters in the potential name
def clean_project_name(name): def clean_project_name(name):
return name.replace("-", "_") return name.replace("-", "_")
``` ```
%% Cell type:code id:local-austin tags: %% Cell type:code id: tags:
``` python ``` python
for pot in potential_list: for pot in potential_list:
group_name = clean_project_name(pot) group_name = clean_project_name(pot)
pr_pot = pr.create_group(pot) pr_pot = pr.create_group(pot)
...@@ -121,21 +121,21 @@ ...@@ -121,21 +121,21 @@
%%%% Output: display_data %%%% Output: display_data
![]() ![]()
%% Cell type:code id:independent-tennis tags: %% Cell type:code id: tags:
``` python ``` python
murn_job["output/equilibrium_energy"] murn_job["output/equilibrium_energy"]
``` ```
%%%% Output: execute_result %%%% Output: execute_result
-3.716480589399012 -3.716480589399012
%% Cell type:code id:occupational-cross tags: %% Cell type:code id: tags:
``` python ``` python
# Define functions to get data # Define functions to get data
# Only work with Murnaghan jobs # Only work with Murnaghan jobs
...@@ -159,11 +159,11 @@ ...@@ -159,11 +159,11 @@
def get_n_atoms(job_path): def get_n_atoms(job_path):
return len(job_path["output/structure/positions"]) return len(job_path["output/structure/positions"])
``` ```
%% Cell type:code id:collective-parameter tags: %% Cell type:code id: tags:
``` python ``` python
# Compile data using pyiron tables # Compile data using pyiron tables
table = pr.create_table("table_murn", delete_existing_job=True) table = pr.create_table("table_murn", delete_existing_job=True)
table.db_filter_function = get_only_murn table.db_filter_function = get_only_murn
...@@ -192,17 +192,17 @@ ...@@ -192,17 +192,17 @@
1 135.774799 -3.539942 1 1 135.774799 -3.539942 1
2 146.220099 -3.698781 1 2 146.220099 -3.698781 1
3 145.857176 -3.694889 1 3 145.857176 -3.694889 1
4 156.948283 -3.716481 1 4 156.948283 -3.716481 1
%% Cell type:markdown id:valid-apollo tags: %% Cell type:markdown id: tags:
## **Compute elastic constants** ## **Compute elastic constants**
Using the equilibrium lattice constant, compute the elastic constant matrix using the automated workflow Using the equilibrium lattice constant, compute the elastic constant matrix using the automated workflow
%% Cell type:code id:industrial-antique tags: %% Cell type:code id: tags:
``` python ``` python
for pot in data_murn.potential.to_list(): for pot in data_murn.potential.to_list():
group_name = clean_project_name(pot) group_name = clean_project_name(pot)
pr_pot = pr.create_group(pot) pr_pot = pr.create_group(pot)
...@@ -215,22 +215,22 @@ ...@@ -215,22 +215,22 @@
elastic_job = job_ref.create_job(pr_pot.job_type.ElasticMatrixJob, "elastic_job") elastic_job = job_ref.create_job(pr_pot.job_type.ElasticMatrixJob, "elastic_job")
elastic_job.input["eps_range"] = 0.05 elastic_job.input["eps_range"] = 0.05
elastic_job.run() elastic_job.run()
``` ```
%% Cell type:code id:under-knight tags: %% Cell type:code id: tags:
``` python ``` python
# Inspecting the elastic matrix # Inspecting the elastic matrix
plt.matshow(elastic_job["output/elasticmatrix"]["C"]); plt.matshow(elastic_job["output/elasticmatrix"]["C"]);
``` ```
%%%% Output: display_data %%%% Output: display_data
![]() ![]()
%% Cell type:code id:removable-clinic tags: %% Cell type:code id: tags:
``` python ``` python
# Define functions to compute them in a table # Define functions to compute them in a table
# Only operate on ElasticMatrix jobs # Only operate on ElasticMatrix jobs
...@@ -246,11 +246,11 @@ ...@@ -246,11 +246,11 @@
def get_c44(job_path): def get_c44(job_path):
return job_path["output/elasticmatrix"]["C"][3, 3] return job_path["output/elasticmatrix"]["C"][3, 3]
``` ```
%% Cell type:code id:ongoing-chocolate tags: %% Cell type:code id: tags:
``` python ``` python
table = pr.create_table("table_elastic", delete_existing_job=True) table = pr.create_table("table_elastic", delete_existing_job=True)
table.db_filter_function = filter_elastic table.db_filter_function = filter_elastic
table.add["potential"] = get_potential table.add["potential"] = get_potential
...@@ -277,17 +277,17 @@ ...@@ -277,17 +277,17 @@
1 84.710381 1 84.710381
2 81.049351 2 81.049351
3 100.953889 3 100.953889
4 70.714601 4 70.714601
%% Cell type:markdown id:considerable-latex tags: %% Cell type:markdown id: tags:
## **Compare computed elastic constants with that from DFT calculations** ## **Compare computed elastic constants with that from DFT calculations**
Comparing the computing elastic constant values with DFT benchmarks from the http://atomistictools.org/ database Comparing the computing elastic constant values with DFT benchmarks from the http://atomistictools.org/ database
%% Cell type:code id:governmental-watershed tags: %% Cell type:code id: tags:
``` python ``` python
# Querying the database http://atomistictools.org/ from using the API interface # Querying the database http://atomistictools.org/ from using the API interface
from structdbrest import StructDBLightRester from structdbrest import StructDBLightRester
...@@ -303,26 +303,26 @@ ...@@ -303,26 +303,26 @@
# Querying for phonon properties # Querying for phonon properties
dft_phon_prop = rest.query_properties(rest.PropertyTypes.PHONONS, composition="Cu-%", strukturbericht="A1", dft_phon_prop = rest.query_properties(rest.PropertyTypes.PHONONS, composition="Cu-%", strukturbericht="A1",
calculator_name=fhi_calc.NAME)[0] calculator_name=fhi_calc.NAME)[0]
``` ```
%% Cell type:code id:soviet-restaurant tags: %% Cell type:code id: tags:
``` python ``` python
C_dft = dft_elast_prop.value["C"] C_dft = dft_elast_prop.value["C"]
print("DFT C11={:.1f} GPa".format(C_dft[0][0])) print("DFT C11={:.1f} GPa".format(C_dft[0][0]))
print("DFT C12={:.1f} GPa".format(C_dft[0][1])) print("DFT C12={:.1f} GPa".format(C_dft[0][1]))
print("DFT C44={:.1f} GPa".format(C_dft[3][3])) print("DFT C44={:.1f} GPa".format(C_dft[3][3]))
``` ```
%% Cell type:markdown id:cardiovascular-annex tags: %% Cell type:markdown id: tags:
## **Calculation of surface energies** ## **Calculation of surface energies**
We can also use the potentials to calculate the surface energies of the Cu (111), (110), and (100) surfaces We can also use the potentials to calculate the surface energies of the Cu (111), (110), and (100) surfaces
%% Cell type:code id:individual-samuel tags: %% Cell type:code id: tags:
``` python ``` python
surface_type_list = ["fcc111", "fcc110", "fcc100"] surface_type_list = ["fcc111", "fcc110", "fcc100"]
...@@ -337,11 +337,11 @@ ...@@ -337,11 +337,11 @@
job_lammps.potential = get_pyiron_potential(pot) job_lammps.potential = get_pyiron_potential(pot)
job_lammps.calc_minimize() job_lammps.calc_minimize()
job_lammps.run() job_lammps.run()
``` ```
%% Cell type:code id:applicable-tunnel tags: %% Cell type:code id: tags:
``` python ``` python
# Function to filter only surface calculations # Function to filter only surface calculations
def is_a_surface(job_table): def is_a_surface(job_table):
return (job_table.hamilton == "Lammps") & (job_table.job.str.contains("fcc")) & (job_table.status == "finished") return (job_table.hamilton == "Lammps") & (job_table.job.str.contains("fcc")) & (job_table.status == "finished")
...@@ -357,11 +357,11 @@ ...@@ -357,11 +357,11 @@
def get_area(job_path): def get_area(job_path):
cell = job_path["output/structure/cell/cell"] cell = job_path["output/structure/cell/cell"]
return np.linalg.norm(np.cross(cell[0], cell[1])) return np.linalg.norm(np.cross(cell[0], cell[1]))
``` ```
%% Cell type:code id:false-jacob tags: %% Cell type:code id: tags:
``` python ``` python
table = pr.create_table("table_surface", delete_existing_job=True) table = pr.create_table("table_surface", delete_existing_job=True)
table.db_filter_function = is_a_surface table.db_filter_function = is_a_surface
table.add["potential"] = get_potential_lammps_job table.add["potential"] = get_potential_lammps_job
...@@ -409,20 +409,26 @@ ...@@ -409,20 +409,26 @@
11 Cu-runner-df4 fcc100 419.055871 11 Cu-runner-df4 fcc100 419.055871
12 Cu-atomicrex-df1-107-25 fcc111 371.037336 12 Cu-atomicrex-df1-107-25 fcc111 371.037336
13 Cu-atomicrex-df1-107-25 fcc110 605.901433 13 Cu-atomicrex-df1-107-25 fcc110 605.901433
14 Cu-atomicrex-df1-107-25 fcc100 428.437012 14 Cu-atomicrex-df1-107-25 fcc100 428.437012
%% Cell type:markdown id:polished-catalog tags: %% Cell type:markdown id: tags:
Compute surface energies using data from the bulk fcc crystal Compute surface energies using data from the bulk fcc crystal
%% Cell type:code id:devoted-lover tags: %% Cell type:code id: tags:
``` python
eV_A2_to_mJ_m2_factor = 16.0219 * 1e3
```
%% Cell type:code id: tags:
``` python ``` python
data_merged = pd.merge(data_surf, data_murn, on="potential") data_merged = pd.merge(data_surf, data_murn, on="potential")
data_merged["surface_energy"] = data_merged.energy_tot - (data_merged.eq_energy * data_merged.Number_of_atoms) data_merged["surface_energy"] = data_merged.energy_tot - (data_merged.eq_energy * data_merged.Number_of_atoms)
data_merged["surface_energy_in_mJ_per_sq_m"] = data_merged.surface_energy / data_merged.surface_area / 2 * 16.0219 * 1e3 data_merged["surface_energy_in_mJ_per_sq_m"] = data_merged.surface_energy / data_merged.surface_area / 2 * eV_A2_to_mJ_m2_factor
data_merged[["potential", "surface_type", "surface_energy_in_mJ_per_sq_m"]] data_merged[["potential", "surface_type", "surface_energy_in_mJ_per_sq_m"]]
``` ```
%%%% Output: execute_result %%%% Output: execute_result
...@@ -458,17 +464,87 @@ ...@@ -458,17 +464,87 @@
11 1435.033014 11 1435.033014
12 1559.908417 12 1559.908417
13 1809.790013 13 1809.790013
14 1689.108640 14 1689.108640
%% Cell type:markdown id:accredited-excuse tags: %% Cell type:markdown id: tags:
## Compare to DFT reference data queried from atomistictools.org
%% Cell type:code id: tags:
``` python
surface_props = rest.query_properties(rest.PropertyTypes.SURFACE_ENERGY,
composition="Cu-%",
strukturbericht="A1",
calculator_name=fhi_calc.NAME
)
```
%% Cell type:code id: tags:
``` python
surf_dft_data=[]
for surf_prop in surface_props:
surf_dft_data.append([surf_prop.VALUE["surface_orientation"], surf_prop.VALUE["number_of_atoms"], surf_prop.VALUE["surface_energy"]])
```
%% Cell type:code id: tags:
``` python
surf_dft_df=pd.DataFrame(surf_dft_data, columns=["surface_type","number_of_atoms","surface_energy(eV/A^2)"])
```
%% Cell type:code id: tags:
``` python
surf_dft_df.sort_values(["surface_type", "number_of_atoms"], ascending=[False, False], inplace=True)
```
%% Cell type:code id: tags:
``` python
surf_dft_df.drop_duplicates(["surface_type"], keep="first", inplace=True)
```
%% Cell type:code id: tags:
``` python
surf_dft_df["surface_type"] = "fcc" + surf_dft_df["surface_type"]
```
%% Cell type:code id: tags:
``` python
surf_dft_df["surface_energy_in_mJ_per_sq_m"] = surf_dft_df["surface_energy(eV/A^2)"]*eV_A2_to_mJ_m2_factor
```
%% Cell type:code id: tags:
``` python
surf_dft_df
```
%%%% Output: execute_result
surface_type number_of_atoms surface_energy(eV/A^2) \
7 fcc111 14 0.085074
5 fcc110 9 0.098272
0 fcc100 10 0.092586
surface_energy_in_mJ_per_sq_m
7 1363.054065
5 1574.504220
0 1483.399754
%% Cell type:markdown id: tags:
## **Finite temperature thermodynamics (Harmonic approximation)** ## **Finite temperature thermodynamics (Harmonic approximation)**
We can also compute free energies and other finite temperature thermodynamic properties within the Harmonic approximation using phonopy (http://phonopy.github.io) We can also compute free energies and other finite temperature thermodynamic properties within the Harmonic approximation using phonopy (http://phonopy.github.io)
%% Cell type:code id:seasonal-helmet tags: %% Cell type:code id: tags:
``` python ``` python
for pot in data_murn.potential.to_list(): for pot in data_murn.potential.to_list():
group_name = clean_project_name(pot) group_name = clean_project_name(pot)
pr_pot = pr.create_group(group_name) pr_pot = pr.create_group(group_name)
...@@ -479,15 +555,15 @@ ...@@ -479,15 +555,15 @@
job_ref.calc_static() job_ref.calc_static()
phonopy_job = job_ref.create_job(pr_pot.job_type.PhonopyJob, "phonopy_job") phonopy_job = job_ref.create_job(pr_pot.job_type.PhonopyJob, "phonopy_job")
phonopy_job.run() phonopy_job.run()
``` ```
%% Cell type:markdown id:clean-kruger tags: %% Cell type:markdown id: tags:
Plotting the thermodynamic properties using phonopy Plotting the thermodynamic properties using phonopy
%% Cell type:code id:mathematical-monitor tags: %% Cell type:code id: tags:
``` python ``` python
fig, ax_list = plt.subplots(ncols=3, nrows=1, sharex="row") fig, ax_list = plt.subplots(ncols=3, nrows=1, sharex="row")
fig.set_figwidth(20) fig.set_figwidth(20)
#fig.set_figheight(20) #fig.set_figheight(20)
...@@ -522,15 +598,15 @@ ...@@ -522,15 +598,15 @@
%%%% Output: display_data %%%% Output: display_data
![](