diff --git a/day_2/atomicrex/WorkshopPotentialEAM.ipynb b/day_2/atomicrex/WorkshopPotentialEAM.ipynb
index 678c7c901ff55d6219d4e27e1ab7ab83f95c429f..f681a5bb1093295805778b10133d428fc01fff69 100644
--- a/day_2/atomicrex/WorkshopPotentialEAM.ipynb
+++ b/day_2/atomicrex/WorkshopPotentialEAM.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "markdown",
-   "id": "ranking-inside",
+   "id": "widespread-perry",
    "metadata": {},
    "source": [
     "# Fitting an EAM potential\n",
@@ -27,7 +27,7 @@
   {
    "cell_type": "code",
    "execution_count": 1,
-   "id": "honey-element",
+   "id": "domestic-convert",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -40,7 +40,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "governing-madagascar",
+   "id": "hazardous-organic",
    "metadata": {},
    "source": [
     "### Import the training data"
@@ -49,7 +49,7 @@
   {
    "cell_type": "code",
    "execution_count": 2,
-   "id": "constant-respect",
+   "id": "capital-rental",
    "metadata": {},
    "outputs": [
     {
@@ -182,16 +182,16 @@
     }
    ],
    "source": [
-    "data_pr = Project(\"../../datasets/imported_datasets/\")\n",
+    "data_pr = Project(\"../../datasets\")\n",
     "if len(data_pr.job_table()) == 0:\n",
-    "    data_pr.unpack(\"../../datasets/Cu_training_archive\")\n",
+    "    data_pr.unpack(\"Cu_training_archive\")\n",
     "data_pr.job_table()"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 3,
-   "id": "dirty-measurement",
+   "id": "chinese-interest",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -202,7 +202,7 @@
   {
    "cell_type": "code",
    "execution_count": 4,
-   "id": "referenced-julian",
+   "id": "enormous-courage",
    "metadata": {},
    "outputs": [
     {
@@ -220,7 +220,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "voluntary-limit",
+   "id": "unlimited-strike",
    "metadata": {},
    "source": [
     "### Create an atomicrex job"
@@ -229,7 +229,7 @@
   {
    "cell_type": "code",
    "execution_count": 5,
-   "id": "entertaining-jacksonville",
+   "id": "satisfied-meditation",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -238,7 +238,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "raising-clear",
+   "id": "strange-window",
    "metadata": {},
    "source": [
     "### Add the structures that should be fitted.\n",
@@ -248,7 +248,7 @@
   {
    "cell_type": "code",
    "execution_count": 6,
-   "id": "located-individual",
+   "id": "national-still",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -261,7 +261,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "angry-leader",
+   "id": "joined-active",
    "metadata": {},
    "source": [
     "### Define the type of potential and necessary functions.\n",
@@ -271,7 +271,7 @@
   {
    "cell_type": "code",
    "execution_count": 7,
-   "id": "functional-formation",
+   "id": "chinese-poison",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -280,7 +280,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "realistic-karaoke",
+   "id": "sweet-overhead",
    "metadata": {},
    "source": [
     "It is necessary to define a pair potential, an electronic density function and an embedding function.\n",
@@ -301,17 +301,67 @@
   {
    "cell_type": "code",
    "execution_count": 8,
-   "id": "interpreted-orange",
+   "id": "miniature-semester",
    "metadata": {},
    "outputs": [],
    "source": [
     "V = job.factories.functions.morse_B(identifier=\"V_CuCu\", D0=0.35, r0=2.5, beta=2, S=2, delta=0)"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "adaptive-andorra",
+   "metadata": {},
+   "source": [
+    "Pre defined functions like the morse function can be plotted to see the influence of the initial parameter values"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "id": "geological-defense",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "(<Figure size 720x504 with 1 Axes>,\n",
+       " <AxesSubplot:xlabel='r [$\\\\AA$]', ylabel='func(r)'>)"
+      ]
+     },
+     "execution_count": 32,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAGzCAYAAABjHhDPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAlCUlEQVR4nO3deXzc913n8fdnJI2O0X34lB3FTpw096G2SdOkVwoplLTbFpbwoCzHYuDB0S48OMsuUJbHwsIWdqELhLa7LdsDaJstvWjTbUt6JGnsHE4cO47t2LF8SpZlybo189k/Zmwrjm2NdX1m5vd6Ph56SDPz08yn08R+5Xd8x9xdAAAAiJGKHgAAACDJiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAgUFmNmVmdm3zOzp8xsu5n9QdQsAAAAUSxqnTEzM0kZdz9lZjWSvi3pPe7+SMhAAAAAAaqjXtjzFXiqcLOm8MUKtAAAIFHCYkySzKxK0lZJV0j6oLs/ep5tNkvaLEmZTObWq6++enmHRNnbf3xMkzNZbVrZFD0KACBBtm7dOuDuXXNtF3aY8iVDmLVKekDSL7v7Mxfarre317ds2bJsc6Ey/NZntunrO4/pe++7O3oUAECCmNlWd++da7uSuJrS3YckfVPSPbGToBK1NNRoaGxapfAfHgAAnCvyasquwh4xmVm9pLsl7YyaB5WrrSGtqWxO49PZ6FEAAHiZyHPGVkv6aOG8sZSkf3T3LwTOgwrVWl8jSRoam1ZDOvQ0SQAAXibyasptkm6Oen0kR2tDPsZOjE1pTWt98DQAALxUSZwzBiyl1oa0JOnk2HTwJAAAvBwxhop3ds8YMQYAKD3EGCpeW2HP2ND4VPAkAAC8HDGGitcy6wR+AABKDTGGildXU6W6mpSGxtgzBgAoPcQYEqGtIc2eMQBASSLGkAgt9TWcwA8AKEnEGBKhtaGGw5QAgJJEjCER2jNpDY2zZwwAUHqIMSRCW0Nag6PsGQMAlB5iDInQnklraGxK2ZxHjwIAwEsQY0iEtoa0ci4Nc6gSAFBiiDEkQnsmvwr/ICfxAwBKDDGGRDgdYyc4bwwAUGKIMSTCmT1jxBgAoMQQY0iEttN7xjhMCQAoMcQYEqG94fSeMU7gBwCUFmIMiVCfzn9YOHvGAAClhhhDYrSz8CsAoAQRY0iMtgwxBgAoPcQYEqOdGAMAlCBiDInR1pDmnDEAQMkhxpAY7BkDAJQiYgyJ0daQ1sjEjKazuehRAAA4gxhDYrRnaiSx8CsAoLQQY0iM9kytJOkEC78CAEoIMYbEaCvsGeO8MQBAKSHGkBh8WDgAoBQRY0iMMzHGOWMAgBJCjCExTn9Y+MDIZPAkAACcRYwhMaqrUmprqNHxUWIMAFA6iDEkSkdjrY6f4jAlAKB0EGNIlI5MmhgDAJQUYgyJ0tlYqwEOUwIASggxhkTpaGTPGACgtBBjSJSOTK1Ojk9raobPpwQAlAZiDInS2ZRf3oLPpwQAlApiDInSUfh8yoFTnDcGACgNxBgSpbMxv2eM88YAAKWCGEOidDTm94yx8CsAoFQQY0iUDvaMAQBKDDGGRGmqrVa6KqUBYgwAUCKIMSSKmRXWGuMwJQCgNBBjSJyOxjRXUwIASgYxhsTpyNTq+CiHKQEApYEYQ+J0NtZyAj8AoGQQY0iczsa0+k9Nyt2jRwEAgBhD8nQ11WpqJqeRyZnoUQAAIMaQPF1N+YVfjw1zEj8AIB4xhsTpKqzC3z9CjAEA4hFjSJwVzYUYY3kLAEAJIMaQOF2NdZKkY8MTwZMAAECMIYGa66uVrk6xZwwAUBKIMSSOmamrsZZzxgAAJYEYQyJ1NRFjAIDSEBZjZrbOzL5hZjvMbLuZvSdqFiQPMQYAKBWRe8ZmJP2au79C0m2SftHMrgmcBwmyghgDAJSIsBhz98Pu/njh5xFJOyStjZoHydLVlP+w8OlsLnoUAEDClcQ5Y2bWI+lmSY+e57HNZrbFzLb09/cv+2yoTKdX4ecDwwEA0cJjzMwaJX1G0nvdffjcx939fnfvdfferq6u5R8QFWlFU36tMQ5VAgCihcaYmdUoH2Ifd/fPRs6CZDnz+ZQjLPwKAIgVeTWlSfqwpB3u/oGoOZBMp2OMPWMAgGiRe8bukPRuSW80sycLXz8QOA8SpLMxLYkYAwDEq456YXf/tiSLen0kW211lVobanSUw5QAgGDhJ/ADUVY11+noMHvGAACxiDEk1ormOh0dZs8YACAWMYbEWtVcqyMniTEAQCxiDIm1qrlOA6cmNcMq/ACAQMQYEmtFc51yLg2wCj8AIBAxhsRa1Zxfhf8I540BAAIRY0isVS2FGOO8MQBAIGIMibWimY9EAgDEI8aQWJ2ZWlWnjD1jAIBQxBgSK5UyrWiq5ZwxAEAoYgyJtqK5TsdYhR8AEIgYQ6Ktaq5jzxgAIBQxhkRb1VKno5wzBgAIRIwh0VY212lkckajkzPRowAAEooYQ6KtLCxvwaFKAEAUYgyJtrqlXpJ0eIgYAwDEIMaQaGtb8zF26OR48CQAgKQixpBoK1vyhykPDRFjAIAYxBgSrba6Sl1NtRymBACEIcaQeGta6jhMCQAIQ4wh8da01nOYEgAQhhhD4q1uqdehoQm5e/QoAIAEIsaQeGta6zQ+ndXJ8enoUQAACUSMIfHWFJa3OMihSgBAAGIMiXc6xriiEgAQgRhD4q1pqZPEwq8AgBjEGBKvs7FWNVWmQ+wZAwAEIMaQeKmUaVVLHctbAABCEGOApDUt9ZzADwAIQYwBkrrbGnTwBDEGAFh+xBggaV17vY6OTGhyJhs9CgAgYYgxQPk9Y+7iJH4AwLIjxgBJ69rya40dGBwLngQAkDTEGCCpu71BktTHeWMAgGVGjAGSVjXXqTplOnCCPWMAgOVFjAGSqlKmNa317BkDACw7Ygwo6G6rVx97xgAAy4wYAwrWtTXowCB7xgAAy4sYAwq62+o1cGpSE9OsNQYAWD7EGFCw7swVlRyqBAAsH2IMKOg+s9YYhyoBAMuHGAMK1nfk94y9yMKvAIBlRIwBBV2NtWpIV2nf8dHoUQAACUKMAQVmpvXtDXrxOHvGAADLhxgDZunpyLBnDACwrIgxYJbLOvNrjWVzHj0KACAhiDFglp6OjKayOR0+yRWVAIDlQYwBs1xWuKJyP+eNAQCWCTEGzHJZR0YSMQYAWD7EGDDL6uY6patT2s9J/ACAZUKMAbOkUvnlLbiiEgCwXIgx4Bw9HQ0cpgQALBtiDDjHZYW1xnIsbwEAWAbEGHCODV0ZTUzndIjlLQAAyyA0xszsI2Z2zMyeiZwDmG1jV6MkaW8/540BAJZe9J6x/y3pnuAZgJc4HWN7+k8FTwIASILQGHP3hyQNRs4AnKuzMa2mumr2jAEAlkX0nrE5mdlmM9tiZlv6+/ujx0ECmJk2djWyZwwAsCxKPsbc/X5373X33q6uruhxkBAbujLsGQMALIuSjzEgwsauRh0ZntCpyZnoUQAAFY4YA85jY1f+MypfYO8YAGCJRS9t8UlJD0u6ysz6zOxnIucBTuOKSgDAcqmOfHF3vy/y9YELuawjo6qUEWMAgCXHYUrgPNLVKfV0NGjX0ZHoUQAAFY4YAy5g08om7TrKnjEAwNIixoAL2LSySfuOj2piOhs9CgCgghFjwAVctapJ7tLuY+wdAwAsHWIMuIBNK5skifPGAABLihgDLqCno0HpqpSeI8YAAEuIGAMuoLoqpQ1dGe06QowBAJYOMQZcxFWruKISALC0iDHgIjatbNLBoXGNTExHjwIAqFDEGHARr1idP4l/J4cqAQBLhBgDLuKa1S2SpGcPDQdPAgCoVMQYcBErm2vVnklr+6GT0aMAACoUMQZchJnp2jXNevYwe8YAAEuDGAPmcM3qZu06ckrT2Vz0KACACkSMAXO4Zk2zprI5PhYJALAkiDFgDteuaZYkbeckfgDAEiDGgDlc3tmoupoUV1QCAJYEMQbMoSplesXqZj1zkCsqAQCLjxgDinBjd6uePnhSM5zEDwBYZMQYUIQb17VofDqr3f2cxA8AWFzEGFCEG7tbJUlPHRgKnQMAUHmIMaAIPR0ZNddV68kDnDcGAFhcxBhQhFTKdOO6Vm3rG4oeBQBQYYgxoEg3drdq55ERTUxno0cBAFQQYgwo0g3dLcrmnCUuAACLihgDinTz+jZJ0tb9J4InAQBUEmIMKFJXU616Ohq0hRgDACwiYgy4BL097dqyb1DuHj0KAKBCEGPAJXhlT5tOjE1rT/9o9CgAgApBjAGX4NbL2iVJW/cPBk8CAKgUxBhwCTZ2ZdTWUKPH9nHeGABgcRBjwCUwM/X2tOuxfewZAwAsDmIMuES3bejQ/uNjOjg0Hj0KAKACEGPAJXrNxg5J0nd3DwRPAgCoBMQYcImuWtmkjkxaD+85Hj0KAKACEGPAJUqlTLdt7NB39gyw3hgAYMGIMWAe7tjYqaPDk6w3BgBYMGIMmIcz543t4bwxAMDCEGPAPFzW0aD17Q361+f6o0cBAJQ5YgyYBzPTG67q0nf2DGhiOhs9DgCgjBFjwDy9/uoVmpjO6dEXWAAWADB/xBgwT7dv6FBtdUrf2HksehQAQBkjxoB5qqup0ms2duibzxFjAID5I8aABXjj1Su07/iYdh8biR4FAFCm5owxM7vdzD5oZtvMrN/MXjSzL5nZL5pZy3IMCZSqN1+zSpL0L88cCZ4EAFCuLhpjZvZlSf9e0lck3SNptaRrJP2upDpJnzOze5d6SKBUrWqp0y3rW/VlYgwAME/Vczz+bnc/d1XLU5IeL3z9NzPrXJLJgDLxlutW64++tEMvHh/T+o6G6HEAAGXmonvG3H3AzKrM7GsX22bxxwLKxz3XFQ5Vbj8cPAkAoBzNec6Yu2cljXF+GHB+69obdP3aFn3+KWIMAHDp5jpMedqEpKfN7EFJZz4Z2d1/ZUmmAsrM229eqz/8wrPafWxEV6xoih4HAFBGil3a4ouS/qOkhyRtnfUFQNIP3bhaKZMeeOJg9CgAgDJT1J4xd//oUg8ClLMVTXW688ou/d8nDunX3nyVUimLHgkAUCbmWtri82b2Q2ZWc57HNpjZ+83sp5duPKB8vOOWtTo4NK5HXjgePQoAoIzMdZjyZyXdKWmnmT1WWOz162b2gqS/lbTV3T+y5FMCZeD7r12llvoafeLRF6NHAQCUkYsepnT3I5J+Q9JvmFmP8ou+jkva5e5jC31xM7tH0n+XVCXpQ+7+xwt9TiBKXU2V3nVrtz728D71j0yqq6k2eiQAQBko6gR+M7tc0hF3f9jdn5SUK8TZvJlZlaQPSnqL8qv632dm1yzkOYFoP/bq9ZrOuv5xy4HoUQAAZaLYqyn/SVJu1u1c4b6FeJWk3e6+192nJH1K0tsW+JxAqI1djbp9Q4c+/sh+TWdzc/8CAEDufuYrl1v4V3YRvmayuQV/FavYdcaqC8F0+k2bMrP0pb7Z51grafbugz5Jr17gcwLhfvq1l+tnP7ZFX3r6sN5209rocYB5y+Vc07mcZrKumaxrKpvTTOH2dDan6cL3mcJfXGdv538+u11+m2zOlfOzf9nlf9Z57nPl/EL3n75v1uN+9i/gnJ/9XS98lyR3yeXK5fLf3c/el/9+9ndcp+Pg7OM5z9+nC26X/znn5zy/e+GxwusX7j/r7Hwvvafw86wH/Mx9F3989o25nmv28/msey80jy5h29Ovd77XwksVG2P9Znavu/+zJJnZ2yQt9GOQznft/8v+bzKzzZI2S9L69esX+JLA0nvT1Su0sSujv/3Xvbr3xjUyY5kLLA531+RMTmNTWY1NzWhsKqvRyZnC7fx9o5P57xPTWU3O5DQ5k8v/PJ3T5Mw5980U7pvOaWLm9Db5+6ZmcsoF/MVpJlWZKWWmVKrwc8pUlbKzP1v+9kseP31f4fdSZjIzWeE5Tafvk0z576mUZErlfy48ppdsJ5mZ8ivVFH5n1u/nv+zMdvnXOOe+M88z+zXOvlb+1tn/7WfvO3vj/Nue/8+V8z3H+X7/ZfcXbrzkWeeY54LPNce2szcu5jnmazH+6F3oU/zKnxS3XbEx9vOSPm5mf6X8bAck/cS8JjurT9K6Wbe7JR06dyN3v1/S/ZLU29tLU6PkpVKmzXdt0G9+5ml96/kB3bWpK3oklAB31/h0VsPjMxqemNbw+LROjk8Xfp7RcOHnk+PTZ7eZmNbYZFajUzMam8xqbDqr7CUUUsryF5bUVqdUW12l2prUmZ/ralKqr6lSa31N4f78dnU1VUpXp5SuSqm6ylRTlVJ1Kv+9pspU/ZLbp7cxVadSF9gm/70qZapOnQ2nlwaWzsQU//GCSlLsxxQVu+jrHkm3mVmjJHP3kXlPdtZjkq4sXBxwUNKPSvqxRXheINzbb16rP3/wef3F13bpzis7+QumQp2anNHAyKSOj07p+KlJDY5OFX6e0uDo5Kyf819Tc5xDUl9Tpeb6ajXX1ailvkZdjbXKdFQrk65WQ22VGtJVakhXK5OuUkNt4f50/v5MbfWZ7/XpKtXXVKmauAHKQlExZma1kt4pqUdS9el/ud39/fN9YXefMbNfkvQV5Ze2+Ii7b5/v8wGlpLa6Sr/8piv0vgee0TeeO6Y3Xr0yeiRcgmzO1T8yqSPDEzpyckJHhyd0ZHhCR0/mv5/+eXQqe97fb0hXqaMxrfZMrVa11OnaNc1qb0yrrSGt5rqaM8HVXJ+Prua6ajXV1ShdXew1VQAqSbGHKT8n6aTyn0c5uVgv7u5fkvSlxXo+oJT8SO86/e2/7tWffWWXXr9pBR+RVELcXYOjUzpwYlwvDo7pwOCY+k6M6cDguA6cGNOhoXFNZ196OLA6ZVrZXKeVzbW6elWTXrepSyub69TZWKuOxrQ6Mml1NNaqI5NWXU1V0P8yAOWo2Bjrdvd7lnQSoMLUVKX0q2/epPf+w5P69ON9+pHedXP/EhbVqckZ7e0/pT39p7S3f/TM9xcHxzR2zl6tjkxa3e0Nun5ti37w+tVa21avVc11hQCrU0cmTVADWBLFxth3zex6d396SacBKszbblqjjz28T//1X3bqnutWqbnuZR/zikVwanJGzx0Z0c4jw9p5eER7CgF2dPjsjvyqlOmy9gZd3pnR7Rs7tK6tQevbG7SuvUHdbfXK1Bb7xyEALK5i//R5raSfLHwm5aTyV1S6u9+wZJMBFcDM9Af3Xqd7P/htfeCru/T7914bPVJZc3e9ODimHYeHteNwIb6OjGj/8bOfztZUW60rVjbqtVd0aeOKjDZ2NWpjV0br2zOckwWgJBUbY29Z0imACnZ9d4vefdtl+ujD+/QD16/Wqy5vjx6pbBwbntBTfSf11IEhPdU3pKcPntTQ2LSk/BpCl3dmdN2aFr3rlm69YnWzrl7dpLWt9VxBCKCsFBtjrO8FLMBv3nO1vvHcMf36p5/Sl99zpxrSHBI718R0Vtv6TmrL/kE9+eKQtvWd1JHhCUn5Q4ybVjbpnmtX6YbuVl27plmbVjapPs2J8gDKX7F/I3xR+SAzSXWSLpf0nCSOuQBFyNRW60/fdaPu+7tH9DuffVp//m9vSvzem5Nj09qyf1CP7TuhLfsGta3v5Jl1uC7vzOjVG9p1Q3erbuxu0bVrWggvABWr2EVfr59928xukfRzSzIRUKFu29Ch/3D3Jn3gwV3q7WnXj992WfRIy+rE6JQe3ntc390zoMdeOKHnjubXjq5Oma7vbtFP3tGjV/a069bL2tSeWehH3wJA+ZjXsRJ3f9zMXrnYwwCV7pfecIW27j+h3//n7bqso0F3Xlm5H5U0NjWj770wqO/uOa7v7B7Qs4eH5S5l0lW6taddb71htXp72nXTulb2egFINPMiPkLdzH511s2UpFsltbv79y/VYOfT29vrW7ZsWc6XBBbd8MS0fuRvHlbfiXF98mdv0/XdLdEjLYrpbE5PHhjSd3YP6Lu7j+uJAyc0nXXVVJluXt+mOzZ26o4rOnTjulbVVHFVI4DKZ2Zb3b13zu0uFmNm9vfu/m4zG5L054W7ZyTtk/QZd59YhFmLRoyhUhw+Oa53/fXDGpmY1t//zKt147rW6JHmZd/AqL71fL8een5AD+85rlOTMzKTrlvTotds7NBrrujUK3vauGABQCItVow9q/yyFp+X9PpzH3f3wQXMeMmIMVSSvhNjuu/vHtGJ0Wn95X036w1Xr4geaU7DE9N6eM9xPbSrX996fkAvDubX9+puq9ddm7p05xWdun1jh1obOOcLABYrxn5F0i8of/XkodkPKb/o64aFDnopiDFUmiMnJ/QzH31MOw4P69e+7yr9/Os2qqqEPnInm3Nt6xvSt54f0EO7+vXEgSFlc65Mukq3b+zIB9iVXerpaEj81aEAcK5FibFZT/bX7v4LizLZAhBjqERjUzP69U9v0xe3HdZtG9r1X95xgy7vzITN03diTN9+fkDfen5A3949oJPj0zKTrl/bojuv7NSdV3bplvVtrGYPAHNY1BgrFcQYKpW765+29un9n39WUzM5/dQdPdp81wZ1NNYu+WsfGBzTI3uP69EXBvXI3uPqOzEuSVrZXKs7r+zSXZu6dMfGjmWZBQAqCTEGlKFjIxP64y/v1ANPHFRddZXefvMa/XDvOt28rnVRDgNOTGf17OFhPV34iKFHXxjUwaF8fLU11OhVl7frtg0des3GTm1a2cihRwBYAGIMKGO7j53S/Q/t0eefOqzx6axWt9Tp9g0dur67RTd0t2pjV0bNdTVKnef8slzOdWJsSsdGJrVvYFR7B0a1t39U2w+d1PPHTimby/8739mY1it78vH16g3t2rSi6bzPBwCYH2IMqADDE9N6cPtRPfjsUW198YT6RybPPFaVMrVn0mqsrVY258rmXJMzOQ2OTip3zr/WK5pq9YrVzbqhu0XXrW3R9WtbtLqljj1fALCEio0xFv8BSlhzXY3eeWu33nlrt6T81Zfb+oZ04MS4jp+a1ODolEansqoyKZUy1Van1JGpVWdjWp1NterpyKinM6PGWv5VB4BSxZ/QQBlZ1VKnVS2roscAACwirk0HAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIFCYszMftjMtptZzsx6I2YAAAAoBVF7xp6R9A5JDwW9PgAAQEmojnhRd98hSWYW8fIAAAAlo+TPGTOzzWa2xcy29Pf3R48DAACwqJZsz5iZfU3SqvM89D53/1yxz+Pu90u6X5J6e3t9kcYDAAAoCUsWY+5+91I9NwAAQKUo+cOUAAAAlSxqaYt/Y2Z9km6X9EUz+0rEHAAAANGirqZ8QNIDEa8NAABQSjhMCQAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQCExZmZ/amY7zWybmT1gZq0RcwAAAESL2jP2oKTr3P0GSbsk/XbQHAAAAKFCYszdv+ruM4Wbj0jqjpgDAAAgWimcM/bTkr4cPQQAAECE6qV6YjP7mqRV53nofe7+ucI275M0I+njF3mezZI2S9L69euXYFIAAIA4SxZj7n73xR43s38n6a2S3uTufpHnuV/S/ZLU29t7we0AAADK0ZLF2MWY2T2SflPS69x9LGIGAACAUhB1zthfSWqS9KCZPWlmfxM0BwAAQKiQPWPufkXE6wIAAJSaUriaEgAAILGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAAAAAhFjAAAAgYgxAACAQMQYAABAIGIMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBAxBgAAEAgYgwAACAQMQYAABCIGAMAAAhEjAEAAAQixgAAAAIRYwAAAIGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABAqJMTP7QzPbZmZPmtlXzWxNxBwAAADRovaM/am73+DuN0n6gqT/FDQHAABAqJAYc/fhWTczkjxiDgAAgGjVUS9sZn8k6ScknZT0hotst1nS5sLNSTN7ZhnGq1SdkgaihyhTvHcLw/u3MLx/C8P7N3+8dwtzVTEbmfvS7JQys69JWnWeh97n7p+btd1vS6pz998r4jm3uHvvIo6ZKLx/88d7tzC8fwvD+7cwvH/zx3u3MMW+f0u2Z8zd7y5y009I+qKkOWMMAACg0kRdTXnlrJv3StoZMQcAAEC0qHPG/tjMrpKUk7Rf0s8X+Xv3L91IicD7N3+8dwvD+7cwvH8Lw/s3f7x3C1PU+7dk54wBAABgbqzADwAAEIgYAwAACFQWMWZm95jZc2a228x+K3qecmNmHzGzY6zRdunMbJ2ZfcPMdpjZdjN7T/RM5cTM6szse2b2VOH9+4PomcqNmVWZ2RNm9oXoWcqNme0zs6cLH723JXqecmNmrWb2aTPbWfgz8PbomcqFmV1V+Ofu9Newmb33gtuX+jljZlYlaZekN0vqk/SYpPvc/dnQwcqImd0l6ZSkj7n7ddHzlBMzWy1ptbs/bmZNkrZKejv//BXHzExSxt1PmVmNpG9Leo+7PxI8Wtkws1+V1Cup2d3fGj1POTGzfZJ63Z1FS+fBzD4q6Vvu/iEzS0tqcPeh4LHKTqFjDkp6tbvvP9825bBn7FWSdrv7XnefkvQpSW8LnqmsuPtDkgaj5yhH7n7Y3R8v/DwiaYektbFTlQ/PO1W4WVP4Ku3/AiwhZtYt6QclfSh6FiSLmTVLukvShyXJ3acIsXl7k6Q9FwoxqTxibK2kA7Nu94m/DBHAzHok3Szp0eBRykrhMNuTko5JetDdef+K9xeSfkP5ZYBw6VzSV81sa+Gj9VC8DZL6Jf2vwmHyD5lZJnqoMvWjkj55sQ3KIcbsPPfxX9ZYVmbWKOkzkt57zgfdYw7unnX3myR1S3qVmXGovAhm9lZJx9x9a/QsZewOd79F0lsk/WLhlA0Up1rSLZL+2t1vljQqiXO2L1Hh8O69kv7pYtuVQ4z1SVo363a3pENBsyCBCuc6fUbSx939s9HzlKvCIY5vSrondpKycYekewvnPX1K0hvN7P/EjlRe3P1Q4fsxSQ8of9oLitMnqW/WnuxPKx9nuDRvkfS4ux+92EblEGOPSbrSzC4vFOaPSvrn4JmQEIUT0D8saYe7fyB6nnJjZl1m1lr4uV7S3eLjz4ri7r/t7t3u3qP8n3tfd/cfDx6rbJhZpnDRjQqH175PEleUF8ndj0g6UPi0HCl/3hMXLl26+zTHIUop7uOQiubuM2b2S5K+IqlK0kfcfXvwWGXFzD4p6fWSOs2sT9LvufuHY6cqG3dIerekpwvnPUnS77j7l+JGKiurJX20cDVRStI/ujtLNGA5rJT0QP6/p1Qt6RPu/i+xI5WdX5b08cKOkL2Sfip4nrJiZg3KrwTxc3NuW+pLWwAAAFSycjhMCQAAULGIMQAAgEDEGAAAQCBiDAAAIBAxBgAAEIgYAwAACESMAQAABCLGAGAWM/tLM3vczF4ZPQuAZCDGAKCg8LE5K5RfMfutweMASAhiDEDimFmPmY3P+ogrSZK7jyr/EU7flPQ/CtvWm9mTZjZlZp3LPiyAikeMAah4lnfun3d73P2mc7brkNQgaURSVpLcfbyw3aFlGBVAAhFjACpSYe/XDjP7n5Iel7SuiF/7XUl/Jmm7pGuWcj4AOI0YA1DJrpL0MXe/2d33X2xDM+uR9BpJ/yBph6Rrl348ACDGAFS2/e7+SJHb/mdJ73d3FzEGYBlVRw8AAEtotJiNzOwmSe+Q9Foz+6CkOklPL+FcAHAGMQYA0p9I+iF3/3+SZGYrJT0ROxKApOAwJYBEM7M3SsqcDjFJcvejkjJm1h43GYCkYM8YgIrk7vskXVfEdl+X9PXz3N+yBGMBwMuwZwxAEmUltZy76Ov5nF70VVKNpNwSzwUggSx/4RAAAAAisGcMAAAgEDEGAAAQiBgDAAAIRIwBAAAEIsYAAAACEWMAAACBiDEAAIBA/x8XHUTgZ5J39QAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 720x504 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "V.plot()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "id": "intimate-anger",
+   "metadata": {},
+   "source": [
+    "Additionally it is a good idea to define limits for the parameters. This is optional for local minimizers, but the fit can quickly run away without limits. Global optimizers typically require them to constrain the sampled space."
+   ]
+  },
   {
    "cell_type": "code",
    "execution_count": 9,
-   "id": "mathematical-gasoline",
+   "id": "facial-electric",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -329,7 +379,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "written-commission",
+   "id": "offshore-julian",
    "metadata": {},
    "source": [
     "Additionally a screening function needs to be defined for the morse potential"
@@ -338,7 +388,7 @@
   {
    "cell_type": "code",
    "execution_count": 10,
-   "id": "discrete-terminology",
+   "id": "found-reconstruction",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -347,7 +397,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "wireless-parts",
+   "id": "indie-assembly",
    "metadata": {},
    "source": [
     "The electron density is chosen to be a spline function. The cutoff has to be defined. Derivatives left and right are optional, they default to 0. For the right cutoff this is fine, since the forces should smoothly go to 0. For the left this is not necessarily the best choice, since the function value should increase at very close distances. Very large absolute values will lead to osciallations and should be avoided."
@@ -356,7 +406,7 @@
   {
    "cell_type": "code",
    "execution_count": 11,
-   "id": "authentic-expression",
+   "id": "experimental-hanging",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -365,7 +415,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "bored-afternoon",
+   "id": "extreme-questionnaire",
    "metadata": {},
    "source": [
     "For a spline function it is necessary to define node points. They can be equally spaced or sampled with higher density around turning points, f.e. the first neighbor distance.\n",
@@ -375,7 +425,7 @@
   {
    "cell_type": "code",
    "execution_count": 12,
-   "id": "hidden-wildlife",
+   "id": "disturbed-realtor",
    "metadata": {},
    "outputs": [
     {
@@ -396,7 +446,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "binary-devil",
+   "id": "taken-month",
    "metadata": {},
    "source": [
     "The nodes need initial values. The electron density should be proportional to $e^{-r}$, so this function is chosen to calculate them."
@@ -405,7 +455,7 @@
   {
    "cell_type": "code",
    "execution_count": 13,
-   "id": "comparative-brush",
+   "id": "understood-finance",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -415,18 +465,16 @@
   },
   {
    "cell_type": "markdown",
-   "id": "gentle-infrastructure",
+   "id": "statistical-stylus",
    "metadata": {},
    "source": [
-    "Additionally it is a good idea to define limits for the node points. This is optional for local minimizers, but the fit can quickly run away without limits. Global optimizers typically require them to constrain the sampled space.\n",
-    "\n",
-    "A density can't be negative so the lower limit is set to 0. The upper limit is chosen to be 3 times the initial values. These choices aswell as the choice for $e^{-r}$ as initial values are somewhat arbitrary, but don't matter much. The electron density from single atoms does not directly influence the calculated energies and forces, instead the summed up density at some place is used in the embedding function, so the final numerical values are an interplay between electron density and embedding function. Since the latter will also be a spline function it can only be defined for a certain range of rho values as node points. Therefore it is better to limit the range of electron density values and define larger limits for the embedding function instead. "
+    "A density can't be negative so the lower limit is set to 0. The upper limit is chosen to be 3 times the initial values. These choices aswell as the choice for $e^{-r}$ as initial values are somewhat arbitrary. The electron density from single atoms does not directly influence the calculated energies and forces, instead the summed up density at some place is used in the embedding function, so the final numerical values are an interplay between electron density and embedding function. Since the latter will also be a spline function it can only be defined for a certain range of rho values as node points. Therefore it is better to limit the range of electron density values and define larger limits for the embedding function instead. "
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 14,
-   "id": "funny-trinidad",
+   "id": "crucial-portfolio",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -437,7 +485,7 @@
   },
   {
    "cell_type": "raw",
-   "id": "promising-draft",
+   "id": "meaning-bowling",
    "metadata": {},
    "source": [
     "Finally the last node point at the cutoff range is set to 0 and fitting is disabled to prevent a discontinuous change of energy at the cutoff."
@@ -446,7 +494,7 @@
   {
    "cell_type": "code",
    "execution_count": 15,
-   "id": "mexican-absence",
+   "id": "thrown-leone",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -456,7 +504,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "standard-relative",
+   "id": "declared-junior",
    "metadata": {},
    "source": [
     "$-\\sqrt(\\rho)$ can be used as initial guess for the embedding energy, which is taken from second moment approximation tight binding. \n",
@@ -468,7 +516,7 @@
   {
    "cell_type": "code",
    "execution_count": 16,
-   "id": "large-rating",
+   "id": "enhanced-throw",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -486,7 +534,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "several-mercy",
+   "id": "expensive-winter",
    "metadata": {},
    "source": [
     "The functions have to be assigned to the potential"
@@ -495,7 +543,7 @@
   {
    "cell_type": "code",
    "execution_count": 17,
-   "id": "heavy-acoustic",
+   "id": "fatty-moral",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -506,7 +554,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "alien-chancellor",
+   "id": "interracial-british",
    "metadata": {},
    "source": [
     "### Define fitting procedure\n",
@@ -517,14 +565,14 @@
   {
    "cell_type": "code",
    "execution_count": 18,
-   "id": "enormous-segment",
+   "id": "framed-companion",
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "The job PotentialDF1 was saved and received the ID: 819\n"
+      "The job PotentialDF1 was saved and received the ID: 833\n"
      ]
     },
     {
@@ -555,7 +603,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "vanilla-chocolate",
+   "id": "corporate-magnet",
    "metadata": {},
    "source": [
     "Plot the resiudal over steps to see how the calculation converges"
@@ -564,22 +612,12 @@
   {
    "cell_type": "code",
    "execution_count": 19,
-   "id": "aging-backing",
+   "id": "bored-benchmark",
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "text/plain": [
-       "[<matplotlib.lines.Line2D at 0x7fdb336c5ee0>]"
-      ]
-     },
-     "execution_count": 19,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWUUlEQVR4nO3dcZBdZ33e8e8jrS2wwWDjtaNIMpI9KiCTEsyOa0pC6TjENiGW2wwZeUjRJJ5RwzgNtM0kVj1T6Ew1Q5omTWhrZwS4iIZgVAJjtQkpHiUpacfGWRsbWxaOZQS2kLAWMwEDRrbkX/+4R9qrvbsr7d7du/a538945577nvfc89PZ9bNn33Pfe1JVSJKGw7KlLkCSNDiGviQNEUNfkoaIoS9JQ8TQl6QhMrLUBZzK+eefX2vXrl3qMiTpReXee+/9dlWNTm1/wYf+2rVrGR8fX+oyJOlFJck3pmt3eEeShoihL0lDxNCXpCFi6EvSEDll6Ce5LcnhJA9Ns+43klSS87vatibZl+SRJFd1tb8pyYPNug8nycL9MyRJp+N0zvQ/Dlw9tTHJGuDtwONdbRuATcClzTa3JFnerL4V2AKsb756XlOStLhOGfpV9UXgO9Os+k/AbwLdH9O5Ebi9qo5U1X5gH3B5kpXAOVV1V3U+1vMTwHX9Fi9Jmpt5jeknuRb4ZlU9MGXVKuCJrucHmrZVzfLU9plef0uS8STjExMT8ymRj/+//ex64OC8tpWktprz5KwkZwE3Az873epp2mqW9mlV1XZgO8DY2Ni8PvD/g//zYZYFrn3Dj89nc0lqpfmc6V8CrAMeSPJ1YDVwX5Ifo3MGv6ar72rgYNO+epr2RfPet13CyDLfnCRJ3eacilX1YFVdUFVrq2otnUC/rKq+BewCNiVZkWQdnQu291TVIeDpJFc079p5D3DHwv0zJEmn43Tesvkp4C7gNUkOJLlhpr5VtQfYCTwM/DlwY1Uda1a/F/gonYu7jwGf77N2SdIcnXJMv6quP8X6tVOebwO2TdNvHHj9HOvrS8182UCShlJrB72d+SVJvVob+pKkXoa+JA0RQ1+ShkirQ7+8jitJJ2lt6PsZnpLUq7WhL0nqZehL0hBpdeg7pC9JJ2tt6MfpWZLUo7WhL0nqZehL0hAx9CVpiLQ69MvZWZJ0ktaGvpOzJKlXa0NfktTL0JekIWLoS9IQaXXoexlXkk7W2tD3Oq4k9Tpl6Ce5LcnhJA91tf1Okq8m+UqSzyV5Zde6rUn2JXkkyVVd7W9K8mCz7sOJ76+RpEE7nTP9jwNXT2m7E3h9Vf194G+BrQBJNgCbgEubbW5JsrzZ5lZgC7C++Zr6mpKkRXbK0K+qLwLfmdL2hao62jy9G1jdLG8Ebq+qI1W1H9gHXJ5kJXBOVd1VnRlTnwCuW6B/wyy1L/YeJOnFZSHG9H8F+HyzvAp4omvdgaZtVbM8tX1aSbYkGU8yPjExMb+qHD2SpB59hX6Sm4GjwCePN03TrWZpn1ZVba+qsaoaGx0d7adESVKXkflumGQz8E7gypr8kJsDwJqubquBg0376mnaJUkDNK8z/SRXA78FXFtVP+xatQvYlGRFknV0LtjeU1WHgKeTXNG8a+c9wB191i5JmqNTnukn+RTwNuD8JAeAD9B5t84K4M7mnZd3V9WvVtWeJDuBh+kM+9xYVceal3ovnXcCvZTONYDPI0kaqFOGflVdP03zx2bpvw3YNk37OPD6OVXXBy/jSlKv1s7IlST1MvQlaYi0PvS9e5YkTWpt6Ds3S5J6tTb0JUm9DH1JGiKGviQNkdaHvtdxJWlSa0M/Ts+SpB6tDX1JUi9DX5KGSOtD3yF9SZrU2tB3cpYk9Wpt6EuSehn6kjREDH1JGiKtD30/ZVOSJrU29L2OK0m9Whv6kqRepwz9JLclOZzkoa6285LcmeTR5vHcrnVbk+xL8kiSq7ra35TkwWbdhxPfVClJg3Y6Z/ofB66e0nYTsLuq1gO7m+ck2QBsAi5ttrklyfJmm1uBLcD65mvqay4KR/QladIpQ7+qvgh8Z0rzRmBHs7wDuK6r/faqOlJV+4F9wOVJVgLnVNVd1bmy+omubRaFf0dIUq/5julfWFWHAJrHC5r2VcATXf0ONG2rmuWp7dNKsiXJeJLxiYmJeZYoSZpqoS/kTnd+XbO0T6uqtlfVWFWNjY6OLlhxkjTs5hv6TzZDNjSPh5v2A8Carn6rgYNN++pp2iVJAzTf0N8FbG6WNwN3dLVvSrIiyTo6F2zvaYaAnk5yRfOunfd0bbOonJslSZNGTtUhyaeAtwHnJzkAfAD4ELAzyQ3A48C7AKpqT5KdwMPAUeDGqjrWvNR76bwT6KXA55uvReM7QiWp1ylDv6qun2HVlTP03wZsm6Z9HHj9nKqTJC0oZ+RK0hAx9CVpiLQ+9Ms5uZJ0QutDX5I0ydCXpCFi6EvSEGl96Ds5S5ImtTb0nZslSb1aG/qSpF6GviQNEUNfkoaIoS9JQ6S1oZ9p79siScOttaEvSepl6EvSEGl96Ds5S5ImtTb0nZwlSb1aG/qSpF6GviQNkb5CP8m/TLInyUNJPpXkJUnOS3Jnkkebx3O7+m9Nsi/JI0mu6r98SdJczDv0k6wCfh0Yq6rXA8uBTcBNwO6qWg/sbp6TZEOz/lLgauCWJMv7K//UvHOWJE3qd3hnBHhpkhHgLOAgsBHY0azfAVzXLG8Ebq+qI1W1H9gHXN7n/mfkdVxJ6jXv0K+qbwL/EXgcOAR8t6q+AFxYVYeaPoeAC5pNVgFPdL3EgaatR5ItScaTjE9MTMy3REnSFP0M75xL5+x9HfDjwNlJfmm2TaZpm3bspaq2V9VYVY2Njo7Ot0RJ0hT9DO/8DLC/qiaq6jngs8A/BJ5MshKgeTzc9D8ArOnafjWd4aBF5eQsSZrUT+g/DlyR5KwkAa4E9gK7gM1Nn83AHc3yLmBTkhVJ1gHrgXv62P+snJwlSb1G5rthVX0pyWeA+4CjwJeB7cDLgJ1JbqDzi+FdTf89SXYCDzf9b6yqY33WL0mag3mHPkBVfQD4wJTmI3TO+qfrvw3Y1s8+JUnz54xcSRoirQ99r+NK0qTWhr53zpKkXq0NfUlSL0NfkoaIoS9JQ6T1oV9OyZWkE1ob+s7IlaRerQ19SVIvQ1+ShkjrQ98RfUma1PrQlyRNMvQlaYgY+pI0RAx9SRoirQ9952ZJ0qTWhn6cnSVJPVob+pKkXoa+JA2R9oe+Y/qSdEJfoZ/klUk+k+SrSfYmeXOS85LcmeTR5vHcrv5bk+xL8kiSq/ovf5baFvPFJelFqt8z/T8A/ryqXgu8AdgL3ATsrqr1wO7mOUk2AJuAS4GrgVuSLO9z/5KkOZh36Cc5B3gr8DGAqnq2qv4O2AjsaLrtAK5rljcCt1fVkaraD+wDLp/v/iVJc9fPmf7FwATw35J8OclHk5wNXFhVhwCaxwua/quAJ7q2P9C09UiyJcl4kvGJiYk+SpQkdesn9EeAy4Bbq+qNwA9ohnJmMN0w+7SXWatqe1WNVdXY6OhoHyVCeSVXkk7oJ/QPAAeq6kvN88/Q+SXwZJKVAM3j4a7+a7q2Xw0c7GP/s3JuliT1mnfoV9W3gCeSvKZpuhJ4GNgFbG7aNgN3NMu7gE1JViRZB6wH7pnv/iVJczfS5/b/AvhkkjOBrwG/TOcXyc4kNwCPA+8CqKo9SXbS+cVwFLixqo71uX9J0hz0FfpVdT8wNs2qK2fovw3Y1s8+58oPXJOkSa2dkeuQviT1am3oS5J6GfqSNEQMfUkaIq0Pfa/jStKk1oa+d86SpF6tDX1JUi9DX5KGSOtDv5ydJUkntDb0HdKXpF6tDX1JUi9DX5KGiKEvSUOk9aHvZVxJmtTa0Pc6riT1am3oS5J6GfqSNEQMfUkaIq0PfSfkStKkvkM/yfIkX07yv5rn5yW5M8mjzeO5XX23JtmX5JEkV/W771MUtqgvL0kvRgtxpv8+YG/X85uA3VW1HtjdPCfJBmATcClwNXBLkuULsH9J0mnqK/STrAZ+DvhoV/NGYEezvAO4rqv99qo6UlX7gX3A5f3sX5I0N/2e6f8+8JvA811tF1bVIYDm8YKmfRXwRFe/A01bjyRbkownGZ+YmOirwHJ6liSdMO/QT/JO4HBV3Xu6m0zTNm0iV9X2qhqrqrHR0dH51TevrSSp3Ub62PYtwLVJ3gG8BDgnyR8BTyZZWVWHkqwEDjf9DwBrurZfDRzsY/+SpDma95l+VW2tqtVVtZbOBdq/qKpfAnYBm5tum4E7muVdwKYkK5KsA9YD98y7cknSnPVzpj+TDwE7k9wAPA68C6Cq9iTZCTwMHAVurKpji7B/SdIMFiT0q+qvgL9qlp8Crpyh3zZg20Ls87R5HVeSTmjtjFznZklSr9aGviSpl6EvSUOk9aHvkL4kTWpt6MfpWZLUo7WhL0nqZehL0hAx9CVpiLQ+9L1zliRNam3oOzlLknq1NvQlSb0MfUkaIq0Pfe+cJUmTWhv6DulLUq/Whr4kqZehL0lDxNCXpCHS+tB3cpYkTWpt6Ds5S5J6zTv0k6xJ8pdJ9ibZk+R9Tft5Se5M8mjzeG7XNluT7EvySJKrFuIfIEk6ff2c6R8F/nVVvQ64ArgxyQbgJmB3Va0HdjfPadZtAi4FrgZuSbK8n+IlSXMz79CvqkNVdV+z/DSwF1gFbAR2NN12ANc1yxuB26vqSFXtB/YBl893/5KkuVuQMf0ka4E3Al8CLqyqQ9D5xQBc0HRbBTzRtdmBpm1ReR1Xkib1HfpJXgb8CfD+qvrebF2naZs2k5NsSTKeZHxiYmJ+dTknV5J69BX6Sc6gE/ifrKrPNs1PJlnZrF8JHG7aDwBrujZfDRyc7nWrantVjVXV2OjoaD8lSpK69PPunQAfA/ZW1e91rdoFbG6WNwN3dLVvSrIiyTpgPXDPfPcvSZq7kT62fQvwz4AHk9zftP0b4EPAziQ3AI8D7wKoqj1JdgIP03nnz41VdayP/Z+WcnaWJJ0w79Cvqv/LzB9meeUM22wDts13n3PikL4k9WjtjFxJUi9DX5KGSOtD/+kfHV3qEiTpBaO1oX/J6NkAfOSLX1viSiTphaO1of+mV5/Hq84+k89++Zsc+u4zS12OJL0gtDb0AW7+udcB8NePfnuJK5GkF4ZWh/7bN1wIwN2PPbXElUjSC0OrQ/9lKzrTEJ55btHngEnSi0KrQz8Jl130Sr5/xHfwSBK0PPQBzjpzxDF9SWq0PvRf/pLOEI+fwSNJQxD6P7H6FQAcOfr8ElciSUuv9aF//GLuN5764RJXIklLr/Whf8noywB490fvZu+h2W7sJUnt1/rQf/PFr+Kf/6OL+fb3n+X6j9zNj3z7pqQh1vrQX7YsbL3mdfzyW9bydz98jmv+4K/Zd/j7S12WJC2J1of+cR/4+Uu59d2Xsf/bP+A//8WjS12OJC2JoQl9gGt+YiUAj3/Hi7qShtNQhT7AP37NKM8867i+pOE0dKF/zkvP4LvPPLfUZUjSkhh46Ce5OskjSfYluWnQ+3/JyHIOffdHfh6PpKE0MsidJVkO/Ffg7cAB4G+S7KqqhwdVw09e9Eo+Pf4Eb/h3X2DrNa/l7BUjrBhZxpkjyzhj+TLOOnM5r/2xcxh9+YpBlSRJAzPQ0AcuB/ZV1dcAktwObAQGFvq/cNlq7nrsKXY9cJB//6d7Z+2bQOh8WueyQOg0pFm3LDmxPgDH27q2O973pGVyYvsT+2nal+Xk1zv+OpKGz5/++k+xYmT5gr7moEN/FfBE1/MDwD+Y2inJFmALwEUXXbSgBZw5sowPX/9GfvcX38APjxzjB88e5cjR5zl67HmePfY833vmKHsOfpfvPfMcBVRBUVTB881y8x9V1Wnr6gPwfNVJbcf71pS+1fTtfr1O2+Qyfk6cNLSa078FNejQn+5f0BNrVbUd2A4wNja2KLF3xvJlvOKsZbzirDN61r35klctxi4lackN+kLuAWBN1/PVwMEB1yBJQ2vQof83wPok65KcCWwCdg24BkkaWgMd3qmqo0l+DfjfwHLgtqraM8gaJGmYDXpMn6r6M+DPBr1fSdIQzsiVpGFm6EvSEDH0JWmIGPqSNERS9cKe8plkAvjGPDc/H/j2ApazUKxrbqxrbqxrbtpa16uranRq4ws+9PuRZLyqxpa6jqmsa26sa26sa26GrS6HdyRpiBj6kjRE2h7625e6gBlY19xY19xY19wMVV2tHtOXJJ2s7Wf6kqQuhr4kDZFWhv5S3nw9yZokf5lkb5I9Sd7XtH8wyTeT3N98vaNrm61NrY8kuWoRa/t6kgeb/Y83becluTPJo83juYOsK8lruo7J/Um+l+T9S3G8ktyW5HCSh7ra5nx8krypOc77knw4fd7vcoa6fifJV5N8JcnnkryyaV+b5Jmu4/aHi1XXLLXN+Xs3oGP26a6avp7k/qZ9IMdslmwY7M9Y5zZ+7fmi85HNjwEXA2cCDwAbBrj/lcBlzfLLgb8FNgAfBH5jmv4bmhpXAOua2pcvUm1fB86f0vYfgJua5ZuA3x50XVO+d98CXr0Uxwt4K3AZ8FA/xwe4B3gznTvFfR64ZhHq+llgpFn+7a661nb3m/I6C1rXLLXN+Xs3iGM2Zf3vAv92kMeMmbNhoD9jbTzTP3Hz9ap6Fjh+8/WBqKpDVXVfs/w0sJfOvYFnshG4vaqOVNV+YB+df8OgbAR2NMs7gOuWsK4rgceqarYZ2ItWV1V9EfjONPs77eOTZCVwTlXdVZ3/Oz/Rtc2C1VVVX6iqo83Tu+nchW5Gi1HXTLXNYkmP2XHNWfEvAp+a7TUWuq5ZsmGgP2NtDP3pbr4+W+gumiRrgTcCX2qafq35c/y2rj/hBllvAV9Icm86N58HuLCqDkHnhxK4YAnqOm4TJ/+PuNTHC+Z+fFY1y4OqD+BX6JztHbcuyZeT/J8kP920DbquuXzvBl3bTwNPVtWjXW0DPWZTsmGgP2NtDP3Tuvn6oheRvAz4E+D9VfU94FbgEuAngUN0/ryEwdb7lqq6DLgGuDHJW2fpO9DjmM7tM68F/kfT9EI4XrOZqY5BH7ebgaPAJ5umQ8BFVfVG4F8Bf5zknAHXNdfv3aC/p9dz8snFQI/ZNNkwY9cZ9t9XXW0M/SW/+XqSM+h8Uz9ZVZ8FqKonq+pYVT0PfITJIYmB1VtVB5vHw8DnmhqebP5cPP7n7OFB19W4Brivqp5salzy49WY6/E5wMlDLYtWX5LNwDuBdzd/5tMMBTzVLN9LZxz47w2yrnl87wZ5zEaAfwp8uqvegR2z6bKBAf+MtTH0l/Tm68144ceAvVX1e13tK7u6/RPg+LsKdgGbkqxIsg5YT+cizULXdXaSlx9fpnMh8KFm/5ubbpuBOwZZV5eTzr6W+nh1mdPxaf48fzrJFc3Pwnu6tlkwSa4Gfgu4tqp+2NU+mmR5s3xxU9fXBlVXs985fe8GWRvwM8BXq+rE8MigjtlM2cCgf8bmeyX6hfwFvIPOlfHHgJsHvO+fovOn1leA+5uvdwD/HXiwad8FrOza5uam1kdYgHdUzFDXxXTeCfAAsOf4cQFeBewGHm0ezxtkXc1+zgKeAl7R1Tbw40Xnl84h4Dk6Z1M3zOf4AGN0gu4x4L/QzHxf4Lr20RnvPf4z9odN319ovr8PAPcBP79Ydc1S25y/d4M4Zk37x4FfndJ3IMeMmbNhoD9jfgyDJA2RNg7vSJJmYOhL0hAx9CVpiBj6kjREDH1JGiKGviQNEUNfkobI/wdEaXp5kEKZcAAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAZWElEQVR4nO3de5AcZ3nv8e/TM3vR/brYji5IsoVBJ2DZLDZXkxSEyOQYEThwrLjqmIMiYxIfkspJKqYIqZyqk6QcV6gUhYJLCY5J4mNFmASkOgKTEIODsYPWxsIWQmglhL2Wba2k+CJLq92defLH9OzOjnaWnZ3py3b/PlVbu9PT8/ajntFv3nm7521zd0REJPuCpAsQEZF4KPBFRHJCgS8ikhMKfBGRnFDgi4jkRDHpAqayfPlyX7NmTdJliIjMGo8++uhJd++Z7L5UB/6aNWvo6+tLugwRkVnDzH7a6L5UDumY2fVmtuPFF19MuhQRkcxIZeC7+x53v3nRokVJlyIikhmpDHwREWk/Bb6ISE4o8EVEckKBLyKSEwp8EZGcyGTg/81DP2HP/uNJlyEikiqp/uLVTP2fPT+ko2Bcf8XPJV2KiEhqZLKH/7F3rsPMki5DRCRVMhn4hoEu5CUiMkE2A1+dexGRC8QW+Gb2OjO708zuM7OPR709VxdfRGSClgLfzO4ysxNm9mTd8k1mdsjM+s3sNgB3P+jutwAfBnpb2e7PrAvQtdlFRCZqtYd/N7CpdoGZFYDtwHXABmCLmW0I73sf8B3gmy1ud0qmIXwRkQu0FPju/iBwum7x1UC/ux9192FgJ7A5XH+3u78VuLFRm2Z2s5n1mVnf4ODgjOoyDFcXX0RkgijOw18BPF1zewC4xsx+AfgA0AXsbfRgd98B7ADo7e2dUWrroK2IyIWiCPzJ4tbd/VvAtyLY3qTUvxcRmSiKs3QGgFU1t1cCTc1z0OoVr3TQVkTkQlEE/j5gvZmtNbNO4AZgdzMNtHzFK43piIhcoNXTMu8FHgYuN7MBM9vq7qPArcD9wEFgl7sfaLLdlnv4IiIyUUtj+O6+pcHyvUxxYHYa7e4B9vT29m6baRthO5pTR0QklOmpFTSOLyIyLpWB3/qQTiXxlfciIuNSGfitHrQd7+Er8kVEqlIZ+K3SqL2IyIUyGfhV6t+LiIxLZeC3PIavg7YiIhdIZeC3PoZfPWirxBcRqUpl4LeLevgiIuNSGfitDumIiMiFUhn47TotU0RExqUy8Fs19sUrDemIiIzJZuBXz9LRQVsRkTHZDPykCxARSaFUBn67DtpqSEdEZFwqA79tc+m0sSYRkdkulYHfqvGDtop8EZGqbAa+evgiIhfIZOCLiMiFMh34GtERERmXycA3jemIiFwglYHf+iUOK/TFKxGRcakMfM2lIyLSfqkM/HbRGL6IyLhMBv74kI6IiFRlM/BNX7wSEamX0cCv/Fbci4iMy2bgJ12AiEgKZTLwqzSiIyIyLpWB3/L0yNUxfA3qiIiMSWXgt3we/lhDbStJRGTWS2Xgt0pfvBIRuVAmA79KHXwRkXGZDPzxC6AkXIiISIpkM/DHzsNX4ouIVGUz8MPf6uGLiIzLZuCHif/S0EiyhYiIpEgmA//SnvkAfPG7P024EhGR9Mhk4PeuWUpnMeDe7z3FueFS0uWIiKRCJgMf4OPvvBSABw6dSLgSEZF0yGzg/9o1qwH4j7PDCVciIpIOsQW+mb3fzP7KzL5qZu+JensLuzsA+M7hk1FvSkRkVmgp8M3sLjM7YWZP1i3fZGaHzKzfzG4DcPevuPs24CPAf29lu9Mxp7MAQKB5FkREgNZ7+HcDm2oXmFkB2A5cB2wAtpjZhppV/iC8P3I/v2IhQyM6aCsiAi0Gvrs/CJyuW3w10O/uR919GNgJbLaK24Gvuftjjdo0s5vNrM/M+gYHB1spj+5igXMKfBERIJox/BXA0zW3B8Jl/wt4N/DfzOyWRg929x3u3uvuvT09PS0V0t1R4LtHTrXUhohIVhQjaHOyQXN3988Cn41gew2Vyk4x0Bi+iAhE08MfAFbV3F4JHG+mgZaveBW66tWLNX2aiEgoisDfB6w3s7Vm1gncAOxupoFWr3hV1VkoUCo7pbJiX0Sk1dMy7wUeBi43swEz2+ruo8CtwP3AQWCXux9ost229PA7ipXhnJFSuaV2RESyoKUxfHff0mD5XmBvC+3uAfb09vZum2kbAJ2FyvvZ+dEy3R2FVpoSEZn1Mju1AkBnsfLPe+7FoYQrERFJXioDv11DOj3zuwB45oWz7ShLRGRWS2Xgt+ug7esuWQhoXnwREUhp4LfLqqVzedtly/j2jwf5yvefSbocEZFEpTLw2zWkUwiM7b92FQDf/JHmxReRfEtl4LdrSAdg8dxOrli5iIPPvtSGykREZq9UBn67LejuoP/EGZ4+rYO3IpJfuQj8bdeuA+A37mk4SaeISOalMvDbNYZf9c7X9HBpzzyeeOZFDhxvT5siIrNNKgO/nWP4Vbd/8A2ALnkoIvmVysCPwpWrlwDogigiklu5CfxCYHQUjKERTaQmIvmUm8CHymRqPzl5JukyREQSkcrAb/dB26pXhkuaSE1EciuVgR/FQVuAjasW01XUNMkikk+pDPyozOsqUHZd/UpE8ilXgR+YKfBFJLdyFfhmhi5vKyJ5lavADwxcPXwRyalUBn5UZ+kE6uGLSI6lMvCjOksnMDSGLyK5lcrAj4rG8EUkz3IV+BrDF5E8y1ng67RMEcmvHAZ+0lWIiCQjV4FvOmgrIjmWq8APzFDei0he5Szw1cMXkfxKZeBH+8UrBb6I5FMqAz+qL16ZGWVd8EpEciqVgR8VnYcvInmWs8A3RnRepojkVK4Cf6RcZvDl8wyPalxHRPInV4G/ZG4nAOdGSglXIiISv1wF/qolcwAoaVhHRHIoV4FfCAxQ4ItIPuUq8IMw8HUuvojkUa4Cv2Dq4YtIfuUq8AMN6YhIjuUq8Ks9fA3piEgexRb4ZrbOzL5gZvfFtc16OmgrInnWUuCb2V1mdsLMnqxbvsnMDplZv5ndBuDuR919ayvba5UO2opInrXaw78b2FS7wMwKwHbgOmADsMXMNrS4nbYohoE/qh6+iORQS4Hv7g8Cp+sWXw30hz36YWAnsHm6bZrZzWbWZ2Z9g4ODrZR3gUBn6YhIjkUxhr8CeLrm9gCwwsyWmdmdwJVm9slGD3b3He7e6+69PT09bS2sOoZ/7OTZtrYrIjIbFCNo0yZZ5u5+Crglgu1N25plcwHYd+w0v/KGS5IsRUQkdlH08AeAVTW3VwLHm2kgqiterb9oARct7OIbB55ra7siIrNBFIG/D1hvZmvNrBO4AdjdTANRXfEKYH5XkfndUXywERFJt1ZPy7wXeBi43MwGzGyru48CtwL3AweBXe5+oMl2I+nhA7z24oU6aCsiudRSV9fdtzRYvhfY20K7e4A9vb2922baRiNBYCjvRSSPcjW1AkDBdFqmiORTKgM/yiGdIDAFvojkUioDP8qDtsXANLWCiORSKgM/SoXANLWCiORSKgM/0iEdM8oKfBHJoVQGfpRDOoXAKGlIR0RyKJWBH6XAdNBWRPIpd4FfDDSkIyL5lMrAj3IMvxAYrwyXGBoptb1tEZE0S2XgRzmGv3x+FwCf+9f+trctIpJmqQz8KL3/yhV0FgM+90A/h59/OelyRERik7vA71nQxd9vvQaAP/xqU3O6iYjMarkLfIA3rVnCgq4iDx89Rf+JM7hO0xSRHEhl4Ed50DZsn+03XgXAuz/zba694wG++vgzkWxLRCQtUhn4UR60rbr2NT184aZePvXe19FRCPitnY/zwKETkW1PRCRpqQz8uLzrdRex7dp13P2RqwH4vS/9IOGKRESik+vAr1q9bC43XrOak2fOc/LM+aTLERGJhAI/dMWqxQD8WKdqikhGKfBDG8PAf+TIqWQLERGJSCoDP+qzdCZzac98AM2VLyKZlcrAj+MsnXqFwOgsBpo6WUQyK5WBnxTNpCkiWabAr1EwXf5QRLJLgV8jUA9fRDJMgV9Dlz8UkSxT4NcoBEapnHQVIiLRUODXKJhRKivxRSSbFPg11MMXkSxLZeAn8cUrgCCAssbwRSSjUhn4SXzxCqpDOgp8EcmmVAZ+UoLA2L3/eNJliIhEQoFfY9GcDgBGNJAvIhmkwK/x/o0rAHj69NmEKxERaT8Ffo3Fcys9/GOnXkm4EhGR9lPg17j84gUADI1oSEdEskeBX6O7WABgaKSUcCUiIu2nwK/R3VEJ/GMnNaQjItmjwK+xeG4H3R0Bn/3Xfs4OjyZdjohIWynwa3R3FNj69rUAfOvQYMLViIi0lwK/zofeuArQOL6IZE8xrg2Z2TzgL4Fh4Fvufk9c225GsWCALmYuItnTUg/fzO4ysxNm9mTd8k1mdsjM+s3stnDxB4D73H0b8L5WthulYlDZJaMlBb6IZEurQzp3A5tqF5hZAdgOXAdsALaY2QZgJfB0uFpqx0sKQaWHr3nxRSRrWgp8d38QOF23+Gqg392PuvswsBPYDAxQCf0pt2tmN5tZn5n1DQ7Gf+C0Q0M6IpJRURy0XcF4Tx4qQb8C+Efgg2b2eWBPowe7+w5373X33p6engjKm1q1h68hHRHJmigO2toky9zdXwH+57QaMLseuP6yyy5ra2HT0VEIx/DVwxeRjImihz8ArKq5vRJoapL5pC6AAuM9/EPPvRT7tkVEohRF4O8D1pvZWjPrBG4AdkewnUgUw8Af0ZCOiGRMq6dl3gs8DFxuZgNmttXdR4FbgfuBg8Audz/QZLuJXNM23DbrXzVf17YVkcxpaQzf3bc0WL4X2NtCu3uAPb29vdtm2kYrioVAY/gikjmaWmESxcAY1WUORSRjUhn4SQ7pQGV6BfXwRSRrUhn4SZ6lA9UevgJfRLIllYGftGIQMKqpFUQkY1IZ+BrSERFpv1QGftJDOmbG9596QVe9EpFMSWXgJ23d8nkAnDoznHAlIiLto8CfRO+aJQCc01WvRCRDUhn4SY/hz+koALrMoYhkSyoDP+kx/Grgf6f/ZCLbFxGJQioDP2mvX1l5o3lIgS8iGRLbRcxnkwXdHWxctZiH+k+x/YF+Vi+dy6I5HbxqYRevvXhh0uWJiMyIAr+BW955Kbd//Ufccf+hCctfv2IRuz72FuZ0FhKqTERkZsxTOA1wzRWvth0+fDjRWl4eGuGZF85xZmiUO799lH85+Dyrl85l18fewsWLuhOtTUSknpk96u69k96XxsCv6u3t9b6+vqTLmODGv36Eh/pPAfCZD1/BB65a+TMeISISn6kCXwdtm/T3W6/hK7/5NgB+Z9d+tj/Qr9M3RWRWUOA3yczYuGoxO29+M1euXswd9x/itZ/+Oju/91TSpYmITElDOi362hPP8vF7HgNg46rFvHrZXN566TI2b1xBd4cO7IpIvDSkE6HrXn8Jj336l/jQG1dSDIw9+4/z+19+gv/7/3+YdGkiIhOk8rTMmrN0ki5lWpbO6+SOD10BVKZjeO2nv07fsf+g79hpetcsTbg6EZEKDelE4He/tJ/7Hh0AKlfPmtdVpKsY0FEImN9V5OJF3XzkbWv4xctflXClIpI1Oi0zZuWyc/zFc3zjwPMMnjnP2fOjDJfKnB8p88rwKPcfeB6ARz75Lp3LLyJtNVXgp3JIZ7YLAmPlkrl89O1rJ73/kaOnuGHHI3xi5/fZ9bG3xFydiOSVDtom4M3rlrF0Xif7n34h6VJEJEcU+Am5dv1yzo+WOf2KrqolIvFQ4CfkPf/lYgC+e0RTMItIPBT4CblqdeUyig8fOZVwJSKSFwr8hFy0sAuAe/79KQ4993LC1YhIHqQy8JO+pm0czIw/+dXX090R8Mt/8SC//sV9jJbKSZclIhmm8/ATduLlIf73rv382+GTdHcE3HXTm3jrZcuTLktEZil98SrlymXn9+77AV9+rPLt3J9fsZBl87roKAR0Fm3sG7obVy1mxZI5vGHlYuZ1FjCzhCsXkbRR4M8SZ4dH+et/+wn7jp3mpaFRRkbLjJQqPyfPDHPm/OiE9YuBUSwYxSBgybwO3vTqpfzc4jl0FgOqbwXV94T6N4ex5eGa47envn/88dZg/br765bT8HHTq6P2V2CG2fhvM6tbXlkzCO+r/J5svcptq2tvrORJ9ttk9zZ+jDVYXrv+5O1M2NI01p9um43/Te3995hBVzGgq1igI+y8FANTZyVC+qbtLDG3s8gn3rV+0vtGS2WeOn2Wn54+yw+Pv8T50TKjpTKlsjNScvoHz/DQkZOcePk8KX4PFwFgQVeRngVdY2+wtW/aQd2b+NhtxpcXAqO7oxA+lp/xxh++/UzSTvVNvhi2110M6O4s0F0sVG53BMzpqPzd1RHQ3VEYu93dEdBdLDCns0BXMZgVb2IK/FmiWAhY1zOfdT3zp5x0zd0plSuJ72PLwt/hkvo3hEb3jz9+8vaY4eMcr3t8k3X4+Pplr6xddse9sk7t7fHllXbL4TqVXVS9PfHx5Zr9M1Zr3X6rf0+t/aQ84b7ptNWg3UZteoMNNG5n8hqmu+3G6//sf0/ZnaHRMsNhB2WkVGa45Jx+5TwvnB3Bw22Vy+PPZfU5qH8Oa38Pj5Z5aWiEUjl8zuue38rtyV4H1W1M3N5o2RkaKTE0MvMTJ7qK428IncXgwk+3XPjJmEk+RVXX2fuJd9BZbO95NQr8jDGrDPOISPPcnfOj5bHwHxopcW6kNH57tMTQcKnye8L9Zc6H650bKTE8WnnjmOyNt74DM2G9mgcEEfw3VuCLiITMwqGdjF6tLpXn4YuISPsp8EVEckKBLyKSEwp8EZGciC3wzWydmX3BzO6La5siIjJuWoFvZneZ2Qkze7Ju+SYzO2Rm/WZ221RtuPtRd9/aSrEiIjJz0z0t827gc8DfVheYWQHYDvwSMADsM7PdQAH407rHf9TdT7RcrYiIzNi0At/dHzSzNXWLrwb63f0ogJntBDa7+58C/3WmBZnZzcDNAKtXr55pMyIiUqeVL16tAJ6uuT0AXNNoZTNbBvwxcKWZfTJ8Y7iAu+8AdoSPGTSzn86wvuVAGq8fqLqao7qao7qak8W6Xt3ojlYCf7Iv/jactsvdTwG3NLMBd+9ptqgqM+trNGNcklRXc1RXc1RXc/JWVytn6QwAq2purwSOt1aOiIhEpZXA3wesN7O1ZtYJ3ADsbk9ZIiLSbtM9LfNe4GHgcjMbMLOt7j4K3ArcDxwEdrn7gehKbdqOpAtoQHU1R3U1R3U1J1d1pfqKVyIi0j6aWkFEJCcU+CIiOZG5wG9muocItr3KzB4ws4NmdsDMfitc/kdm9oyZPR7+vLfmMZ8Maz1kZr8cYW3HzOyJcPt94bKlZvbPZnY4/L0kzrrM7PKaffK4mb1kZr+dxP6abPqQmewfM3tjuJ/7zeyz1uKFThvUdYeZ/cjMfmBm/2Rmi8Pla8zsXM1+uzOquqaorennLqZ99g81NR0zs8fD5bHssymyId7XWOX6j9n4oTKtwxFgHdAJ7Ac2xLj9S4Crwr8XAD8GNgB/BPzuJOtvCGvsAtaGtRciqu0YsLxu2Z8Bt4V/3wbcHndddc/dc1S+NBL7/gKuBa4Cnmxl/wDfA95C5XsqXwOui6Cu9wDF8O/ba+paU7teXTttrWuK2pp+7uLYZ3X3/znwh3HuMxpnQ6yvsaz18Meme3D3YWAnsDmujbv7s+7+WPj3y1TOXloxxUM2Azvd/by7/wTop/JviMtm4Ivh318E3p9gXe8Cjrj7VN+sjqwud38QOD3J9qa9f8zsEmChuz/slf+Zf1vzmLbV5e7f8MpZcgCPUPkOTENR1NWotikkus+qwt7wh4F7p2qj3XVNkQ2xvsayFviTTfcwVeBGxipzD10J/Hu46NbwI/hdNR/b4qzXgW+Y2aNWma8I4CJ3fxYqL0jgVQnUVXUDE/8TJr2/oPn9syL8O676AD5KpZdXtdbMvm9m3zazd4TL4q6rmecu7treATzv7odrlsW6z+qyIdbXWNYCv6npHiIrwmw+8GXgt939JeDzwKXARuBZKh8pId563+buVwHXAb9pZtdOsW6s+9EqX9x7H/ClcFEa9tdUGtUR9377FDAK3BMuehZY7e5XAr8D/D8zWxhzXc0+d3E/p1uY2LGIdZ9Nkg0NV22w/ZbqylrgJz7dg5l1UHlC73H3fwRw9+fdveTuZeCvGB+GiK1edz8e/j4B/FNYw/PhR8TqR9jqFNZx78frgMfc/fmwxsT3V6jZ/TPAxOGVyOozs5uozEp7Y/jRnvDj/6nw70epjPu+Js66ZvDcxbnPisAHgH+oqTe2fTZZNhDzayxrgZ/odA/h+OAXgIPu/pma5ZfUrParQPXsgd3ADWbWZWZrgfVUDsi0u655Zrag+jeVg35Phtu/KVztJuCrcdZVY0KvK+n9VaOp/RN+JH/ZzN4cvhb+R81j2sbMNgG/D7zP3c/WLO+xynUqMLN1YV1H46or3G5Tz12ctQHvBn7k7mNDInHts0bZQNyvsZkedU7rD/BeKkfAjwCfinnbb6fy8eoHwOPhz3uBvwOeCJfvBi6pecynwloP0YYzJxrUtY7KEf/9wIHqfgGWAd8EDoe/l8ZZV7iducApYFHNstj3F5U3nGeBESq9qK0z2T9AL5WQO0LlokEWQV39VMZ3q6+xO8N1Pxg+v/uBx4Dro6pritqafu7i2Gfh8ruBW+rWjWWf0TgbYn2NaWoFEZGcyNqQjoiINKDAFxHJCQW+iEhOKPBFRHJCgS8ikhMKfBGRnFDgi4jkxH8CQW0wXvV+inEAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -592,12 +630,12 @@
    ],
    "source": [
     "plt.plot(job.output.iterations, job.output.residual)\n",
-    "#plt.ylim(0,5)"
+    "plt.yscale(\"log\")"
    ]
   },
   {
    "cell_type": "markdown",
-   "id": "informed-formula",
+   "id": "coordinated-sodium",
    "metadata": {},
    "source": [
     "Finally it is a good idea to have a look at the final potential. This can reveal unphysical behavior"
@@ -606,7 +644,7 @@
   {
    "cell_type": "code",
    "execution_count": 20,
-   "id": "resident-gnome",
+   "id": "amateur-decade",
    "metadata": {},
    "outputs": [
     {
@@ -643,36 +681,36 @@
   {
    "cell_type": "code",
    "execution_count": 21,
-   "id": "adult-democracy",
+   "id": "undefined-analyst",
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "The job PotentialTest was saved and received the ID: 820\n",
-      "The job strain_0_9 was saved and received the ID: 821\n",
-      "The job strain_0_92 was saved and received the ID: 822\n",
-      "The job strain_0_94 was saved and received the ID: 823\n",
-      "The job strain_0_96 was saved and received the ID: 824\n",
-      "The job strain_0_98 was saved and received the ID: 825\n",
-      "The job strain_1_0 was saved and received the ID: 826\n",
-      "The job strain_1_02 was saved and received the ID: 827\n",
-      "The job strain_1_04 was saved and received the ID: 828\n",
-      "The job strain_1_06 was saved and received the ID: 829\n",
-      "The job strain_1_08 was saved and received the ID: 830\n",
-      "The job strain_1_1 was saved and received the ID: 831\n",
-      "job_id:  821 finished\n",
-      "job_id:  822 finished\n",
-      "job_id:  823 finished\n",
-      "job_id:  824 finished\n",
-      "job_id:  825 finished\n",
-      "job_id:  826 finished\n",
-      "job_id:  827 finished\n",
-      "job_id:  828 finished\n",
-      "job_id:  829 finished\n",
-      "job_id:  830 finished\n",
-      "job_id:  831 finished\n"
+      "The job PotentialTest was saved and received the ID: 834\n",
+      "The job strain_0_9 was saved and received the ID: 835\n",
+      "The job strain_0_92 was saved and received the ID: 836\n",
+      "The job strain_0_94 was saved and received the ID: 837\n",
+      "The job strain_0_96 was saved and received the ID: 838\n",
+      "The job strain_0_98 was saved and received the ID: 839\n",
+      "The job strain_1_0 was saved and received the ID: 840\n",
+      "The job strain_1_02 was saved and received the ID: 841\n",
+      "The job strain_1_04 was saved and received the ID: 842\n",
+      "The job strain_1_06 was saved and received the ID: 843\n",
+      "The job strain_1_08 was saved and received the ID: 844\n",
+      "The job strain_1_1 was saved and received the ID: 845\n",
+      "job_id:  835 finished\n",
+      "job_id:  836 finished\n",
+      "job_id:  837 finished\n",
+      "job_id:  838 finished\n",
+      "job_id:  839 finished\n",
+      "job_id:  840 finished\n",
+      "job_id:  841 finished\n",
+      "job_id:  842 finished\n",
+      "job_id:  843 finished\n",
+      "job_id:  844 finished\n",
+      "job_id:  845 finished\n"
      ]
     }
    ],
@@ -687,7 +725,7 @@
   {
    "cell_type": "code",
    "execution_count": 22,
-   "id": "vocal-heather",
+   "id": "instant-aggregate",
    "metadata": {},
    "outputs": [
     {
@@ -710,13 +748,13 @@
   {
    "cell_type": "code",
    "execution_count": 23,
-   "id": "attached-palestinian",
+   "id": "postal-account",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "140.0186998321462"
+       "3.632164318463751"
       ]
      },
      "execution_count": 23,
@@ -725,12 +763,12 @@
     }
    ],
    "source": [
-    "murn[\"output/equilibrium_bulk_modulus\"]"
+    "murn[\"output/equilibrium_volume\"]**(1/3)"
    ]
   },
   {
    "cell_type": "markdown",
-   "id": "injured-rainbow",
+   "id": "taken-thought",
    "metadata": {},
    "source": [
     "### Same cane be done for the 1000 structures dataset\n",
@@ -745,21 +783,14 @@
   {
    "cell_type": "code",
    "execution_count": 24,
-   "id": "focal-rehabilitation",
+   "id": "vital-machinery",
    "metadata": {},
    "outputs": [
     {
      "name": "stdin",
      "output_type": "stream",
      "text": [
-      "Are you sure you want to delete all jobs from 'PotentialDF2'? y/(n) n\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "No jobs removed from 'PotentialDF2'.\n"
+      "Are you sure you want to delete all jobs from 'PotentialDF2'? y/(n) y\n"
      ]
     }
    ],
@@ -775,7 +806,7 @@
   {
    "cell_type": "code",
    "execution_count": 25,
-   "id": "bibliographic-wonder",
+   "id": "historic-opposition",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -790,7 +821,7 @@
   {
    "cell_type": "code",
    "execution_count": 26,
-   "id": "taken-remove",
+   "id": "secure-front",
    "metadata": {},
    "outputs": [],
    "source": [
@@ -800,31 +831,39 @@
   {
    "cell_type": "code",
    "execution_count": 27,
-   "id": "loved-princess",
+   "id": "outstanding-lounge",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The job PotentialDF2 was saved and received the ID: 846\n"
+     ]
+    }
+   ],
    "source": [
     "j.input.atom_types.Cu = None\n",
     "j.input.fit_algorithm = j.factories.algorithms.ar_lbfgs(max_iter=100000)\n",
     "\n",
     "## if possible increase number of cores\n",
-    "#j.server.cores = 16\n",
+    "j.server.cores = 16\n",
     "t1 = time.time()\n",
     "## Uncomment if you want to run the job\n",
-    "#j.run()\n",
+    "j.run()\n",
     "t2 = time.time()"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 28,
-   "id": "sunrise-brother",
+   "id": "atmospheric-collection",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "text/plain": [
-       "2.1457672119140625e-05"
+       "861.4345953464508"
       ]
      },
      "execution_count": 28,
@@ -839,7 +878,7 @@
   {
    "cell_type": "code",
    "execution_count": 29,
-   "id": "therapeutic-treasure",
+   "id": "aggregate-orchestra",
    "metadata": {},
    "outputs": [
     {
@@ -850,7 +889,7 @@
        "residual": "array([758.612 , 758.612 , 758.612 , ...,  58.7461,  58.7461,  58.7461])"
       },
       "text/plain": [
-       "Output({'error': None, 'iterations': array([   1,    2,    3, ..., 5594, 5595, 5596], dtype=uint32), 'residual': array([758.612 , 758.612 , 758.612 , ...,  58.7461,  58.7461,  58.7461])})"
+       "Output({'error': None, 'residual': array([758.612 , 758.612 , 758.612 , ...,  58.7461,  58.7461,  58.7461]), 'iterations': array([   1,    2,    3, ..., 5594, 5595, 5596], dtype=uint32)})"
       ]
      },
      "execution_count": 29,
@@ -864,7 +903,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "composite-porter",
+   "id": "growing-inspection",
    "metadata": {},
    "source": [
     "This is the result if the initilly guessed values are taken instead of the fitted ones."
@@ -872,15 +911,15 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
-   "id": "regulated-document",
+   "execution_count": 30,
+   "id": "polyphonic-trustee",
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "The job PotentialDF2_BadStartParams was saved and received the ID: 832\n"
+      "The job PotentialDF2_BadStartParams was saved and received the ID: 847\n"
      ]
     }
    ],
@@ -898,23 +937,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 34,
-   "id": "greek-infrastructure",
+   "execution_count": 31,
+   "id": "exposed-tutorial",
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/json": {
        "error": "None",
-       "iterations": "array([   1,    2,    3, ..., 5289, 5290, 5291], dtype=uint32)",
-       "residual": "array([5717.28  , 5717.28  , 5717.28  , ...,   58.7461,   58.7461,\n         58.7461])"
+       "iterations": "array([   1,    2,    3, ..., 5357, 5358, 5359], dtype=uint32)",
+       "residual": "array([5717.28 , 5717.28 , 5717.28 , ...,   58.746,   58.746,   58.746])"
       },
       "text/plain": [
-       "Output({'error': None, 'residual': array([5717.28  , 5717.28  , 5717.28  , ...,   58.7461,   58.7461,\n",
-       "         58.7461]), 'iterations': array([   1,    2,    3, ..., 5289, 5290, 5291], dtype=uint32)})"
+       "Output({'error': None, 'residual': array([5717.28 , 5717.28 , 5717.28 , ...,   58.746,   58.746,   58.746]), 'iterations': array([   1,    2,    3, ..., 5357, 5358, 5359], dtype=uint32)})"
       ]
      },
-     "execution_count": 34,
+     "execution_count": 31,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -925,7 +963,7 @@
   },
   {
    "cell_type": "markdown",
-   "id": "twenty-collins",
+   "id": "general-proceeding",
    "metadata": {},
    "source": [
     "With this choice of functions and initial parameters starting directly from all structures gives the same residual. In a previous iteration of the potential it was about 7 times worse, so it is a good idea to test this."