diff --git a/day_2/02-runner/Workflow-RuNNer.ipynb b/day_2/02-runner/Workflow-RuNNer.ipynb index 21a5316422f4d7b7bf2a0d8321ededb7d7679bac..2befa6aa6748772563f0f6f0f3a870c90b63a820 100644 --- a/day_2/02-runner/Workflow-RuNNer.ipynb +++ b/day_2/02-runner/Workflow-RuNNer.ipynb @@ -1,1071 +1 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Getting started with **RuNNer**\n", - "## Constructing a HDNNP for Bulk Copper\n", - "\n", - "This Jupyter Notebook is written for the RuNNer tutorial at the workshop \"WORKFLOWS FOR ATOMISTIC SIMULATION\" from 10-12 March, 2021 by **Marius Herbold** (marius.herbold@chemie.uni-goettingen.de, Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie).\n", - "\n", - "It is written in text form for an easier understanding, if participants will get back later to this notebook. Anyhow, during the tutorial, we will\n", - "not explicitly go through the text.\n", - "\n", - "For this tutorial it is intended to use the RuNNer release version 1.2.\n", - "RuNNer is hosted at www.gitlab.com. The most recent version can only be found in this repository.\n", - "For access please contact Prof. Jörg Behler (joerg.behler@uni-goettingen.de)." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "### Install python modules\n", - "### Not necessary in the workshop environment\n", - "#!pip3 install -U matplotlib\n", - "#!pip3 install -U pandas\n", - "#!pip3 install -U ase\n", - "\n", - "### Import python modules\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import pandas as pd\n", - "import ase\n", - "\n", - "### Import Marius Class and functions\n", - "import functions as fc\n", - "\n", - "### Varibales form RuNNer UC\n", - "Bohr2Ang = 0.5291772109030 # CODATA 2018\n", - "Ang2Bohr = 1/Bohr2Ang\n", - "Eh2eV = 27.211386245988 # CODATA 2018\n", - "eV2Eh = 1/Eh2eV\n", - "f_conversion = eV2Eh/Ang2Bohr" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# About RuNNer\n", - "**RuNNer** is a stand-alone Fortran program for the construction of high-dimensional neural network potentials (HDNNP), written mainly by Jörg Behler. It relates the local environment of an atom to its atomic energy $E_\\mathrm{s}$, which contributes to the sum of all $N$ atomic energies, resulting in the total energy of the system $E_\\mathrm{s}$\n", - "\n", - "\\begin{equation}\n", - " E_\\mathrm{s} = \\sum_{a}^{N}E_\\mathrm{a}.\n", - "\\end{equation}\n", - "\n", - "The atomic energy is described by an atomic neural network (NN), which is element specific. This gives the oppurtunity to describe different numbers of atoms with the same NN, which would be not the case, if there is only one NN for the whole system. To feed information to the NN, the local environment up to a certain cutoff radius $R_\\mathrm{c}$ is described by so-called symmetry functions (SF) (more details are shown in a few moments) forming the SF vector $G$, which forms the input layer of the NN. In the next layers of the NN - the hidden layers - this information will be processed and in the final layer - the output layer - the atomic NN will provide the atomic energy $E_\\mathrm{a}$. In each layer, there are a certain number of nodes $y$ which are connected by the weights $a$ and can be biased by the biases $b$. For the NN training the wheights and biases are optimized to represent best the data in the training data set.\n", - "\n", - "\n", - "\n", - "In general **RuNNer** can be separated into three different stages - so-called modes, in which different steps are performed.\n", - "- mode 1: SF calculation, data set splitting in training and test set\n", - "- mode 2: training of the NN to construct the NNP\n", - "- mode 3: prediction of energy, forces, stress, charges\n", - "\n", - "All these steps are performed consecutively beginning with mode 1. Needed input files are:\n", - "* ``input.nn``: \n", - " - main control file needed in all modes\n", - " - contains all control parameters (NN architecture, symmetry functios, ...)\n", - "* ``input.data``:\n", - " - needed in mode 1 and 3\n", - " - contains structural information (lattice vectors, atomic positions, forces, charges, total energy)\n", - " - output of electronic structure code must be converted to ``input.data`` format\n", - " - RuNNer repository provides the RuNNerUC (universial converter) to convert from several formats (FHI-aims, VASP, xyz, LAMMPS) to input.data format and vice-versa" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Getting the First Data Set\n", - "\n", - "Before we are gettinger deeper into **RuNNer**, we will go one step back. At the beginning of each NNP, there is your data set. For sure, the data set does not have to be good/perfect/large, because you can increase your data set step by step and train different generations of your NN, ending up with an accurate potential. For getting your first data set, there are several ways like:\n", - "- small random displacements,\n", - "- thermal displacements by a simple potential - like force fields - in MD,\n", - "- experimental structures.\n", - "\n", - "The question \"What is a good data set?\" is not that simple to answer and it strongly depends on the purpose of your potential. But one important point is for sure the distribution of your data over the configurational space you like to handle with your potential. If some configurations are missing, the NNP will provide inaccurate results, because you make the NNP predict energies and forces for an unknown configuration. In **RuNNer**, this is called an ``extrapolation``, that means the NNP is not trained to such a configuration.\n", - "\n", - "Here in the workshop, we are dealing with bulk-Cu. So, a first application of your NNP could be to predict the equilibrium lattice constant of bulk-Cu and you will calculate the energy of a bulk-Cu unit cell with different lattice constants to give an energy-volume curve, which provides the equilibrium lattice constant at its minimum. Thus, your data set should contain information of different cell volumes." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of points in plot: 8073\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC6gAAAaACAYAAADfRZCRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde3wU1f3/8fds7hiCCAkQEaIVsEAVbQQU1AD1VlFRW7wgrZf6xVqr/fb7LaCk1gtq9au2Rf21tLVVQdS2GK0CasVGg0ViFBS8gReMgpBwDQFy3fn9seyyu9lrdnZ3dvf1fDx4kGx2Z8/uzJk58zmfc45hmqYAAAAAAAAAAAAAAAAAAAAAAIiVI9kFAAAAAAAAAAAAAAAAAAAAAACkBxLUAQAAAAAAAAAAAAAAAAAAAACWIEEdAAAAAAAAAAAAAAAAAAAAAGAJEtQBAAAAAAAAAAAAAAAAAAAAAJYgQR0AAAAAAAAAAAAAAAAAAAAAYAkS1AEAAAAAAAAAAAAAAAAAAAAAliBBHQAAAAAAAAAAAAAAAAAAAABgCRLUvRiGUWAYxrmGYfzGMIwVhmE0GIbRZhhGk2EYHxqG8VfDMCZZ/J4bDcMwI/xXbeV7AwAAAAAAAAAAAAAAAAAAAICVspNdALswDGOapD9IKgzw5xxJxxz4d4VhGC9K+oFpmo0JLCIAAAAAAAAAAAAAAAAAAAAA2BoJ6gcdqYPJ6V9L+pektyQ1SDpE0imSLpWUL+ksSa8YhnGSaZr7LHr/Rkn/FeY52yx6LwAAAAAAAAAAAAAAAAAAAACwnGGaZrLLYAuGYVTKlXj+a0nLTNPsDPCc4ZJekTTgwEO3m6b5qxjfd6OkwZK+ME2zLJZtAQAAAAAAAAAAAAAAAAAAAEAykaB+gGEYvU3T3BnB8yZLev7Ar/WmaQ6O8X03igR1AAAAAAAAAAAAAAAAAAAAAGnAkewC2EUkyekHLJO098DPgwzDKIpTkQAAAAAAAAAAAAAAAAAAAAAgpZCgHiXTNDsl7fN6qCBZZQEAAAAAAAAAAAAAAAAAAAAAOyFBPUqGYZRIKj7w6z5JjRZtuo9hGK8YhtFgGEabYRiNhmHUGoZxj2EY37DoPQAAAAAAAAAAAAAAAAAAAAAgbkhQj95/ef38ommaTou2WyhpklzJ7zmS+ko6UdJMSR8bhnG3YRhZFr0XAAAAAAAAAAAAAAAAAAAAAFjOME0z2WVIGYZhHCVpraQeBx4abZrmWzFuc6NcCekvSlojaaukXElHS7pQ0re8nv6YaZpXxPJ+AAAAAAAAAAAAAAAAAAAAABAvJKhHyDCMQyT9R9KxBx562DTN6y3Y7nhJ/wk2E7thGD+W9KAk9+zpl5um+USYbf6XDsz0XlBQ8O0jjjgi1mICSDPb9ptqbjdVmGOob4GR7OLYRqcp7Wgxta/dlCnJkNQjx9Bh+Yay+Jp8OJ1OORwsxAIAAAAAAAAAAGClePXBbN9vak+7qZ45hvrQPwh0QV8xkL4y7RrYaUoN+5wq6eFQltH1/OYtVc91XzQ5u3wWyfV5Bhelfi6L+5gNJl0+ZyJl2nkgkdavX7/NNM3iQH9LqQR1wzB+JGmgFdsyTfPWKN43S9Izks478NA7ksaZptliRVkieP+bJd154NePTNP8ZqSvLS8vN+vq6uJTMNhWQ1OLrn9ytR667HiV9MxPdnFgI8Mql6m1o+t4mLxshz6ee3YSSmQ/c6rWalFtvXKzHGrrdGra6EGae8G3wr8ww1RXV6uioiLZxQAAAAAAAAAAAEgrVvfB0D8IRI6+YiC9ZOo1sLJqrZ6orfc5hx110xI5g6SJXj6m67nODrlnocrQ0NSiuUs/1Mvvb1FLu1P5OQ6dOaK/5pzzzaDltcNnCifYMesWyedMNrt9z5l6HkgkwzDeNk2zPNDfshNdmBj9SNIYi7Z1ayRPMgzDIelRHUxO/1jS2YlKTj/gAUkzJfWSdIxhGEeZpvlZAt8fKWbe8g16a+MOzXtlAzdL8BFsUFIqDVaKt23NrZo2ZrAuGz1Ii2rr1bgnkad7AAAAAAAAAAAAwDo1MycETeAC4Iu+YiC92O0aGK/EXfd213y5S21eibgLV9Vr4ap65WU7dOqQYm3cvlebd+9XW4crR6hiWLH6FOaqsbm1yzbtkHsWqgwlRfnqmZet1g6n8rIdau1wqmdedsjv1Q6fKZxAx2z/onx9sWOfcrMi+5zJZrfv2W7ngUyTagnqCWUYhiFpvqTLDzz0qaRJpmk2JLIcpmm2GIbxpqQzDzw0TBIJ6ujCf8SPd0ODET+QpBWzJur781fqi+37PI+V9emhv117UhJLZS/zpx8c0DV3ysgklgQAAAAAAAAAAACITXcSuIBMRV8xkF7sdg2MV+Kue7sXjDpcHaYZdFZx9yoRedmuVSIGHlrgKUckSe6Jyj2LNP8t0kFFqZRPF+iY7XSacRs8ZeWgCbt+z3Y7D2SalEpQN01zbILf8iG5Zm2XpC8kTTRNc1OCy+C23evn3kkqA2zOf8RPXrZDhXnZWvCj0ckuGmyipChfnQfW7MnJMtTeaarTaXLRBQAAAAAAAIA0ZbfltQEAices0ACATGWHa2C8Enf9t/vM6oNpjYEScUN9F5EkuSdKpDNeRzqoKNVm0A60n9yfz+rBU1YOmvD/nh2GdMbwfrrdBgO+7HAeyFQplaCeSIZh/FbSdQd+/Uqu5PT65JVIfbx+3pWsQsDeAo34ae1o06I3622xZAYSJ1SHw4jSIlUMK+GiCwAAACDtkYwFAABgv+W1AQCJx6zQAIBMZYdroFUJ0v7x7kDb7d0jVycf3UdXjzuqS05QoO8i2iT3SMoVK6tnvE61GbQTcczGY9CE9/ecZUidpvRp415bfM92OA9kKkeyC2BHhmHcK+nGA79+LVdy+mdJLE+eJO/Z49cnqyywv23NrTKkLheRstlLNKxyWfIKhoTy7nDwN396ueZOGanhpUWaO2Wkz0UYAAAAANJJqHsjAMhEDU0tmjp/pRqYsADICMMql6ls9hItXFUv06SvAAAAAACSwaoEaf94d6DtTjqmRPd/f1REOUENTS06uqRQvXvkKC/blUaan+PQgF75uujbh6vqunGaNmawGptboyqXFdwzXkdahkRvL9XVzJyg80aVKj/n4H4/f1SpamZNiHgbgeKMT9a64g+dpuv3DQ3NxCEynGGaZrLLYCuGYcyVNOfAr1slVZim+VESiyTDMG6SdNeBXzeYpjk00teWl5ebdXV18SkYbKuhqSXoyLtoGzfMNpda/Ee4ucW6LBDgr7q6WhUVFckuBgAAADJcsHtW7o0AILDKqrV6orZe00YPYhZlIANY2VcAAEgc+mAAAEg/MxbUqbhnvi4bPcgzs3mkE0qGindXDCvu9nYrq9Zq4ap6n+21dTojjhulYxw+k/Lk5lSt1aLaeuVmRbff3QLFGYlDZCbDMN42TTPgiYcZ1L0YhlGpg8npjZImdTc53TCMWw3DMA/8ezTIc+YYhhFyrQ7DMK6VdIfXQ3d2pzzILFYuTWLFKDdmZkocK0a4AXbDOQQAAADB3PPiR6r9fIfuWeYbvuHeCAB8MYsykJlSbRlzAAAAAEhX86eXa+6UkRHNbO4vVLzbf7t3nD8ybH6Fd5zIW2uHU4YU8ezi6RiHT8VVWbubU9PdWeVDxRmJQ8BfdrILYBeGYVwj30TwhyQNMQxjSJiXrjBNc1s33/b7kuYahrFa0muSPpS0U1KupKMlXSjpWK/nL5T0eDffCxnGfRHxHiEXDf9RbgtX1WvhqvpujXLzvngzM1N8caFHOuIcAgAAAH/+96yL39mkxe9s8tyzcm8EZKZMmuEoWjUzJwSdvQhAeou1rwAAAAAAkFzB4t0ypanzV/rEwiLJr6iZOUGVz63TKx9sldN0PZZlSKcP76fbp4yMOK6WTnF4K/PkEq27OTXegyTmThkZ8evCxRmJQ8AbCeoHjfP7/bYIXzdBUnWM7338gX/BdEj6taTbTNM0Y3wvZICGphbt3NeuOw40GqK5iLhZ0WkV6cWbzkNrcaFHukjlGwAAAADEV7DwiPfj3BsBmYcBzsGlU4ehP2KLQGjd7XAGAAAAgExj5xhDoHi3dyzs729/FXF+RUlRvooL8zzJ6ZLUaUp9C/Oi/tzpEodP1OQO7mPs1nOH69bnP4jpWEtWTk24OCNxCHgjQT25pks6VdJJkkZI6iupjySHpB2SPpBrZvW/mKa5KVmFROqxojPOik6rSC/edB5aiwu9LzvfQCA0ZncDAABAMCtmTdT356/UF9v3eR4r69NDf7v2JM/v3BsBmYMBzpFJlw5Df8QWAQAAAADITFbngyQzxhDus3jHu/9e92WXWJgkOQwpN9sRUX7FtuZWHdG7QMcOPFSS9N5Xu9TY3Bp1udMlDp+oyR3cx9iNT63RJ43NMR1rycypSdc4I6xHgvoBpmleIekKC7d3q6RbwzxnraS1kh626n2R2azujIv1YhLu4k3nIRKBTsrUlc6zuwEAACA2JUX56jwwvUtOlqH2TlOdTpO2IpChGOAcmUR0GCZyogBiiwAAAAAAZDar8kESEWP4YPNuXTz/TT197VgNH9DL528NTS2a/OAKNexpjeiz+MfCJNcELicM7q2q1Zsiyq/wjhPBJZ5J1/7H2IaGZkmxHWvJzKlJl4EJiD9HsgsAwDo1MyfovFGlys9xVe38HIfOH1WqmlkTPM9paGrR1Pkr1RDBRXT+9HLNnTJSw0uLNHfKyG41TtwX76rrxmnamME+o+2sLi/gbVjlMpXNXqKFq+plmq5GXdnsJRpWuSzZRUMUQp1DAAAAkNlGlBbp8rGD9dxPxuvysYM1vLQo2UUCkCQMcLYP747hcGKN+0USWwQAAAAAAOnH6nyQRMQYbnxqjfa0dujGJ9f4PD6scplG37VcDXtcuRCRfJaSony98O5mT3K6JG3cvk/PvLNJhpTU/IpUzvOKJE+uu5/PfYzlZRs+j+dlx3asRZJTk8r7BKmPGdSBNBJJZ1yiZ5MONWIqkeUNNRIR6YnZ09IDoy4TK5Ez3QEAAMSKtiIAbywrm1zdmWks1rgfAxMAAOmKOC0AAEBoVueDxDPGUDZ7ic/vGxqaPY+538ufw1DYhOVTh/TVxu379PXuFrV2OOUwpHOPK9Wcc76pkp75SYuZJzovLdG6+/ncx1hbpymHITlNKcuQ2jpjO9Yi6SdJ930CeyNBHUiweAeVgnXG2XXJ20SV13sk4r9+fppl5UfyBatTdFIC0ePGBAAAAECqYtBKckXTMWxl3I+BCQCAdEScFgAAILR45IPEK8aw9Ibxuubxt7Vp137PYwN65euRK8olU5r+SK127muT0zz4mgtGHR72szx61RjNqVqrRbWumEqsic6xindeWrIHcVrx+dzH2GeNzdrW3Ko+hbn6RnFPy+NZ7u9qTf1OtXUePLDskiuIzEKCOpBg0QSVunNxDdYZZ9fZpONd3lAjETf++pwYSg67CFWn6KSElPwblVRg10FMAAAAAIDUEE3HsJVxSgYmAADSCXFaAACAyFmdDxKvGMPw0l7qkZvl89je1g4NH9BLlVVrtX1vmyTXbNpOUzq6pFDNbR0RbdsuOTENTS0aPqBIxUV5en19Y8h4T3fzN5I9iNOKeJb3MRZP7u/qwuMPV7vTtF2uIDILCepAgiRjmVtvdppNOpLGhlXlDTQSceChBfrjD78d02dA8kVSp+ikhJT8G5VUYNdBTEguBncAAAAAiEaknaJ2ilMCQLojvpNaiNMCAABELpXyQTY0NPv83tTS0WXCzU5TyjIMHVV8SMSJzHb5DuYt36A1X+3S0cWFYeM90eZv2GUQZyrEs/y/q8XvbPL8bNcyI/05kl0AIFPUzJyg80aVKj/HVe3ycxw6f1SpamZNUENTi6bOX6mGA502wyqXqWz2Ei1cVS/TdF1cy2Yv0bDKZTGVwd1JVHXdOE0bM1iNza0xf67u8G5shGJFeQONRCzIzdLwAb2i3hbsJVSdAqT4nUvTUSrcTCHxIr1eAwAAAIDk6hSdO2WkhpcWae6UkSE7U+0SpwS6yz+mn67vidRHfCe1EKcFAABIT7U3T/LJb8nLNnT4oQXKyz6Y73LmiH469oheusPmyfbe/HMyNjQ0yzQlp2l2ifd0N3+jZuYElfXp4fndPzcokffKscazPti8W9/61Uv64OvdcSlfoDyqAb3yddEJA4nBIWmYQR1IkFBBpcqqtT6jw+I1Q0KyR85FO6rNqvLu3t+uof0KdcPEIZr36gbt2tfe7W3BPgjUIhxmm4mOXZb/QvLZZRQ6AAAAgPSV7DilN2YXRnckY8U+VglENIjvpC7itAAAAOnDO+bgnd/S1ulUj9wstXU6lZtlqKXdqfVbmrVxx96UuucLlZPhH2PpTv6G/32NJLW0O/XCu5v1u0uOl5TYe+VY41k3PrVGe1o7dOOTa/Svn59mZdEkBc6jmnRMied7SXYMDpnJME0z2WVAHJWXl5t1dXXJLgYOmLGgTsU98z1BpUWrvpAzQBXMy3boe98eqEW19crNcjVMpo0elDINkGAamloibpgAkfCvU417WiJe6gixqa6uVkVFRbKLEdacqrVpdy4F4o3rNQAAAIBMUlm1Vk/U1hMzQEQCdY5LimvSbzLeE6mP+A6Q2lKlDwYAAATX0NSiyQ+uUMOeVl0+ZpAam1t98ltefn+LzhjRP2TuWCrc80WTkxFt/ob7vuaFdzfLabq+kwG9ClTWp0ArP9uRMvfKZbOXBP3bxl+fY+l7kUeFZDAM423TNAMeaMygDiSQ/0iqGyYeHTRA+Mtn16XdDAnMeA2r2Wm2LdgTs80A0eN6DQAAACATpOrswlbN+M7M8d2TjBX7WCUQ3UF8BwAAALBepPfSgWIOkit5eu6UkZo7ZaT+XvelFr75RcDXnz+qNKn3fNHEDKLJyYg2f8N9X2NKnpnnxx/dR3Mv+FbIQbl2s/SG8brm8be1add+z2MDDy3QH3/4bcvfizwq2A0J6kAShQoQpusFg2RRAImUrudSIN64XgMAAABId6ma9GvV0tWJXAI7nSQj6ZdEY3QX8R0AAADAWpHcSwdbBcthSDWzJnh+949LuJ9jSgm75wuWiB5NzCCanIzu5G8Eu69JpXvl4aW91CM3y+exgtwsDR/QK0klAhKHBHUgyeIVILTrDDgkiwIAYH9crwEAAKxh1/gMkCriWYdSqSNTsm7G91SdOd5OkpH0S6IxuoP4DgAAAGCNaO6la2ZO0Ni7l8tp+m7DaUqn3PNvz/O94xIOw/X3s0f0V+/CPDXuaUlIXNE/Ed0OMQP/zx3qviaSe2W7xGd372/X0H6FumHiEM17dYN27WtPWlmARDJM0wz/LKSs8vJys66uLtnFQBJUVq3VE7X1mjZ6EDPgALBcdXW1Kioqkl0MAAAAIK3YJVgO6xCfAWIT7zo0Y0Gdinvm+3Rkend8Wi2W83yopauj2ZZV2wEAAPFDHwwAAPYS6F66YmixtjS16q4LRurW5z/wudf/+dNr9MzqTT7bGNArX89dP87n3jtUXCKeMZFgs7znZjl01rf6dztmYEV8O9Tn7s72ic8C8WcYxtumaQYMqjKDOpCigl107TCaDQAAAAAARC+apVNhb8RngNgkqg4lenbhWM7zVs34nmozxwMAAAAAkoPJNA4KdC/98dZmfb5tr36yaLU2bt+rea9s0A2Thuj6J1erR45DQ0oKtaGh2TM7+qRjSrp8j4HiEomIidTMnBB08PrvXtnQ7ZhBLHGPSD53pNtvaGrRmLuXy3ve5njGZ6krQHAkqAMpKthFN1QjAgAAAAAA2A/JzOmH+AwQm3SrQ1ad5yNZujqR2wEAAAAApC8m0/Dlvpd++q16mab0+ba9kg7+777Xl6SLTjhceTlZGnNUn6jvvauuO1mXP1Krva0dau2IT0wk1OD17sQMrIh7hIoFRbv9ecs3yDSlsj49tKWpJe6xJeoKEBwJ6kCKCXfRTcQMOIz8AgAAsM4Hm3fr4vlv6ulrx2r4gF7JLg4AIAnSLRETzFAMxCrd6pBV53mrZnxP9MzxEjFlAAAAAEgVTKYRmPte+unaL8I+d/E7myRJedkOzZ0yMqp770Wr6rVjb5vn9fGKiQRLRO9OzMCKuEeoWFCk2/c/djdu3+f5OR7fI3UFCM+R7AIAiE7NzAk6b1Sp8nNc1Tc/x6HzR5WqZtYEz3PcjYiq68Zp2pjBamxutbQM3iO/AAAAEJsbn1qjPa0duvHJNckuCgAgSdItERMu8Y7PwKWhqUVT569UAzNAp510qkPxPM/btQ74l4uYMgAAAACkhkjyktJZuPvs80YdHvG2TNOM+P2GzlmqstlLPLOwS66kakOKOiYSSaxg/vRyzZ0yUsNLizR3ykifxPRoWRX3CBYLinT7/seuw3DNor7wR6PjEluquu5k9TkkV3nZhqTMqytAJJhBHUgxkVx04zUDDiO/AAAArFM2e4nP7xsamj2Pbfz1OckoEgAgibqzdGo6SqcZdpMxQ3EmuufFj1T7+Q7ds+wj3T91VLKLAwulWx2K13nerstIu8s19q7lcnr1xxNTBgAAAAB7S+XJNKyILQa7z/bPmQqnrE8P/e3ak8KWd/KDK9TY3KoLjz9c7U4z4Czh0X6WZMQKrIh7hIoFRbJ9/2O3rdOp8Uf31fijizX+6OLoP1QYi1bVa3sCZrsHUpkRyUgdpK7y8nKzrq4u2cWAxWYsqFNxz3yfi24sI9ki1dDUEnTJFC6uQHoKdgNXXV2tioqK5BUMANLAB5t365rH39amXfs9jw08tEB//OG3NXxArySWDACA5KmsWqsnaus1bfQgWyVawn6CdQqS9IpMYdc6EK7DnpgyAADh0QcDAEi2ZOUlxco7tnjDpCFRJauHu8/2z5lyGFLfwjxtb25Vp1f6ZbZD6nBKR/QuUM2siVG/n/s92zqdUcdIh85ZqrbOrrmgyY4VJFIijt1g+y7LMPSd4SUpUVcAKxmG8bZpmgEPfEeiCwMgdpEssxKvpV1XfrotJUdJAugell8GgPgZXtpLPXKzfB4ryM0iOd2m4tW+BgC4DKtc5lnC1jRdM+yWzV6iYZXLkl002FSwiVeYkAVSZrTd7LrkeqBylfXpIYnZxAAAAAAgVUSSl2QngWKLo+9artrPg+c6+McOamZO8Ny/Sl3vs/1n5zYl9SrIkVOu+11JGlJSqH9ef4ouHztYw0uLQpY3WHL6RScMVNV14zRtzGA1NrcGLGsw5x5XKknKMgJ/hkwQ7Ni1MlYULCaz8uaJCZtgNt3jXkgfJKgDaSoeSaXzlm9Q4542DSku7NIYApBeSA4BgMTYvb9dQ/sV6qFLj9fQfoXavb892UVKa7EEbBi0BQDxZddES9jXilkTNdir01ByLZ28YnbwmamQOTKh7WbXJdcDlavTaerysYOJKQMAAAAA4sI/tugtWK6Dd+xgWOUyjb5ruTZu3+f5e0u7Uy+8u9nnPntbc6umjTl4f7tzX5uKC/P0yBXlunzsYB1VfEhESf3u8roTyd0uOuFw3T/1uC7bCBfncOd3LH5nkyR5ZnRvabdHrCDewvX/NTS1aPKDK0IOWIhGsmMymRD3QvrITnYBAFjLf5TdwlX1WriqPqblWvy3ub6hWd+dV2PJEjANTS1RLakDIDFqZk7wWZ7Ke/llAIB1aud8x/Pz5AOzGiB+vAM2kS6JGI/2NQCgq2QH9ZF6Sory1el09bblZBlq7zTV6TQ5ZjJcprXd3B3j3stW20Ggcs2dMlKSPP8DAAAAAGAV79hibpahtk5TWQ5DnU6zS65DoNiBJDkOJIs7TdeM6AN6FaisT4HP+3gnnd8w8Wi9/P4WNexp1Ytrt0Tc7+Rd3k7T9b5OUxpaUqjm1g6f50Ua5/DP78hyGDplSF/1OSQvIwaJ/3rZR6r9fIfuWfqR7r94lM/foo0VRZrHloyYTKbFvZAeDJY8TW/l5eVmXV1dsouBBGpoagmaVNrdDrp4bNOtsmqtnqit17TRg6JqrAGIvzlVa7Wotl65WQ61dTp96ml1dbUqKiqSW0AAACIUbKnESAI28WwLAwB8zVhQp+Ke+T5BfbsvH4zk4piBP9puAAAgHdAHAwBA9LzjRDc+tVobGpo9E2GU9MzTCzeMV0nP/KCxgyzDUNWaTQHzI/xF2u8UKtk5kriWf1nzsg0V5uVowY9Ga/iAXj7PDZXfEU48JhdNxISl4fZDsL87DOnNmycFLJed89iIe8GuDMN42zTNgIF5ZlAH0kw8ZhyLxzYZ1QXYn11n4QIAIFqxrAzCjL4AkDjeHTDMsItIcMzAXyLbbqwMCdgLdRIAAABIvmS2y73jREcVH6IxR/XRWSP660ePv6WGPa2e1XWDxQ4aI8yPCJX0XDNrgs93EGpl30jiWoHK2trRpkVv1nfZXiz5Hd1ZgTgZ2/QXbF5m98Pu/sEl733tWYlRki4YdXiX4zMV8tjos0QqIkEdSEPxSCq1epuxJAkBSAw6+gEA6SLWgA2DtgAAAFJHotpuiehoBTKFFUks1EkAAAAg+ezSLp8/vVzDKpdp4ZtfeB7zTjiuGFbcJXYQaX5EuKTnyqq1qv18h0bfuTzge0eb7LytuVUOGWGTp7uT3xFrUnage7lEJnqvmDVBU+ev1Mbt+zyPlfXpob9de5Kkg/2DnU5TWYbkNKWjSwrV3NbRZVupksdGnyVSjWEGG0qCtFBeXm7W1dUluxhAQLEsL5OOmOEFqYTlJQEAqSaSpRIBAACAcCJdxhtA5GJZQp06CSAd0QcDAEg1dmuXByuPIWnVnEkx5+QcddMSOaNIufROdu7Oezc0tQRNno7ls8S63UD3cvEqazDj73lVX+3cr9wsQ22dpo7oXaCaWRM9f4+mf5A8NqSTROYhGobxtmmaASuWI67vDAAhuEd1VV03TtPGDFZjc2uyi5RU97z4kWo/36F7ln2U7KIAAACknfnTyzV3ykgNLy3S3CkjSU5HRmloatHU+SvVwEwaAADErGbmBJ03qlT5Oa7ulfwch84fVaqaWRMsfy+u4amF/RW9YZXLVDZ7iRauqpdpumbWK5u9RMMql0W8jUTWSQAAAACB2a1d7i6PP1PS6DuXa2gU9xyBnDqkWGV9eig325AkOQzpzBH9VDG0WA7XQ8o68H9uiJV9I72PjHWlYKu3G+peLl5lDWZEaZEuHztYz/5kvC4fO1jDS4t8/h5N/yB5bEgn3itaJFN2Ut8dQEbrzvIy6ch/5ObidzZp8TubmOEFAAAAgCXssqwqAADpIJEdrVzDUwv7K3pWLKGe6OQHAAAAAF11p10ez9l93eUJ5jvHlGjq/JXdfu9HrxrtmW07L9s123ZxYZ5Wfb5DTtOVnN5pSkNLCvXbS473zNztL5L7SPf31CPHoWljBvvMBG4Fd1J2NNsNdy/XnW12l5W5Z+SxIR345yEuXFWvhavqk5aHSII6YGOJXGoByWOagdf9CfY4AAAAAETCbkEoAADSRbw7WrmGpxb2V/dZlVyeyOQHAAAAIJUkMu8o2nZ5vAf5bmtu1eVjB2tHc6uWrtvi8zf372PvWq7P7j6n29t3f95zH1yhhavqPX/rPJDus76hWTdXrdUff/Btn+8/2H1kbpZDowYd6rO/3N/TtNGDPEnTgZKnu7uvu5OUHe5eLpUTvcnVQ6qzYjIAKxkkQKa38vJys66uLtnFQDdVVq3VE7X1rkYGM66krYamFn1//kp9sX2f57GyPj30t2tPSovGDo239FRdXa2KiopkFyPtfLB5ty6e/6aevnashg/oleziAACAFNfQ1BI0CEXbHAAA++IaHj/xiFWyv2IzY0Gdinvm+ySxhFpyHQAyAX0wAACr2DHvyD852y1eg3xnLKhTYV62tu1t02sfNwZ8TqzvHei+sH9RvjYeyAO6fIzv9x/sPjLbMPTMmk2aNnqQ/v72V1F9T4ne1+l6L2fHOgNEy73CQ26Wa4WHeB/PhmG8bZpmwBMAM6gDNsSMK5mlpChfnU7XYKGcLEPtnaY6nWbadF6wtC0QuRufWqM9rR268ck1+tfPT0t2cQAAQIqzakZKAACQWFzD4ycesUr2V2xSeWY9AAAAwK7snHeU6Nl93fccc6rWSpIchnQgRSfq9w426Nn7vlCSWtqdnuR0qev3738f2dLu1HNrNvs8313W3AN/D1bWZO3rdLuXs3OdAaJlp5XmSFAHbMhuSy0g/kaUFqliWIktLgxWofEGRK5s9hKf3zc0NHse2/jr7i0pBgAAINkrCAUAACLHNdxa8Y5Vsr8AAAAA2Imd846SNch3W3OrLh87WJt37derHzXIYSjoewdLRA816Nl9X3jWiP6a/cx7+mrnfs/fHIZ0+vB+usMrkdv7PvKRFZ/pjU+3a9e+Np/9leUwVLV6U8jvyc77OpXwPdpDPFa+y0R2GkBCgjpgQ8y4knnsdGGwCo03IHJLbxivax5/W5t2HbxJHXhogf74w28nsVQAACAdpOO9BgAAmYBruLXiHatkfwEAALshwQvIbHbPO0rGIF/3fdsp97wqSTp7RH/1LswL+N7uRPR7ln2kL3fu15ovd6ktzKBn7/vC04YW64kDs6BLrhnbiwvzfL7/O84fqeufXK2+PXN1/9RRmlO1Votq6332V2ME35PV+zpTrx92rzOZIh4r3yG5SFAHbML/As+MK0h1NN6AyA0v7aUeuVk+jxXkZmn4gF5JKhEAAAAAAED6IFYJAAAyDQleAOycd5SMQb7+K2stWbdFkpSX7Qj6nMXvbJLkmgH9vFGlPoOeK4YWa0tTqxr2tHS5t9zW3KojehdoaL+eWl2/U/m5WWpsbvV5jv95etPOfSouzNMDU0epavVXWrL2a73036d6th3qe9q0c7/rtRcfpxfXbY1pX2fy9cPOdSbdxXvlOySPYZpmssuAOCovLzfr6uqSXQxEoLJqrZ6orde00YPS9gKfqaPsMtmMBXUq7pnv03jzvtHIVOlQF6qrq1VRUZHsYqSV0Xe+okN75OiGiUM079UN2rWvXbVzvpPsYgEAAAAAkNLSIQ4DaxCrBACkCvpgEAv/BC83ErwAZLqGppagK2u54wXu5/xzzeag28nLdqit06mjiwu1oaFZJT3z9MIN4wPGHALlggU7TzsMyZQ0bfQgSYoqh8yKnDOuH0imSOon7MswjLdN0wwYZCNBPc2RoG5/drjAJ6qTJhOS8IFIpENdIDgKAAAAAABSQTrEYQAAQGahDwaxIMELQDqyKq9pTtVaLaqtV26WK8k8UKzA/RxDkvNAWmV+jkNF+TnqNE3t3t+ujs6u+ZbeeV6hcsFqZk7wOU9HIjfbofUBcsiszDnj+gEpuRM9RFI/YU+hEtQdgR4EkDg1MyfovFGlys9xVcf8HIfOH1WqmlkTElYG7+VZ/DU0tWjq/JVqiGHZkmGVy1Q2e4kWrqqXabqW4SibvUTDKpfFUmzAFj7YvFvf+tVL+uDr3WGfS10AAAAAAABIDOIwAAAAyEQlRfnqmZet1g6n8rIdau1wqmdeNsmFACxhRQ5Rd4TKa4rGtuZWTRszWFXXjdO0MYPV2Nwa9DlnjegvyTWzeWuHU70KcrRjb5vOO7ZUDqPrtls7nJ6YQ6hcMP/ztCSV9enheW6WIc/2sw78cO63BgT8PFbmnHH9gGRdXeuOSOonUk92sgsAZLpkXuD9R9ItXFWvhavqfUbSeV94ujsqyX/0n/coO0SPZYnt5can1mhPa4dufHKN/vXz00I+l7oAAAAAAACQGMRhAAAAkKncCV6XjR6kRbX1akxwIimA9BVpDpFVeS2R5DVFqqGpRTv3teuOKSNV0jNfc6eMDPi8+dNdkwDPWFCny8cO1tNv1au909SGhmZJ0jOrN3V5TZbD0ORjB3hiDuFywQ4mwffTz//2rlo7nD7Pdes8MIX74tWbtHj1pi6f2+qcM64fmcvKutZd7ronKWj9ROohQR2wge5c4K1ozIXqpLHywsMoO2t1Z9CA1UntJMlLZbOX+Py+oaHZ89jGX58T8DXUBQAAAAAAgMQgDgMAAIBMRYIXgGhEkv8RbQ6RFZNhStYOPo+2TO5z6Q0Tj+5Sht49cpWTZah+x345DFciuX/MYdPO/SouzNMDFx+nF9dt9ckFc2+7smqtGptbNfDQAk/e2IwFdep0mhrSv6dWrG9Up6mQn9vKpHKuH5mLiR4QLySoAzbQnQt8JA2ncI3IUJ00Vl94GGUXu1gGDVjV+I/X9lLR0hvG65rH39amXfs9jw08tEB//OG3Q76OuhBfDJ4AAAAAAABuxGEAAAAAAAgtkvyPSHOIupPXEqqP34rB58HKlJvl0KhBh4bNLfAug2FIrR1OTTqmRK+tb5QknT2iv3oX5nWJOQzsXaDXNjTqxbVbunyv/mX6cud+LXzzC/297kvP9zSnaq2cUtjPTVI5rMBED9EjPykyJKgDKSaaxlwkjchgnTRWX3hoEMXO3eBf8u5mdZpSliFNPq405KABq5dgscOSLnYxvLSXeuRm+TxWkJul4QN6hXwddSE60TboGDwBAAAAAADciMMAALqDRAMAAFIX1/HIRZP/EWkOUXcmwwzXxx/r4HNPrs17X6vTaSrLYWjysQOUbRh6Zs2miHILtjW3akhxodY3NEtyfVduS9ZtkeRKJJci+14j+Z4YdI9E45iLTqLzk1L1+maYppnsMiCOysvLzbq6umQXAxGK5ETS0NQStJHifo1/Y8ct2iTiGQvqVNwz3+fC492pg8Tqzn6N5HiJhtXbS3Wj73xFh/bI0Q0Th2jeqxu0a1+7aud8J9nFSojq6mpVVFTE/X0qq9bqidp6TRs9KGSDzqrzHgAAAAAASLxU7WABAKSnSOPSQLwkqg8GANIR1/HIRZv/EWkO0ZyqtVpU65qhvK3TGXRfxNrHH2ksIdj7RPq+4V6fl+1QYV62FvxotIYP6BXx9xrp9wTAXpKVn2Tn65thGG+bphkwqZQZ1AEbiWRkTSSjErszItHNuwHXnRmG6EyKn5qZE3TewyvUuKfNM6qzpGeenrt+XNDXWD0TPku6+PJORp98XGkSS5J+op2tP5bzHgAAAAAASC5WRAMA2AGryAIAokV+hH1wHY9epPkfgY7zUDlEkc7CXHXdyZr+SK2aW9vV2mEqL9uhHjlZOvywAjXsaQlbpyKNJbhybd5QY1OLOk3JYUi5WQ6Zklo7wucW+OciGIZ0+KEF+mrnfs/31trRpkVv1nvK8ean29XSHvp7ZbZqIDUlOj8p1a9vjmQXAIDrRFI2e4kWrqqXabpOJGWzl2hY5bKAz3c3UqquG6dpYwarsbnV5++xJBF7N+C6I9bXI7iSonxNOqafnKarYe40TU06piTsfg13vETL6u0BgdTMnKDzRpUqP8fVVMnPcej8UaWqmTUh4PMZPAEAAABktoamFk2dv1INdOQAKSXauCg43wFAPEUblwYAgPwI++A63j2R5H9Ee5zPn16uuVNGanhpkeZOGRlwlnVJWrSqXtv3tnmS01s7nNq5v13rNjWFfK9wsQT/+2ZXrk2JnHLNcGxKOuKwHmrrDJ5b4L0N71wEhyGZprRzb5schrokjZbNXqKxdy9Xw55WDSkpDPm9Rvo9AbCXROcnpfr1jRnUARuIdmRNJDObRzvSLtbRNqk+WidVdGcEZXdmwk/k9oBAutOgY4QxkoXZMQAAAJLvnhc/Uu3nO3TPso90/9RRyS4OgAil6opot956q2677TZJ0r///W9VVFQk7L3TYbb5HTt26P7779fSpUv1ySefaO/evTJNU7169dKuXbuSXbyYVVRU6LXXXpMkmaaZ5NIk3qOPPqorr7xSkvTXv/5VV1xxRXILZLHq6mpNmODqBP7Vr36lW2+9NbkFgqWYCAUAEKlI8yPSpQ8pFT4H1/HuCZX/Ea88IP/tSurye6j3cscSXlr39YHkdkNnjRzgiSUEum/2zyV4+f0tIXML/LfxZK0rGd59h7e3rVPSgdnYsx1qaT9YfueBJ21oaNZ359WQNwWkoUTmJ6X69Y0EdcAG4nEiiTaJONbOoFTtTEo1JIcjk0TboIt3/UiFwAuSIx2SAwAAAFKVf4fW4nc2afE7m+j4ASxiGIbP72+++abGjBkT8jVPPfWULr30UknhkzdTvYMlkdJlgpCtW7dq7Nix2rhxY7KLkhbWrFmjZ599VpI0ZcoUjRo1KqnlgbWqq6tVXV0tSbriiitUVlaWlHJ88skn+tOf/qTq6mpt2LBBe/bsUUFBgUpLS3XiiSfq0ksv1Xe/+92It7dy5Ur96U9/0muvvaavv/5a+fn5OvLII3XBBRfo2muvVd++fYO+duPGjTryyCO79TkCDRjZsmWLXn/9db311lt6++23tWnTJn2xaavaW/aqsPAQ5ffur2dqR+rskv/WuHHjuvW+qYhYOACEF2l+RLr0IaXK52BCM2vFKw/If7t52Q717pGrhj0tnuTuLEM6fXg/3R6g3/9gLMH15NYOUz3zsnXKPf8Oe9/c0NSi9Vv36IUbxnvaOd65BcHuvXOzDJUeWqCN2/dJkue7yDIMVa3Z5IlplPXpoS1NLeRNAQmW6HuYROfvpfL1jQR1wCaSfSKJtTOIziQAVrPbgIxUCbwgcdIlOQAAACCVBZuZNhNnrAUS4eabb9by5cst3Way46KpIl0mCLnzzjs9yenjxo3T5Zdfrn79+skwDOXk5CS3cClozZo1ntn8y8rKSFBPM9XV1Z79W1FRkZQE9V//+te65ZZb1N7e7vP4nj179PHHH+vjjz/WwoULNXHiRP3973/XYYcdFnRbpmnqf/7nf/Tb3/7Wp622f/9+7dy5U++8844eeughLVq0SBMnTrT0cwRLav/tb3+re+65J+DfmnbvVtPu3WrY+LHGv7pYF154oR577DEVFhZaWjY7SuVYOMn1ABIlXH5EuvQhpdrnsFv/cqrrbh5QuOux/3bbOp3qmZ+tLU0Hn9NpSn0L8wK+PtAM7K4kcofOG1Ua8r45XDsn0L13W4dTbZ2mJzldklranXr+3c06fXg/n5hG9ccN5E0BSZDK9zCRSOXrGwnqgE1EeyKJR4Al1s4gOpMApKNUC7wgcdIlOQAAACCVrZg1Ud+fv1JfeHUQlfXpob9de1ISSwWkr1dffVWvvPKKvvOd71i2zVTuYEmkdJkgZOnSpZKk3r176+WXX1aPHj2SXCLruWe8zlRXXHGFrrjiimQXAxb47W9/q5tuusnz+6mnnqpzzjlHRxxxhHbu3KnVq1drwYIFam1t1auvvqpzzjlHK1asUFZWVsDt3XTTTfrNb34jSTrkkEN09dVXa/To0WpubtbixYv1r3/9S1u3btX555+vmpqagAMuSkpKVFVVFVH577jjDr3zzjuSpCuvvDLo83JycvTtb39bJ5xwgo444gj1799fhxxyiLZu3aqamho988wz6ujo0DPPPKPt27fr1VdflcPhiKgMqSYdYuHpnpgCwF5C5UekSx9SunwOdF938oAiuR77b/fl97foiN4FOnbgoZKk977apcbm1oCvrZk5QVPnr+wym/mcc76p372yQS3tThlyJZG775tDzYy+/s6DqwEFuve+8PjD1e409cK7m+U0pdxsQ6W9ClTW95AuMY0ZC+pUMayEvCkgRpHmRabDPUy6I0EdSFHxCLDE2hlEZxKAdETgBcGkS3IAAABAKispylfngbV/c7IMtXea6nSatMkAi/Xo0UP79rk6fm+66SZLE9QRObtOEBLNZCpffvmlJGnYsGFpmZwOpIt9+/bpl7/8pef3Rx55RFdddVWX591888065ZRTtGnTJr355pt6/vnnNWXKlC7PW716te69915JUq9evfT666/r2GOP9fx9xowZuvXWW3XbbbepublZ//Vf/6VVq1bJMAyf7fTo0SPg9v3t2rVLl156qSTJ4XAEHTRx7bXXqrKyMuis6Ndff73effddfec739G2bdv02muv6e9//7suvvjisGVIRakcCycxBYBVomnbhsqPSJc+pHT5HOi+aPKAwl2PvevXHeeP1PVPrlbfnrmaO2Vk2G27X7umfqfaOn1XTnTPZv67S47XtuZWDSkp1CcNzRpSUuhJcvdv52QZrlnazz2utMt7Bbr37luYJ1PyzPg+/ui+AXO1yJsCrBFpXmQq38NkivQc3g2ksWGVy1Q2e4kWrqqXaboadGWzl2hY5bJkFw0A0hKBF4TiDlBUXTdO08YMDjqSHwAAAPEzorRIl48drOd+Ml6Xjx2s4aVFyS4SkHaOOOIIXXDBBZKkuro6PfPMM0kuUWaaP71cc6eM1PDSIs2dMtKn4ztZGppaNPnBFar93NVpGE5bW5skKS8vL95FAxCD//znP2pubpYknXjiiQGT0yXpyCOP1OzZsz2/19TUBHze7bffLtN0JRLdddddPsnpbr/61a80evRoSdJbb73lWXGhOxYtWqSWFtcgnkmTJumII44I+LyysrKgyeluxx13nG6++WbP70uWLOl2uewulWPhNTMn6LxRpcrPcaU/5Oc4dP6oUtXMmpDkkgFINd4JcbFKlz6kdPkc4TQ0tWjq/JVqsMlA4FQU7nrsXb+irWvu5597XKnOG1Uqx4FxjLnZhsr69NCpQ4s1rHKZXnp/qzY0NMuUtKGhWS+9v1XDKpd52jkt7a4EeneO++J3NnXJuQp07+2uB4/88EQVF+bpq537BMB60eZFpvI9TKYgQR1IMXYLsNBIB5AJ7B544VycPHZMDgAAAMg0tMmA2EVyXzl37lw5HK6YZGVlpTo7O7v9foZhyDAMVVRUxPzciooKz3Mkyel06i9/+YsqKipUUlKiQw45RN/61rd05513as+ePT6v3bJli375y1/q2GOPVVFRkXr16qVTTz1VTz/9dNSfaenSpTr//PM1cOBA5eXlaeDAgbr00ku1cuXKiLexbds23XnnnTrllFPUv39/5ebmqri4WKeccoruvffeLuX3V1ZWJsMwVFZWJklqaWnRvHnzNH78ePXr108OhyOi7zyYffv26Te/+Y0mTJig/v37y5GdowED+uu939+o3Sv/psdf/zBgp+Gtt97qs48k6bXXXvM85v5XXV0dVXkeffRRz2sfffRRSdIbb7yhyy67TGVlZcrPz1f//v11/vnna9myyCd4+fDDD3XjjTdq5MiR6tWrlwoKCjR48GBNnTpVVVVVYV/vf0xGUu4PPvhAM2bM0De+8Q0VFBSoT58+mjRpkp588klPUm+gbVx55ZWex6688sou36n7WPC2efNm3XLLLTrppJN02GGHKScnR71799aQIUN02mmn6bbbbtNbb70V2ZcV4efz51+v9+3bp/vuu0/l5eXq3bu3DjnkEI0YMUI33XSTdu7c2e2yuHkfg+7jzIo6G45/ncnLy1NJSYnGjx+vu+++W7t37w5Z3ttuu83z2IQJE7rs31jqczgNDQ2en4cMGRLyuUOHDvX8vHfv3i5/37Nnj6cOFhUVBZ3N3DAM/fSnP/X83p1zsdtf//pXz8/BkuujMXz4cM/PW7ZsiXl7dmb3WHgwJKYAiFU8JgpMl3hFunyOcKwcnJBodukrDnY9PuWef3epX/517cjZSwKW379uLn5nk/65ZrOcpms28/ZOU+OP7qtHrxwdNp9qW3OrLjzhcFUMLVbWgQz3SHOu3PXgxXVfq7G5VQN7syIYEA/dyYtM1XuYTJGd7AIACCzY0lF2C7BEuqQGgMwUzTJ4dmb3pbg4FwMAAAAAYhHJfeXw4cM1ffp0PfbYY/rwww+1YMGCoEmGydLc3KwpU6Zo+fLlPo+vW7dOlZWVWrx4sZYvX67evXtr5cqVOv/889XY2Ojz3JqaGtXU1Oitt97SfffdF9H7/uQnP9H/+3//z+exTZs26amnntLf/vY33XLLLfrVr34VchuPPvqobrjhhi5J6Nu2bdOKFSu0YsUKPfDAA6qqqtJJJ50Utkyff/65zj33XL3//vsRfYZw3nzzTV100UXavHmzz+Pmvt1q3bdbrZs+UNNbz6r4vP9V7Z9+Ycl7RuvXv/615syZI6fz4JLyW7du1T//+U/985//1DXXXKM//OEPnoEWgfzqV7/SnXfe2WUARn19verr6/X3v/9dp512mhYvXqw+ffpYUu5HH31U1157rVpbD3agtrS06NVXX9Wrr76ql156KWiid7SWLFmiSy65xDMzttuuXbu0a9cuffLJJ3r99df1m9/8Rrt27bLkPcP57LPPdO655+qDDz7wefyDDz7QBx98oCeffFLV1dUBk+27y4o6G06wOtPY2KjGxka98cYbuv/++7Vo0SKdccYZMb2XN++BEZ9//nm3v7d+/fp5ft6wIXSSlvffv/nNrsuov/baa57j+9RTT1WPHsGTec4880zPz9EMLPG2bt061dXVSZJ69+7tWQEkFp9++qnn5/79+8e8PTuzeyw8FHdiymWjB2lRbb0amdAFQBRqZk7Q3KUf6uX3t6il3an8HIfOHNFfc87pem1DehlWuUytHQfvIdzJ03nZDn089+wklixyduorDnQ99q9fDkMy5JrFPD/Hof5F+fpix76A5Q9UN3v3yNXJ3+irq8cf6XPND5RPtfLT7Z5tuds5c6rWymmaMgxFnHOVDscJkAq6kxeZyvcwmYAEdcCmQjUg7RBgofEFIBJ2uhlOR5yLAQAAAACxiPa+8rbbbtOTTz6ptrY23XrrrbrsssuUm5ubyCKHdOWVV2r58uUaN26cpk6dqv79++uLL77Qww8/rC+++EKrV6/Wz372M912220688wz1dbWph/96EcaP368cnNzVVNToz/96U/q6OjQ/fffrzPPPFOnn356yPf83e9+p2effVZ9+/bVj370Ix177LHat2+fXnzxRS1evFhOp1O33nqr+vTpo+uvvz7oNn72s59JkvLy8nTRRRfplFNOUZ8+fbRjxw69+OKLeu6557R161Z95zvf0VtvveUzm6+/1tZWXXjhhXr//fc1fvx4XXTRRSotLVVjY6O2bt0a9fe6Zs0aTZw4Ufv375ckHX/88Trvwu9rVaNDb33wuZo/rFHrpg/k3N+kxn/crg+uPUUlXjM7X3LJJRo1apQkeRJFR4wYoblz5/q8z8iR3e9EfPbZZ/Xcc8/pkEMO0dVXX60TTzxRnZ2dev311/X444+ro6NDf/rTn1RUVBR04MFNN92kX//615KkrKwsXXLJJZo4caIKCgq0du1a/eUvf9HWrVv12muvaeLEiXrzzTdVUFDQ7TJL0osvvqi///3v6tWrl37yk5/o+OOPl2EYev311/XXv/5V7e3teuyxx3Tqqaf6zAI9ceJEVVVV6dVXX9WDDz4oSfrpT3+qiRMn+mzfOxF406ZNPsnp55xzjk4//XSVlpbK6XSqoaFB7777rv71r38Fndnbak1NTTrnnHP00Ucf6bzzztPZZ5+tww47TJ999pl+//vfq76+Xl988YV+8IMf6PXXX7fkPa2os+EEqjOXXXaZBg0apC1btuhvf/ub3njjDW3fvl2TJ0/Wyy+/7DMburvOPPXUU55ZxO+4444udaRv377d+xIiMG7cOPXt21fbtm3TW2+9pb/+9a8+M/a7bdy4UXfffbckqU+fPrr88su7PGfdunWen7/97W+HfN/i4mINHjxYX3zxhbZt26aGhgaVlJREVfa//OUvnp8vu+wy5eXlRfV6f59++qnuuusuz+8XXnhhTNtD/JCYAiAWdpsoEImTyoMT7NhXHOx67F+/3Frandq4fZ+kwOUPVDcnHVPiyT3wv+a786nOGtFf1zz+lhr2tHbJVdjW3KohxYVa39CsoSWFEc22nMrHCZBq7JAXCeuQoA7YTCQNSDsEWGh8AQjFjjfD6YhzMQAAAAAgFtHeVw4ePFgzZszQgw8+qC+++EJ/+MMfdMMNNyS41MH94x//0J133qmbb77Z5/ErrrhCo0aN0ubNm/XEE0/o3XffVX5+vlasWKFjjz3W87xLL71UJ510kn7wgx9Ikn7zm9+ETVB/9tlnNWLECL366qs+SZRXX321nn32WX3/+99XR0eHZs2apfPOO0+DBg3yef3bb7+t//3f/5UkDRs2TM8//7yGDBni85wZM2ZoyZIluuCCC7Rv3z5deeWVWrVqVdAybdmyRVu2bNEDDzyg//7v/w5Z/nCcTqcuv/xyT6LtjTfeqAceeEAOh0Nzqtbqw4J69So/VztWPKldK56Qs7NDP/jBD7R+/Xrl57uSeY455hgdc8wxPtvt27evpkyZElPZvD333HMqLS1VdXW1z/f3wx/+UNdcc43OOOMM7dmzR7/5zW908cUX68QTT/R5/cqVK3XPPfdIkg455BAtXbpUp556qufvl156qf73f/9XZ555purq6vTee+/plltu0f/93//FVO6nn35ao0aN0ksvveRz/EybNk1nnXWWJxH2vvvu80lQHzRokAYNGuQzy/kJJ5wQ8jt98sknPcnp99xzj2bOnBnweaZpasWKFTF8qsitXr1aubm5ev755zV58mSfv11zzTU68cQT9fnnn6umpka1tbUaPXp0zO8Za50NJ1Sdcbvhhht0xx136JZbblF7e3vQOrNmzRrPa8aPH++TxB5v+fn5+sMf/qBLLrlEHR0duuqqq/Too49q8uTJOuKII7Rz50698847WrBggVpbW3X44YfrmWeeCbiywPr16z0/RzKjuztB3f3aaBLU29vbtXDhQs/v3vUmnI0bN3q+887OTm3btk1vvvmmnn76ac/+vOKKKyw9dwEA7IWEuMyUyoMTktVX3J1V1L3r14wFrtVu7r7wWFU+u1b1O/bJeWA29Yqhxfpq535Nnlej7CyH/viDb0dVN+dPL9ewymVa+OYXnse8cxUk+eQxrG9o1vqGZg2rXBYyjyGVjxMg1dghLxLWCb6OIYCkqJk5QeeNKlV+jqt65uc4dP6oUtXMmpDkkvmi8QUglFQ5l6U6zsUAAAAAgFh0576ysrJShxxyiCTpzjvv9CS82sGZZ57ZJTldcs3I654JubOzU++++64eeughn+R0t+nTp3sSnJcvX66Ojo6Q75mdna2nn346YALllClT9D//8z+SpH379un3v/99l+fcdttt6ujoUF5enl544YUuyelu55xzjmbPni1Jqq2t1X/+85+Q5brgggtiTk6XpBdeeEHvv/++JGns2LH6zW9+40m03dbcqsvHDtbzPz1FP/mf2Rp03HhJ0pdffumTIGqFhqYWTZ2/Ug0hEhH+8pe/BPz+xo4dq3vvvVeSK3n4gQce6PKc//u//5Npmp6fvZPT3Q477DD94x//8MxK/vvf/94nQbw7cnJy9I9//CPg8XPBBRdo3LhxkqQPP/xQX375ZUzv9cknn3h+vuaaa4I+zzAMnXLKKTG9VzQqKyu7JKdLrtm4vevzSy+9ZMn7xVpnwwlVZ7z98pe/1DnnnCMpPnUmUqHq1kUXXaQXX3xR3/ymK8Hp9ddf18yZM3XppZfquuuu05///GdlZ2frvvvu03vvvRd0AIF3PYlk1nfvJPdo69gLL7ygxsZGSdJxxx2nE044IeLXvvjii7rgggt0wQUX6Hvf+56uvfZaPfroo9q/f7+OPvpoPfzww/rrX/8aVXkAAKll/vRyzZ0yUsNLizR3ykifBDmkN3cCdNV14zRtzOCIZtS2g2T1FXuvoh4p7/pVM2uiFv/4ZM17dYNOGNxbpuQp/6eNe7Vuc5PWbW7Smi93ad4rG6Kqm/4T6bkZkoaXFqnqupO7nceQqscJACQTCeqAzaRSsiGNLwDBpNK5LNVxLgYAAAAAxCLa+8qSkhL97Gc/kyQ1NDTot7/9bfwLGSF3Enog7kRfSerXr5++973vBX3u+PGuROu2tjZ9+umnId/zzDPP1IgRI4L+/Wc/+5mysrIkSVVVVT5/27lzp5YsWSJJOv/883X00UeHfK/LL7/c8/PLL78c8rk//elPQ/49Us8884zn51/84hcyDMPzu3+SwBMP3R3wdcFEknTuFi4BYsSIETrzzDODvv6qq65S7969JUn//Oc/1dnZ6flba2urli5dKsmVGHv11VcH3c7gwYN16aWXSpL27t0bdj+EM3nyZH3jG98I+veJEyd6fv7ggw9iei93Yr0kTwJ1smVlZXnqbaDjwcrP7xZLnY1EqDrjzz3oxP91sTBN0/MvktnKw9WtCRMmaN68eRo+fHjAv+/du1cPPPCA/vznP3sGefjzHsjkniU+lIKCAs/Pe/bsCft8b3/5y188P0cze3ooOTk5Ov300zVmzBhLtgcAAOwnlQcnJLKveFjlMpXNXqKFq+plmq6ZyctmL9GRs5f4tOPdbfsPNu8Oes/nboe+9fkOTRszWJ1Op0xT2tDgOwje/R7DKpdFVEb3RHpZDt92eFmfQ7Tmy11atKq+23kMqXycAECyZCe7AAC6SpWlo1hSA0AoqXIuS3WciwEAAAAAsejOfeUvfvEL/f73v9eOHTt033336brrrtNhhx0WryJGLFTyYL9+/Tw/f/vb3w44o3Gg5+7cuTPke06aNCnk3/v3769vfvObWrdundavX6/du3erV69ekqQ33nhDTqdrZrf8/Hw9++yzIbfV3t7u+fnDDz8M+rysrCyddNJJIbcVqdraWkmuWbVPP/30kM89+eSTVVhYqObmZq1atSrstr0TY+de8K2Az/Gf/c57afabvPL5w+2H3NxcjRs3Ti+88IL27dunDz74QN/6lus93333XbW2upI4KioqlJubG3JbZ5xxhh555BFJ0qpVqzR16tSwnzWYsWPHhvz74Ycf7vk53LEYzumnn67f/OY3kqQLL7xQN910k77//e9r4MCBMW03FkOHDvUMHAh0PFj5+d1iqbORiGedsVKouvXx3LMlSY2NjbroootUU1Oj4uJiPfzww5o8ebIGDBig3bt36/XXX9ftt9+ud999V7NmzdJ7772nxx9/POT5NVTCfqy2bNmiF198UZKrzk+bNi2q11977bW69tprJbkGKH399df697//rXvvvVe///3vNX/+fM2dO1c33XST5WUHAADorkT2FdfMnKC5Sz/Uy+9vUUu7U/k5DvUtzNNXO/frtn++r8bmNj102fGetv2NT63RJ43NPm18/3bolzv3a+GbX4ScYffMEf10R4SfzT2RXqfTVJYhdR4YQ/n59r2SXO1eScoyDFVdN448BgCIMxLUARsi2RBAOuBcBgAAAABAeurVq5dmzZqlWbNmaffu3fr1r3+te++9N9nFUp8+fYL+LS8vL6Ln+T+3pSV0R3W4Wc/dz1m3bp1M09SWLVs8ya4bN270POfxxx/X448/HnZbbqGSdfv06RPRLMWR+PrrryW5knZ79uwZ8rkOh0Pf+MY39O6772rHjh1qa2sLmuz95mfbtfFAYkCgxFi3QAkQZ47orznnfFNLFz/leV6k+8Ft8+bNngR192eUXAnT4Xg/x/u13dG3b9+Qf4/mWAzn7LPP1mWXXaZFixapsbFRP//5z/Xzn/9cQ4YM0cknn6xTTz1VkydPVklJSUzvE42+fftGlCgtxf753WKps5GIV52xWqi6JblmRh8/frzWr1+vPn36aNWqVTryyCM9r+/bt68uvPBCffe739XEiRO1cuVKPfHEEzrppJP0k5/8xOe9CgsLPT/v378/bNm8nxPuO/T2+OOPq6OjQ5JrVYpw5/pQcnNzNXjwYF1xxRW65JJLNHnyZC1fvlw333yzevXqpeuuu67b2wYAu2poatH1T67WQ5cdz4rI6DaOo/TmTv5uaXe131vanfpqp6vttmTtFknS6DuXe57vng3du43v3w51O/hTVy+9v1XVHzd2uV8MZltzqy4f65pI788rPtN/Pt2mXfvau7R7S3rmk8cAAHEWagASAAAAEJNolusGAAAAAKSOn/70pyotLZUkPfTQQ9q8eXOSS6SQs/Z253mR6NGjR9jnHHLIIZ6fm5sPLle+e/fubr9vW1tb0L8VFBR0e7v+9uzZI8n3M4TinYjqfm0gfQvzlJ/j2g/5OQ6dP6pUNbMmdHmeOwEi3PLrsewH73JG8jkj/YyRsPJYjMTChQv15z//WSNGjPA8tmHDBj322GO6+uqrVVpaqssuuyzmxPtIORyuBJXzRpVGdDxYIZZjJRLB6kywGJmVx1M0wtWthx9+WOvXr5fkWjXDOzndW35+vh544AHP7w8++GCX5xx66KGen7dv3x62bN7P8X5tOI8++qjn56uuuiri14WTn5+vv/zlL576escdd3hWvwAAu4umj8Z7NROgu+x2HNFPab1NO/d52u6Ryss2PG18/3aoJJX16eGzTYffojsDeuX73B+E26/zp5dr7pSRGl5apAemjtKkY/qFvacEAMQHCeoAokYjHgAQKbsFogAAAAAA1igoKNAvf/lLSa7Zbm+//XbL3yMVEgD37dsX9jl79+71/OydjOr986OPPirTNCP+V11dbennCMY9e7H3ZwjFO5k31MzHWQ4j4gSBbc2tmjZmsKquG6dpYwarsbm1y3Ni2Q/e5Yzkc0b6Ge3IMAxdffXVWrdunT799FM99thjmjFjhoYMGSJJ6uzs1JNPPqkxY8Zo69atCSlTpIMQrBLLsRKJYHUmWIwsmcdTqLq1ZMkSz8/f+c53Qm5nzJgxnu/p448/7jL4xnvVAe+VI4L54osvAr42lJUrV+rDDz+UJA0cOFBnnHFGRK+L1KBBg/TNb7pml9+yZYs+/vhjS7cPAPESSR/NsMplKpu9RAtX1cs0XTMdl81eomGVyxJYUqQ6ux5H9FNaa1jlMlWv3+Yz83k4DkNq6zR92vje7dDLxw5Wh9P03A8YhvSN4kIZhjy/TzqmxOf+INr9Gsk9JQAgPrKTXQAAqce7sTf3gm8luzgAABuKdHlmAAAAAEDquvrqq3Xffffp008/1SOPPKL//d//jeh1ubm5amtrCzkLuCRt27bNimLG1SeffBLxcwzDUP/+/T2PH3744Z6f33//fesLZ4EBAwZo165d2rJli/bs2RMygdY0TX366aeSpD59+ig3Nzfoc9s7nbpqjGvJ9UW19WoMMRnK/Onlnp+DLb8ezX6Q5Jn9X3J9RrcNG8InOHg/x3s7qeaoo47SUUcdpR/84AeSpHfeeUc/+tGPtHr1an355Zf6v//7P913330JKYs7YSSS4yFWsdTZSPjXmfJ7VgSNkX10x1kR15l4CFW3vFfFKCoqCrkdwzBUVFTkSbbft2+fevXq5fn7yJEHt11XVxdyW42NjZ4E9b59+6qkpCTMp3D561//6vn5hz/8YVxWJ/A+/+3atcvy7QOAlaLpo6mZOUFzl36ol9/fopZ2p/JzHDpzRH/NOeebiS425Jos8PonV+uhy45PqRme7XYc0U/Zff7HoPv3NV/uUltHZInp2Q5p1BG91dTSrr6FeTqquNCnje/fDp2xoE4Vw0p02ehB+vOKz/T8u5t14fEDdfX4I33uD7q7XyO5pwQAxAczqAOImF1HvQIA7CfRyzMDAAAAABIvJyfHM3N6R0eHbrnllohed+ihh0ryTYAMZNWqVTGVLxFeffXVkH/fsmWLZ1bfoUOH+iRtnnrqqTIM19rlzz33nC1njB89erQkV/L58uXLQz73P//5jydB1f26YIb26+lZcn3ulJE+CQPdEa5sbW1teuONNyRJhxxyiIYPH+7523HHHae8vDxJUnV1tdrb20Nu6+WXX/b8HO5zxlNDU4v+32ufeX43TTOm7Z1wwglasGCB5/cVK1bEtL1ozJ9ebunxEEosdTYS/nUmVIwsXJ3xTrKOdf9Gyzsp/csvvwz53P3796uxsdHz+2GHHebz94qKCk8de/3117V///6g23rppZc8P599dmTJY/v27dPTTz8tyZUsf+WVV0b0umiYpqnPPjtY3/r27Wv5ewCAlaLpo0n0aiYILVVn/LbbcUQ/Zfe5j8FfL/1IU+ev1D0vfqS3Nu7Q5G8N0HmjSpXlMMJuo8Mp1X2xU19s36dF14wN28b3vh/okZOlDqepghxHl/sD9isApB4S1AFEzI6NvYamFk2dv1INcZxRBQAQPbsFogAAAAAA8XHppZfq2GOPlSQ99dRTevfdd8O+xp0c/MUXX/gk/PmbN2+eNYWMoxdffNGTzBrIvHnz1NnZKUm68MILff5WUlKis846S5K0fv16PfLII/EraDdddNFFnp/vu+++kEmy99xzT8DXJcL777+vf/3rX0H//uijj2rnzp2SpPPOO09ZWVmev+Xl5emcc86R5Jq1/9FHHw26nS+//FJPPvmkJFei+xlnnGFB6btn3vIN2ri70/P73r17Y95mWVmZ5+eOjo6Yt2dHsdTZSPjXmeKeeUFjZOHqTGFhoednK/ZvNLxnPX/qqadCPnfx4sWegR3f+ta3PMnoboWFhfrud78rSWpqagpax0zT1EMPPeT5/eKLL46orIsXL1ZTU5Mk18Cfb3zjGxG9LhrPPvusGhoaJEn9+vWLy3sAyFzx6O+Oto/GvZpJ1XXjNG3MYDU2t1pWFkQmHSYLTMZxFKz+ZEI/pdXnDv9j8JnVm1T7+Q4tfmeT5/d/rtmsTmf4gZMOQzp/VKmqrjs54jJGUgcyYb8CQLohQR1AxOzY2EvVEcQAkAkIaAJA+mBgKAAACMYwDN15552SXMmFDz74YNjXuJOyJWnWrFkBk55vueUWvfLKK9YVNE46Ojp08cUX+8we7Pb888/rvvvukyT16NFDP/7xj7s8Z+7cucrJyZEk/fSnP9XChQtDvl99fb1+8YtfeBIl4+2cc87RiBEjJElvvPGGfvGLXwSc6f2uu+7S888/L0k64ogjNG3atISUz9tVV12lTz/9tMvjtbW1+sUvfiHJNSP1f//3f3d5zi9+8QvPbNX/8z//45lt3dvOnTv1ve99z5Mo/OMf/9izGkAieSduZPfq53l8zp/+GfJ1t99+u/71r3+FnKn///2//+f5+bjjjou9sDbU0dGhk04/Vx983nVW8EjqbDiB6kxj0/4uMbJI6syRRx7p+fmdd96J6P0Nw/D827hxY9Tld7v00ks9Pz/yyCNBz03vvvuufvazn3l+nz59esDn/fKXv/SsGHHTTTfpvffe6/Kc22+/3bNyxoknnuhJag/nL3/5i+fnq666KqLXSNInn3yie++915PcHswrr7zis91rr73WZ3Z7AIhVvPq7o+mjSeRqJgjMjpMFRisZx1Go+pMu/ZTBYvPdOXcE21ZDU4uGDyjSGSP6BXmly4Be+frusf1VMbTYM5O6+1i98PjDZRhSXrZDpqSeedlatKo+4jJGWgfSZb8iOejrAhIvO9kFAJBa3I29y0YP0qLaejUm6aI9rHKZWjsOBtIXrqrXwlX1yst26OO5kS37CACIL+/A09wpI0M8EwBgd97B7rkXfCvZxQEAADYzefJknXzyyfrPf/4T0Sy/V111le69917t2LFD//jHP3TKKado2rRp6tu3r+rr6/XUU0+prq5Ol1xySdiZe5NtypQpevbZZzVixAhdc801+ta3vqV9+/bppZde0t///ndP8v0999yjI444osvrTzjhBP3+97/XNddco9bWVk2fPl3333+/zj//fB199NHKy8vTrl279NFHH+mNN95QbW2tTNPUjTfemJDP53A4tGDBAo0bN0779+/X/fffr3//+9+aNm2aBg4cqK1bt+pvf/ubVqxYIUnKycnR448/rvz8xE5q4t4Po0aN0tVXX60TTzxRnZ2dev311/X44497Znf+7//+b5144oldXj927FjNmjVLd999t/bs2aPTTjtNl156qSZOnKiCggKtW7dOf/7zn7V161ZJ0rHHHqvbb789oZ/RrWbmBM1d+qFefn+LzOIyZR1yqDr37tL+D6s1a9YsjR07VgUFBZKkgoICnXbaaZKkV199Vb/61a/Uv39/nXnmmRo1apT69+8vp9OpzZs365///KdqamokuWaV//nPf56UzxdvQ0dP1PraV3XiqOP0s+t/HHWdDSdQnTnhBFedWdc2UP22btVrf/ub/hhBnTnllFOUk5Oj9vZ2/d///Z8Mw9Cxxx7rmaH8sMMO0+jRo2P4NoI766yzPPXK6XRq+vTpWrBggSZPnqwBAwaoqalJr732mp5++mm1trqSgo477jhdf/31Abd3/PHHa+bMmbrnnnu0e/dunXzyyfrRj36k0aNHq7m5WYsXL9bLL78syTXj+h//+EdPQnson3/+uV577TVJUlFRkb73ve9F/Bmbm5s1a9Ys/epXv9KkSZN04oknavDgwerZs6f27dunzz77TC+//LL+85//eF4zbtw4zZ49O+L3AIBQ4t3fTR9NaollssCGphZd/+RqPXTZ8Rkzk3Qk9ScV6kAk+84/Nh/LuSNYnH/e8g1a89UuHV3sWsHHYUjeE6UbkkxJJx/VR/dfPEpzqtbKaZo+x2qjVy7R5AdrtHBVfVRljLQOpMJ+hX3R1wUkHgnqAKJiRWPPihsk7yB8S7tT+TkOnTmiv+ac881ubQ8AAABAVwwMBRIrEzsUgUSgbiXG3Xff7UmEDae4uFgLFy7UhRdeqJaWFr3xxhtdZqyePHmyHnnkEdsnqN944406/PDD9fDDD+uuu+7q8nfDMHTLLbcETdqUpKuvvlolJSW65pprtHXrVq1Zs0Zr1qwJ+vw+ffokNAH8+OOP1/Lly3XRRRfp66+/1jvvvBNwNufDDjtMixYtUkVFRcLK5nb++edr7Nixuvnmm/W73/0u4HOuvvpq3XvvvUG3cddddyk7O1t33XWXOjs7tXDhwoCzRp922mlavHixJwk80bwTN/Jzc3ToKZdr+4sPqb29vcvnGzx4sGcWbfeMz1u2bNFjjz2mxx57LOD2+/btqyeeeMIzC3i62f2N76hnR4H2vLOk23U2HKvqTN++ffW///u/uvvuu9Xc3KxbbrnF5++nnXaaqquru13OcBYtWqT/+q//8tSDl19+2ZNE7m/ChAlatGhRyHpx9913q62tTb/97W+1d+/egHW1pKRETz75pEaNGhVRGf/61796BhVcfPHF6tGjR0Sv89bS0qIlS5ZoyZIlQZ/jcDj0ox/9SA888EDCB+AASF/0d8NfdycLzMSEy0TVn3jHE0Ltu2Cx+dwsh84bVRrVZw+2LX8bGpoDvv6IwwpUv2O/ajfukBT4WPXOJXrzpkk++8cwpDOG99MdYXKM7DJhJtIPfV1A8pCgDqQoqxvCieyos+IGKZYRxAAAAAAiQ0cZkFiZ2KEIJAJ1KzFOPfVUnXXWWXrxxRcjev7ZZ5+tNWvW6J577tHy5cu1ZcsW9erVSyNHjtRVV12ladOmRTR7rh089NBD+u53v6s//OEPevvtt7Vt2zb17dtXp5xyim688UaddNJJYbdx7rnn6vPPP9fjjz+upUuXavXq1dq2bZs6OzvVq1cvHX300SovL9cZZ5yhM844Q7m5uQn4ZAeddNJJ2rBhg/74xz/queee0wcffKBdu3apqKhIQ4cO1eTJk3Xdddfp0EMPTWi5vM2aNUvjx4/XQw89pP/85z+eY2rMmDG67rrrdPbZ4Tudb7/9dl1yySX6wx/+oOXLl+vLL79UW1ubiouLNWbMGF122WW68MILE/BpQvNN3DhC74wcqrxPXlVdXZ0aGxs9M1p7e+GFF1RTU6Ply5dr5cqV+uSTT7R9+3YZhqHDDjtMI0aM0Nlnn62rr746qfsx3nKzHMo//ccqGjpaueuXa//XG7Rj+/ao62w4VtWZu+66S8cee6wee+wxrVmzRjt27FBbW1vM5YtEQUGBFixYoJ/+9Kd67LHH9J///EcbN27Unj17VFBQoNLSUo0ZM0aXXnqpzjrrrLDnbMMw9MADD+j73/++/vjHP+r111/X5s2blZ+fr6OOOkpTpkzRj3/8Y/Xt2zei8jmdTp+BFldddVVUn++4447T2rVrVV1drddff10bNmzQ1q1btW3bNuXk5Kh3794aPny4xo8fr2nTpukb3/hGVNsHgHDo74a/aCcLzOSEy3jWH+/cmXjFEyLZd6Fi8797ZUNUnz3YtmacepT+8PpnWvLe1+p0mspyGJp87ADt3temgYcdoqffqld7p6n6HfslSV/u3K+y2Ut8yjl3ykg1NLVo6vyVnnwj7/3jno39s8a9Xcron6fE7OiIF/q6gOQx3KPKkZ7Ky8vNurq6ZBcDcVBZtVZP1NZr2uhBXRrC3Uk2D7U9q/g3st26e4M0Y0GdinvmBx2VCSB+qqurkzIbFgAASLw5VWu1qNY1M0tbpzOu9wxAprL6fhmAC3ULSG+PPvqorrzySkmuWZSvuOKK5BYItnXrrbfqtttukyT1u/Qu9TpqFPc2AGyNPpjMQX+3faXCSlwNTS1BEy7tWmYrxav+VFatDTi7uGRdPCHSfRcsNt+dzx5oW39/+6uQcZNIyxko3+iom5bIGSAlMTfLoVGDDnUNAHhlQ9zzlAA3+rqA+DEM423TNANeiJhBHUgxkYykjGYUZyJH1UY6Is19s3frucN16/MfBL3pY/QkAAAAEH8sqwnEHzO4APHhrltL3t2sTlPKMqTJx5VStwAgg50+vL9uumoc9zZIaamQNAkgMvR321ciV+Lq7nk902fht7r+BBvkLsnyWF2k+y5YbL47n917W4+s+ExL1n6tqutO1lWP1amxqUWdpuQwpCyHoaqfnNylnIahLuUMlW/05k2TAsY7sw1Di1dv0ug7lwd8HRMKIF7o6wKSgwR1IMWE6rTuTrJ5IjvBI21ku2/2bnxqjT5pbI76po/AHAAAAGAdOsqA+Mv0DkUgXk65998+sbJOU3puzWa9uG4LHZ4AkKGuHn+khpcWcW+DlJbIpElkJvpakckSOcGfWyzndRIureOfO5PlMNTpNJWbZcQlVhfJvrMyNu+9rYKcLO3a365Fq+o16ZgSLaqt98QknZ2mHqn5XPdPHeUp55DiQq1vaNbQkkI1Nrd6thMq36ikp2+8s6XdqefWbA5YNibrQCLQ1wUkBwnqQIoJ1WndnWTzRHeCh2pk+9/sbWholhT9TR+BOQAAAABAqqFDEcGQHNJ9NTMn6LyHV6hxT5s6naayHIZKeubpuevHJbtoAAAAUUtG0iQyE32tyGSJnODPivM6CZfWCZQ7M6SkUL+75Pi4xOqC7bt4xoGGzlmqtk7T8/vCVfWen72PxcXvbNLidzZ1ef36hmatb2jWsMpl+nju2SHzjRqaWrR07de68PiBunr8kXro3xv0rw+2ymFIrR2msgzXRAK5TNYBwGLE0+2FBHUgBQXrtO5usnkiO8FD3SC5b/ZeWrfFp/Gbl23orJEDwt70JSowx4UMAAAAAGA1OhQRDMkh3VdSlK9Jx/TzzATW1unUpGNKiOcAAICUlMikSWQmBkEAiZ3gzy7ndfIfDgqUO5Po1XfiGQc697hSLX5nkyc53H3MLX1vs9qdXZ+f45DOPrY05DEaLN9o3vIN2rW/XQU5Dg0vLdJhPXLVfiA53l23hpYU6rdxGgAAIHMRT7cXEtSBFBSq07o7yeZ26QR33+y1dTo9DWKHIbV1mhHd9CXqBo4LGQAAAAAAiDeSQ6zB6gQA7IxkIPjjmEAoiV4VGZnHLsmyQLIl6j7SLud18h8OSmbuTDzjQP7bdk+i3tLuOubemD1J35+/Ul9s3+d5TlmfHvrbtSfpd69sCHmM+n9nwyqXqWz2ki6fw1trh1NZhqEjiw9J+AAAhMb9CFIZ8XR7MkzTDP8spKzy8nKzrq4u2cUAIjZjQZ2Ke+br08Y92t7cpr6FeTqquFCNe1p8GrbBzKlaq0W19crNcs2KNW30IMtuovwvZG5cyJCJqqurVVFRkexiAICtEcQBAACxaGhqCZocQtsCANJDZdVaPVFbb2kcG6mNYwLhuPvRvJMmI+k/Q2pJZh9MPPtaER3iy5khmed18h/sJZ5xIP9tZzkMnTKkr/ockqfm1nZVf9wY9FioGFYc1THqfq+X1m1Ra4dTuVmGinvma1tzq1o7iG/ZHfcjSGXE05PHMIy3TdMMeHFgBnUAthLrzVY8RzMzawAAAIgGs44AAIBY2GUmNQCA9ZjVKzqZkKDHMYFI2WVVZKQvViCyD+LLmSER5/VgbSnyH+wlnnEg/223dTo18NACz7mloalF5z28Qo172tTpNOUwpCyHoaqfnKzhA3p5tuN9jAY7rrzfS5LaOk31yM1SWyfxLTvjfgTpgHi6PTmSXQAAsNL86eWaO2WkZxkgK0cXcyEDAACRcC9fuHBVvUzTFcQpm71EwyqXJbtoAAAgxbiTQ6quG6dpYwarsbk12UUCAFigZuYEnTeqVPk5rm66/ByHzh9VqppZE5JcMnvyTtBLVxwTSDcNTS2aOn+lGkhuTjnx7GtFZIgvp4ZUOs8Fa0uR/xBauH0cj2MgnnGgbc2tuuD4wzWkpFAXHj/Qs213ovnJR/WV0zSVl+2Q05TaO00terM+6PaCHVfDKpfpiVW+r9vQ0CxDIr5lY9yPIF0QT7cfZlAHgCgwawAAAAiHWUcAAIBVmCETANITyUCRyaRZ/DgmkG6Y+RnoPuLL8WfF6iypcJ4bOmep2jpNz++B2lLkPwR3z4sfqfbzHbpn2Ue6f+qoqP/eHfGMA82fXq7KqrV6/+smjTriUN0/1fVe7mP560ML5JARtP1dM3OCrn9ytdbU7wx5XIU6h5X0zCe+ZVPcjyBdEE+3HxLUASAKXMgAAEA4BHEAALAXKzqeAQCwGslA4WVagh7HBNJBJg0sAeKF+HL8xZJcnkrnuXOPK9XidzYpy5A6TQVsS5H/0JX/Pl78ziYtfmeTZx+H+3skrIxVRbKtYMetty937pckOQwpN9vRpf097xVXvbnw+MPV7jSDttE5h6Uu7kcAxAMJ6kCKonMVAADAvgjiAOCeDbCPVJjVDACQeUgGCi/Tkls4JpAOMm1gCRAvxJfjw4rk8lQ4z/l/Tvdk1y3t6d2WsoppmiEfD/f3SFgZq4pkW/7HrcOQTh1arNxsh15f3+hzLGc5DFWt3uRpf7/w7mY9t2azZ1uL39nk+TlYGz3QOYx4uf1xPwIgHhzJLgCA7vFuZAbT0NSiqfNXqoEbVgAZjvMhgESbP71cc6eM1PDSIs2dMtInqAMgM0RyzwYgvoZVLlPZ7CVauKpepunqeC6bvUTDKpclu2gAAMBLqNidO7ml6rpxmjZmsBqbW5NQQiA2mRSfzrSBJUC8EF+Oj5qZE3TeqFLl57hSpfJzHDp/VKlqZk2IeBt2Oc+Furb4f84sh6GKYcW66ISBQdtSmXStCmfFrIka3KeHz2NlfXpoxeyJEf09FCtjVeG25b1PvY/bLENymtKbn21XYW7XY3lva4dP+/uUIX19jidJ6pGbpYtOGBi0jR7oHEa8HMgcXFPgjRnUgRQTzaheZggDABfOhwAAIFFSaZlfIN2lwqxmAAAgdOyOWfyQDjItPp2smZ+ZmRVAOFYll9thhvtQ1xb/z9nW6dTAQwtCXoMy7VoVSklRvjqdrtnQc7IMtXea6nSanuMk3N9DiTVW5X2tC7ct/336ZK0rkb3zwLZa2p16ZvUmZRmGqq4b5zmWA7W/j7ppiZxeE8Tva+vU4ne+0gvvbQ4b8yZeDmQerinwZkSzxAhST3l5uVlXV5fsYsBCDU0tQRuZ7gavfwPPjQYeAKtUV1eroqIi2cUIi/MhAABItEju2RBfJCXA25yqtVpUW6/cLFeH7LTRgwiKAwBgE8TukO44xhOrsmqtnqitT4s2f6r0wQCpaMaCOhX3zPdJLk+lGeojvbZE+jm5VgUW7Ptzxx175Dg08LBDunUcdTdW1dDUoskPrlBjc6vnNe5t5TgMtXWauuj4w/XC2q8D7tPcLIc6nE6fRHO3cPv7ir+s0sbt+/T17ha1djjlMKRzjyuNKOZNvBzIHFxTMpdhGG+bphnwQugI9CAA+4pkVK8VS1OlC5YNATIb50MAAJBodlnmN5OxXCy8uWc1C7bkMAAAdpQpcW1id0h3HOOJMaxymcpmL9HCVa6ZYReuqlfZ7CUaVrks2UVDGsqUa3Q6mz+9XHOnjNTw0iLNnTIypZLTpciuLQ1NLdq5r103TDo67OcMtr2q607O6GM92HHijjsO7N2j28dRd2JVQ+cs1ei7lqthT6vPte7J2npNGzNY3xneX5JUu3GHZ59mOQzP6/OyHXr2+pMVbA7bcJPbPnrVGI07uq/aOl0xb1OKOOZNvBzIHNz/IBAS1IEUFK7BSgPvIBITgMwWy/kwliAjAUoAADIbCbHJQVICAkn1jmcAQGbKlLg2fRlIdxzjiUEiDBIpU67RsK9Iri3RHKfBtrdoVX1cjvVU7UONJe7o/5mjjVUNq1ymts6uCeQOQ8rOcmjhm19o6dqvJUlf7tyv0Xct1z/XbFan11TprR1Offd3K2QYUmFels92yvr00LM/GRd2v8QS8yZeDmQG7n8QiBFuFBRSW3l5uVlXV5fsYiAJUn1pqnDCLdnOsiFAfKXS8pLdPR/GshxoOi0lGm8fbN6ti+e/qaevHavhA3oluzgAAMCGwt3/eT+P5WIBAEAqy8S4drr3ZQAc44kxp2qtFtXWKzfLobZOZ8rH5lOpD8ZKkd7/J0MmXqMle++TTBbs2tLd49R7e5MfrJEzQBqZVcd6qvahxhJ3jOUzB9unknTRCYdr1lnHdClXxdBi1W7cqR1720JuOyfLUHunqSN6F+i0ocUpuV8A2E+q3//Q9ukewzDeNk0z4I4mQT3NkaCefjgRuoRrxJOYAMRXOgdHYwkyZmqAMhanP/CaNjQ0a0hJof7189OSXRwAAGBD0XTipFtSAgAAyCzEtQGge1I9EcZfOvfBePPv97Zz4mqmXqPtvE/QVbjj1F3nbj13uG59/oOAOSfxOtbToQ812rhjqM9cM3NCxBNyjL17ecBBAw5D+uzucwKWy5T0xKp6n+cbks4bVard+9o08LBDdNnoQTr3wRXqDJA3mEr7BQCsRNune0IlqGcnujAAYuO9HFMmngj9G/ELV9Vr4ar6Lg1klg0B0F01MycEDbzE87WZpmz2Ep/fNzQ0ex7b+OtzklEkAABgM5He/3lzLxfrnZQAAACQKohrA0D3eCejz50yMoklQTTc/d5j7/JNvozk/j/RMu0a3Z2YDJIv3HHqrnM3PrVGnzQ2B8w5idexng59qNHGHUN95nmvRJb3U1KULwWZdzY7yxFVuUxJz63Z7KrHV42RJK28aWLK7xcAsAJtn/ghQR1IEZwIXaNDvzmgSP2K8vTa+sawDWQSEwB0RyyBl0wLUMZi6Q3jdc3jb2vTrv2exwYeWqA//vDbSSwVAACwk+50XJGUAAAAUh1xbSCxWLkYSDz/fm//3Eu7Jkhm0jU6HZKJM9W25lZdcPzhWr9lj4b1L1Jjc2uXOrehoVlS8JyTeBzr6dCHesf5I3X9k6vVt2duRHHHQJ/5hXc367k1mz3PiSTv59Shxar7YoeaWzs9j5X16aG/XXuSpODx0IamFp338BtqbGpRpyllGa4yPXf9uJBlTLX9AvuinY1UQtsnfkhQB1KE/4nQMKQzhvfTHRnU4T5v+Qa9+9UuHV1cGFEDmcQEAN0VS+Bl0859Ki7M0wNTR+nF97ekdYAyFsNLe6lHbpbPYwW5WRo+oFeSSgQAAOyGDhIAAJCJiGsDiZXpKxcD3hKVSBYoAah/Ub42bt9n6/v/TLpGE5NJXfOnl6uyaq3e/7pJo444VPdPLVdDU4vmLv1QL637Wq0dB4eE5GU7dNbIrsl38TrWU32QR3faDP6f+asde1XUIzeqBMhHrxqt8fe8qubW/crNMtTWaaq1o1PXLwp9vi4pytekY0q0qNaVAN/W6dSkY0q6PD/V9wvsi3Y2Ugltn/ghQR1IEd4nQochOU2p+uNG/dfjb+uPP/h2Wp8Qg43odZqmpo0ZTAMZaeODzbt18fw39fS1Y0nSTbJYAi8De/fQaxu26cV1X3OjFcbu/e0a2q9QN0wconmvbtCufe3JLhIAALAZOkgAAAAAxAMrFwNdJSqRLFACUKfT1OVjuf+3E2IyqSfUte173x6otk7Tk2uSZUhtnYlNvrPjII9IBubE0mYI9JnnVK2NOgFyRGmRKoaVeOrjax83RHS+jqQeW71fmDUbtLORqmj7xIdhmv4LJiGdlJeXm3V1dckuBixy1E1L5AxQZbMM6dO7z0l8gRLEPaI30ChSd4OWRi7SwekPvKYNDc0aUlKof/38tGQXJ6Tq6mpVVFQkuxi24n+j5caNFgAAAAAAwEHEcpHuOMZTQyR9T0CyJLoPJhn9GzMW1Km4Z75PApB3kiSQzuLVVgh1bfvls+tU3DNfnzU2a1tzq/oU5uobxT0zvu5VVq3VE7X1mjZ6UNBEb6vbDLGc/8Kdr+3QDo3kO0V6o50NZB7DMN42TTPgxYwZ1IEU8uZNkzT27uVdktQ7Tals9pK0TYKMZBmNeI/ot0NDHumrbPYSn983NDR7Htv46/QdfJJuAi1JGW5JNgAAAAAAgEzDMt9Id6l4jGdiHwhLuAMHJaN/w44zKSP1pcr1LF5thVDXtkxOQg8kmhmerW4zxHL+C3e+DnRsJapeMGs23GhnA/DmSHYBAESupChfU0Yd3uVxhyGdOaKfamZNiHqbDU0tmjp/pRpsviyFexmNquvGadqYwWpsbpXkauSWzV6ihavqZZquRm7Z7CUaVrnM0vf3bsgDVlt6w3gdfmiBz2MDDy3Q0hvHJ6lEiJb7xj7bMLjRQtRS5VoMAAAAAEAsEhXLBZIllY/xTO0DCdb3BGQaEslgF7H2l9j9ehasrTB0zrKIPnck3w/XtsjUzJyg80aVKj/HlTaXn+PQ+aNKg+bcWPG9WtEfGOx8fco9/w7aDk1UvYj2O0VkUrUfmXMRADfDNM3wz0LKKi8vN+vq6pJdDFhoxoI6fda4Vxsamn0ev3xM95bHSfXldeK9NEwylrRDZjr9gdd86vWQkkL96+enJbFEoSV6eUm7c59LBx5aoNOGlbAkJaKS6tdiAAAAAAAiwTLfSHepeIzTBwLYU6g+mHjNhDtjQZ2Ke+bTv4Gk6m5/Sapcz4K1FbINQ8+s2RT2c9OfZK05VWu1qLZeuVkOtXU6o/5eoz0fu/ffhccfri937g/7umDb9z5f/3nFZ/r3Rw168NLjdcNTa7RrX5ucB9IAHYY8P3tz14t4XE9i/U7RFfUeQCowDONt0zQD3jxkJ7owAGIzf3q5ZiyoU0t7p44deKgk6b2vdkU92iwey+skY8mseI/oT8aSdshMu/e3a2i/Qt0wcYjmvbpBu/a1J7tIiID/ufTLnfu18M0v9Pe6L20V8II9sdQdAAAAACCTMDsr0l0qHuP0gdhXMvrckBq8Z8K1MlHNOxl97pSRlm0XyZNK55FY+0tS5Xrm31ZoaXfquTWbPX8P9rnpT4oP9wzP3gNzouE+H/966Uf6alfghPOGphaNuXu5vOeOXfzOJknSSXct16d3nxN2+/7ne+/zdY+cLO3a367pj9TKPxfdabqS1HMPHGv+9SIe15NYv1McRL0HkC5IUAdSkBWj1eNxkxavgEg48Wzk2jmgnEpBBYRXO+c7np8nH1eaxJIgGqkS8II9cfwAAAAAADINCQtId6l2jNu5DyTTJavPDfEVS98eiWqIViqdR2LtL0nm9Szaeu3dVnhkxWd649Pt2rWvLeTnpj8pPro7MMf/fPzMalfC+di7luszv4Tzecs3yDSlsj49tHH7Pp+/dZpS2ewl3RqQEGzVAH9OU2pp960Xp9zz77hdTxjsZB3qPYB0QYI6kKGsvElLdkAk3o1cuwaUUymoAKQrOnAQC44fAAAAAECmIWEBqS5cEloqHuN27QPJVMnuc0N8xdK3R6IaIpWK5xEr+kuSdT2Ltl57txXunzpKc6rWalFtfcjPTX+SvbjPx//0mv1eciWDuxPOJfnUQ//kdElhByS8tO5rtXaYyss2dNbIAZ7nNTS1aPiAIhUX5em1jxuDJqpnGa5j5+Sj++jqcUd56gXXk9RAvQeQLkhQBzKYVTdp6d6AjSWgHI9ZzlMxqACkMzpwEAuOHwAAAAAAgNSRjhPHpGJSfTpL9z63TGVF3x6JaohUqp5HYu0vSfT1zKo++0g/N/1J9uE+H0uSw3Alpkt+CeemNHfph1ry7mZ1Hvh7WZ8eOrx3gd74ZLsMuRLYV3663bPdhqYW/deCt2UY0pF9DlFrh+uFrR2mz/l+3vINWvPVLh1dXKi2TqeyDHnew81x4LFJx5R42qze9YLrSWqg3gNIB4ZpmuGfhZRVXl5u1tXVJbsYyADukb25WQ61dTo1bfSgtAnOxqKyaq2eqK239PtoaGoJGlTgpgGJUl1drYqKimQXAwAAAAAAABkuHpOEAP78k9DcmDgmNOpn9BqaWnTOgzXa1txGn1saibZvL1gfzIwFdSrume+TqOZOyqW+wRt99y7xrBeJ6LOnXtuL9/745bPrVNwzXzuaW7V03RY5DMmUPHVt6JxlausMPLO5JH33WwP0ydY9Wt/QrMvHuF5TWbVWC1fVR10uw5CGlBSqb2Gevtzhmql9/vTyLtcJb6GuJwAARMswjLdN0wx4IWEGdQARCXfzw8g9X/Gc5ZwZEgAAAAAAAADAJR1ntIb9pOpstMlG/YzevOUb1LinTUNLCvXbS47PuD63dE3GtKpvL9QM0dQ3eKPv3iVUvYj1fJOIPnvqtb2498fkeSv0wg3jVdIzXzMW1Onysb51raGpRT3zs7V9b5sMuRLX/S1d+7XnZ3cuSTDudueMU4/SH17/LOJBEaFWEmAFHQBAopCgDiAi4W5+aMD6inewmqAC/KVr0BYAAAAAAAAIJJJJQoiZwSpMHBOdeE7ik678v7P1Dc367ryajPvOrE7GtMt1oKGpRUvXfq0Ljx+oq8cfaWnfHvUNgYTru7dL3YiXSOqFFeebePXZhyt/uu8/u/HfHw17WjX6zuUB98cp9/xbo+9a7nmud3L6Eb0LtGnXfjlNKevAjOtOU8rLNtS7R54a9rTIeeAF7sT23CzD0+4cXtqL9igAIOU4kl0AAPY2rHKZymYv0cJV9TJN181P2ewlGla5LNlFs7V4B6vnTy/X3CkjNby0SHOnjGS5JfgEUQAAAAAAAIB0VzNzgs4bVar8HFdXV36OQ+ePKlXNrAme5xAzg5XcSWhV143TtDGD1djcmuwi2VYk9dMuGppaNHX+SjUkeSKgVPrO4iFe/ZF2uQ7MW75Bu/a3qyDHYXnfnt2PHbvUMTvy/m4S/T11p26k0r4MVS+sPN/Eq88+XL22y7ktU9TMnCCH0fXx1g6nhlUu8+yPk+5a7pPI7u2cY/trx942T3J6p+lOTneordNUz/xsT3K65EpOH1JSqGd/Mt6n3Ul7FACQaphBHUhhiRgZy7KV3ccs50gEZsZIHmYnAAAAAAAASJ5Qk4QQM0M8sJJs5FJpxvlYZ9C1Kk6cSt9ZPFjdH2mX60AiymH3Y8fqWfHTiX+ScSK+p1iOyVTal6HqRSrkPwQr/yn3/NsW57ZMU1KUrymjDtczqzd5HnPPgN7a4dTCVfWSpM4Q21jy3hbPz51eieiP/PBE/fxva7Rjb5uO6F2gYwceKkl676tdOqr4EM/gBzfaowCAVEOCOpDCvG8Cb5g0JC6JknYPatgZNwdIhFQIoqSrVArEAQAA+GOwHQAASAfek4T8ecVnWrL2a93wnSHEzAAbsPskPlYlDlsZJ7b7dxZPVvdH2uU6kKhy2PHYSfYgATvHPQJ9N94/x/N76s4xmex92V3B6kWq5D8EKr9dzm2ZaG9bh4aUFGpDQ7McB2ZAv/D4w9Vhmj77I9thqLk1VKq6fPbbvFc2qLG5VdNGD6K/GQCQlkhQB1JQsJtASXFJlLRjUAOAS6oEUdJJqgbiAAAAvDHYDgAApAPvSUJ65GRp1/52T/uGmBmQXHafxCfWJL94xInt/p3Fm5X9kXbpO0lUOex47CQ7kdbOcQ//78ZhSIZcCa/x/p4CHZPZDkPXLwqezG/Vvkz0oIFQ9SIV8h+Cld+9/wxDtHETaP70cs1YUKcxR/XxOW76FuZ52gMt7c4wW5EcB/bb8+9u1nNrNnset0t/s50H9wAAUhMJ6kAKqpk5Qb98bp3+9cFWOU3fv8Wj4WrHoAaAg1IhiJJOkh1UBQAA8ZXuQXgG2wEAgGSzur0VrH3jMETMDEBQsSYOEye2ntX9kXbpO7FLOawW7npeUpSvbMNQS7tTOQ5X4ma2YcQ91pIKcY9A5x9JCRtM4X9MvvZxg77atT9oMr9VAy2CDRpIRiwulfMftjW3akhxodY3NGtoSaEam1uTXaS0Ee5YDHTczFhQp2ljBuusEf01+5n39NXO/ZJcg036F+Vr4/Z9Ptvwzu85b1Sp7doRdh7cAwBITSSoAymopChfnzXuldN0jbB0mlLWgWWEJKmsTw/97dqTkltIAAmTykGUVBRNIC7dE9wAAEhH6R6EJ4kCAAAkm9XtrVDtG3c8hpgZkJnCxWdjSRy2ywzd6SzW+Lpd+k5iLYdd+xkiuZ6/tXGHJGnAoT1Uv2Ofag/8Hq1ovoNUiXt4n39mLKiT5DpWEjGIwX1MRpPMH8v5Mtz7pHsszkr+3+X6hmatb2jWsMplthmAkcq6cyx6n+MLcrIkHZwlvdNp6qITDte2vW1asb6xyyoJv3tlg23aEakwuAcAkJoM0zTDPwspq7y83Kyrq0t2MWAh/4ZhKDQWAcRLdXW1Kioqkl2MpJmxoE7FPfN9AnHeAQi3yqq1eqK2XtNGDyKoBgAIyK6djJko2L1WOt5Xzalaq0W19crNcqit00lbBQAAJEQ821u0bwAEEu/4bKRxYnRPuP2XzjEV7z4Yu/UzRHI9D9efHe21P9rvgHZBZBqaWsIO8ovn+yxb+7XaOrvmK6VjLM4qidpnmSbW+5Rgr3cY0ps3TdLZv6vR9r1tys0y1O40PeckO7UjOLYAALEwDONt0zQDXsSYQR1IMYFGfRfl5ygv26GGPa1q7XDKYUjnHleqGacepanzV6ZlYAYAkincjCeMMgcARIoZguwjVWbYskK6Li8OAADsLZ7tLdo3qSWdk0phD4mKz9plhu50E+n+S/eYil37GSK5nruf89K6r9XacTABOS/bobNGRn7t7+53QLvAJdz1NlErQQR7nxWzJmZMLM4qrN4RH925T/GuX6FeP++VDdq+t02S9J3h/XXYIbmec5IV7Qir2tUcWwCAeCFBHUgxgRqGknTikYepavUm5WW7RoL3zMvWolX1KReYSVZgmoA4ACtlUoIbAKB77NrJmMkyKQhPEgUAAEiGeLa3aN+klnRPKo0GfRPxQXw2tYXbf5kSU7HrcRzJ9dz9nLZOUw5DcppSliG1dTq18tPtEb9Xd78D2gUukVxvE5XMH+h9MikWZyUGYFgv2LEoU0EnhPSvX/6vf/7dzXpuzWaf1yxd+7Uk12Adq1jZrubYAgDEAwnqQAra1tyqC48/XB9v2aN9bZ36bNtevfX5Dk9jcfKDNVq4qt7z/FQKzCQrME1AHICVCKoBAMKxaydjpiMIDwAAEF+0t+IjVZKcMyWpNBr0TcQH8dnUFm7/ZUpMxc7HcSTXc/dzPmts1rbmVvUpzNX2PW1a39Ac8TnPzt+BnUVzvU1UMn+w96FtGD0GYMRHoGMxUDstWP0yJBX3zNMDFx+nF9dt1Vc79ik3x6FXPtgq54GFJLIM6fTh/XS7BfstHu1qji0AQDwYpmmGfxZSVnl5uVlXV5fsYiAOvnHTEnUGqL552Y6QgRm73rD7N6Dd4h2YTtb7AqmuurpaFRUVyS6Grc1YUKfinvk+gQzvG3sAAOZUrdWi2nrlZrlWQZo2ehAJCQAAAACiVlm1Vk/U1tv+nqKhqSXl+i7ihb6J+CM+m9rC7b90j6m4+2BS4TiOZJBULOe8VPgO7IbrLRCbUOesYLk42Q5Dz6ze5HM9mlO1Vk94TSwpSZePseZ6RT0HANiJYRhvm6YZsJHODOpAignWGJak80eVehqcqTaaPFmzHWTKLAsAEo9R5gCAcJghCAAAAEAsIp050S4zrDMT7kH0TcQf8dno2eVcIYXff4mOqSTruwn2PdhpX0WyEkQs5zzqcvSivd7a6XgKxO7lQ2oKdVz5n7MMQzpjeD/dMWVkl1yclnannluz2fNa7/Z4xbBiHdG7QMcOPFSS9N5Xu9TY3GpJ+WlXAwBShSPZBQAQnZqZE3TeqFLl5xysvg5DMgz5NDjdgZmq68Zp2pjBljV04yVZDWga7gAAAEiW+dPLNXfKSA0vLdLcKSOZ/Qkpq6GpRVPnr1QDgywAAAASyr+/ID/HofNHlapm1gSf53knDyZbqvVdxAt9E7AjO50rwkl0TCXcd9PQ1KIpD7+hC/7fGwm5N7bDvhpWuUxls5do4ap6maYrKbNs9hINq1zW5bnRnPOIMVjzHURzvbXD8RTqM9uhfEg/oY4r73OWw5BMU1q/pVnXL1qthj0tPvXrwhMOV/9eeQHb4/Onl6tm1kQ9PO0EPTztBNXMmmjp9Yp2NQAgFRimaSa7DIij8vJys66uLtnFgMXcy9YZkpymdM7I/updmJfyS5ola4k2loYDoudeXhIAAACorFqrJ2rr025JdQAAgFTg7i/IzXKordPp0yYLtiKr/wzrSA76JmAXwc4VhiGtunlSRAMn0nWG40jPo5VVa7VwVb0k6fIxsd8bB+uDsdN5vaGpJeis6IGOgUjPecQYIvsOrKhzdjqe3J/5wuMP15c79+uhy47XKff82zblQ/oIddzXzJzgqVdj71ouZ4B0uixD+vTuc3weC9UeB1JZurbvAFjPMIy3TdMMGNAgQT3NkaCeniK9gU+VxkIs5UyVzwikGxLUgczFtRcA4GanjkwAAIBM1NDUojN/+7omfrNEV487qkt/QbTJgwAyU6BzRf+ifG3cvi/iZOt0TSoOdx4Ndl8sxXZvHKwPxm7n9e4kZQaLLxNjiO47sKLO2eF4CvaZswxp5U2Tkl4+pJ9Qx/28VzZ46tUNk4Zo7tIP9c81mwNuxzuhvUeOQwMPO4RBh0g76dq+A2C9UAnqjkQXBkDsgi1b57/0VaosdxVLOVPlMwIAkC649gIA3GpmTtB5o0oDLmELAACA+Ju3fIN27W9XQXZWl/4CSSopylfPvGy1djiVl+1Qa4dTPfOySeoCDvDvV8tU3ucKSWppd2rj9n2SpIWr6lU2e4mGVS4L+NphlctUNnuJFq6ql2mGf74V33ki91u482jNzAk6Y0Q/OYyDr8kypLNG9IvLvbHdzuvbmls1bcxgVV03TtPGDFZjc2vY1wSLLxNj6PodSFJZnx4+30G0dS4UOxxP7s/sr9OURt+1XC+8u9k2xzvSQ6Dj/oV3N2v0nct96pX7+DMM39fn5zh01oh++uaAIt3z4kd6a+MODezdQ3OnjFTfwlyt37pHd0wZmZwPh4jQ/gvPymsNAGQnuwAArOO+ofdfbmjhqnotXFVvuxHm/iOioylnLK8FAADR49oLAPBnh45MAACATBTNPbo7edB7RkccxEpxmc07UTbTZ4V0nyu+3rVfyz9q8DzuPbNsIDUzJwSdiTYQK77zRO+3UOfRkqJ8FRfm+fTLdppS38K8uJ1T7HRe9x4UNTdMQma4a1eiYwx2PP+XFOXrhXc3+xxPG7fv0+g7l3u+p5qZE1T53Dr964OtMs3wdTScZB9P7v1uGJIheT67+3Pt3t+ugb172OJ4R/rwP+6/2rFXRT1yu1zL/rlms0y/17a0O/Xi+1slSWu+3CXp4Pksy5CcEu0Km6P9F1607TsACIUEdSAN+N/Q+zeS7dpYiKVRQ4MIAIDE4toLAAgk2R2ZAAAAmSiae/RokgczEQkqmYmJGLqq/rjR5ztxa2kPnSQcaVKxFd95svZbuPPotuZWHdG7QMcOPFSS9N5XuyKaSTxe5YlEMpKzI7l2JTLGEOz8n+zE9VOHFGvj9r3avHu/2jpMOQzp3ONKPd9TSVG+Pm/cK9OUHIZiTuS/4/yRuv7J1erbMzdp7QT3ft/R3Kql67b4fK7fXXK853m0Y2AV7/PoDROP1vVPrtZhDqPLtWzVzZM0d+mHXQaOBNN54Dm0K+yJ9l/kmJgGgJUc4Z8CwO4CLXlW1qeHJNm6sRBLo4YGEQAAicW1F8gsLHOJSM2fXq65U0ZqeGmR5k4Z6dPBAwAAgPjgHj12LFufOuJxfxqoX+38UaWqmTUhKeWxA//vJMthqGJYsS46YWDYZGt3cmnVdeM0bczggM+P5TsPt42q605O6j6ZP71cNbMm6uFpJ+jhaSeoZtZE298beydnWy1YHYnk2pWIGEO48388v5tIPHrVaI07uq/aO03lZTtkSp7vyV32DQ3NklyzjZumtKi2vtvvl+zPKx3c752mqcvHDtYLPz0l6LkEqcuq66fV12F3HXjr8x1drmXu85YpV96NYUhlfXp4rkOSa6CIId/Hu3ONQ/xZ0RbJJJG07wAgEsygDqSBQDf0nU7XDZzdZ7GLZSQ8M/UBAJBYXHuBzMEsggAAAIC9cY8eG/dMvi+t+1qtHabysg2dNXKAz0y+yZ5F1w7s8B3E4/40VKJsuM+crvfL/t9JW6dTAw8tiOgzRjKjtxUDa4JtY9Gq+rTcJ/GQiNljQ9URO1y7gs3kvmzt1yqbvcTzvGTOrBvse7JylVM7ziTMqi/pzarrp1Xb8a8DX+7cr4VvfqG/133pUwf862P1xw1q7XDKYbgGiZw9or96F+Z5HmfwaHxY0SZlkG90OCcDsIphmhGsQ4KUVV5ebtbV1SW7GEiAGQvqVNwz3+dG1b0kVyYHTwHER3V1tSoqKpJdDAAAYDH/wLwby1wCAAAASDdzqtbqiVUHZ529fMwgn0Snyqq1eqK2XtNGD8rYpNdkfgfxvj8N1K82f3p50M+cjPvlRA8QCPad2Gn73ts498EV6gyQ65AOMYx49cE0NLUET3A2FdPxlkoxpTlVa7Wotl65Wa7BGNNGD9INk4YE/W7s1M8eqOzdOT+HOhbs9HmR+iI9N4S75kV7jgm3vUB1oGJosbY0teqPP/h20HoQ7FoW72toprOqTZqK+8kOA0YBIBzDMN42TTPgCZUE9TRHgnpmI3gKhEZjvvtIUAcAID3ROQUAAAAgE4RKcpKUMkmW/qyKedsh0TTR96fhPnMy7pczrZ8v2uM3nWMY8eyDCZbgHMnxFmofpdL+CJagaFXyd3dFUgesTK5M9udFZoj03BDuHBRoO6cNLVbDnlbNn941odx/e4Hql38dOLq4UJ80NlMXbMQObdJky7T2IIDUFCpBPTvRhQEQf3Zckguwo3RdihMAAKC7WOYSAAAAQCaomTkh5CzCQf8WpURPkmJVzDvk95Mgib4/DfeZE1meTO3ni/b4LSnKV7ZhqKXdqdwsw/YxDCvPB7Fsa1tzq6aNGexJcF606gst9FpNItTxFmofpVJMyTuhe+6UkZ6f/b+bxj0tCS1XJHUgWNm7I9mfF5kh3Lkh0mteoO181rhXnzQ2+9SZYNvLMiSn5PNcdx14+q16maa0oaE5ZBmQeHZokyZLprYHAaQfEtSBNJTJjTQgEjTmAQAAgqNzCgAAAEC6C5csZVWSZaImSbE65m2XRNNA96fxSvqP5DMn6n450/r5Yjl+39q4Q5L0neH9ddghubaOYVh5PohlW/4JzjdMPDrs8RbpPkr1mJKVyd/RSFa/ZbI+LzJPqHND1XUna/ojtWpubVdrhxnymhdJQnnNzAmaOn+lNm7f5/PaTlNdnuuuX5GcB5EcdmmTJkOmtQcBpC8S1IE0lMmNNCASNOYB+0j0LFIAgPDonAIAAABgNTvGgEIlS8WaZJnoZMN4xLxDfQeJ2p+B7k8rq9bGnOQbrPzh9nui7pczrZ+vO8evfx1buvZrSVJetiPu5Y1WJOeDSOtUPM4tkRxvke4jYkrdQ78l0l2oc8OiVfXavrdNksJe8+ZPL1dDU4vWbdqtfkV5em19o0+dWbb2a42+a3nAMuTnOILWr0y77qaaVB/81F0clwDSBQnqQJrK1EYaEAka84B9JGoWKQAAAAAAACSPHWNAoZKl7jh/pK5/crX69sztVpJlopMN4xHzDvX9JGN/WpmYG6z8dkquzaR+vu4cv92tY8kYLBNJWSOtU/E6t4Q73uhXiy++X2Qi/+u6JLV2OJVlGGpsbg36unnLN+jdr3bp6OLCLnVmxayJmrv0Qz2/ZrNMSTlZ0uGH9lBbh1NfN7WErF+ZdN1NNXZqnyUaxyWAdECCOpCmMrmRBkSCxjyQXMlashIAAAAAAACJE68YULyTTGNNwE5GsmEiYt7JjOlFmpgb6thIpZhkpvXzRXv8dreORVq3rTzHhCprsGMyxyFtqIhuW7GI5Hizw6oK6SxZ/ZbsOyRLyOu6KU2dv9LnuPQ/X25oaJYkOU1T08YMVuOeFs850jzwnPZOafzRfdXY3KqJPfuFrF+Zdt1FauC4BJAODNM0wz8LKau8vNysq6tLdjEAAGmmurpaFRUVyS4GUlhDU0vQwBNBUABArOhcAwAAAOwhXjGgyqq1eqK2XtNGD7J0Bu9As3lK6lYC84wFdSrume+TDOWdZJKKkh3Tm1O1Votq65Wb5VBbpzPg/g91bCS7/N3FPW5g0dSxaOu21eeYYGUNdkxO6L1TU86cGNW2kile5+R4oD75SqV9h/Tjvq7nZDnU1uHURSccrvunjupyXDY0tWjGgrdVVJCt1zdsk2kq4DU80nM95wEAAA6y4rpoGMbbpmkGvClhBnUAAAAkHEtWAgDiKRnLzQMAAADoyuoYULxnwI50lu5IpOOMh8mO6YWaYTiSYyPZ5e8uO97j2iG5L5o6Fmndjtc5JlhZgx2Th+Y5ot5Wonjv+1Pu+XfKrErgZsf6lAyptKIE0pf7ur6zuVVL1m3R4nc2afE7mzx/dx+XWYbklFyzo5uSw5BaO5xa+el2bdvTqusXuc5Joc713ucuzgMAABwU7+siCeoAbM0OAS4ASIRMPN8la8lKAED6onMNAAAAsB8rY0BWJpAHkqoJzImUzJheqMTcSI+NVIpJ2vkeN9WS+yKt2/E+xwQS8JjsHbe3i5n3vo/X9xWP/hI716dkSMaxDvir/rgx4Izn/jpN1/9NLR2SJOeB3xv2tOonT6zWxh17PdejYOf6yqq1qv18h0bfudyz3Uw/D8BXJvbVA8hsiWofk6AOpJl0aDRZNXo1Hb4LAPFjt3NEqgX0rZDsmV4AAOmHzjUAAADAfqyMASUigTyaBGa7xRgTwa4xvUiPDbuWPxA73uNGksRg13oRSd1OxiCVQMdkdXV13N6vu4Lte4chmZKl31c8+kvsWJ+SiQFZsAP/epllHExGdx+Xknwe9/f59r2SfM9JFxx/uNZv2aNh/Yu0qNb1eCCZfh6Ar0zsq0dy2LWtjMyTqPZx8LWhAKQk70ZTqpq3fINn9OrCVfUyTdcNRdnsJRpWuSzo6xqaWjR1/ko1HAgopcN3ASB+7HKOGFa5TGWzl0R1vgMAAIHRuQYAAJCZ/GPDSG/uJNOq68Zp2pjBamxutXT786eXa+6UkRpeWqS5U0b6JI/6iyXGyHFrvXgfG4lmx3vcmpkTdN6oUuVlG5KkvGxD548qVc2sCZ7nWBl7t7KeRFq30+04sop73+fnuFJM8nMcOn9UqU4d0tey7yue/SV2rE/JxrFuL5nYLnDXy5Z2VyK6dxK694CYYMnp/s4fVao3b56kHjlZev/rJhXkOPTmTZN8zl1ZDtf1KzfL4DwASfTVI/HskqcCJKp9bJhmhFdypKTy8nKzrq4u2cVAAviPWnfLzTI0alDvlBh5FewzSL6jV4N9jsqqtXqitl4OBb5JYWkmwDrV1dWqqKhIdjG6Jdi5xopzRHdGuzY0tQQdlWj38zYSjxHVABDejAV1Ku6Z7zMjWqiEEgAAAKQ+d2x42uhBzHaHhLAixshxi0jY8R53TtVaPeE1G+3lY1zHcDxi75laT+zUB+Mdk/7dKxu0qLZeuVkOtXU6Ld8v8e4vsWN9Atwy9Xw3Y0Gd1m/Zo8+37/M8lpftUN/CPG1rblFrh6ksQ+p9SK6K8nN02CG5WvPlTgVKKwk207p7pYfcLFfy3ZCSQv3ukuM5D0ASffVInHjmqQDdZVX72DCMt03TDPhCEtTTHAnqmSNYo6m906mla7foohMO1/1TRwV8nV0S3dyfYcl7X6vTefDclJvtUHuIIEeoxHYpsuR2ANGxU3A0WvG8yexu8GhO1VpLgrp2OqcjPjI1QBkL6gUAAACsRhsTsA86eJEsscQYOW6RykIdv6GWiI+2zZTp9cROfTDeMenG5ta4J3hb1V8CpIpUP9/Fcn8cLs/DMORzLvj7218Fff7lYwfrqx17VdQjt8t1aPf+dg3s3YPBKQiKaw8SgcEQSGehEtQdiS4MgPjwX3ahpd2p59Zs1tK1WyRJi9/ZFHAZGjstHXLKvf/WP9ds9klOlyTTNEMuKxZoSbmyPj1kGGKJNgBdxGOZmliX/rJqGUU7ndNhLZaX6z7qBQAAAKxGGxOwj0Cx4fNHlapm1oQklwzpLpYYYyzHbUNTi6bOX6mGPS0xf4ZMw3dnjVDHr7tetLQ7ZUhqae9+7J3ze/IFikm/9P5W/b3uSw0vLdLcKSPjkuBpVX8JkCpS/XwXy/1xzcwJOmNEPzmMg485JB3Ru0B9C3O7nAvc35XnuYZU1qeHKoYVa+6UkXr0qjEB22ePXjlac6eMjOu5C6mNaw8SIR55KkAqyE52AQBYx91oumz0IJ0zr0aB1kdwr5rgPxp14ap6LVxVn9SRuDUzJ+i8h99QY1OLOk3XEkwlRfl67vpxIS/IgS7inU7T8124R8ECgJv3+dKKc0SomWEi4Q6ENDS1aP3WPXrosuOjen87ntNhrViPMSulymyR1AsAAABYjTYmYD908CKZuhtjjOW49U4CY1bH6PDdWSPc8butuVVDSgr1SUOzhpQUdjvBi/N78uOwyYpJeyeOzp0yMq7vBdhBqp7vIrk/DnceKynKV3FhnrznL3RKOm1osc+12n0u8H9Ppylt3L5PX+8+2AaLpn2W7PMs7INrDxLF6jwVIBWQoA6kEXejaVjlsoDJ6ZK0YvZESfZKdPPmdJrqNF0zn7d1OjXpmJKIbgYCXcTdDUcakAD8WX2TaVXwqLudJFXXnazLH6nV3tYOtXZYd04nMGMfdgpQpkpnnl3bOgAAAEhdtDEBe6KDF8kSS4wx2uM2EYOk0jUWyAAz6wU7fv2/6w0NzdrQ0Kxhlcu69V2n4vndynqU7DisnWLSQLpLxfNdJPfHkZzHtjW36ojeBTp24KGSpPe+2hV0cJNrwsMVatzTpk6nqSyHoZKeeXru+nGe50TTPkv2eRZA5mEwBDIRCepAGnLfDPxzzWafx0t75XuCBnYMKsxbvkENe1wzK/zukuOjuvmK10X8g827dfH8N/X0tWM1fEAvy7YLIP3EEjyKtZNk0ap67djbJkmWntMJzNhLsgOUqdaZ593WMQzZoq0DAACA1GbHeBoAOniRmqI9bhMxSCpdY4EMMLNesOPX6u/a/30amlo0df5KWw+isKIeHYzD7pWU3DhssmPSQKZIxfZsqPvjaPqTvD97JO856Zh+WlRbH/WEh96s6u9K18F9AABYiQR1IA2dcu+/fRrUbluafIMGsQYVrGpwB5pR4bvzamyR8HbjU2u0p7VDNz65Rv/6+WlJLQsAe4sleNTdwL3/+VNyJeE6DHV76dRA27V7InKmSHaAMhU787Y1t2pIcaHWNzRraAxLCgMAAABuJOkAAJIhnoOkUiUW2N0+KQaYJU48vmvv/W7nQRRW1qOamRN0w1+rtWabmfQ4bLJj0gDsLdj9sX9/ksOQzhjeT7dbcB6x4p7cqv4uO1+XAACwCxLUgTQUydJGUuxBBasa3HZMeCubvcTn9w0NzZ7HNv76nGQUCUAa627gPtT5M5agvx3Py0i+VOvM8+8UWt/QrPUxLCkMAAAASCTpAACSJ16DpFIlFhhLn1S6DDBLhZlarf6u5y3foNrPd2j0ncs9j9lxEIWV9aikKF8F2YZaOzpTIg4LIHMFuz/27k/KMqROU/q0cW/E57FQ1zsr7slj6e9qaGrRmLuXyzQPPmbH6xIAAHZBgjqQhqxa2igYq2fTsGPC29Ibxuuax9/Wpl37PY8NPLRAf/zht5NWJgDprTuB+3idP+14XoY9pFJnXqp0rgIAAAAAAEQiXoOk7B4LtKJPKtUHmLkT9foW5qr28x26Z9lHun/qqGQXKyCrvutAq4e62THOZ3U92t1qpkwcFkB6i3ZwlPv5b23cIdOUOg887p4QMDfL0Po7vxtyG/Gcmdxdvh45Dk0bM1hnjeivn/9tjb7auS+i189bvkGmKZX16aEtTS30PwEAEAYJ6kCaimcCWTwSvuyW8Da8tJd65Gb5PFaQm6XhA3olqUSIVSrMLILM1t3AfbzOn3Y7L8MeUqkzz+6dqwDQHbRpAQAAAMSDnWOBTEIgnXT3cnV6zdS6+J1NWvzOprSeqdV/v2c5DHU6TeVmGbaN81lZj244IV8VFa74q93jsADSW7TJ4u7nXzDqcHWY5sHz+IGZ1M89rjToa62eKDFU+aaNHqS5U0aqsmqtGptbNbB3v5Cv8y/bxu0HE9rtel0CAMAODNN73RGknfLycrOuri7ZxYCNWJXQMKdqrRbV1is3yzVD+7TRg7o1etXOCRaj73xFh/bI0Q0Th2jeqxu0a1+7aud8J9nFQjdVVq3VE7X13T5W4au6uloVFRXJLgYAhDRjQZ2Ke+b7dAp5J9kDQKqhTQsAAAAgE1nVJ5VqQs0iLimiWWhTmfd+b+1wakhJoX53yfEZEeejDwaxsHP/O1JHsGtQoGTxhqYWjbl7uaJJPwu2nV8+t07/+mCrnKbvihmxHsvhrqmhyuUum/fAKYchDTqsh+ZeMFIvrtua9tclAABCMQzjbdM0A14ImUEdyDBWLYdk1SwAocqT7Jtn72T0ySFG8sLeEjHSGgBgT3aa8T3Z7RoAqY02LQAAAIBMZucZ3uPJPYv4P9dsTnZRkiLQfh9eWpT0OB9gd1blAyCz+a9k4TCkM4b30+0BzsHzlm+QaUplfXpoS1OLZ8WT3j1ydfzgQ7WvpVM1n2xTp9MMuRJKSVG+PmvcK6f5/9n7+/goz/ve9/3eM3oYsJDtgIQtE1BSgxKQY7nRAlzjRrLTxq1dW252SBrMStduu/B2s+y9ss4GstF6ta9GSUz3dl87ND1nKXt1ne6CcZIerHg1QnYSErJEX1iyMKTYjmvVMZYNxiPAIASMHmbu84cYMTOaGc3TPffT5/2PzUiauWbmfriu3/W7fpcUNK5VJpcpbew+nPP8Srr5mNT3U11haElNSGfGJzQxPf8OLam79k5GY9pw6xJtuLVOG26ty/PTBQDAP0hQB3wgPBbRum8cUOKC1WITGopN+MolwcLJyetwD7b/BAA4wZN9r2vwrXPauf91PfX5FrubUxb01+Aldh/P9GkBAAAA+JmTihCUUzwZLp0FlQH9fGt7mVtUXn793oFCUeAApZSYkB00pKgpvTl6KSk2mnrMnTh7efb/J6Zjuvdj9Xr83pV64K8PKRozVV0RmE06T42xrtqxX5PRaxkt8f/dOzgiSXktukiXZ5IuwXxhVVCT0VjWdiXy64I5AACKQYI64AO7DgxLhtT4oeQVq3YmNGRLsCg2eR1IlDrYzGVwCQBAqaT2a/YdPal9R0/6YlKA/hrsYkUyud3HM31aAAAAAPCX+Nh2YVVQj6xfoR+/elrvX5yQIcmUtKSmmjEhgCQUOECpPTM4ItOUolf/PRweV+P23tn5jXRV1pd/aKG6Hm7W86+8r9GLEe06MKzwxQmtrK/Rt75wR8bE7t+7vUH7Xj45mwwfqgxocjqmmDmTLyLNv+hivjyT1ATzH716Oq+EcxZOAQCQPxLUAQ+bb8WqnQkN2RIs0g2e21bV6fTYhFZ19mmSld/IE6uZAQB2Mc0Mj5e3GWVFpR7YrZTJ5E46nunTAgAAAIB/xHfj++wdt6iro1mjFyOqWxRiTAggIwocoNRe/Oq9SXkbVUEpZhr62z+cSdROV5V8w61LtOHWOv3R3w0lxVWHw+P63V39c+KqqfHXeOX0yFRMv3/HLZo2zZwXXcy3SCM1wTwxyZyEcwAArEGCOuBhqR1wSWq4PqS//J9u1/OvnrY9eJUpwSLd4PnN0Uv619FxPdyS3yAEkFjNDPtYUcEVgLsc2taujd2HkxYKNi5eqO8/eqeNrbIWlXpgFyuSyZ10PNOnBQAAAADvy2U3PsaEADKhwAFKKV3ehmTqP/e8op/9b+2SMh9zucZV+7e2q/O5V/Tj196XaUrBgKG7Vy7R4uuqNT4xpSU11TkvumCRBgDAacgZIkEd8LTEDnjc+MS0Nqxcog0rl9jYshnZEiziA5nvvTSzbdRweFyS9OzRk7O/w6ACgNOVsoIrAHeqrw1pOjZT8qMqaGgyaioaMz3ddyEIDLtYkUzO8QwAAAAAKKdsu/G9duqCPt/9or736Hqtvvn6srbLCUjuAOZHgQOU2skPLss0lZRz8tbZy2rc3itJOvHk/bOPJx5zucZV62tDemv0kkxTChhSzDS17IYFs/OqW3YP5bXogkUaAAAnIWeIBHXA854eGEn691hkOu1gwWnig+fH77l1TpLJjQur9Bu3LtYf3fVRBhUASqLUgW0rKrgCcK81DbVqa6r3VUCUIDDsYFUyOcczAAAACkEiJYBCZNuNb9P/PaCLE9N64plj+vFXPmVjK+1BcgcAlN+yGxdm/Fll0JCUvt8bHoto//H39Pu/fkvGvI7U+dSrtX60d3Bk9jqf76ILFmkAAJyAnKFrDDPTMmx4Qmtrqzk0NGR3M2Cj105d0J/8/RGdPH9l9rFlNyzQd770SddUV9jRc1x7B0dUFQxoMhrTprXLCTwBNjt48KDa2trsbkbJdPYc19ODIyW7voTHIhkruDIhCQCAdbbsHlLdolBSMnnipAQAAABQLqWONwHwjw07f6p3P7gyuxtfNk4uRlUqqckdcV5O7vDaHAwA98l07U302Ttu0VOfb0nb782lL/zaqQva/LeDGp+Y0sS0yXwqAMAz/JYzZBjGEdM0007IUkEd8LjVDddrYVUw6bEFVUHXJKdLVCwEYB2rVi1aVcEVAOAeVEu0BxVyAAAAYDeqZAEoVupufG+GL2rk3JW0xaj8oH9re8bkDgBAacXj2j2P/Yb+y//41ey1N519R09q39GTs/+O93sTZesL7x0Y0dlLk5LEfCoAwFPIGbqGBHXABy5cmdKqpTV6/J6V2vXTYZ2/PGV3k/JCkgkAq1gZ2C52cY0TEhud0AYAcKsn+17X4FvntHP/63rq8y12NwcAAABAmZBICaBY6ebFfuuvfp70O24rRlUMkjsAoHx2HRjWSyfOae/AyJxr70eWXKflixfq0BujipozSeVLaqp1ZjwyWwH9U6vqJEk/f2M0Y184XXX2iemYgoah0fGJsr5fAACsQkHeGSSoAz4wuOPTs///wO0NNrYE8CaSeN3LysB2sYtr4gGgXT8Ztm0baCe0AQDcJjW4Hq8iQ7VEAAAAwB9IpARgBbcXoyoWyR0AULxsc9rpdgGSpIAh9Tx21+y1d0lNtWKaSU6fjMa0sCqoyag52++tq6mWKWXtC2db0EmfGQDgFRTknUGCOgBXKmdCMMnHmA9JvO7mtMC2E7aBdkIbAMCtTDPD4+VtBoACMPYDAACl4rR4EwD383sxKpI7AKB42ea050saj197t+weSurn/ujV09q0boXuW3OTvvL9Y3r3g8uqrgxm7QuzoBMAAP8wzEyz5/CE1tZWc2hoyO5mwAG8NtHe2XNcTw+OaNPa5ZYnBJfzteAu6bYfk+SoJF6rzv2DBw+qra2tZM+Ha8JjEdurBjihDQDgVuGxiDZ2H9aJs5dnH2tcvFDff/ROrqGAwzH2AwAAAAA4AXMwAEpp1Y4+TUbnn9Pe0XNcewdHVBWcqY6eT4ws37jalt1DqlsUSkpiT1yMBAAA3MMwjCOmaaa9kVNBHfAJr1R4LmdVXyoIYz7ZVpI7hVfOfT9xQtUAu9rgtcVUAPypvjak6djMQvCqoKHJqKlozOS6BjgYYz8AAAAAAAB41QOfuFnPHj2pYMBQNGZmnNMuZBegQuNq7IwBAIA/kKAOeJzXJtrLmRDshuRj2MsJicSZeO3c9xsnbANtRxtYUAHAK9Y01Kqtqd7W6ziA3DH2AwAAAAAAgNekzhdHrxZWiUyln9MuJGk8Na4WMKTfXr1Uf0HSOQAAEAnqgOd5baK9nAnBTk4+hnM4IZE4Ha+d+37jhKoB5WwDCyoAeI0TruMAcsfYDwAAAIAV2DESQDZcI2C11PnioCHdvapOi2uqNDo+UZLXqK8NqcIwZpPTY6b05ugljmlYyovXTy++JwCQpIDdDQBgLS9OtMcTgnseu0ub1q0o2eDJ7teCO3VvblVXR7NWN9Sqq6M5KSHNTl489+Fd/Vvb9WBLg0KVM13TUGVAD7U0qH9bu80tAwAAfsHYDwAAAECpJe4YCZRLeCyijd2HFXZIQSVkxjUCVkudL45JWnbDAj31uZaSzmk/e/SkpJnkdEkaDo+rcXuvmjr78noerl/IlRevn158TwAgUUEd8AWnVnguVDkrUlL9Em7mtXMf9ijHam0WVAAAALsx9gMAAABQKuwYCTslJrh1PXyb3c1BGlwj7OOXCsWJ79PK+eLUYznRQy0Nee/szfUL8/Hi9dOL7wkAEhmmadrdBliotbXVHBoasrsZABzALwNulMfBgwfV1tZW8uflOHWezp7jenpwRJvWLrc0GLRl95DqFoWSAmRO2ZEAAAAAAAAAAHIVHouoa/8v9aNXTysyFVOoMqDPrLlJO+7/OHFv5KSQOZhMiaIkuDkP1wj7lGvOy07hsYge+OtDGh2f0Ka1y/X4vSstm3tNPZYlKWBIppTXZ8z1C7ny4vXTi+8JgP8YhnHENM20CT5UUAcAn2DFsf1Ivp6fH45TtxwH5V6tTdVSAAAAAAAAAF7AjpGwQ//W9owJbnAWrhHl55cKxZnepyRL5l4Tj+WAIcVM6XfW3KQba6rzqtTO9Qu58uL104vvCUD5OTkPiQR1APA4vwy43cAPydeF8tNx6pbjgGAQAAAAAAAAABTmzPiENq1bkbRjJGAlEtzchWtEebl5zivXhLNMVcjjrJh7DY9FtP/4e/r9O5bpjzZ8ZPZYzrcQFdcv5MOL108vvicA5eXkPCQS1AHA49w84PYKPyVfF8rrx2l4LKJ13zwg07z2mNOPA4JBAAAAAAAAAFAYdoyEHUhws4YVFSm5RpSXm+e8ck0469/arvXfPKCYmfFXZEj6+M21Cl+MlOS97zowrPNXprSgMqDVDbVFHctcv5ArL14/vfieAJSHG/LRSFAHAI9z84DbK7yefF0KXj9Odx0YlmlKjYsX6vRYxDXHAcEgAAAAAAAAAADcgQQ3azi5IiVy57Y5r3wTzuprQ+pouUXPHj2Z8TkbF1+nX7x7vuhj2YpkOK5fAADkzw35aCSoA4APuG3A7TVeT74uFS8ep6kBmhNnL8/+vxuOA4JBAAAAAAAAAJAfK6otAyg/N1SkRO7cNueVmnBmSLphQaWe/vfrMv7Npclprayv0b+GxyVJqcXU3zp7SVLxx7IbkuEAAPADN+SjBexuAADAet2bW9XV0Ty7tVbiABzlEU++7nnsLm1at0Kj4xN2N8lxvHic9m9t14MtDQpVznS5AsZMFfU9f7yW4wAAAAAAXCo8FtHG7sMKe2BhNQAAflHO+3ditWUA7pU6xxOqDOihlgb1b2u3uWVwg2LuO/GFThUBQxPTMQWMmWTzD65Mae+LIxn/rntzqz5ad502rV+h9b/2Ia1aWqPf+LXF+uyv36Kbrg/NHsuGIX1mzVL1PPYbBbXRDclwAAD4hdPz0aigDgBAGbhtVT5KIzVAMxmNacOtS7Th1jptuLXO7uYBAAAAAAqQmHRWzLboAACgfMpx/6baMuAtJOGiGIXed8JjET3w14cUvjihwbdmHkushD7fveVrDzWn3cVjR89x7R0cUcCQYqb0q9FL2jswUvC90Ys7YwMA4EZOz0cjQR3wKbYXBIDyIEADAAAAAN5A0hkAAO5Tzvt3/9Z2de3/pX706mlFpmIKVQb0mTU3acf9Hy/J8zO3B5QfczzIVzH3ndS/TSdgSL+1eqm+liEBLVNi/DODIzLNa8nuw+FxDYfH825juntROZPhuBcCAOAuAbsbAMAebC8IAOXRvblVXR3NWt1Qq66O5qTViwAAAAAA9+jf2q4HWxpmt0UPVQb0UEuD+re129wyACit8FhEG7sPK0wSHjygnPdvq6stM7cHlJ/T53i4ZztPofedXJLTpZnq53U11XPuLU2dfWrc3qs9AzOJ6HsGRtS4vVdNnX2SpBe/em9Su4yEv83n3pjrvciqY5N7IdyC6zMAzCBBHfCZ+QYmfkFnEAAAAAAAAPmwOukMAJyCxB94Sbnv3/Fqyz2P3aVN61ZodHyi6Odkbg9AJtyznafQ+048sT0YMLL+niTtHRzJ+PeZEuPj7YpMzSTBmwl/G5mK6R9/cSprG/O9F5X62OReCLfh+gwAMyrsbgCA8rJ6e0G3yLS1FVAIthIDAAAAAG9hnIdM4klnX1y7XHsHRzRK8QMAHpJauXPPwIj2DIyouiKgf+n6HRtbBhSnnPfvxOrKXR3NJXlO5vZgt0LGR4yprMU929kKue/EE8ijMVMBSTFJCyoNXZm6lkoeNKTfWr1Uf5Hm/pKYGF8VNBSZiqnCMJLOvzPjE/rsr9+iM5cm9fN/GZUkVVUYarh+gRqXXJe1fbnei6w6NrkXwi24PgNAMiqoAz7j90pPrKyFFVj9CgAAAADewjgPmXRvblVXR7NWN9Sqq6M5KQkNANxuvsqbsAc7whbP7fdvv8/twX6FjI8YU1mLe7azZbvvZLuvnxmf0CPrV+i+226WJAWM5JSuqCktqanOeP2PJ8Z/evVNkqTBE+fmtOupjS1adsMCGYZUXRHQVNTUhluX6O/+3dqs7ynXe5FVxyb3QrgF12cASEYFdcCH/FzpiZW1KCVWvwIAAACAtzDOAwD4GYk/zsSOsJD8PbcH+xQyPmJMVR7cs90r23394L+MJp0/lyajkqSAIf1O883653fPa3R8QtK1XQr+/PdW68//8TV9+4t3zPn7dz64osbtvXPOv0LvKbn8nZXHJvdCuAHXZwBIZpimOf9vwbVaW1vNoaEhu5sBn3DLVm07eo5r7+CIqoIBTUZj2rR2OUFdFCQ8Fsm44MHJ50ApHDx4UG1tbXY3AwAAAABKys/jPAAAJGnL7iHVLQolJf64rdp0oZw2x5Ga5BlHkifgfU6ZgylkfMSYqnz8fM92o1zu6/mcP509x/X04IhuravRv46Oa9Pa5Xr83pWOOP84NuF3nAMA/MYwjCOmaaa90FFBHUDJuKWKBytrUSqsfgUAAAAAb2GcBwDwu8TEia6OZhtbUn5Om+NgR1gAditkfMSYqnz8fM92o1zu67mcP6mJ7sPhcUnXdisIGJIp2Xr+cWzC7zgHAOAaEtQBFM1tW7X5rTPotKovXsOCBzgV5z4AAABQGMZ5AAD4i1PnOEjyRCovxHy98B78ppDxEWMqYK5c7+snP7iiuppq/dXnb9fzr7w/5/yJJ7q/8MrpORXZGxcvVOOS67TsxoWePf+4jwAA4C6GaZp2twEWam1tNYeGhuxuBjyOrdqcLb6916a1yx1R9QXe4JTtJZEZ5z4AAAAAAAAwPyfPcWzZPaS6RaGkJLPEIjzwFy/EfL3wHsqBORjAm+L39fvWLNUT3z2m6VhMP/7Kp5L6G7lcJ3f0HNfewRFlSveye5GdlbiPAADgPIZhHDFNM22wggR1jyNBHeUSHwRVBQOajMYYEDhAatWXOC8PSFE+BEedi3MfAAAAxaIaFQAA8BvmOPzJLf1eL8R8vfAeyok5GMCdcr2vdPYc156BEUnSI+tm+hz5XCfjie6/fO+C3jg9rkuT04qZUsCQfu/2Bkcssis17iMAADhXtgT1QLkbA8Cb4lu19Tx2lzatW6HR8Qm7myRpZhC4sfuwwh7buioX/Vvb9WBLg0KVM5f6UGVAD7U0qH9bu80tA2Alzn0AAAAUa9eBYb104px2/WTY7qYAAACUhVPnOGAtt/R7vRDz9cJ7AArh57nqfHnhs5rvvtLU2afG7b2zyemStGdgRI3be2Wayvk62b25VV0dzdr3v9ylB1saZGomUduUtKi6wnPJ6RL3EQAA3KrC7gYAsFepqkMkbinZ1dFciqaVROIg0G/VTuprQ1pUXaGJ6ZiqKwKamI55dkAK4Bo7zn23VBoCAABAdqnVqPYMjGjPwAjVqADAwxjTAzOcOscBa7it3+uF+R4vvAegEH6eq86Xkz+r+frMud5X+re2q/O5V/ST195XzJx5LGhIv7V6qf6io1nf+slw3tfJ+CK7L65drr2DIxp1cYJ/NtxHAABwJyqoAz638/nXNfjWOe3se93uppRU4upj07y28rips8/uppUVVV8Afyr3ue+WSkMAAADIjmpUAOA/jOkB+JEb+71emO/xwnsAcsVcde7c8FnNl1OR632lvjakuprq2eR0SYqa0pKaatUvChV0nfzaQ8164/2LWrKoSl0dzUmL7ryG+wi8zAu7SABAOoZpmvP/FlyrtbXVHBoasrsZcKDUVbxxTq0Oka/wWERd+3+pH716WpGpmEKVAX1mzU3acf/HWUULlMDBgwfV1tZmdzNgs3LfS6jqBgCA/bgfe9+OnuPaOziiqmBAk9GYNq1d7rjKZQCA4nk9PgwA86Hf6x5+HIcyB+N+zFXnzsmfVT595lzvK1t2D+mfhs9ofDKqFTcuUEzS6obaghPLO3uO6+nBEe5jgMtxLgNwM8MwjpimmbYzU1HuxgBwhkyLU7yyaIUtngDAev1b2zMGDa3g5O0dAQDwC+7H3ueXraEBwO/KPaYHAKeh3+sejEPhRsxV587Jn1U+ORW53FdSE97f/uCKJCl8Mf9K4KnPtWdgRHsGRlhwCrgM5zIAryNBHfCpQ9vu0ee6D+vts5dnH2tcvFDff/ROG1tVWgQXAcBa5QoaMjDPzI/VgwAA9uB+7B+JFbu6OpptbAkAwEpOTgQCgHKg3+t8jEPhdsxV587qz6rQuZR8cipyua9kWySabxtZcAp4A+cyAK8L2N0AAPaorw0pGptZ2VsZNCRJ0ZjpmQmI8FhEH1ye0uP33qrVDbXq6mgueFssAEBm8aBhz2N3adO6FRodz7/Kw3z6t7brwZYGhSpnuq6hyoAeamlQ/7b2kr+W2yRWDwIAwErcjwHAeuGxiDZ2H1aYxBWUSTnG9AAAFIpxKNyue3OrujqamavOgdWfVaFzKcXmVKSO8bItEs23jSw4BbyBcxmA11FBHfCxNQ21amuq9+Sqbbb7A+A3dlXSLkelIQbmc1E9CABQbtyPAcB6xLNQblQPBgA4GeNQAMUqxVxKMTkV6cZ4qdXi9w68rT0DI/O2Md08IFX6AW/gXAbgZYZpmna3ARZqbW01h4aG7G4GUDapg8w4EvaA0jp48KDa2trsbgYSdPYc19ODI9q0drknExm27B5S3aJQ0sDcz9VGwmORjNu9MUEDALAK92MAsAbxLAAAgPT8Og5lDgYoDbvmUvIZ4+Xaxvg8YF1NtX74+AbmggAAgGMYhnHENM20AzUqqAM+Z1fFXav0b21PGsBVVxiqqa7U7j9ea3fTAMASfqmkTVW3ZFQPAuzjtf4zkA/uxwBgjdR4VmJCAgAAgJ8xDgX8waqYq5VzKdnaPDdnIaCa6oqknIXXTl3Q57tf1PceXZ+1janzgOGLE1r79QOemwcEAADeFLC7AQDslbitlBfMHWSaOntpUntfHJn/j4EU4bGINnYfVpgtlOBg/Vvb9WBLg0KVM926UGVAD7U0qH9bu80tmx/nWHHi2731PHaXNq1bodHxCbubBPiC1/rPAADAfixABQAAAOBnVsZcT35wWXU11frbL/2bks6lZGtzujHe2UuT+tv/8dbs7zzx3WO6ODGtJ545lnW+p39ruwLG3NefmI6pqbOvJO8FAADAKlRQB3zKyxV3z4xPKCDDs+8P5ZMYWOh6+Da7mwOk5eZEBs6x4lA9CCgvL/efAQCA/eIJCV9cu1x7B0c0ykJeAAAAAB5XSMw132rry25cqJ8Pn9Hzr7xX9FxUeCyidd84IDPhsUxtPjM+IUNKen/7jp7UvqMnk55zODyu4fC4pJm5ntT5nvrakDpabtGzCX8XNKQHbm9g1y0AAOB4JKgDPuXlrYO7N7cqPBbx7PuD9UhAg9u4LZGBcwyAG3m5/wwAAOzHAlQAAAAAflNIzDXX4kdWzEXtOjAsGVLjhxbq9Fgka5u7N7dq1Y4+TUZjGZ7tmmU3LNB3vvTJjD+/NDmtlfU1Gg6PK2BIUVM5FavKN5kfAACg1AJ2NwCAPdxccTcXXn9/sFb/1nY92NKgUOXMbTJUGdBDLQ3q39Zuc8uA9Lo3t6qro1mrG2rV1dGclNjgRJxjANyI/iUAAAAAAAAAlE4+Mdemzj41bu/VnoERmeZMwnnj9l41dfalfe5SzUWFxyL6yFd7k177xNnLikzNJJ5na/Ohbe1qXLww6bGa6rl1RBdUBbX65usztqF7c6s+WnedHlm/Qj/8D3frkfUrNDo+MW/bE5P5SyE8FtHG7sMKO7xQFgDAf7hHORcV1AEfc1vF3Xx5/f3BOiSgAdbiHAPgVvQvAfegQhQAAAAAAIDz5RpzzbfaeinmosJjET3w14dkmlLj4oV670JEE9MxBQxp+YeuU1dHs55/9fRsm1PjUfW1IU3HzKTnHJ+YnvM6F65MzduWfHbdsmon41yr1wMAUG7co5yLBHXAx9y6dXCuiQZufX9wBhLQAGtxjgFwI/qXgHsQjAQAAAAAAHC+XGOuhSScFzMXlZrkfeLs5dn/j5nShlsXa8PKJdqwcomka8ns4YsTSfGoNQ21amuq131rlqrzB69o5NxlxUwlJdiXurhCvsn887Eq4R0AgGJxj3I+wzTN+X8LrtXa2moODQ3Z3Qw4WLZkb6dWnOvsOa6nB0e0ae1yEg0Amxw8eFBtbW12N6MsnHotBCSOTwAAUqUGI+MIRgIAAAAA3MJPczBAPrbsHlLdolBSwnligns+cyaZfjc8FtG6bx5QLqlU8XhTpniUIWlgx72zz7+j57j2Do6oKhjQZDSWMd8hPBbRlt1HZEr6zr/9ZEHzP7m+Vi7CY5GMCe/MTQEA7MQ9yhkMwzhimmZrup8Fyt0YAM6SWFUun5/ZoamzT43be7VnYESmObPqqXF7r5o6++xuGgAPc9q1EEjE8QkAQLL+re16sKVBocqZkFeoMqCHWhrUv63d5pYBAAAAAACgGN2bW9XV0azVDbXq6mhOSk6X8pszSf3d8FhEG7sPa2ff6zJNqXHxQgUDRtLfxBOsEuNN2ZLTZSipLfGK7j2P3aVN61ZodHwiY9uOvnNex945X/D8T+JrPXzHLeo9/p7CBe5mXEj1+lKJfy+Fth0A4G123qOQGyqoexwV1JFJtqpykhxZcY5VT4Bz+KF6B9U34WQcnwAAZFbKClEAAAAAAJSbH+ZggFLKZ84k0+9mY0iqqQ7q4kRUVUFDUzFTm9Yu1+P3rtS/331ES2ur9ZNfhhWNZc6/ymX+Jlvbipn/KcUO9fNVr7dKKdoOAPA2u+5RuCZbBXUS1D2OBHVkEk/2fuGV07OriO5rnkn2lilt7D6sE2cvS5KjEsFJNACcwQ/BURbFwMk4PgEAyIxgJAAAAADAzfwwBwPMJzwW0ZefOapvf/GOeec98pkzSf3dbBoXL1TXw816/pX3te/IO7oyFdPv3nazPnRdlUYvRlRXU62nB0d0a12NhsPjChpSzJSuqw7q8mRUMTO/XIvwWET/+blX9JPX3lf0aipXwJB+a/VSfa2jOe/5HzcXO3Jz2wEA8JtsCeoV5W4MAGdI3OJC0uwWF3fv/Nmcjn5kKqZ//MUpfesLd9jR1CTxragSEw0AwApsBYRyyyfYyvEJAEBmicnoXR3NNrYEAAAAAEonn/ghALjdrgPDeunEOe36yfC8BevymTNJ/N2qioAmr+ZGBA0lJYXHTGnDrUv0R383lJQ/sf/4e3Oeczg8LkkyDEN1NVWqCBi6NBnNe/6mvjakJTXVs+2QZtpRV1Nd0HW/f2t7xsR9p+t57De0+W8HNT4xpYlp01VtBwAA15CgDvhUuhWnewZGVBU09GBLg374i1OKmVJVhaGG6xeoccl1NrU0GYkGAMqJRTEop3yCrRLHJwAAAAAAAOAn+cYPAcCNUvMY9gyMzOYxtCy/MeMinXzmTE5+cEWmqdnkdElJSeH3NV+rkp4uyftTq+okST9/YzQp8bvCMPTssZNadsOCjG2Zb7HRmfEJffjGBfrEshskSf/87nmNjk/k/PklcnOxo70DIzp7aVKSXNd2AABwjWGa5vy/BddqbW01h4aG7G4GHCjbNlff+smw9g6OqCoY0GQ0pk1rlxPoApCE7SWB0mGbQgAAAAAAAACZED/0H+Zg4GeZ8hgqAoaePXqyJLkLv/bV3qSE9DhD0u//+jKNT0wlFc7b0XM8KX/i4ZZb9PM3RmcTqDNJd53u7DmupwdHcnof4bGI/v3uIzIMqXvzJwtKzt6ye0h1i0JJyfKJ781pMt3zgoahT6+ud3TbAQDwK8MwjpimmfYmTQV1wKfSrZYNGoa+vPeoFlYGqMgKwBZsUQo/cvMWi/AmrsUAAAAAAMArvBDnIH4IwE9S8xgiUzE9d+zU7M/jFdULWaSTKfk5rnHJdXpq4+1zHk+tzv7zfwknJacvqq7QdaEKnb88mfE6nakyfLb3sevAsI69c37m/wvcPcNtO9Rnu+e59T4OAICfBexuAAD7xAdSPY/dpU3rVuilE+f00olzWnbjQnV1NGt1Q626OprLsgo1PBbRxu7DCueRDF/I36D8+J6Qj8QtSgG/cPMWi/AmrsUAAAAAAMArvBDnIH4IwG8S8xh+/9dv0U3XVytUOZPeNJOwvFSrG2rznn/u39quB1saZp8r1VtnLqlxe6+aOvuSHu/e3KqujmY9/P/+J+158W2988GVpJ9fnJjW6QsRRaYyX6dTXztUGdBDLQ3q39Y+px1NnX1q3N6rPQMjs4/tGRhJ2zav4Z4HAIC3kKAO+Fi6gZRp2jO4KSRA6IWgoh/wPSEXiYEWu65DyA+LT0orddHY6PiE3U2CD3EtBgAAAAAAXuG1OAfxQwBeljrnFM9jWN1Qq7/a2KJ7P7Y0KWH5V6OXdOyd8/POP8ef97VTF7Sx+7BkaDb5OWDM/E7D9aHZ/6+uMJKSxlPb1b+1XZ9Zs3T29xNVVwR0/yduynidzifxun9ru3475XWChnTfmqVpE9q9hnseAADeYZimaXcbYKHW1lZzaGjI7mbA4cJjEdu2Scq0jVa2rawK+RuUX6bvqaoioDf4nlzv4MGDamtrK9nz2XkdQmH+0/ePad/LJ/XZX79FT21ssbs5AEqAazEAAAAAAPAK4hxws1LPwcCdwmMRffmZo/r2F+/w3HUr9b119hzX04Mj2rR2uboevm3O72/ZPaS6RSF976URTUXn5jhlyhOIP++tdTX619FxbVq7XKPjE6pbFNIX1y7X3sERHfyXsN5NqIj+yLprbUjXrh09x/V0QmXzuJX1NfrxVz6V9X3H30f8tUcvRjLuZp/udRLbBgAA4BSGYRwxTTNtp6ai3I0B4Dx2bpPUv7U9Y4CwlH+D8kv9noIBQ9GYqd+77Wa7mwYHYru29JwYfExdfLLv5ZPa9/JJFgmVmBO/e3gf12IAAAAAAOAVxDkAuF3iLtVeS0qOv7c7v3FAifnmewZGtGdgZM6cUzyJ+/F7bk2afw4Y0m+vXqq/6GhOev7Uuazh8Pjs80szCe1dHc36h6F35hRci7ch3WPVFQG1NdXpwzcuUPhiRJXBgKorgopMRXXhytS87zsxGb0rpc2pzoxP6MM3LtAnlt0gSfrnd89TSRwAgByQa+EsJKgDkHRtm6TE1brlUEiAkKCiO8S/p8jUzKA+GpuJLuw7elL7jpLMirnsug45mRODj5l232FXntJy4ncPf+BaDAAAAAAAvII4BwA3Sk2uzpS07Uap7y2a8vP5CtMl5gkEDSlqSm+OXpqTJxAvpPbCK+9pYvra/FV1RUD3NV97/kyF8aamY9r/yunZAmx27MKRqbI6AADIjlwLZzFIJvK21tZWc2hoyO5mAFnls5VVMX+D8tuye0g11RU6c2lSh94YVdQU22h6BNtLWis1QBfnhOBjeCyiz3Uf1ttnL88+1rh4ob7/6J2c0yXg5O8eAAAAAAAAAGA95mD8LTwWybibuNvnYdK9t5tqQ3r73GVVBQOajMa0ae3yrMlkH/1qr2Jp0pxS51F29BzX3sERGZJiphQ0pJg05/njv1cVDKSdn4l7ZF32dgEAAHuRa2EfwzCOmKaZNnGTCuoAbJfPVlbF/A3KL/497eg5rphU9or3bNsCt8pUsSFTxYhyqq8Nze6IUBk0NBU1FY2ZnGMl4uTvHgAAAAAAAADgHsyTuZOXdxNP996iMTOv3S5e/Oq9Oc2jxHfR+NXouM6MT2hxTZV+rW7RnOdP3G3jbw/9Sv/05lmdvzypyNRMlfa7V9VpcU2VRscnSv55lArnOgAA5Fo4FQnqAADL2bWN5pN9r2vwrXPauf91PfX5lrK8JlAKTg8+rmmoVVtTPVvjWsDp3z0AAAAAAAAAwB12HRjWSyfOaddPhqn87DJ2za2WQ7r3Fi9Il2thuhffPKvIVPZ5lFx3X0/8vac2tsxWVK+umKnovuyGBY4/fzjXAQBWcNsCKHItnMkwzTR738AzWltbzaGhIbubAZdy240GiGPbFuuxvaT1tuweUt2iUFKALtdgGtyN7x75os8GAAAAFIa+NAAA2XGvtEexczDMk8HLOnuOa8/AiEKVAf3Xf/tv9OzRd/Wz18N64T/+Zk7Xqfmua26ao+FcBwBYqbPnuJ4eHNGmtctdswDKTfdxLzEM44hpmmk/aBLUPY4EdRTDjTcaQJJW7ejTZHTuYLyqIqA3GIyXBAnqAOAc9NkAAACAwtCXBgAgO+6V9ih2DiY8FlHX/l/qR6+eVmQqplBlQJ9Zc5N23P9xFhrAtTIlYwcNKSblfJ3y0nWNcx0AYAUWQCFfJKj7GAnqKAQ3GrhdeCyijd2HdeLs5dnHGhcv1PcfvZPBeImQoA4A9qPPBgAAABSGvjQAANlxr7RXKeZgdvQc197BEVUFA5qMxjyRjIvysnoHhXyfPzwW0fpvHlBsnhSnTNepclzX7Nh1gnMdAFBqLIBCvrIlqAfK3RgAzte/tV0PtjSoumLmElFdEdBDLQ3q39ae93PFE4XDFyOlbiaQUX1tSNNXoxNVQUOSFI2ZdJQAAJ4S77OFKmf6bKHKwvtsAAAAgJ/Ql86MeC4AQOJe6QVnxie0ad0K9Tx2lzatW6HR8Qm7mwSX2XVgWC+dOKddPxku+XOHxyJ64K8PafCt3J//7r/8Wdbk9OqKgBZfV6WeP/2NtD8vx3XNys8sE851AECp1deGtKi6QhPTMVVXBDQxHdOi6gpyrlCQCrsbAMB5Em80koq60SQOwlipi3Ja01CrtqZ6fXHtcu0dHNEok2oAAI8hOAAAAAAUxqq+tB0VE0uNeC4AQCLu5AXdm68VMOzqaLaxJXCb1ErjewZGtGdgpGSVxvN9/ngfu+ex39Af/n9fUvji3ATsqqChiemYJqYn9bf9b+mpjS1Jf/vtL95h6XXN6s8sG851AIAV4gugyLlCsUhQBzBHuu2t9gyM6B+OvJvzAMrOQRggMRgHAPgDwQEAAACgMFb0pd2c3E08FwCQirgT4E/9W9vVtf+X+tGrpxWZiilUGdBn1tykHfd/vOjnTpeHIEkBQ3MqmYfHIvr3u4/o3XOXdebSpPYOjOj6BZVJCerBgBSNSZPRa6XV9718UvtePqnqioA+98llSf1zq65rVn5mAADYgZwrlIphmln2wIHrtba2mkNDQ3Y3Ay4THotkHEDluoK4FM8BwLkOHjyotrY2u5sBAAAAAABgu0yJNm5K7iaeCwCAczAHA7vt6DmuvYMjqgoGNBmNadPa5SVZgBnvc/b+83uKxq7lKn32jlv01Odbkn73o1/tVazE6UxW9s+t+swAAACczjCMI6Zptqb7WaDcjQHgfKXY3oqt/wAAAAAAAAD4Qf/Wdj3Y0qBQ5cyUS6gyoIdaGuZUgXQy4rkA4HzhsYg2dh9WmErmACwSv86cPH9Fm9atUM9jd2nTuhUaHZ+Y/49zEO9zRmOmgoZkSFpZX6PxyenZ32nq7FPj9uKS0xuuD+kza5aWtX8er85e6s8MAADAzSrsbgAAZyrF9lZs/QcAAAAAAADA67yS3E08FwCcbdeBYb104px2/WSYqrwALBG/zmxau1xdHc2SNPvfUjkzPqFH1l/rc7577pI+uDyl8MWI6heF1L+1XZ3PvaKfvPZ+2iT1eH87mw8uT2pJTbUmpmOqChqKTMVUYRiW9s+7N7cqPBbRl585qm9/8Q7XjQUAAACsYJhmiffEgaO0traaQ0NDdjcDLsUACkAmbC8JAAAAAABwzZbdQ6pbFEpK7u7enHZnWwAA8tLU2Zc2GbO6IqB/6fodG1oEqzEHg3Kz8zrT2XNcTw+OzCTFX118s6PnuJ4eGEn6veuqgvrQdVXq3tyq/3roV/rB0ZPzVlkPGNJ9zTdr//H39OEbF6h/2z1WvQ1J6d8LAACA1xmGccQ0zbSBUBLUPY4EdRTDrgEUifGA8xEchRtxfwEAAAAAAADgNuGxiLr2/1I/evW0IlMxhSoD+syam7Tj/o8T5/Qo5mBQbnZcZ7IlxU9FYxmrp8cT5jfs/Kne/eCKqoKGJqO55z1ZkXTPQiIAAOBn2RLUA+VuDADna+rsU+P2Xu0ZGJFpSnsGRtS4vVdNnX1lef3ELQrhLK+duqDb/uwFvfbeBbubAgB54/4CwGvCYxFt7D6s8MWI3U0BAABAAvppAIBSqq8NaVF1hSamY6quCGhiOqZF1RUkpwMoGTuuM/1b2/VgS4NClTNpS6HKgB5qaVD/tnZVBNKnMiWmoa9pqNUj61foB3+6Qb//67doQWUw6XeX3bhAn1mzNO3zl/O9AAAA+BkJ6gDmsGsAZXdiPOb3xHeP6eLEtJ545pjdTQGAnHF/AeBVLLxBOZBgBwBA/uinAQBK7cz4hDatW6Gex+7SpnUrNDo+YXeTABTAyXGWcl9nsiXFH9rWrsbFC5N+v3HxQh1KyFfo3tyqro5mrW6o1V9tbNHimipJUlXQkCQZkpbUVJcl6Z6FRAAAAOlV2N0AAM5j1wCqf2t7xq3D3CI8FtGXnzmqb3/xDk8NOBu39yb9ezg8PvvYiSfvt6NJAJAzL9xfACBR6paxewZGtGdghC1jYYnEBLuuh2+zuzkAADga/TQAgFW6N1/bLb2ro9nGlgAohpPjLHZcZ+JJ8V9cu1x7B0c0ejVxv742pOnYTL30qqChyaipy5NR3ft//lzfe3S9Vt98/ZznWtNQq7am+qTnyvT85XwvAADAel7N1/MCEtQBpGXHAMoLK4udHFQoxv7HN+hP/v6ITp6/MvvYshsW6Dtf+qSNrQJgBS923L1wfwGARCy8QTmQYAcAQP7opwEAACAdq+Msbp3byZYUn5pw3vPyu7o0GdWW3Ud0/tLUnET1+RLsrU66ZyERAAD28Wq+nhcE7G4AAOcJj0X0weUpPX7vrVrdUKuujuakAZWVit06zK5t0Zo6+9S4vVd7BkZkmjNBhcbtvWrq7CtrO6yyuuF6LawKJj22oCqYdnU6AHfz6jbkbIELwEtYeINy6N/argdbGhSqnAkdhSoDeqilQf0JWykDbuPkrdQBeAP9NAAAAKRjdZzFSXM7qWPvQsbiifkKv7urX3tefFuXJqOSpHfOXdHFiWn97rcOWdJ+AADgHl7P1/MCEtQBzLHz+dc1+NY57ex7veyv3b25VV0dzQUnxts1+LYreaOck+sXrkxp1dIaffsP7tCqpTW6cGXK8tcEUD5e77gXe38BAKdh4Q2sRoIdvMhJE/YAvIt+GgAAANI5/OaZksdZnDi3kzr2LiT3IPE59j++QbfcsCDt7zVu71Xj9t6StBsAALfzY4EWii05n2Gapt1tgIVaW1vNoaEhu5sBl0jdWizODVu4O6HtO3qOa+/giKqCAU1GY9q0drnl24Z09hzX04MjZXktINHBgwfV1tZmdzNQQuGxSMZtyElEAwDAn7bsHlLdotDsVsqjFyMs8oIrOSFmAAAAAAC5Yg7Gezp7jmvPwIhW1dfo//rCHSWLszhpbifT2DtVtrF4rs8Rt+yGBfrOlz7Jrt8AAMi/OWR25OshmWEYR0zTTNuxrSh3YwA4V6YFK25YyNK/tT3j4Ltc4tWREpM3rJI6ON8zMKI9AyNMrgMoGFVSAQBAqsRJ0q6OZhtbAhTHCTEDAAAAAID/pM7pvhEe1+/u6i/ZnK6T5nZSx96ZZMs96N/aro3dh3Xi7GVJUtCQold/3ZCU+pcLqoIkpwMAfM/vOWTlzNdD/gJ2NwCAcxzado9WLF6Y9Fjj4oU6tP0em1qUu1IMvovd6qR7c6u6Opq1uqFWXR3NllYWZIsS+I3TtyJ67dQF3fZnL+i19y7Y3ZSisA05AAAAvMhJE/YAAAAA4GZOn69xmnLM6Tplbqe+NqQf/uJU1uT0bLkHTZ19WvuNA7PJ6dK15HQpOTl9w62LtWppjS5cmSq22QAAuJ7fc8jKma+H/JGgDmBWfW1I0djM0K4yaEiSojHTNRO2xQ6+dx0Y1ksnzmnXT4YtamHpMLkOv3H6+fnEd4/p4sS0nnjmmN1NKUoxHXeC0gAAAHAyp0zYwx0Y3wAAAADpOX2+xmnKMafrpKSs31y5RI2LF6q6IjkVybj632y5Bz2P/YY+dF2VAkbaH88KGNJ11RX60X/8lAZ3fLoErQYAwN3IIYOTVdjdAADOsqahVm1N9a7c9qLQ7efdutUJW5TAD5x+fjZu703693B4fPaxE0/eb0eTbJMYlO56+Da7mwMAAAAkKTRmAH9ifAMAAAAkc/p8jZMVMqcbHovoy88c1be/eIfjksuyte3v/ud12tFzXE8PjCQ9Hq9+fvL8lYzPu3dgROcuTUrSbHJdoqAhPXB7g3bc/3HHfSYAANiNHDI4lWGa5vy/BddqbW01h4aG7G4G4GjhsYi69v9SP3r1tCJTMYUqA/rMmpsY3AJZHDx4UG1tbZa/jtPPz9dOXdCf/P2RpIDashsW6Dtf+qRW33y9jS0rn9SgdBxBaQAAAABuw/gGAAAATlCuOZh8OH2+xskKSTbv7DmupwdHtGntcsctmp2vbVt2D6mmukJnLk3q0BujiprKerxkGodJ0nVVQV2ajCpgSDFTemSd8z4PAAAAvzMM44hpmmm38QmkexAAvCx1m2Y3bHXC1tLwK6efn6sbrtfCqmDSYwuqgmVNTrf7+tC/tV0PtjQoVDnTrQxVBvRQS4P6t7Xb0h4AAAAAKBTjGwAAACA9p8/XOFniDk3zaersU+P2Xu0ZGJFpzlSqb9zeq6bOvox/U655olzb1r25VU9tbNGyGxYoJs17vGQahw3uuFcbVi7RI+tX6If/4W49sn6FRscnLH2PAAAAKC0S1AH4TrogQHyrk57H7tKmdYUPbq0KAOQTuAC8plTnp1UuXJnSqqU1+vYf3KFVS2t04cpUWV/f7usDQWkAAAAAXsH4BgAAAMjM6fM1TlNIsnkhi2bLNU+Ub9tyPV4Sx2FVQUORqZgqDEP1i0Lq3tyqro5mrW6oVVdHs7o3py3MCQAAAIcyTNO0uw2wUGtrqzk0NGR3MwBHKMc2zaXebo2tpeFUTthespAtEb3ESdeHLbuHVLcopC+uXa69gyMavRghSAgAAADAlRjfAAAAp/J7TNxPnDAHg+KFxyLq2v9L/ejV04pMxRSqDOgza27Sjvs/nvUc3tFzXHsHR1QVDGgyGss472zHPFGubctV/Lq2sCqoZTcu1LlLk9p//D19+MYF6t92TwlbDgAAAKsYhnHENM20QXQqqAPwDSu3aS5kBbzdbQbczu7K4XZz0vWBChYAAAAAvILxDQAA+bFqZ1nM5feYOOA2he7QlGvl8VLOE2W7lif+LLVt735wuah7QPy61v/GqPa8+Lb2H39PkvTOB1dKMtcOAAAAe1XY3QAAKBcrt2nu39qecQW8U9sMuFVqRYg9AyPaMzDiu50FuD4AAAAAAAAAsFti0nQpdpbFXMTEAfeKJ3Qn7tA0n/gi2fBYRG+8f1Hf/uIdaX+vFPNE8QrmH75xQcZreeJ1PnEBb1dH8+zu4vneA1Kva9GUn5dqrh0AAAD2IkEdgK8UEgTIhZWJola1GXArqxaEuBHXBwAAAAAAAAB2IGm6fIiJO0c8mffbX7yDYjHISWpCdz5yWQBU7DzRnd88oKgpDb418+/Ea7mkjNf5bD/L5R6Q7rp2U21Ib5+7rKogRZkAAAC8ggR1AL5STBBgPlYlilrZZsCNqBx+DdcHAAAAAAAAAHYgabp8iIk7BzsGoBzyWQCUa7X1+V4j0UMtDTPXclOZr/PZfpaDdNe1aMykKBMAAIDHBOxuAABnC49FtLH7sMIMAOfVvblVXR3NWt1Qq66O5qTEUQClFV8Q0vPYXdq0boVGxyfsbhIAAPApxkwAAMAJ6JMAKDeSpsuLmLi9mjr71Li9V3sGRmSaMwnDjdt71dTZZ3fT4CCl6o/1b23Xgy0NClXOpPOEKgN6qKVB/dvaM/5N4uKJfF6jusKYfSxgSIah2Wt5tut8rveAbJ9J6nUtPsfOXDsAAIB3UEEdQFZUAgDgRFQO9za2SQUAuMnO51/X4FvntLPvdT21scXu5gAAAJ8ijgvADlbtLIu5iInbix0DkIt4f2xn3+t654MrBc9x5LMAKJ9q6+lfw5x97HfW3KQba6qTruXZrvO53AOy9VFTr2vxZHbmhgAAALzDME1z/t+Ca7W2tppDQ0N2NwMulGlbr/kGswD84eDBg2pra7O7GfCYeGL6h29YoGePndSmtcuZVAcAOBZjJgAA4AT0SeAnxRQ1oCACgGLt6DmuvYMjqgoGNBmNWRq/Zg7GXTL1x4KG9OY37y/oObfsHlLdolBS8ne6iuLhsUjGxRPZ7neF9CET76UylfW+Wsjzd/Yc19ODI8wNAQAAuIxhGEdM00y7/U2g3I0B4A7xbb2CgZltvYIBY96tw5yArWwBwL3Wf/OABt86p31HT7JNKgDA8TIt+KcQAAAAKKd4HDdUOTPdE6oMuCKOCxQisQprOf8WAKRr1aJ7HrtLm9at0Oj4hN1NgkPE+2OpoqYKnuPo3tyqro5mrW6oVVdHc9rkdCm/auvp2pxPHzLxXjrffTWf52/q7FPj9l7tGRhhbggAAMBjKuxuAABnuvsvf5a0qjkaM/XcsVN6/pXTjq68k+tWtlRLAQDnyFRJQ5Ieamlgm1QAgCMd2naPPtd9WG+fvTz7WOPihfr+o3fa2CoAAOA3hSYlAW6SGjvaMzCiPQMjOe0UUMzfAnAvK+YBExOEuzqaS/Kc8IZ4f8wwJENS7GrtgsRq5nFWHJvxxRPxauvvnrukjd2Hs75GPn3IdPfSxP9Pd1/N5/n7t7ZnrAIPAAAAd6OCOoC0+re266brQwrOFFBX0JBuvj7k2Mo7+a6sploKADhHaiUNSbq6gQeT6gAAx6qvDSl6dcax8urAKRozuW8BAICyc1pFV3a5RKkVs1MAuwwA/sQ8IMot3h+7b81NkmbmONIlZVtxbKZWW19248KsrxHvq5384PKcPmS6flzqvTRgaDaHINt9Ndc+KgsuAQAAvIsK6gDSqq8N6d6P1Wvv4MyK58loTPd+rN6xA8FcV1ZTLQUAnCcx+BgwZqqL3Nd8sz50XZVGmcwGADjYmoZatTXVz1ao4r4FAADs4LSKrrnucgnkqpjENZLekA9233U/5gFhl3h/bMvuIT2yfsWcWNGqHfs1GTVnf9+KYzPX4z/eV9u0dvls37Gro1nhsYh+51v9OntpUjv3v66nPt8iKf29VFLSfVWm5lRtz6ePmloFnhgbAACAN5CgDiAjNw0Ecw0ys0UYADhTunuOEybVAQDIxmnJYACA9Eg2A8qDpEBYqZj5CjfNdcBeLLBxP+YBUQrFjB8yxYp+7/YG7Xv5pIKGFDVlybE53/Gfra8mKeln+46e1L6jJ2f7cYn30i27h2bfa/y+mu36mcvnSYwNAADAm0hQB5CR2waCuQSZqZbiXUw2A+7mtnsOAAAAAPcg2QwoD5ICYaViYkfEnTAfFth4B/OAKIVSjh9Sry/xIuqRqdIfm/Md//1b2/Wfn3tFP37tfcUSkuT7jr+XVN09UcyceTzxXtq/7Z7Z//+HoXfmvX4yHgMAAPAvEtQB5MQNyb+5BpmpluJNBDcAAAAAwF5uiB3AX0g2A8qLpEAAbsUCG29hHhCFsmL8kHp9CQYM3b1yiRZfV63R8YlSNX1WtuO/vjakX41eUsyUgoZm+2qHtt2jzude0Y9efX/O8z14e0Ne7y/x+sl4DAAAACSoA8iJl5J/qZbiLQQ3AAAAAMAZvBQ7gDeQbAaUH0mBANyIBTbewjwgpMIWUKeOH6orAqqprtDuP15bcDtSry+T0ZiW3bDAsjFz6vEfHotoY/dhHRv5IKlKevx/9w6OqOvh21RXU532+fa9fFL7Xj6Zcd412/WT8RgAAABIUAeQFcm/cDqCGwAAAABgL2IHcCqSzeBFTt+tgqRAAG7FAhvAWwpZQJ1u/DAxPam9L44UlVBe7PWlmP5f/HP4/Ttu0VTMzDifemZ8Qh++cYFWLV2kX743pvcuRGRKOc27Znp/jMcAAABAgjqArEj+hdMR3AAAAAAAexE7gJORbAavYbcKALBG9+ZWxy8CAjC/YhdQnxmfkCGVdBF2tgV8uVx3Cun/pX4O+14+Ofv/6eZTE9u4o+e49g6OqDqY27xrtvfHeAwAAMDfSFAHkBXJv3ADghsAAAAAYB9iB3AyqjnDK9itAgCsxyIg4Bo7F2wU89rFLqD+2kPNCo9NaHR8Qu9+cGX28cbFC/X9R+/Mqy25yHbdKab/l+5zuHFhlX7j15bojzZ8JOt86nzzrvl8P4zHAAAA/I0EdQDzIvkXTkdwAwAAAADsRewAAKzFbhUAYB0WAQFz2blgo5jXLnYB9fpvHlDMnPv4ibOXtfbrB0p2XcjlulNM/y/d53Dvx+pnP89s86nzzbuymAcAAAC5IkEdwLxI/gUAAECpsW02AHgLsQMAsBa7VQCAddyyCIhYCsrBzgUbpXrtQhZQp752KkPSgy0NJbsu5HLdma//N981odQLyVnMAwAAgHwF7G4AAG8Lj0W0sfuwwlROAwAAQILESjtu9dqpC7rtz17Qa+9dsLspAAAA8IF4klHPY3dp07oVGh2fsLtJAOAJblkE5IVYCpyvf2u7HmxpUKhyJpUkVBnQQy0N6t/W7prX7t7cqq6OZq1uqFVXR3PSgmop/fy1aaYpm35VwJBkqKTXhVyvO9n6f/NdEwr5HLKx89gAAACAO1FBHYCl2OILAAAAibxUaeeJ7x7TxYlpPfHMMf34K5+yuzkAAADwOHarAADrlLrScCl5KZYC57NzwUa5Xjvd/PWhbffoc92H9fbZy7O/F6oIqOGGBbrp+pA+WldT8utCLteddP2/Yq8J4bGI/v3uI3r3g8s6Mz6Z8zy+WxbzAAAAwDmMbCtB4X6tra3m0NCQ3c2AD2XaBo1gWXpsywi3OXjwoNra2uxuBgDAhcJjkYzb17qlH9S4vTfjz048eX8ZWwIAzsLYFgAAoDj0p5COk2MpHLPWsHsOZsvuIdUtCiUlTqdW33bja883f71h50/17gdXVBk0NBU19eEbF6h/2z1zft/O4z48FtGW3UdUV1ut//HGaNI1YctvflR//o+v6dtfvEMylbGNv/bVXkXTpAnlMo9v57EBAAAAZzIM44hpmmk7hYFyNwaAP7DFV37YlhEAAPiFFyrt7H98g265YUHSY8tuWKD9T2ywqUUA4AyMbZGvfLeUBwDA6+hPIR0nx1I4Zr2pe3OrujqatbqhVl0dzXklIBfbxy/mtecz3/z1moZaPbJ+hZ770w16ZP0KrW6oTfs8dh73uw4M69i75/XW6KU514S9AyOz7UrXxqbOPjVuT5+cHjCU0zy+ld8PAAAAvKfC7gYA8CYnB8uchG0ZAQCAHzl52+xcrG64XgurgkmPLagKavXN19vUIliBKnBA7hjbzo9rSnqJSRO5bCkPAIBX0Z/CfJwWS+GYRSZO7uPPN3+dmGzd1dE85+/tPO5TX3s4PC5JipmmAjK0Z2AkqV3p2ti/tV2dz72in7z2vmIpSeoPt9zCWBUAAAAlRwV1AJaJB8t6HrtLm9at0Oj4hN1NchwqzQMAAD/yQqWdC1emtGppjb79B3do1dIaXbgyZXeTUGJUgSs/Kim7F2Pb+XFNSRav3LdnYESmOZM00bi9V02dfXY3DQAAW9CfwnycFkvhmPWHfMbpbunjFzN/bedxn+m1/2n7PTr81XuSfhYwpKChOW2srw2prqZ6TnL6yvoajU9OW/4e7ECsCQAAwF5UUAdgmflWmWfip6piVJoHYCc/XW8BoNQGd3x69v8fuL3Bxpag1KgCZx8nV1lDdoxtM+Oakl7/1nZ17f+lfvTqaUWmYgpVBvSZNTdpx/0ft7tpAADYgv4U3IZj1h/yGae7pY9f6Py1lP24t3q+Zb5zLvVnktL+3pnxCX34xgX6xLIbJEn//O55fbTuOtsXvViFWBMAAIC9SFAH4Dh+Gyg6bVtGAN6SLSjqt+stAAC5cMuEqpeQwOsNjG3T45qSHglNQOFYbA54F/0puA3HrHcVMk53Wx+/0D5VpuO+HPMt2c65xJ/98f/zks6MT+hv/7BVz7/yftLveTURPRWxJgAAAGcwTNOc/7fgWq2trebQ0JDdzQBykjpQjGOgCDjPwYMH1dbWZnczkIPOnuN6enBEm9Yunw2KOvF6ywQ7AMBJdvQc197BEVUFA5qMxpLuoyi98FgkYwIv/QJ4AdeU9LbsHlLdolBScoVfkiWAYqQb5wMAAG+xew6m0HG6m/r4pepTlXK+pVTzJPQXiTUBAACUk2EYR0zTTNvxp4I6AMegqhgAlE626hBOvN5SzR0A4CROrALn5cVcbquyBuTLidcUJ0hMVOnqaLaxJYA7UAUSAODlcSGcpdBxuhv6+Jn6VIYhDfzv9+Z9bpVyviXXeZJM1wL6i9cQa0Ipcf8FAKBwAbsbAABxDBQBoHT6t7brwZYGhSpnunuhyoAeamlQ/7Z2R11vmzr71Li9V3sGRmSaMwHTxu29aursK3tbkFl4LKKN3YcVJpkKgE90b25VV0ezVjfUqquj2RHVvhInKb0onsDb89hd2rRuhUbHJ+xuElAyTrymAHCfbON8AOVHrAR28Pq4EM7i1XF6uj5V4+KFMk0VdG4VO98SHovoI9t7086TfGR7b9r7TKZrAf3FZF49hlF+3H8BACgcFdQBOApVxQCgNOYLijrleuvEau6Yiwr3AGAfv1S/ckOVNQAA7OSkxeYAiJWgvPwyLiwlqt0Wz6vj9MQ+lSRFpmI6cfaypMLPrWLmW3YdGJYMqfFDC/XehSuamDZVXWHo5usX6O1zl5PuM/NdC+gvJvPqMYzy4f4LAEDxSFAH4CgMFAGgdLIFRZ1yvSVg6mwE3wCUA5PG2bGYC4CduEYDzuKUxeaAnxErgR0YF+aPRST+Nt84Jt6num/NUnX+4BWNnLusmKmCz634fEt4LKI33r+ob3/xjnn/JvV+Ek+Sl6SJaTNt0nwu14Jy9hcZL8LruP8CAPzA6j5doOTPCAAAAEfo3tyqro5mrW6oVVdHc1JSupOwzaJzsSUogHJgi9TsWMwFwE47n39dg2+d086+1+1uCgC5Z5wPeJkdsZLwWEQbuw8rzKIU32JcmLumzj41bu/VnoERmeZMcm/j9l41dfaV/LU4N51rvlhTvE+1YWWd7rp1iUypJOdWPjGu1PtJJqn3mcNvnsl6LShnf9GLMT3O69Jz82fK/RcA4AdW9+mooA4AAGZR7QDZWHV8OKWaO+Yi+AbASlQezB3VUgGUW+o1et/LJ7Xv5ZNcowEAvmdHrIRK0JAYF+aqnNVuOTetl++cRCGxplKcW4W8buL9pCpoaDJqKhgwFI2ZChpS1JSqUu4znT3HNXpxUqvqa/R/feEO2yqkezmmx3ldem7/TLn/AgC8qlx9OsM0zZI9GZyntbXVHBoasrsZAACX+Mr3junZoyf12Ttu0VOfb8n4ewcPHlRbW1vZ2gVn6Ow5rqcHR7Rp7XJXBpFQmC27h1S3KJQUfKNKH4BSCI9FMk4asxAGAOy1asd+TUbnxo2rgobe+Prv2tAiAACco1yxktTJ4jgvJAACVtrRc1x7B0dm/13qeHY5zk3mYGbkOycRr9R84uxlSSpbrKnQGFfi/eSJ7x7VcHh8dvFTYhL60y++rXRZPVbfDzJ9/l6M6XHPLT0+UwAAnK2UfTrDMI6Yppk2MEIFdQAAMLc63tGT2neU6niY4eVqGJgfFe7hVewaYj92acgPxyzgbm47hw9tu0ef6z6st68mdkhS4+KF+v6jd9rYKgAAnKFcsZJyVoIGvOTM+IRW1tXojfC4VtXXaHR8oqTPz7lpvULmJNIlw0amYvrhL07pW1+4w9L2FhLjCo9F9MHlKX2to1n1i0L6aN11WvfRxUmLn1Y31Kqro1lXJqe17+WTs5XVE485K8aa833+XozpcV6XHp8pAADOVq4+XaCkzwYAJRRf5R5mmyTAcpk2VGGfFUgzQaQHWxoUqpzpOoYqA3qopUH929pL/lpc+wGUy5N9r2vwrXPauf91u5via/EtUnseu0ub1q0o+aSxlyRuhwvAfdx2DtfXhhSNJY8IozHT1QkHAAC4jRcTAFEcYqfza+rs0wuvvq83wuOSpDfC43rh1ffV1NlXstfg3LReIXMS8b8JGDP/rq4IqHHxdbp75ZKsr1Wq8yrfGFfqGLF7c6u6Oppnk9K7N7eqqbNPjdt7te/lk5JmktOlmcT7+DFnxVgzl8/fazE9zuvS4zMFAMD5ytGno4I6AMdKHFCXcus9AHMd2taetO2hRHU8XFPOIBLXfvdwWxVQII5dQ5yle3Mr15N5sJMJ4G5uPofXNNRqYWVwtvLkR+qus7tJAAD4TnyyOLGiLvyL2On8ylWxl3PTWoXMScT/xtRMcvpkNKYNty6e91wp5rxKjGnlurtGPmPE1OM5GDB098olWnxdtfYOzvxdLs+Tr1w+fy/tvBr/HhdWBjivS4xrJQAAzlaOPh0J6gAcx82Tt4Bb1deGNH21Ol5V0NBk1HRUdTwS1+xndRDJSdd+rx5vpX5fO5+/Wn2673U9tbGl+AYCZcKuIc6TOhHo1etwodgOF3C3+Dn8wivvaWLaVHWFofuab3b8OZzaP38jPK43wuNq6uwjNgMAQBl5KQEQhXNS7NTpylVshXOztBJjQTI1kyxcFcx7TiKfeYxSnFeFxLTyifOkHs+T0ZiW3bBAXQ/fpm33Nalr/y/V+8/vKRozFQwYeuATpRtr+imxOP49blq7fPZ85rwuDa6VAACABHUAjkMCBmCPNQ21amuqd2Swicow9rM6iOSka79Xj7dSva851adfPql9L/un+jSJs3O57TNh1xDnyDQRGDBmFgw44TrshOPbT9vhOuHzBkrt2jk8sxRqYtp0xTnspP45AACA39E3y4+fEmu9IjF2LangZOF85jGKOa8yxbSChhRT9pjWfHGe1NhIpuP57r/8WVIbojFTzx07pedfOV2SOL0fEotZ/AMAAGA9EtQBOI6fEjAAJ3FisIngkH844drv1eOt1O/LzFB+OtPjdrAywdHJCxjsSux08meSTurkjSSdOHtZd+/8mavPdTdKnQiMu7qpiyOuw045vv0yuf5k39XdOfa/rqc+32J3c4CSSO2LSTPXt3848q6j7ztO6J8DAABgBn2z/DhxrgPppYtdJ/6/lXGhYs6rTDGtaI4xrWxxntRYVKbjuX9rux78m3/S6FhEUVMKGjPv6bkv31XIx+FLLP4BAACwHgnqAIpmRTKUXxIwAGRHcMi5lUS9eO336vFW6vd1aNs9+lz3Yb3t4OrTViQ4umEBQ7kTad3wmaTjhkUWfpFuIrBx8UKdHovYfh122vHt9cn1ObtzHD2pfUf9szuH3zi1f2sVN/cx7e6fA5L/rhkAAGRC3wxelDpeCl7dVS9mqixjp/h5dd+apfrK93+hd89fyenvUmNak9GYVnwo95hWujhPvrGo+tqQ7v1YvfYOjsy24d6P1dNnzgOLfwAAAKwXsLsBANwvddu1Uuje3KqujmatbqhVV0dz0kDdSuGxiDZ2H1aYwB7gCASHrLnGloLbr/3prvdWH2923WPi7ysyFZMhKTJV3Puqrw0perW8cWXQkDSzfagTzsumzj41bu/Vs0dPSppJcGzc3qumzr6in7t/a7sebGnQ1besoCE91NKg/m3tRT93seLve8/AiExzZvKiVO87m/hnEqqcGVaGKgOO+UyyObTtHq1YvDDpscbFC3Vo+z02tcjf4hOBPY/dpUfWr9B0zHTEfd+tx7dbZVofwrIR98rW73Fq/9Yqbh7T2BWbARL57ZoBAEAm9M3gdIXEv1PHS1FzJjm9XGOn+Hn1/CunNTo+oWU3LMj5bxNjWpvWFR/TKiQWldqG0fGJnF8PM/gMAQAArEUFdQAFc1pVwVIod+VRAPPza2UYp15jndqufGW63lt5vNl5jzkzPqGV9TX61/C4VtbXFB1kXdNQq7amesedl1YmON79lz9LOvajpvTcsVN6/pXTth/7dlVmdWvCXep3KUknzl7W3Tt/Zvt36UepFaO27B5yxPXFrce3Wx3a1q6N3Yd1wsG7cyA/6fo9XulHFsKvYxqgGH6+ZgBAubBLBYBSKjT+nThe2rJ7SNJMvKgcY6di+pxfe6hZX37mqJYsqipJTKuQWJTXd9wrBz5DAAAAaxlsY+5tra2t5tDQkN3NgEeFxyIZk6HcFsxMDUDEuXnSi+AyrHTw4EG1tbXZ3QxPc+o11qntypUd13u77zF2v345xav0pEtwLPb4DI9F9ODfHNLoxUlFY6aCAUP1i6r13JfvcsSxv6PnuPYOjqgqOLOd66a1y8uyEGLL7iHVLQolTbw4vYKX079LOIcbj28327Dzp3r3gyuqChqajJr68I0L1L+NnQ3cJlu/I9uCKq6/AFK5fewJAG7Q2XNcTw+OlC2GACB3bpqDcXP8uZg+53zX0ELmaf/wvw3otfcu6q82tuj5V08Ti4KvkesAAIB7GIZxxDTNtB1XKqgDKFjiSm7DkKurCtpVedRKVIMH3M2plVud2q5cxa/3vb84pagpBQ3pgdsbLL3e232Psfv1y6m+NqTp2MwC3HiCYzRmluT4rK8N6d6PLdXewZkKOpPRmO79WL1jjn27KrO6scKM079LOIcbj283c+ruHMjPfEnobu5HAigvt489AcDJ2KUCQCm5Of5cSJ8z12toIfO0y25cqJ8Pn9Hzr7zH3C58j1wHAAC8gQR1AEU5Mz6hlXU1eiM8rlX1NRodn7C7SUlyXVnrpUkvgsvlxeptWMmuhNP5OLVdubj7L3+WdI2MmtJzx07p+VdOW3aNtPseY/frl5uVCY5OPvZJpM2Pk79LwK+4jnnDfP0Orr8A8sE1AwCs4eZkUgDXOGV+yu3x50x9zkyfb//W9qRdPFOvoZnmaauChlqW35j2+2JuF7iG8wEAAG8xTNO0uw2wUGtrqzk0NGR3M+BRbtiyLd32apkCClt2D6luUSgpAOHGbdPYArm8/LoNqpu2lwQShccievBvDmn04qSiMVPBgKH6RdV67st3WXqNtPseY/frAwAA/6DfAQAA4Hw7eo5r7+CIqoIzO4v5Lb4NOF0uczBOmp/y4jiws+e49gyMqH5RtX74+AbVLwplnBsPGNKvvnm/pMzztBUBQ88ePZn2+2JuF7iG8wEAAPcxDOOIaZppBwBUUAdQsHiVjR/+4pRi5szg+/dub3BElY1sK2s/98llabeD8krFPjdWKnBKlYd8sHrb+dx4XMF69bUh3fuxpdo7OHO+TkZjuvdj9ZYfI3bfY8r1+px3AADA7n4PAAAA5scuFYB7OXF+6msPNevLzxzVkkVVrh8HrtqxX5PRa0UewxcntPbrB1RdEZgzN15VYajh+gVqXHLd7O+nztNGpmJ67tip2Z+n+77cOLcLWIXzAQAAbwnY3QAA7nX3X/5M//3YzABckmKm9NyxU7p758/sbZhmkucfbGlQqHLmMheqDChgSBPTMe0ZGJFpzgQAGrf3qqmzz+bWll48uNzz2F3atG6FRscn7G5SVrsODM8uGnCLdMfYQy0N6t/WnvNzhMci2th9WGELgv9WPrdbuPG4Kje/Hiduu0a6CecdAAAAAACA83VvblVXR7NWN9Sqq6PZ9ZWOAT8pxfxUqXkpLvzp1UvTPj4xHdPdf/kzLaqukKmZHcWnoqY23LpEf/fv1ib9buIcxEcWL5QkBQOGpMzfF/MWwDWcDwAAeAcV1AEUzDTNvB4vp3Qra3//jls0FTPTbgflNW6pWOfEKg+5KsXq7cSAXam3X7TyuZ3OzcdVufn1OHHLNdJNOO8AAPAndk8BAAAAUCjGE4UpVXXhUnz+88WFrf6OS/n8qe8lUTBg6IFP3Kwd939c//kHr8y7A0X35lY1dfZpz4tvzz4WvVrxLTKV/vti3gK4hvMBAADvoII6gIIlbm+Wy+Pllrqydnximu2gHMaJVR7yUejq7abOPjVu77Wkmr+Vz52Nkypxu/24Kge7jpNScdLxhhmcdwAA+JOXquQBAAAAKC/GE4UrRXXhUnz+88WFrf6OS/n82QqwRWPm7Jxy6g4UX3uoWRu7D+u1UxeS5i1SP5ugIbU11en+225S7/H3mN8AAACAL1BBHUDBAoYUSzNWv7pDme3Srazdsnto3lXtKJ9SVXmwS6Grt/u3tqtr/y8tqeZv5XNnY1cl7nTVMdx+XKWyosKIXcdJqcSPtyf3v653z1+hwo4DeO28AwAA2bF7CnANlT8BAADyw3iieMVUFy7m80/t+2aKC9+982eWfsdWHEOHtt2jz3Uf1ttnL88+VlMd1H/Z/Ek9/8r7GeeU4/MVT3z3mP51dHx2niz1s5mMxrTshgWSpPNXpny3sy0AAAD8iQrqAAr24lfvTf/4/57+cSdIXdWeGMCBPUpR5cFtrEzkLHeSqFWVuHOtkJ2pOoaXjisrKoy4NZk49Xh79uhJDb51Tuu/ccDupkHeOu8AAEB27J4CXEPlTwAAgPwwnrBXMZ9/ur5vuriw1d+xFc9fXxtS9GpltsrgTDW2GxdWacOtdWnnlFPnK4bD43PmyRI/m4CM2UT6bPNp7CALAAAAL6GCOoCC1ddeS2Q0JMWLqTs9wRHOUkyVBzeLB6WsqOZv5XOnsqoS93wV2eerjuGF48rqKjLlPE5KJX68/fdjp5Iej5lS4/ZeKuzYzAvnHQAAyI1bFzwCpUTlTwAAUE5e2rWF8YS9Cvn8V+3o02R0/r5vYlzYyu94vveQer7kev6saahVW1N9TvMm8fmKF155TxPT17Ycr64I6L7mmXmyxNc6/NV7cppPs2vHYgAAAMAKJKgDKMpn1ixV3aKQqxIcvRTEg3tZmchZziTRUgeSc53gtyox3kmsfo9uTCaOH2+pvPj9AwAAd/Dz+NKNCx6BUvLDuBQAADiH15JWGU/YK9/P/4FP3Kxnj55UMGAoGjNz6vta/R1ne/7U8yXX8yd13iRezTzdmD8+XzEZNRUwZgrpSMo4TzbffBoLYAEAAOBFJKgDKIobExy9FsQD7FbKIGOuE/x+qLDih/eYr9QAbVxkis8GQP78nFQKoHR2Pv+6Bt86p519r+upjS12N6es3BgPAEqJMRsAACgHK5NW7YyNMJ6wV66ff+rxF72ahZ1LTN7q7zjd82c6X1L/nev5s+vAsAbfOqcHdh3SDx/fMOf9xufHfjU6rldPXdCFK9NaWV+j0fGJtM+XbT6NBbAAAADwIhLUAfgGK88Ba5QyyJjPBL8fKqz44T3mIzVAGzSku1fVaXFNVcaALwBkwqJFAMVIHV/ue/mk9r18kvEl4DOM2QDnY2EqALezMmmV2Ajm47aYfGp7qysMLakJ6cz4hCamcz9/Usf84YsTWvv1A3PG/N2bW+f87nB4XMPhcTV19s2JD2SbT2MBLJyEPjQAACgVEtQBlIUTBjGsPAfcIdcJfj9UWPHDe8xHaoB2MhrTshsWMHkCIC8sWgRQCqZp5vU4AG9izAY4Xzz5cmff63rngys5x6edEM9G6fB9ws2sSFolNoJcuS0mn669C6uCmozmd/70b23X+m8eUCxliD8xHdOqHfv1xtd/N+l3SzX/zAJYOAULmAAAQKmQoA6gLOKDmExboJUDK88Bd2CCH9kQoAVQrPik0QuvvKeJaVPVFYbua76ZRYsA8nJo2z36XPdhvX328uxjjYsX6vuP3mljqwAAQFy63U4k6c5vHNCb37x/3r8nKcdb+D7hdqWOiVLQCflwW0w+tb0/evV03u2vrw2po+UWPXv05Jyf/d7tDXN+t1Tzz8yPwW4sYAIAAKVmUNnJ21pbW82hoSG7mwEfSx3ExNk1iNmye0h1i0JJQYjEwT6A3Bw8eFBtbW12NwNIi6pYAOazo+e4nh4Ymf33I+uWk6QAYFaufYkNO3+qdz+4osqgoamoqQ/fuED92+4pY0sBAEAm4bGIuvb/Uv/92Km0P88Un3ZaPBvF8dr3ScyrcHx2c+3oOa69gyOqCs5Umd60ltiIkzAHkyzfc7gU5/yW3UP61eglDYfH0/488V7C/DO8It6HTreAifsnYC36qwDczDCMI6Zppu0AB8rdGAD+0r+1XQFj7uMT0zE1dfaVvT3dm1vV1dGs1Q216upoJjgA2CQ8FtHG7sMKO7zSBtwpsSoWAKRq6uxLSk6XZirB2NE3BeBMufYl1jTU6pH1K/Tcn27QI+tXaHVDbZlaCAAA5hOvZmoYSopPhyoDeqilQf3b2tP+Xf/Wdj3Y0qBQZSCn34ezee37JOZVOD67ueJVpnseu0ub1q3Q6PiE3U0CMsr3HC7FOd+9uVUfrbtOv//rt6htVZ2CCR2KxsULk+4lzD/DK9iRHrAP/VUAXkUFdY+jgjqc4CvfO5a0BVrQkB64vYGVtoCLFVu9o7PnuJ4eHKEqC0rKa1WxAFiDKjAAMqEvAdiDClFAfjhnchevZnpufEL7XzmtgCGZ0rzxKKoKe4sXvk/6qYWz8rPjegwr5ToH4/XjMN9zeNWOPk1GS3/Of/SrvYqlSavhOgwvYkcAoLzo6wPwAiqoA7DVpclprayvkTRTrSZqipW2gE81dfapcXuv9gyMyDRnKtY2bu+lai1KwslVsdg1AHAOqsAAyMTJfQnAy6gQBeSHcyZ38WqmUdPUI+tX6If/4e6cqgRnqirM2N6dvFAlmn5q4Ur92SVeB7gewwm8fhzmew4/8ImbJWm22nk+5/xrpy7otj97Qa+9d2HOz35zZZ0aFy9UVcXM8wYMcR2GZ7EjAFBe9PUBeF2F3Q0A4H3dm1u1ZfeQ1n10cdJKWwD+07+1PWPVWqBYTk46TZwocFuVLsCL4gkK9E0BJHJyXwLwotQKUXsGRrRnYIQKUUAGnDOFS0yq6epoLvj3Gdu7U77fvxPRTy1cqT+7XQeGNfjWOa39+oHZx7geo9TCYxF9Y+CKVn8ykvFYLXW/wKmV2HM9h1M/j+jVcueRqZgqAsbs72d7n09895guTkzriWeO6cdf+VTSz/7uf147uyNHdcXMjhxchwEApUBfH4DXkaAOoCy8EAQGUDwGWLCa05JOSSAAnIm+KYBMnNaXALyMBcxAfjhn7MPYHk5AP7VwpfjsUq8Dibgeo9R2HRjW8AexrAuiSt0vyLQIy87E9fhrL6wKznsOp34eQUNaWhvSqQsRDb51bvb3Ut9neCyitd84kPRcw+FxNW7vlSSdePL+2ce5DgOAczh1YVWhuMcA8DLDNE272wALtba2mkNDQ3Y3AwDgMQcPHlRbW1tBf7tl95DqFoWSBlhsDwevCo9FMk4UeCFgAgAAABQjXoWwKjhThXDT2uVUJQay4JyxB2N7AKnXgaAhRU2pqiKgKa7HKJFMCyEyLYgqRb9gvtfs7DmupwdHbDnG833t+OeRT/pL/FxeWBXU5cno7OPLblig73zpk1p98/WFNB0AYDE7708AgLkMwzhimmbaxK9AuRsDAAD8rXtzq7o6mrW6oVZdHc1JyenhsYg2dh9WmFXBnuTH75ddAwAATuDHezBQKpw/1opXiOp57C5tWrdCo+MTdjcJcDTOGXswtgeQeh2ImtKq+hr9gOsxSqh/a7sebGlQqHImhSNUGdBDLQ3q39ae9vdL0S/I9JqmpMbtvdozMJPwvWdgRI3be9XU2Vfw+8tVU2dfQa8d/zz2/NE6NS5eOPt40JA+s2apPrNm6ez7jIteTWZPTE6XpAVVwXmT0xkrAkD5FXqPAADYp8LuBgAACue1rYuATNtIwhv8+v2yLRsAwG5+vQcDpcD5Y63EBctdHc02tsSZiPsgFeeMfRjbA0h3HYgXYQFKIXEhRGVA8y6IKkW/INMirENb2zPuHmK1/gJfO/55rNrRp8notarwUVN64dX3FTAkUzPV4SejMa340EKdHosoMjXzuzXVFfrq73xM/8/hEzp/eWredjJWBIDyK/QeAQCwDwnqAOBiBD/gFanbSO4ZGNGegZGMW1fCXfz+/ZJAAACwi9/vwUAxOH/gBMR9AOdgbA+A6wDKIb4QYlXgfb0RW1qWBVHpFl/YuXtIsa/9wCdu1rNHT8rQTEJ6/L831YZ0z8eXzr7Pg/8Snn2NyWhMHS0N2rR+hTatX5H1+RkrAoB92N0KANzHME3T7jbAQq2trebQ0JDdzQDKxi+VpVKDH3FODn745bvxi4MHD6qtra1kzxcei2Rc7czx4n58v4A7ce8G3I97MFA4zh/YyY1xHwAAAC+yKz5W6jmYQmzZPaS6RaGkxPXEhRpW+sP/NqjX3hvTX33+dj3/yvs5vXamPnSqeJ+60PfHWBEA7GXn/QkAkJ5hGEdM00x7MQ6UuzEAYKXEylJe1r+1XQ+2NChUOXMZD1UG9FBLg/q3tdvcssyK+W7CYxFt7D6sMFvneharnb2N7xdwJ7/0qwAv4x4MFI7zyhHbNAABAABJREFUB3ZyY9zH6YgtAQC8gPtZ+fk5Pta9uVVdHc1a3VCrro5my5P/Eo/vZTcu0Oj4hJ4/fjrn107tQwcMzf5/3IdvXKCP31yr8NVkxkLeH2NFALBXue9PAIDiVNjdAAAoBb9tp+am4Ecpvhu2tPaHdNtIwjv4fgH38Fu/CvA67sFA4Th/YIVcqnC6Ke7jFlbGlth5CLAO5xeQjLmS8nFafMwP18NdB4Y1+NY5rf36gdnH8vncE/vQkhQzpchUckX1dz64onc+uKI7v3FAb37z/oLbylgRAAAAyI1hmqbdbYCFWltbzaGhIbubAVjOj9upuWXromK+G7a0di4nbC8JALCGH/tVAAAA5fKV7x3Ts0dP6rN33KKnPt+S8ffcEvdxunLEljp7juvpwRFtWrucZEGgxDi/gBnMlZRfLvExK5PGf/D8T7X37QWzz+3l62Gm41tS3nHJeB/6vjU3qfMHx3Xi7OWsv885BAAAABTPMIwjpmmmDV5TQR2AJ/ixslTipGRXR7ONLcmumO+mf2t7xgAgAACwhh/7VQAAAFZLTbzZd/Sk9h09mTEpxi1xH6dJTRSzMrbktMqqgJdwfgHJmCspv1ziY1ZWtH/uzSm99O4Vrf/GAcUS6g168XqYenwHA4aiMVNVQSPvuGRiH/quW5fo7XMjCkiKptRs5BwCAAAAyiNgdwMAoFTi26n1PHaXNq1bodHxCbubhKsK/W5IkAMAwB7l6leFxyLa2H1YYbbBBQAAHpdpI1P2Ny2txEQxydrYUv/Wdj3Y0qBQ5cw0S6gyoIdaGtS/rb3o54Y7MJ6xDucXkIy5Entkio81dfapcXuv9gyMyDRnksYbt/eqqbOv6NeMP/fP3pmWaSopOV3y5vUw9fiOxkytrK/RD/50Q1Fxyfj3t/ajH9KqpTVauqhakhQwxDkEAAAAlAkV1AFYysrt7VI5pbJUOd+zWxTz3cQDSIlbWhejHN8PxwAAwO3K1a+ystIUAAB2YDyITA5ta9fG7sM6cfby7GONixfq+4/eaWOrvCNbteW2prqSxpbiSBYE4xnreOH8ok+AUiv1XAnmlyk+ZmVF+/hz//djp9L+PDLlvuthNvFr5cKq4Jzje3VDbVFxycTvT5K27B5S3aIQ5xAAAABQRiSoA7CUH4P0fnzPVip1glw5vh+OAQAAsmO7dgCAV+18/nUNvnVOO/te11MbW+xuDhykvjak6aslMKuChiajpqIx0zPJRXbLliiW+BmXevElyYL+xHimPNx+fhEjRqk5pUgTrF1EE39uaabSd7yCetCQ7l5Vp8U1VZ7aQfrJvpnx02fvuGX2uLbq+OYcAgAAAMrPMDPtLQpPaG1tNYeGhuxuBnwoNUgf5+UgvR/fs5uU4/vx0zFw8OBBtbW12d0MAIBLhcciOSUQAQDgFn4aD6Jw6ao2plZ2ROF29BzX3sERVQUDmozGtGntcpJCYQnGM8iGPgHgD1b267bsHtLU2FmFrl+i/a+cVsCQTMlTfZtirpXsUAEAAAA4i2EYR0zTTDsgCpS7MQD8oX9rux5saVCocuYyE6oM6KGWBvVva7e5Zdbx43t2k3J8PxwDAADkxgvbtQMAkChTERCKgyBR9+ZWdXU0a3VDrbo6mklOL7F4teWex+7SpnUrPFVdFM7CeAbZECMG/MHKfl335lb92zXVipqmHlm/Qj/8D3d7rm+TaZiUy+gpcYcKAAAAAM5WYXcDAHiTH4P0fnzPblKO74djAACA3Ll9u3YAABId2naPPtd9WG+fvTz7WOPihfr+o3fa2CpnouIhrJKYGNbV0WxjS+AHjGeQCTFioDz80Kf0Wt8m8Ts7tK1dG7sP60Qe46fUqut7Bka0Z2CEHSoAAAAAB6OCOgDL+LFqkR/fs5uU4/vhGHCG105d0G1/9oJee++C3U0BAGRABVEAgJfU14YUjc3U+6sMGpKkaMz0bLJMMah4iFIJj0W0sfuwwiQGwwZOH89wftiLGDFgPfqU7pP4nd39lz9LSk6XpBNnL+vunT/L+PfsUAEAAAC4j8E2s97W2tpqDg0N2d0MAIDHHDx4UG1tbXY3I6Pf+qufazg8rpX1NfrxVz5ld3OAkvFDZSAAAAC32rJ7SHWLQknVdJ2WsGin1IqHcVQ8RKE6e47r6cERbVq7XF0P32Z3cwBHKfX5QTwCgFP4pU/p9DmYuFzuD5m+M0kKBgxFY6aCAUP1i6r13Jfvynqf2dFzXHsHR1QVDGgyGvNVP5B7MQAAAJzKMIwjpmmmnQypKHdjAAAArNK4vTfp38Ph8dnHTjx5vx1NAkoqscqMXwLvAAAAbpGYjN7V0WxjS5ypf2u7uvb/Uj969bQiUzGFKgP6zJqbtOP+j9vdNLhMapLTnoER7RkY8VxiGlAIq84P4hEAnII+pbPkcn/I9J0FDUM9x07KMKSYaerej9XPm3gd36EicVGwX3AvBgAAgBuRoA7AcqzoBlAu+x/foD/5+yM6ef7K7GPLblig73zpkza2CsiukCozJGAAAADAbeprQ1pUXaGJ6ZiqKwKamI5pUXUFsSLkzarENGKY8IJSnx/EIwA4DX1KZ8jl/pDYt0r3nY2OT2hlXY3eCI9rVX2NRscn5n1dPy4K5l4MAAAANwvY3QAA3rfz+dc1+NY57ex73e6mAPC41Q3Xa2FVMOmxBVVBrb75eptaBMwvsfJJJv1b2/VgS4NClTPd91BlQA+1NKh/W3u5mgkAAAAULV7xsOexu7Rp3YqcklCAVFYlpuUyNgOcrtTnB/EIAE7kxD5leCyijd2HFfZJRe/+re1qXLxw9t/p7g+JfavU72zv4IheePV9vREelyS9ER7XC6++r6bOvrK/F6fjXgwAAAA3o4I6AMukruje9/JJ7Xv5JCu6gTLwc9WvC1emtGppjR6/Z6V2/XRY5y9P2d0k1/LzcVQO+VQ+oTIQAAAAvMCPFQ9hjXiS0xfXLtfewRGNFpEMRlVKeE0pzw/iEQCcyIl9ysRk7K6Hb7O7OZZK7TtJUmQqpn/8xSl96wt3pO1bSVJ1RUBdHc3q6mjWF9d+WJv/dlDjE1OamDZLtiOOF3EvBgAAgJuRoA7AMqZp5vU44Eevnbqgz3e/qO89ur6kVb79FAxNNbjj07P//8DtDTa2xP38fByVQ77bbpdyghkAAAAA3KyUiWn5js0Apyt14ibxCMA5ci0oQuGR8vHjQrd43+mHvzilmClVVRhquH6BGpdcl/TzbH2rvQMjOntpUpJsT7p2w/nCvRgAAABuRYI6AMsc2naPPtd9WG+fvTz7WOPihfr+o3fa2CrAWZ747jFdnJjWE88c04+/8qmin8+PwVCUHsdReeRb+cSJlYEAAAAAwO2oSglkRzwCcI6dz7+uwbfOaWff63pqY0vG36PwSPkUu9DNDcnRUko7r/adTM0kl09GY9pw65LZYy1b3ypd9fWJ6ZiChqHR8Qkb3pk7zhfuxQAAAHArEtQBWKa+NqRobKZaemXQ0FTUVDRmOjrAkqtsASO3BJNgr8btvUn/Hg6Pzz524sn7C35eqn6hFDiOyofKJwDgDlbtegMAAJyBsRkAwMlSk3r3vXxS+14+OaegCIVHyi9dMvbhN8/m/PduSI6WrrXzyf2v693zVxQ0pLqaav3VxhY9/+rpOX2nTH2rbHMP5Z5T5XwBAAAArEeCOgBLrWmoVVtT/byTO25L6s4WMHJLMAn22v/4Bv3J3x/RyfNXZh9bdsMCfedLnyzqean6hVLgOCofKp8AgDuUetcbAADgLIzNAABOZppmTo9TeMRameYyE5Ox/9fvHtUb4fF55witSI62Yq41tZ3PHj05+/+GIT3/yntp32emvpWT5h44XwAAAADrBexuAABv697cqq6OZq1uqFVXR3NSQCJRYlJ3OYTHItrYfVjhPKshNXX2qXF7r/YMjMg0ZwJGjdt71dTZl/VnQKrVDddrYVUw6bEFVcGSVOSMB0N7HrtLm9atsG1bxEK8duqCbvuzF/Taexfsborvufk4Atym0H4JAOs1bu9V4/ZeDYfHJV3b9SZ1NxwAANyIfigAAO5waNs9WrF4YdJjjYsX6tD2e5Iec1Lyrxdlmsvs3tyqfxh6R7+7q19vXI0fzDdH2L+1XQ+2NChUOZOuEaoM6KGWBvVvay95+4oRb2c6hc6FOmXugfMFAOAkxGgAeBUV1AHYyq7t0wqtcp51Nb0pVtojLxeuTGnV0ho9fs9K7frpsM5fnirJ87q56hfVSZ3DzccR4DbsvgI4l1W73gAA4AT0QwEAcIf62pCisZlq6ZVBQ1NRU9GYmTaRNrGad7adjd2ilFXBC32uXOYy863GXcrkaCvnWuPtzKS6wtB9zTfnNReaae7Bjt22vXa+AADcixgNAK8iQR2ArdIFbD61qk7hixMKX4yUPABRbJBmvoARK+2Rj8Edn579/wduT1+Bwi2KDRymViGNVyeVpBNP3l+SNgJWsyOADneza6GeE3C+wC2s3PUGAAC7lLIfSr8OAIDyWNNQq7am+nkTab1WeKSUyVqWFK+6qpCE81IlR+ebHJ+vM1kqnE9Mm/rhL07pW1+4o+jXsSMxz2vnCwDAffw8VwjAHwJ2NwCAv6UL2Pxq9JKOvXO+pFvQxZViy7xsW885ZVs6oNyK3Tpy/+MbdMsNC5IeW3bDAu1/YkMpmoccsXVYcazYQjVffIfOk+07sWIrX7dwwvkC5Cq+6823/+AOrVpaowtXSrPrDQAAdillP5R+HQAA5dG9uVVdHc1a3VCrro7mpMRaL2rq7FPj9l7tGRiRac4kazVu71VTZ1/ZnyvX5PN85whL9Z1map9MzRsrzha7fO3UBTVu79ULr76f8e8/fOMC3b1ySUHtjivldw3YgXkZAMXw81whAH+ggjoA28UDNt97aSbwMBwel2TNysBSbJmXbTW9HSvt86lURVUrlFqpVvRSndQZ2DqsME5a2c53aL/Ue22276SUW/m6hZPOFyBXXtr1BgAAqTT9UPp1AADASqWsCl6K58ql2rmd1bjTtS+XWHHq7yTGNp/47jFJUk11hcYnptP+/cnzV9S/7Z6i2m51BXjAaszLACiGH+cKAfgLCeoAyioxsCFTSQlcj99za1kCEKXaMs8p8hn0MkBGqZUycBivTvr4PSu166fDOn+5uOqkLMjIHYkFxXFCAJ3v0Dni99r13zigmHnt8Uzfidf6JfNxwvkCAACA4vuh9OsAAICVSpmsZXXxKidIbN8/DL0zb6w4Uzw5YEgxU1r79QOzP0uXnG5c/e/6jy5OeryQeRkS8+BWzMsAKBW/zRUC8BcS1AGU1ZN9r2vwrXPauf91LagKJiVLlysA4fQgUq7yGfQyQIZVSnnelro6KQsyckdiQXGcEEDnO7Rf6r3WTPl5pu/EK/2SXDnhfAEAAEDx/VD6dQAAwGqlTNbyU+JXLrHi1N+Ji6UGNa+6riqoO5bfoEP/enY2iV2SPrrkuqTfS5yXefzelTknq/vp+4F3MC8DoFT8NlcIwF9IUAdQFqlJW/uOnpz9/8Rk6bamOgIQOcpn0MsAGVZyWuCQBRn5I7GgeHafB3yH9kt3r72pNqQTZy/znaSw+3wBAABAadCvAwAAViplspafEr9SY8WRqZgOv3k24+9UBQ1NRk0tu3GBzoxPKDIVk6HkAhwNNyxQRWCmbnq6XSNTJT6eSxEhP30/8A7mZQAAAOZHgjqAsjAzrLiXkiuKJg7YCEBkl8+glwEyrOS0wCELMgpDYkFxnHAe8B3aK929Nhoz9ch6vpNUTjhfAAAAULxc+nWvnbqgz3e/qO89ul6rb76+XE0DAACwVXgsknP1cCskxoqf+O5RDYfH5ySKx3/nxJlxHfrXszozPpEU27x+QYW+3nGbdv10WOcvT2ndRz4kSWpcvFCnxyJJ8y9bfvOj+i//41dzKrJLFBGCtzEvAwBwKrv7o0AcCeoAyuLQtnZt7D6sE2cvJz1eFTRIli5CPoNeBsjwCxZkFIaEUffjO7Rfuntt/LvgOwEAAIAfPfHdY7o4Ma0nnjmmH3/lU3Y3BwAAeIiTk252HRjWSyfO5VQ93Ardm1vV1NmnPS++PftYaqL4wX8ZTdqNNp5YHjNnim6MXozogdsb9J/+4ReamI7NVkRPnOudmJ6pzr7j/o9rUXXFnOT0uIAh9W9rt+KtArZiXgYA4FR290eBOMPMVtYYrtfa2moODQ3Z3QxAkrRh50/17gdXZreKu64qqH949DdmE7gSB3B+4eTgGZDNwYMH1dbWZnczMtqye0h1i0JJSaJuvcZwnQAAAAAAuE3j9t6MPzvx5P1lbAkAAPCqzp7jenpwRJvWLndM0k1TZ19S0ndcvtXDSzEHEx6LZNxttn5RKOf+WurzBAzplhsWqCoY0MnzVxSZjumRdcs1Oj6hN94f11tnLs15vs/++i16amNLUe8HAAAA8ytVfxTIh2EYR0zTTJuUFSh3YwD415qGWj2yfoV+8Kcb9Mj6FdqwcolWN9Sqq6N5TuJoeCyijd2HFb4Y0WunLui2P3tBr713waaWWydxxRqA0une3KqujuaM1xg34ToBAAAAAHCb/Y9v0C03LEh6bNkNC7T/iQ02tQgAAHhFU2efGrf3as/AiExzpjJ44/ZeNXX25fU8iXORpdK/tV0PtjQoVDmThhGqDOihlgbbqoe/+OZZRabS7za7//ENWlgVTPr966qCc/prqbvWmpLe+eCK3jxzSZGryU97Bkb0wqvvp01OX1Vfo/GJaWveIAAAAJI4rT8KVNjdAAD+kcsWV/FKwR++ccFsQubAW+c8txVw6oq11G31AIDrBAAAAADArVY3XD8n4WlBVVCrb77ephYBYJc+wP04j2f0b22fU9H7t1cv1V9kmHvMJLE4TKkqsKcmc6cmhZfTrgPDCl+c0Mr6Gn3rC3fobw/9Sr3H39Pjn16p+kUhrW64Xkaav0vXXzszPqFN61boey/NLArIJP6egwFDd69cosXXVWt8YsrVRYQAAADcxEn9UUCigjoAh7nzmwc0+NY57Xv55GzVg+HwuCRpODyuxu29WbeccwtWrMFKVlT9QPnFrxPVFTPXieoKrhMAANiBvhUAAIW5cGVKq5bW6Nt/cIdWLa3RhStTdjcJ8DV26QPcj/N4RmLSTdCQYqb05uilpKSb8FhED//NP6njb/5pzni+VBXYM4knc/c8dpc2rVuh0fGJssUWwmMRfeSrvbPvT5qZX/3dXf36wdGTOn9lKun4ua66Iqm/dl11+vqG8V1r/2nbPfrtNUsVSJPZ/pHFCzUZnUmEipmmlt2wQE9tvJ3kdAAAgDJL1x8F7EIFdQCOkFopOJNlNyzQd770yTK0yFqsWIOVrKj6gfJLvE5I4joBAIBN6FsBAFCYwR2fnv3/B25vsLElgL+xSx/gfpzHcz0zOJNcHr3673iRq/hnsuvAsI6+c16S5oznUyuwhyoD+syam7Tj/o+XpG3pdpTu7DleltjCrgPDMk2pcfFCnR6LKDJ17biJXq18nun4ydZfS6zeX1dTrVhKFfXaUIUuTUa1ad0KfXHtcu0dHNEoC/3zwg4JAACgVNL1RwG7GGa2PZjgeq2trebQ0JDdzQDmFR6LJAWDJClwtepBopX1NfrxVz5lQwtLb8vuIdUtCiUFaqgigGJkWuhhRZD64MGDamtrK+lzIlk5v0+UH8FmAHA+7sUAAADwgtTYe2IiJjEJwB04j+fK9Jn0vXJakxkKYhmSBnbcq/pFIe3oOa69gyOqCgY0GY1p09rlliSOFxpbSJyDySWWnK0QmGFIKz50LWG9kOOns+e4nh4c0aa1yzU6PqEXXn0/7e8RMylc4mdMgQQ4EfNaAAAgE8MwjpimmTbpMVDuxgBAOomVguPbwv3OmpsUqgyopjroya2A49vhrW6oVVdHsyOS063cYrBc2xf6Wf/Wdj3Y0qBQ5cztPVQZ0EMtDerf1m5zy1AIu7/PQ8Oj+rWv9urQv46W5fX8hu14AcD57L4XAwAAAKXAbp6A+3Eez5XpMzm0tV2fWbNUQePa7wYM6cM3LpAMzcZjz4xPaNO6Fep57C5tWrdCo+MTlrSzFLGFXGLJqa8TMGaqqO/547XatG6FpmNmQcdPU2efGrf3as/ATMX6PQMjeuHV91UVNIiZlEi6z7hxe6+aOvvsbhqQhHktAABQiAq7GwAAcfFgUGJF8de/ltvWciiNxIFl4ur8UqyIzvTcKB2C1N5i9/f52NMvK2pKj+15Wf/8558py2v6AdvxAoB72H0vBgAAAEolXewdgLtwHs+V7jOprw1pSU21ogk7NMdM6Z0PrkhKH4/t6mi2rI3FxBbyiSWnvs5kNKYNty7RhlvrtOHWOm3ZPaS2pvq8j5/+re1JleqrKwzVVFdq9x+v1dMvjhAzKYHUzzixwj3gBMxrAQCAYpCgDsARwmMRfXB5Sl/raFb9opClwSDMNd/Aspjkcgat5eWmIDVbwc3Pju+zcXtv0r/HItOzj5148n7LX9/rCDYDgLu4qW8FAAAAZJK4eyexd8CdOI/nyvSZnBmf0IdvXKBPLLtBkamoDr95VpHpqGKmLI/Hppv3KDS2kBpLDhjSb69eqr/I8P1ne51Cj590CfYT05P6w//2klY31BIzKQEKJMDpmNcCAADFIEEdgCOkJkCTuFpemQaWfa+cTkpWLSS53I+DVjuPXzcFqamqPz87vs89f7RWf/L3R3RlKjr72ILKoP7vL32yLK9vJSfcWwg2A4C7uKlvBQCwnxPGHAAAAH6XOJaXpB09x7V3cKQs8dh08x6lSA4PGlLUlN4cvZSx7VbFMM6MTyggI6kYVfjihML/MqrqioC6OpqJmRSJAglwMua1AABAMUhQB2CrTNW140hcLY9MA8tDJUgu9+OglcTr7Kiq72wbVtapMmjoytS1xyqDhjbcWmdfo0rEKecmwWYAAADAm5wy5gAAAMA15YjHWjXv8czgiExTipeTGQ6Pq3F775znLXShZC5/1725VeGxiNZ/84BiZvLPJqZjaursY26nSBRIKC8WFuePeS0AAFAowzTN+X8LrtXa2moODQ3Z3Qwgo/BYJCkBOpOqoKGW5TcyULTQlt1DqlsUShpYdm9una0sURUMaDIa06a1y/OeZM303G6QT5AiNQAZ58XE64MHD6qtra2gv0097xMXPnB+O8Oqzj4tqAzof/nUr+n/8/M3dWUqpjdcfAz76dwEAAAAUH6MOQAAAMrHicmlpZ73iM/B5Pq8nT3H9fTgSN5zePn83Ve+d0zPHj05+++gIT1wewNzO3CdQs8XAAAApGcYxhHTNNMmAlJBHYCtEqtrZxIwpN+7vUHPHj1JBSoLZVqdX4oV0W5e+Z9P9bP+ElSc9wM/VtV3m8Rk9EfbbrWxJaXBuQkAAADASvExR+8vTilqJifrAAAAoLSs3LWm0OR3q+Y96mtDqjAMRaZiqgoac5630Mrthfzdpclprayv0XB4XAFDiprK6T06cUEB/IkdngEAAMqPBHUAtjszPqHfv+MWvXJyTJcnp/XOB1eSfh4zpX0vz6zIn2+gSJCj9NycXF6MQoIUJF7njq3gUE6cmwAAAACsdPdf/iwphhA1peeOndLzr5wm0QEAACBPr526oM93v6jvPbpeq2++fvbxciSXFpP8btW8x0snzkmSPr36Jn3ouiq9e+6SHv6bf5Ipqeex39B/+R+/yqs4S3gsoo/fXKultdX6+RujOf9d9+ZWbdk9pHUfXZzXe7RyQQGQD4oZAQAAlB8J6gBs1725VZ09x/VG+KJurauRNFNpKmZKjYsX6sp0VOcvT2UdKMYT0z9844LZIMfj9650bbI6ifb2KzRIQeJ1bvy68AGlUcg1knMTAAAAgFX6t7brwb85pNGLk4rGTAUDhuoXVeu5L99ld9MAAABc54nvHtPFiWk98cwx/fgrn5p93Mrk0lIkv5d63iO1TfuPvzfnd/YOjORdnGXXgWEde+e8QpUBRabyK+qSz3ukWjWchmJGKBVyOQAAyB0J6gBslRqcGA6PS5ICAUN/8G+Wa/RiREtqqrV3cCTrQPHObx5Q1JQG35r5dzzIIalkK/LLOdCgmoD9Cg1SkHgNWK+QayTnJgAAAACr1NeGdO/Hls7GryajMd37sXomqgEAAPLQuL036d/D4fHZx048eb+lyaVOrKyc2qZ04nOhAUPqeeyurMVZUudk488ZM01tWrei5EVdnPiZAhQzQimQywEAQO5IUAdgq2zBiXhAacvuoYwDxdRgSjqlWpFfjoEG1QSchSAF4CxcIwEAAIDSo/JXaRBDAAAAKM7+xzfoT/7+iE6evzL72LIbFug7X/rk7L+t6nM5sbJyYpuyCRjSi//7vapfFMpanKV/a7vWf/OAYmby41NRU/8w9E7JY+xO/EwBihmhGMxTAgCQPxLUAdgql+BE4kDx8Xtu1ZefOarwxYjqF4XSVg8IGFLMlIKGFL0aZGlcvFDff/TOgtpYzoFG/P288Mp7mpg2VV1h6L7mm6kmYBOCFICzUHEFAAAAKD0qf5UGMQQAAIDcZFogubrhei2sCib97oKqoFbffP3sv63sczlxweEzgyMyzey/83DLLTklfdfXhtTRcouePXpy9rGgIT1we4NlMXYnfqYAUCjmKQEAyB8J6gBsd2Z8Qg/fcYveOH1RTTfVanR8IuPvpk6aJia4xxPTf2fNTep95fRscroknTh7WWu/fqCgpPJyDjSuvZ+Zxk9Mm1QTAICrqLgCAAAAlA6VvwDAPuXcvYKdMgA4TbYFkheuTGnV0ho9fs9K7frpsM5fnipbu5y24LCps29OtfNU11UFNT45nfNzXpqc1sr6Gg2HxyXNFPqyMsbutM8UAIrBPCUAAPkL2N0AAOje3KqFlUG9+t6YFlQGkoIVcU2dfWrc3qs9AzOVAvYMjKhxe6+aOvtmV9//8D/crUfWr9C0aapt1RI1Ll6o6oqZy1zAkB5qaVD/tva821fOgUZTZ5+eHhhJemzPwIiaOvtK/loAsguPRbSx+7DCVPRwlPg1v+exu7Rp3Yqsi5oAAAAAZNa/tV0PtjQoVDkTOwlVBgqOnXgN40EAVktMzvTSawFANtnm+uIGd3xaP/qPn9IDtzfoR//xUxrc8WkbW2yveH89aCQ/fssNId1/28368I0LtGHlkrTzqokS+7YH/2V0Njk9jnlIAMgd85QAAOTHMOfbEwqu1traag4NDdndDCCj1GpdcanVusJjkYxVzDMliu/oOa69gyOqCgY0GY1p09rlBW9VvWX3kOoWhZK2oJsv4FOIQt5nMa9F5RwU6uDBg2pra7O7GZbq7DmupwdHirp2wJ+4vgIAAMAtShk78RInjAcZVwDelGs83G2vBQC5yDQHtuU3P6o//8fX6Pck+MHzP9Xetxdo2Y0L9OzLJ2d3kV5VX6OP1F2X1xxlYt/28XtXlm0eEgAAAIA/GIZxxDTNtIMUKqgDsNXs6v/AzPL/YMBIW62rkCrmpVi9Gq8q8LWOZnV1NGt1Q626OpotSU6Xylutfefzr2vwrXPa2fd6yZ8bcLNcqrgA2bilMhlVIQEAAEDlr2ROGg+6ZVwBID/l3L2CnTKA0iCGVjqZ5sD2DozQ70nx3JtTeunEOb301jk9sv7aLtKJyenzHZvp+rZrv3FAP/zFqbLMQwIAAAAAFdQ9jgrqcLp8qrgUUsU8sdqUTOVdecqOillWV2uncg5KwcsV1Mu5kwG8Zb7r62unLujz3S/qe4+u1+qbr7ehhcnsqgpJJUgAgJtw3wL8xQnjQeI2gPeVc/cKdsoAiueEnVXcJts4KnEO7IG/7lcsTaqCn/s9+fQF/9P3j2nfyyf12V+/Rdvu+5i+/MxR/fnvrZ6tRi9Tafu2Fy5PatmHrrN812gAAAAA/pCtgnpFuRsDAIn6t7brwb/5J42ORRQ1paAxU0HhuS/fNed3E4MjXR3NOT1/arWp+P/PF0RMDQDtGRjRnoGRsgTFCnmf+ci0MIkFS/Cr1GB5OXcygLf0b23PmMwiSU9895guTkzriWeO6cdf+ZRt7bTzHicl35uZ1AMAON2TfVd3ntr/up76fIvdzQFgMSeMB+cbVwBwv/juFYmJgV54LTgPiy2LY3cMzc2yxf8S58Be/Oq99HtSxPuCz//zKU3GlPYzST029718UvtePilpJgb9r6Pjs599ur7tt75wx+zfWjEPCQAAAABxJKgDsFV9bUj3fqxeewdngnqT0Zju/Vh90cHSdIHDxP+fL4jo5cnAQ9vu0ee6D+vts5dnH2tcvFDff/ROG1sF2CddsJzJOxQiUzLL2q8fSPq94fC4Grf3SpJOPHl/2dtp1z2OST0AgJvMmfA/elL7jp7kvgX4gN3jQSckyQOwltUFSux6LTgPRQKK4+V5IqvkG//zYr8n14UhmX4v/plMxZTxM8lWcGo4PC7p2mcfMMRcBwAAAADbkKAOwHa5TvzlU+0jNXAYMCRDUtScqTbQtqpOp8cmFL4YSftcXgyKxdXXhhS9umdiZdDQVNRUNGZ64r0B+cg1WM7kHfKR7p62//EN+pO/P6KT56/M/t6yGxboO1/6pC1ttOsex6QeAMBNMs33s+8U4H1OSOa0O0keAOBuFAkoDS/PE1mlkPif1/o9uS4MyfZ7Z8Yn1P7hCv2/Hr4z7WeSrhBVquqKgO5rnvns48cscx2Af7GrCgAAsAsJ6gBsl+vEXz7VPtIFDqVr1QbeHL2UtMVdOl4LiiVa01CrtqZ6z7w3BtUoBMmysEKme9rCqmDS7y2oCmr1zdeXrV2p7LjHMakHAHCTQ9vatbH7sE6w8xQSMPZEuTghSR4A4F7EPUvHy/NEVigk/ueVfk8uC0PCYxGt++aBpAXR6X6ve3OrDh48qNUNtWk/k3SFqCQpYEgxUwoa0mSU2CuAa9hVBQAA2IUEdQCOl2+1j/iE8cLKwGzgcMvuIUnS6bGITHPuFnfpnssrQbF0vPbeGFSjECTLopwuXJnSqqU1evyeldr102Gdvzxla3vsug8wqQcAcIv62pCmr074VwUNTbLzFCQ92fe6Bt86p537X9dTn2+xuzkAAABpEfcsHa/NpZSDX+N/uSwM2XVgWKY5s/j59Fgk5wUk6RbKJhaiis+BfvhDC3VmfEKLa6r0a3WLfPPZA8iMXVUAACgMxWpKhwR1AI4WHovo4zfXamlttX7+xmhOwZp4svKmtctnA4b92+6ZfT4qh3gHg2oUy6/BcpTf4I5Pz/7/A7c32NgSezGpBwBwE6/tPIXCpY499x09qX1HTzL2BAAAjkXcE1bLlLARj/+FxyJ64/2L+vYX77CriWWVbWFI6ngicaeuXBaQ7Hz+6kLZvtf11MYWSclx1vgcKACkYlcVAAAKQ6HU0iFBHYCj7TowrF+8e1631tXMW+0jl2RlKod4C4NqFItkWQAAAH/Jp+oFfUXEmWaGx8vbDACAC1BhC05BXxZWmy9hw48JHZkWhqTOZQUMafmHFqrr4WY9/8r7GReQzFko+/JJ7XuZhbIAckduBAAvYbyNcsi1UCrHY+5IUAfgSKkX/OHwuCQpZpratG5F2mBNrsnKfqsc4uWbIoNqAAAAAPnwY5IEindoW7s2dh9OqnTYuHihvv/onTa2CgDgRPQ1AH/x8vxLJvMlbPh559tMC0MS57IMY2ah64Zbl2jDrXXacGtdxuczM6yUzfQ4AKTjt9wIAN7FeBvlkGvuIcdj7khQB+BI2S74mYJ8uSYrl6tyiFMCk16/KTKoBgAAADAfPydJoHj1tSFNx2aSQKqChiajpqIx0zdJSACA+dHXAOxj51xMuedfnDDvNF/CBjvfpndmfEIr62r0Rnhcq+prNDo+Me/fTEbTJ6JPRk2FL0YYjwDICbuqAHA7xtsop/lyDzke8xewuwEAkE6hlbHjyco9j901U2k9hwCPVRIDk3Zo6uxT4/Ze7RkYkWnO3BQbt/eqqbPPlvZYpXtzq7o6mrW6oVZdHc1Jg+xyee3UBd32Zy/otfcuZPyd8FhEG7sPK0wCfVZ8TgAAALBC/9Z2PdjSoFDlTCgsVBnQQy0N6t/WbnPL4BZrGmr1yPoV+sGfbtAj61dodUOt3U0CADgIfQ3APnbMxdg1/2L3vJM0//ydH3a+zXceo6mzTy+8+r7euLpb9Bvhcb3w6vtZj5c/+dGlrM+5/hsHcm8wAMC1mDsHGG+j/LLlHnI85o8K6gAcq5DK2E5YAeyU1VJUqZhRjooiT3z3mC5OTOuJZ47px1/5VNrf8Xol+1LhcwIAAIAV/JAkAWs5Id4AAHAu+hpA+dk5F1Pu+RenzDvFzTd/5/Wdb/OdxyjkePk/fnOBfnr+Rv33Y6fS/jxmSo3be6nUCAAex9w54P3xthN2SUKybHMBXj8erUCCOgDH6t7cWvSN2I4buVMSw7kpzrBy0Na4vTfp38Ph8dnHTjx5vyTnBY6dis8J8AYG0AAAJ/N6kgQAALAXfQ2gvOyciyn3/ItT5p3i5lu86dXFnYXOYxRyvNwQCmhRdeZUDruPAQCAtZg7B5J5ebzNQhT38fLxaAUS1AE4WrE3Yjtu5E5KDPfzTbEcg7b9j2/Qn/z9EZ08f2X2sWU3LNB3vvTJ2X87LXDsVHxOgDcwgAYAOJlXkyQAAIAz0NcAyu/FN88qMjV3LqYcRRTKOf/ipHknP0udx6iuCKimukK7/3jtvH+beLz810O/Uu/x9/T4p1dm/Q7PjE8oaBiKmuacn0WmOAYAwMuYOweSeXG8zUIU9/Li8WglEtQBOFKmG7EhaWDHvWkDLokBx7t3/szWG7lTEsP9fFMsx6BtdcP1WlgVTHpsQVVQq2++fvbfBI5zw+cEuBsDaAAAAAAAAJTTrgPDCl+c0Mr6Gn3rC3ckzcWUo4hCuedf7Jh3snu3RLtfP1W6eYyJ6UntfXFk3uMs8XhZWBnU+StT8x6f3ZtbtWrHfkWjc39mSBodnyj0rQAAHI65c8D7WIgCvyBBHYAjpbsR31Qb0tvnLmcM2CQGHO2+kfs5MdwpyjVou3BlSquW1ujxe1Zq10+Hdf7y1JzfccqCBafjcwLcy+77LgAAAAAAAPwhtVDCcHhcv7urX9UVAUlS4/be2Z95qYiCHfNOdu+WaPfrp3NmfEKGVFCxjkKKfBzado8+131Yb5+9PPtY4+KF+v6jd5KkCAAex9w54G0sRIFfGGaaLaHgHa2trebQ0JDdzQAKsqPnuPYOjijTZSoesEkN6MQFDMmUVBUMaDIa06a1yx0TwEJ5bNk9pLpFoaRBW2IQF4U7ePCg2tra7G4GAAeJ37e57wIAAAAAAMAq4bFI5kIJpjL+jESP3GWadytXor/drz+fbMdgtuMs9e8ChvTbq5fqLzqa5/xd4hzMhp0/1bsfXFFl0NBU1NSHb1yg/m33WPkWUQJO2wEAAAA4DzlN8ArDMI6Yppn24KWCOgDHiq8IvW/NTer8wXGNnLusmKk5VVkzVW29cGVKy25cyIpSH6OSPYBCEDguDJUcAAAAAAAAYLX5Kg1ShbB4du+WaPfrpxMei+jf/d1LOnH2kv7h0TvnHGeH3zw7799/+ZmjWnbDAk1MxxQ0pKgpHXxjdN7XXtNQq7ameuKuLuPEHQDgXcxrAYA7kdMEPyBBHYBjJd6I77p1id4eHEkbUMwUjPzWF+6Y/Xtu5NZj4AvAKwgcF4YBNAAAAAAAAMohW6EEiihkl8tcznyLAKxm9+uns+vAsF49NSZJeuKZY/po3XWzx9n/+t2jeiM8PieenPhZx2POg1d3jY5e/Z3IVExrv34ga3V44q7ukroDwJ6BEe0ZGHHMDgDwJua1AACAUxmmadrdBliotbXVHBoasrsZQNHm29bEadue+DFZu7PnuJ4eHNGmtcsZ+PpA4vaS8BcvX9+cvnUsAAAAAAAAABQj17kcu+fd7H79uEwx42zi8eTOnuPaMzCS999JzMG4WXgsknEHAK/NqcB+zGsBAAAnMAzjiGmaaQdsJKh7HAnqgD38lKzNwNefCI76l5evb34JHHt5kQEAAAAAAADgV9nifszlFCY8FtH/9v/7hX7+xpmkx2++PqT/43/6hL5/5N058eS+V05rMkNSe6gyoLqaar3zwZXZx4KG9MDtDUlxaOZg3G1Hz3HtHRxRVTCgyWjMk/MpcAa/zGsBAABny5agHih3YwDAy5o6+9S4vVd7BkZkmjPbtjVu71VTZ5+kmUHixu7DCntoS8n+re16sKVBocqZW0qoMqCHWhrUv63d5pYBKKX5rm9e4MStY63wZN/rGnzrnHbuf93upgAAAAAAAAAokV0HhvXSiXPa9ZPhOT9jLqcw9bUhLbtx4ZzHa6ortGFlXdp48qGUzzoYMCRJVUFjdpHAyvoaSVLAkKKmPBmH9rMz4xPatG6Feh67S5vWrdDo+ITdTYJH+WVeCwAAuFeF3Q0AAC/p39qecZWylBwc9MpKebcNfKkcDBRmvuubV8QDx4lbx3pFapWkfUdPat/Rk0lVkrhGAgAAAAAAAO6SGvfbMzCiPQMjSXE/t83llEtqPDTdv/cff0+hioCW1oa0/EML9fLIB7pwZUpS+nhyus96ZX2NvvWFO5Jizus+utiTcWhI3ZuvFY/s6mi2sSXwAy/PawEAAPcjQR0ASihTgO/unT+bNzjoZm4a+HpxkQBQDn6ZwPBy4Ng0Mzye8P9cI+EnLMgAAAAAAABekGtxETfN5ZRCuthP6mOp8dB0/z5/ZUqb1i5X18O3Jf29lDmenO6zXt1Qmzbm7LU4NIDy8vK8FgAAcD/DzJSpAk9obW01h4aG7G4G4Ctbdg+pblEoKej0tYeaMwYH/ZIQZXcSWGoFkTivLBIot4MHD6qtrc3uZqDM0l3fEgNfyMzua2C8DRu7D+vE2cuzjzUuXqjvP3rnnIVUcVwj4WWdPcf19ODI7AQjAAAAAACAW+3oOa69gyOqCgY0GY0R71D62E/8MUNSrIA0CUMzBT8+e8cteurzLSVsbTLmYAAAAAC4hWEYR0zTTJs8RAV1ACixTKuU/VB5OJsn+17X4FvntHP/65YG7TLJtYIIgMyowlA4J1Qmr68NafrqrEtV0NBk1FQ0Zqp+UYhrJHwll22vAQAAAACAvzihwEQx/FYdPZtMsZ9Eqbnp1RUBLamp1pnxiCamzTn/Tv27fUdPat/Rk7PxpNdOXdDnu1/U9x5dr9U3X2/ROwPgdm6/1wAAAOQrYHcDAMAv4sHBnsfu0qZ1KzQ6PmF3k8qiqbNPjdt79ezRk5JmgnaN23vV1NlX1nbU14Z8v0gAQPnFr4F7BkZkmjOTIXZcA+PWNNTqkfUr9IM/3aBH1q/Q6oZaSVwj4S/9W9v1YEuDQpUzw+FQZUAPtTSof1u7zS0DAAAAAAB2SSwwkSq+M2HYwUnf3Ztb1dXRrNUNterqaPb1zpfpYj9tq5boxoWVqq649ljj4oWSZpLTJ6MxLawKajJqpv13JvGE9Se+e0wXJ6b1xDPHrHxrAFwu270G9nPD/R4AALehgjoAlIlfKw+bGbZILGDnxKJRQQRAuTmtMnm2exHXSPgFCzIAAAAAuB3VN4HSyWWnNSfsjojcpYv9nDwf0QeXpyRp9rFozNQj66/FQ3/06umk+Gjiv//roV+p7/hpXZmKzr5O4+KFOnH2shq3984+Nhwen/33iSfvL+8bB+BY7OrpDv9/9v49PKrrzvN/P7tKN7AQOCBhBDaKY5ADcluONUACjpHJxYkdW046JB3MSZ/upMnP7bZn8psDpFGfznSUxM5z0mdCJzOjzGSmJ2Ccy3EUJxE4iYlJRAZQhMEBO7bVsbFsMCkBBiFAt6p9/iiqqCpVleqyq/al3q/n8WNRKlWt2rUva33Xd38X13sAAKxnmKkyB+EJLS0tZl9fn93NAFDCIncaHzt9MfpYw+zp+sHn3s3kiYvt2bNHq1evtrsZgCts6TqiHb0DqvCHK++sW3YdgS3AZhu29al2RlXcDRmlXFkMAAAAgLu0dx3RY70DxBgACwSGRlIWmLjt0WfiEgojMk0o5GYS+0RiP9//3YDGg5PzIXyG9P4lc7OKB6169Fd6461LqvAbGguauvbqaepcf6s++92DOn72UvR5C2ZN07c/fauWzJuZc/uZgwG8Jd21huuD/RJvIIjgBgLki74ggFJhGMZB0zSTDq5Sr0cFAC7DkkvOVFdTpYlQOPhX4TckScGQ6bkOOPsfgFQilcm7HlipdcsXanB41O4mASWPZa8BALAe42IAKLzG9l1q2Nyt7QcGZJrh6psNm7vV2L7L7qYBrpVupbWeja26p7leVeXhKfWqcp/uba5Xz6bWjF47thIriiPSJ/1SW5M62pr02013JP0O9//9minjQYn926X1Nbp/xUL9+G9X6aPvmq/h0QnNmVGp6RX+uL+bVuHPKzkdgPewqqez5Xu9B1KhLwgAUpndDQAAq7DkknMtra/R6sa6uCqlXsP+ByCV2ImOjrYmG1sCAAAAFA7jYgAovJ6NrSmrbwLIXaTAROIcRq4JhYmVWLcfGND2AwNUYi2CxD5pPkmhia8VG+edXu7X2Uvj2vp0v85dGtfiudV66I5F2vqrfp29OF7IjwjApVJda2A/biCA1egLAsAVhmlOXtIK3tHS0mL29fXZ3QygoFhyCXYq1f2P5SUBAAAAAFLpjosBwC5buo5oR++AKvw+jQVDWrfsOm4MAgpow7Y+1c6oiksozKTydqqbSbyQ7BYYGtGDjx/SNz91i2M+T6o+qSHp9sZaLbh6esbfYbr+raSUv+vZ2GrZdmEOBgCKK5frPZCK1/uCgBM5cYxSSgzDOGiaZtILp6/YjQEAq0WWXIoEhirLpl5yiWWnYRWW/AIAAAAAlDLGxQBQXJHqm10PrNS65Qs1ODxqd5MAT+tc36KOtiYtqa9RR1tTRslqU1VidfscVWxlcadI1idtmD1dMqQFs6Zl9R2m69+m+50TtwsAIDO5XO+BVKjKDxQffXHnKrO7AQCQr9jOnaS4zl2qO6RYdhpWYXABAAAAAChljIsBoLhik2U62ppsbAmAdCI3k8RWYo3IdY7K7qqAiZXFtx8Y0PYDA45YOaeupkplhqGR8XD7RsZDOnb6oqTs2zlV/zbxdz997oSePHwi+vdO2i4AAMAe6fqCAKzj5DEKwkhQB+B6yZba235gQD88+IY+fuuCuCAfFyYUglsGF3YHrwEAcBKuiwAAWMct42IAANyA8Wo8t26PZDeT5DtHZXfxpZ6NrerY+Qf94vmTGhkPqarcpw8uvUZb7npn0duSzO+OnZEkzZpWruqqMp04e0khUzm18/hbF1VbXan/991L9E8/e0FvvHUx+rvEvu8bZy6qZnq5Y7cLvMGt50IAKFXcWAwUR2SM8vOjb2p0wlRlmaE7m+bRF3cQn90NAIB8JVtOz2eEK6lvPzAg0wwH+Ro2d8s0TZadhqUCQyN66+K4Hlpzg+OX/GJJGwAAruC6CACAdVgKGwAA6xRyvBoYGtHazn0KuOhmMi9tj2TzWZnMUTW271LD5u5Jc16N7buK0ewop66cE9k+r791SZJ09tK43ngrnJyeazsXXD1dg8Oj+o//v+cUOD+qBVdPj/4use/7r3+1zJHbBd5CLBMAAGCyK2MUU5I0OmHSF3cYKqgDcL1kAbH7mudrwjSTViv4xtP9BIlgmUd2vajeV8/o0Z0v6uufaLa7OUmxcgAAAFdwXQQAAAAAOFExxqt2V+DOhle3x74/nsp6jspJVQGduHJOz8ZWrfjqboXMyb8LmabWLV+YcTsT97uR8fDPU+1/Ttwu8AZimQAAAKkl9pWkcH/phwffoK/kECSoA/CEZIGfOdWVSYN8BIlghcROzhOHjuuJQ8cdGRBy+rKbAAAUE9dFAAAAAIATFXK86sYERy9uj627+zV4fkyL66r1nz95S8ZzVE6qChi7Uk5HW1PR3z+ZupoqtTXP148OHY8+5vcZuvvPwkn8mWynwNCIHnz8kLoeeI/u/pe9SZPdfYZSVrt34naBNxDLBAAASI2+kvORoA7AE5IFfjZs60uaiE6QCFYwkwQnJSnFw7Zy6rKbAADYgesiAAAAAMCJCjledeOkvZe2R2JC/MuBYX14a0/GCfFUBUwv2fYJhkz99LkT+sYnb5ny7wNDI7r7X/Zq8Pyo/vJ//U53Lr1GO4+enPS8+5rnEz9C0RHLBAAASI2+kvP57G4AABRK5/oWdbQ1aUl9jTramuIS04F87d3UqobZ0+Mea5g9XXtTVM+wW2TlgK4HVoaXsxwetbtJAADYhusiAAAAAMCJch2vBoZGtLZznwIpqnG7ddK+UOP3Ym+Pno2tuqe5XlXl4an5qnKf7m2uT1mN2+q/97rI9vEZ4X9XlBlqmD1d711cO+XfNrbv0rKv7Fbg/KhMSYHzo0mT0xfVVWt4bMLilgOZIZYJN5uqjwIAQL7oKzkbFdQBAMhBXU2VJi6v8VjhNzQWNBUMmY4N6LNyAAAAV3BdBAAAAAA4Ua7j1a27+/W7Y2e09el+ddx3U9LnRCbtE1eddbJCjt+LtT0CQyN68PFDWnD1tJwT4t16g0E2Itvpm5+6RXUzqib9O53I9jElVZb5NBYMadUNc1IeC5HXPvz6WY0lVF6P5TOkn/3dbdH9g0JYsAuxTLhZJn0UAADyQV/J2UhQBwAgR0vra7S6sc5VAf1cZRMMBgAAAAAAAAAUXmP7Lo3GJNhuPzCg7QcGVFnm00sdH4p7LpP28WK3x0N33KAHHz+kwPkRy+PfkcS8N89Oyysh3o03GGQjMYEx24TGbLZP5LWNKV6zzO+LrtIMAMhONn0UAADgXYZpmna3AQXU0tJi9vX12d0MoCi8mEDrxc8E58lkP2vvOqLHege0btl16rjvJu3Zs0erV68ubkMBAAAAAAAAAFGBoRF17PyDfvH8SY2Mh1RV7tMHl16jLXe9s+TmFPKZT0mMf1shMTEvgsS8eKm2UyIrtlum7yVJDbOn6wefe7dtxxFzMADcjj4KAAClwzCMg6ZpJl1yylfsxgBAocRWU8hEYGhEazv3KeDgKhPZfiYgF+n2s8b2XWrY3K3tBwZkmuG72xs2d+uzv7hgQ0sBAAAAAAAAABF1NVWaUVmm0YmQKst8Gp0IaUZlWUkmfuUyn5Iq/t3Yvivv9vRsbNU9zfWqKg9Px1eV+3Rvc716NrXm/dpekridJOmqCr8qy8L1za3cbonvVVlmpKyiHgyZJXkcAYBV6KMAAABJKrO7AQCQr1yXh8p2ecBiYskrFEMm+1nPxtakd7e3Xv2WXc0GAAAAAAAAAFx2anhU65Yv1KeWXacdvQMadHBRnkLIZz4lVfx7y13vzLtdhUjM8+Kqu3U1VfrZcycUiln0/cJYMPpzrtstMDSiv9l2UIYhda6/VXUzqpJ+J5K0uK5ac2ZU6tTwqGZXV+gdtTNK7jgCgEIo9T4KAAAgQR2AB2QbQHRD8nchg6JARCb7Waog+qzK+EVYvBgYBwAAAAAAAACn61x/ZRXtjrYmG1tij3zmUwpd3dXqxDwnF17Kx3sXzdGx0xf15rmRuPm7NTfWad6saTltt627+3X49bPhn2O216nhUflkxL3Py4FhvRwYVmWZT7/4D7fn92EAAFGl3kcBAAAkqAPwgNgAomFMXU3BDcnfLHnlHF5OvM50P0saRL86/rW8GhgH4FxePj8DAAAAAAB4USHiOfnOpxSyuqtViXluKLwUK9vv+V//arm2dB3RYwcG4h7f/WJAklRZ5kv2Z0klbitp8vYKDI04fp4QAAAAALwg89EcADjYqeFRLaqtlmlKi2qrNTg8mvK5bkn+jgRFux5YqXXLF6b9TCicR3a9qN5Xz+jRnS/a3ZSCyGQ/61zfoo62Ji2pr1FHW1NcUL2xfZcaNndr+4EBmWY40NuwuVuN7buK+TEAlKDYG2OQvxdOnNNN//hzvfDmObubAgAAAAAAPKpQ8Zxs5lMCQyNa27lPgcuJ6Oni307Rs7FV9zTXq6o8PLVfVe7Tvc316tnUanPLksvlez41PKqPvWu+bm+sld8IP5bL5+zZ2KoPLJ0rn3HlMb8h3bl0bvR13DJPCAAAAABuRwV1AK6XWA0hshTf4vZdejlF5YhCVsSwSuf6FqrD2ihxv3ri0HE9cei4YyuS5CrfCi5uWJEAgLe4rWKUWzz8vcM6Pzqhhx8/rF9+nqWMAQAAAACAdQodz8kmzu3G1UDdklCdz/cc+Q63dB1RSMr5c9bVVKm2ulIh88pjQVOaU10Z9zpumCcEAAAAALcjQR2A6yUmyPp9hoIhUx+5aV7Kv7FqWcVCSxYoJWm9OEwzxePFbYbjuSUwDsA7uDHGWg2bu+P+3R8Yjj527JG77GgSAAAAAADwGCfEc9xe9MANCdX5fM+Rua/p5b6cP+cLJ87pE5371bRgpq69epr+bMEsSdLv3zg7qaq+W+YJAQAAABQOOXiFR4I6ANeLJMiOjIcDi8HLZRHcXPE6XaD047cucF11Dzfau6lVazv36djpi9HHGmZP1w8+924bW+VMbgiMA/AOboyx1s6HVumz3z2o42cvRR9bMGuavv3pW21sFQAAAAAA8BInxHOckCSfDzckVKf7nqdK/IgUbFq37Lro58v2c0ZWCDx1flQ9m+6w5DMBAAAA8C43rrDlNiSoA/CEU8Oj+ti75uvUhTHtfXlQQVOuCy7GShYoHR0PaXQipO0HBiS5r7qH29TVVGni8s0OFX5DY0FTwZDpmgTIYt7l54bAOABv4cYY6yypn6npFf64x6ZV+LVk3kybWgQAAAAAALzI7niOE5LkvWyqCuiRxI9Hdr6oN85eis5d5FvZPjA0omVf2R33GCsEAgBKCdV/ASB7bl9hy018djcAAKzQub5FX1/brAWzpikkuSa4GBga0drOfQokBGKTBUob5lwV9xy/Id3bXK+eTa2WvjeuWFpfo/tXLNSP/3aV7l+xUEvqa+xuUsZi7/IDAK/pXN+ijrYmLamvUUdbU9yNMsjeuUvjWjy3Wt/8i1u0eG61zl0at7tJnkBfCwAAAACAK5wQz4kkyXc9sFLrli/U4PBo0dvgVZE5iRfePK+H1twQ/Z73vDSohs3d2n5gQKYp/ejQcfW+ekYrLieV92xs1T3N9aoqD6ctVJX7spr72ro7PAeSWIBhwaxp2vnwKgs/IQAAzkReAABkL99xCDJHBXUAnmJ3BY5spVsqJPJZvv+7cNDu1VMX4n4fNKUnD5/QU0dP5nT3FsuUTM2NlcG5yw8AkK3eLe+L/nz3zfU2tsRb6GsBAAAAAHCFE6p7ujHm73SJcxKB86Na9uXd0TmJyIrBPzl8Iu7vQqbUsLlblWU+/fmtCzKubB/Zjw6/flZjMe97cSwY9zxWCAQAeB15AQCQO1bYKh7DNE2724ACamlpMfv6+uxuBlDSkgVdEwcLEckGC4GhEXXs/IN+fvRk3N/4DGluTZWefHBlVhfIbN4b7hPZX37x/EmNjIdUVe7TB5deoy13vdPSjtSePXu0evVqy14PAACvoK8FAADScUJyHgAAdmjvOqLHege0btl13MidIyf2IwJDI1rx1d0KJUk5iMRCtnQd0WMHBuQzFH1e7NzFP/z4qGpnVMUVn0qssB/57NfOmqYfHT6u+5rna8I0o3MhknRVhV9//+F36n/vO6azF8fjijK4DXMwSMWJ5wEA9ihWXgAAeNWGbX1TjkOQGcMwDpqmmXTj+YrdGAAoNcmWVMpmqZDIXVtjwZCMmMdNSWturMt6cJHLMiWBoRGt7dyngMMr0oO7/AAAsBtLwgEAgHRYehsAUGoa23epYXO3th8Irxa7/cCAGjZ3q7F9l91Ncx2n9CNi54zqaqrU1jw/7vd+Q3GxkFPDo7p/xULdufQaSeECTLFzF53rW9TR1qQl9TV66I4b9NbF8UnzUSu+ulu9r57RE4eOyzSlHx06rp8cPqGR8ZD8lyfP6mdN07oVC/WL/3C7q5PTgXScch4AYD/yAgAgP7HjkI62JpLTC6TM7gYAgFWKecd4Ju811ZJK2QwWHu8NB25jmaa0o3cg60ojuQxUYoMdVDZxvlPDo1q3fGHcXX4AShPVVIDiIygMAACSYeltAECp6tnYmrK6JzLjtH5E4pzRhbEJLaqrVn9gWD5DCpqKi4VEEj02bOvT/SvSz11EXvvRXS/q9bcu6fDrZzWWZKW6WMHL82f9gWE1bO6mfwVPctp5AIAzkBcAAHA6EtQBeEYxk6gTA2TJEv+mCrpmM1jY/4U1lgZwM31vgh3uFHtXX0dbk40tAWA3bjAC7EFQGAAAJCI5DwDgJMUsauCUG7ljP7NMuaqog1P6EenmjFY31mr59bPTxkLSzV0kvvYTzx6XJBmS7mmuj352KVyBPWRKH3vXfI2HTNu3C1AMTjkPAHAW8gIAAE5HgjoA1ytmEnWqANm7v7Jbf/zqXXHPnSroms1gweoAbqbvTbADANyJG4wAexEUBgAAiZySnAcAgFT8ogZOuJE79jNLclVRB7v7EZHk/q4H3qP/9ptXks4Zxbalo61JgaERre3cl/FNAJH5qJ8cPhH3uClFH4skpt/ZNE9vu6pCg+dHNKe6kv4VSoLd5wEAAAAgFySoA3C9YiZRpwqQBU0lXTbQyqCrHQFcgh0A4E7cYAQAAAA4jxOS8wAApc2uogZ23sid7DPH/uyWog529iMiyf07DgxkPGeU7U0QkfmoVHyG9LO/uy362SP70YZtffSvUDIYTwAAACCZYq6Sli3DNE2724ACamlpMfv6+uxuBlBwW7qOaEfvgCr8Po0FQ1q37LqCVb2IvJehcKUGSSmrRHjBhm19qp1RFRfsiA0mozTt2bNHq1evtrsZANIo5rURgPc4OZABoPRwTgIAALBGYGgkZVEDr/azEj+z3whX5Q6Z3p7bsUJicn9EYrJ47JxRqr/J5CaADdv6VF1Zpn1/PK0T564k3jbMnq4ffO7dJfUdMQcDAAAAIFPtXUf0WO+AbTkhhmEcNE0zaTKhr9iNAYBCiNwx3vXASq1bvlCDw6MFf687l14jKRyI83Jl8c71Lepoa9KS+hp1tDWRnA4ALlHMayMA70lc+hwA7MQ5CQAAwBqluGpq4mcOmuHkdK99/sDQiNZ27lMgh4rKqf62Z2Or7mmuV1X5lZSChtnTtf/v16ScM0r8m6pyn+5trlfPptYp29G5vkU/+/2bccnpknTs9EXd9ugzWX8uAAAytbd/UO/4Qrf2/tug3U0BACBjje271LC5W9sPDMg0w6uENWzuVmP7LrubFpV6nSwAcJHO9S1Fq6gWCbZt2Nan+1ewjFqpo5KfNdiOgPXsXDoZgHvZtdw7ACTDOQkAAMB6kaIGpTS3EfuZN2wLrzzdub7FU58/9qbObCvmJfvbSMy+79iZ6GrCUjhZfNmXd8swpAN/v2ZSPD+XmyBi5wd6Nrbqnm/t1clzV4ptzJtZpScfXJnVZwIAIBsPPPasgqb0wPZn9fsvftDu5gAAkJGeja0pV0lzCsM0zamfBddqaWkx+/r67G4GUBR2L1eB0lSq+53Vy0uW6nYEAMBpSnG591LCTYFwG85JAAAAyEUpjX0Sb+qMyOSmznR/+/FbF+ix3gHNq6lSRZlPb54b0ehESIakisuJ5/cvTx7P37CtT7UzquJugki3Om/s/MAPD76R9vOUyndr9RwMACC5hs3dKX937JG7itgSAABys6XriHb0DqjC79NYMGRL3pVhGAdN00w66PMlexAA3MQNy1XAe9jvrMF2BADAWUpxufdSElsVD3ADzkkAAADIReLYJzA0orWd+xTwSLX0WD0bW3VPc72qysPT/lXlPt3bXK+eTa05/a3PkEYnQtGY/YlzIzp2+mI0adyUoj+niud3rm9RR1uT5lRX6OU/ndeXUqzumGx+IPLafp8R/f+8mVXRz8O41h28fMwBbsQxmdr2v16maeX+uMemlfu1/TPLbGoRAADZiawY1vXASq1bvlCDw6NT/1ERkaAOwPUiATS/ceWxhtnTMwq+FYrbBnlua68T5BP0xRVsRwAAnMfpgQxkj5sC4WackwAAbkS8FbBHqrHPu7+627NJzfnc1Jnsb++7Zf6kmP28mVXyGclfw2coZTw/VTJ55BzZ9cB71DB7evTxyPzAR981XyHTVGWZTyHT1Job63Tbo88wrnURbiQoHfR53IFjMrVVi2pV7o+/yJX7Da26odamFgEAkJ3IDcJL6mvU0daUdvUqO5TZ3QAAyNdtX3tm0nJ/x05f1LIv7067hGEhlwGMHeQVe9mMXLitvU5AJT9rsB0BAHCe2MBFR4oqZ3CXno2t6tj5B/3i+ZMaGQ+pqtynDy69RlvueqfdTQOmxDkJAOBGxFsBeySOfSKCZvj/2w8MaPuBgbRzR24UuanzU8uu047eAQ1mkSia7G/nVFfGxezX3Finh9YsUsfOP6j7928qGDKjf/+hpddMiuc3tu+Km7eLbPcKv6GXv/xhbd3dr95Xz+jDW/fG/d3IeEg/e+6E3rdk7qQ2Ma51h1TfvdeOOVzhpD5PIef+3YpjMjMjEyHNnFam/+v2d+i//vqPujQemvqPAABARkhQB+B6PRtbdde/9Gjw/Fjc43cunat/SjN5XYgBs9sGeW5rr9PkE/TFFV7Yji+cOKdPdO7X9z+3QkvmzbS7OQAAAHG4KRAAAKA4iLcC9koc+4wFQ1r4tuk6OTTi6aTmfG7qTPa3G7b1TYrZR7ZtMGTKb1xJ+v/98XOTXjOSTN793Ino8yRpImSqYXN30nZUlvk0b+Y0NcyelvLzMK51Pm4kKB1O7PM4KVneKRLPx35Duvvmeo7JBC/H7LOfW32DjS0BAMB7SFAH4Hp1NVX6wJJr9NiBgbjH51RXJg1MFXLA7LbAi9va6zRU8rOGF7bjw987rPOjE3r48cP65edvL8p7UgkCAABkwws3BQIAADgd8dbSQFzO2RLHPnteCpDUnKVUMftTw6PyxSSnS9Lrb11Sw+buuDm2ZCsfS1JM4fU4FZdvJlh1w+y0SaWMa52PG+RLh5P6PE5MlneKxPNx0JSePHxCTx09WfLbBgAAFIfP7gYAgBVODY/q2qun6a6b5umum+bp2qunaXB4NOlzeza26p7melWVh0+BVeU+3dtcr55NrXm3w22BF7e1F3Cahs3datjcrf7AsCSpPzAcfazQYitBAAAATKVzfYs62pq0pL5GHW1NcQkHAAAAsAbx1tJAXM7ZEsc+S+trtG75QnU9sFLrli9MOXeUq8DQiNZ27lOgCMnSxXyvZDrXt2j/F9aknGOLtK/rgffompmV8hvxf29ImjczfD70Xf7dzKoy/TjD74ZxrTtEbiQo1DEHZ3BSn6eQc/9u17OxNXw+vnzS9fsMzZtZVdRtY/e1CwAA2IsK6gA8oXN9S8ZVS6YaMOdb/cRtFRzc1t5SREUe59r50Cp99rsHdfzspehjC2ZN07c/fWvB3pNKEAAAAAAAAM5FvNW7iMu5U6FX8Iy9YSFd9W83vFcmcxHp5tjau47od8fOaMeBAa25ca529A7IH1Nx3ZT05rnwOTFSTf3cyIQ+vLWH48hDvLBqLjLjlD6Pk5Llnaaupip6Pq68vFrFmhvrirptinmdBAAAzmOYZoq1tOAJLS0tZl9fn93NAIqiveuIHusd0Lpl1005uNmwrU+1M6riBsyRgEk2r5MMycSwWr77ZCHs2bNHq1evtrsZjvD+f/51tIK6JC2qq9YvP397wd4vMDSSctlEzjnOxvUBAAB4Hf0dAADgZcTlECvxhoWIQiRaW/le6frsmc5FJM6x7TjwWjThPJbPkEwznJiezr3N9RxHCZiDAbKTbu6/1Nm1bYp5nQQAAPYyDOOgaZpJOxgkqHscCeooBVYNbqx6HScmE8OdnDxwJzh6xbIvP61Z08v10B2LtPVX/Tp7cVy9W95X0Pfc0nVEO3oHVOEPVzvgfOMOXr8+kJAGAAC83t8BAAAgLoeIYt6wEHmvnx89Ga0QfGdTbu+VrM+e71xEum0hU1rbuU/HTl+c9Hc+I1xJ/f7lHEeJmIMB4Hbc2AcAQOlIl6BeVuzGAIDVeja2pg58FfF10i3v2bOxlaQ9ZM2qfRuFFZuMfvfN9UV5T6csm4jMlMryzyzTCABA6SqV/g4AAEApxeUoRhCWajvU1VRpRmVZNGF8dCKkGZVlBdlWse8lKaf3Stdn73rgPVr/nV4Nj45rdMLMei4itn0VfkMj4yGVGYZue/SZpInvEXc2zdPbrqrw9HEkcSwBKE3FvE4CAADn8tndAADIl1WDm3xfp2djq+5prldVefjUWlXu073N9erZ1BqXtAdkioE7Uulc36KOtiYtqa9RR1sTyxQ6XLrrg9UCQyNa27lPgSJO6jS271LD5m5tPzAg0wxPbjVs7lZj+66itQEAANirmP0dAAAAO5VSXI55jbB02yFyw0LXAyu1bvlCDQ6PFqQNje279NiBgbjHth8YyCr+lq7PvuPAgE5fGNPohJnzXERkW7xvyTWSpN5jZ6Lv6TPCz/EZ0oyqMt26cJbuX7FQwVDI88eRxLEEoHQV6zoJAACciwrqADzBqqol+bxOsmTinz13Qk8ePhF9DlXkkK1SqsgDeFUxbzaxo4o5qz0AAABurgUAAPAOVscJy2Q7xCZWd7Q15f2eqSptWxF/i/TZR8ZDMiSNjE+ew5LC1dn9hpF1EuGelwbjttfrb13Ssq/sls+QTEnG5f/fe3N9yay+yLEEoNRZfZ0EAADuQ4I6AE+wanCT6nUyXX4vMZn4jTMXVDO9gqQ95IyBO+ANhb7ZxM7JDhLSAACAxM21AAAAXkExgjA7tkOq4hNWxd9ODY/q7XOu0qunLujtc67SwrdN07HTF3Xs9EVJivuM2b52qu117tK4Trx1SS8HhrW4rrqkqudyLAEAAAAodSSoA0AGMq1ImyyZeEvXEVcl7WWajA8AyFyhbzaxe7KDhDQAAMDNtQBQeE6K2zmpLQCsRTGCsGJuh0yKT5waHtV9t8zXyyfPq/GamqwTvRPf49VTF/TqqQtxzxkZD+mnz53QNz55S9afIdUqw0HzynNeDgzr5cCwGtt3FbSohlOuURxLAAAAcDOn9Kvhbj67GwAATtbYvksNm7u1/cCATDMcFGzY3K3G9l0Zv0Ykaa/rgZVat3yh46tDxCbjA4AbBYZGtLZznwJpkqRfOHFON/3jz/XCm+eK2LLCsXuyo3N9izramrSkvkYdbU1xCWoAAAAAAGs4KW7npLYAsJ7b5jUKpVjboWdjq+5prldVeXjqvqrcp3ub69WzqTX6nM71LTIkHT0xJMnMOv5mmmba31eUGWqYPV3vXVwb93hsrHWquGvi9rpt0ZwpP1chOOkaxbEEAAAAt3JSv3oqmeSIwB7GVINRuFtLS4vZ19dndzMA1woMjaSsSOu1u8MSq2dExFboACL27Nmj1atX290MIKn2riN6rHdA65Zdl3LVi/f/86/VHxjWorpq/fLztxe5hYWxYVufamdUxVUxJ1EcAADYgcoqAGAtJ8XtnNQWAPCSLV1HtKN3QBV+n8aCobjYphXn3sDQiD7euU+vnb4Yfay60q8LY8Gk7xkRG2uVNGXcNZvPZTUvXaOYgwEAAIBd3NivziRHBIVjGMZB0zSTJqeUFbsxAOB0cRPpKSrSypTWdu7z1GR7z8bWlMn4AOAGmSyF27C5O+5v+gPD0ceOPXJX8RpbALHJ6B1tTTa2BAAAlLrYyioEgwEgf06K2zmpLQCswc2FzhCptB1bfCIiVcG5ZI+n+j7raqoUDIWfX+43NB40FQyZKd8zWaw19ufEuGsun8tqXKPcjXMRAACAM7ipX51Jjgjs5bO7AQDgNIlLlCRbfs9Ny5hkKlUyvhuDQCzdApSmTJbC3fnQKs2fNS3u7xbMmqadD68qalsBAAC8qLF9lxo2d2v7gQGZZjgY3LC5W43tu+xuGgC4mpPidk5qC+B0bolTe3G+w40617eoo61JS+pr1NHWFFeMYu+mO7Rw9vS45zfMnq69m++Y9Drpvs+l9TW6f8VCPfm3q3T/ioV67+LalO/Zs7FVC66+Ekf1GZLfiH//2LhrMoGhEb11cVwPrbkh6XtYjWuUu3EuAgAAcAY39aszyRGBvaigDgCXZXJX1Q/7Xvf0nVfFrGRRSFTrA0pTJgOlJfUzNb3CH/d30yr8WjJvZrGbCwAA4DluqqwCAG7jpLidk9oCOJnT49RUmnOP2OrnEcGQGRf3zOT7zHQFxsTXkqSEt9ex0xe17Mu70+4vdhwDXKPch3MRAACA87ilX+2mZPpSZaRaEgze0NLSYvb19dndDMBxki0TFxgaSTmRns1zYJ9kQVNJBLEKYM+ePVq9erXdzQAm2bCtT7UzquIGSolVeZZ9+WnNml6uh+5YpK2/6tfZi+Pq3fI+m1oMAADgLVu6jmhH74Aq/D6NBUNat+w6RyZkAfCeZPE+ALBDtnFqu85fzHe4R8Pm7pS/O/bIXZKs/T4Xb9mlseDkfVhSNOnDZ0gfubk+6eszV5O/UpqD4VwEAACAfGSSI4LCMgzjoGmaSTe6r9iNAQAnSLZMXCZ3VXHnlbOxdAuAdEvhRvRueZ9+8R9u19031+sX/+F2ktMBAAAsFKms0vXASq1bvlCDw6NFe+/A0IjWdu5TwKHVXAAUVrJ4HwDYIds4tV3nL+Y73GPnQ6s0f9a0uMcq/Ia2f2ZZ9N9Wfp97N7WqYfb0uMcaZk/XR981X2PB8OubUsrXZ64G2eBcBAAAgHxkkiMC+5TZ3QAAKKTEyiNTLROXyRIlblnGpBQRxAIAAAAAe8UGfzvamor63rHJXVRtB0rHVPE+ACi2TOPUTjh/Md/hDkvqZ2p6hT/usbGgqa6Dx7XqhtroY1Z9n3U1VZoIhVdhr/AbGguaCoZMXRidyOj1matBtjgXAQAAAN5kmKZpdxtQQC0tLWZfX5/dzQBs0951RI/1DkSXFGeZOO9j6ZbiKKXlJQEAQObsWpoeQGlLTO6KIDkVKA3E+wA4USZxas5fiDXVeHrZl59W4Hzy1YkK0e/Nd66FuZr8MAcDAAAAwC0MwzhommbSAR8V1AF4UrrKI39+6wKqNniYndX6AAAASh3ViwHYoWdja8rkLgDeR5VWAE6USZya81d2vH5D9FTj6d4t79PiLbs0Fpx8Y2Y+5ehSbdd851qYq0E6Xj+eAQAAAIT57G4AABRCz8ZW3dNcr6ry8Gmuqtyne5vr1bOpNbpMXNcDK7Vu+UINDievOAEAAAAgM43tu9SwuVvbDwzINMM3iDZs7lZj+y67mwagBJDcBYB4HwC34vyVudgEbi/JZjy9d1OrGmZPj3usYfZ07d3UmvP7R7br3Vv3KnB+JOfXAbLh1eMZAAAAQDzDNPO5pxpO19LSYvb19dndDMAWW7qOaEfvgCr8Po0FQ1q37DqqOAIWYXlJAAAQi6XpAdhtw7Y+1c6o0qeWXacdvQMaPD8SV7WxWKgECAAAnMQLfZPEFXMjKst8eqnjQza0yFqJ4+nKMkPVleXa9pllWjJv5qTnr3r0V3rjrUuq8BsaC5q69upp6tl0R9bv6/Xt6nZenYNhvwMAAAC8xzCMg6ZpJp2QoYI6AM+i8ggAwEqBoRGt7dxHJSEASILqxQDs1rm+RR1tTVpSX6OOtiZbktMlKgECAABn8ULfJN2KuV4weTxt6vSFMe3YP5A0Hrm0vkb3r1ioH//tKt2/YqGW1Nfk9L49G1vlMyY/PjoRYjU0FIzXj2cAAAAA8crsbgAAFErsZHRHW5ONLfE+L1RhAYCpxE7osSIHAEwWuUE0tnoxAJSKxEqA2w8MaPuBASoBAgCASYoRT/dS36QUbog+NTwqQ0r6nUnSo7te1NfXNkuybu6rrqZKbc3z9aNDx6OP+Q3p7pvrteWud+b8ukA6pXA8AwAAALiCCuoAgLx5oQoLAKTS2L5LDZu7tf3AgEwzPDnUsLmbSkIoKCr2w42cUr0YAOxAJUAAAJApK+PpqeIHXuubeGXF3FTfV+f6FrU1z5ck+ZOUNX/i2eMFiUdeGJvQorpqSZLPkIKmSBZGwXnleAYAAAAwNSqoAwBy5qUqLACQSs/GVnXs/IN+8fxJjYyHVFXu0weXXkMlIRQUFfsBAHAXKgE6Gyu/AQCcoBDx9FTxA6/1TbyyYm6y7ytxvwiGzJR/b5qpf5eLzvUt2rCtT8uvn53Vamj0rZAPrxzPAAAAAKZGgjoAIGckbcIOBL9RbF6b0IOzcfMXAADuFakEmE1yD4qDm/8AAE5gZTw9k/gBfRPnSPd9Je4XfkNadv3b9PvXz+nCWDD6Nw2zp+sHn3t31u+dLJ4e+1guycL0rQAAAAAAmfDZ3QAAcINUyy6WOqckbfL9lBYrl8AFMsWyoygWry3BDZQC+qIAIjrXt6ijrUlL6mvU0dYUl+wDezS271LD5m5tPzAg0wwngzVs7lZj+y67mwYAKEFWxtMziR/QN3GOqb6vfX88Fd0vQpLeMadaV19VIUkq9xuSwpXVc9lXIvH0u7fujY5bc42x07cCAAAAAGSDCuoAkAGqQaTmhCosfD+lgarCsJPdy46yckDpcMrNXwAyR18UAJyLld8AAE5jVTyd+IG7xH5fFWU+jYyHVOYzVDejSu1dRzR4fkyL66r1nz95S3S/WFpfo9WNdTnvK4nx9MD5US378u6452QbY6dvBQAAAADIBgnqAJAGCbFTszNpk++ntBD8Rikj+bG0OOHmLwBToy8KAM5H8h4AwGmsjKefGh7VR2+Zr5dOnlfjvBms+OdwkXjPW8Oj6j56Uk88e1xPPHs8+vuXA8P68NaepGPKXPaVrgfeow9v3Zv2OdnG2OlbAQAAAACy4bO7AQDgZJkskwnrBYZGtLZzX3S5yVT4fkoLwW+UIpbNLU0swQ24A31RwJkyHU+idESSwboeWKl1yxeSvAcA8IzO9S2aVu7X828OaVqZn/iBw+15aVDb97+m7qMnk/4+lzFlur7vjgMDkx7zG1LD7OkyDOUcY6dv5UyMgwAAAAA4ERXUASANEmLtkWmlYL6f0kNVYZSano2tWtu5T8dOX5SUfVUjAEDh0BcFnImVZ5DoS/c26cHHD2nOjIqir/wGAEChsKKT+yRbIfSamiq9duaiKvy5jSmT9X0T941YQVMKhsy8Yux2rqqL1BgHAQAAAHAiEtQBYAokxBZPLkF1r38/gaERPfj4IX3zU7eQ7CSC3ygtySaTRsZD+tlzJ/SNT95iU6sAALG83hcF3IQkLaRCsg5QuoirwUpO25+SJTtT1MBZEveZZDc555osnq7vm7hv+AzpurdNV8d9TXrq6J80eH4kGlsnxu5+ThkHOe0cCQAAAMAZfHY3AACcJnEZvM71Lepoa9KS+hp1tDVltEym15fSK9Tn69nYqnua61VVHr48ZbKkZS7fj5vETqQDKC2Rc6LPCP+7ssynhtlX6bZFc+xtGAAgyut9UcBNchlPwtsa23epYXO3th8YkGmGk3UaNnersX2X3U0DUCTE1WCl2P3JCfF/VnRypsi+8cKJc7r7X/aq99Ur56DA0Ih2HnlTH71lgboeWKl1yxdGx5LZjinT9X0T9w1T0qob5mjVDbW2jVudcMx4lVPGQVxzAQAAACRDBXUASGBFZS2vV+cq1OcjqH6FU6peALBP5JxoKpycPhYMadUNsz15XQEAAMgX40kkorIsULqIq8FKqfYnSSnj48WqJMyKTlMrdlXnrbv71fvqGX14697oY5F9xmdIpqRp5b5oQnouIp9pzlUVGhkPqSJJ39dp+4bX58zsZPc4iGsuAAAAgHQM0zTtbgMKqKWlxezr67O7GYDjJAtKJgZRIrIJouTzGm5Y/s6KbTSVDdv6VDujKi5wWoqVKANDIykn0p2wf+zZs0erV6+2uxmA53FOBAAAyBx9JyTa0nVEO3oHVOEP3/C5btl1JEUBJcDpcTW4S+L+lExifLy964ge6x3guuMAxfouUs2dpJPLvEpgaER3/8teBc6P6qoKvy6MBXVX0zW6urrSkX3fYswpeVU2czB2joO45gIAAAAwDOOgaZpJByFUUAdQkpJVa7CislY+r/HoUy+q99UzenTXi/r62ubo405KXC9G9bHYoFmuFUS8wO6qF4DbOOlcaSXOiQAAAJmj74RETqseCqA4iKvBSrH7U4Xf0FjQlN9nKBgyJ8XHqSTsHMX+Lno2tmrFV3crlKIu3FUVfgVNM695lcTPdGEsKEnqPnpSUjjp22lY0aY47BwHcc0FAAAAkA4J6gBKylRByVRBlEwTH3MJxCS26Ylnj+uJZ49H2+SkpQ8JNBUXE+lA5px0rgQAAADgDNy0AJQu4mqwUuz+9PD3Dqk/MJw0Pk4yrnMU+7uoq6lSW/N8/ejQ8aS/jySTS8ppXiVdhfbKMkN3Ns1z5H7GnFJp4JoLAAAAIBUS1AGUlKmCkqmCKNkkPmYbiDHN5CU1RidCatjcHf23U6qtEGgqHibSgalRmQoAANjJq6u4AADgdsTVUvN6/6UQny92f7q+9iotv3520vg4ybjOYcd3cWFsQm+ffZVePX0h+pghyYz5/5rGWs27enrG8yqR/bnrgffov/3mFXX//k0FY8q0G5LGgqaj9zPmlLyPay4AAACAVEhQB1BSpgpKJgZRGtt3ZZ0knm0gZu+mO/Txzn167fTF6GMNs6frv6x7l/7bb15xXLUVAk0AnITKVAAAwE6s4gIAgDt5PUk7Ha/3Xwr9+aaKj1uVjFvK+6hVrEyMnur7CAyN6BfP/0mJ5YjMhP/vfmlQklRZ5svovSL7844DA5pRWaZgyJTfkIKmNHNamZbWz9T1tdWOTvpmTgkAAAAAShcJ6gBKTjZByWIkPtbVVEUrXpT7DY0HTQVDppbUz0yaTC9TWtu5T1/8yBJ98acvEKAG4DjFnECjMhUAALADq7gAAOBuXk/STsbr/RenfD6rknFLcR+1mpWJ0cm+j0gM9IsfWaIPb92b8m/f/Y7Z6n3ltIKmMppj2rq7X72vntGyL++OPrb9wIAkyWdIP/2726JzW7GfEQAAAAAApyFBHUDJySYoWazEx6X1NVrdWDcpaT5ZMn0kEPrw9w7r3waHCVADcJxiT6CxTCwAACg2VnEBUAhUywUKzylJzHbwev/FK5+vlPdRJ0r3fXz81gXqffVM2uT0j71rvqrK/dr/yukp55gS3ytRZZlPXX/7Hi2ZV0MlcgAAAACAK5CgDgBTKEbiY7Kk+cDQiN66OK4vtTWpbkaVftj3elxwsj8wLMk9AWomWQHvs2sCjWViAQBAsbGKC4BCKMVqucSLUGxeSWLOhdf7L175fKW8jzpR4vdhGJIhaXQiFK1qnsriumoNj05oeHQiozmmxPdKNDoR0oe/sdfxc0EAAAAAAET47G4AANgpMDSitZ37FEiTdN65vkUdbU1aUh+uSlGsJRNjJyWlcHDynuZ6VZYZcc+rLPPp3uZ69WxqLUq7cpX4eQB4T+Q8VVUe7mJWlbvj/AR4WSZ9HQBAbiI3M3c9sFLrli/U4PCo3U0C4FKN7bvUsLlb2w8MyDTDN/s2bO5WY/suu5tWcMSLUGxeSWLOldf7L174fKW+jzpN7PfhMyTTlBa+bXrSuZqINTfW6f4VC/X22qvUub4l4zmmyHuNjIeU/JXDRidCJdFHAIqF+CkAAABQOFRQB1DSnFiZKl0F4j+/dYHGgqZ8hhQyJb8hjQWdHaB2ypKkVOQCCo8JNMB5nNjXAYqBvh+KgVVcAFilFKvlOiVehNJUjBUzncrr/RevfL5S3ked6PHe8A1k5uV/v3r6ol49fVGSonM1kYTyG+qqVeY3ct7/Tg2PalFdtf4tMKyaqjINjUzE/d5vSHffXO/pPgJQbMRPAQAAgMIhQR1ASXLyJFi6Scl/+PFRrVu+UK8MDuvU8KhmV1foHbUzHB2gdsokKwEmoDiYQAOcwcl9HaAY6PsBANykFG/2dUq8CKXJK0nMpaBUbzwt9X3Uad/7/i+sUcfOP+gnh09EH5s3s0rvuWG23jw7MmmuJtdVeBNjOYnJ6ZIUNOX5PgJQLMRPAQAAgMIjQR1ASXLyJFi6SclcA5t2snuSlQAT3M5pEzJTKfUJNMApnNzXAQqJvh8AwK1K7WZfu+NFANyBG09Lk9O+92Vf2T3psTfPjeiJg8d17JG7LHufVLGc3716RifOjejDN83T266qcGwfwW1xbID4KQAAAFB4JKgDKElOnwTz2qSknZ+HABPczmkTMgDcwel9HaBQ6PsBANyqFG/2LXa8iMQ5wD248bQ0OfV73/nQKn30v/4fjYxfaVtVuU//49MtWtu5z7LrSmwsp6LMp5HxkJ6Mqdq+88ibkqTKMl/e71UIxLHhNsRP3YN+PAAAgHuRoA6gZCWbBIsd4MqUbYNdr01K2vl5CDDBrZw6IQPAPbx2wxuQCfp+AAC4R7HjRSTOAbkrdmIYN56WJid977H7/JL6mbr26unqDwxHf3/t1dP11JGTll9XIrGct4ZH1X30pKaV+2RKtm+PdIhjw82In7oD/XgAAAD3IkEdQMlKNgnW3nUkOsCVxGDXIwgwwY2cNCEDWIVKJ8XltRvegEzR9wMAALFInEOpKcTYu9iJYU688ZSYRuEl+979hqEHdxR/u8fu8w+tWaRjpy7o+jlX6fPvX6y/e/yQ+gPD0YR1K68re14ajLtmXYqp2u6E4yCZbOPYHEtwEuKnzpHs3EA/HgAAwP2cuQYYABRZY/suNWzu1vYDAzLNKwPcyM8Nm7vV2L4r6d8Ghka0tnOfAiS+OFbn+hZ1tDVpSX2NOtqa4gJOgFM5cSIOyFfs5B4AFAp9PwAAEKtnY6vuaa5XVXl4OqSq3Kd7m+vVs6nV5pYBhWHl2DtZ3DxdrNxKkRtPux5YqXXLF2pweLTg75kOMY3iSPzef3fsjGXbPZO5nGT7/LKv7NZ4yNR73jFbd99crwN/vyar60o2c0iJ1yyfITXMnq7tn1nmiOMgmWzj2BxLAJJJdm6gHw8AAOB+VFAHAE2u8OA3JFNSyNSU1R6srB5D5QgAsagAC6+g0gkAAAAAu3ADOEpFIcbedq7w55SqtsQ0iivyvRdiu2cyl5O4z8eKbcOf37ogp4TsqeaQEq9ZY8GQVt0wR6tuqNWqG2pz+tzFkEkcm2MJQDJTnRvoxwMAALgbCeoAoOQTVZKiP5f5Ji8jaVeAFEDpcMpEHJAvOye0AQAAAIAbwFEKshl7Z1ooxY4bPJxWxIWYhj2s3O6p5nIMQzrw92vi9rPYfb7Cb2gsaMrvMxQMmXFt+IcfHy1YQrYbr1mZxLE5lgAkM9W5wY3nRAAAAFxBgjoAXBY7wN2wrU9SOKi2o3dAv34poDfOXopLHC9GgJTKEQAAL6BiIQAAAAA7cQM4SkE2Y+9sCqUUOzHMaUVciGnYw8rtnmwu55qaKh07fTHpfha7zz/8vUPqDwxPakMhE7K/dG+THnz8kObMqPDUNYtjCUAyU50b6McDAAC4GwnqAHBZ7AC3Z9Mdkoq3rBiVIwAAXkelEwAAAAAACmuqsXcuhVKKlRjm5CIuxDTsYdV2j01+lKSR8ZCOnb4oKfl+FrvPX197lZZfPzurNgSGRrRh20GZkupnVmlkPKSKLOaQnHaThpU4lgrnhRPn9InO/fr+51ZoybyZdjcHyArnBgAAAO8yTNO0uw0ooJaWFrOvr8/uZgCuFRgaSZk4XjejShu29al2RlXcgDk2eJmNLV1HtKN3QBV+n8aCIa1bdp3ngo/wjj179mj16tV2NwMO5LRlmAEAAAAAABA2VbybtiEdN8f9InM5dy6dqy/86Ihef+uSJKmyzFB1Zbm2fWaZZUm97V1HtP3AgCTpqgq/LowFdVfTNbq6ujLtHFLiTRoRTrhJA8WX7RzM+//51+oPDGtRXbV++fnbC9cwAAAAAEhgGMZB0zSTDnapoA4AaRRzWTHuDgfgBV6u8FNsbp70AwAAAAAAzjNVvJu22cvpsSA3xP1SbcPYuZyqcr8kyW9IoxOmRifGtGP/QNafKfG9kiWYXxgLSpK6j56UFE42T4WVdpGLhs3dcf/uDwxHHzv2yF12NAkAAAAAokhQB4ApFCtxvFhLpQJAITh5GWa3csOkHwCgtDg9YQYAAABTc3KhFCe3rRicGgtyU9wv3TZM/BzBmEXGc/lMie/Vs7FV//DkUT39wp/iXlsKV2q/s2le2mRzbtJALnY+tEqf/e5BHT97KfrYglnT9O1P32pjqwAAAAAgzDBNc+pnwbVaWlrMvr4+u5sBQCRzwFuyXV7SKTgOC4dlmK3Dcr7W4rgHAOu0dx3RY70DWrfsOkclzAAAAABu5vRYkNPjfoGhES3/ym4lm/GO3YaJn0OSDEmmlNVnSvd9/fmtC/TYgYG4x31G+D0yGUdt2Nan2hlVcTdpxBY3QunIZg7m/f/8a/UHhqP/XlRXrV9+/vYCtQwAAAAA4hmGcdA0zaSD19TriAEALBVbTQOAPTgOC4cKP9bp2diqe5rrVVUe7qpXlft0b3O9eja12twyd+K4B4D8NbbvUsPmbm0/MCDTDFcXbNjcrcb2XXY3DQAAAHA9p8eCnB7327q7XzKkhtnTJ23D73y6RTf948/1wpvnVFdTpZ89dyKanC4pmtQ+Mp75Z0r8vgxD+uDSuep64D3aeeRN1c+s1F03zdPcmkpVV/q14vrZWrd8oQaHR6d87c71Lepoa9KS+hp1tDWRnI6MnLs0rsVzq/XNv7hFi+dW69ylcbubBAAAAACSpDK7GwAAXuem5S+TofIsvMDtx6FblPoyzFZx+qSfW3DcA4B1eja2pqyYCADwNuJCAKzC+SQ1N8SCnBj3S4z9HDt9Mfrz6ERIZT5Dn/lun0bGQ3r48cP65edv13sX1erY6Qs6ce6SxibC6emrG2s1u7oiowRyKf778hlSyJReGbygHQcGdPbSuO66iRWnUFy9W94X/fnum+ttbAkAAAAAxCNBHQAKzO3JHLGVZwmqwq3cfhy6RWxFn462Jhtb4n5OnPRzG457ALCOGxJmAACFQVwIgFU4n6Tn9FiQE+N+ibEfQ+GK6Gsaa7X7pUE98ezx6HP7A8Nq2NwtSVq3PLyNK8t8GguGtGDWtIz2ycDQiP5m20EZhvTc62dlmlcqsPcHhtUfGJZEkQQAAAAAACJIUAeAAnNrMgeVZ+Elbj0OUbqcOOnnNhz3QLwXTpzTJzr36/ufW6El82ba3Ry4kNMTZgAA1iIuBMAq2ZxPSrnKOrGg7EViPyPj4f0rkiy++6XBlH+z8+FV+sbT/TmNbbbu7tfh189Kkj56y3xNmGY0Od5vhN8/ZIoiCQAAAAAAXOazuwEA4AaBoRGt7dynQI5JGJFkjq4HVmrd8oUZLxVpp56NrbqnuV5V5eFLRVW5T/c216tnU6vNLXOvfPcj5MeNxyGA/HDcA1c8/L3DOj86oYcfP2x3U+BSnetb1NHWpCX1Nepoa4pLoAEAeE8kLuT3GZIkv88gLgQgJ1PFmWNjprFV1oFMnBoe1fVzrop7zGdI82dNm/Tct8+5Skvmzcx6bNPYvksNm7u1/cBA9LEfHTqunxw+oZHxcGGEoBlOTqdIAgAAAAAAV5CgDgAZyDcwXoxkjmyTn6d6PpVnrccEi71IqgJKD8c9IDVs7lbD5u7oUuORZc0jS5uXGm4YBAA4mZOuU7d97Rn95PAJBUPherTBkKknD5/QbY8+Y3PLgMJy0nHoFVPFmbfu7lfvq2e07Mu7tf3AgEwzXGW9YXO3Gtt32dx6FEOux11j+y79/Pk/6ZVTF+IeD5nS8bOX4h6bWVWmC6MTObWvZ2OrPrB0ri7fsyVJ8htS3YxKfezW+ep6YKWuvXqarr16GkUSAETRpwAAAABIUAeAtGIrYzg9MJ5t8nMmz6fyrDXctB85HQE9AACys/OhVZMqxy2YNU07H15lU4vsxQ2DQHL0swFncNJ1qmdjq66ZWSX/5WQ8vyHNm1lFBXV4npOOQy9JFmdOVpU6gtU8S0uux13PxlZ9cOlcGUb84z4jXMn8Y+9aoJ0P3ab7VyzUinfMVu+W9+XUvrqaKtVWV+ryPVuSpKApfWDJXH39481aUl+jnk13qGfTHRRJABBFnwIAAACQDNM0p34WXKulpcXs6+uzuxmAawWGRtSx8w/6xfMnNTIeUlW5Tx9ceo223PVOx1QSb2zfpdGJ0KTHK8t86tnYqgcfP6RvfuqWaHvTPf+ljg8VvL2lyA37Ubb27Nmj1atXF/1927uO6LHeAa1bdp067rup6O8PAIAbvf+ffx2toC5Ji+qq9cvP325ji4qPPjCQHv1swF5OvU5t6TqiHb0DqvD7NBYMcY6Apzn1OMxHYGhkUmzYSe+VGDP1G+Gk34oyn8Y555QEK467VKuD+Qzpla/elVf7Ym3Y1qe9/ad0YSyo666eJlPSkvoaEtFRMHbNwSC5bK5zXuxTAAAKr5jjNwCwmmEYB03TTDpApoI6AKQx1fKjqRSz+lzPxlbd01yvqvLwKT22ukyyu/PTPR+Fket+hCuoQg8AQO7OXRrX4rnV+uZf3KLFc6t17tK43U0qOvrAQFjiWJV+NuAMTr1OsbIeSolTj8N8FLNyay7vlRgzDZrS4rpq/ZhzTkE5aeWcfI67SD82mYbZ0/XexbWWtbOxfZd+/vyfdGEsKEkaeOuSXn/rkva8NGjZewBwtmyuc17sUwAACo+VNwB4VZndDQAAp4tMxn1q2XXa0TugwQwCt7Gdx0JXeUmW/PzT507oycMnos/ZfmBA2w8MRO/OJ1m6+HLZj3BFz8bWlFXoAQBAerHLmN99c72NLbEPNwwCYYljVfrZgDM49ToVWxW2o63JxpYAhefU4zAXiZVbE2PDTnqvZDHTJfU1nHMKqJhzF1PJp0DQknk1qq2p1G9eHtTI+JV90DCkVTfMsfSz0WcGSlcu1zkv9SkAAIVXzPEbANiBBPUYhmG8S9JySf9O0k2SaiXNUXg7vSXpBUm/lPSvpmmetPi9yyX9paRPSloi6W2SBiUdkrRd0g9M0zStfE8AmclmMs6uzmNiIP+NMxdVM708ZcDUbcnSL5w4p0907tf3P7dCS+bNtLs5OWFSNz8E9AAAQL6s7gOz5CbcJN1Y9c9vXUA/G3AAt8VqAC/yynE4VTJtYj82n35tvom7xEyLx6mJL5ked7H76dbd/Tr8xlklmzU1TWlH78CkBPVs9/O45xObBkpWrtc5r/QpAACFF7nW/PzoyWh/884mboYE4B0kqMfbKWluit9dc/m/OyRtMQzj/zZN89tWvKlhGA2SfiTploRfzb/8392SPmMYxsdN0zxrxXsCKAy7KmkkC+Rv6TqSMmD6pXub9ODjhzRnRoWlgf9CJek8/L3DOj86oYcfP6xffv52y14X9sp2fyGgBwBXkBgLZM/q5BcnVR4EppJurPoPPz5KPxtwAJI0AfsV6jgs9vhtqmTaxH5sPv3aUkvcdfNY3KlVwDM97rbu7lfvq2e07Mu7Uz7HZ0gfubk+6WfKdj9PfD6xaaA05Xqdo28PAMhU7LVGkufHVABKDwnqk52StF/S85LelHRSkl/SDZLaFE4ir5bUaRjGhGma/zOfNzMMY5akXZJuvPzQHyT9T0lvXH7Pv5F0raT3SfqRYRgfME1zIp/3BJC9TAPPTgrIpwuYFiqZxurXbdjcHffv/sBw9LFjj9yV9+vDXo8+9aJ6Xz2jR3e9qK+vbZ7y+QT0AOCKR3ZdPofufFFf/0Sz3c0BSopTKw8C6aQbq9LPBgCgsOy4sTFZbDhVPzbx39n2a3OpgO3WZAs336TqpLmLbCTut7Gqyn26pqZKx05fVGWZT2PByZ8p3fitZ2PrpH0yk/EefWbn88L5Bs7BDSrpcbwBQH6S9Xe3HxjQDw++wXwDAE8wzGTrn5UowzCWSnrBTLNRDMP4gqSvXP7nWUnXmKY5msd7/n8l/fvL/3xK0n2maY7E/P5tkp7WlerqD5qm+a1MX7+lpcXs6+vLtXkALmvvOqLHege0btl1UwaeN2zrU+2MqrhAReyEv51SBXPzTaYp1Ou+cOKcPvvdgzp+9lL0sQWzpunbn75VS+bNzPl1kb89e/Zo9erVSX83VTCqUPsLAJQCzqGA/QJDIykrDzIRBydz8lgVAAAvSjV+MwzpwN+vKXrfMbEfW1lmaE51lU4Nj2p0ovD92mxi7E7jlbG42/qDgaERbdh2ULU1lfrNy4MaGQ/Jb0hBU6oo82k8GNKCWdN0e2Ndys+Ubvy29en+Sfsk4z1vcPP5JiLdHAzgJF443gDATvQ/AXiBYRgHTdNMGmCggnoM0zSfz+A5XzUM45OS/kzSLEkrJf0ql/czDKNO0gOX/3lB0qdjk9Mvv98ZwzD+H5J+L8mQ9A+GYfw30zSDubwngOzkUh3RydXnMl3GM9u73Qu1POiS+pmaXuGPe2xahZ/kdIebqpJQqvvAuGkOAKaW6lTJGRQoHrdWHgScPFYFACtQvRFOkyxmGqn2bEcF7mT92NMXRgver/XCCkSFin8Xm9v6g1t39+vwG2d1Q2113H66uK5a//mTt0QT0iOfJfEzRa4LC66eFvf3P33uhJ48fCL6vMR9kvGee3nhfAO4BccbAFiD+QYAXuezuwEu9ULMz9fk8Tptkiou//y4aZqBZE8yTfOoriTBz5V0ex7vCSALPRtb9YGlc2UY4X9Xlft0b3O9eja12tuwHGXauY1NMLbydXNx7tK4Fs+t1jf/4hYtnlutc5fG835NFEZj+y41bO7W9gMDMs1wMKphc7ca23fFPW/vpju0cPb0uMcaZk/X3s13FLO5AOBKeze1qiHZOdSlfRPArSLLO3c9sFLrli/U4HDOC6sBAACLZBvPAgotNmYqSSPjIR07fVFS6rhZocX2YxfVVWtkPKRFddUF7df2bGzVPc31qioPT0m6Mcaeb/w7MDSitZ37FDg/MvWTS0zitgkMjejtX+iOizP3B4ZlmlLINHX/ioV6e+1VWlJfo462prQV4CPXhd+9ekbrli/Udz7dordNr9BVlWX64NK5KfdJxnvu5YXzDeAWHG8AYB36nwC8jArquXlHzM8n83idD8T8/NQUz31K0prLP9+pHKu2A8hOXU2VXh28INOUfIY8cbdipHMbu+RlRD53u6d73Xz0bnlf9Oe7b6635DVRGJlWEqqrqVIwFK71W+43NB40FQyZrj6uAKBY6mqqNHH5HFrhNzTGORSwhdsqDwIA4GVUb4STRWKmdy6dq/YfH9XAmYsKmbKtAnfn+hY1tu/S9v2vRR/rDwzrw1t7CnbMeKUiYD7x76lWnCxlidtm6+5+mWb4ZvyTQyMaGQ/JZ0gfWDJX/9TWlNF+k3hdeP2tS9q+/zXtOPCaLodU9MrghZT7JOM99/LK+QZwA443AEgvm1Xe6H8C8DIS1LNkGMbnJP27y//8k6Tf5vFysVeVg1M8ty/F3wEokMQgZiRwuaN3wNVB5HSd28QEYykcCP7B596d1+uiNGQTjFpaX6PVjXWW39AAAKWAcygAAABwRaY3zAN2iI2Zrrxhjl7rHbA9icuOY6ZQxU2KKZf4NzfQpJZq20REVhuQwnMzfxy8kPHxkmyeI/I6Ef2B4cuPmeEqlS7cJ5GcF843gFucGh7VfbfM18snz6vxmhoq/gJADG5SBYAwEtRTMAzjvZLedvmflZIaJN0tadXlxy5J+n+applTL9swDJ+uVGIPSnpjij95Lebnxbm8J4DsJAYxK8t8qq4s07bPLEv7d9ncCek0dTVV+tlzJ+ICtcdOX9SyL+8maI6MZBr85YYGAMgd51AAAOB1bo6toPio3gi3cErSpB3HTKmOYzO9GaCUrnsvnDinT3Tu13c+3aIfHHwjZv7F0JzqKp0aHo1LXI/oDwyrYXN3RvMUyfbxBVdP04mzl6JzHz5Dev+SufpShlXZ4R6ler4B7NC5vkXtXUf0/JtDar52lr6+tmXqPwIAj+MmVQCIR4J6al+TtDzJ40FJT0v6gmmah/J4/Wpd2f5nTdOcmOL5p2N+npXH+wLIULIg5ujEmL7T86pef+tSymCx2++EfO+iWh07fUEnzl3S2IQpnyF95OZ6qk4hIwR/AQAAAAD5cntsBcXnlMRfIB0nxc04Zooj05sB7LzuFTs5/uHvHdb50Qn9p5++oGVvf1t024wFQ5pe4ddY8Mq2apg9XSeHRnKq9J+4j+95KRBXmCdkSrXVlSSnA0COSMAEgORY5Q0A4hmmaU79rBJkGMZ+JU9Qf0XStyT9b9M0Tyf5faavXy/p+OV/HjdNc8EUzy+XNHb5n2OmaVamee7fSPobSZo7d+6t3/ve93JtJlDytj47okOBoJKdKX2S/uedV0X//dlfXND45MIeKvdJ//0DV03+hYP97+dHtef1CZX5pImQtPraMn16acrTDkrQ8PCwqqur7W4GAAAAAMBDvBRbQfGdHQnpvzw3qgeaKzWr0md3c+Bh7GvIxtZnRzSr0tDqa8u05/UJnR019dC7wknRTrjuReYCCj0H8JdPXUj5u396T5X2vD6hg3+a0K1zy6Lb6veDEzo9oozmKdIdl6m2syHpf91J/wLOxBwMnO7sSEjfe2lMz/4pqLGQVOGT3jXXr0/eWEH/CEDJI98GQKlpbW09aJpm0uV0XJWgbhjGZySlTeTOlGmaX8zifa+S1Cjp45L+vaQqSW9IajNN82Au75+QoP6GaZrXTvH8Mknjl/+ZNkE9VktLi9nX15dLEwFcFhgaUcfOP+gnh08k/X3kTvDI85LdCem2KhwbtvWpdkZVXAWd2Ao/wJ49e7R69Wq7mwEAAAAA8BAvxVZQfO1dR/RY74DWLbuOyvsoKPY1WMXO615i5duIQlW+feHEOX32uwd1/Oyl6GMLZk3Ttz99q5bMm5n0b7KZp0h3XKbazhvee72++NMXilY9HsgGczBwgy1dR7Sjd0AV/vBKGPSNACCMfBsApcYwjJQJ6mXFbkyePqPkVc1z8cVMn2ia5gVJz0p61jCMH0j6tcKJ8k8bhrHUNM3kWavpDcf8PC2D50+P+fl8Du8HIEeRZTgNI1xRI7IMZOJSPJku11kIVi/DWezlZou9jCgAAKWI6y0AAHA6O2MrcK/EJMvtBwa0/cBAwZIsUbrY10pbIcbUdl73eja2pkyOt1pgaERf/OkLqigz4h6fVuGPS05P3MaZzFNkclym2s47Dgzod8fOaOvT/SRUAkAOTg2Pat3yhXEJmACA4ufbAICTsbZOlkzTPCTpa5f/OUvSwzm+1LCkicjrGIbhn+L5s2N+PpvjewLIUWSAfefSayRJPkNJg8WR53U9sFLrli/U4PBoUdq3dXd/NJAaERga0drOfQq4IBiQrP0AAMBaXG8BAIAb2BVbgXv1bGzVPc31qioPT3dUlft0b3O9eja12twyeA37Wmkr1JjaruteXU2VygxDI+MhVfiNgibHR7bdyXMjWjy3Wt/8i1u0eG61zl0aT/q8bLZxz8ZWNcy+UuMr1XEZu519MqKJ7KYZTmpv2NytxvZd+X1QAI7ipnlSt+pc36KOtiYtqa9RR1sT1YEBAAAwiWGapt1tcB3DMFok/e7yP3tN08ypqrthGC9Karz8zwbTNF9L89zVkp65/M9dpml+OJP3aGlpMfv6+nJpHoAknLYUT7plOD9+6wLHLzVb7GVEYR2WlwSKi8rXyAfXWwBAsdF3AVBsW7qOaEfvgCr8Po0FQ46Oh8HdptrXsr0Gcs10Pi+PqW979Fd6/a1L+vBN8/S2qyosn+/IdNvluo1T/Z3PkF756l0p/y4wNJKyejzHIZyCOZj8tXcdcfw8KQAAAOAFhmEcNE0zaUCBCuq5OR/z86w8XudozM9TRXxif3805bMAFFS6O8HtuBM/WdWeSHV3N1T/oOoQkJsXTpzTTf/4c73w5jm7m4IiofI18sH1FgBQbPRdABQblfdRLKn2tUhs+NGnXszqGsg10/m8OKZubN+lhs3dev2tS5KknUfe1Pb9r2nPS4OWvk+m2y6XbRwYGtGSeTX6wNK58hnhxyrKDDXMnq73Lq5N2666mirNqCzT6ERIlWW+glaPB1B8kXOcG+ZJAQAAAK8rs7sBLnVDzM+n8nidn0v62OWfPyjpiTTPvTPm56fyeE8ABRI7mVCsO/GTBVI/est8jYfMpNU/nCBSFeiLH1miL/70BS24ehqBYCBLD3/vsM6PTujhxw/rl5+/3e7moIASK0FFlh/2QpUuFA8TrwCAYqHvAsAusUUkOtqabGwJvC7Vvvbur+5W0JR6Xw3/e6prINdM9/DimLpnY2vKCuJTmarqf9zvM9x2uWzjR596UYdeP6u3z7lKpqQKv6GxCVO3Xne1vv6J5ik/R+Rmk9jVcgF4Qz7nOABwGlZcAgC4HRXUc/M3MT//nzxe58eSxi7//BeGYdQle5JhGEsl3XH5nycl/TqP9wSQg3TV0e2+Ez+xas/w6ISjA+aRRP6Hv3dYvzt2Rr979QwVroAMNWzuVsPmbvUHhiVJ/YHh6GNuZscKFG7hxSpdsAcVJQEAxUDfBQBQaiKx4aA5+XfproFcM93Fa2PqfJLup6r6H/v7wNCIdh55Ux+9ZcGU2y7Tbbx4y041bO7WE88elyS9euqCTFMav3wQ9h47k8kmSLtaLgB38+KNRQBKFysuJcfcMtyOfRilhArqlxmG8ZeSTkj6pWmaSUKJkmEYFZK+Kumeyw+NSfofKZ77RUn/ePmf/9s0zb9MfI5pmoOGYfwXSf9eUrWkfzUM46OmaY7EvM7VkrZJurxAnTpM0wxm89kA5C9VdfTA0IjeOa9Gc2sq9euXB/O+Ez+XO2CTVe3ZsK3PcdU/EqsCRRJsX3/rkrbvf00/7Hud6kDAFHY+tEqf/e5BHT97KfrYglnT9O1P32pjq/JnxwoUbkEwHVahoiQAoBjouwDuRVU2IDeJVVolyWdIppT2Gsg10128OKbOtoL4VFX/U/1ekqaV+6KJ4Kl0rm9Jey2K/G482d0gCh9zUni+oWFzd1FXI+AaCjgPqyQAcDtWXEqPuWW4HfswSgkJ6lc0S/pfkt4wDOMXkn4vaVDhJPS3SfozSfdJqo/5m/9omuZLeb7vf5J0p6QbJX1I0rOGYfwPSccl3SBpg6RrLz93j6Rv5/l+ALIwVcd/6+5+PffGWd1QW23JZIJVnRAnBswjkzU/P3oybptWlhm6s2keS+sBGVhSP1PTK/xxj02r8GvJvJk2tSg/BFcyQzAdAAC4CX0XwJ2YGANyE5to7jOkkCl9aOk1urq6csprINdM2CnbOYTEmzEqy3yqrizTN/6iWW3f+q0W1VWr/upp+s3lQj6xMo35pSsUtOwru1P+3fQKv4IhU6MT+RUQyhXXUMB5nDhPCgDZSOx72dHHcSLmluF27MMoRSSoT7ZA0l9N8ZyApIdN0/xevm9mmuZZwzA+JOlHkm6R9E5JX0/y1Kclfdw0zfF83xNA5iId/+7fv6lgyJTfkGZNr9DQyLgaNndHnxepBh4yzfDyk1lOJljRCXF6lY7IZM1YMCS/IQXNcDWhsaAZTeh3+mcAnODcpXEtnluth+5YpK2/6tfZi+7tGhBcyQzBdAAA4Cb0XQB3YWIMyF+yRPNMroFcM+Emyar+j06M6T/95IXo/Ej4sZAq/IbGgqb8PkPBkDllzC/VtajC79N4KKTk616Hl542L/9/LFj81Qi4hgIAgEJhxaXkmFuG27EPoxSRoH7F30v6maTVkt4tab6kOkkzJF2Q9Kakw5J2SXrCNM0LVr2xaZrHDMNYLukvJX1S0lJJV0s6JemQpG2SfmCaqUIwAArltq89ExdgDJrS6QtjMiTd01wft3Rrw+zp+sHn3p3ToMCKTogbqnREJmv+OHhep4fHNKe6UtfXVkcT+t3wGQC79W55X/Tnu2+uT/NM5yO4AgAAAKAYuCE+NStiUmxflDoSzVEqTg2PSqbi5kwiyemxP5uSFtVVqz8wnFHML9W16KfPnUiZnC5JH7ppnt52VYV+8fxJ3feuBUVfjYDkEgAAUEisuDQZc8twO/ZhlCIS1C8zTfOiwlXKn7bo9b4o6YtZPH9c0n+//B8Ah+jZ2Kp7vvVbnTwX39k3Jf3k8Im4x46dvqhlX96dU3WMfDohbqrSETtZE6uxfVdcRXonfwYA1iK4Yg0SQgAAAIDUuCE+NSsmxti+QP4Y18MNOte36P/+wWE98exx+SSFEn7vN6T3L5mrf2pr0j/8+KiWXz87o5hf4rVoZDykJxPmX2KtubFO82ZNi65WEHtjSDFvEiG5BAAAFBI3wibH3DLcjn0YpYYEdQBIo66mSmturNNjBwbkM6TQ5WodVeU+1VSVq7LMp8D5UY1OhOQzpI/cXJ9zdYxcOyFeqNLhhc8AIDcPr1mkT3Tu16eWX0twJQ8khAAAAACTuemmfjvlGpNi+wLWYVwPp1u8ZafGglfKmScmp0vhFWjnVFeqbkZV1glVsdei7+x9Rb/942mdvTgWXcFWkgxJN9RVq8xvOCaOSHIJAABAcZG4D6sV+4Zx9mGUGhLUAWAKp4ZHdf+KhTozPKqdR0/KZ4SXsPzAkrkyJe3oDU+8jQVD2vfH0ylfZ6pOTa6dEC9U6fDCZwCQm4e/d1jnRyf08OOH9cvP3253c1yHhBAAAAAgNW6Iz0yuMSm2L5A/K8b1VF9HMXzk5no98exx+Y1wIrrfZ+jq6eW6OBbUjKoytSx8m37/xlkNDo9O+VrJ9tkv3dukBx8/pDkzKvT1tc3a0nVEO3qvFA66q+kaXV1dqcHzIylXarUDySUAAACAu3HDOFBYJKgDwBQiAcYN2/p0/4orFTy6j7ypm6+dFa2O8e+/d0gvB4ZTdlqs7tTEBnG9UKXDC58BQOYaNnfH/bs/MBx97Ngjd9nRJFciIQQAAABIjRviC4vtC+TPinE9k+kopMSbKCJF1IMhU3cuvSanfS7ZPpv4WLL5AhLAAbgJN5ABAOBsFIIDioMEdQDIUGwljGnlfp29NK4Fs6bph32va/v+16K/i3RaDEkHtqzRbY8+U5BOTWzA1gtVOrzwGQBkbudDq/TZ7x7U8bOXoo8tmDVN3/70rTa2yn1ICAEAAADS44b4wmL7AvnJZ1zv1Ml0EvK8JXITRffv31QwZMqQdHtjrWZfVZlRtfRYqfbZWMn2Y+YLALgRN5ABAOBsFIIDioMEdQDIQrIAakRlmaHRCVNV5T5dU1Ol185c1Nan+y3v1Dh14gEAsrGkfqamV/jjHptW4deSeTNtapF7kRACuAeJGu7G9wcA7sQN8YXF9gXyl+u43qmT6STkuU+6sc5tX4svwGNK2vPSYE7zEcn22dWLaxWStPuFPyloSn5Duvvmetv3YwDIFfO4AAC4A4XggOLw2d0AAHCTno2tuqe5XlXl4dNnVblPDbOnS5JGJ8JrW46Mh3Ts9EWZZjjosOwru/Wz505Y1qlJ1oZ7m+vVs6nVgk8IqwWGRrS2c58CBUgYfeHEOd30jz/XC2+es/y1gWI4d2lci+dW65t/cYsWz63WuUvjdjfJlTrXt6ijrUlL6mvU0dYUlyACwFliEzXgPnx/AFAchRxHewnbCfCOXMf1TptMb2zfpYbN3dp+YCAaG2/Y3K3G9l22tCeC8+XU0o11eja26pqZ8fvUvJlVOc1HxO6zFWU+jYyH9IsX/qRfPB9OTpekoCk9efiEbnv0mZw+CwDYjXlcAADcI3LDeNcDK7Vu+cKsV4kCMDUqqANAFmIDqNKVZPRYhiTDkEKmolVrzl0c04K3XZW2Ck6mFRmdNvGA9ApZMejh7x3W+dEJPfz4Yf3y87db+tpAMfRueV/057tvrrexJQBQWFROcjervz8qsQNwghdOnNMnOvfr+59b4bhVjKi8m5lHn3pRva+e0aO7XtTX1zbb3RwANnHSqmpUdHefVGOdCr9PzdfN0jc/dcukCuqS9Oa5Ed326DNZj4cCQyPaeeRNfajpGu3/42mdmQjpmpoqhWRq8PyYgiFTfp+huhmVevLBlZZ8RgAoNuZxAQBwD1YGBAqPBHUAyFIk6H/n0mvU/uMjGjhzMS4Z3W8Y6jp8PC7o8I1P3hL9+1SdmmwC5U6aeEByhUxEa9jcHffv/sBw9LFjj9yV12sDAADr9Wxs1drOfdEbG52SqIHMRBJtfn70TY1OmKosM3Rn07ycvz8SZEoPNyXAiZx4wzM3dGUmcTs98exxPfHscbYTUKKcNJnutIQ8rivpBYZG9M55NZpbU6lfvzwYd1NBmWHoR4ePa+vT/eFKwN/6rQaHRhQ0Jb8R/q5zSSDfurtfb10c184jJ6OPnTh3ZW6jssynsWBIa26so98MwNWYxwUAAADCSFAHgCzFBv1X3jBHr/UOxAXcB7MMOuQSKHfSxEMqpZ6EUciKQTsfWqXPfvegjp+9FH1swaxp+vanb837tZGdUt/PAQBTS+zrSeFVeH763Im4mxjhXFcSbcJrzo9OmDkl2pAgU7q4KQFO4uQbnp1aeddpTNPM6nEAKCYnJeRxXUlv6+5+PffGWd1QW63RiZAqynwaGQ/pycMnos+JjFl8hmRq6gTyVLHSZOPiRB+7db7+euX1tu83ViN+DJQmN8zjAgAAAMXgs7sBAOBmkYB71wMrtW75Qg0Oj6pzfYs62pq0pL5GHW1NcUGIZHo2tuqe5npVlYdPyVXlPt3bXK+eTa1xzwsMjWht5z4FXBKcjU3CKEWFrBi0pH6mplf44x6bVuF33LLspaDU93MAwNQifT2fEf53RZmhhtnT9d7FtfY2DBlrbN+lxw4MxD22/cCAGtt3ZfU6mfb74XyZjs0a23epYXO3th8YkGmG95uGzd1Z7zuAlXY+tErzZ02Le2zBrGna+fAqm1p0hdMq7zpN5Nzz479dqYWzp8f9rmH2dO3dfIdNLQOAK7KNjRcS15XkEvuo/YFhmaY0cTmBfFq5b9KY5b2LayfNgySTKlbas7FVH1w6V4aRvE0fu2W+vv7xZi2pr9FDd9ygty6Ou2YeZCrEj4HknDTn6aS2AAAAAF5DBXUAyIMVd8BnGih3S9U9KkNeUciKQecujWvx3Go9dMcibf1Vv85eHLfstTE19nO4DdWa4DZe2mcjfb3YanOrbpjj6P4c4kUqL3b//k0FQ6b8PkN3/9m8rCsvkiDjHZmOzajaCSdy+g3PTqq86zSRc8+OAwMKhsLV0sv9hsaDpoIhk+sJACTBdWWySB/1Z8+dUChm8Y1IpPPS+JWYZ2TMErv6V7J5kKlipXU1VXpl8IJMUzIUrsYuhX9umHOVfvVSQIHzI6qbUeWaeZCpED8G0nPSse6ktgAAAABeY7D0p7e1tLSYfX19djcDwBQ2bOtT7YyquEB5JPk91fKXmQYyi53gFRgaSZmEwWSpd+zZs0erV6+2uxm2YT+H27R3HdFjvQNat+y6ogXZvZRgjOKzY58tpHR9PThfvv3xWOwL7pbLvrCl64h29A6owh++QcUr5zW427IvP61Z08vjbnju3fI+u5uFFFKde3yG9LO/u43rCQAgrcT4TKrrSoTPkK5723R13Nekp47+KaNrTGKstMJvKGRK//pX/05//a99Sd/PkLRuxUL9+qWA3jh7SYYUlzAf4daEbuLHyJdX52CsjLF4qS0AAACAmxmGcdA0zaTBAyqoA4ADpKvEnm/VvWLf+U9lSJQC9nO4hZ3Vmqg8g1x4tcKYFavuwD49G1t1z7d+q8GhEQVNyW+E+wJPPrgy69cq5r7AjULWy2VsRtVOZyvV4yQ2Gf3um+ttbAkyke7cUzejir4FAHiQlX2UxPhMKJQ6OT2SJL7qhjladUOtVt1Qm9F7JIuVStI//Pj5lNexXUfe1Pb9r0VfIzE33e2rDxE/BpJz0kpjVq2YBwAAACA1EtQBwOFyDWTameBFEgZKAfs53MCOgL9XE4xRHE6apAIi6mqqtObGOu3oDZ/LxoIhrbmxzvGJBY8+9aJ6Xz2jR3e9qK+vbba7OZ6Qy9iMG1ScjRvq4AYkuMGrSvUmISATVvRRUsVnfEmeO73Cr7kzKnXs9EUtqqvW4PDopOdMdcyeGh6VaSruPV89dUHLvrJbkmQYiruO7d10x6Tx/zU1VTp2+qJnrnfEj4HJYvu2hiFbj/XbvvZM3DkrGDL15OETeuroSeLYAAAAgEVIUAcAF8glkGlnghdJGCgF7OdwAzuSWUgwRj5IwIJTuSmxIDER5Ylnj+uJZ49zo5BF3LQvIDVuqIPbcO6BF7nxJqFsk+pJws9fqW1DK/soifGZiGT10y+OBfXq6YuSpP7AsPoDw2ps3xX3nlMds53rW7To77s1nqJAe+J1LNn4Pxgydf8K71zviB8DyZ0aHtWi2mq9HBjW4hQ3xRSDlSvmAQCA7JTaWA/ZYx/xDhLUAcAFsglkxl6kvZzgRWcEADJT7GQWEoyRLxKw4ERuSiwwTTOrx5EdN+0LSI0b6uA2nHvgJYW+SaiQMcNsk+rdmITvNKW2Dafqo2SzfyeLzzTMnq6TQyNxCevXXj1N4yFTZy+OJX3PTI/ZwNCIls6fpf4/ndeFsWD08epKv371H1dH2xt7HUs2/o/8nusd4E2J55SXA8N6OclNMcXg1hXzAADwglIb6yF77CPeQYI6AFjAScnSsRdpLyd40RmxjpP2XwDWsyOZxcvXHxQeCVhAfvZuukMf79yn1y5XQJSkhtnT9YPPvdvGVsHpSm1MYMcNdaW2jQEglULfJFSImGG2SfWs1JG/Ut2GU/VRst2/E+Mz2/e/Nuk5r791Kfpz4nsGhka0ZF6Namsq9ZuXB9Mes4/selGHXz876fWHR4O67dFnkn5vjP+B0uO0m4WJY8MriDkAcItSHeshc+wj3kOCOgBYwAnJ0sku0lI4qNzR1mR5gNeugS6dEes5Yf+1GoEYwF5MMMJruK7ATepqqhQMhaull/sNjQdNBUMm+y7S8uKYYCrFTkQoxW0MAMkU6iahQsYMs02mc1rynRuV8jZM1kfJZv+OHb8mxmfeOHNRfxwc1vG3Linyaj5DmlNdqdsWz9Ffr7w+rl+0dXe/Dr9xVjfUVk86ZmVK933rtzqUJCk9wu8zVDejUk8+uNKy7QPA3Zy2+iZx7OT29g/q0/+zV//7r5dp1Q21djcHGSDmAMAtSnmsh8ywj3gPCeoAkId8Jj6sTnTK9SKdazvsGujSGbGOl5P9CcQAAKzEdQVus7S+Rqsb66gAhil5eUwwlWIlIpTyNgaAVApxk1AhY4bZJtM5LfnOjUp5GybrowSGRjLev9ONX//1r5ZpS9cRPXa5uI0khUzpA0vmRp/b0dakxvZdatjcHX1Of2D48nNNrVu+UIPnR7R1d3/a5PTI89fcWFcS3xuAzFG13PkeeOxZBU3pge3P6vdf/KDdzUEaxByQiGI7cLpSHushM+wj3kOCOgDkIdXEx4b3Xq+1nfv0zU/dIplKOgiwOtEp14t0tu2we6BLZ8Q6kf23+7kTCpqS35Duvrne1cn+du+fAABv4boCt6ICGDLFDcCFxzYGgMkK0VcpdMwwXTJdsiQQku/yxza8IpP9e6rxa2Q/nV7u07VXT9OfLZglSfr9G2c1ODwa937p+i+3PfpM3PskU13p139bf6ueOvqnkv7eACRHzMK5Ym9OkqShkYnoY8ceucuOJmEKxByQiGI7cAPGepgK+4i3kKAOAHlIFRj+Hz2vqvfVM3p054uaVuGPGwQUMtEpm4t0ru1wwkCXzog1bvta/GRC0JSePHxCTx096dqkOyfsnwAA7+C6AsDruAG48NjGAFA8hYwZpkumS5YEQvJd/tiG8WL37+/sfUXdR97UQ+9bpLoZVQoMjeid82o0a1q5ftM/qJCpSePXyH66btl1+te/Wp72vdL1X7oeeI/W/Y8DOndxXIlp6uU+aTwkXT29QqtuqNWqG2oLtDUAAIWw/a+X6bPfPahL48HoY9PK/frvn77VxlYhHWIOiKDYjvuVUvV7xnqYCvuIt5CgDgB5ig0M3/0vPdoeszzmE4eOR3+ODAIq/D7d01yfMtEpn45nNhfpXBOush3oFqIj7dTOiNsGDT0bW3XPt/Zq8PyYgiFTfp+huhmVevLBlXY3LWcEYgAAVuK6AqAUcANw4Vm5jd027gQAKyWeAxP/XeyYIUkgKKbY/XtauV9nL41Hb4rYurtfz71xVjMqyxS6vFJmZPyaWPE82X6azSoAOw4M6K2L45Pat6iuWt/45C30JwHAxVYtqlW539ClmNN8ud/ghiOHI64DiWI7XkD1ewBeRYI6AOQpNjBc5vNpLJh8ecvYQcA3nu5PmegU6XjevXWvfvbQqoJNOOeTcJXNQLeUOtJu+6x1NVVac+Nc7egNT0iMBUNac2Od65McCMQAAKzEdQWAm2WSzOzUG4C9xMpt7LZxJwBYKfEcaPc5kSQQFFuqmyIihkYmJIVXypSkHb0D2v+FNVPup5msAtDYvksNm7tTtq0/MKz7/stvuTkDAFxuZCKkmdPK9H/d/g7911//UZfGk897wzmI60Ci2I6bceMzAK8zTNO0uw0ooJaWFrOvr8/uZgAlIzA0omVf2Z3y9/cvv04d992kDdv6VDujKi7Rac9Lg3Edz4hsO57ZVFNL1o7YQWw+EjvSEV7sSLv5s+a6D+zZs0erV68ufAMBlCQqgwIoJZzzUEif//5h/ejQcX3slvn6+iea7W4O8uDmcScA5CvVOTCRHefELV1HtKM3vGrmWDCkdcuuc+wNRPQ73S8wNBKXbF5ZZmhOdZUGz49oLHhlvreyzKfVjbUKnB9V5/pb9Y2n+5Pup6mOrYoyn17u+FDcPiNT6tj5B/3k8ImkbfMZ0v6/X8O+BVikkHMwXA8AwJsKmfuBwkns48feUMp1GoBbGIZx0DTNpBcdX7EbAwBeVldTpXkzKyc9vrqxVh971wINDo9KCt/J3NHWpCX1Nepoa1Ln+hb1bGyVz5j8mqMTITW278q4DbHVTqaSrB1W6dnYqnua61VVHr7UVJX7dG9zvXo2tVr2Hk7h5s9ayH0AAHKVzbUMANyOcx4KIVLh8keHjkuSnjh0XA2bu7MaW8JZ3DzuBIB8JZ4DK8sMzZ81TZVl9p8TIysudT2wUuuWL4zGf52Ifqf7BIZGtLZznwKXV/JKrIw5FjQ1vcKv8ZAZnVvwG9JYMKRXBi/o8OtntfXp/pT7aeKx5b/8Ih+5aZ4CQyO6+1/2qvfV8D4TeW/DUNJ5jPtumU8CDeASXA8AwJuY93cnqt8D8LoyuxsAAF6SquLIb14e1CtfvSvt39bVVKmteX40gSDig0vn6ksZLMfltKV/SqkjXUqfFQAKyWnXMiBTVJ5CLjjnoZBSLZjIOoruxbgThUI/ZmpsI/tNTsoNaXqFX2NB+8+JsUkfHRnEcO1Av9Mdkp1rYpNII5X5j791UbXVlfrntc166vmTeurom6qtrtQ1NVXqD5zXpfHwd90fGJYU/r6lcFX1jramuP00cmyNXP6bYCjcW3zi0HE9ETNPEdlnfIa0bvlC/ealgAbeuhT9/eK6ag2PThRq0wCwCNcDAACcKXJDaWz1ewDwCiqoA4CFzBRZAKmSA2IFhkb0zEsBvX329LjHXxm8kNHkihOrqbmpglC+SumzAkChOPFaBmSCylPIBec8FNLeTa1qSBhbNsyerr3sX67GuBOFQD9mamwjZ4icA7/z6RbVVlfqrYtjnBMzRL/THWLPNZHVcLYfGJBphpNII6vhLLh6ugaHR/XU0TfV0dakO5deo8HhUV0aD2pkIqSPvWt+Vt/3qeFRfexd83V7Y638SSqjR/gMqczv0/b9r8Ulp0vSvw0OU6ETcAGuBwAAOBPV7wF4GRXUAcBCezfdoY937tNrpy9GH6ss86nrb98z5d9u3d2vs5fG9dbF8bjH+wPDatjcPWUFAydWU8u2glAmFamcWrXKDdWSAMDpnHgtA9Kh8hTywTkPhVRXU6WJyxUwK/yGxoKmgiGT/cvlGHfCSvRjpsY2cpbIObC964gGh0e1btl10XMh58T06Hc6W7JzjRROCK8o82lkPKSqcp/GJkIanQhFfx85J0VEKqY/8eyVyuex37dMaW3nvklx9cixtaXriEK60nc0FL/6zn3N87XpQzeqY+cf9IvnT0bb9cGl12jLXe+0eKsAKASuBwAAAACKjQrqAGChupqq6DKY5ZfLjYxOhLRj/0DKv0mshpIomwoGbq+mlklFKqpWAYC3uf1ahtJC5Snki3MeCmlpfY3uX7FQP/7bVbp/xUItqa+xu0kAHIR+zNTYRs6SrqJ0rMDQiNZ27lMghyXR8/lbp6Pf6VyJ5xrDkD64dK7abpkfl0Ta1jw/boUcw5DmzaxShT/+9SrLfJo3s0ofe9eCuO97qrh6ZB/58d+u0qK6apmS/IZkSFpUV63hsQmSWwEP4HoAAAAAoJgMM1k2JDyjpaXF7Ovrs7sZQEnZsK1Pv3zhTwolOb0mq7AUGBqZVHXkmpoqHTt9UZVlPo0FQ+GKQPfdVKRPUHyJVWIiYrdXJs9B8ezZs0erV6+2uxkAANhuS9cR7egdUIW/NPptAAAgNaeu+pYK/ZipsY2cIzGGahjSB5bM1ZfamuKOt/auI3qsdyCn7yqfv8VkTjwnOrFN0pVzjSEpZIZviFlx/WwtuHq6PrXsOt39Lz1J5xukcKJ65O/8hhSS4vbhxVt2aiw4+Y/TxdU3bOtT7YwqfWrZddrRO6DB8yPRSuvpfgfAOszBAAAAAHALwzAOmqaZNDhQVuzGAIDXda5v0Qsnzmn9d3o1PDqu0Qkz7VKXyaqOBEOm7l+xMC7I62U9G1unXBo0k+cAAAAUW6TyVKn02wAAQGqx1WmdltyaLCmTfszU2EbOERtD9RnhZNxXBi9E9+fE4hbbDwxo+4GBjIpb5PO3SM2J58Rs2lTMZPbHe8MrA0TSyEfGQ9rz0qAqy3zqaGvSz/5uldZ/p1enL4xN+ttIHbLFc6s1u7pC76idEXeu+sjN9Xri2ePyG1LwcvL7VHH1zvUtKT9/bDJ6R1tTfh8cAAAAAAB4GgnqAFAAOw4MRIPFhsIB5XRLXSab7IoEd7MJ8loZNC9mAD6TpUFZPhQAADgRk/MAAMANya3JkjLpx0yt2NvIqdWdnSIxibc/MKyGzd2qLPPlVdyCwhjWcuI5MZc2FTPBfv8X1mjFV3dPqpI+OhFSY/suffzWBdH5hsgNGlJ8snniOSPxM0eKqE81VxHhxBsMAAAAAACAu/jsbgAAeElj+y41bO7W9gMD0cciMeXB4dGUf9e5vkUdbU1aUl+jjramnJfEjA0a58vK18pEJEm/64GVWrd8YdLtlclzAAAAgEIIDI1obec+BaicCgBI0LOxVfc016uqPBxuryr36d7mevVsarW5ZfGxKtMMJ2U2bO5WY/suu5uGJIodj3Ob/V9Yk/JYy6e4BYUxrOXEc2I2bSrGeTNxbFFXU6W25vlxz4lM4I5OhOLmGyLJ6T5DaffVxM/s9xl6zztma/ZVFXrj7KWUbeO6AQAAAAAArEIFdQCwUKTazk8On5j0u58//yc1tu8qSJUYK6vS2FXhJpOKVFT2AgAAgF2oIAgASMXJya1UhnYHJ1acdqKpjrXEVSrfOHNBazv3ZVSRPtkKl8iNE8+J2bSpGOfNZGOLC2MTWlRXrf7AcFyV9IbZ03VyaCTalqunV+g975ijv1719rT7auJnHguGNHh+VGcujmnBrGkp28Z1I4wVLQAAAAAAyB8J6gBgoUjQV0q91GYhWBk0JgANAAByxQQuvIiEMXfhPATALk5NbnVioigmIx6XuXTHWmJxi/auI3qsdyCjGwydVhjD7X0aJ54TM21TIc+bU40tNmzr0yuDFxQ0zehzjp2+GP15dCKkNTfWRffnqfbVyGf+/u/C1dD7A8NJ37dYn99NuEEZAAAAAID8kaAOABY7NTyq+1cs1JnhUe08enLKpTatkC5onO1kBgFoAACKw+0JB8kwgQsvImHMXTgPAbCL05JbYzkxURTxSiEeZ9X4J5NjzQs3GDqtT5Pt9+fEc2I2bbLivJlsm001tuhc36LA0Ejcc3yGdN3bpqvjviY9dfRPWbUl8pkfuuOGrMY0pXzdcNv5w4uxJQAAAACAd5CgDgAWiwR9N2zr0/0rihfETRU0fmTXi+p99Ywe3fmivv6J5rxeCwAAWMdpCQf5cNsELpCNUkgY8wLOQwCQmhMTRTGZ1+NxxRz/uPkGQ6f2abw0fs2EFefNxG32wolz+kTnft22eE7asUXi+GMsGNKqG+Zo1Q21WnVDbU5tSTam8RuGHtyRPLG5lK8bbjt/lNqxCQBALrihCwAA+xhmzDJx8J6Wlhazr6/P7mYAsEHiZEaE3ZMZ8IY9e/Zo9erVdjcDAFzJi9foxApvsRO4BHzhBRu29al2RlVcwlhs0gbsx3kIAABnsmv8s6XriHb0DqjCH07wXbfsupyTN4uZ0FKMPk02n8eL49dCS7XNIq6q8Ou+dy1IO7YoxPgj8TV//VJAb5y9lNex4VVWnj8KhWPT+5iDAQDrtHcd0WO9A468pgMA4AWGYRw0TTNp4IIK6gDgUanuP+K2JAAA7OWkalxWJVpQYRpel0sFQSrzFBfnIQAAnCGxD2TX+MfKivTFrFBcjD5NNp/HSeNXt0jcZokujAW1ff9r2r7/NR175K6kr1GICuaR13RqlX4nccOKFhybAABMjX4PAAD289ndAABAoaTKULcnRT0wNKK1nfsUcGAwFwCAYnJSEmVsYkK+IhO4XQ+s1LrlCzU4PGpBCwH3svL4QmY4DwFA7ojbwCqJfSC7xj+d61vU0dakJfU16mhryqn6dGP7LjVs7tb2AwMyzXBCS8PmbjW27ypAi68oVJ8ml8+T6vuTKc4ZKcRuM8MIPza9wh/3nAWzpmnnw6ssfd/A0Iju+9ZvddfWHt33X36b8rvp2diqe5rrVVUeniKuKvfp3uZ69WxqtbQ9VrHj+mTF+aPQ0p1bnXhNd2KbAADe57Z+DwAAXkQFdQDwqL2b7tDt/589ujQWjD42vcKvPf+v1ba0p5iVhgAAcDq7q3EVonJIISq8AW5EZR77OOk8RAV9AG5D3Ab5StcHWt1Y66hqxJlep+2qUFyoPk2unyfZ+JVzRnqnhke1qLZaLweGtbiuWsfPXor7/bQKv5bMm2npe27d3a9Dr5+98u8U342TbprPBPtaaqliS07cZk5sEwDA+9zW7wEAwIsM06ZKuiiOlpYWs6+vz+5mALDJqkd/pTfeuqRyv6HxoKlrr56mnk13FLUNiZNTEcVI0CEppHD27Nmj1atX290MAECOAkMjKRMTuGYCyWXat+T4giS1dx3RY70DWrfsOhIwADianXEbeIub+kDZXKe3dB3Rjt4BVfh9GguGXH9tz/fzcM6YWqptJEnf/ItbtPVX/Tp7cVy9W95X8PeTkn83G7b1qXZGVVxis9OqhLOvZc+J28yJbXIL5mAAwBpu6PcAAOB2hmEcNE0z6QXWV+zGAACKZ2l9je5fsVBP/u0q3b9ioZbU1xS9DXYunbV1d796Xz2ju7fuZelIAIBjOGFZYyqHANmLrfiWDsdXaWts36WGzd3afmBAphmuHtuwuVuN7bvsbhoAJBWJ21SWheM2lWUseW6nQowVijX+cEMfKJfrdKRCcdcDK7Vu+UINDo8WscXWy/fz2BnrdYtU26h3yxrdfXO9fvEfbs84OT2T47dnY6s+uHTupMcNSXcunZv0u+lc36KOtiYtqa9RR1uTI5O02Ney58Rt5sQ2AQBKixv6PQAAeFmZ3Q0AABROtsvBZlMVMpvK5Pv/eFoj4/lNTmXznolVOQLnR7Xsy7upygEAcASnLGucailoAPES+5bbDwxo+4GBtH1Ljq/S1bOxNWX1WABwotikYkmOTCq2g12r8hVirFDM8YfT+0C5XKezja86Xb6fxw03ItjNym2UyfF729eeSVqh2pQ0p7rStd8N+1r2nLjNnNgmAAAAAEDxkKAOAEVm9QSXla+X6YRVNhNbW3f3K3B+VIvqqvWNT96S8+RUNu/Zs7FVK766WyEz/vHRiZAa23eRpA4AsEUuSa5WSdZf8FqiBVAokUSm7udOKGhKfkO6++b6kkpkQuZIwADgNol9VCncT/3hwTdKOn5S7JtKCzFWsGP84fQ+ENdpazj9RgQniGyjO5fO1ed/8JxeOXVBazv3ZRzDz+b47dnYqnu+tVcnz02uhu/28zn7WvacuM2c2CYAAAAAQHEYpmlO/Sy4VktLi9nX12d3MwDEaO86osd6B7Ru2XWWTHBZ8XrJJiMlTQp4Z/q8bJ9rRdsSff77h/WjQ8ej//b7DN39Z/O05a53MulkgT179mj16tV2NwMAXCUwNJKyWl+hr01W9z+AUmJVvxalY8O2PtXOqIpLwGD5YABOZWcf1Ynsuu4X4ntI9Zob3nu9vvjTF4peHd4puE6jmCJj8Rtqq/Vvg8MZj8mzPSds6TqiHb0DMqRo0ZZSP58DbsccDAAAAAC3MAzjoGmaSQNsVFAHgCKxumqRla+X6fK2ic+rLDNUXVmubZ9ZlvNrWtW2RBfGJrSorlr/FhiWz5CCIZOKSAAAW9lRrc/Oqu2AV0QqEv7p3KhMSYaka2ZW6ckHV9rdNDiU06vHAkCsUqoonckqhFbFs7JViO8h1WvuODBQ1OrwsRK/A6tXmswE12kUQ+JYvD8wLCnzMXm254RIheozw6PaefSkfIY8fT4HAAAAAADu4LO7AQBQKno2tuqe5npVlYdPvVXlPt3bXK+eTa22v16mAe/JzzN1+sKYduwfyPk1rWpbos71Lbq+9iqtW7FQP/2723T/ioUaHJ68zCkAAMUUmTTuemCl1i0v/LXJ6v4HUIpu+9ozOnk5OV2STElvnhvRbY8+Y2ezAADISmBoRGs79ylwfmTS74rdR7XL1t390cTsVOxM2C/E9xD7moauJMeaZvjnhs3damzflX/jM5T4HWTynQBuFBmLV5bFT8NWlhkZj8mzOSd0rm9RR1uTgqap+1cs1M/+7jZPn88BAAAAAIA7UEEdAIrE6gkuq18vEvCOXd421fN8MjKqxprpa1rVtkRUREI+7KjiBcD7in1tKqWKmF7xwolz+kTnfn3/cyu0ZN5Mu5sDRSqo/1Ynz13pg86jgjoAwGViE4ETq2Z7PX6S7apCVsWzslWI7yH2Nfd/YY0t1eGl1N9B4r9Z6QlOlipWmOzxyFh8LBiS35CCpuQzpLFg5qt8funeJj34+CHNmVGR8TnB6+dzAAAAAADgLiSoA0ARWT3BZeXrZRq87lzfosDQSEYTWlYFxAmsww6PPvWiel89o0d3vaivr222uzkAkLNs+wvcoGOvh793WOdHJ/Tw44f1y8/fnva5fFfFcdvXnolLqJKuVFAngQoA4HTZJmd7Uc/G1qwSs70ah5rq5tVC9i0Tv4PKMp/mVFfq1PCIRifMoibLA7mK3OjzyM4X9cbZS9FjJdUNQJGx+B8Hz+v08JjmVFfq+trqjGP46W4sAgAAAAAAcAMS1AGgiKye4LJrwqwQ1VhJsIJTJE7eP/HscT3x7PGSmrwH4C3Z9heYBLdHw+buuH/3B4ajjx175K6kf8N3VRyRCuqDQyMKmpLfCPeH01VQp28LIFecP2C1bJOzvYhVha5Id/NqIfuWid/BWDCk6RV+jQXNkv9O4HyJscIfHTouSVr25d1xz0u8ASh2LJ7P+0Vet6LMp5eJTQIAAAAAABchQR0AishLE81WV4MnwQpOYZpmVo8DgFdQXdNeOx9apc9+96COn70UfWzBrGn69qdvnfRcvqviqqup0pob67SjdyCaULXmxrq0/Xn6tgByxUpOsBrJ2WFWx7HcKtnNq8XqWyZ+B794/iTfCVwhcqPPTw6fSPs8q24ASryxyO8zFAyZ+shN8/J6XQAAAAAAgGIzSLbytpaWFrOvr8/uZgC4rL3riB7rHdC6ZdflnKiSKsndrcnviZNgESRYOduePXu0evVqu5tREIGhEX28c59eO30x+ljD7On6wefeXfBjy63HMQBvCAyNpKyuyTmpON7/z79Wf2A4+u9FddX65edvn/Q8vqvi27CtT7UzquISqJJVRKRvCyBXnD+QiVzHjJlex1Ca6FsC6S3eslNjweRzqQuunqY33roUvZF13bLr9NCaRXnH97Z0HdFjBwaS/o6+AVAavDwHAwAAAMBbDMM4aJpm0oCzr9iNAYBS1Ni+Sw2bu7X9wIBMM1yJqGFztxrbd2X9WrHVGDN53Ol6NrbqnuZ6VZWHL0lV5T7d21yvnk2tNrcMpaqupkrBUHjSqdxvSJKCIbMok7JuPY4BeAPVNe137tK4Fs+t1jf/4hYtnlutc5fGkz6P76r4Ote3qKOtSUvqa9TR1pQyqY++LYBcsZITMpHrmDHT6xhKUyZ9y8DQiNZ27lOAKucoQR+5uT7l7966MKb7VyxU1wMrtW75Qg0Oj1oS3zs1PKqPvWu+bm+s1eXwJGMLl/Lq+dOrn8uN+C4AAAAAOFmZ3Q0AgFIQWZbz50dPRid7WhtrdXJoVIHzIxklE6VabjdRoZbhLRQSrOBES+trtLqxrmjLTBdrOW2gFLEyQXZODY9q3fKFRTv/IV7vlvdFf747TRKExHflVPRtAeRq76Y7Uq7kBDBmLF3FGs+cGh7VR2+Zr5dOnlfjvBkaHB6N+31swm2uq0LCHoyJc5dqdZNYF8aC2r7/Nf2w73VJSnqurijz6eU05+pk31HkRqItXUcUkhhbuJhXz59e/VxuxHcBAAAAwMmooA4ARRCbqCKFA9V/HLyg5944m3EllVTVGHc+tMr1VRojCVaxlWYSUQUCxVTs6nJUWwUms+q8z8oE2aG6pnvwXTlXJn1bAEhk50pOcL5MxozETbwp2XimEN915/oWTSv36/k3hzStzB/tW1q5KiTswZg4d4nnXklqWXi1rr16mnxJqponPt9/+UkfuWle2vdJd5y/Mjis2upKfefT/46xhct49fxpxeeiz2INr+5jAAB7cH0G4Hacx5yLCuoAUATJqq30B4YlZV71KlU1xiX1M/Oq0mhnFZ1k793R1pT0ucmqQFABCF5BtVVgsnyr/6SrMtmzsZXrB4CCib1ZIFXfFgCSKfZKTnCPTMaMVM/0lnTjmY/fusDS73qqsVPHzj/oF8+f1Mh4SFXlPn1w6TXactc7835fFBYrL+Qv9tzrN6SgKZ27NK73Lq7Vjt6BpOfjGZVlGhkPb/fIjWdPHDquJw4dn7TtMznOb6it1uDwqJ46+ibndpfx6vnTis9Fn8UaXt3HAK9jbhtOxfUZgNtxHnMuEtQBoAgSA0V+QzIlhUylDBolG6BGqjEmTlafGh7VfbfM18snz6vxmpqsKqnkc5HOdxCdyXsXc0IOsFOq4xsoNVZNoqebpNn6NANUAADgPNzggnRSjRlJQvWmZOOZsYmQRidC2n5gQJJ133Wy91q9uFYnh0YlQ9xQ71IkLlrj8d5wZeLg5X/3B4bVHxiWz5C6Hlg5KYZ3anhUH3vXfJ26MKa9Lw8qmCb+n8lxnm2RGziHVwuS5PO56LNYy6v7GOB1JM/Babg+A3A7zmPOR4I6ABRBskCRpLRBo2QD1FST1Z3rW9TedUTPvzmk5mtn6etrWzQVKy7SuQ6is3nvYk7IAXYiGQUIi5z3u587oaAp+Q3p7pvrM7qRK1aya+/PnjuhJw+fiD6H6wcAAADcItWYsVhJqFT6K65k45mP3jJf4yHT8u862Xv9cfCC/m1wWFuf7ueGepcicTE7qc5x+7+wJuU5tm5G1aQYXuRcvaXriEKSDEMpt3264/znR9/U6IQZfW5lmU93NnGDgdt49fyZ6+fixhnreXUfQ2ny+niD5Dk4FddnAG4XOY9FxtGVZYbubJrHecxBSFAHgCKJDRRt2NYnKRywTgwaZTtAzXVAmzjYMAzpA0vm6ksZJMbmO4jOZqBTzAm5fHg9cAIAxXLb156Ju8YETenJwyf01NGTcdeYTG6SSpykeePMBdVMr3DU9QMAUJoYPzjDCyfO6ROd+/X9z63Qknkz7W4OkJNiJaFS6a/4kiWdzamuTPtd53p9ibzX938XrhYdW7VZCifHdrQ1cUO9y5C4mLlU57hcz7Gnhke1qLZaLweGtbiuOuWKp5Hv6M6lc/X5Hzyn0xfGNH/WNI0FTfmM8AqsfkMaC079vvQvc1eobefVgiS5fi5unLGeV/cxlCavjzdIAoZTcX0G4HZXzmPhm7xHJ0zOYw5DgjoAFElsoKhn0x3RnxODRtkOUHMd0MYONiLB7lcGL2R0kc53EJ3tQCeXCbli83rgBO7F5BTcpmdjq+751l4Nnh9TMGTK7zNUN6NSTz64UlJ2N0klm6TZ0nXEUdcPFF4xzoNOPtc6pW1OaYfbsR29g/GDMzz8vcM6Pzqhhx8/rF9+/na7mwPkrJBJqFT6s0+y8cyGbX1pv+t015d0/YjIez10xw0kzngIiYtTy+Qcl+05NvE1Xw4M6+XAsBrbd6WMW7R3HdHg8KgWzJqmwcvv98rgsE4Nj2p2dYXeUTtjyvelf5k7tl3xcOMMgESlMt4gCRhOxvUZgJsl9iWkcH/ihwff8FRfws0M0zSnfhZcq6Wlxezr67O7GQCytKXriHb0DqjC79NYMKR1y65LGxjN5PnJJqGu/0K3QkkuA5kM+rNtY6IN2/pUO6MqbqATO2lS6L+3SrLOjpTZNnSzPXv2aPXq1XY3Axlo7zqix3oHsj5GATulu8YEhkbUsfMP6n7uhIKXK4ndfXN9dHntqTjl+pELElNzU4zzoJPPtU5pm1Pa4XZsR/cr1fGD0zRs7k75u2OP3FXElgDOF+l/J0tYpk/qHJlcXzLtR+Qb84N7lOIYM/EzB4ZG9A9PHtUvX/iTQqbib8owldP2yea8aUXfkP5l7th2cDLmYFAqItfNnx89GU3evrPJm+MNN89NAADgVMQuncEwjIOmaSbt2FBBHQAcKNu7VDN5frIqIPu/sCbnqkinhkd13y3z9fLJ82q8piblMqWp5FvBxykVgFiSDU5VKlUn4E3prmu3fe2ZuH07aEpPHj6hp46ezGjfLub1w+rJfip6ZacY50Enn2ud0jantMPt2I7ewfjBGXY+tEqf/e5BHT97KfrYglnT9O1P32pjqwBnotKfO6S7vmTbj6B6XukoxTHmI7teVO+rZ/Tozhf19U80q66mSq8MXlDo8g3wsee49q4jOW2fbM6bVvQN6V/mjm0HtyrFG4zgXbHXTUmeHm84ZW4bAAAvIXbpfCSoA0ARvXDinD7RuV/f/9wKLZk3M+Xzsh2gpnv+VJNQuV6oO9e3qL3riJ5/c0jN187S19eW5h3edHbgVIkTLJVlPlVXlmnbZ5bZ3TRgSumuaz0bW3XPt/Zq8PyYgiFTfp+huhmVevLBlcVu5pSsmuwnMTU3xZhodvJktlPa5pR2uB3b0TsYPzjDkvqZml7hj3tsWoU/7TgdKGUkLDtfuutLtv0IEme8rxTHmImf+YlDx/XEoeNxzwleXmk0sj0iUm2fdAmimZ43regb0r/MHdsObk30LsUbjOBdyVaz2H5gQD88+IZn+yUAAMBaxC6dzWd3AwCglDz8vcM6Pzqhhx8/bNlrBoZGtLZznwIpLrA9G1t1T3O9qsrDp/yqcp/uba5Xz6ZWSVcu1F0PrNS65QujldDTvW5j+y41bO7W9gMDMs1woKBhc7ca23dZ9rncJNU2jJjqO4J12NZXJJtgOX1hTDv2D0z9x4CD1dVUac2NcxUyTVWW+RQyTa25sc5Rk0hWXyenupZ7WT7n9WJMNDt5MtspbXNKO9yO7egtU40fUBznLo1r8dxqffMvbtHiudU6d2nc7iYBjtW5vkUdbU1aUl+jjrYmlqEvglz6wamuL/QjkKiUxpiRYykUMpP+3mdo0nbY+dCqjLZPbIJoomzOm1b0Delf5o5tV9rSHcdOxNwcvKiU+iUAAKAwiF06GxXUAaAIGjZ3x/27PzAcfezYI3fF/S5SseGLH1miL/70hSkrN0xVKWGqSahUVZHSvW7Pxlb9w5NH9csX/qSQqbwrOLq1SkXEVJWlqGZRPGzreKeGR2VIJVcVyy5uP5e5idPvgra60rEbEkoKtf/ne14vxr7i5P3RKW1zSjvcju3oHVSmdYbeLe+L/nz3zfU2tgQAJsulH5zu+pLYj3jjzEWt7dzH+LVEuWGMaYUXTpzTvd/6rcaDpj580zXa/YdAXIysYfZ0veu6q9V1+HjcdlhSP3PS9vEbhh7cER7z3vboM5bG2qzoG9K/zB3brjS5dSUJVleDF5VKvwQAAKBUGaaZvGoAvKGlpcXs6+uzuxlAyXvhxDl99rsHdfzspehjC2ZN0yMfu0lbf/VvcZNB7V1H9FjvgG6orda/DQ5r3bLrkk5EJVvyTFLSANqGbX2qnVEVl8yS6o6xTF/3/f/8a/UHhuU3pJCUsp2ZiHzmfF7DibL5jtxmz549Wr16td3NiPLyts5XYGgkZdCaAJ+1vHouQ262dB3Rjt4BVfh9GguG8t4vsrmWJ1PoGyis3v85rwPIFTeMAQDcrFj9YMavyHeM6XSpjiVJqvAbGguauvbqaVpSXzNpO3zp3iZ98D//RnfcOFd/vert2tE7oF+/FNAbZy9p3bLr9NCaRcTaAJdzQ8w81RyM1TFHwAm83i8BAADwOsMwDpqmmbQDR4K6x5GgDjhHJKE7YlFdtZa//W3RyaAfHnwjZdBcmjwRVagA2lSvmyq47zOkV756V5JXTM3ryWduCHLmymkJ6l7e1lYgaF1YXj+XITdOC6oXKgGlUPs/53UAuSLhDgDgZoXuBzN+RSlIXM00GZ8hvXdRrS6OByfd2Bjbn0wVs/cZkikRawNczOkx81RzME6LOQIAAABAugT1smI3BgBK1blL41o8t1oP3bFIDz5+SP2B4WjC+vYDA5LCgW2Z4YrkEZVlPt3ZNHmJvkIteTbV61q5hKDXlyNkWbriYVunl7iU9+D5Ebub5ClOPJdRPdZ+TlkiutBLFifu/5Vlhqory7XtM8vyel3O6wCy5dYl2gEAiFXofrATx6+AVSKxkO1/vUybnjgSt5ppROw+v/Xpfj3WO6CtT/er476bkvYnpXDM3jAMBUOm/D5D739nnfa9clrvWzJXf73yemJtgEu5NWbulJgjAGSK+SoAAEobCeoAUCS9W94X/XnZ2982aTJobCKkUJJFLdJNRBUqgJbuda2cKCuF5DO3BjndiG2dGkHrwnLiuWzr7n797tiZ6CSrnawKPhLEzE2hE1CS7f+jE2PasX8g733PDed19kvAOUi4AwB4RSH7wU4cvwJWicRCnjp6UtMr/EmfMzIe0s+eO6EnD5+IPha5sbHC79M9zfXJY/aXV6MOhkw99fyfJEnTyvxaUl9DrA1wKWLmAFAcTpqvAgB4F3O2zkWCOgDYINlk0Edvma/f/vGUBs+PKXg5U31OdYVub6zV4PBo0tcpVABtqte1cqLMDcln+SDIWTxsa9gpm3NZIQdHTqwea1Xw0StBzGIPjouRgHJqeFQ+GZbve244r3tlvwS8gIQ7AIBXFLof7PVYHEpD7Nj6tkefSVr5XJJue8ds9fzxtIzL/76hrlrzZ1WpZnpF0hsbv/F0f1x/8r7m+fo/r5zW4NCIggnFZSLjXsOQDvz9GvqdAAAAMZw4XwUA8C7mbJ3LMM0k5XrhGS0tLWZfX5/dzQCQxIZtfaqdURU3GTSnulI7esPVWsaCIa1bdh0XTjjSnj17tHr1arubAbhSe9cRPdY7UJBzfGBoJGX12GJPlCYGHyOyDT5a9TpOUcjvP5VkfY7YpBcrOGnfKwav7ZeAVxTjfAcAcD4qJgHeFzu2fmjNooxXK43wGZIpTYrDJ+tPXlVRph8dOq4Kv6GxmCx1v8/QtVdP07HTF3X/cuL4XvPCiXP6ROd+ff9zK7Rk3ky7m4MSxBwMALeLzBl0P3dCQVPyG9LdN9d7ds4AAGAP5mydwTCMg6ZpJp2QI0Hd40hQB9zF6oQKOyfkmAz0NoKjQPaKNTja0nXEETc7WZWw7JXE51IYHDtl3ysGr+yXAAAAXmTHTaGwHrFFJJNqbJ2YcP7RW+ZrPGTq50ff1OjElXnQyjKf7my6RucujmnB267KKA5/26O/0utvXZJP0uR3jlfhN/Tylz+c+weEY7z/n3+t/sCwFtVV65efv93u5qAEMQcDFB/9T2uVwpwIAMB+zNk6Q7oE9bJiNwYAkJrVS/jauYQJy6cAQLyeja0pB0dWcspy7XU1VZpRWRa3NPaMyrKsB4JWvY7divX928kp+14xeGW/BAAA8BKWkPcWYotIJtXYOlnC+ZzqSo0FTfkMKXS5audYMDx2+8Ynb4m+ZiQOn5iUlnhOSZec7jekoCl95Ob6Qn10FEnD5u64f/cHhqOPHXvkLjuaBAAoEvqf1urZ2Kp7vrVXg+fHFAyZ8vsM1c2o1JMPrrS7aQDgONwklTvmbJ2PBHUA8CA7J+SYDASA5Io1OLL6Zqd8WJWw7NbE58TloJ06OLYq6OGkfa8YgZxi75eF/kwEv9yD7wqAV3F+Q74iiavJlpCHexBbRDqpYivJEs43bOvTuuUL9crgsE4Nj2p2dYXeUTsj5dgtMSktWTL8NTVVeu3MRVX4fXH7afBykfYnnj2uJ549bvn+yjWyeHY+tEqf/e5BHT97KfrYglnT9O1P32pjq9yPfRiAk9H/LIy6miqtuXGudvSGt+VYMKQ1N9ZxHQCAJLhJKj9uzSUoFYZpmlM/C67V0tJi9vX12d0MAEWWzRImVgcGWT6lNLC8JIrFa5MXG7b1qXZGVUZLSFvJa9vRLRKXg7br+59Ke9cRPdY7oHXLrosGPdy6z0Tafe3V0/SjQ8fjPpPbJfue3PT6sA7fFQCv4vyGfLGEvDcQW0Q6gaERffA//0Z3vLNOf73yekvG1unOHX9+6wLt6B1QhT+cVLVg1jTd3linTy27Thu29SkYMrV47gz1/NspBUNmwfbXz3//sH506Lg+dst8bfrQja4cr7tJJJ4TEYnrIHf087LHHAxQPPQ/C8epcyIA4BTEsuAVhmEcNE0z6UWeCuoA4ED5JoVlU6XX6jvxWD4FgJW8drewXRWmvbYdnS6T5aDtrjAupa8M8/FbF+S1z9iV4P7ur+5W0JR6Xw3/2wvVbgpdwYcKQZmz+8YNvisAXsX5DVZhCXlvILZYGHb3Za3yyK4X9dbFcSkkLamvsWRsnaxSeiQp7R9+fHRSFbbIe/ZsukOStKXriEKmWZD9NfEa+cSh43ri0HFJIsZTQOcujWvx3Go9dMcibf1Vv85eHLe7Sa5FPw+AG9D/LBwnrboKAE6UbjwKeAUJ6gDgQFYkEk61hEkhA4MsnwIgX0xeWIPtaM8kvFuWg04W9BibCGl0IqTtBwYk5b7PFPumiFQVBiTp3uZ6VwdyrA5OJR4TBL8yZ/fNPnxX3uSVZDEgH5zfYBWWkPcOYovWs7svm066/lDkd4cH3tJY8MqK0JFEbSviG+mS0jJJqirk/ppuEexSjPEUS++W90V/vvvmehtb4n6Rft7Pj76p0QlTlWWG7myaRz8PgOPQ/wQA2IGbpFAKSFAHAAexMpFwquB5ISeAuRsaQL5IUrEG29GeSfgl9TM1vcIf99i0Cr+WzJtZlPfPVLKgx0dvma/xkJnzPmPXTRGJ+7ok+QzJlFwfyLE6OJV4TBD8mloh9+tskpP5rrzp0adeVO+rZ/Torhf19bXNdjcHsAXnN1iJxBJvILZoHTfcuJ5s3B7pJ187a5p+d+yMjBSJ2mnyt6cU2xfP59xRyP1176ZWre3cp2OnL076XaFjPNxICStc6eeFj9bRCZN+HgBHov8JoBDoUyMTxLLgdSSoA4CDFLOaBBPAAJyMc5Q1Snk72j0J75bloJMFPeZUV+a8z9h1U0Tsvu4zpJApfWjpNbq6utITgRwrglPpjonVjbUEv9Io5H6dbXIygUrvSDwmn3j2uJ541poqoIAbcX6DVQqRWMKEMtzMyTeupxqjGIYkM5x83nv5d8kS0RtmT9cPPvfunN8/ti/u1KS0upoqTYTCn77Cb0SryBcjxuPkqvtwj2Qr3m0/MKAfHnyDcQ8AAPA8+tTIhFPHo4BVSFAHAAcpdjUJJoABOBnnKGu4dTvmmwRi9yS8W5aDThb02LCtL+k+k8l3YudNEcn2da8EcqwITnU98B6t/06vhkfHNTphxh0Tsd+PV7aZlQqxX+eanEyg0jtMM3m9z1SPA17H+Q1OxoQy3MzJN64nG7ePjoeUqjvkN6SgeSVROxgyk36O2LGrTE0ax7rtRsGl9TVa3VinTy27Thu29UkKXzcLFeOx+4Z/eIvd8TkAAAA70KcGgCtIUAcAByl2NQkmgAE4Gecoa+SyHZ1QITDfJBAnT8I7Xap9JtPvxK6bIpx8znDCMbXjwIBOXxiTVJxqe15j9X5NcjL2brpDH+/cp9dOX4w+lm8VUACAtZhQhlc49cb12HG7JI2Mh9I+/3LxcJmS7l+xMOXniB27Spo0jnVbXzx2rNuz6Y7oz4Ua95JQDCsRnwMAAKWIPjUAXEGCOgA4CB1VAIAT2Fkh0MokEKdOwmfCCQnNEdl+J05OFLeLk44p/f/Zu//4qOo7X/yvz0x+EwIICRIQovLDhliD5gIq1gC6datVtFu0Rdbd7XZxXQvf671foCV7t9tSK/u99rHSdrfpbrtdQfy1mNoa0FoUG7xIGiA2yFVSBSMJOOFnCGTyY+bz/WMyk5nJnPl5zpzPOef1fDyUZDJzzmfOj8/P9/l8APQP+eEWAt29/VlNSzwqXfOx6H1dMziZykoK4PMHgqBy3QKDcWYBJSIic7CfjuxClTZarDp/sN1+4lwfdr3vift5lwC+eF35qFWggmK1XcN/DrZjWRePjwHFpDcr988RERERpYN1aiKiES6zE0BERCOsWlH19HixvH4vPOxYJJvgNU1ONaduJyrWN2Lrvg5IGRjArVjfiDl1O7OWhqa1i3F3dTkKcgNNlYJcF+6pLkfTusUpb6t+ZQ02LqtCZXkJNi6rihiUV130jG9m0vOcxGPHvFfle2rvt5YodU+odM1nQ3RwMgAGJzvQ3PISPLhwBl7+u0V4cOEMVJaXmJ0kIiIKY9V+OiuxYxuAtMWq8+/+oBtb3/k4YXB6fo4LEoh7D0a3fcKFt2NZF08sGFDc8MjNWLFghlIPN5P1RPfPffeeKub9REREZHusUxMRBXAGdSIixVhxNgkzZwUlMgKvaXIqFWYIVCEIxMyZnPWcQV4v2Tondsx7eU8lpuI1ny1zy0tQO6fMUvV+0pcqs5kSEZE2vfrpVF8txix2bAPQaPHq/NFtpiABQAIYk+fGZWPyUL+yJql78J0PT0dsJ8g76Mcr73bhqQfmAWBdPBHWU8lIzPuJiIjICVinJiIKEFJKs9NABqqpqZEtLS1mJ4OIbCp6cCHICQFFTrd7927U1taanQzdOfWa5kB5dql+vDc0tGFbcwfy3C4M+PxYMX961geLVm1pQenYgoiB4mzO9FzX0IZnmjtM+e6eHq9mQLOZ14uR58TueS/vqfhUveaJiIjI2lRrd5nZxlCR3dsA2aba9R4tUZ3/qm82wh9jqNIlgNsrJyfddqlraMPWfR24cmIRZkwcg7eOdEMicF1NGVeIiomF+MVfLdD3yxFR0pj3p8auYzBERKQf1dsBRETkHEKI/VLKmB04o9e5IyIiUxzuOo9r/+E1HD5x3uykJC162dTwpVKJrMip13SsJZbTwaW5k/PEzvfRfPQMNu143+ykxKTCknPRS/9mK5B2Tt1OVKxvxNZ9HZAyMKtbxfpGzKnbmZX9A+rOdm3kOTE67zU7b3LyPZUMVa95IiIiVZhdl7Eqvdq5mVKhjaEip/a/GEWV611LWUkBcoSAd9CPPHfg3xyXCNX5PzdrEiomFiE/J3A9uARwT3U53vnW0qTaLuH3GQAcPX0Ju8OC0wd8fiyaOZHB6UQmY95PRGRfbLeaQ/V2ABEREQDkmJ0AIiIKWPNcKy70D2HNs6145q8XWOJpVwYUkd047ZqOt8RyOrPWcHnW+KKP9/aDndh+sFO5WYKcvORc9NLi4bO6ZVMwoNkpS40bnfeanTc5+Z5KltOueSIiolQYUZex8yxrerdzM6VKG0M1Tut/MYpq1zugnb/8/tgZAMDlJQXoONuH5qNnQn/7xV8tCK08FQwoT3Q9hO8n1n02oSgPN82ciHurp+KxF97F8XN9xn1pIkoK834iIvsyuw/eaVRsBxAREWlhgDoRkckq1jdG/N7u6cX8x3cBgCUacQwoIrsx65o2I0BAr4FydoQkR8ZYrhoANF4mE6gyUObEgGYj8l7mTdbhxGueiKzLzoG9dmGXc2RkXcbOwQOqBYSr0sZQEfsUM6fa9Q6Mzl+i87KOs4FA8U/O9qFifWMoT9O6HrTy9Oj9RN9nS68pw8Z7r0VdQxu6e/sxbXxhdg8EEcXEvJ+IyF7YB28OFdsBREREWoTUipQhW6ipqZEtLS1mJ4OI4jjcdR5ff3o/OuPM4sJGHKlm9+7dqK2tNTsZtlLX0IZnmjuwYv70rAYIBGeoynMHZqhKZ/+eHq9mRwgH3UfM3rATAz7/qNfzclw4wjxeGau2tKB0bEHEQFkyS4qTepg3ERGREcyqt1Py7HKOjKjLRAcPBNmt30mPdq6e7NTGsMsDIHaiyvWulb8AwOfnTsbuD7oj/p6fI3BH1ZSEeVp0nq61HwFgxcKRoNdt+z6GP8bwp93yO7tg3kI0GsdgiMgK2AdvHlXaAURERAAghNgvpYzZ4ckZ1ImITFZZPg5Fee6Yf+PTrkT2Z/bsAnrMWsMZ4ZKzZ91i3Pr/7UbfoC/0WlGuG7vX1pqXKBol1kzOh7vO4/76d/D8wwtROWWcWUmjFDFvIiIiPZldb6fE7HaOjKjLOGWWNSNnZ00niNJOq8XYefZ9q1JlNuJY+cvlJQU4dvoSPuq+iAGfH24B+CTgEsCAT8bN07Ty9Dy3wN3V5aH9BN13/dTQ/bVxWRVWL5npiPzOLpi3EBERWRP74M2jSjuAiIgoEQaoExEp4HzfIGZPLsbqJbOwoaEN571DbMRZEGd6oXSYHSCg10A5O0ISKyspwMTiPBw/24c8t8CAT2JicR7zCwtY81wrLvQPYc2zrXj9sVvNTg6lgHkTqYb1RSLrMrveTonZ8RzpXZdxSvCAkQHhTg2itMsDIHasi6nyAER4/gIA3kE/jp2+BABo9/QCAPwAZk8uxqTifFxVWhw3T4vO0/NzBIrzc7Hlr+fjrs17Rs2Ovv1AJ7Yf6Axdk07J76zOLnmL6uyY9xERkTrYB28OVdoBREREiTBAnYhIAc0bbgv9/Os/dI1a9jcb2EmZOacOUlJm7DJgxo6Q5MwtL0HtnDJ21FlExfrGiN/bPb2h1449cacZSXIUPeomzJvsxQ71VdYXiazLLvV2O7PjOTKiLsPggfQ4PYjSLg+AsC5mrGD+csfcyaj75SF0nLkEv4xcJTSVPPmdD08PB6cH8vT+oQFse6cDn5s1CX/svoiuc32hQHWXAG6vnIzvhuWVzO/UZ5e8RXXM+4jIruzQV2gH7IMnIiKieBigTkSkGLMaceykTJ/TBymdwsiOLg6YOQc76qxlx+pF+PrT+9F5ri/02rTxhfjpQzeYmCrn0LNuovJghcppU42V66usL5JVME+Kj/V29fEcJcY2SXpUD6I0Ov+2+gMgrItlR3j+cvPMSfi4uSPt62XzrnZ4LvQDwKhzBwQC0sNnUfdLoDhqH8zvRlOtrmf1vEV1zPuIyO6s3FdIRERE5BQMUCcicjh2UmZO9UFK0oeRHV0cMCNSU2X5OBTluSNeK8xzo3LKOJNS5AxG1E1UHqxQOW2qsEN9lfVFsgrmSfGx3q4+K54j1YIFKTbVgyizkX9b+QEQ1sWyL93rJbruHy147s73DeJDTy8+O208DnWew8dn+tB89IxeybctFet6Vs5bVMe8j4jsyg59hUREREROwQB1IiKHa1q7GMvr9+LY6UsAwE7KNKg+SEmZYUdX8g53ncf99e/g+YcX6hbAy2ANMtv5vkHMnlyM1Utm4QevH8GxUxfhueDl9WggPQdQVc7DVU6bauwwqM76IqmOeRKReVQMFoymcrssOm1OW/0s2fxbj+NixQdAgspKCpAjBLyDfuSxLpYV6V4vser+l5cU4NjpSxH16KcemIc5dTvR2HYi9NlPzvahYn0j6y8xqFzXs3Leojq2Q4nIruzQV0hERETkFC6zE0BERKN5erxYXr8XHoMHuubU7cT8x3eFgtMBwDvoxyvvdrGTMkXBQcqGR27GigUz0N3bb3aSSCdNaxfj7upyFOQGqk0FuS7cU12OpnWLk95Gtu5ps615rhUX+oew5tlW3bYZHqxBZIbmDbfhN//9Vtx1XTluunoihqTEEzved8Q9nQwj8jc9B1D1yMONonLaVGOXQXXWF0llzJNIBanWK6zezppTtxMV6xuxdV8HpAwEC1asb8Scup1mJ20Uldtl0WkzMq31K2uwcVkVKstLsHFZVURQpVmSzb9VPofZ8vtjgdm1b7+mjHUxnWSaD4d/PvgzBEbV/X1+iQcXjq5Hs/6SPB4r52I7lIjsILrOYZe+QiIiIlKX1fueVcIZ1ImIFLTp1ffRfPQMNu18H08urzZsP8EnzF95twt+CeTnuDBlXCEqJhYatk+7UnWmF5VnObMKPTq6rDAjXiYq1jdG/N7u6Q29duyJO9PapsozO5HzRF+PLx3sBAAsfHwXPvp+ete4XRiVv+k1O6XKgxUqp01FKs5YmipV64tEAPMkUkOq9Qqrt7OsMOufyu0yrbRF/65CWo2UKP9W+RxmS/QxaDx0EkCgH9RJjOgjDObDm3a+j0/O9qW87egHJ4I/x6r7B+vP4fVo1l+Sx2PlXGyHUrZwLIqMFKvtZ4e+QiIiIlKX1fueVSKklNp/FKJGStmSxfSQzmpqamRLC08hkVVED5gEGTlo9NjzrXjpYCfy3AIDPokvXT8146B4dkSpo66hDc80d2DF/Om6Vpp2796N2tpa3banulVbWlA6tiCioyuZmdLMuKfNcLjrPL7+9H50nusLvTZtfCF++tANqJwyLq1tenq8msEazFco24LX469au2L+3W73dDKslL+lm4dng8ppI/tjnZ2iMU8is6Rar7BSPSSRDQ1t2NbcgTy3CwM+v+5t90yp3C6LTlt+jguTivNxqteL/iGpVFqNFi//VvkcZguPQYCefYRa+bBbAB9+/86E9Uytz4dLNk9n/SV5PFZE1mK1MRijxqLI2ezU9iMiIiJrYP0jPUKI/VLKmJ0MiWZQbxZCHALwHwCekVJ6dE8dERGFaD00FO9hokwFl7e9vKQAHWf70Hz0TMbb5JNkiRkdEMQZsvSV7kwzVpgRTw+V5eNQlOeOeK0wz512cDrAmZ1ILcHrEQBcAvAPF8t2vaeTYaX8TeXZwlROG9kf6+wUjXkSmSXVeoWV6iGJqD7rn8rtsui0Dfj8KMpzY8AnlUur0eLl3yqfw2xx+jHQq4/wcNd53F//Dp5/eGEoH45+iNsnA6vsuQQgAc2Z1aPzcbcIfBYIBLnfdV150nk66y/J47EiIiNwLIqMZKe2HxEREVkD6x/6S2YNw7kA/jeAT4QQvxRC3COEcCf6EBERpW7PuiWYMbEo4rWKiUXYs36J7vuaU7cTFesb8cnZwIzHHcP/fnK2DxXrGzGnbmfa29y6rwNSBjqi0t2W3UUvYau3prWLcXd1OQpyA0V9Qa4L91SXo2ndYkP2R7E5aRD0fN8gZk8uxo++Mg+zJxfjfN9gxtsMBms0PHIzViyYge7efh1SSpSeU739eHDhDNwx93IAgUB1O9/TiTgpfyOyG9bZiUg1qdYr7FQPqV9Zg43LqlBZXoKNy6p0ncnW0+PF8vq98GQY9K5yuyw6bef7BpVNq5lUPofZ4tRj4OnxonJKCf5k7uSM+gg9PV7c96//Bxf6h7Dm2dZQPixEoG0czS8BKYHtBzrRfPQMbnx8Fzw9Xiz78du491/eBgRC+TgwEpwe/Pnl1i7csunNjL47kR3pVbYT6YljUWQkO7X9iIiIyBpY/9BfohnUPwRw9fDPuQC+OPzfKSHEFgC/kFIeMjB9RESOUlZSAN/wtKy5boFBn4TPLw0p6IJPfb126AT6h0ZGAfJzXLijKr2nv/gkWWLZmk2ClSZ1qD4jnl6aN9wW+vmu68p12SZndiKVBK/HVVta8OBC+9/TyYiXvxm9UggRpY91diI1Wbns1CPtqbabkn2/lY9rpvRaKUPldll02sLTp1pazaTyOcwWpx6Dzbva0Xr8HGaWFqfdR1ixvjHi93ZPb+i1BxfOwJnefuw4dDK02ljFxCIcO30p4jM+Ccx/fNdIun7bHsrH75h7Of7m6Rb0DfogAbhdAmVj8/Hyozdn9uWJbIirYJGKOBZFRnPKGBsRERGpg/UPfcUNUJdSzhJCLALwlwD+DMDY4T9NAvDfAfx3IcQBAD8H8KyU8pyBaSUicoS55SWonVNmeEEX7DQa8MnQAIJbAAO+9DuP2BGVWDYDglhpUkOyg6BmBk44OWiDKFVODWyIJd6x4KApZQvLsNSxzk6kJiuXnXqkPdU6VrLvt/JxTVe2HownInVF5wPtnl4AgF/KwAzySfYRxlthZ8eaRaicMg5/8fN9KBubjx8sr8ar753E7g88EAIQCPQ3x7J1XweAwEQpG5dV4d7rp2Jbcwfy3S4M+PxYek0Z66ZEYVi2k+o4FkVGYn88ERERZRvrH/pKNIM6pJR7AOwRQjyKQJD6QwAWI9C/BADXD//3pBDilwB+AeB1KaVG1xMREcUTLOg8PV4c+fQCfvTVeYbtK9hp9FF3L0719mNicR6uLh2bUecRO6Liy2ZAECtNiakU1GZm4IQTgzYokkr3AlkbB03Noeo9nI10sQxLD+vsROpItexUKc9XudxXOW1G40oZRMlTKU/VU7x8IJXvGdzOr1q7Il6/ctIYVE4ZBwCYNqEIb7WfwquHTmDjvddi1ZYW1M4pC82sHotbALdXTsZ3hvsrWTclio9lO6mOY1FERERERKRFpBNHLoS4AsBfAPhzAFeH/Sm4sU4A/wngP6WUf8wwjZSBmpoa2dLSYnYyiCgNdQ1teKa5AyvmT2ewjc2s2tKC0rEFEYMu4R14VrB7927U1taanYyMqXCfRQdOBGUjcMLMfZMa9rR346GfN6N2Thne+MDDMocy5unx6hIIQalRoTyLxch0sQwjIrtItexUKc9XudxXOW3ZsKGhDduaO5A3PBuxCtcLkYpUylP1pkc+oFXnBhCaeCPW6wA0Pxf04AL7HXMiI7Fsdx67jMEQERHpxWoPGFstvWQ8XhNkZ0KI/VLKmIFvCWdQj0VK+QmA7wL4rhDiFgB/CeBLAMYOv2UqgG8B+JYQ4m0APwfwopTyYjr7IyJyEifP8uUUnE3CfCrdZ2bOgMPZd+jBnzUDAHa97wHAMscKVO+8yOZKIQTM3rATAz41yrNw2ShnWYYRkV0kW3aq1IYJUrncVzlt2cDZiIniUylPNaqNp0c+0LR2Me7+8dvo7vHCJwMzn5eVFODlR28GJLTr4xL4+5cP4fXDn8IvAZcA8nPcuOnqiSjIdeMPx8+hu7dft+9K5AQs24mIKBOqjysQJcNqq6laLb1kPF4T5FRpBaiHk1I2AWgSQvwdgC8DeAhALQAx/Jabh//7oRDiRQC/kFL+LtP9EhHZlQrBNk5opDrhO5I2Fe6zIDMDJ5wetOFkFesbNf92T3U5AzwVZoXOC7MHTZ1Uxt/12Sl46WAn3C4Bn18qE6SdjXKWZRgR2UkyZadKbZhwZpf78WQ7bSrVQfhgPFF8KuWpRrXx9MgHykoKsPSaMmxrDgTvD/j8WHpNWSiPi1cf/6j7IvzDQe1+AGMLcvD9L11rev5IZFWqle0q1XvsJnhsv1oRfyUKq7PaNWS19BJFs8K4ApEWlR4wTobV0kvG4zVBTpdxgHqQlLIPwNMAnhZCTEdgVvWVAK4afssYAH8B4M/13C8Rkd2oEGzjhEaqE74jaVPhPgtnZlCHygElZJytX5uPrz+9H32DvojXBcAAT0VZqfPC7EFTJ5Tx0deDzy8BAN7BzMozvQbbslXOsgwjIrtIpuxUrQ0TZHa5H0+20+aEOgiRXaiQp1qljRevzh3rb6PaKoGmCjwX+rFpx/t48v7qLH8DIjIC6z3GCR7bMUM5WPZ5s1NjHKtdQ1ZLL1GQVeqcRPGo9IBxMqyWXjIerwlyOiGlNHYHQvwpgH8HcDkCMS9SSuk2dKcUUlNTI1taWsxOBhGlaNWWFpSOLYjo3A8fWE1WqkFG0Y3UIDs1Up3wHbNh9+7dqK2tNTsZGdHrPiOyqs9++zX0eIdCv4/Jc+Pe66fxXlCUp8er2XlhdmBasoyeachJZXz09eAWwC2zSzGxOA+93qG07+G6hjY809yBFfOnZzzYxnKWiEh/zFvV5KQ6CJGdmJ2n2qGNF0v094qF+aN5OAMwZYr1HuM45dha7XtaLb1E0exa5yTn2dDQhm3NHchzB1Z20mMMw0hWSy8Zj9cE2Z0QYr+UMmbHmmEzmQshbgHwEIAvAyg2aj9ERHak1yxfqT7Rn86Te1br1ObTiRSk8kx/RNngHfJjXGEO/vbWq/Gvb32IvkE/7wWFqTDDX6aMnmnISWV89PUw4PNj2vjCtI+rETPpsJwlIkpNMm1r5q1qclIdhMhOzM5TzWzjJSpzMunvDf9eWoydNovi4QzAlKlgvafx3S74JOAWwF3XlbPeo4PoOmWeC/jTz9rv2Fqt7my19BJFs8O4AhFgvdVUrZZeMh6vCXIyXQPUhRAzAPz58H9XBV8Oe8tHAH6h5z6JiGi0dIOM0mmkWq1Tmw1xY+j9oILVHnwgsqIjYeXBw7UzI/7GezA+s45POp0XKpzLbC0j6rQyXs/OLA62ERGZz2ptaxrhtDoIEenHrAHqYJmzaef7+ORs36j2YrwyKbyNCYmY7c1Tvf1wQcCnEYq+Z91iY74YacpWu5zs75Z/ejPiWvJJ4OXWLrx66CSvpQyNmozApnVKq9WdrZZeolgYFEl2YPYDxqmyWnrJeLwmyMkyDlAXQhQB+DMAfwHgcxgJSA/+exHAfwH4Dynl7zLdHxERJZZJkFGyjVQrd2qzIa4/vYMpGJxBZC7eg/GZdXzS6bxQ4VxmM/jZSWW8np1ZHGwjIjKPldvWNEKrDqLCw4JEeuI1ra9sDlAf7jqPL2zeE/Ha9gOdAIAbH9+FD79/p2aZlOcWOPK9LwCIbGMCiNnerF9ZA0+PFxt3/F/8qrUrYp9TxhXw2jFBsF3+2qGToXbfHVV8KJlS17R2Me7+8R50XxiAzy/hdgmUjc3Hy4/ebHbSbCG8Tvm/G/aiu7ff7CQZwmr9d1ZLL1E0BkUSERGRmYSU6S2mJ4S4FYGg9C8BGBN8OewtewD8B4AXpJQXM0gjZaCmpka2tLSYnQwiMsGGhjZsa+5AntuFAZ8fK+ZP1zUwLTjIECvYjIMM9rd7927U1taOGrgKSjeYQu/tEVFqeA/GZ6Xjo0pagwEs0yYUouFgp2H1EitQPZhn1ZYWlI4tiBhsCx+8sAPVzwEROZMd2tbMX7XVNbThmeYOR9Z9yJ70uqaZb2Tf7T94C+2eXozJc+PigC/me3JdAiWFuejtH0T/kIRbBGZH/tL1U/HKH07EbGOGi25vbmhowzP7OuASgF8Cs8uKcWXpGNu1M6wieD6CHlzAsonSk87YE/P91AXHYIiIiIiIiFQnhNgvpYzZ4eNKcUNXCiG+LYT4CMAbAP4cQDECgekCwHEAjwOYLaX8nJTyPxicTkRkjuAT/Q2P3IwVC2akNNOCp8eL5fV74YkzCwBn2rSPZM63lqa1i3F3dTkKcgNVioJcF+6pLkdTmkv16r09IkoN78H4rHR8VElrcHa93x89k3a9xC6iZxpUTf3KGmxcVoXK8hJsXFZlm6CR8HqO6ueAiJzJDm1rlfLXTNq3eppTtxMV6xuxdV8HpAzMQlyxvhFz6naamq50qHJMyVx6X9Mq5Rt2V7G+ERXrG9Hu6QWAmMHpwfbi7XMn4/TFAfQPBSa28g3Pb7X9QCf6h/xwCYTamC4BuEXk56Pbm6d6+/Hgwhl45Ru34MGFMxicbqI5dTsjgtOBwH1sxXKJzJfO2BPzfSIi52KbkoiIyNlyEr1BCDEGwHIADwG4JfxPw//2A3gZgdnSfyPTnZKdiIh0lclyXeGdhfFmvuCydulJZraQbM4okuz5jkXvYAo7BGcQWRnvwfhSPT5mzg5l9rmMnsH9k7N92PrOx3ix5RNlZpvP1vmJPhZb93Vg674OJWfet6PNu9rRfPQM5n9vV+g1ngMi67H7jItWbVurWMZl0r7VU9PaxZoz41vNEzvfR/PRM9i04308eX+12ckhk+h1TauYb9jdjtWL8PWn96PzXJ/me7yDfrzc2qX59+D5dguBhtbOUBsTQNz2Zib906QvO5VLKrJ7XTVaKvc2830iIlKlnU5ERETmiBugLoT4TwD3ASgKvhT25/0IBKVvk1KeMyR1RESUVal2Fn73nio8+uxBTBqbx0GGFCTTEM9GY12vzmG9gymsGpxBZBe8B+NL5fiY3fFq5rm0wuB3ts6PFY6FHUXXc8LxHKjLaYEdlDyzy1SjWTWAT6UyTrXgJ7MfFtRD9DHdfrAT2w92MqDMofS6plXKN5yisnwcivLco153CWD6ZUXYeG8V/vxnzfBrTD0Vfr67w9qYq7a0AAiUYVbsO3BavdMO5ZLK7F5XzQTzfSIi51KtnU5ERETmSDSD+koAEiOB6d0AtgL4DynlISMTRkRE2ZdqZyE7XlOTTEM8m411vTqH9Q6msGpwBhnPaYOHZuE9GF8yx0eVjlczz6XKg9/ZPj8qHws7i67nuF0CPr9EnlvwHCiM7QuKpkqZSrGpVMapGPxk9Qc/tdZJ5fKpzqXHNa1SvuEk5/sGMXtyMcqK87Hnw9MAAvfyopmTsGhmKd755lIsr9+LY6cvhT5TlOvGn147BV9bdGXofIe3MZvWLbF0P40T651WL5dUxLpqYsz3iYicS8V2OhEREWVfogB1APAB2IHAbOmNUsohY5NERERmSbazMNmO1/BBCkhYdsBCL8k0xLPZWGfnMOnN6IFJJw4ekjWx4zVA1cHvdM9PJnmcqsfCzmLVc2aVFeOpB+bxHCiIgR2khWWq+lQp41Rs31r9wc896xaPClitmFiEFx6+UZftWzmw1an0uqZVyTecpHnDbQCAVVta8ODC0ce+rKQAQ8NTqOe5BQZ8EhOL8/Dk8usAaJ/vYD/Nt3/1HpqOnMLzDy9E5ZRxKacvm/mBk+udVi+XVKRCXdUK5SnzfSIiZ1KxnU5ERETZlyhA/f8FsEVK6clGYoiIyHzJdBYm2/EaHkwKYFRgqRU6T/UUryEefiyy2Vhn5zDpKfyeX710lm73t5MHD8ma2PEaoOrgd7rnJ5OHZFQ9FnYXq55TWV7CcxCHWfVzFQI7SE0sU9WnRxmn18PtbN/qK1bAqs8vdbv/+ACyc7FuHJve9bBY24t37OeWl6B2TllSeWh0P82OtpMAgC88tQfHnrgz5bRmMz9gvZP0pEJd1QrlKfN9IiLnYjudiIiIhNRaq5NsoaamRra0tJidDCKyoQ0NbdjW3IE8twsDPj9WzJ8e6gCNHqSIJT/HhS/fMA3PNHdEfNbuVm1pQenYgoiGeP3KGtQ1tIWORXdvf8z3qGT37t2ora01OxmkiHj3/IMLMr+/PT1ezcFDBieRqrTye1JDKudHK4/jQzJkR+F10mzXz+O1L8jZWKbaX3jeA8Bx/QQq0/P+O9x1HvfXvwPvkA+DvtFjEqxbkdNlUg+LFYwe3F5pcT5eWb1I1/4TT48Xf//yIbz23qea70kmUN2sthbrnaQns+qq7KuwP47BEBERERGRVQgh9kspYzaGMw5QF0LkAVgI4DMAJgDIk1J+J6ONkm4YoE5EwQGKb3+xEt/+9WHdZuGJ1/EaHUzqEoAA4JNAQa4LA0N++GMUP07sPLVqRzI7Rylc9D0fS6bXdCqDh05bnYGyj9eYs/AhGXICFeqkDEImp2A9YkSyD7er3Dam5N3+g7fQ7unFlRPH4NorxrFuRTQsXj2sae3ipMqM8OD2F/cf16Vel6i8Ct7T0aaNL8RPH7oBlVPGJbUPvdtayZSzrHdSNCvWz4L3T+MfTsDnl3C7BO767BSWpzbCMRgiIiIiIrKKeAHqrgw2WiCEeBzApwDeBPAvAL4H4B9ivHeTEOKIEGJXuvsjIqL0BJd4XPNca2ipRz3Ur6zBxmVVqCwvwcZlVRGd+NFLW/plIDg9uMzlvfOm4u7qchTkBoqhglwX7qkuR9O6xbqkzUqa1i7msSDLC7/n83IC17JbBP6m1zUdXAaw4ZGbsWLBDHT39mu+N3xpWyIj8BpzFhWW7CYymgp10njtCyI7YT1iRHTe4xaAS+d2RDZ5erxYXr8XHoWXLDcjjRXrG1GxvjEUyHr09EX8qrUL3kHWrYiA+PWwRGXGnLqdqFjfiK37OiAlsHVfh+aDP/1Dfsyp2znqda18QWvfszfsiLinoxXmuZMKTgeMaWslU86y3hmbFcoxo1ixfnbLP72JX7V2wTc8E5DPL/Fyaxdu2fSmySkjIiIiIiIiGpGTzoeEEJMB/BZAJQKT4oaLNSX7fwH4fwFcLYSYL6VsTme/RESUvOjZd4KDBlv3dWDrvg7DZyELBpN+df50rNoSWMmhfmVNaFaaScX5DPQCg97MZsXZcVQVfs+vee4g2j29ul7T4YOFG5dVxXxPdL6XrfyOnIPX2GhOyUfD87hgXUYV2TwHTjnfqsnGcWedlMh4rEeMFivvAWDZfCg8uE1rtSezmZHGHasX4etP70fnub7QawW5Liz9TBn+rnaWcnUrsg+r1F1j5YW/frcLL7d2hd6jVWY0rV0ccwbywSE/dhw6GXqfWwB3XVeODXd+ZtT+o/MFrfJKCGDft5bii9eVY/uBTrhFYEISABiT50bp2Hy4hMD5vsGUvr9ebS07l7PZupatUI7pzcrXTdPaxbj7x2+ju8cLnwzc52UlBXj50ZvNThoRERERERFRiJAyVjx5nA8IIQDsBTB/+KUmAFsBTAXwvwBIKaU7xufaAVwF4LtSym9nkGZKQU1NjWxpaTE7GURkguASj68dOoH+oZG8Pj/HhTuqzF86OdZSqt+9p8oSA0d6s+KysnZZXjJ8CWSnDLxkg1nXtBFLQxOF4zU2GvNR82XzHPB8myNbx92KdVJSg1UCAM3GekRs4XlPrIfbrZAPRQe3BakU3GZ2Gm//wVsRsy3PKivG64/davh+ydmsVHeNrocdP3MJJUW5SZUZGxrasK25A3nuQHB72dh8VJaXoPNsH9o9vXAJwC+BBxdEHgetfCHP7cId114e2nf+8Ep5WjOzA4F7+o/dvaYeazuXs0Zfy2aXEWay+nUTfv8P+PyWyO8oeXYZgyEiIiIiIvsTQuyXUsbszE9nBvWvIBCcLgE8LqX8++Gd3JPgc7sAXA3gxjT2SUREKQrOvjPgk6GBCLcABnxqzEIWazbkuoY2x83SAiQ3MzTpy8qz41iBWdc0Z38lo/EaG8F81HzZPAc83+bI9nFnnZTS5cTZNtPBekRs4XlP07oloZ+tlA9pzWAca6ZisySbxuADJ9/+YiW+/evDuj14cr5vELMnF2P1klnY/EY7zl1KbYZlu+ODPvqyYt01Vj1sQ0NbUmVGrBXt/mR8IfJzXFhw1UTNmcnj5QtP/bY9dAy1AtPdLgG/X0Ii+yt3xmLHcjZb17IVyjGjWP26UXm1NyIiIqdhu454DRARxeZK4zP3D//bEgxOT1Lb8L/XpLFPIiKK4unxYnn9XnjidDoGOygXXjURsycXY/5Vl2HFghno7u3PYkoTm1O3ExXrG7F1XwekDHS2V6xvxJy6nWYnjWyqae1i3F1djoLcQFWoINeFe6rL0bRusckpo0wF872GR25WMr8j6+M1FsB81HzZPAc83+bgcSfVsR2XOtYjUpNMv4cKrBDclmwagw+crHmuNfTgiR6aN9yG3/z3W3HXdeX4zX+/Fc0bbtNlu3ax6dX30Xz0DDbtfN/spNiCXepQ0WXG8bN9MfPE+pU1eLHlE3xhc1NEoPhr732KF1s+QWV5CTYuq0L9ypqIfDVevnCqtx8iTtoCk6FI3Hf9VKWOtd3K2Wxdy1Yox4xk5eumfmUNNi6rirjPiYiIyBzhEziQM/EaICKKLZ0Z1G9AYPb051P83KnhfyelsU8iIooSPnj15PLqmO+xSoekk2dpIXM4feDFzjj7KxmN11hAtvJRzjihLZtlGctNc/C4k+rYjksd6xGpsdLs/FaYwTReGqNn6VVhNmQniD7u2w90YvuBTh7vDKVSh1K5vRFdZtQ1tOGZ5o6IPDGY/oZHbsJPfvdRwjI5Ol/VyheCwewbd/xfNP7hBHx+GbGd4K8NBzvxlfnTlamv2q2czWZ7wArlmFHsdt0QERFRdllxBSfSF68BIqL40glQDwaYf5zi54I9WOnM2k5ERMPsOHil1dkOCSyv36vkIBFZn5MHXoiI9JCNfNRKgWlmSPccxAvE0foby01j8biTFfEhCjKKFQf2rBDcFi+NwQdOXjt0Av1DI4Go+Tku3FHFB0+MIqVM6XVKXrJ1KJXbG8H6YWvHWQz4Rq6J8DzxyzdMw++PncHP9hzF3g9PaZbJyeSr0flCsJz3+eXwjOkjfwsPgP/7Xx7CffOm4oOTFzBnylhLzT5tBdlqD1ihHCMiIiJSESdwIF4DRETxpROgfhHAeABjUvzctOF/z6SxTyIiGmbXwatYne0qDxKRWtKZ8YoDL0REmTEyH7ViYJoZ0j0H8epYWn8zo9xUeUZLval03IlSwYcoyAgc2Mu+YCDqgG8kENUtgAEfHzwx0p51S/Dl+r34+PSl0GsVE4vwwsM3mpgqe9CqQyUT9K1KeyNYP7xv3lQM+iUa3+2Cb/jelAD6h/zYuq8DQGACk6BZZcWYc3lJRKB4uvnqqd5+PLgwUM6vee4g2j29owLg61fWoK6hDe+d6EH1FePx5MpqIw6HY7E9QKS2Pe3deOjnzfjPr83HopmlZieHiIhMwAkciNcAEVF86QSodyAQoD4PwNMpfG7p8L8fpLFPIiIaZtfBq/DO9hdbPmFQGqWEDzMQEdkLA9OMES/wH4By9a90y3crBbbzYQyyOisGTVkpj3AqDuyZI/jAyUfdvTjV24+JxXm4unQsHzzRWUQeVFIA3/C01LlugUGfhM8vea0bKDroO1vtjVTKnlirZ4YLxtVHz2oedKirB4dP9OCj798Zei3dfDW8nL+qdAwWXDUx4qE01mVHYz2DyFkeeeYAfBJ4ZOsB/OHbnzc7OUREZBJO4EC8BoiItKUToP4GgOsAfEUI8fdSyt5EHxBC3ADgDgQmdtiVxj6JiGhY+OBVkN0GrxiURslKZiCMA0NERNbDwDRjxK1jSShT/8o00MVKD66x3kuUfVbKI5yMA3vZFx6ISsaJzoPmlpegdk4Zr3WDxQv6zkZ7I5WyJ7p+GCQQGGADgKI8N+6ouhwvRQWvB/klULG+MaL+nGm+GuuhNE+Pl3XZKKxnEDlDxfrGiN97vEOh1449cWesjxARkY1ZcQIH0hevASIibekEqP8MwBoApQB+IYR4QEo5pPVmIcRnAPwXAv1nXgD/nk5CiYgoILrjCwA+OduHivWNSnV8ZRIUzKA0SlYyQV2bXn0fzUfPYNPO9/Hk8mrzEktERClhYJr+EtWxVKl/pRu0bcUZHFnvJcoeK+YRThYc2PP0eHHk0wv40VfnRfydDyKT1SSTB3EQ2zix6pcTivJw09WT8LVFVxrW3kin7CkrKcAr73aNmh09/NdLAz7N4HQAcLsE7vrslIj6sxEBE6zLjmA9g8hZtn5tPr7+9H70DfpCrxXmuvFvD91gYqqIiIiIiIjU40r1A1LKwwB+jEDA+b0A3hVCrAIwM/geIcQ0IcQdQoh6AAcAzECg/2yjlPJTXVJORORQbpHa60bx9HixvH4vPBqDN+GzxaQjGJTW8MjNWLFgBrp7+zNJLtlUvIGwOXU7UbG+MTQr1vYDnahY34g5dTtNTjURESWjfmUNNi6rQmV5CTYuq+KsnjqJV8dSpf6VbqBL09rFuLu6HAW5ga6OglwX7qkuR9O6xdlIdtpUOe5EdmfVPMLpwh84DpdpnwNRtmUzD0rUZ+dEseqXS68pw5PLrzO0vZHuef/crFJk0tXr80u83NqFWza9afj1wLpsAOsZRM6yaFYpcqMG5XLdAotmlpqUIiIiIiIiIjWlM4M6ADwG4AoAywBcA+Bfhl8PTuLwcdh7g62zp6WUj6e5PyIiGuaTqb1uFK3lSvWaLcbMZZA4E5u1aM2wK2Xsm0LrdSIiIieIV8dSaRnKdGbQt+oMjioddyI7s0oewfZoQHTfwvYDnaGHj8NxhlrSi9H3XjbzIK0+O6czY4WmROdd67r7xV/Nx2PPt+KlgyP5nkBgAC7PLTDgk6iYWISTPV54BwPbFgIYGPTDD8AlArOoN/zdTYZfD6zLBlilnkFE+vEO+TGuMAd/e+vV+Ne3PkTfoD/xh4iIiIiIiBxGZBKkJYRYA+CbAMrivO0UgH+UUv447R1R2mpqamRLS4vZySAiHVWsb9T827En7jR8/9GDxEHBwWBPj3fUkrmfn3s5Ntz5Gct0yNc1tOGZ5g6smD+dA3kadu/ejdraWrOTEZenx4sv1+/Fx6cvhV6rmFiEFx6+0TLXIhERxcbgPdKyaksLSscWRAQecfZ9IgpKJ4/IRpkTvo/Nv21nexTA7A07MBDjSfxcF/Cnny23dJ8DqSkbfUFG11MS9dlRdgXz9qI8N6ZNKBp13j09Xtz1wz3ovtCP0rH5eGX1ooh8bNWWFnzUfRF/9PTCJQKTk8wqK8ZTD8zDtuYO7P7Ag85zfchzuzDg82NmaTH+2N2LPLcr5nUQJASw71tLmWcagG0RZ2G/BBnNCmMwREREREREACCE2C+ljNkJklGA+vDG8wF8HsAtACoAjAPQC6ATwFsAdkgpL2lugAzFAHUi+/n1u534xrOto17/0Vercddnpxq+f60A9FWfuwrf/vVh/Oir8/DUb9uxrbkjNEBilYF1MwbyVOjITicNVukcXbTpDRw/24dct8CgT+KKCYVoWrfE7GQR2YIK+Rc5Fx8mIyKrYzlqHdkoc+oa2tLcDowAAQAASURBVLB1X0fMv6kcWGrkdRzvgWMj+xx4bzqPnYK67TBphJ3EKz+0rrvo4PF4Ac/Rf/vNeydxqrcffo0hv4JcFy4vKcCx05fw4AK2o6yG5ZN62C9BRrPKGAwREREREVG8APWcTDcupewH8Kvh/4iIyGBfvG5qzAB1PYPTE3V4v/Ph6dDyscHlSrft6wgtF2vGkrmZCH7fhkduwk9+91HMgTyjqLDssgppMMrc8hLUzimzzLVIZCWbXn0fzUfPYNPO9/Hk8uqY7+EAKunJ0+PFgu/vQvgz1lv3dWDrvg5LBhARkbPZuQ5uF9HBg0aUOVoBigAMaY/qXTcz8jouKymAbzjKMvjAsc8vUTa2wNA+B96bztO0drFmULfVlJUUYGx+DvqHIvvs2BZLTM/8Uav8yHMLVE+fgNaOszFXiAAAKYEbH9+FD78fWCUzfPbtjcuqIt4b/beNy6rirrzpHfTj2PBDP2xHWQ/LJ3Vko45IRERE+uJYFRERkXkyDlAnIqLsEwLIdQmsWDAdz+zrwKDW1DhpitfhvXlXOzwX+kNLyn7xh3siZnoL/pyf4woNjujJiAZk8Ptu29eRtYE8FTqyVUiDUWJdJ3pfi0ROFZ13bD/Qie0HOmPmHRxAJT1t3tUOKQOzp57s8Vo+gIiInMnOdXA9qDRgmI2g1eh9uAXgk0CeQe1Rvepm2bqOtR44jhewmS7em85lt6Buq00aoQo9265a5UeOS+Clg524b95U7P/4bChYPJpPAhXrG9PKf6ZfVoiOM30Rr+W4gO/cPRc/bTqKjjOX4JfGPARlZ2bWT1g+qcdODzYRERE5BceqiIiIzMMAdSIiCzo6PIsOAPzD3foF3cbr8AYQ8bd2Ty++sLkJeW4X7rx2StY6ZPVsQMb6vgDgFgINj9yc9kBeMoMWZndke3q8+MyUEkwuycdbR7pt15nOjgYi40ipNdPbyOscQCU9RV9P4YEcVg8gIiLnMbsdoDqV6vHZCFqNtY/ZZcX45wfm6RpYqnfdLFvXsRGB6FqsdG+q9CCHXdgpqDub940d6JU/Hu46j/vr38HzDy/EpDH5odUn83Jc8A768XJrV+i92w90xt1WOvlPvJnT83Pc+OrCCrx34gI+bu4wpEyze75kZv3ESuWTU9jtwSYiIiI741gVERGR+VxmJ4CIiIzn6fFi2Y/fxr3/8jY8cQbZmtYuxt3V5SjIDRQPBbku3FNdjqZ1izX/tmf94qx0yM6p24mK9Y3Yuq8DUgYakBXrGzGnbmfa29T6Tnu/tQSV5SXYuKwqYmAvWeGDFlrM7sjevKsd7x4/h4+6L9qqMz3RdXK46zyu/YfXcPjEeZNTSmRde9YtwYyJRRGvVUwswp71S0K/xytPiFIVfT25ROCa2/rX87FiwQx09/abnEIiouSZ3Q5QlRHtPT0Eg1YbHrnZsDInfB8PLpyBK0vHZNQejUXvupkdr2Mrfadk+hwoNfUra7BxWZXu9x6pT6/8cc1zrbjQP4Q1z7ZGrD55+zVlAICiXHdoAhCXGPmcSwBjC3IwcUxe6Pd08p8dqxdh6vjCiNfGF+Yizy1QmOcGYGyZZtd8SYX6iZXKJyfJRh2RssPT48Xy+r1xx82IiMi6nDhWxbKNiMzGfIiicQZ1IiIH2LyrHa2fnAv8HGeml0Qd3lp/y8ZMU0bMFqN3B3+qT2GbMUNXdBrbPb0AAL+Ugc50kyuJmc64lOg6CR8wfP2xW/VOPpEjlJUUwOcPzJae6xYY9En4/DLinuUAKukp+noa8PmxaOYkLJpZikUzS81OXojdZw0kIv3YaaZevag6O2g2ZiLWcx9aZZERdTM7XseqfyfO/Eakv1Tzx+h8Nnrm8nZPb6ivLfznS4O+0HuGm9NwC8AP4J7rytHd24/SsQVp5z+V5eNQNByIPrIfiUG/xB1zLwdgTJlm93xJlfqJ6uWTE3G1CvtQaQUnIiLSnxPHqli2EZHZmA9RNAaoExHZWPQgAZBZ0LTW37LRIRurAZnjEnh0W2aBYHp28Kc6aJHpcUsnEC5eGlVojGdaWdXqaJj/vV0R72v39IYGEY89cacuaTcKAx5JRXPLS1A7pyxu3skBVNKTFa4ndrgQUbIY0DKaEwcMjRCvLNK7LLXjdaz6d1IlUJLIblLJH6Pz2R2rF+HrT+9H57m+Ue91C0BiJCA9mm/49W3NHfjo+yN9U8H8J9X+oPN9g5g9uRgfdfdiyA/0eIcAGBs0bvd8SZX6ierlE5EV2f0BGyIiGmGFsQU9sGwjIrMxHyItQkqN3jGyhZqaGtnS0mJ2MojIJJ4eL+pePoTfHv40Ynae2ysn4zvLqnTtTM9GEO2qLS0Rswm99YEHx8/1YcX86coEgm1oaMO25g7kuQMzvBqZtrqGNjzT3JHyPoJpzBHAoB+4s+py/PjBG1La9+7du1FbW5tiirXFepgCQFqV1ejrpPuCF2uWzho1YDhtfCF++tANqJwyLuP0Gynd80xERNmhZxlGsfFhLSJniFWPDw/IcoJ08zuWRc6RzT4HIhoRL5+dfllRaKb08NeD789zCwz4JNxiJCg98B6BO6qmaE4akW5/kKfHm9XJKeyeL7F+Ym9sazpXtvPKdOg9BkMUxLyPyJ6sULYRkb0xH3I2IcR+KWXMDhPOoE5EZGNlJQUoLc6PmKnHJ4FJxfm6VwCyMWtosPPfiCfv9OqQycZT2Jl+/2Aaf3ekGx1nLmH3kW7d05gqPWdc0ppVKHqp48I8t9LB6XzClIjIGuw+a6AKODs9kTNwdtD08zuWRc7hlJnfiFQTL5+9a/MezJ5cjNVLZmH9S3/AkF/ipb+9Gau2BCYOql9ZgzXPHUS7pzcUpO4SwIBPxpyNe/aGHRgIi2RPtT8o27N+2z1fYv3E3tjWdC5VVkggMgPzPiJ7CpZt3kE/BADvIMs2Isou1rFJCwPUiYhs7lRvP66YUIjPThsPAPjD8XPo7u3XbftmBNEaMfiuV4dMNgYtMv3+r733acTvFwd8qFjfCAA49sSdsT6SsUQPAGSjshpc6nj1klnY/EY7zl0a1G3bRmCQCRGRNbDDxTh8WIuInCLT/I5lkXMwUJLIHPHy2eYNt4Xed9d15aGfm9YtCf18VekYLLhqIj7svoDTvQOYVJyPq0qLQ8Hc4f1mX7yuHNsPdIY+m05/UDaDxpkvkRWxrUmA/R+wIYrGvI/I/k719mNWWTH+6OnFrLJiXWNCiIiSwTo2xcIAdSIimzN6ydFkg2j1XDJOz8F3K3bIZPr9d6xehK8/vR+d5/pCr00bX4ifPnSDUUlO6gEAoyurWgOGqmKQCRE5kQpLzKaTBna4GIMPa6VOhXuIiFKnR37HsoiIrMDKdZVE+Wy875aof3bzrnY0Hz2D+d/bNepv3kE/fv1uF556YF7SaWXQuPXocW9Y+f7KNrY1CWBeSc7DvI/I3qJjHto9vWj39GJO3U5lYx6IyH5Yx6ZYXGYngIiIrC3ZINrwAGU9BAeFGh65GSsWzNB8AtjT48Xy+r3waAzON61djLury1GQGygSC3JduKe6HE3rFuuSTqMk+/1jqSwfh6I8d8RrhXluVE4Zp3cyMaduJyrWN2Lrvg5IGXgAoGJ9I+bU7Rz13vqVNdi4rAqV5SXYuKzK8IcrrCCT80xEZEVP7HwfzUfPYNOO901LQzp1FpZhxuDDWqnTu85NZEWJ2oAq0iO/Y1lEerHiPUTZdbjrPK79h9dw+MT5lD9r5bpKonw2ne8W3m8Wz+UlrP/anR73hpXvr2xjW5OInIh5H5G9WTXmgYiI7E9IKc1OAxmopqZGtrS0mJ0MIrK5VVtaUDq2IGIGoeAgTfTTukHZmqG8rqENzzR3YMX86Zozd29oaMO25g7kuV0Y8Pnjvtcu5n/vtxhflIvVS2Zh8xvtOHdpMGKG8UR2796N2trahO/z9Hg1Z2RIptOLM/+QGQ53ncf99e/g+YcXGvLgBhGNZnZ9QZU00Gjx6pk0gtcv0Yhk2oAqUiG/Y/uLAOveQ5Q9t//gLbQPLxn/+mO3JvUZs+sqRrbzM/lu0f1mbgH44gzZBbfJ/DpzqhxDPe4Ns+8vq1Kh7kUUT7JjMESpYN5HZG9OjHkgIiI1CCH2SyljViwZoG5zDFAnIrNlGqCcrlQ65lXqkFFlcCSRVDpHM2kMc2CczJDOYDsRxZZsuTZ7w04M+EaX23k5LhzJ0oC6WXUWIj3w+iVicJYe2P6yh3T7FXgPUSIV6xs1/3bsiTvjftbsuoqR7fxE3y3RPRneb9Y/5EdRrgtjC3Lx6YWRVfTcAri9cjK+s6wKZWMLmF/rQJVjqMe9Yfb9RUTGYIA6ERGlSqWYByIicpZ4Aeo5GW74cgBLAVQCmAAgmZ4OKaX8Wib7JSIi6zBiybhkBlub1i7W7JiPFt4w27isKu106SF8KVa7DDCd6u3HigUzIhrDiUQPjG/d14Gt+zo4ME6Gih5sb/f0hl5LNNhORLElW67tWbcYy+v34tjpS6HXKiYW4YWHb8xGMgFwmVuyNl6/RKm1ASkS21/2km6/Au8hSmTH6kX4+tP70XmuL/TatPGF+OlDNyT8rFl1lXTb+ak86BH+3YTAqO8Wfk+uXjpr1HZj9ZuNycvBSwc7Q/vwSWBScT5u2fQm8+sMqVbm6XFvsC1ARERERIBaMQ9ERERBaQWoCyHGA/hnAF8F4E5jEwxQJyJykHQClONJZrDVah3zqg2O6CmdxjAHxpNjlRn3rSKTwfZk8ZyRU6RarpWVFGDIH1jdK88tMOCT8Pll1u8Tvess6WJeQelQ5folSpbeeZ3V2oAqYfvLHjLtV+A9RIlUlo9DUV7kcFBhnhuVU8Yl9Xkz6irptvNTedDD0+PFjrYTuPKyMfjo9EXMLitGd2+/5j0JIGK7sfrNbtn0BgCgOM+N3gEfivLcaGw7gYZHbsJPfvcR8+sMqFjmJbo3kqkz6XF/sR1KRERERERERHpLOUBdCFEI4A0A1wEQaexTpvEZIiJKgWqdyXo9rZvqYKuVgnSCgyONfzgBn1/C7RK467NTHDvAxIHx5Nhxxn0zZTrYngyeM3KKdAb955aXoHZOmanltiozjDCvoHSocv1SYqq117Ip/LsbkdcZ2Qa083lj+2uElc9zovpXtgIcyd7O9w1i9uRirF4yC5vfaMe5S4NJf9aMukqq7fx0HvRY+P1d8Evg7PCxOOLpxRFPL/LcAndXl4fuyXBa243ef++ADwBwacCHSwM+3PXDPfjK/OnMrzOgYpmX6N5Ips6kx/3FdigRERERERER6U1ImVq8uBBiPYDHEQg0Pw/gxwgErHcC6E9mG1LKj1NLJqWrpqZGtrS0mJ0MIsqyuoY2PNPcgRXzpyfVmWyVAVhPj1dzsFXldCcjegAqSNUZ1Hfv3o3a2lpD97FqSwtKxxZEDIyHD7Y4Tfh9Gr2kc5Cq14uVzP/ebzG+KDdisL15w20Zb9dq9ziRHjY0tGFbcwfy3C4M+PxJ10ucjHkFkTOk2l6zk7qGttDssdFUz+vsft7Y/gqw+nmOV/+y+ncjSlcq7XxPjxd///IhvH74U/gl4BLAn1ROxneWVY3qe9SquwPAPdXl2HDnZ/DUb9uxrbkDuW4XBob8cAvAJ6HZpxns+3zt0An0D2mP3bkE8Mo3bnF0fp2JTMu8bPWlZ6t9yHYokZqyMQZDRERERESkByHEfillzM6VdALU9wOYB+AUgPlSymMZp5AMwwB1ImdJtzNZ5UHK6A7/x55vxUsHO5GX48KgjYLdPD1e3P3jt9Hd44VPAm4RmNHn5UdvVjL4np2j2Rd+n65eOsu2D2vYlZ0fsCHSwkC31KmeV1jloUYiVTk5+CdeEJ9qeV00J583J7HLeY5V/9r9QbctvhtRttz+g7fQ7umFQGCWplllxXj9sVtHvc/T48Xy+r04dvpS6DWXAPwSeHBBoL8y/J5c89xBtHt6kZ8T/wHe4IMmAoFthVO9zHSKbPWlZ6t9qHo7lMipOAZjfexHIyIiIiKniBegnpPG9mYh0C/3YwanExGpJdFyztHSWbY226KXFv39sTMAgNuvKcOE4nzbLDddVlKApdeUYVtzR2igauk1Zey0Is371CUCFTJVliOm+FRcQprIaHosMe4kwUGraeMLlc0ruOQ7UWai22vhs7LaXfR3D84gmxeW10ECy+v3Kjd4n2o7m6zJLuc5Vv0rXuAhkRYnBlTN3rATA76R/pdgbHi7pxcV6xuRn+NC09rFePTZg2j95BwGNB68enDhjFB/Zfg9eVXpGCy4amLEAySxnOrtx4oFM/BRdy9O9fbj/KUBfHphAC4B5doHTpPtvvRs9SWxz4qIyBjsRyMiIiIiSi9APeiwbqkgIiJdpNqZrPIArFaHf1DjoZMAAsG5gD0GzoIDUIkGqpzADudTL1r36fm+QUybUMTrxUJ4jxNRPMFBqxPjC5XLK6zwUKMqWIdJzMnHKLy9FgzQ/rD7oiOOQ6y26uyyYvzzA/NCeZ2qg/cM2nIGO59nO383Mo6qeXKm4tVD7vrsFLx0sDNURgfl5wjcUTUFG+78DDb/NnBc7q2eiiEp8cq7XfDLQP/klHGFqJhYqPlwbjBY3dPjxZFPL+BHX50X833fvacqIo2xVkYgc5jRl56tviT2WRER6Yf9aEREREREI9IJUD8GYC6AYn2TQkREegjvTP73PR+hse0EVt82K+bAo8qDlNEd/kEuAH5g1ACAHQbOONPsCDucT71o3adPPTAykOn068Uq6lfWODooj4hiix60+uRsH7a+8zFebPlEmUErlR9qVA3rMIk5/Rg929wBKQHf8O/hs7Kqcs8bJVbgU2V5CV5s+UT5wXsGbaXGqnVeq57nZI63Vb8bZZ+dA6o8PV7c9cM96O7tj6iHRH/n8OB0lwAGfIFA9Jdbu0Kvv3SwM/RzcDWQG2aMx5PLqxOmI15d6HDXedzzo7cx5Jehv7O/UB1m9KVn6/zzOiMi0k+wH63xDyfg80u4XQJ3fXYK+9FSYNU2JRERERGNJqSUid8V/gEhvg3gfwHYIqV8yIhEkX5qampkS0uL2ckgIpP8jxdasf1AJ750/VTNAZJYs/CEd0ib6apvNsIfp5h6cMF0vLj/eMQgUpAdBs5Utnv3btTW1uq+3ehBwSCnn0+V71NKTTL5MhE5i6fHqxn8rdIAzIaGNmxr7kCe24UBnx8r5k83PbhYpcEq1mES4zEKsMo9n008JvZT19CGZ5o7lCgrnIDHm/RklTw51XpgvHpIMIjstUMn0D8k4RLAZWPyUFKQi8vHFeCq0mIcP3MRJUV5EcdlQlEebpo5Ed5+HxoPncQVEwrRtG5JWmn4YOOfsq5kEeyjI6JsMWoMhozHMj1zbOMQERERWYsQYr+UMmYHSTozqP8QwF8DeEAI8UMpJaOfiYgUE935sf1AJ7Yf6IzZ+aHy7Cifm1WKP3b3ovNsH4Jx6gLAjVdPxJRxheju7bfMjJ4qBVCpzCrnM9tUvk8pOanky0TkLCqvaBNOxZlXVZqJm3WYxHiMAsy+51Vsl5h9TEg/dp55WUVmHm8V8xLSh1Xy5FTqgVpBYi4BNK1bjLKxwe8c6H30S+COuZeP2u6GhraI4/Jpjxfb94/MpP7J2b64q6LEqwtVrG/UTH/TusVxvx9lF/voiIgokaa1i3H3j99Gd48XPgm4RaCO9fKjN5udNOWxTUlERERkP65UPyClPA3gHgBnAbwmhPiqEELonjIiIkqb1uoYqa6aYbZf/NV83Dq7FOGplgCumjQGTy6/DvUrayw5cEba0j2fnh4vltfvhUeBYDmiWOySLxORMYLB3w2P3IwVC2agu7ff7CSNUr+yBhuXVaGyvAQbl1WZOkvgnLqdqFjfiK37OiBlYLCqYn0j5tTtNC1NVqmTmonHaISZ97yq7RIr5IOUWNPaxbi7uhwFuYEu54JcF+6pLmdwpUHMPN6q5iWkD5Xz5HTqgcF7xR01inXvvKkoG1uAOXU78cy+joi/bd3XMWqb0cflc7NKI+5BAMh3C8wsK47ZPxWvLpTrij3EJgBH1pWIsoV9ykRkhLKSAiy9pgx+BGZN9wNYek0Zy/QksE1JREREZD8pz6AuhPj58I+HACwBsAXAD4QQLQBOARg9FUUkKaX8Wqr7JSKi5O1ZtwRfrt+Lj09fCr1WMbEILzx8o4mpGpHKTFunevtxxYRCfHbaeADAH46fGzUwpuKMnkF82j916ZxPlWZQTRdnoLO3RPkyzz+Rs3EWvtSoOhO3ynVSVfAYBZhxz6veLmE+aA98ECW7zDjequclpA+V8+ToemB+jgs+v8TP/kL74cngveKTgVnT/RKYXVaM3v6h0Db//uVDeP3wp/BLaNYtYx2Xq77ZCH/Yc+f9Pon3unqw8PFdqKm4bFQbX6su9Pb6JVjy5G709vtC781xAYtmlaZ/sIgoITv0KRORmtj/kR6z25QcpyEiIiLSX8oB6gD+AghNZhv8txRAKj3QDFAnIjJQWUkBfMOjI7lugUGfhM8v4zams9no3vTq+2g+egabdr6PJ5dXx31vMrNzWmngTJUAKpWlcj7tNDjOARF7S5Qv8/wTESXP7MEqLSrXSVXBYzQi24OebJdQtjAQI7uyfbyZl5DZYtUDAeAff3UYrz92q+bnTvX248GFkfdKsF5SVlKAj7ovwi8Bt0BKdcvPzZqEt46cQvTaaH4JNB89g4WP78JH378z9LpWXeiWf3ozon8LAIb8wN4PTydMAxGlzk59ykSkJvZ/pM/MNiXHaYjITHxIhigzvIfUJaSM7jpL8AEhEs2QnoiUUroz3AYlqaamRra0tJidDCIywaotLSgdWxBz4CWWuoY2PNPcgRXzpxvW6I7u+A2ye8fvhoY2bGvuQJ7bhQGfP61jrFplavfu3aitrTU7GfD0eLFxx//Fa4dOoH9IIj9H4I6qKdhw52eUOE7JcOp94USx8uXdH3Tz/BMRpSHVui6RarLR/oqmR7vESlRrQxHZhdPyElLPqi0teO29TzX/fuyJkYBwrbIg+Hprx1kM+EaPkbkEIgLL43ns+Va8dLAz7nsStfE9PV7c/eO30d3jhW84UL6spAAvP3qzJcowlcpcldJC6gr2Kcd64MqO1w3vC2tSZQyGyAk4TkdEKvgfL7Ri+4FOfOn6qQkneSSi0cwYc6ERQoj9UsqYA7XpzKB+ZYbpISKiLEj26fxszhai9VBUqg9LhbNC56oeT/vzqf3YRmbOClxD/UNSiRlUU8EZ6JwjVr4cb0CMiEazQrlP2cGZqMiqkm1/pZvfxfuc02a2tmsbimUhmc1peQmpp35lDQ53ncfXn96PznN9odenjS/ETx+6IeK9WmVB8PX75k3FoF9m1Ca/ODCEKycV4eipS6P+lp/jwh1VibdXVlKApdeUYVtzoE4w4PNj6TVllsnnVSpzVUoLqUvVVbmMwvuCiCg+jtMRkZmi+4u3H+jE9gOdfEiGKElcIUt9KQeoSyk/NiIhRESUPeED2tlsdO9ZtwRfrt+Lj0+PDNhUTCzCCw/fmPY2rdC5mkkAFStT8cWa1WDrvg68uP+4ZY6P0wZEKBLPP1FqrFDuG4HBiET2kWz7K938Lt7nnPJgh93bUE4tC0kdRuclrPdQMirLx6EoL3Kh3sI8NyqnjAOgXRZE235gZObzdNvk9StrsGpLCzw9/bg44Iv424Av+e1Z8eEPlcpcldJC1mDFey5VvC/si/UlIn1xnIaIzGTEJI9ETsIHzdTnMjsBRESUHYe7zuPaf3gNh0+cjxjQLispQI4Q8A76kecWhja6y0oK4PMHKtK5bgEA8PllWvuaU7cTFesbsXVfB6QMdK5WrG/EnLqduqY5FZ4eL5bX74VHx87sprWLcXd1OQpyA0V2Qa4L91SXo2ndYt32YWV2OT7BAZGGR27GigUz0N3bb3aSKIt4/okSS1TuG1EGqyS87kZE1hY+6CkERrW/0m3nGNU+smL+apc2QjQV28BERmC9h5J1vm8QsycX40dfmYfZk4tx5uJAqMyKLgvyc1yYOCYPW/96/qgyYsq4Anzp+mlx2+SJysP6lTVYNGsSHlw4AzddPRGzJxfjxqsvS6mNX7+yBhuXVaGyvAQbl1VFPAyiKpXKXJXSQtZgxXsuVbwv7Iv1JSL9cZyGiMyyZ90SzJhYFPFaxcQi7Fm/xKQUEVkLHzRTX8ozqBMRkTWtea4VF/qH8IWn9oRei5496LbKy3HZmLyYs4Uc7jqP++vfwfMPLwzNRpSOueUlqJ1TlvHMJCo+BWfETHasTMVnl+PjlNksKTaef6LEEpX7dp1NlrOdEdnTqd5+zCotxhFPL2aXFUcMeqbbzjGqfWTF/FWVNoLesxqq2AYm0hPrPZSq5g23hX6+67py1DW04ZnmjlCZFV0W9A8N4NW2k6NeX3pNWaiM02qTB8vDuzbvwSurF8XM11MNbrXD7LeqlLmqpYVIFbwv7If1JSLjcJyGiMwSPcnjoE+mPckjkVM5YYUsK2OAOhGRzVWsb0z6vTvaTgAIzCoULRjgvubZVrz+2K1pp0evBr5KnatGdwqyMhUfjw8Rkf1plfu3bHrT1gNzDEa0L7MDkszev5NFtx2OeHpxxNOLOXU78cHGP027naN3+yheG6dp7WLlrx8V2gh6B/dnc/UzchZVygTWeyhdWmWWSwACGPU3AHAJoOGRmxOWEdHb9lzox/zv7dKlvWHFh8BiUaHMVTEtRKrgfWEvwfpS47td8EnALQIPabG+REREZG16TfJI5FR80ExtQkoZ+w9CfC74s5Tyd7FeT1f49shYNTU1sqWlxexkEJGJDnedx9ef3o/Oc30Rr+e6gEF/YHmgkz3eUYN/wUHJeAHux56409C0J7JqSwtKxxZEVNTNWIrT0+PVHES1a7DA7t27UVtba3YyiIjIQWKV+9+9p8r2ZfCGhjZsa+5AntuFAZ8fK+ZPt3QACwUEZ/g063yavX8nS6btkG47R8/2Ubx0bv5te8bXjyoBsUaIDmYM0iOY8ZZNb+CTs334wrVTQqufhZ9jOx9XMo5KZUJ0vee+eVPxydk+XtMUV7wyCxIZtRc8PV4s/P4u+GMMo4Xn69H5b7z82MhygoiI7CPWGAzLECIiIiIiUpEQYr+UMuaAVLwZ1HcDkMP/5cR4PV3R2yMiIgNVlo9DUZ474rWSghw89zc3YltzB3Z/4Ik7y96O1YtGBbhPG1+Inz50Q1rp0XPAXJWn4FSazZ2IiJzDaUFoWuW+3ctgznamrnTuQbOX4zZ7/5Rc2yHddo7W59K5VmOl85V3u/Bya1foPZlcP3aZNTYWI2aBjr53tVY/s/NxJf2pWCZE13ve+sCD4+f6eE1TXFplKyTw6LMHMW18YdrthbKSAiyrnoqXDnaGXos1W20w/9208318crYPV0wo1MyPuVoAERGlq2ntYtz94z3ovjAAn1/C7RIoG5uPlx+92eykERERERERxZQoUFyk+DoRESnofN8gZk8uxuols7D5jXacuzSIyvISbFxWhVVbWuIuFxQrwL0wz43KKePSSks6A+ZWCMAzK3jMCseGiIiMwSC0ALsHcKvyQB6Nls49aHZAktn7p4Bs51vplhfR6Tx+5iJKivIyun5UDIjVmxEPMCe6d51wXEl/KpYJwXoPr2lKVayyNVj+HS8pQGlxPn6wvBqvvncy5XL3zMV+FOS64B30wyUAn0QoX4++VrcfCASyNx8N/B7r2uVEF0RElK6ykgIsvWYytjUHypYBnx9LryljGUJERERERMqKF6D+jym+TkREimrecFvo57uuK4/4W7ygp2Dw85mLA6MC3FOVyeCiUQF4dpjNncGJRETOw4CdSAzgpmzL5B40OyDJ7P3bRabtiEzyrVT2nWl5ESudGxraMrp+VAyINYLeDyEkunedclxJXyqXCbymKVXhZdaLLZ9ElH9d5wN58J//fB/e+eZSPPrsQXgueJO+1qdNKIL3yCnMKivGUw/Mi8jXg9fqr8JWGIl2T3X5qGtXz3LCypNXBNO+eslM/O3WA3j+4YVpT4pCROQUdp+ogYiIiIiI7EUzQF1KGTMQXet1IiKyn2Dw84r500PBz9EB7tG0BkViDS7Wzi7FyZ5+zUEhrYAKAWDfhqUZD7pYObibwYlEROYxOwCAATtE5sr0HjR7MNns/duBme2IVPZtRHmR6fWjYkCsEeW6EQ9PxTv2Kh5XsgZVywRe0xQUnUcnk2drBY37JTD/8V0AoFmOhm//lk1vRvS9tXt68YXNTaP63t758DQAwCUC+whyCUACMa9dPcsJK/dvBtP+yDMHcKF/CGuebcXrj91qdrIyYnZ/ARHZHydqICIiIiIiK4k3gzoRETmQp8eLBY/vQth4ii6znccaXPyw+yL+2N2rOYASK6Di8pICfHzmUkaDLnYI7mZwIhGReTa9+j6aj57Bpp3v48nl1VnfPwN2iMyV6T1o9mCy2fu3MjPbEens24jyQo/rR7WAWKsE9iU69omOKwPmKBaVywTV8goyR3QenUyeHSz/gNFB40Fa5Wj49pPpe9u8qx2eC/2YVVaMWWXF2HHoZOhvfzr3ckwozjfs2rVy/2Z02nu8QwACDwFUrG8EABx74k5T0pYpq9QrsoF1DyIiIiKi5LH+TER2JaSM0TtHtlFTUyNbWlrMTgYRKSy6olvX0Iat+zoAAG6XgM8vIwZgtCrD0QMLQXlugSPf+wIAYNWWFpSOLcDzv+/AoG90+RNrAGVDQxu2NXdAq7hKddDF0+PFqi37UVqSj98d6R41wJSosp9MwyBbjYfgsclzuzDg80fMdG+03bt3o7a2Niv7IrIbdjBYl1ZZZ0YAQLBMDQ/YCQ8wIiJj8R50Jk+PVzNQzegyPd1981rVplK5ng11DW14prkjq+1GIr2xLeUcWnl0NK08O1j+nentx45DJ0OB6m4B+CRGlaNa+wvOgh7d96b1frcQ+PU3FmWlzDWzXhIrLancm8G0v3bo5KjjOG18IX760A2onDLOqOQawmn1imSw7kGUGY7BEBEROQvrz0RkZUKI/VLKmB1hnEGdiMjhgrO6LHx816gZhXzDL3gHE8+0Fz2rUHDA54vXlYeCwiWA7y6rwuolM5Oe/Ts4Y9Ydcy9H3S/b0HHmEvxRA0mpft/W4+cws7Q4rZkEk5kFJ1sz5XA2MSJr4mxa1qX1cK8ZD/2qPNslkRPwHnQmPWckTzWQK919q36tmhls6pRVqaw8wy5RNLalnCM6j87PcWHS8GzkAz6J/BwX7qjSzrOD5d+qLS14cGGg7+zvnjmAo6cvQmB0X6dWmXC+bxDTJhSN6nsLvr/xDyfg80u4XQJ3fXZKKDg8G2WuSitrpXpvBtM+4PNDABEreRbmuS0XnA44p16RDNY9iIiIiIiSx/ozEdkdA9SJiBwquqKrFVp309WXYcr4QnT39sfdXnBgwTsY2GZwgvTtBzqx/UBn6H3BgYpkB1DCAypunjkJHzd3pDXoEv192z29AAC/lFixYEbC4O5kGgbpNh7SDcpQPdiEiCKxg8H69qxbgi/X78XHpy+FXquYWIQXHr7RxFSRnXBWUCL16fWQaDpBlnZ8QPWJne+j+egZbNrxPp68vzqr+zYzsC+b+T0D5shKDnedx/317+D5hxdGBKiyLeU80Xn0gM+Pojw3BoY7HNN5UGvIH7iGJIBZZcURfZ2xygS3ELg04MPqpTNHBZ3f8k9vRlyTPr/Ey61dePXQyYTXpJ5lgNl1g0zuzWDaG//QBb+UqJg4Bn2DPpy7NGh0sg2h0gMDZmPdg8je2HdFRESkL9aficjuGKBORORQsWb6uWJCIY6FBd0BwFWTikMBE4k6nk719uO+66fiTO8Amv54KjQDe7jgQIUAUDo2Hz+4/zq8eujTpAZQMhl0STSzUbKfj9cwSLfxwBnAiJyBHQzWV1ZSECrbct0Cgz4Jn19yMIZ0wzoBkfoyfUg0k0Cu795ThUefPYhJY/Ms/4Bq9HHYfrAT2w92Zj3Y1KzAvmzm9wyYo0xlMwhpzXOtuNA/hDXPtuL1x24Nvc62lDOF59F3/bApNNlE0NZ9HXhx//GE5UZ0mQMEJq5o9/RiTt3O0Oejy4S3PvDg+Lm+mHl109rFuPvHb6O7xwufBNwikN++/OjNCb+XnmWA2ZNXZHJvBtNu9TpNOLMfGFAF6x5E9sa+KyIiIn2x/kw0gg9D2hMD1ImIHCrWTD/B4PQ7r50CAPjD8XMRswltenV4drud7+PJ5dWjthkcWNjQ0Aa/lMhzCwz4ZMRSrS4B3F45GcX5OXjpYCdebTuJjfdeC0+PF8vr98ataGQy6JLJzEZAcg2DVBsPnAGMyFnYwWAPc8tLUDunzPEDzqQv1gmInCOTQC47BQJIjSW8tFb2Mkq2A/vMyu8ZMEeZyEbeU7G+MeL3dk9v6LVjT9zJtpRDhefR73xzKZbX7w31XaZSfjatXYy6lw/hN+99GnrNJYA/qZyM1Utnhfojg/tLJq8uKynA0mvKsG14pccBnx9LrymLe03asc7PezOS2Q8MqIR1DyL7sWM5RkREpArWn4kC7DQGQiOE1BoRIluoqamRLS0tZieDiBTk6fFqzvQTPYgQa6YhAJodT3/x82YcPtGDH9x/Hf7xV4dHzXAUi0sEghFWzJ9uSEUj+H1Pnh+pzE8ZF/v7alm1pQWlYwsiGgbhAw+J3hP9tJ+nxxuY1f3drtA5uOu68qRndTfT7t27UVtba3YyiCwnmXyEiJwnWCeIFbCqep2AiFK3oaEN25o7kOcOBHKVjc3HK6sXJf1ga5CVAwGCDyiHr+BVMbEILzx8o63zPZXy+z3t3Xjo5834z6/Nx6KZpVndN1lDNvOew13n8fWn96PzXF/otWnjC/HTh25A5ZRxANiWsqtkZsbSuhbdAvjw+3cm3IfW510C+Or86XimuSOiPzLZvDrVazK43dcOnQwFdN9RZf06P+9NIiJjqDYGo1JbhoiIiIjsxY5jIE4jhNgvpYzZIcQZ1ImIHCqVmX60HmbSen3ahEK81d6NV9tO4qrSMeg614eLAz7kuwXGj8mDEMC5S4PwDo5UMPzDmwrOupDnFqiePkG3pVuiZ1AHgBPnvbhl05tJV2iSmQUn3nuin/YbNau7REqzuhOR9XA2Lf1xqS+yA848SOQs4TPirHnuINo9vXFnBMlk1nVVlZUUYGi4ERhcecvnl7bP91TK7x955gB8Enhk6wH84dufz/r+SX3ZzHsqy8ehKM8d8VphnjsUnA6wLWVHnh4v7vrhHnT39scsB4NtvYZHbsJPfvcRXnm3C34ZGJycMq4QFRMLE24/+PkvbN4z6u9+GeiHBML7I12onj4e08YXJsyrU70mw8sAALap8/PeJCJyBpXaMk7Cvm8iIrI7lnUE2HMMhEa4zE4AERGZJxgY0fDIzVixYAa6e/tjvm/PuiWYMbEo4rWKiUXYs35JxGtz6naiYn0jtu7rgBwe5HntvU9xccAHAOj3SXza0w9PT3+oEyu4rYLcwM8FuS7cU12OL15XHgrm1kPT2sW4fFwB3CLwu1sEZlBvWrdYl+3HE+u4VKxvhJQSl4/Lh9sVSJTbJbKWJqJUHO46j2v/4TUcPnHe7KQQjRL+8A9RtgRn/vXouMxisvUyIkqOEfepXupX1uDFlk/whc1NodWmgm2EOXU7R73froEAc8tL8ODCGfjl3y3CgwtnoLK8xOwkZUW28nute6BifSMq1jeixzsEAOjxDoVeszuV8wUVZTvvOd83iNmTi/Gjr8zD7MnFON83aMh+SA1z6nZi/uO74LnQH9FXNnvDztB9GmzrbdvXgbH5OZBAaJKNRTMn4hd/tSDuPsI/f9+8qRF/cwGYOr4w1DeZnzPcH/nZKfj9sTP4/bEzuufVc+p24pnhgPigrfs6Ypb9REREKmLfVWJ6tznY901ERHbHso4A+46BUIDQmv2W7KGmpka2tLSYnQwiUtjhrvO4v/4dPP/wwoiZqaIt2vQGjp/tQ65bYNAnccWEQjStiwxQj17iLz9HoH8odjnjEsAr37gF25o7sPsDDzrP9YWWuI8lnaVbop+23NDQhm3NgdmQBnz+iOV7jRRv6cOnfttuSpoypdrykmSs23/wFto9vZhVVozXH7vV7OQQAeBSX2SuuoY2PNPcYZlym8iJVL9PU10efdWWFpSOLcBX50/HtuYOdF/wRsxYmmhfdp6Fxu7fL11a98Ce9m58/en96Bv0hV4rzHXj3x66AYtmlpqR1KxRPV9QUSZ5D9lTJnlu8LOtHWcx4BvdX+gSwL3VU7H9YGfMz7uFwK+/sSjhtajVVhQA5PB+/BKYVVYcelBMi57ty1TLfiLKHtYnSUUcg7Emvdoc7PsmIiK7U6msY3tADeyHtDYhxH4pZcwTlpPtxBARkVrWPNeKC/1DWPNsa9zA07nlJaidUxZRGYgW/VTbgM+PKycV4eipS6H3uAVw13XlocGXjcuqsGpLS2jb/77nI/yfD0/h3KXBjJduCX/acuO914Zmd4j3HYwQ72k/s9JElIzoWRTbPb2h1449cacZSSIK4VJfZIboDrOt+zqwdV8HB4eIFKLnfWpkx3SqM4KEd8RuXFaV0r6i20WpsELnfCbfz44S3QOLZpUi1y0QPjl1rlvYOjid5Xf6Msl7yJ4yyXODn71v3lQM+iUa3+1CeJy6XyJmcHpEW08CRz69gB99dZ7mfrTaiucvDWDaZWPw1fnTcdcPm+IGpxvRvuRsYGQ0K9TbVMX6JBFlSu82B/u+iYjI7lQq69geUAP7Ie0r5QB1IcQ4KeV5IxJDRETZk0rgqafHi7OXBvHdZVWhoHIt0QHXv3nvZGhGIpcAfBKjBl/CKxo/WF49MtN5jgveQT9yXCKlTvVkOoKyXaHRCkRnJYtUtmP1Inz96f3oPNcXem3a+EL89KEbTEwVUQAH98kMKnWYEVFset6nRndM6/mwaqyApETtomSCmFTunGfQ8Yjwc5nMPeAd8mNcYQ7+9tar8a9vfYi+wdgrmdkFy2+izGWS50Z/dvuBkSD04GzmV04cg74hH85dGoB30A+3S8Dnl8hzi4i2Xl1DW8JySaut+NQDI0Ht73xzKepePoTXD38KKQMB6ZeXFODjM5dCKzzGal8muxKlFk5UQUba9Or7aD56Bpt2vo8nl1ebnRxLYH2SiPSid5uDfd9ERGR3KpR1bA8QZUc6M6h3CSFeBPDvUso9eieIiIiyI5XA01SCEsIDrlcvmYkjn15AUa4LC66amPTgS3Cw5mxvPxoPnUTz0TMpfTe9OoL0nHWGgehkRZXl41CU5454rTDPndYgLJEROLhP2aZCh1k6OJMeOYke92m2Oqb1bCPEarMlahfFa+dZoXOeQccjos9l8B4QAjHvgSNh5/Dh2plmJDmrrFp+E6kkmTxXq84Z67MTivJw09WT8LVFV4bacpOK87GtuSN0n84qK8ZTD8zDtuYObNv3Mbbu6whtM1G51Hm2D6XF+fjB/dfh1UOfjmorlpUUoP3kBUgJCATySp9fJmxfJrsSpRb2D5IRYj0Esv1Ap1L1NlWxPklEejGizcG+byIisjuzyzq2B4iyI50A9UIAKwGsFEIcAfBTAE9LKU/rmjIiIjJUMoGnmQYlBAfJV8yfHhp0SWbwZfcH3RH7/eRsHyrWNya9X706glSeLZAoW873DWL25GKsXjILm99ox7lLg2YniSiEg/uUinSDtKM/l06HmdkB4qzTkNNk2rFtpY7pRG22WO2iWza9mbCdl+gYmJ2vAQw6BrTPv0sAs0qLccTTi9llxeju7TcxlWowe8ALUOO+odTxvAUkk+dq1TljfXbpNWWh9wTbcqu2tIy6TyvLS7BxWRVWL5mZUtl82Zg8eC70o2F/J568vzrib9F5pxz+X+e5Ps3+y1RWolQJr19nkFKm9DqNYH2SyN6yXQ7q3eZg3zcREdmd2WUd2wNE2ZFOgPohAMFcYTaA/w3gcSFEAwKzqr+hV+KIiMhYiQJP0w3MyDSwXY+AkEw6gqwwWyBRtjRvuC30813XlZuYEiJKBgMQtKUbpB39uXQ6zMwKEGedJjW8f+wj045tK3VMJ2o7xWoXJdPeSnQMVHnwRYWgYzPFOpcDQ374JXDE0wsg8O8RTy/m1O10dN5v9oAXoM59YyYrlrU8byO08lytOqcAsG/D0oiHPO+Yezkee6EVx89eGrX9ePdprHLJLQQe3Ra4niCBR589iNZPzmEgfCbpg53YfjByJmmtmN0ct0vzu6eyEqVKeP06w551S/Dl+r34+PTIfVUxsQgvPHyjiamyDqfXJ4nsLNvloAptDiIiIkoN2wNExhPpPEEvhJgP4G8ALAdQPPxycENHAfwbgF9IKT/VI5GUvpqaGtnS0mJ2MojIgoKDhtPGF6KhtRN5bhcGfP7AbOgJOnI8PV7NgIdkByA3NLRhW3NHSvvVix7pt7vdu3ejtrbW7GSQw1gxmIEo2+oa2vBMc0dWy03VRQfMBCUK0k73c3pvIxOq1mlUzc95/1C4VVtaUDq2IKJjOnywWSXptJ2S+UysYxC92lUQH3wxT/S5vG/eVAz6pXJ5v5OZXR9QiZXKWrPOm6r1pHhi1TkvLynAx2cujTrXmVwD0eXSWx94cPxcH+6tnoo9fzwFz4V+uATgjzHklZfjwpHh8+bp8WJ5/V4cixHMG++Y3/6Dt9A+/PAPAMwqK8brj92a0nfIFuY7zrNo0xs4frYPuW6BQZ/EFRMK0bRuidnJIqIMcAwmfSwHiYiIiIiySwixX0oZcxAtnRnUIaVsBtAshFgD4KsA/hrAfxv+85UAHgfwHSHErxGYVf3VdPZDRETmCc4scGJ8YcpPDOox46CZTypaacZEIifhzF9E2jhTtrZ0V2bRY0UXPbaRCVXrNE/sfB/NR89g04738eT91aamBeD9Q7FZaeazZNtO4UGPyXwm1jGI9+ALmSPWuZxUnK9c3u9kZtcHVGDFstas82bFdm94nRMAvIP+UPB38FxHS+caCJZL0dfTSwc7Qz/HCk4vzs/BG/9zJJC8rKQAQ8NvzHMLDPgkfH6ZMJ9MtBKlSpjvOM/c8hLUzinjrH9EDmTFh9uMxnKQiIiIiEgdaQWoB0kpLyIwW/q/CSGuRWBW9RUAxgPIBXAvgHuFEJ8A+HcA/yGl7NTYHBERKSB6kOeTs33Y+s7HeLHlk4QDRqkGPMSjZ0BIOh10XMqHKDuSuT+tGMxAlG0ceNGWbpC2HsHdKgSIq1Snic7Ptx/sxPaDnabn57x/yOqSbTuFBz2m295SIV+jSLHO5aotLcrk/eTM+ya6nWfFsjbb583sdm+mwW3BOucdcy9H3S/b8PHpS5AA3C6Buz47Bas+dxV+8ruPdLkGgtfTr1q7knp/b/8Q5n9vV8SxTCeYt3nDbaHjtPWvFyh9Dzsx33E6Kz1cSUT6suLDbUZjOUhEREREpI6MAtTDSSnbAHxDCPE/ASwH8DUAnxv+83QA/wjgH4QQOxEIam+UUo5eW4mIiEwVa9CwdnYpTvb0w3PBG7cDR4+AByOk00GnUvqJ7CyZ+9OKwQxERtEKHOHAS3zpBmnrEdxtdoC4SnUaGWNGSwDQeDltqQZY8f4hu0sU9JjqPWN2vkaJqZT3U4DT7pvodp5Vy9psnje9272p5u2ZBrdpzW7u80u83NqFVw+dxJ/dME23a+CdD0/H/bsAkJsjMDAk4RLAF68rjziW6eaTVgoCdFq+Q0TkNGY/3KY6loNERERE5HSqrLYkpNYIsR4bF2IWgHUA/irs5eAOOwH8C4AfSSl7DUuEw9XU1MiWlhazk0FEFrOhoQ3bmkeW351ZWow/dvdixfzpMQdfojvCgszuCDM6XaoU5mbYvXs3amtrzU4GWZjW/SkA7NuwdNQ9FcyX8twuDPj8mvkRkd3VNbThmeaOmPfAqi0tKB1bEDHwEh54QWQ2T48Xy+v34tjpS6HXKiYW4YWHb9S1LhXvPtHC+4fszNPj1Qx6LBtbkNY9Q0QUS7x+mNo5pSxrE9Cz3Zts3p5u35lWn5inx4u7f/w2PD1e+CXgEsDkkgK8/OjN+PtfHtLlGqhraMPWfR0Q0H7Q8b55U9HQ2qlbH4KqfZ+As/snnfzdicj+Eo3BJGrnERERERGRs2Vz7EcIsV9KGbOjz7AAdSHE5wB8HcCXAOQHX456mwRwGsDfSCl/aUhCHI4B6kSUjlVbWnC0+yKOeGI/PxQ9+JJKR1g6AwfxBr3ibcvoDjqzAznMHIRhgDplKtb9eXlJAT4+c4mBt0QxqBwQQZSKRZvewPGzfchzCwz4JK6YUIimdUt02TbvEyJtsYIeX9x/nPcMEemKgVKZ0aPdm2p9KN1z9tjzrXjpYCe+NG8qnry/OuJvGxra8My+kYkvHlygT7+Z1neL5gJw+9zJMY9lun1pel7bevfnmd0/aSYnf3cisr9kxmA4qQsREREREUUzY7w0XoB6js47KgXwFwD+GsDM4MvD/34I4KcAfotA0PpfApgCYBKA/xJC1Eop9+iZHiIiSl28wR6t5YVTWao5naVwtT6TaFtGLSGttXRinlvgyPe+kNG2U2GlZYWJooXfnwDgHfSHZtSNtRxpustvE9lF09rFmgERRFYyt7wEtXPKDFlimfcJkbZYy5vzniEivRnVD+MUerR7U83bUz1n0X1i2w92YvvBzlD7PVa/4tZ9HXih5Tiqp4/PKCg7+rvl5wi4XS5cGvCF3lOc70ZNxWWaxzLdvjQ9r229+vO0+ied8KCZk787EVG4WO08IiIiIiJyNtXGfnQJUBdCfB6B2dK/OLzNYFD6EIBfAfiJlPK3YR85KIT4RwB/C2ATAjOs/z2Az+uRHiIiSl90QeV2Cfj8EnluEXfwJVFHWDoDB1qfiRZvW8l00KU6c9GoYyQAnwS+eF15ws/qgYMwZBfB+/OOuZej7pdt6DhzCX6p/TAMkZMx2IfswsgHjnifEGnTuvdUv2fMXDWKiNJzqrcf982big9OXsCcKWPR3dtvdpIcJZ36UCrBbVoL8koE8uzKKSUoLcnH7450RwyA5QiBl1o7kwrK1sr7o7/bgM+PIlfkZycU5eEXfzl/1Db16EvLNAhQ7/481QYbs8mO3511HiJKh5UndWG+R0REqWLZQUSUHNXGS12J3xKbEGKaEOJ/CSGOAtgB4F4AuQgEp3cgEHA+XUr5Z1HB6QAAKeWglHIzgH8efqk63bQQEZF+ogsqn19iVlkxfvl3i7BiwQzNgcX6lTXYuKwKleUl2LisatQSxE1rF+Pu6nIU5AaKnoJcF+6pLkfTusWaadH6zI7Vi5LeVqJ0AZEzF6VyjLyDgUEl3/Dg3PYDnahY34g5dTuT2k660jmWFJ+nx4vl9Xvh4QwjWRW8PxfNmoSbZ06CBJSoIBOpKhgQ0fDIzXHLZCIn432iNta51KP6PZNqWy1TvEbJLHa69upX1qAw1433TvSgMMcdsx/GDHY6xomkmrcn03c2QitCXWLzrna0Hj+Ho90XQ/2K3kE/Xm7twvaDnZAyEJSdqO8sXt4f/d3G5OdgdlkxAGB2WTEqy0tiblOPvrTUjpMxaQin2mBjNtnxu2969X00Hz2DTTvfNzspRERZke22nhmcVP8kIsoGJ5QdRER6UWnsJ+UZ1IUQ9yAwW/rnEQhwD86W7gOwE0A9gB1Sas2lMcre4X8npZoWIiIyRqwZgYKDL8mI9fRqOgMHWp+pLB+nyyBEJjMXnertx33XT8XHpy5if8c5ANmb9dmOgzBm02t5ZUoflyMlSszKsyIRZYtT7xOrzB7zxM7hwJsd7+PJ+6sN249VjocKVL1nzFo1iu0CMotdrj2VV3yzyzFOhpF5+551S3Dr/34TfQP+iNcHfDK06mG7pxcA4JcSX7p+Kt7+8DTOXRqIO9O1p8eLBY/vigh/D79+mtYuHlW2v9jyCfqH/PBcCAywHfH04oinF3Pqdsa83t758DS8g+b1pRnRn+fkvhRVv3uq9dDofHP7gU5sP9CpRL6ZCdbHiUiLyvVFvTmp/klEZCQnlR1ERHpRaewn5QB1AA0ITJMRDEzvAvAzAP8mpTyexvbUmpqJiIgyLqi0Ol2SHTgI78DW+owegxCZLAcbPEaf/fZrodeyObil6iCM1bBBqw6VKshERERWo/qg56jAm4Od2H7QuMAb1Y+HHekdhJRJWy0dbBeQWex27WX73k2G3Y5xOvTMo8tKCjBxTD6OD/Qh1y0w6JMoH1eAmisvi3ney8YWYENDG7Y1d8QNyt68qx0QQMVlRTjZ4w0FkhfluVE+vhCbXn0/omz39HjxmSklmFySj7eOdCe83jbvaofnQj9mlRXjqQfmmdaXpnd/npP7UlT97qnWQ7Xm+kp+DjA1sT5ORFpUrC/qjfVPIiJ9OaHsICKys3QC1IN+g8Bs6b+SUvoy2E4zgPTWMCQiIqUk6nSJN3AQPlgW3oGt9Rk9BiEymbmoYn3jqNeCSxVno9Nd1UEYq2GDloiIiJKl4iyAVhn01Iqv0TvsxirHw470DkLK9qpRbBeQWex27am44pvdjnE69M6j55aXoHZOWUSQdbzzHi8oO7rsPnb6Uujn/iE/+of8OHtpEO919QAYKduDZpUVx73eorff7unFFzY3mVY3YH+efaVbD92zbgm+XL8XH4dd+xUTi/DCwzcaml6jsD5uLBXbpESpUrG+qDfWP4mI9OWEsoOIrIlttOS40vjMPwGYKaW8Q0rZkGFwOqSUZ6WUb0kp38pkO0REZL6mtYtxd3U5CnIDxUtBrgv3VJejaV3i55A272pH89EzmP+9Xdi6ryMU7F2xvhFz6nbC0+PF8vq98Og0u1Fwe51nL2HFghloeORmrFgwA929sRf2iN7/jtWLMHV8YcR7po0vxI41i3RJH2UHG7RERESUrPDgLlVkUv/Opj3rFqNiYlHEaxUTi7BH53TqeTz0bn/Y1Zy6nahY3xizDZepYEBjoraaHtguMJeT7zc7XnvZvHeTYcdjnCyj8uj6lTXYuKwKleUl2LisCvUra+Ke91jvD4ouu11i1O7iavf0QkrAL2XM680qdSWyvnSvtbKSAvj8gcc2c92BG8Dnl5bNo3jPGUvFNilROlSrL+rNyfVPIiKj2L3sICJrYhstOSnPoC6lXG9EQoiIyPrS6XSJnlUlXPisApt/q+9sT8GKwor500MzFsWbuSh6tqnK8nEoynNHvKcwz43KKeMyThtll97LKxMREZG9qDwLoFUGPctKCjA0HHiT5xYY8ElDAm/0PB56zzZrV0bODJftWWbt1i6w0uwtdrjfMjnedrv2VJwh2m7HOFnZnL0z3fMeXXYP+EbK8GS5BPD2+iUx7z2r1JXI+jK51mKtSmBVvOeMoXKblCgdKtYX9ebU+icRkVGcUHYQkXWwjZYaIbXWWSZbqKmpkS0tLWYng4gc4nDXedz9o7fx+arJ+LvaWaFOl/AGQzRPjzdisMwtAJ8E8nJcGPT5IQD4YxRV6RbsWgHxWtuL9/5xhbkYX5SL1UtmYfMb7Th3aRDNG25LOU1WtHv3btTW1ma8HSsFTRARETkJy+gR0fXV8OAuFY7Nqi0tKB1bEDHoGa/+bZZspTPT/aTaXiBgQ0MbtjV3IM8dCCxcMX+6ZYOM7aSuoQ3PNHcofT7sdL899nwrXjrYiS/Nm4on7682OzmkA1XqQpmmI14ercp3DJbdz/++A4O+1MerXAA+euLOhNtXva5E1sdrLYDHQX+qt0nJGHqNwRARERERkb7YRhtNCLFfShmz8Z/yDOpERERa1jzXiiG/xJGTvaFlexOJNavK7LJi/PMD87CtuQPHz1xCSVGubrM9pTp7VLz3h1cs7rquPK30OJ0dZsojIlKdKoEnZC0so0eoPgugVWaPyVY6M91PNmebtQvODKcWK83eEut+u3V2KTwX+uG54FUmn40n+nhvP9iJ7Qc7lTzelBpV6kKZpiNeHh1v21ptCD3bFuHbumXTm5rB6UuvKcORTy/gk7N9Mf+eKKS9fmUNDnedx/31e/H8wwu5+iEZxir1cqPxOOhP9TYpERERERGRk7CNlpqUA9SFED9Pc19+ABcAnAHwBwBvSylPpbktIiJSSMX6xojf2z29odeOxZnBKCjWYFl4gPuGhjbdCvZUKwqsWBjDSkETRERWp0pwDVnD7A07MeBjGR2NAbjOwfp/6hiEpJZg0Pdrh06GruM7qtR8yCLW/fZR90X8sbvXMvUWrcVJuWapdanSX6FXOmLl0clsW6sNkU7bQiuoPXxbwbyr8d0uhMepf+n6qXjlDydirrYAAIW5Lry1dnHCNKx5rhUX+oew5tlWvP7YrUmlm4hIJWyTEhERERERqYNttOQJqdWLrvUBIfzQp499EMBLAP6nlLJLh+1RDDU1NbKlpcXsZBCRzR3uOo+vP70fnedGZjKaNr4QP33oBl1mJdJ7WdBktxccQCvKdWHaZWO4LGmYTJeX5JI3RETGiw48CXJ6oDHF99jzrXjpYCfcLgGfX7KMJkfSu/1B2cWVQwIPeT+zryP0+4MLpisb7B28357/fUfM2ZNVr7d4erxYXr8Xx05fCr1WMbEILzx8o2OvP6tTpb/CyHQEt/3aoRPoH5LIzxG4o2oKNtz5Gdyy6U3NYPBYkrlH6xrasHVfB8rG5uOV1Ys09+ESgF+O/Du7rBhXlo7Bd++pijgWACAQGKS6YkIhmtYt0dx39KQa4ZKZVIOSw7KXiEh/mY7BEBERGY3tACKi1Nk17xRC7JdSxhxIc6W7zbD/on+P/k/r73kA7gfwrhCC0ysREVlYZfk4FOW5I14rzHPrtmRu/coabFxWFZpVPTo4JDgg7EnyibRE2wsKzuQ0bUJRUu+n5HFmSiIi4zWtXYy7q8tRkBto9hXkunBPdTma1iWeYZCcZ07dTlSsb8RLBzsBAD5/IEjQO8gy2upSrStT8u0FLTzm5gqfkdeJ5tTtjAhOBwKzI8+p22lSiuIL3m9vr1tiSr0l0/u1rKQAQ8NlZp470BXu80uWmxamSn+FkekY2Xbg2u0fkqFta7UhdqxepHmPat1Hwfrl1uE8yXOhH/O/twtSypjburwk8N3+dO7leHDhDFxZOgb1K2sijoVreMTpT6+dggcXzkBleUnc77pj9SJMHV8Y8dq08YXYsWZRBkeQojm97CUiImtjG55UxuuTVMZ2ABFR6pyYd6YToH4lgNkAXhz+/RyAzQDuA1ANYNbwv/cNv34WgcksXgDwGQALAawG8B4CgeoTAfxKCJGX3lcgIiIVnO8bxOzJxfjRV+Zh9uRinO8bzNq+9S7AwwfQpAwM5lesb1R2QN+qgkveNDxyM1YsmIHu3n6zk0REZCuqBNeQNUQHI7kFUDunFF+6YSrLaB2ZMajkxM4us/GYB2T7emc7LsCqD6iZVW/R436dW16CBxfOwC//blFSAbOUnmzmKar0V8RLR7rHw9PjxZXrGzUfZNG6FyvLx2neo1r3UdPaxaGA8nADPolX3u0Kbcs76MfLrV3oOh/4Lo2HTmLrOx9j9wfdo47FK9+4BQ8unAGf35/UQ2RGT6rhdCx7iYjIDtiGJ5Xx+iQVsR1ARJQ6J+edQsrRS6cm/JAQzwP4MwCvAnhQSnk2znsnANgG4E8AvCilfGD49RwA/wFgBQIB7A9LKf8t5cRQXDU1NbKlpcXsZBAR6SJ6qZM5dTtjLgmc6RLgqiznrDIuL0lEZA2rtrSgdGwBvjp/OrY1d6D7gpcrgZCmDQ1t2NbcgTy3CwM+P1bMn46N915r6D7tupSdlrqGNjzT3JGVY2tUXZm08ZhHyub1DrAdF86M/FwP2ay38H61Hr3zlMNd53F//Tt4/uGFlgxWDh6P0uJ8vLJ6UdL5XF1DW2hGc7dLwOeXo/JLrXsx+vVt+z6GP8bwUvA+8vR4ccdTv8OZiyOTWLhdArd/pgx7PzqN2yon42s3X4Wf7fkIb394GucuDRiSf8//3m8xvigXq5fMwuY32nHu0iCaN9yW8XaJZS8RJc9pbX89cAzGeGwTkMqsdn0yn3cWtgOIiFJn97xTCLFfShmzMz8njY0tB/BlAB8BuE9KGXf6ECnlWSHEvQjMmP5lIcR/SSn/S0o5JIT4GoBaAOUA7gbAAHUiIgdJtbEa/pT4xnuvRdPaxREFuEsAf1I5Gd9ZVpXRvjnjLBER2UV4UNfGJMpHcrbgzJThwUh60ap7Rdfv7Cp6UGnrvg5s3ddh6KBSdF05vLOLjKH3Mbfq4J4Z1zvAdlw4I/NzIxlVb4l1LzGPtA6j8pQ1z7XiQv8Q1jzbitcfu1WPpGZF9PHwXOjH/O/tQp7bherp42OWGZ4eLxY8vgvRseS+4ehy72Bkfql1L0a/vnrJzLj30cLv7xoVwO7zS7z63qcQAijMcWNScR4+OduHm66aiIbWTkPy7/Bg9LuuK9dlmxTAspeIkuWUtn8mrNr+szK2CUhlVrs+mc87C9sBRESpc3LemXKAOoC/QmDG858nCk4PklJ6hRA/B/BdAH8N4L+GXx8Yno39MQDXpZEWIiKysGQbq/EGI//shmnoH/LDLQCfBD7svhhRgKcbDGXVAX09sUOUiMhemK9TIkY+0BBd9zIrgNUsZgwqObmzyyx6H/NsD+7pVU6YOYjKdlwAH1CLFOteYh5pHXrnKRXrGyN+b/f0hl479sSdGafXaE1rF8cM/B7w+dF8NHaZsXlXOyCAaeML0XWuL+KzN119GaaML0R3b1JDPRG07qNbNr0Zc7bHcMGljIOzuZ+YUGi7/Nsp7S+WvUQUj9Pa/plgcGf2sU1AKrPK9cl83rnYDiAiSp1T804hZYw1GON9QIguAJMBPCClfDGFzy0H8ByAk1LK8rDX/xzALwD0SSnHpJQYSqimpka2tLSYnQwicohkB15SXZYs3lInCx8fPSgXvq3oJaD1XhLNzoNN8ZbP5vKSRETWEy9fJzKKVt0rz+3CHddebtul7GLZ0NCGbc0dyHO7MODzZ+VeXLWlBaVjCyI6u8IDV0l/ehxzs5Zx1rOcMON6J4qW6F5iHpmcdPo99O4r0TNPOdx1Hl9/ej86z/WFXps2vhA/fegGVE4Zl3Fas+Gx51vx0sHOuO/Jz3EBQMJA8QcXZJY/R99Hx89cwrm+QUwuycdbR7rhHQzs3yUAvwQqJhbhZI839HqsdNslkIXtLyIi+y9jrwetOmuuC2h/XP2H56yObQJSmRWuT+bzREREBABCiP1SypgVlXRmUJ8w/G+qvbXB90+Ier13+N/UIuWJiEg5yc7wkOrsV/GeEn/nm0tjbmvnoZMRs2IFn9jOcwvcXV2u28xbqsxqoefgrxFPu9s5kJ9IRbznKBxnMSEzxav3PfXbduVnAdKTGTMjcBbl7NPjmGd7BnIjygmnzgRCakl0LzGPTE46/R5695XomadUlo9DUZ474rXCPLdlgtMB4OLAEGaVFaPd0wsXAD8QWlkwP8eFO6qGr3OJiHvAJYCCHDduvHoiCnLd+MPxc2nNnB7uu/dU4dFnD2LS2DxsXFaFuoY2vNXejZmlxegf8ocC08cV5mLJNZOx7+hp9A/5kecWGPBJuF0CPr/M6mobRmP7i4iySfU+QKvMAGwmrTrr4glnzU6aI7BNQCqzwvXJfJ6IiIgSSSdA/VMAVwC4E8C/p/C54CO+nqjXgz2/p9JICxERKSDVgZd0Gqtag5Fa29pjcDCUaoNNeg7+GhEQo0ogP5FT8J6jcNkOdCQKF6/eZ0QAqx6D80YN8FthUInUkO3BPSPKCV7vpAIOlGcmnX4Po/pK9M5TzvcNYvbkYqxeMgub32jHuUuDGW8zm+pX1mDVlhYsuGoivjp/OtY8dxDtnsA8QP1Dfuz98DSA0ffAgM+P+66fqmsbMdj2nP+9XRGvB9OT4xa4euIYtHt6UZjrwtzyEtTOKYtIt93uT7a/iCibrNAHyIdX49Oqs47Pd5mdNCKipDCfJyJKneoPmhLpKZ0A9TcBPATgbiHE/VLK5xN9QAjxFQB3IzBL+ptRf64c/jc6cJ2IiCwinYGXVBur8QYjY20rVqdecIBOj4ayKoNNRgz+6jmIr1ogP9kXG3EBKtxzPBfqYXAWmU2r7mVEAKseg/NWGOAn60q2nMzm4B7LCbIzDpSnLphPNTxyE37yu49S6vdQpa8kkeYNt4V+vuu6chNTkr5gPSq6DQgAngv9uPHxXfjw+3cadg/E2m80AWDQJ0PB6lv3dQAIzPK+cVkVriodEwqyt9P9yXLVfg53ncf99e/g+YcXWmq1BbI3FfoAk8WHVxOLWV5Hr0lPRKQo5vNERKnjOBQ5iZBSpvYBIaoB/B4IrR5ZD2CzlPJIjPfOBrAGwN8AcAMYAjBfStka9p5WANcCeEpK+Vg6X4K01dTUyJaWFrOTQUQOsKGhDduaO5DnDszItGL+dNMrUqu2tKB0bAG+On86/p/nDuKIpxcPLtAvXSp8Z0+PV3PwN5OBr/BjF+wQDe9g2L17N2pra01LH1G0//FCK7Yf6MSXrp+KJ5dXm50c06hwz9U1tOGZ5g4lygEakShfJ7I6rSCpVAbn9dgGUSKplpOeHi9WbdkPCeCnf36DYeU5ywkiCgrPpySQcr+HCn0lTuHp8eJvtuzH5JJ8vPbepzHfY1Q9xtPjxcLv74I/heEllwD+pHIyvrOsyvZ9QixX7eX2H7yFdk8vZpUV4/XHbjU7OZo4YYCzqNAHSMZKdgyGiIiIiKyD41BkV0KI/VLKmJ1fKc+gLqVsFUKsB/D/IRCk/rcA/lYIcRLARwAuASgCcBWAy4NpGP53fVRw+vUAPjv866uppoWIiNRxqrcf986biiMnL2DO5SXo7u03O0moX1mDOXU7sfWdj0OvBWcSyXMLHPneF1LaXnQnvwozsRk1K5NeT7tz1igyWnQjbvuBTmw/0OnYRpyZ95yVZm5yokT5OmeEI6vTY8ZWq8z6StaUbjm5eVc7Dn5yLvCzgbOpcLYrIoqVTwGBoOKGR25Out/jVG8/7ps3FR+cvIA5U8Yq0T9kV5t3tePd4+cws7QYQgQGYYIB46nWY1INbC0rKcCy6ql46WBnxOuFuS74/BIDPgmXAKZfVoSPz1yCC4BPAh92X3REnxDLVXuoWN8Y8Xu7pzf02rEn7jQjSXFxBj5nYb87EREREZH1BMehXjt0MlSXv6OK41Bkb650PiSlfBLAXwI4j0C/pwAwBcBNAG4b/vfysL+dA/CXUsofRG3qAwBXDP/323TSQkREaqhfWYOiXDfeO9GDwlyXErMCeXq8qJxSgj+ZOxkFuYEizz38yNQX01jCObyTHwh8543LqlBZXoKNy6pM+87BQPmGR27GigUzlBv8VT19ZG1aqwGlukqQnZh1zzWtXYy7q8tD+W1Brgv3VJejad3irOyfMrPmuVZc6B/CmmdbzU4K2ZSnx4vl9XvhMeiBPj0G5znAby9GX3OpSrWcnFO3ExXrG0MBokAgWLRifSPm1O3MSpqJyFm08ql3vrU0pX6P+pU1KAz2D+W4legfspvwMkLKQNCslECwGewSSLkeE93nlYyLA0OYVVYc8Vqu24VBv0SeW8AvgWOnL0HKQHA6MBLgy7KMrGDH6kWYOr4w4rVp4wuxY80ik1IUW3SewDqjc7DfnYiIiIjIWsLHoYDU+2+IrEhkErwjhLgMgUD1ewBcj8DM6UGXABwA8DKAX0gpT2eQTkpTTU2NbGlpMTsZRGRzqi5D89jzrXjpYCeumFCIT872xXxPMmlU9fuZictLJodL6xrP0+PFl+v34uPTl0KvVUwswgsP38hjboINDW3Y1tyBPLcLAz4/Vsyfzlm7FBc9I1w4FWeEI+uqa2jDM80dhuYLq7a0oHRsQcTqNqkExXl6vPj8P/8OSz5Thq/dfFVa24i1TdYFzJGNay5VqZSTnh4v/v7lQ/jt4U9DQX0uAdxeORnfXVbF64l0wTyKomVan2f/SXZ4erwxV33xXPDiQ89F/GB5NV597+Soekysez6Zcxb+OUhEbOOqbzaGZm0PJwBIAFPGFeC/XXlZzBVqnJrvMO+1ltt/8BbaPb2h32eVFeP1x241MUWjaeUJTr7PiOyAYzBERERE9sO+M7IrIcR+KWXMAdW0ZlAPklKekVI+KaX8HICxAC5DYDb0ywCMlVJ+bvjvDE4nIrIx1WbNDc4aE1xmODw43e0SKadRte+XbarNPmklT+x8H81Hz2DTjvfNToptlZUUwDc8Gp47vESCzy85AGcSztxkPVaZEY6sK5uz+WW6us3mXe041zeIwhy3bivkpDMbKWVG5RkkUykny0oKMKk4PxScDgB+CZQW57OeQ7phHkXRMq3PO73/JFu0Vn25elIxunv78eqhEzHrMbHu+WTOWfjngj9v2vk+ltfvxSvfWBTx+aBg8XXivBe/au2Cd5Ar1ATZva/Ibv2I5/sGMXtyMX70lXmYPbkY5/sGzU7SKFwJioiIiIiIyBrYd0ZOlJPqB4QQPx/+sVVKuTn4ugxMxX5u+D8iInIQ1TrB4y0OEgxkTSWNqn2/bAsfiFRl9knVRT/5uv1gJ7Yf7OSTrwaZW16C2jllETPmkjnCAyA2LqsyMSX2p9ese5Xl41CU5454rTDPjcop4zJNIhGAQGeb1mx+qogut7fu68DWfR0ZldupbpMzaeon0TVn5rFOtZw81duPKyYU4rPTxgMA/nD8HB/+Il0Yke+RPWRan3d6/0ksRpU7wYcJvjp/Or74wz3Yuq8j9LfoezrRPa91zmJ9Lmj7gcCkEF/YvAf3XT814vMVE4twsscbKocnFOXhpqsn4WuLrnR0m90pfUV260ds3nBb6Oe7ris3MSXxhecJTr7PiIiIiIiIVMa+M3KilAPUAfwFAhNgvKtvUoiIyMqiO8GPn7mI5fV7TQn82LNuMZbX78Wx05ciXhcAZkwswsZ7q/DqoU9T6qh3Yid/vAHM+tsK43yStB6SiPPsBGWAQdFkR4kCWfQc9A/OCLd6ySxsfqMd5y6pNyMcWZcVOtuMCKJPdZtWDuRRLbg+0TVnpWOd6Qz+RFqs8PAQWVe8/hPVyoxsCJ8t+8n7q3XbbngZ8etv3IwHf9aMi/1DofLvjqqRezrRPa91zqI/5xKB1TyivTQcrH7lpDGYWz4O+46ejiiHl15TFipzVW6zG3192r2viA8/mYt9Y0RERERERNbgxNgjcrZ0AtRPA7gMQKfOaSEiIgurX1kTMZCz+bfteKa5w5TAj7KSAgwNj5iFD55JAJcGfJg9eSwWzSxNaZtGd/KrOEgbbwDz8P53zE6e0mI9JFExsQgvPHyjiakiIivRCqA0YtDfKjPCkXWp3tlmRBB9stu0ciBPsP46aUxeWoF3RtZ/Y11zVj7WRHqzwsNDZF3x+k+s9JBQpvSYLTvZsnLbvg6cuTgQ+j36nk50z2uds1ifi+f9kxdQM2OCZVc5M/r6tHtfER9+IiIiIiIiIkqMDxiT06QToH4UgQD1STqnhYiILG7zrnY0Hz2D+d/bFXrNrMCPueUl6DrXN2pmJ8+Fftz4+C7s/ebStANijAimUXGQNt4A5mGzE6e48Ick8twCAz4Jn18y4IOIEkoUQMlBf7IiK3S2GRFEn8w2rXxPL/z+roi6dqqBd0bWf2Ndc54er2WPNZERVH94KFkqPuxNoznxISE9ZstOVFZGH9dwW/d14MX9x0PHN917Pvxzq7a0AABmlRXjjQ+6NfcLAPk5LmxcVpWw7qfCPZyt69PufUV8+ImIiIiIiIiIiKKlE6DeAKAGwBcA/ETf5BARkRXFGxDTI/AjncGq4IzuG3f8X/yqtSvibz4JzH88EESfTkCMnsE0qg/S2iVowQxWnTHMaCoMPpvFyd+dkpcoWJWD/kTGMCKIPpltWvGejlf3BxIH3plV/7XisSZKRrp1TCs8PJQMFR/2ptGs/EBWujKZLTvZsjJ4XKP7vYJkWJR8uvd8+Oea1i0BAKza0oKSghz0eIdGvd8tgNsrJ+M7Se5DhXs4m9en3fuK2I9IRMlgHykREREREZFzpBOg/q8A/hbAnUKI+6SUL+mcJiIispjogRy3CASB5yUI/Ei2IzLdwapgEIqAdqBMKgExRgTTqD5Ia5egBTPw2MWmwuCzWZz83Sl5yQRQctCfyF6sdk83PHITVv6sGRe8AxjwRf4tmcA7M+u/VjvWRMlwah1T9Ye9KVKiOq7dAtWC3yd4jSY7W3bwcw2P3ISf/O6jiLLy1tml8Fzoh+eCN7SNUL+XGD1j+xUTCrH9kZt0/26JHlTzSWBScT7KxhbEPa9m3cOx0pTNh9js3ldk9+9HRPpwav2ViIiIiIjIiVIOUJdSnhNC3APgZQDPCSGeAvAjKeXHuqeOiIgsIdZAzuyyYvzzA/PiBn6kulRxOoNVp3r7MausGEc8vQAQGrQLBtGnEhBjRDANZ3Ikp3ByAImTvzulJ1EAJQf9iezFavf0z/YcxemLAzH/duz0pYT1WDPrv1Y71kTxOL2OqfrD3jRavDqu3QLVgt9n2vhCPLgwuQejPD1e/OlTTTh9cQA/azo6qqz8qPsi/tjdO+oYBY/r6++dxKcX+kOvn7k4YEjZ2rR2Mdb+17vYfeQUAMAlgPwcF26aOQkFOW784fg5dPf2RxyHWOfVrHtYK018iI2IyHhOr78S2YndHjCl2GKdZ557IiIiSpWQ0VNrJPqAEG8M/zgJQBVGJqXtHP6vL8EmpJRyaUo7pbTV1NTIlpYWs5NBRA6waksLSscWRAzkhAeAhNOabSm6I9LT49UcrEqm0au1n+CM6vk5Lgz4/Fgxf3rSA6AbGtqwrbkDee7UP6sllWOnit27d6O2ttbsZJCFZHo/W5mTvzsR6Yed/2S2eDOmugQw/bIxqJhYiF/81YKE27Ji/deqmHfYV6I6phPOvRHtc8quZPuHUmHmtZ/u99H6nFsIuFzAoG/0GE70Nq/6ZiP8MYZ6tPadyXGq+odX0dsfWEZFCIy695I9Dtm8h4241ihzTiiriGhEsP762qGToYew7qhiH6kWjsGQyuoa2vBMcwfbYDYX6zzz3BMREVEsQoj9UsqYA30pz6AOoBYjQenBfwWAqcP/xU1L2GeIiMhG6lfWJD2okOwsSZnOrqi1n/OXBjDtsjFpzYpkxIxKnMmRnMDJqwU4+bsTUcDhrvO4v/4dPP/wQlROGZfWNuw2syhZT7wJDiSARTMnJn1tsv6bPU/sfB/NR89g04738eT91bpum0Fl5kpUx3RCucEZj63PiFm0zbz20/k+8R4Ac7sF9iS5zXe+uTSlfW/e1Y7mo2dw1+Y9eGX1oqTy8Yr1jaNekzIwA274sU72OGTzHuaqC2pyQllFRCPC668A2EdKZEFcCcEZtM5zOJ57ouxhHywRWV06AepAINA8mdeIiMhBNr06HPyw8308ubxa832pBGtmMliltZ+nHpgXek+qATEMpiFKn5MDSJz83YkIWPNcKy70D2HNs614/bFbU/osB35IL5l2ZO9ZtwRfrt+Lj09fCr1WnO/GT1begFcPfcqyTTHRecf2g53YfrBT17zDyUFleg0MZbqdWHVMJ5UbdmqfO3WwUc+HeVO59o063ul8n6a1i1H38iH85r1PI16/YkIhtj9yE8rGjt6mWwg8ui0y/cnuO/o4eS70Y/73diWVR+S6RczZ3HPdkUNDyaYl/B5evWQmHn32IDwXvIbcA3xwXC1OKquIaESsh7K27uvAi/uP894nsgg+9OcMsc7zrbNLAQBvHenmuSfKMif3wRKRPaQcoC6ldBmRECIisq5RwQ8HOrH9QPzgh2SDNTMdcGZQaGKqDISrkg4yjp0CSFLl5O9O5GTRs0y2e3pDrx174s6ktsGBH9JLph3ZZSUF8PkDQWnBALUJRXlYNLMUi2aW6p1cypDWhPd6LGvIoDL9BoYy3U6sOqanx8tyw4KcPNioV79NKnUmI493+Pf52Z6P0Nh2Aqtvm6XZz1FWUoDS4vzYfxtbAE+PFzvaTuC+66fiazdfhW3NHXjrAw+On+sblf5kjmXT2sVY+P1d8EcVCP1Dflz5zUbs+9bSUFqj+2liBacDiPl6quc1G/eAFfoIndI3xjYOBe1p78ZDP2/Gf35tPtsUDsB7n8j6+NCfM8Q6z6XF+ZAAzz1RFrEPlojsIt0Z1ImIiEKkRvSD1utA9oI1GRSamCoD4aqkg4iIMueUwIpEdqxehK8/vR+d5/pCr00bX4ifPnRD0tvgwA9lSs+O7LnlJaidU6Z0YBcF7Fm3GMvr9+JY2Iz3FROL8MLDN2a8bScHluh1Pxk5wMRyw1o42Khfv00y1342jnf49ynMdeNc32DCfo5Tvf24YkIhPjttPADgD8fPobK8BECgr+Rc3yAKc9y491/ejpv+ZI5lWUkBllVPxUsHO0OvuV0CV0woxLHTlyLSGt1Ps2P1Inxh855R29yxZlHc4xDvvGbzHrBCH6FT+sZYVlHQI88cgE8Cj2w9gD98+/NmJ4cMxnufyB6s8NAfZU7rPPPck12pOKbl5D5YIrIXES94kKyvpqZGtrS0mJ0MIrI5T48XCx7fFXM2PicNqlpNrCU1geTO2e7du1FbW2t6OoiISE11DW14prkDK+ZPt3VgRTJu/8FbaPf0hn6fVVaM1x+7NaVtrNrSgtKxBRGd/+EBNmRPenWKx5tNWZXOdjLGok1v4PjZPuS5BQZ8EldMKETTuiW6bHtDQxu2NXcgz+3CgM/vmPxer/vJ6PuS5YZ1MI/WV6JrP1vHW49+Dq1tuASQl+OKm/54dQit7WYik/6buKs+SCgXIGAUJ/aNsaxytujVxsIlu9oYWRPv/eTpOQZDRERE8ak6puXUPlgish4hxH4pZczGHWdQJyKijJWVFODycQU4cX7kSWkB4O7qcj7BqbB4T90mExB1uOs87q9/B88/vBCVU8YZkg4iIrIWzgI62vm+QcyeXIzVS2Zh8xvtOHdpMOVtGDnbo4ozg1CAXjNocpY6NWXj3jNyxnunzpim1/1k9H1phVmCKYB5dPKSyTcTXfvZOt6x+jlqZ5fiZE8/PBe8Se1Pq69kcMiPHYdOIi9O+uPVIYLbfeXdLvglkOsWyHO70Dfog18C+TkCUgIDPgm3AHwSoX2v+txVuPdf/k9EfT8/x4WmdYvTPlbxzkldQ5sjZhMHnNk3xrLK2bZ+bT6+/vR+9A36Qq8V5rrxbymsNkbWxHufiIiIVKL6mJZT+2CJyF4yDlAXQkwFsBTAZwBMAJArpfxaptslIiJr+ey0cbjUP4Tz3iEIABLgoKriMh0EXPNcKy70D2HNs60pzwSbbDqIiMhanBhYkUjzhttCP991XbmJKYlNryBo0o8RneLsyFZPNu49I4M/nBxYotf9xPuSgrJ5LVj5wTS98s1sHO9gP4d30A8BwDvox4fdF/HH7t6k06/VV/LWx90AgNuvKcOE4nx0X/CGzmtrx1kM+EbWNwzWIQSAfRuWomxsQWi7EoHg8gGfHxUTC/HH7sCKP/1DI58Pbso7GNh3Zfk4/NkN0yJmb/vyDdMyvpaiz8m2fR9j676OUd9DlQABI7BvjJxm0axS5LoF+sKe3851CyyaWWpeooiiWLneRERERMlRfUzLyX2wRGQfQkqZ+F2xPihEGYB/BvBnANzBlwFIKaU76r3/AuCvAXwipbw67dRSympqamRLS4vZySAim4u37PBH3+eSnCqLXlJz276P4Y9RNQgfBDRiCVYu7UlEZB9cctAatOpvdg78sQpPj1ezU5yD4tbHe4+IzPQ/XmjF9gOd+NL1U/Hk8mqzk5MUq+abq7a04KPui2j39Mb8ezLpD/aV3DH3cjz4s32a2/nyDdPwTHMH7ps3FYN+GVGHuLykAB+fuRRRJ4/ug/nNeydxqrc/Zn+QAHDf9dPQ2z+I+pU1WLWlBcX5Ofjg5AXMmTIWvd4h3ftvnFoXYt8YOc3sup0ozHXhb2+9Gv/61ofoG/TjiML5OjlPXUMbnmnuMK1fa/fu3aitrc36fomIiJyGY1pERJkTQuyXUsbsyEorQF0IMQvAWwAmI9BHGS5WgPpnALyHwIS6S6WUu1PeKaWFAepElA0qDBzpOZtFvG0lux+rzq6RzLk83HUeK3+6B6fDJhmbNr4QP33oBlROGWdSysmqrHqv2BnPCWWKgRXWoEL9jbSxU9y+eO8RkRmsGuQNqJtvxms3aR1vAGmlv66hDVv3daBiYhFO9nhDx2FgyB8zqDwerXP+2POteOlg56jXYz3MkI2APdaFiIjILKrUmxigTkRElB0c0yIVcHyerC5egLorjY3lAngFwOUIBKdvAfB5AI9qfUZK+X8BtA3/ekeq+yQiIrXpvQytp8eL5fV74UlhmeXwpZ4z3Ue8bSW7n1TTo4pkzmVl+TjkuyOfTyvMczM4ndJi1XvFznhOKFP1K2uwcVkVKstLsHFZFTvyFKV3/Y30daq3HysWzEDDIzdjxYIZ6O7tN3R/6dS/KT2894hSw/xJH1qT1KS7umo2qZpvarWbPD1efGZKCT4/dzIKcgPDL25XoA8lzy2SSn/wup9dtxMV6xuxdV8HAODY6UvwDgYC5vqH/FhWPRV3V5eH9lOQ68KUcQX40vXT8MOvVCM/x4XhXaMg14V7qsvRtG5xxH01Z3gfsYLTZ5cVo7d/KPT7nLD0SIlA0Pz6Rsyp25nmUdSW7boQqYV5v/PwnJNKmtYuHlW+BstQIiIish+OaZEKOD5PdpaTxme+BmAWArOhPyyl/DcAEEIUJfjcWwCuBbAgjX0SEZHiggNH4U+Wpiu88pVodqTo2Sy27uvA1n0dCWeziLWPeNsCkNR+0k2PSpI5lxcHJWZPLsbqJbOw+Y12nLs0aEJKycrscK+oKJOnq3lOiJzF0+PFjrYTuG/eNHxt0ZUZ199IX+Gd4BuXVRm+v1Tq35Q5PdtORHbH/Ekfe9YtwZfr9+Lj05dCr1VMLMILD99oYqqSp1K+majdtHlXO949fg4zS4sjgupnlRXjqQfmJZX+4HV/b/VUDEkZmj3eJYDplxVh471VePXQp+i+4MWk4vyI/Sy9pgwb770WdQ1tEen0Do4Extc1tOH3x87grs170PDITfjJ7z4K7cMtgFtml2JicR56vUMRdZKmtYs1Z7PXmx51Ic4+Zl3M+52H55xUourDcURERERkPxyfJycQqc6SIoT4DYDbAOySUt4e9vo9ABoASCmlO8bnVgH4VwAnpJRTM0o1Ja2mpka2tLSYnQwioqSks3Riqks9a+1DCKDxG4siBuUiBtokktqPqktP643LS1KmnHKvZFsmS63znBA5Syb5BdmHKkuXExFFY/6kv0Wb3sDxs33IdQsM+iSumFCIpnVLzE6W5Wi1m3a2ncCAb/RYS65b4P7/Nj1iiXCtwGmt6x4IXPsDPv+oulv0UuTb9n0Mv8aQj0sg5t9cIjAbUZ479j7CbWhow7bmjqTem23Rx5X1Xeth3u88POekqujyNbwczxaOwRARERHZH8fnyS6EEPullDEbTa40tnctAv2Vv0zxc2eG/52Qxj6JiMhmYi3bqbV0YsMjN2ku8ZnqbBax9lExsQhSAtv2dWhuK9n9cHYNtXG5WHXwXtGXHkut85wQOYMe+YVdsF4QqBtXTBxZEI9Ll2cPrz+i+LT6B5g/pW9ueQkeXDgDL//dIjy4cAYqy0vMTpJpMsmDtdpNe9YtiXnNvr1+yaglwrWWbY513U8ZV4Av3TAVDY/cjBULZqC7tz/iM9+9pwpHPr0AQOLIpxfwyjcW4e7q8php1wpc90vABaG5j3DB2eyTeW+2BY/rjY/vcmx91+r1C+b9zsNzTqqqX1mDjcuqUFleMqocJyIiIiLSC8fnyQly0vjMZcP/nszCvoiIyOK0ZoWKtWynVuVr276OuEt8prLUc/g+gMASx8eGl7jeuq8DAOAWgUG56G0lux+Vlp6mSFwuVi28V/Sj11LrPCdE9qdXfmEHTq8XxJqt0DvoxyvvduGpB+aZlCrncPr1R5QIB2f0Fx5YtXFZlYkpMV8qeXCsfq1Y7abwa1aIQJm698PTEdtKtGxzrOt+6TVloTTGOm/B77LmuVb8sbs3NPlCLGPy3Lg44It4zS2Au64rD83MlejaUPE6ij6uvqi/61nf1ernVIXV6xfM+50n0TlX/Z4jIrIi5q1ERERqOdXbj3vnTcWRkxcw5/ISpSYDINKDkFJj2gytDwjhATARwNellD8Pe/0eAA0ApJTSHeNz6wE8DqBTSnlFRqmmpNXU1MiWlhazk0FEDha9nG6iZTvDl06864dNMWd3ynSJz+A+7pg7GXW/PISOM5fgl+ByOSmw2vKSXC6WnEDlpdaJSC1Ozy9YLwgILh35yrtd8MvA958yrhAVEwvxi79aYHbybIvXH1HywvsHgkHAKs9eyUAP9aWTB0f3a8WzaksLjnZfxBFPL8YV5OC8dwgPLhj5nKfHi7qXD+H1w59CavRDJXvda32XIJcApo0vRMfZvrhpBhCRRisK1mka3+2CTwaC7q+4rAgfn7mke31X63ow+/63U/3Cank/ZW7VlhaMyc8JBWP09g+GznkqeTCR3VhtDIasg3krERGRelg+k9UJIfZLKWN24KQToL4PQA2Af5NSPhz2eqIA9bcALALwGymltXrELIwB6kRkFq2BkTy3wB3XTok5a2f0AE5wgCmZ96bL6QFa6bJa52g2riUis3EQ1xxmByIQpcPp+QXrBSNYF86+WEF04TPXEpF1cSBJfanUAVIN+E0UMB783O0/eAvtnl64BCCBtK+X4Hd57dAJ9A+NjPG4BeBLMOTjEsD0y8Zg47IqvPreScvXBbWOvVsI/Pobi3Sp7ya6Hsy+/1m/JatLdZIbIiew2hgMqY95KxERkXrsWD5z7NyZ4gWou9LY3usABIAHhBClSSbgTwDcMvzra2nsk4iILKZp7WLcXV2OgtxAUVOQ68I91eXYs35J0ku1ZmNZ1+CyzA2P3IwVC2akvFyOp8eL5fV74bngjfsamYtLBJPdeXq8OHtpEKuXzkRleQk2LquydICBlYQvoU6kRbW6Qf3KGmxcVuXY/IL1ghGZ1oUpdbf805v4VWtXKHjQJ4GXW7twy6Y3zU0YEaVtTt1OVKxvxNZ9HZAS2LqvAxXrGzGnbqfZSbOkw13nce0/vIbDJ87HfV869atU6gBa/VpN6xbH3Hbw/fk5IuL1/JzA5ySAivWNaPf0AgD8EpAS2Nbckdb3CX6XAZ+EK2yXiYLTc90CEsCimROxaNYkW9QFm9YuxuXj8uEePhBul8CUcQXY+60lutV3ta6H4Hk1+/5n/ZZUlEy+plWGSomU8mAiIkos1fotERERGc+O5TPHzilaOgHq9QD6AYwFsF0IMS7em4UQSwFsG/61B8DP09gnERFZTLyBkVQCYYwOmsk0QCtW5SpRhUu1IDWnYAAW2RkbetnHQCRKBe9R9bBeEOD0hxXMoBVEZ+UOZyKns+NAkpnWPNeKC/1DWPNsa9z3pVu/SrYOkGrAb6yAcbcABnyBz+3RuE7e+dbShN8nuh8p+HvnuT6sWDADpcX5KR0Du9V9ykoKsPSayfBLifwcF/xSYuk1ZboGZ2tdD1rn1Yz7n/VbUk0y+bT2JDeL+dAFEZHO+EAbERGReuxUPnPsnLTkpPoBKeUnQojvAPgegJsBHBFC/Bxhwe5CiEUAqgDcC+A2BGZclwD+h5SyR4+EExGR+oIDI1+dPz20nC6AiMCXjcuq4m4jlfcmS48lZaKX2tm6rwNb93VEvCf4WvTyO+Gd89le9tfJy+kYcS0RmU0rL7Lysl9W0bR2seYS6pQZO5VVvEfVxXoBmSUYRLetOZAXDPj8ugfREVF2GTmQZPV6USrpr1jfGPF7u6c39NqxJ+4MvZ5p/SqVOoBWv5bW9wq+/6PuXpzq7cfE4jxcXToW3Re8EdeJEAhdJ7dsejPh94nuRwr+7kLiGdPD5ee40LRusSWvpUS0zpXR+1BpIFnF+q3V8zBKTyr5dDKT3Bh5XxMROQ3zViIiIvXYpXzm2Dn9/+z9e3xU9b0v/r8+M7kTAggJJiCklosF1KA5gBU1Adu6lSrqLrYFds/Zbb+4rRtP3fsLtKRnX4pW9u/Y35bWc0569t5nH7l4O5jaGqKtKDb0QNIgaJAiqYKBBJhwTYZkJsnM5/vHZA0zk7XmutastWZez8fDhzDMzPrMzFqf63u9P1qElAnMYIa+UIj/P4AnRv4a7U2UDSb/QUr5D0kdjJJWXV0t29razC4GEZEptBZB6hrasb21EysXTIs7QDzyvVy9nlGdq7tmlQIA3jvWM6rDVTa2YNTkvCI/x4HmdbVpWbBJ5rOr2bNnD2pqavQrGBElRa0uCq13yFgbG9qxo7UTec5AgGGqdSsF6NVWWQGvUSJSs2ZrG8bk5+DYmT7MvrYEbu8Qs9cT2dyarW0oHVsQtpCkx3Vt935RIuU/0n0Z333hALouDQQfmzq+EL/41q2YU351E1cr9K+S/V3WbG3D8Z4rOOZyY1ZZMT5XOgY/fmCe5ueJDF5PVl6OA0Mq4xUGD+vDqOs/E9i9DqPkJFpP8xoiUsc1GCIiIiKyG66dZy8hxAEppepgPuEM6gop5feFEHsA/AOAm6I89SMAP5BSvpHssYiIiJIRmWEqlSxbke+llt2ltDgfEtDMmtS8rhY/ev0wfnvkLPwSYZPzW942Nqs6M7hmDi4gUygrZWvLJsp1WJTryIg72q0iE9sqXqNEpKZ+dTXqGtrx0eleVF03Hs+uYAAOkd3pnbnY7v2iZMo/p2IcivKcYY8V5jnDgtMBc/tXqfwuka895nLjmMuNPR/34M9vnRr8PJ4hP/Z9ch7n+ryYU16C0pJ8/G4kEUJ+jsCk4kBWYe9wIOjz2pICnDjfP+p4ynczq6wY//z1+arjFTN3+MskVsxcbja712GUmkTraV5DREREREREmSFTssGTvpLOoB72JkLcBOAOAJUAxgFwA+gC8J6Ukum7TcQM6kSUCRINyNXKVJ7nFLjnxvKEsmxFy3peM7t0VHYXAFEzvnzpp++hw+WGUwB+BLYZ8as0xXov2OidYYzZO8zD7FMUiZmm0o/XoTGskA3TCLxGiShUtLHKsafuNaFERGRFdu8XJVv+BU+9jfFFuVi7ZCa2vNOBS/1DaN1496jnmdW/0vpca+68Hn//6yNR561cvR6sqN8XDCYP/U5+9MvDKB1bgHvmXovvvPAHeIb8mFlWjD/1uDGjNPB/JfNU5N+nji8EANw0dTwA4J2jZzGpOB/1q6s1v5toc10MHiY92L0Oo9RxHEyUOq7BEBERERGRXRiSQT2UlPJDAB/q8V5ERESREs3o1LyuVnMR5Lm3OxLKshXtvUJfp5bdJfSxyMU/X0hQ+v1VFarvrydmcLU/rexTAkDLxqX8LbMYM02lD7PAGStT2ypeo0QUKnJ84RSBscFXb64wu2hEZCF27xclW/7QYPRlUepFs/pXWp9rR0tn1HkrtYBwz5Afb3zQjee+Ph/1q6sxu64J2/Z/Fvz3Dpc77P9+KbFy4XT85qMzozJRaQV9blo+LxgYHxo8H22ui0gPdq/DKHUcBxMRERERERERADjMLgAREZGW2XVNqNzQiG0tnZAyEAhYuaERs+uaor4uchFE2R4ZuLqlTMNjt2PlwunocXuDr1MW7Vwh28yUlRQgRwh4hvzIS2FBpXldLe6vqkBBbqDpLch14IGqCrRsXBp1wUatTMmK9tnJ+tTOocqJRYAAtrzdYXLpiLKDVl3evL7W5JJlDrZVRJTplLGKZygQqKjcuLrz/a64xjpElD3s3i+ye/m1hH4ugas3rUabt1LGEQ4R+Ht+jgOVE8fgjpmTAGhnNFee+0BVBX6/YQk2LZ+H1o13Y9PyeZhTUYJNy+fFzEgcmvRBweBhSodMrQOIiIiIiIiIiCh+umRQJyIi0pOr14PHXzyIhse+iP/xu0+TyuikLIJ8c8E0PPHSQXS43NjydkfU7C1amdr/cOICAOBLN5RhQnE+epIIFo+2+BdaViX7VWSZNjcdxcmLA1G3i46FmWvsLfQcAgLZ1pStwZnFmSg9GMhhPLZVxlH6V6n0JYhIH+fcXjx0yxRccA+i+U/n4PNLZq8lolHs3i+yS/kT7SOFfq79P1iKTbv+iMYPT8Pnl3A6BJbdVD6qLlfGERKBgPNBnx+LZ0wMzj01r6vFj14/jLc+Ohv2OocABn2BMQckRmVCjybW7k/R5qKI9GCXOoCIiIiIiIiIiIyTcoC6EMIB4PMAJgCIa5VbSvm7VI9LRESZSwnK3tHSmXQgoNr2yFpBvFqLdpEaD58BEFhMTIbW4p/agk1kmXa+3wUAuO3p3fjkJ/cldXyyP+Ucumfutaj7ZTs6L/TDL8GAJqI0YiCH8RhIbYxnmo6i9fgFbN51FM8+UmV2cYiymtL/39jQDr+UvOmJiMhEW3Z3oPX4BSzbshdvrF2cUD18xz+9GzZ34/NLvH6oG28ePjPq5nG1cURov/fTnisAAAFAAhhXkIM5U0rw+dKx6OnzaCZV0NK8rhabdv1RM+kDg4eJiIiIiIiIiIjIaEJKmdwLhagB8LcAlgDIT+ClUkrJzO1pUl1dLdva2swuBhFRXLS2NHYKgV//9eLgAl607YtDF/cgobkYF7rg6Or1qD5vzZ3Xa2ZwNzpwRCnTrw51q/672Zmy9+zZg5qaGtOOT4GAph2tnchzBrKvrVwwLa5FaiIiq/ubVw5h5/tdePiWKXh2RZXZxbE9rf6V2X0JMt6R7st4pH4/Xn50EeaUjzO7OBRCGbMU5TkxdUJRWLBitLEOkZ54QxhlOz36SK5eD+5//vfo6fXAJwGnACYW56NifCF+8Re3xry26hraVRMkAIHs6Z/+5D7NcuY6gI6noycw4LwBERGRfXENhogyBecfiIiIMp8Q4oCUUnWBK6kUsEKIvwOwG8CfIZA1XST4HxER0SjN62pxf1UFCnIDzVNBrgMPVFVg3w+XYE5FCTYtnxczYCM0O6iyhXKsDOxaz5tTMS7pDO562P/JeQCBRUmF8p00r69NSxnIupTsaw2P3Y6VC6ejx+01u0hERCmZXdeEyg2NwV1Ddr7fhcoNjZhd15TS+7p6PVhRvw+uLM12r3VPenK3qpOdPPHSIfR5h/HEi4fMLgpFULLgTh1fiE3L58U91rGjbK+DzRTruw/NxmyUI92XcePfvYUjpy8bdgzKXqnWL83rasPmWxTeYX/c/c+ykgIsvaEMfgQC2/0AxhXm4oNTl6JeW0q/Vy04XZn32f/DpcFyhs6VKaZeM2bUayO/EzvNG7C9ICIiIiLKTOmYfyAiIiLrSjiTuRDiKwD+LuShTgDvAegCYN0ZTiIisrx4A8ojuXo9WPj07rBAq50Hu7DzYBccAqO2UFajttVytMdjSfVu8C27O+Dq82JmWTFmlhVj1+EzcAikPUierIvbcRNRptHa3Svarl/xtLehE+DZmDFy7/parKjfhxPn+4OPVU4swiuP3mZiqUhPkddB5YbGsH/vcLmDj514JnqmVTJWZBbcbS2d2NbSmdE7GmR7HWwmre8+nedh6I0yv33yLl3fmyjV+qWspADLq6bgtYNdYY/fM3cy/jGBMbYyb/TyHzohZaDdBaJfW83rasN28lOozfsoc2WhzwOA4+eujGrfI78TO80bxPt7MvsiEREREZE9ZOM8GBEREY0moi32q75AiF8DuA+AH8DfAnhOJvomlDbV1dWyra3N7GIQEalSW1Ras7UNpWMLEtrmPtqWyHk5DhwzYZBb19CO7a2dCW+frLV1s1MI/PqvF8f9nRiN20sSUbZjYIT+XL0efK1+Hz5TCaTW+o6jtbdabWo2ToAv3vwOTl0cQJ5TYNAncd2EQjSvX2J2sUgnkdfBke7L+O4LB9B1aSD4nKnjC/GLb92KOeXjTCwpuXo9YQGJBbkOfGXutdh43xcSakvs0AaxDjZPrO9er/MwmsgbZULxRhlKlZ71y5qtbfi05wr+5HIHkx7MLCtO6oaKyGsLiN6X3djQju0ac1kOAXz6k6vXypqtbXA4BA6cuAhX39UcQUr7/uDz/9e2dW6iv2ey8212YYc2noiI0oNrMERkd8oYqfGDbvgk4BTAspsrdJ1/ICIiImsQQhyQUqoGsiUToH4WwCQAL0kpV+pQPjIQA9SJyMpSXVTSWsRSxApqM0KqC6XpCBaIdux4F8E4OUpE2S7TAyPMogRS5zoFhqIEUsfT3prZplpNMjcAkvVFuw6mXVMUzOAKJB9sR/rb2NCOHa2dyHM6MOjzJ9WO2KENYh1snni+ez3Ow2h4owwZSe/65fofNMKvskSSTHB3Iu+1ZmsbivNzcO7KIN77uAcA4HQILLupXPOzfOmn76m273auc+Mte7bc+GSHNp6IiNKDazBEZHfZ0oen7MMbi4mIRosWoO5I4v2UVYQ3ky8SERFls9l1Tajc0IhtLYHtj7e1dKJyQyNm1zXF/R6uXg++UF6Cr8ydjILc8OYs1ykAAD6/TPugoHldLe6vqgiWqSDXgQeqKtC8vjau1ytbN3uH/cjPcYza2tlIodspExGROj3aMNI2t6IEqxZNx+vfW4xVi6ZjTkWJ6vPiaW/NbFOtpn51NTYtn4c5FSXYtHweg9MR6EuuqN8HV5/H7KIkLdp1cHlgCLMmF+Pn35iPWZOLcXlgyOTSkuKc24uVC6ej4bHbsXLhdPS4vbFfNCLRNsjM85x1sHni+e5TOQ/jMadiHIrynGGPFeY5GZxOuojnHI+3/ptd16QaUO4QiDmPo3aMO2dOQuXEIuTnOILvozUnVL+6Gm98eDoYnA4E5rFeP9SNOza/q3pMrfbdznVuvGVPdb7N6jjOJDJHJowLiYiIrKp5XS2uHZcPpyOwbu90CJSPK8iYPjxlL8ZUxI/9bSICgJwkXnMGwHUABnUuCxERZYnmdbWa2ZFiUe5IvW5CIT44dQkzSovDFrFmlRXjn78+P5gdNN30WBRUggVCs5waKfIO9m0tndjW0sk72ImIVChtWOOHp+Hzy7Ash5S60MDpTcvnaT4v3vY23W0q2UfoJLJds1NGuw5aN94dfN6ymytMLCVFireeU5PoOMrs85x1sHnOub14aP4UfHymD7PLx44KQE/lPIyXEki7dslMbHmnA5f6eaMM6SdW/aLUf8u27MUbaxePCl5XMp01PPZFrP7XVlzsHwwLVH+waorqPE7oa9Xq2H//y4XBHQrycwI7FGjNCbl6PZhTXoJTlwZwwe2FTwayCTmdAg3f+6Lq547Wvluxzo03q1w8ZbdzEH48UpkrJaLkbX7zKFqPX8DmpqN4dkWV2cUhIiLKKGUlBVh6w+Sw8dHSG8oypg9P2YcxFYkze36aiKxBSKmSIiTaC4TYDuDrAJ6SUv4XQ0pFuqmurpZtbW1mF4OIaBRlwS7X6cDgsB8P3zJFcxI4dEHrtqd3w6fSdOU6BR75D9PQ0+cxPSvomq1tKB1bELawplYmI7d/SuS9k9kKmttLElG24raU1hFve0sUyu7XcGQfj9dB9lHGUXnOwMLeygXTRk3u2/08J33UNbRje2un6jlCZFex5jriqf9Crw0gsKAMAE4B+CUwo6wY15eOUW1P6xrag8/XOka8bbNSjsprxuD4+SvIcwoMjkx4rVqYGdet3vVQpvd74mnjiUgf7C+THXANhogyQab34Sm7JBNTka3Y3ybKPkKIA1JK1UY+mQD1RQD2AugCcIOUciD1IpJRGKBORFalDEgvur1oPHwG100oRPP6JarPjbYACAS2S7Zjx9/IgIFE3zvRRbB4JkeNDMAnIjKLq9eD+5//PXp6PfDJQCBLWUkBXn/8dtZ1RDZg90lkBpxSPAt7dj/PKTVcACK7izaXoMwPlY3NH5UZHQCOdF/GvVv2Jn1spxC4e07ZqHpV67oCMKqOTTaIXk06r1s953BYDyWHwTtE6TNr467gTUGh8pwCx56614QSEY3GAHUiIiLr4Y3F8eH8NFH2iRagnpPom0kp9wsh/guATQBeE0J8XUp5OdVCEhFRdtnzcU/YYtXJiwOo3NAYtlgVa9HOIQAJ2G5LX6O2f3L1erDw6d0InVqP972N2AqaWzYRUSYKbEtZxm0pybJ4g1h0ZSUFGJufA++wH/k5DniH/bboS3L7UFKEBqptWj5P9Tl2Pc8pPrHq+eZ1tZoLQER2oDaXENkOuvq8WPDU7lHt4A6V5AZOASy7uQJr7rwe/+N3nwavDefInJJfjg4yjxR5XTkdAj6/RJ5TjKpjY82FKO/1q0Pdmt+BGdft5jePovX4BWxuOqq5w2G8WA8lJ542noj0sXf9Enytfh8+O98ffKxyYhFeefQ2E0uVPThvQURERHZlRExFJuL8NBGFSjhAXQhxJwIZ1F8E8A0AHUKIFwDsB3AOQMz0H1LK3yV6XCIiyizxLFZpLQAKBBYR/2zutZhQnG+7jr9RC3VbdncACGSkAiS8wzLu99ZzEYwBVESU6eKdgEplwY2LdZQs3iAWmx0nkRnoRYmy43luNVZti2PV81wAIrvSmkvIcwrsXb8Ei36yG/6IZLfeYT9m1zUF/6zGJwOJDeZUjBt1bQCI6zpRu65mlhXjua/PD9ax8c6FlJUU4I0PtIPTAcAzpN91m2hG953vd2Hn+10pzeGwHiIiqysrKYBvpFHJdQoM+SR8fsl6Kk2eaRq5KWrXUTz7SJXZxSEiIrItPeeurDoPZjW8sTh+nJ8mIkXCAeoA9gDB5KwSwCQA30/g9TLJ4xIRUQaJZ7EqngVAO3b89V6oi1xMjPxzuhcBGUBFRJku3gmoVAKFGWRMieINYvGz4yQyA73iw4WUq+x4nluNntmE9ZBIPc8FILKjUUkKRCC4/Ks3V6CspADLq6bgtYNdwec7HQLLbioPzDVI4EevH8Zvj5yFXwZ23Jt2zRj87Zdn4h/f+CNOXRoAEH5trNnaBiBQX8ZznahdV3MqSoJ1bLTtqyPdOXMSTpzvx4mQzL2hHAB63N5kvsZRYo0rpJQqr9J+PF6sh4jI6uZWlKBmdhnrqTQadVPUwS7sPJjaTVFERETZTM91JK5Jkd44P01ECpHoRKMQImaG9BiklNKZ4ntQnKqrq2VbW5vZxSAiUrVmaxtKxxaETQL/+IF5YUElas8J7czaldbnSiaoxtXrUc0kBgBOIXD3nDLdv7M9e/agpqZG8983NrRjR2sn8pwODPr8WLlgGgezRJQ1IhfcFPEsuKXyWspu0YKisj1QN1Nkar9YT3UN7dje2sm+J6XEqm0x63nKBhsb2rG9pVP13xwC+HxpMf7kcsMxEry+auHV+v5LP30PHS43nCKwxevKBdMAIK3tQuhciHfYj7Kx+Xhj7WLVa1Trs1ZOLMIrj96W8nUdb13m6vXga/X78FlIsLxeZSAiIgo1a2MTBn2j26a8HAeOcc5rlFhrMGbhjeFElCjWG/rTc+7KqvNgRERkL0KIA1JK1UXLZDKZ/0OK5SEiIgKgftdkXUN72N25mXpnpdbnSubuZNVMYgJYdnOFacEKzJRFRNlMyf741uHT8A5L5OcI3DOvPK6dJLgLBSWLGbYzX6b2i/XAHQRIT0ZlE04V6/nMlu0L9srnL8p14KFbpuCCexDNfzoHn1+G9Yd/9MvDWHj9xLC5hsg2wDdyqW4LCf7WaheSTRKg9hpXrwdvfNiNiWPy8M+PzMc//PojdLjcmvM759xerFo0Hb/56AxcfV4IBLae9fmlLudAvOOKspIC+EYyHuQ6BYZ8UrcyUPple11CRNa2d30tVtTvC9tBRLkpiuyDGXaJKFGsN/Sn5zoS16Ssg+M5IspUCQeoSykZoE5ERLqzc1CJHoOFVD//lcFhzCwrRkdIJjEzgxUYQEVE2exqAFkg0MM7LOOukxl8RqngDWLWx0nm5MT63riQQnrau36JZjZhs6VSz7P+sbbNbx5F6/EL2Nx0FM+uqDK7OGmnBCwomc43NrTDL+Wo/rDaXIPa7gJ3zSoFALx3rCfsMVefF64+T/AaSCZQQus1W3Z34PLAMABg1b+2BB/Xmt9RPktPn2fUDil6SGRcMbeiBDWzy9iHzAAM/jEf21sibWUlBRgeuSkqzykwyJuibMXOa3hEZA7WG8bRcx1JeS/PkB8CgGeIa1Jm4XiOiDJVMhnUiYiIdGfnoBI9Bgupfv761dVYs7VtVCaxUFwgISJKD7UtEbe1dOLVA6fimnhlkDElizeIJSedfSQzJpkzoQ8Y63vjzT2kJytnE06lno91HWVCXWFHkf3Gne93Yef7XVmzYK8VsOAQiNkfDj1nI9uA0uJ89A/64BnyI88p4B3249OeK/hTTyCj+asHTiUcKKFV1lhize8Y2X+Ld1yRTX3ITK3rGPxjHQwqoVgytR6KF2+Ksi87r+ERkTlYbxhLz3Wkc24vZpYV408uN2aWFaPH7dWxpBQLx3NElOkYoE5ERJYQK6gk3RO38RxPz8GCHkE1sRYUuUBCRJQeetx0pMj0ABEiKzCijxTZlzRzktnOfcBEvjfe3EN6yqTAmXivIzvXFXYmpUzo8UwTrd+szIdo9YdDz1m1NuBIdy8AYNgvISXQ4XIDQDCo3CGAvBzHqOOqzQe5ej2YWVaMUxcHMDDkG5m7ESjOz8Vz36jCC/s+w9tHzmLk3hYIABIIBsebddMUxxWjZWpdx+Af8xnd38/2oOZMkqn1ULzYNtkXbwwnokSx3jCWXm1qZD+2w+VGh8uN2XVNDI5OE47niCjT6RagLoTIBzABQJ6UMnbqECIioghaQSWuXg+W/WwvetzetE3cxjNRrPdgwaigGt51S0SUXpx4pUh6BhNEey8GLSTGyD5SZF/SjEnmTOgDJvK9MdCB9JRJ51Os6ygT6go727t+Cb5Wvw+fne8PPnbdhEJMGpsPV58n49vzZPrNaucsAOTnOLBp+Ty82nYy7N/9EbH+yjXgFAINh7pGHffJlw+h9fgFbN51FM8+UgUg0K4fHgl4B5TAcwnv8CDebD+D0uL8sONIAJ+bNAbPf/MWW93kksl9yUyv6zgGNZ/R/f1sD2o2SjrrvUyvhyg78MZwIkoU6w3rY3C0+TieI6JMl1KAuhDiCwCeAPBlANNHHpaR7yuEeATA5wGckVL+WyrHJCKizKUWBJDuidtEjqd31nejgiA4sCQiSj9OvFIoPYMJor0XgxYSY0QfKVpf8s9vnZrWSeZM6ANycp4odbGuo0yoK+ysrKQAvpHI5lynwJBP4sKVQZy6NJA17Xmi/eaGx76IVf/aiiveYXiHR5+zzetqsaJ+H06MBP3n5zhQPq4An13oR57z6jXQE3HcHS2fBYPdAWDnwS7sPNilWoZB39Vo9NDXAEBxnhPuQR+GfX7MqSix1U0umdyXVOq6xg+64ZOAUwDLbq7IqLqOY1BzGdVvZVCzsdJZ77HPRZkgk27kJaL0YL1hfZx/tQaO54gokyUdoC6E+C8AfgTAgcCuldHkA9gEYFgI0SilPJvscYmIKHtETsArHAJoXl9ryDETnSiONliwysJeIgPLTM6WRUSUTpx4JUDfYIJo7wWAQQtJMGLyPVpf8ke/PJzWSeZMWVzg5DxR6qJdR5lSV9jZ3IoS1Mwuw8t/CAQ6Xxn0Acie9jy037x2yQw8/uLBqNnjd7R04sKVQQAYdc7O2tiEQV/4PJJ32I8T5/uxalH4NRDZX3/lDydHvRYILHwIMToTuxb3yO938uIAKjc02uL3y4YA2Dv+6d2wz+iTwOuHuvHm4TMZ8xk5BjWfEf1WBjUbw4x6j30uIiIisirOv5qP4zkiymRJBagLIf4BQB0C87M+AK0j/1+s8ZKXAfwcwBgADwD4RTLHJSKi7BKZ3Ujx4PwpcU3cJhNsnehEsRWyvscj3oGlVYLqiYiIMoGewQRR30uCQQtJ0nvyPVpf0oxJ5kxYXODkPFHqYl1HmVBX2Jny+6xdMiOr2nO1OZtocxJqSQy8w344BNDj9gIAlt1Ujtc0sp6/2nYSm5bP02xL9q4Pz7wOAJUTi3DL9Al47f3w9xQIbCOrmDqhED193rDy5ecI3DOv3Ba/XzYEwDavq8X9z+9FT98gfH4Jp0OgbGw+Xn/8drOLRhnEiH4rg5qNYVa9xz4XERERWRHnX4mIyEgJB6gLIeYB2Djy10MAHpFSdgghHoBGgLqU0iuE+C2A5QBqwAB1IiKKgzIB75OBrOl+CcwqK4bbOxzX65MNtk51otiICe5UM5vHGlhaMaieiIjI7vQMJoj1XgxaSI4Rk+9WCjrg4kJiuJsQZSvWFdZgZhCiGfVf6JzNqwdOxZyTiDbXcsfmd1G5oVHzWJUTi/DKo7dFLU9ZSQGGR9Kk5zkFBn0SJ873hwWsK0KD02eWFWNgyIdBnx9OgeAc1qBP2qY/lg0BsGUlBVh6w2TsaA2cV4M+P5beUJZRn5Eyl5XGF5nCrHqPfS4iIiIiIiLKNslkUH8MgAPAeQBfllKei/N1BwA8CIDpWImIKG7n3N6o2zCrSTXYOtWJYiMmuI3ObJ6uoHqrBf1YrTxERMlgXWZtegYTRHsvBi1Yh1lBB6wLUsfdhIgoXkbVuWa15+ms/9TmbBT5OQLe4UD4d2RQebS5lsg5jUgnzvdjwVO7Y84Lza0oQc3ssuD3f+pCP0qKcjXfFwA6XG44BLBy4XR80tOH8+5BTCrOx/Wlxbbqj2VDXzIbPiNlJgY1G4N1AhEREREREZHxhJQy9rNCXyDEHwHMAvBTKeX/G/L4AwAaAEgppVPldasB/G8Al6WUE1IqNcWturpatrW1mV0MIqKUJLrw6+r1aAZbpytYZ83WNpSOLUgosF6N2hbWAAzJbL6xoR07WjuR5wxkklq5YJrmwvSePXtQU1MT9f3qGtqxvbUz7H3UHjOT1cpDRJklXcGirMuICGBdkIp09rmJKDNkSp1rZP2n1Rd29Xqwon5fWGby4vwczd3yQssSba4ldE7DO+xHcX4OBod9GPRJCAD3V1UkNS8U+b6VE4tw8kI/fBJwCmDZzcm9LxFRvHgjKlF2imcNhoiIiIiIyAqEEAeklKpBcckEqPcCGANglZTyxZDHYwWoPwzgVQDDUsq8hA5KSWOAOhFlgmQWfhMJtjaKHosHRgTba5UrkaD6aJOjWgvcaswK+mEQEhGlg9GBS6zLiAhgXaAHK9zgSkT2kGl1rpH1n1pfOJH5AocAvppA8HfknMaej104dXEg+O+rFibXJw9936/+bC98KuspZv3+DFolyg6ZclMUESWGAepERERERGQX0QLUHUm8nxJ87kvwdeNH/t+XxDGJiCgLza5rQuWGRmxr6YSUgW2fKzc0YnZdU8zXKlt0Njx2Ox6cPwWN7afhSvM2naFbZCcr2hbWeperfnU1Ni2fhzkVJdi0fF5SGd8BoHldLe6vqkBBbqCbUZDrwD1zJ+PLcyeHPfZAVQWa19cm/TlSoVZGM8tDRJkllfYrEazLiAhgXaAHI/rcRJSZMq3ONaL+i9YXVr4/h4j9Pn4J/PqD7rjLEjqn8WrbybDgdCBQjmT646Hv++u/vh25TgHnSPmdDoHycQWm/f56zDtlMiVbfzrmA9N5LMoe6ZpbICIiIiIiIiIySjIB6mdH/v+5BF9368j/u5I4JhERZaFUFn5DFxCLcp24NDCUtgW7eBYPElm4Cg22X7lwOnrc3pivUXv/dC1qqC1wTyrOR2lxvmWCfhiERERGSlfgEusyygYM9omNdYE+kulzE+nFiLqO9acxMrHOTaX+UzvPovWFle9PIvbCROXEItw5qzSJT6RdhobHvhgsbzLXyKbGIxjySfhkIGu6X0osvaEs7b8/g1bjk84A/s1vHkXr8QvY3HTU8GNR9lDqsvycwF0x+TnC1jdFEREREREREVH2yUniNa0AKgE8AGBzPC8QQhQDeASABLA3iWMSEVEWSnXhN3Lr6G0tndjW0mn41svN62o1t8hWhC6SxdqaNTST+abl84KLqNG2cFZ7/3jKpRdlgVvZWrtnZMFX7TGzaJWRiCgWV68Hj794ULMeTmfgEusyynSJ9JmyGeuC1Lh6PbjYP4QfL5+HsrEF2LR8ntlFIhuL1U9QY0Rdx/rTOJlW50bOOcRDOc+vG1846jzT6gtDAivq96Eo14GVC6fjt0fO4GyvdjD8yQv92PP/JheEqVWGf917PBhEXJjrHFV2res3cn4JALzDfjgETLmhKZ3zO3aUzvnAyGPtfL8LO9/vMnzukbLD1bpMAgC8w9L2N0URERERERERUXYRUsrEXiDE1wC8jECw+X+SUr4w8vgDABoASCmlM+T5AsB2AF8feU2NlLJZn+JTLNXV1bKtrc3sYhARJW3N1jaUji0IW/gNXTyNxtXr0VywM3oif2NDO3a0diLP6cCgz4+VC6Zh04M3qi5qAkho4aquoR3bWzuD7xkq1vtrlSsRrl4PVv33d7HtsVouiBBRVopWDytSab+IKHafhpILgqWrQr+/LW93xKzXrYC/uXVE+y3i6ScojKjrWH9SOlz/g0b4VZYVlPNMrS9cWpyP7a2dEIDqaxUOAUy7ZgwqJxbi3/9yYdJlDC3Dsp81Rz2mUvav3TpV9fqt3NCo+boTz9wXsyxG1N/xzu9kY9uRzvnAWRt3YdA3+uTKcwoce+peXY9F2YdtOlF227NnD2pqaswuBhERERERUUxCiANSStVgiGQC1AWA9wHcDGAYwN8D+DmAWkQEqAshbgPwNIA7R16+W0r55SQ+AyWJAepElO30CMhOhlZgYiqLZPEsSsR6fz0CJusa2rG9pRMrF1o7gIeISG9cHKZMYvVgJTNvNLSLRIJgabS6hnZsa+lU/Ter1uv8za1D7bdIpp9gRF3H+pOMpHWeA8ADVRWq51m01wCBgPSivBxc8Q7DIQCfBFbpPN+gFUQMAAW5DgwO+6MG3KcaoG5E/R3v/E62th3pmg909Xrwtfp9+Ox8f/CxyolFeOXR21jnUsrYphNlNwaoExERERGRXUQLUM9J9M2klFII8ecA9gOYCODHAH4EwBVywN0A5gAoUx4CcArA6kSPR0REpEYtqErtMbO23tbaIltrm+l4FhXi2cI51vsns3W3Ip1bJBMRWVE89TCRXWzZ3YE/nLiALW93WDJYKZU+U6Zjnyw10QIl9azX9bwJhL+5dUT7LZLpJxhR17H+JCNFnudAIMDcL6F5nqldG9eWFODE+X7k5wSChycU5WL5/Cm6zN2o1b971y8ZFUQMAHkj18hD86dgyC81r9+ffaMKf/3ioVHH+vk3q6KWxcj6O9b8Tra3HemaDywrKYBv5O6GXKfAkE/C55esc0kXbNOJspPSl/lmpfYNfkRERERERHbhSOZFUspPACwCcBCB4PN8AFMBKHlGagBMHvk3AeAPAL4opTybYnmJiChLuXo9WFG/D66RBaXQoCqF2mP1q6uxafk8zKkowabl8xLOFm4EZZGs4bHbsXLhdPS4vXG9Lt5FiWTfP5bmdbW4v6oCBbmB7kNBrgMPVFWgeX2tLu9PRGR1XBymTDC7rgmVGxqxraUTUgaClSo3NGJ2XZPZRRvFqD6N3bFPlprI78/pEACAPKfQtV5XG5ski7+5dUT7LZLtJxhR17H+JKOEnucj1SfumVeOVYu0zzO1a8Pnl1i16Oo5qszZJDN3Ezlf9EzTUbQev4DNu46GlSE0iBgAxuQ58W/fqkZpcT7OXxmMev1+9eYpqsdedpP64woz6+9sbzvSOR84t6IEqxZNx+vfW4xViwLnM5Fe2KYTJSeyf2Anyljy9T8NmV0UIiJKkZ3bIyIiIr0knEFdIaX8RAhRDWA5ApnR70Ago7rCDeB3AP43gP8jpVTfQ5OIiCgOyqTcoqd3h227rGSACpVoVig9sxvGI5Us5tEyQKl9jkTfP5rQRWUBMDCTiLKSWTtzEOnFTjsBpNJnymS8WSY1at/fzLJiPPf1+brU60ZkrOVvbh2xfotk+glG1HWsP8lIaud5rPMs2mtSPUeV+aLbnt4NX8h80c6DXdh5sCtY/86tKEHN7LKwMrx5+Ax63F5MHV+InhjXrxBArkNg5cJp2N7SiSF/7OUOM+tvth3pwzqXjMTziyg5Vt81Tk3kWPLdk8Oo3NCYNbufEBFlIju2R0RERHoTesaNCyHGABgHwC2l7NXtjSlp1dXVsq2tzexiEBElLXJSLlJBrgN3zSoFALx3rGdUoFU8C291De3Y3tqJlQum2XpwmI7PsWZrG473XMExlxuzyorxudIxlshKT0T2lO4bhIgoYGNDO3a0diLP6cCgz2/7PlA2WrO1DaVjC8KC6Ngni5+R35+r16N5E0gqbR1/c+vgb0FkDbHmixR5OQ4cGwnqUsYfh05ewqDKa0MDwI50X8Yj9fvx8qOLMKd8XNLlNLPOYH1FRETZRqt/YIcg78ixZJ4D+LObKlIeSxIRUfrZuT0iIiJKhhDigJRSdeJR1wB1sh4GqBOR3bl6Pah7/TB+e+QslCarOD8Hbu8w8nOuBlVJQDPQSisAMlMGh+n6HJnyfRGRdWTKDUJEdsNgJaLYUrmJijeBEJHVpVLHmfVatfcKC+JyAoO+8OdUTizCK4/eFjyWMv54sGoKhqWMejPRl376HjpcbswsK8Zvn7wrpbISkTretE5EejPqhuF0UcaSAAAJrFzIsSQRkR3ZvT0iIiJKVLQAdUe6C0NERJSIspIC/Oajq8HpAOD2DgMA/FJi5cLp6HF7g9tFNzx2e/AxRej2WaGa19Xi/qoKFOQGmsOCXAceqKpA8/pa4z+YjtL1OTLl+yLS4ur1YEX9PrgitnIn/c2ua0LlhkZsa+mElMC2lk5UbmjE7Loms4tGlBXqV1dj0/J5mFNRgk3L5zE4nSzJ7HZZawwRj2hjEyKieBlZD6ZSx6Xy2meajqL1+AVs3nU04ddGKispwNj8nOCN9JHB6QBw4nw/ysYWjBp/vHawC7861A3PkB/5OQ54h/0Ym5+DsrEFqNzQiMoNjehwuQEAHS538DEi0lcq9QkRkZrQ/kFkG28H59xezCwthpRA+RjBsSQRkU3ZvT0iIiLSU47ZBSAiItISbbvmB6q0tzbctHye6uu3tXRiW0tnMOO32YNDvbIE6fE54ilL6HFyHeBgmjJO6MIoM9MYq3ldrWb2CCIiIsC8djnWGCIeoTd9KGMTIkpNNmbZNaIeTKWO0/O1Ow92YefBLggALRuXJvWbuno9eOPDbkTbILZm1iQAo8cfToeAzy9x/cQx+PnKW4I7ygDArrWL8d0XDqDr0kDwfaaOL8QvvnVrwmUkInV69LeIiLQoNwyH7hpnB5F1Y/cVie6PzmJ2XRPrRiIiG7Jre0RERKQ3ZlAnIiLLUjJ25+eI4GOOkT+GBkZrZRWLJ+O3mdkN9cwSlOrniLcsynF+tKiA2SApYzCbd3RHui/jxr97C0dOX9btPUNveBGCN7wQEdFVZrfL3DWIyJqyKcuukfVgKnVcKq/VCiKXQNK/6ZbdHbg8ENhhr3JiEZwi/N8fvmUK/v0vFwb/vv+T8/AMBYK+fP5AgT49fwX3bmnGq20ngzcXzakYh6I8Z9h7FeY5Mad8XFLlJKLR2N8iIiPZdde4yLoxzwHWjURENmbX9oiIiEhvzKBORESWdTWA8epK5j3zynHNmLywu4y37O5A6/EL+LN/bsZ11xThF39xK8rGFsSVWdyM7IZGZAlK9nMkWhblOHv2nMNf1Oj/fWVjVjwyH7N5R/e9HQfR5x3G97YfxLt/W6Pb+ypb1h5zuTGrrJg3vJhgb0cPvvVvrfjf316AxTNKzS4OEREA89tls3dZIqJwVsyya/S41ch6UK2O2/fJ+aRfG2/9uHd9LVbU78OJ8/2j/i3R31Rtt73I9x1XkAO3dzj492eajsLV58V11xTi+tJi7D3WA9/IVFPlxCK88uhtYa+/PDCEWZOLsXbJTGx5pwOX+odilouI4sf+FhHRaJF14yDrRiIiIiIiygDMoE5ERJY1u64J21s6wx7b1X46mNkqNKsYAJy/MohDJy9h0dO7g883M0O6FitlCbJSWYDsyopH1sGFUXWVGxpRuaERx89dAQAcP3cl+FiqZtc14a2PzuKYyw0AOOZy462RLWspfR7b/j58Enhs2/tmF4WIKMgK7bIVxxBE2cpqY1bA+HGr0fVgaB03s7QYrj7vqM+itVNdsvVjWUkBhkeylo/8lFASnof+plrHDdW8rhZfmTt5VMb0UJc9w3jro7PB8ctrB7sAACcvDOC9j68GpwOB4PYFT+0OG4u0brwbv/n+XVh2cwV+8/270Lrx7rg+JxHFj/0tIqLRQuvG2utyWDcSxRDP+IGIiIiIzMUM6kREZFlaWcPW3Hk9VtTvQ8NjX8Syn+2FP2KraL8MBFZGZt9KV4b0WKwQdJNIWdKR1dyKWfEoPaySNV+Z/P/mgmnY0doZtktDtsp1AEN+9cdTZXZ23GwXeZNBr2c4+NiJZ+4zo0hERGHMbpfN2GWJiNRZafycznGrkfWgcsP/tv2fBR+L/CyhQfibHrwx7LWKaPWj2jhvbkUJamaX4ZsLpuGJlw6iw+Ue9ZvWNbSrHjfs/UoKMKk4PyzIHAhkQj/T6wkbX+xqP42hyCeOUI7tEMBXb67gWCSDWGWegaJjf4uIaLTQuvEv5uajpqY6yrOJSGvcQkRERETWwQzqRERkWVoL0TtaOvGHExewo6UTy6umjHqdQwBfmTtZl4xqRt19b0aWoGQzoKUjq7kVs+JRelgla3796mpsWj4PcypKsGn5vLDFgGz1+w1LUZzvDHusON+J3/9gacrvbaVAo2y07dsLUJgb/tsW5jqx7TsLTCoREVE4tstExrNTpjmrZNlN57jV6HpQ67NIILhTnZSBwPXKDY0xdzpy9Xqw/Pnf48H/9nu4+jyq47zQz3R96RisWnT1N93R2hn1uJHvd87txXUTCnHfjeW478ZyXDehEMN+OWp88fv1S1A5sSisrDkOgYfmT8GgL/BcCXAskmGsMs9ARERERMYI3WE7kXELEREREaUfM6gTEZGlhWYNW/azZmxr6Qz+W+ifQ/klUFqcr8violF335uRJSjRDGjRssPV312oa9kYrJp9mDXf+spKCjA8skVFjgMY9gM+v9TtujQ7O242WzyzFLlOgYGhq4/lOgUWzyg1r1BERESUVlbLNBct47FVsuxm0rhV67P88rEvYtW/tuKKdxje4dg7HSm/23XjC3Ho5CUAwIKndgf/XWucF/mbrl0yQ3WHpabDZ8J2/1HeTwig5YdLg9+9q9eDr/zz7/DQ/Kn49uLPBccXZSUFOHG+P6zMw36J1w52AQAaHrudY5EMwnkGIiIiouyg7ND61uHT8A5L5OcI3DOvnLsiEREREVkQA9SJiMjSQhct9/9gqeqC5eWBIXzicuOmqeMBAB+eupRSRjVXrwcLn96N0E2g7byolewCnTLBE/l9b7zvCzhyYL/u5WSwanaJdn6Rddw1qxSlYwsMuS6tEmiUrTzDfowrzMFf3fV5/Pf3PsHAkD/2i4iISDfRgnGJjGTVAM5kA+aPdF/GI/X78fKjizCnfJyBJQzIpHGr2mfZ0dKJC1cGASCuIPxFP9kNvwRaNY4R7zhPK2B+r8q48dqRoPPQc2XL7g5cGhhCYa4jmHVe8cXPT8QHJy/hyqAv+NjU8YX4xbduxZzyEo5FMgjnGYiIiIiyw9XxQ2Al1zssbXvzMBEREVGmY4A6ERHZhtqC5b5PzuONtYtVJx2SDfrYsrsDEEDlNUU40+ux/aJWsgt00bLDHTGgnEqwqqvXg2Nn+/Dzb8434ChkFZmUfTCT1a+uZgBdhjoWEoD2aM0ME0tiPJ7DRGRFVsteTdnDagGcqQbMP/HSIfR5h/HEi4fw2yfvMrKoADLrJsvQz/Jq28mw3wEAvMN+OARUEwBE/m6hBAAJIM8pEhrnqQXMh44bAcAz5A9mRFfOlVDKY7kOgYJcJ15+dBF2fHcRvvTT99DhcgefV5jnTMsNDZRenGcgIiIiyg5q45FtLZ149cAp2yUZIyIiIsp0DrMLQERElAhlwbLhsdsxs7QYrj4vtrzdASAQgLaifh9cIxnMQoM+4jG7rgmVGxqxraUTUgInzvfDM5JR1s6LWqks0IV+3ysXTk8pM328Ev3dEhF5jpC5zDi/KHFa1ySvJ7ILI9sVItLGdkJd5JhjW0snKjc0YnZdk9lFoyxhtQDO5nW1uL+qAgW5gWnqglwHHqiqQPP62qivq9zQiMoNjcGg4w6XO/gYJV4Ha/0O+3+4NCyQXev5oSSAz00ag1mTx+Kh+VPjHufVr67GpuXzghnQleMq48Zt316AyolFcAgEy/iVuZPxlbmTR5V76oSi4I0LAHB5YAizJhfj59+Yj1mTi3F5YCiuMlHizG7/Oc9ARERElPmSHUcSERERUfolnEFdCDEdwDsjf10rpYw56y+EuBfAzwH4ANwhpTyT6HGJiIiAwILl7LombNv/WfAxJUOWQwQWQm97ejd8EqP+PVYGtshMcg4BTLtmDDYtn4c3PzqTcVt3xyNadji9M9KmY6t5Zqq0lkzKPmg1elyfsa5JXk9kdeloV4hIG9sJdVbLXk3ZKdnxoRGSDZjftXYxvvvCAXRdGgg+NnV8IX7xrVuDf8/mXVQSrYMT/R1Cn+8QgF8C064pwsyyYjR39MA75MOJ81dQdd14PLtidIB7IkLHjbfPmITPWjshRCCRQGlxPiQQLLdnyI/XD3UHn6/cuAAArRvvBgAsu7kipfJQdHq2/0e6L+OR+v14+dFFcWe85zwDERFRZsvmPj5dZcaN1zz3iCjbsN4jM/C8y0zJZFD/JoDPASgG8Gacr3kLQCGA6wGsSuKYREREQVqZuvwSkBJhwelA/HfOR05oSACLZ0zE4pmTwrJ32ZFWJjIg/uxWsTLUx3qfWP+eaMaDRLJyMVMlZRs9MkZrXZMS4PVEtsBMOkTmYL8rOqtlr6bsFG18aCStMVwyGY/nVIxDUZ4z7LHCPGdYEGs27qISqw6ONo5O9HdQnv/GX9+BVYum4wvlY7HnYxcGfRLdlz0x24BkMm2fc3sxs7QYUgIzS4vR4/ai6+IASovz8a//sRr33njtqLmiqeMLseuJxXEfwwhmZxVPByPa/ydeOhSWCZ+IiKwjG9o2siar9/F5baRPunfOMevc4zlFRGaxeptLmemZpqNoPX4Bm3cdNbsopKOEM6gDWIJAgto3pJS+eF4gpfQJIX4N4DsA7gbwX5M4LhEREQD1oI7KiUU40+sJZiG8tqQAn13oR54zsaAPK2WSS5d4s1spz1v09G74JQBcATA6g73W+2gdJ/QuyESCdRLJyqVkqnzr8Jng+98zj5kqSR9WupNXz4zRWgF0e5n5lWyCQaBE+ki0nWOG8NiyccxBBGiP4ZLNeHx5YAizJhdj7ZKZ2PJOBy71DwHI7l1UYtXB0cbRif4Ooc9/te1k2Hce6oGqCtU2IFpZ1NqeyN/1mMuNYy53cC7izfYz+G8rb8WXfvoeOlzu4PMib1wwQzbsKqJn+69kvVeEZsI/8cx9upSXiChTmDUvmQ1tG1mLXfr4vDbSJ10755h97vGcIqJ0M7veo+wUed7tPNiFnQe7eN5lCCGljP2s0BcI0Q1gMoDHpZT/PYHXPQrgvwHoklJel9BBKWnV1dWyra3N7GIQEeluzdY2lI4tCAZ17PnYha5LA8hzOjDo82Pq+ELcNbssLOjDzhnQ45HoZHRkJ08R2cnTel4syvvEOk5dQzu2t3Zi5YJp6HF7w35Xtd8t3nJH2tjQju0tncG/r1o4jZM5pIvQc9jsc8rV69EMCkhmkSqyrlWuyY0N7djR2hmsc5P97GYtolnppgIjZcvnjEbrHCai+CXTzunVThBlqmxro5MdwyVL7z6x3ajVwa8eOGXobxD5nYdSxt7KeX/o5CUMxiiLWtsT7RiRIm9caN14d8qfMRnpPvfNplf7f6T7Mr77wgF0XRoIPjZ1fCF+8a1bTb/ZwC6yrZ3JZvytKd3zktnWtplpz549qKmpMbsYlmH1Pj6vjcxl1rnHc4qIzGL1Npcy06yNTRj0jW738nIcOMZ2zxaEEAeklKqL8A61B2OYOPJ/V4KvOzfy/0lJHJOIiChM5JbkcytKwrZyUx6fVJyHY2f78GMD7563ikS3WWpeV4v7qyqC218X5DrwQFUFmtfXxnxeWZEAEJgIAYDKiUWa76N1HAmM2v75rY/O4tW2k1G3mo+33KFm1zWFBacDgeOlstU0GedI92Xc+Hdv4cjpy2YXJSojtjBPld4ZoyPrWuWa1Gv7TLO2h9v85sj2YE3JbQ9ml201uf2e9jlMRLGl0s6le5tlIrtJRxttpf5KMmO4VGT7LipqdbCRv4ESHJkjBLzDfjjE1X+bWVYcbAOU837ZjeWjynLP3Mn4QnkJZkVpeyJ/V0B9LqJ141L85vt3YdnNFfjN9+8yLTgdSP+5bza92v85FeNQlOcMe8wKmfDthGPB7MHfOnuZNS+ZbW0bWYfV+/i8NjKXWecezykiMovV21zKTHvX16JyYlHYY5UTi7CX7V5GyEniNR4AxQDGJPg65SzyJXFMIiKiqLS2csuGrc+S3WYp3sGF2vP8TmDVoulhGey13kfrOHuT3P45mUGRnltNk/GeeOkQ+rzDeOLFQ/jtk3eZXRxNVj2vzrm9eHD+FBw704fZ15YYEhSY6vaZZm0PN2p7sPe7sPP9xLcHs3rbwu33iEgPDY99Eav+tRVXvMPwDifWzumxzTKzQVImSmcbbaX+ihkLW0qgbOguKtmifnW1ah1q1G+gnGunxxfCAQFfyI6tHS43OlxuVG5oDD722sGu4J+VsnzScwV/6nHjwaopGJZSc4wV+btGm4uwgmxb1NWj/VdcHhgalQmfYuNY0BhW7Jfytyaz5iWzrW0ja7FyH5/XRmYz49zjOUVEZrJym0uZqaykAMP+wJxinlNg0Cfh80u2exkimQD1swgEqN+c4OuU5/ckcUwiIqKEGDFJn87FiESOlcpkdLyDi8jnHfn0VHCxcdPyeViztQ01s8s030ftOKlMriQ6KOJEjj2EBi0ACAtkOPHMfWYUKSqrnlf1q6tR19COj073ouq68Xh2hfUyRpu1iCZDgmXieTySXRaAk/l+rbjgTkTpo1YH7GjpxIUrgwBgSjtnpeBaMk+mtU/p6ANZtb8Sawyn12+t9j6pBsrakVodqvYbuHo9WLP1ACSAX/zFrQl995Hn2smLAwAAhwhsv6uc4zWzSuEH8LtjPcHHJhTl4YszJuJXh7ohZWDsB6gHr4e2PZEB0LHmIqyAi7rJCc18v+zmChNLYi9WvZHe7qzYL+VvTWbOS7JtI7PoeTOcEXhtZC6zzj2eU0RkFqu3uZSZ5laUWH6ej5Ij4g3GCL5AiBcArALQDWCGlDLm2SCEKATwJwDXAvg/UspHkigrJaG6ulq2tbWZXQwiorRz9Xo0J+mTmaR19Xqw7Gd70eP2YuWCaYYvRtQ1tGN7a2fUY4UuvD/3dgd2tHYiz+nAoM+PlQumYe3SmYYFc+zZswc1NTUpv8+arW0oHVsQ1skMHfDoKZ3HouQc6b6M775wAF2XBoKPTR1fiF9861bLbuVttfMqMkhEYXZAkpqNDe2j6q1E69ZEA5lcvR58rX4fPjvfH3yscmIRXnn0trhfr2fbYqREv9942h0iylyhdcCrB06ptiUOAXxpzmTD2zkz2rJMC4LOJJnYPunRB4rGTv2VUHr91pl0ziRTN83a2IRBX/x1aF1DO7a1dAIAVi1M7DvTOtecDoGGg11h57gEsKO1E7lOBwaH/Xj4lil4dkXVqPcAgMJcB+69qRzfvv36sDHWrz/owl+/eAg//2YVlt00Je5yEoXKhjbf6HYmm1h9joW/NVltXpL0pdcaDBERacuG8QEREVE6CCEOSClVB6TJZFDfiUCAejmAegDfiuM19SPPlwD+TxLHJCIiSoieGUTSmYEukWOFZu9Ru4veitl9IqXz7lve6Wt9cyrGoSjPGfZYYZ7TssHpgPp5ZeaElp0yaOmR/SPReq6spAC+ke3Bcp0CQwluD2bVrPlq4v1+rZpllYjSQ60OAEZnv01ncKsZbdnmN4+i9fgFbG46imdXVBl2HIpfJrdPRmdAs1N/BdDvt87EcyaZMf2ym8rx2sEuOB0CPr9EQa4Dd80qhavPC1efB5DA4y8exMHPLmLIH564JtHvTOtc69E4x1cunI6Lbi8aD59B6/ELwfd444NuhBZlYMiPnQe68MYHp8PK8eQrHwAAvv/yBwxQp6TZYa4sVcy0qR+rz7HwtybOdxMREaUmG8YHREREZks4gzoQiHgHUDXy12YAdVLKvSrPuwPAJgCLRx5ql1JWRT6PjMMM6kSUbUIDQ3/0y8MpZxDRypTjEMD+Hy7VfZE/nmx3sbL3pCO7D7N3kFEWPPU2xhflYu2SmdjyTgcu9Q+Fbe1tB2ZnbcyGDFqp1HOpZpfKtOxUds2ySkT60Mx+KwQaDnWZ1pYobVlkpl29WT0rZjZj+5SadPZXUr05U6/fOpPOmWTqJq3XAMDMsmL8qceNlQumAQC2t3ai8poxOH7+CgQCGWWAqztl/Hj5vLi/s3jPtWif6bbrJ+LE+SvovjyAwWEJhwAmFOVh63cWYE75OFRuaNQ8/oln7ournERs8ylZ2TDHQkTWxDUYIiLjcHxARESkL70zqAPACgCtAMYDuAPAe0KIywCOAnADKAYwe+TfAUAAOA/g4SSPR0REFBflTudndh3F2V4vui4O4HDXZfziL25NalFayZTT+EE3fCH3dD04f4oui9yRi/nxZLuLlb0n1r9zuzKystBg9GU3V5hYksRZJWtjNmTQSiWLWarZpTItO5XdsqwSkb4SzX6bLkpbFplpV29aSRuSSeZA+mL7FFu0cV06+yupZhvT67fOpHMm3r5u6DkQ+RqnCASe+yXQ4XIDuLpLBgAcP38FwNXgdIw8t7Q4P6HvLPJcc/V68ODzv4cEwuZhmtfVYkX9Ppw43w8Ao24gUAJAld/u/JVB7NjfiU0P3oiffaMK//mlQ2FzMk4BPPeNqrjLSRSc3/vwNHx+CadDYNlN5ZbJhE3WlQ1zLERERETZxuo75RAREWWSpALUpZSfCCFuA/B/ACirHOMBLAx5mgj584cAvial/CSZ4xEREcUSGRj62sGusH9ftmUv3li7OOpCq9oCv7LI7ZOBbGJ+CcwqK4bbO6xLudUW82MtfMRaeI/179yujMgYVpnQyrQAajWZFIBkBVxwD8cbuSjbqNUBZrclez7uCevbn7w4gMoNjbrf9LV3/RJ8rX4fPhsJmASAyolFeOXR23Q7BiWP7VN0zzQdRevxC9i86yiefaQq7cfX8+ZMvX7rTDln4u3rRo7tldfkOQUGfRL3zrsWOTmO4PjEMTJb74+4B6diXAG+UFGCY2f60OP2xlVGrf7Slt0dOHjyUuDPI+VSy0znGfLj1x9047mvzwcQ+O0cEJrnlMMh4AuJUHc4BJbdNCWushIBwB3/9G7Y+eXzS7x+qBtvHj6jS9+CY4jMZXa/mIiIiIj0xzUmIiKi9BGpZIUSQjgAfB3ANwEsBlAS8s+XAewFsA3Aq1JK9T1GyVDV1dWyra3N7GIQERlO2c77V4e6oz4v2mJ5XUM7trd2jtqq1Yjt0VPdOixWmdT+PTLQJ9FjhuL2kkTqlMx/Cits/Xyk+zIeqd+Plx9dhDnl40wti56MqJuJAODJlw/htYNdeHj+FFMC/ojoat9e7aYvvReKFm9+B6cuDiDXKTDkk7huQiGa1y/R9RhEerLKNtTpvE4zmVZQa7S+7qyNTRj0jT4HHAL45sLpuHBlELvaT+O6CYW4c1YpdrR2Is/pCJ43ToHgTfgSyY1ZIudPtM5LAMhzOnDPjdfi14e6IQHkOICpE4pQOWkM/v0/LQj7Ln70+mG89dHZQDlDMlwvfHo3ch0CKxdOw/aWTgz5JY7/5L6EypytGDgd4Or14P7nf4+eXg98MnAdlJUU4PXHb9fle9GaUyQiIkoW12CIiIzFNSYiIiL9CCEOSClVG9KUAtRVDlSMQJB6r5TSrdsbU9IYoE5E2WRjQzu2h2xZrSVy4d6MBX61xfy7ZpXC1efFU8vn4e9/fUT3xUM9Awg4OUqkbs3WNhzvuYJjLjdmlRXjc6VjTJ/Q+tJP30OHy42ZZcX47ZN3mVqWbMEgEHuySsAfZZ9MqzP0+jzKTV95TgcGfX7DAr64GEV2oxWcnJfjwLE0t1fpuk4zkVJXXje+EK8d6or53bl6PViz9QAkAhnPdx0+A6dDwOeXwbF9U/tpDPpGz/U7hcCv/3ox1mwNzBFPvaYQ592DmFScj+tLi9HT58GPH5gXV909a+Mu1WPkOQUmlxTg5MWB4GMOAXxpzmT8ePk8PPd2R9h8zaqFoz8v+2LG0Dtw2s79FiPqLJ63lA52vu6IKHlcgyGiVLEPQUREROkSLUDdoeeBpJRuKWU3g9OJiMgM59xerFo0HUtuKFP9d4cAHqiqQPP62rDHm9fV4v6qChTkBprFglyH6vP0pLZ12Kc9V3Do5CU88dKh4DbdRh8z1nZlrl4PVtTvg8umW6NnO/5+6TW7rglvfXQWx1yBrvAxlxtvfXQWs+uaTClP5YZGVG5oRMdIeTpc7uBjZKwtuzsMqcfJWFr3but3SzdZldntpRF1hpmfSa/Pc87txcqF09Hw2O1YuXA6etxenUoYrn51NTYtn4c5FSXYtHweg9PJ8vaur0XlxKKwxyonFmGvgeNXLem6TjPRop/sRuvxC9h5sAtSAttaOlG5oVFz7LBldwcOnryEQycvYdfhMwAAnz/QS/EMBcb2e9cvUZ3b2PfDJZhTUYLm9UvQvH4JXvzubdj27YUY9kusXToD9aur4667v3pzBYBA9mnlGA4BDPpkWHA6APglUFqcjwVP7R6VTED5vIpoGdiNnJvJZLPrmlC5oRHbWjrjOsfiZeexjhF1lhlzipR97HzdERERkXnYhyAiIiIr0DWDOlkPM6gTUTZas7UNzcfOoX/IN+rf1LJ0AeZkflOyNb78h04MqWQgU+iZdSnRDJFambaYvcMeuMV0eum5S4EejnRfxndfOICuS1cDRaaOL8QvvnUr5pSPS3t5soFWYE2eU+DYU/eaUCJKhBLQe+J8f/CxyolFeOXR25hhJsOZ1V4amXHTjM/EDKJE6bN48zs4dXEAeU6BQZ/EdRMK0bx+idnFylqJZKWLFoj9QFXFqLFDtOcDQM3sUkwszsP5Pi/6h/yYOr4QDYe6Ys5tKO2EA4DadES8O88BwEPzp2BYSrzxQTf8MpAc4NpxBYAEbpw6Dk8snRlzXKKMpRo/PB0MvAeAh+dPwbOPVGl+ftKm9/iU7bw27iZBRuF1R5TduAaTfsw2TZmCfQgiIiJKt7RlUCciIrKC+tXVmFicBwCYXJKPWZOLUT19PMrG5uPUpQHV15iR+U3J1vj7kSxn+TnhzXJ+jkg561Jk9sx4M0QalWmL0oO/nzmS2aXASHMqxqEozxn2WGGek8HpBorMnqdQMk2StZWVFGB4JCAqbyQtqM8vuSCVwcxuL43IuGnmZ2IGUWsye4cAMsbcihKsWjQdv/zeYqxaNB1zKkrMLlJWSyQrnVp/0TGSjVxt7NC8rhZfmTs5mLFcofx16vhCrP/KDThyug+txy/gDycuRJ3biGwn1ILTKycWxdx5zukQqJldiodvmYorg8MYm58DiUDAgwQw7JP45eO3o351ddRxyZHuy7jx797CuStevPFBd1hwOgDsPNjFcWyS9B6fsp3Xxt0kyCh2v+7YD6VswPM8szDbNGUKu/chiIiIKLPkaP2DEOIvlD9LKV9QezxZoe9HRESkp8i7ws/2enG21wsHAD+AO4ryVF8XGqi9afk8g0sZTlk0HPT54RSBBWJli+xUg1tDJ9QiszdFywbRvK5WM9MWWT+TRrb8flb8HZSF6dBdCsx0eWAIsyYXY+2SmdjyTgcu9Q+ZWp5MV1ZSEMwcGWrn+13Y+X4XM5TYwNyKEtTMLrPMNUzGMru9NOLGJjM/k9Vu1KKAaOMBsi8zx6/Z6Ej3ZTxSvx8vP7oo7GbPyPmHbS2d2NbSGezzqY1XQutKhwD8ErhnXjmuGZOn2u8oKynApOL8UYHkf3Zj4DU7Wj7DtpbO4OMnLw5g2/7P8GrbSdV+p1o74RkKz6x34nw/Fjy1O6zvGlnHD/oC2dqVeuU//lsrSovz8dNHbsY//uoIjrncwXpHLXtfh8uN2XVNmHZNEfq8w3jixUO4c+YknDjfj9OXPcHv56s3V6R1HGvFMWYq9Byfsp3XxjqZjGL36479UMoGPM8zQ6x+PZHd2L0PQURERJlFM0AdwL8DkCP/vaDyeLIi34+IiEg3kYutCuVPOw92YedB6wUJKouGn/T04bx7EJOK83F9aXHSi4fxTKhFmzzl5EV0Vp94zpbfz4q/g9UWpls33h388zILZ/HOpECQO2dOwp96rqD70kBYoPo9cyfjHy1wTlB0VruGyVhWaC/Pub14aP4UfHymD7PLx6accdPsz2S1G7WyGRfYifTzxEuHgkHUv33yruDjsW4K0hqvqNWVkf2O0P7xObcX100oxE1TxwMAPjx1Cf3eITQdPg2pMkvvENDMjKfWTlSMK0BejgPdlwcwOCw1A8Oj1fFTJxRiz7EerPqX1uBjSr2T6xDBYwEIBsV7h/3ocLkBBALWlT8LgWAQfDrasNDvevObR9F6/AI2Nx3FsyuqDD2ukdTGV3r0bdnOE6WfHa879kMpG/A8t4d455zNTmBAZAQ79iGIiIgoMwmpNosNQAihjKqklNKp8niywt6PjFVdXS3b2trMLgYRUVptbGjHjtZO5Dkdo7J0KfJyHDiWwROFrl6P5oTaHZvfVf1eIidP12xtQ+nYgrDJCyVwb8+ePaipqUnXx7EMtcxvwOjvzgqi/X5Wk2hwsp1+B4rP37xyCDvf78LDt0yxdSCI4vofNI7Kog7wHCWyIiu0l3UN7dje2omVC6Zp3nCVSFsZ6zNl0k1BpC3aeIC/O1F8Kjc0av7biWfuAwA8+fIhvHawC3k5Dgz5/Fi5YBpePXBKdbwiBNDyw6VxXYOx2oa6hnZsa+lE5cQinLw4AF9I5/Ph+VPw7CNVmu+t1k5MKs4PzqMMjnyOWDcBu3o9WPiT3apB8kAgEH1w2K/aL3YIoHxcIbouDQQfmzq+ENMmFuH60uK0tsvKd6kmkd/MSuLpWxARGYX9UMoG6TjPs3UNRk+J9IlC1xXj7Q8TEREREVGAEOKAlFJ1IjdaBvX/lODjRERElhB6V/i/7P0UTe1nMDDkC/575cQivPLobSaW0HhlJQXIEQKeIT/yIrJnxpsN4scPzMPjLx7EpLF5zCI7wk6ZNOyUBTjRTOh2+h0ousibDXa+34Wd71tvl4tE3TlzElqPX4Rn2Ae/BASAa8cV4PXHbze7aEQUwcz2MpGMa4m0lbE+kxV3ICH9pSub/pHuy3ikfj9efnQR5pSP0/W9icy2a+1ifPeFA6OCqH/xrVuDf//DiQsAgC/dUIYJxfno6fMExyuNH3TDJwGnAK67pggnzvdHrXtdvR4sfHp32NalkW1DZNtx4nx/8M8CwIyyYpy/MogV9fs0b0RSayfWbG1LOLvelt0dkDIwx3Km1wPPkB8Cge1TBRC2q10ogUB/uetS+DEK85zY8d1Fo8pmFK0bn0NJCVu1l8zmSqH2dvTgW//Wiv/97QVYPKPU7OJQFjF7VyeidOB5bm3J9ImYbZqIiIiIyBiaAepSyv+dyONERERWEbrY+tMVVWg9/g5OXRxAnlNg0Cfh88usmChUWygH4p88ZfDSaOmeeM70DKfJLp4n+ztk+vdpR1q7OWk9bhf//pcLg1l38nMCWXeW3lDG846IwgQDGD88DZ9fwukQWHZTedgNV3oGmjFoLfukY4H9iZcOoc87jCdePITfPnmX7u+vB/YBKVlzKsahKC98I9DCPCfmlI8bVac2Hj4DILBjzh3/FL5rmU9eDSSPdTOSHHkPQMI7LEfdjNu8rhYr6vcF388hgGnXFGHTg/Pw5uGz6OnzoLQ4H9tbO2OO5UOvjURu2IoWJC8j/q/l3/9yIRY89TZmTS7G2iUzseWdDlzqH4rxKn1F3visxU7tZao3c7O+zCyPbX8fPgk8tu19fPj3XzG7OJRlGOhJ2YDnuXUl0yeyU8IfIiIiIiI7iZZBnYiIKCPMrShBzeyyrJkojLZQrog2ecrgpejSOfGc6TcJpLJ4nszvkOnfpx3tXb8EX6vfh89CgloyZZcLLlIRWYdVg61GBTD6JV4/1I03D58J9rn03DWEO5BkHyMX2Cs3NIb9vcPlDj524pn7dD1WqtgHpFRcHhhSDaKOWqdK4P7n96KnbxA+vwxmFQegWvdGjsEj/6zcjKuW8dsvgZMX+rF4Rin+8n+1YdAX/1g+2Wsj8rM7BDBlfCGmXlOI1k8vwBcjOl0iUIeE1hXLbq6I+/h6UbvxGQBynALDIR/CTu1lqjfVs77MDJFtdK9n2LJtNGUuBnqS3qw4rud5bl3McE9EREREZB0MUCciooyXbROF8QQfRftOGLwUXTrOp2y5SSCVieJUMvxl6vdpR2UlBfD5A8EfuU6BoQza5SLb2h4iK7NqsFXzulrc//zv0dPrgU8CThGoF19//Pbgc/RcVOUCLelp19rF+O4LB9B1aSD42NTxhfjFt241sVTh2AckPbRuvDv459Ag6lh16tIbJgd301HOQ626t3ldLRY+vVs167gDAj1ub/B5m3b9EW980A2/DLxf+bhCVE4sDJTvpnK8drALToeAzz86+7oinmsjWhBY5Gcf9Plx16xSSAD7P70QfKww14H+wdGZya1UV4TeVLpmaxuAQD/+iZcOosPltmV7mcyNsqwvM8u2by/Ad184gIEhX/Cxwlwn/qdFrjsiomRYdVxP1sXkIURERERE1sAAdSIiIoOYldUj1eAjBi+ZL5tuEkjHRHE2fZ92lMm7XFgxuxNRNrF6sFVZSQGW3lAWDGAc9Pmx9IayUfWFnm0lF2jtz+y2JfT4RXnOsH8rzHNiTvm4tJdJC/uAZLRodapW4POO1k6cunAFK+r3Ba/jspICFOc70ee9GkzqdAgsu6kcG+/7QvBaV8bqEgi2G4tnTMSrB06FZUxWbgD1DKmP5eO5NmIFgWl99tDHXmz5TPV7s1JdEXpTafP6JcE/X186Bguvn2jL9jKZG2VZX2aWxTNLkesUGBi6+liuU2DxjFLzCkVElCSrj+vJupg8hEib2XNLRERElF1SDlAXQjgAfB7ABABx9V6klL9L9bhERERWpyzoPrPrKE5dGkjrQD/V4CMGL5kjdFIoW24SSGWiON5JNN50YW2ZvFjA7E5E5oo32OpI92U8Ur8fLz+6KO0Bc/H0ufSsJzO5zs0WZrctoce/PDCEWZOLsXbJTGx5pwOX+odiv0EasQ9IRotWp0YGPrt6Pfh/th6AEMD1k8bgvYNd2PJ2B7a1dKq+t88vVc9XtXYjsr1zCuCOWaWYWJwXzL4eKtq1EW8QWLTPHvkeoT43aQxOnLsCV5/H0tei2ufL5CAO1peZxzPsx7jCHPzVXZ/Hf3/vEwwMqV+TRERWx5uoiIj0Z/bcEhEREWWXpAPUhRBLAXwfwFIAeQm8VKZyXCIiIquLXIx97WAXAGDR07vx6U/u0+040RZHQxdT1y6ZgcdfPBi2AKz1WrXHGbyUPqGTQrxJILZEJtH4fWa3dAeTMLsTUfqpXefxBls98dIh9HmH8cSLh/DbJ+9Ka7kZME7xMrttUTs+AFweGMKymyuw7OYKw8uQDLP7gHYKaLVTWe1oy+4OHDp5CQBwsDPwf63g9LKx+fgPn5ugGlyu1W6EtneDPj+uKcrDyQuBG+XVaF0b8QSBxTpXor3Hlrc7sP38FVsGQmR6EIfZ9SXp61hI3+DRmhkmloSIKDW8iYqISD9mzy0RERFRdhJSysRfJMQ/Afgb5a8JvlxKKZ2xn0Z6qK6ulm1tbWYXg4jIkoxagHf1erBp1x/xq0Pdqv+u10C/rqEd21s7sXLBtKiLo2rP03ptvO+5Z88e1NTUpPwZFNkeDKGVYY6TQur4fVGi4q3b9KK0A2pBOdlYxxGlg9Z1vmZrG0rHFoQFWynBfZUbGjXf78Qz+t1USPZi1X5pZNviEMCX50zGPy6fl5Zysm1LTrr7IKmwU1ntwtXrwcKf7Ea06fcHqirw4clLOH6+P/jYzLLihG+Yimzv3vvYhVOXBpL6PTc2tGNHayfynIFg92TmDSLfQwDwq3wPdhjDcfxJRERkrmjj+kym9xoMERHndoiIiMgoQogDUkrVgVrCmcyFECsA/G3IQx0A9gI4C2B0WhciIiKLMir7lZLVAwAc4uoirF7bT8Z7h7vW80KpPRbtPY2i/Babm47i5MUBywUEGS1TtipNV0BXpnxfZDyzMoIwuxOlg1WDaNMt1nUeLUP5rrWL8d0XDqDr0kDwsanjC/GLb91qfMHJsqyaITe0bXEKwCeBT3qupO36Z9uWGDtlJbNTWe3mmaajkBKoGFeAM72esABthwhsMzo2PwdXBn2YNbkYa5fMxJZ3OnCpfyjhYyntXTy/Z6w+hFYm7UTOlcj3OHWhHyVFuWj8oBs+CTgFsOzmCkPHcHr1lTj+JCIiMhd3HiMi0gfndoiIiMgMCQeoA/jeyP+HAHxbSrlNx/IQEREZLh0L8OfcXqxaNB0X3F7sOnwGDgHdBvrxLo6qPa9mVin8AH53rCfstWvuvB7/43efpmXBNXSR+I7N74b9Fjvf7wIA3Pb0bnzyk+zJXJopk0LpCujKlO8rFANNjWFmMIlWYA+RXqwaRJtuqVzncyrGoSgvfIO3wjwn5pSPM6q4ZGF2CNJ9sbUTUgK+kb93uNyo3NCYtjKybYufnQJajSrrke7LeKR+P15+dFHW1auR9Un35dHXyp/NvRYTivPR0+dB68a7g+OBbd9ZaHgwdaw+hFYQWCLnSuR7RH4nPgm8fqgbbx4+k1T9Fc/4Sa++UiaOP7VwXEpERERElNk4t0NERETplkyA+s0IJHj5nwxOJyIiu3H1ejCnvASlJfmjgrT1DBZQFmPXbG3Dw7dMwcdn+jC7fCx63KlvNhLv4qja8yYV50MCo147p2Jc2hZcQxeJlQXuXx3qDnuOTyKtwTZWYOdJITMCuuz8falhoKkxzAwmYXYnMoodgmjTKdXr/PLAUMpZaykz2CGgeP8PlppaRrZt8bNTQKtRZX3ipUPo8w7jiRcP4bdP3gUge4JfpVR/XAC498ZyfHjqEoalDLuO0hFMnWofIvS9RYI34Tevq8X9z+9FT98gfH4Jp0OgbGw+Xn/89qQ+Z7Tvy4i+UqaNP7VwXEpkfdnSlhIRUXZje2cczu0QERFRuiUToC5G/t+sZ0GIiIjSYcvuDhw6dQkzSovTEixQv7oadQ3t+Oh0L6quG49nV1fp8r7xLo5qPU/tMaMXXLUWiR0CECLQwVC2PLdiQJDRtCaF7DARZ0ZAV6ZMojHQ1HjZEkxC2cMOQbTplsp13rrx7uCfl91cYUTxyCbsEFAcWUbPkB/7PjlvdrFIg536IHqWtXJDY9jflUz/ALBq4TTLBr+mOu4Kff3e9bVYUb8PJ873B/+9cmIRXnn0tlHvbXQw9b/s/RSN7aex9u6ZSfchQj/bObcXM0uLcczlRkGuA6cuDcR8TdnYApSVFGDpDZOxozXw2QZ9fiy9oSzh7zqe78uIvlKmjD+1cFxKZB+8kYSIiLIB2zsiIiKizCGkVkoXrRcI8QGAeQD+o5RyqyGlIt1UV1fLtrY2s4tBRGS6yMU2Ra5T4JH/MA09fZ6wBUcjj5kJC3x79uxBTU1NQq9x9XpUF4kvDwxh6oQiXHB7sevwGThEYKuWlQumceIJwN+8cgg73+/Cw7dMwbMrqswujqaNDe3Y0dqJPGcg2IC/X3y0rouN933BUgFxRGQtrHOJjLFmaxtKxxaEBenqPUZIVWgZn3jpIDpcbqxayDqArONI92V894UD6NIIXA5lpbFxXUM7trd24sGqKTh1aSBmoHpkALbyeqVNXrz5HZy6OIA8p8CgT+K6CYVoXr9E9X2MHA9ElivRPoSr14NlP9sLV5/2bnBqv2PkcQF96th4vy/2lRLDcSmR9WXyPDMRqUtmDYaykx2SHMWL7R0RERGRPQkhDkgpVSd7k8mg/isANwK4HQAD1ImIyBaUDFqNH3TDJwGnCGTJNHKxjRlOw2llpXzu6/MBBBarVy2yR4bBdIiciNv5fhd2vt+l20Sc3pOWdsoQaSV2yNZKo2XSpD/ZE+tcImPYIUNu/epqzK5rwrb9nwUfY6ZbspI5FeNQlOcMe+xzE4tw43XjLTk2jhx3vXawCwCw6Ond+PQn92m+Tsnot+jp3cGdwIDwncLiGd+mOh7Q6pdG28Es3j6EVnBIJO+wH7PrmvDxpj+LOxN3snVsvN8X+0qJ4biUyPo4z0xERFoyKds42zsiIiKizJNMgPrPAawB8BdCiJ9JKT/SuUxERES6u+Of3g1bJPVJ4PVD3Xjz8BnDgjjiWeDLtiDHaIvE0QKC9Pye7PKda+1yk+juN1r0nrSsX12d1Hdrl9/DSAyesJ9MmvQne7JDEC1RqthH0MYFW7K6ywNDmDW5GGuXzMSWdzpwqX/IssGvyvX0q0PdYY/7JVC5oXFUYHVkAHbk6Ewt83SstjqV8YBWvzRaPRFPueINTnc6BJbdVB6sf9JRP8XzfbGvlDiOS4msjTeSEBFRpHhvDrUTtndEREREmSfhAHUp5VkhxAMA3gKwWwjxPSnlTv2LRkREpJ/mdbW4//m96OkbhM8v4XQIlI3Nx+uP3w7AuACYWAt82RbkmOwicSrfU+Rva5fvfO/6Jfha/T58dr4/+FjlxCK88uhtKb2vkZOWyXy3dvk9jMTgCfvIxEl/IiKrYh9BGxdsyepaN94d/POymysABHbMsmLwq3I9AYBDIJgNXSuwWi0A+9qSApw435/09ZjIeEAZ3x7qvIhB39Xw+Mh+aSL1hNp8SPO6Wix4erdmOQQC35fPL8PeNx31E8dPxuD3SmR9vJGEKL140zRZXabevM72joiIiCizJJNBHVLKfUKIGwH8EsArQoizAA4AOA8gVmoVKaX8djLHJSIiSlZZSQGW3jAZO1oDC7aDPj+W3lAWnFg0KgBGa4GPQY7x0eN7Un7b257eDZ/K1utW/c7LSgrgG4mOyHUKDPkkfH6Z8mS4EZOWyfxOybyGiwKZx26/aaZO+hMRWQn7yfHhgi3ZjZWDX8+5vVi1aDouuL3YdfgMHAKagdVqAdg+v8SqRem5HpXx7UPzp2DIL6P2S7XqiXhu4i4rid43Xxnl87J+IiIyhpXbUqJMxJumKVVGz31n6s3rbO+IiIiI9GGVWIykAtSFEOMA/D2AuQgkTLkWwL0JvAUD1ImIKO3UFknNCoBhkGN8UvmeIn9bX8S/2+E7n1tRgprZZbou7BsxaZnM75TMa55pOorW4xeweddRPPtIVdLlJeuw20JPpk76ExFZCfvJ8alfXW2ZyUUiu1MCINZsbYsr0FxtbmHtkhmGXo+R49ud73cF/6zVL9UK7FD64Iue2h2WaSaR+RDl/dQCRhINKGFdRkRERFbCm6ZJL+mY++bNoURE+uDcBBFlIqvEYiQcoC6EKAbwDoCqyH+K8y1k7KcQERHpT22R1NXriRoAY9RgxI5BjqHfRbqk8j1pbb3+2YV+5Dnt8Z0blSlC70nLZH6nRF4zKhjjYBd2HuzKiEWBbJ3wsPNCDyf9iYiMZcd+slmsMLmYrX2ZbJbJv3m84y+159U1tBt6PaqNbycU5eGLn5+Eby/+HP5l76dobD+NtXfP1PxdIvvgkZP0kfMhrT9cigVP7x71Pq0bl+r2uQD967JMPkeJYrHC+W+FMhARpYI3TVOq0jn3zWzjRET6sMI8KxGRXqwWi+FI4jVrAcxHICD9NIAfArgLwA0APhfHf9enXGoiIiKdxAqACR2M6E0Jcmx47HasXDgdPW6v7sfQk5HfRTTJfk9aW6/b6Ts3Sv3qamxaPg9zKkqwafm8sEnMZCXzO8X7Gqlxe2Mm3PVo1nVltuZ1tbi/qgIFuYHhSEGuAw9UVaB5fa3JJYvNiOuHiIjC2a2fnG6z65pQuaER21o6IWVgcrFyQyNm1zWlvSzZ2pfJZkb95q5eD1bU74PLIjf/xVuedF2PyvjWM+SHAOAZ8mPpDWV4dsXNmFNRgqJcJy4NDEX9XZrX1aJyYpHmv3uG/Pj1B93B+ZCykquBpaGZafQKODXqu2O9RNFYra7RmxXOfyuUgShVmV5XUHS8aZpSpcx9Ox2BXrTTIWwz901ElG2sNM9KRKSXYH90ZFLXKWBqf1RIrYgfrRcI8SGAeQBOAFggpTxnQLlIJ9XV1bKtrc3sYhARWcaR7st4pH4/Xn50EeaUjwMQ2Ma7dGxBWDbcPR/3hN1RpsjLceCYxbP76i3y7jqFVTIdR8vMpPbb2j2YNBszUSmLQifO9wcfq5xYhFcevc2234HVr6t02NjQjh2tnchzOjDo82PlgmnMSkBERBSHaLtApatvxL6MPuzUtzf6N69raMf21k7L9AnjLU/k9egQwJfnTMY/Lp+ny28aOofx3Nsd+LTnCv7kcmNGWTGuLx2jOXcR+bto/X4KB4ApEwrx+bJi/Pt/WhB83Mgxtd51GesliofV6hq9WOH8t0IZiPSSqXUFxc8K6wp79uxBTU1NWo9J+mCbSERkH1aYZyUi0psZ/VEhxAEppeqgKZkM6tcjkLDyeQanExGR3Tzx0iH0eYfxxIuHAAQGHRf7h7B26YywbLiR2X2VTAdfvbE8peObkX0l1WOqZTpeVO60TLaHaJmZMjHTcTZmoiorKcCwP3BTZd7IbZ4+v7TsxEA815ydM4jrhdlxidKDmd+IMo8VMvqxL6MPO/XtjfrNrZapKt7yKO0rBILXo1MAfgl80nMlrusxnjZamcO497m9eOujs+hwuSEBdLjceOujs5BSxvW7KL+fFj+Au2aVhgWnA8aOqfWuy1gvUTRWq2v0ZoXz3wplIEpVptcVFL9MXFeg9GleV4trxxWEZawsH1fANpGIyIKsMM9KRKS3QH80P2xHHzP7ozlJvOYKgEIAn+lcFiIiIsNUbmgM+3uHyx18TAhgy9sdYdlQQrfPBgLBsACw82AXdh7sSvrOMiUAYXPTUZy8OKBLpjxXrwf/z9YDEAKoX33rqPcLDXpIJuOL2sCsMEefgVkqGQMj7/rb1tKJbS2dGZuFIts+b6S5FSWomV0WlrXGquK55jjhgbCFnU3L55lYEqLMlmo/gIisSbnRy6y+EfsyqbFj396o37x5Xa1mpqp0UcbUwz4/ZpYVo2JCIX53rCdqeULb1xdbA0FsvpF/U+YbYv2e0droyDmMSKHleu7tjpi/i/L7hRqT50TN7DIAwIenLplyw6iedRnrJYrGCnWNkaxw/quVIcch8PgOe+wUQgRkfl1BROlRVlKApTeUYUdrYIw36PNj6Q1lbAuJiCzK7HlWIiK9Bfqjky3TH00mQP0IgDsBXKtzWYiIiAyza+1ifPeFA+i6NDDq35RsKJEBAefcXjx8yxScuzKIvcd64JNIelI6MgBh5/tdAIDbnt6NT35yH4Dkg7W37O7AoZOXAn8OWdjWM+ghcmB25NNTCb0+WtmTDZrLtgWDTP288Z73ocHMa5fMwOMvHoSrz2OpSd1ErzlOeBCRkewY/EgUr1RucswUVrjRi32Z5Nm1b2/Ebx5vUKWR133omBoAvMN+zfKota8A4BBAXo4j6u+pfIZDJy9hMEYbrTaHMSbPiSuDvlHliud3UQt4vzLoQ2P7aZx45r4kvjV96F2XsV4iLVYI4DaaFc7/yDK897ELpy4N8GZZso1sqCuIKD2s0C4TEVF8rDDPSkSkNyv1R4WUMrEXCPGXAP4FQLOU8i5DSkW6qa6ulm1tbWYXg4jIEr700/fQ4XIH/16c78SwX45aQI6ccN7Y0I4drZ3IcwbuLFu5YFrCiyquXg827fojfnWoW/Xf83Mc+NqtU7G9tTPu949cGI98v2hBD6lOqu/Zswc1NTVJv16r7IkGzenx29hJJn7euob2hM77ZF+TDsp1bsQ1R2QVDAq1D9ZJlMms2hcgSkQm9u2TtWZrG0rHFoRNlocuDgLGXPfRxtQAkOsUeOQ/TAsrj1b76hQCDYe6ov6eymd4sGoKhqWM2UZHzmGMyXPiwVumRv2etETLyG5mgDpROsVT15A+9Jr3IzID6wqyilTXYIiIiIiIiNJFCHFASqk6eE4mg/r/AvBNALVCiPVSys0plY6IiChNLg8MYdbkYqxdMhNb3ulA54X+uLKh6HFnmZJ9RQhAAPCP3B9WkOvA4Eh2NiXzWrwZTpvX1aLu9cN4+8jZ4Ps5BfClOZPxj8vnoWysdTO+6JUx0Ep3/aVDJn3eZDL7Wj0bMLMsUTZIZecLSi/WSZSJrN4XIEpEJvXtUxUtU5WR173amDrU/TdVjNq9Sat97Ynye0Z+htcOdgX/HK2NjpzDuNQ/FPx+omX04g2FROqYFS99lHm/xg+64ZOB+cplN1dYfqcQIoB1BREREREREZGeEg5Ql1JKIcQDCASqPy2EuBPA8wBapJTn9S4gERGRXlo33h3887KbK1SzoajRa1JaCUC44PZi1+EzcIjA1uHRsqdFU1ZSgNLi/LCFdJ8EJhXnBxehrRr0oFfQXLYtGGTS51UWK986fBreYYn8HIF75pVHPe/1urHBSFa95ohSxaBQe2KdpI6Be/Zlh74AUbwyqW9vJCOve7UxdaidB7uwcySYPPTmPLX2NTTD+rGzffj5N+dH/QwTivLwxRkT8e3br9dsoyPnMOIVeUPhke7LKMgV8AyN/qDbvrMg7vclIorXHf/0btj40SeB1w91483DZzh+JCIiIiIiIiLKIgkHqAshfKF/BXDPyH8QQsTzFlJKmUzmdiIiIl2lOyBAOd6arW1YtSh8MXtScX5Swdrn3F5cN6EQN00dDwD48NQl9Li9o44JWC/ogUFz2e3qTQqBIAnvsIx53uuZDdio4EQrX3NEqWBQqD2xTlLHnQDsizsDEGUfva57rf6/MqYe9PmR4xA45x4MC6pUaN2cF9m+qrUxap9h6Q1lwX/Xq42etXEXBn1Xg9CVMkezeEapLscmIgrVvK4W9z+/Fz19g/D5JZwOgbKx+Xj98dvNLhoREREREREREaVRMoHikVHocUWlExERUYBasNiarW1JBWuHvleyUg3UTfb1DJrLbpHZmIFAAMWrB05Fzaal140NDE6kTJDOLNCZFhTKDNrZiTsBZAbe5Eh6YDtgL3pc91r9/yeWzsQj9fvx8qOLMKd8HDY2tGNHaydyHQKDPgkBQAJwOgSW3aS945NWGyME0PLDpQl9hiPdl8PKFK+750zGrvbAbm1aWeHVys02kIj0VlZSgKU3TMaO1kBfe9AXuDGHbS4REWUTjjuJiIiIiAAhZZyz1coLhNiDwLx80qSUtam8nuJXXV0t29razC4GEREZRI8JrrqGdmxv7cTKBdPCFuqjvfeePXtQU1MT9fV6lY8yk6vXo5mN2chzRS0wHgCDE8mWotW/RliztQ2lYwvCAqv0uFHKDOn+7sgazGp7iMh62A5kPmUseujkJQxG6f9/6afvocPlxsyyYvz2ybuC/Z2X/9CJId/oKXCtcYNaG3NtSQFOnO/HqoWJnWe1/3UPjp+7gs9NGoN3/7Ym5vO1xjgAUJTnRP+gb9TjBbkO3DWrFK4+L+pX35p0O8gxPxFpyaTxIxGRGULXYMieOO4kIiIiomwhhDggpVSd+Ek4QJ3shQHqRESp03vBVa/3c/V6sOxne+Hq8ya84A3EDtSNNnm2Z88erHl7IGagLyfg9JeuAIB0HEfJTpjnDGTTSsd5wuBEygS80SJ5/O7sS692yYy2h4isg+1A9lDGotcU5aG6cgLeO9YT1v9//VC35mtPPHMfXL0e3P/87+Hq9cAvAYcAJpcU4PXHb9dsh5Q2Rmu6PdZ5VrmhMWqZ1Lh6PVj49G7VbDIOAIV5TlyJCFBXshnPKC3Gn3rcKbWFHPMTERERGYMB6vbFcScRERERZZtoAeqOdBeGiIjIbja/eRStxy9gc9NRXd4vdGvxZM2ua8KCp3fD1ecFENg+vHJDI2bXNcX9Hs3ranF/VQUKcgPdgYJcBx6oqoBEYGF8W0tgYV3rvbVe37y+FrPrmuJ6D0qcHuePVY6jbHPf8NjtWLlwOnrcXsOOpSgrKcDY/Bx4h/3Iz3HAO+zH2PwcBqeTrUSrfyk6fnf2pVe7ZEbbQ0TWwXYg80WORc9fGcRbH52FZyi8/79r7WJMGV8Y9tqp4wux64nFAALjhqU3lME/Evntl8DSG8qijhuUNmbbtxegcmIRHCLweLznWY5Qfzw3ygz+lt0dgACK851hj1dOLML+jUsxJj8HsyYX4+ffmI8xeU4U5jrglxJSAh0ud9LjdY75iYiIiIjUcdxJRERERHRVjtkFICIisqrILAc73+/Czve7ks5yEPl+21o6sa2lM+H308q+4BBIaIJLK1B377pazQzT8by+bGwBmkfe463DZ4L/fs+80e9hB1bZslyv88cqxwEQtrXzpuXzdH3vaJTAkdBtponshDdaJI/fnf3o3S6Z1fYQkTWY3Q5YZWyRKdS+z4bHvoh7t+xVfb5fysDNSX0ezKkYh6K88KDuwjwn5pSPA6A+7t7W0olXD5zSbH9+/MA8PP7iQaxdOgO3z5iEz1o7EzrP/BqZ14W4GrmufOZDnRcx6Lv6Arc3PEu6zy9RNrYArRvvDj627OaK4HvEM+bX4ur1YE55CUpL8vG7iMz0dhzzG4nXPFF68ZojIiIrMHvcSURERERkJcygTkREpEFq7Mut9XgsemVNUN7H6QhPr/Zg1ZSEJ7jUsogmMnmmlYU09D0A2HoCLl0Zy2NJV9aNbMjuUb+6GpuWz8OcihJsWj4vLFiRyC6YBTp5/O7sJRvaJSJKLzPbAauMLTLFM00ju53turrb2b80Hx/1PKcAHqiqwO83LAnr/18eGApmF581uRiXB4aCr0mm/Qn9fRM5z5Rs5KNvQx8REqCuHGNsQS6um1Co9QqcvDiAyg2Nqv+WasDMlt0dOHTqEo73XMmqoBtXrwcr6vfBlcANzrzmidKL1xwREVkF5x+JiIiIiAJSzqAuhJgBYDmAhQDKAYwF0AegG0ArgAYp5SepHoeIiCjd9q5fgq/V78Nn5/uDj1VOLMIrj96W1PvplTVBeR+fX8IpAlnWZpQVwz04nHCZtLKIxpthWuv1yWSbsxojM4knk9EpXVk3UjkOM1URpQ+zQCeP3529MOsUEenNjHYgnbsUZYNRu50d7MLOg12az/dJYN8n54N/V8Ytb6xdHGxPQrOLK2OaeNsftd8XAPJzHNi0fF7M8yxyB7JQhbkOvLeudtQxzl8ZxPkr2u85dXwhfvGtWzX/PZldpSLL0OFyAwjPTJ/JQgNfNz14Y9Tn8ponSi9ec0REZDWcfyQiIiIiCkg6QF0IMRHAfwPwMACh8bSHATwjhPg/AB6XUp5L9nhERETpVlZSAN/IHtu5ToEhnwxuk52sZBaBtd5n1aLw99EzC3Sqk2fKAnuyW4ZbgZGfIZGF7VB6nT9GHSfZz0VERBRNuto/IiKjZML4yEoS2dQs1ylQOXEMOlzu4Dgl2rhFLQt6rPYn1d9XuRlr0Dc6h/qk4nyUjS1Aw2NfxL1b9mq+R44DCI1tL8xzYk75OM3nJzPmj/Y5M/nGsWQCX3nNE6UXrzkiIiIiIiIiImtKKkBdCDEdQDOAKdAOTg8+HcDXANwmhFgspTyZzDGJiIiMdqT7Mh6p34+XH10UXMidW1GCmtllugVE6ZU1werZFzIh26kRnyHVjE7p+t0TPU4mZapiFnjKVjz3ycqs3u8hIoolE8ZHVrJ3fS1W1O/DiZDdzqZOKAQAnLo4EHxMABjyyWCmb2WcoggdtwBIOgt6qr+vq9eDXe2nIQBExt6fvDiAWXVNWHHrVM3XCwHkOh24vrQIa5fMxJZ3OnCpfyiuYyciW8/jZAJfs/W7IjILrzkiIiIiIiIiImtyJPoCIYQDwK8ATEVgnv80gB8BWAhgAoDckf8vGHm8e+R51wH4tRAiVkA7ERGRKZ546RD6vMN44sVDwcfqV1dj7ZIZ+Ptff4S1S2fomqU80ynZ5hoeuz2w3bfba3aRwrh6PVhRvw+uKDcd6P0ZmtfV4v6qChTkBrpgBbkOPFBVgeb1tSm9r9ky6XOFZkwkyiY894mIiIxl9fGRnZSVFGBY2e1sZHbb778a2p3nDEw/l48rCBun5Oc4MGV8IfJzAv8eOm5RxjROR+DfHAKYUJiLmZOLo44ZFan8vlt2d+DSwBCWV00JK69SlsFhf1hgfSQpA8H1v/n+XVh2cwV+8/270Lrx7riPn4hsPI+TDXzNxu+KyEy85oiIiIiIiIiIrEfIRPZEBSCE+BaA/4VAQpdGACullH1Rnl8MYDuAr4685j9KKbcmXWJKSHV1tWxrazO7GERElla5oVHz3048cx/qGtqxvbUTKxdMG7X9t9HizWib7sy3e/bsQU1NTdKvt0KmXrN+140N7djR2ok8pwODPr8p55UR7P65IrPAK+yYBT5RVrgeyTzZfO4T2Vk8dTfr98zH35j0ZLfzac3WNpSOLcCFK4PY1X4a100oxJyKEpSOLQjugHbqQj8+On0Z59yDwXHKjNJi/KnHDcjARPXDt0zBsyuqNPtEALBqoTFjm2jHTFSeU+DYU/fq8l40mnK+he6uxwQGREREZKRU12CIiIiIiIjSRQhxQEqpOmGacAZ1AA+P/P84gK9FC04HACmlG8AKAJ+OPLQiiWMSEREZZtfaxZgyvjDssanjC5HrCASvb2vphJSBLb4rNzRidl1T2soWb0bbeJ4XT8bwdDEjU6/y+Wf+cFfCv6ue312mZnSy++cKZkwc2evHKWDbLPCJYubs7JZJOyAQZZN46u5k6ncr9Rcpts1vHkXr8QvY3HTU7KJQBrDb+bTn4x5s2/8ZdrWfBgCcvDiAtz46i1fbTmJORQk2LZ+HqRMK0dM3iJmlxcFxyuWBIcwsLYaSsqX1+AUAgT7RtePUA/OVMePnftCoW/3o6vVgTnkJvjx3clg/rGxsPq4pykW0LUiL851hf6+cWIS9G5boUi5SV7+6GpuWzwueWwxOJyJSd6T7Mm78u7dw5PRls4tCRERERERERBaQTAb1UwDKAfwXKeVTCbzuhwA2AeiWUk5N6KCUNGZQJyKKz5d++h46XO7g32eWFWP7dxZi064/4jcfnYFnyI+CXAe+MvdabLzvC4ZnlIs3o20imW8jM4aHZsiDRELZ8pLN3mFmpl7l81deMwbHz1+B0yHg88u4ftdUsq3bLRNhtsrGLNLZ+Jmtyux6wu47IBBlk3jq7lTqdzN3DqL4sQ0nPdn1fHL1ejTH63dsfjfhzOT5OQ78+a1Tsb2lEwJA6Iy5UwAV4wtx8uJAwtnU1fp5rl4Plv1sL3r6vMjPdcAz5EdejgODw358btIYnDh/BdGm7JXy5ToFhnwS100oRPN6BqgTEZH5lDn2mWXF+O2Td5ldHEsyew6I7IMZ1IkoU7DtIyIiynx6Z1CfNPL/Ywm+TknZNTGJYxIRERnq8sAQZk0uxs+/MR+zJhfj8sAQykoKMDY/B95hP/JzHPAO+zE2Pyctg+d4M9rG87zZdU2qGcNv+8nuYFbNdGVQNiNTb+TnP37+CgDA5w+s+HuGtH9Xre9u1samuLOLMju1PQQyJubD6QjkKnQ6BMrHFWR0FmlmzrYOs+sJu++AQJRN4qm7k6nftfo86dw5iOKnlWwi0SQURED6zie9d2iINl6PrAeFAL4ydzJ2rV2ML8+dDEdIenKnAO6ZOxnN62txzu3FqkXT8Wfzrg07lk8GMrQDidePkf282XVNWPD0brj6vJAIjEcBYHAkoP74Oe3gdKcAlt5QCglgVlkxXv/eYqxaNB1zKkri/NaIiIiMUbmhEZUbGoMJYDpc7uBjFM7sOSAiIqJ0Y9tHRESU3XKSeM0VAONH/kuE8vz+JI5JRERkqNaNdwf/vOzmiuCflaC9by6Yhh2tnejRaTE9lniD4+N5XvO62rDMcgrfyKL3tpbO4GPbWjqxraXTsGx5ZgT9K5//rcNnwrLoOQDcObsUE4vzNIMxI787JSvf0LAfuw6fweZdR/HsI1Wqr43MRGj0d0upKSspwNIbJmNHa+A3GvT5sfSGsozO5mDmTTgUYJV6on711ZuZNy2fl7bjElHi4qm7k6nftfo8G+/7ArMcWdDe9Uvwtfp9+Oz81Sm2yolFeOXR20wsFdlVus6n0AVpPXZocPV6sKv9NB66ZQq+ffv1YeP10HrQIQC/BD7tuYI5FeNQWpwPf0gAuE8Ck4rzUTa2INgnWrO1DddNKMRNU8fDM+TD//30PAYGfQAC48gJY/Kw9TsLopZPq5+XCp8Edh/tAQAcc7lx75Zmji+JiMgSdq1djO++cABdlwaCj00dX4hffOtWE0tlLVaZAyIiIkoXtn1EREQEJBegfgJAFYB7AfzPBF53b8jriYiIbMHMoL14g+NjPS8ySGnQ58f0a4pwptcTFrAOICwYyezPpRfl8w/6/HCKwKK+QwS2RJ86vjBqcETkd+cZ8uP1Q93Bf995sAs7D3apTqZEC/QiazLrhhQzZeNnthLWE0SUjHjq7kTr92hB7XUN7boGlVLqykoKgrsB5ToFhnwSPr+MeQMBbzYgNcmeT/EyakF6y+4OXBoYQmGOE3MqSkaN13e0dEIiMO4DrmZydQhgTJ4TVwZ9mHZNEaSUo25YDp0HiCy/H8D5K4NYtmUvPv3JfZrlU+vn1cwqhR/A20fOhgXJAwgG0it/lgAEgLEFOfiruz6P59/9BFcGh5E3Mi5lv5FIG9s7ovSbUzEORXnOsMcK85yYUz7OpBJZD+eAiIgo27DtIyIiIiC5APXfAJgP4H4hxMNSyp2xXiCEeAjAAwjMrb+VxDGJiIjSygqLWfEGx9evro5Z3sggpT0fu8ICkBTpyKBsRtC/8vk/6enDefcgJhXn4/rS4riCcUO/u2VbmuFXeY7aDuzMTm0/mZhFOlbdkImf2U5YTxBRMuKpu5Op3yP7iztaPlPdaSfP6UDVtPEM+jLZ3IoS1MwuS+gmM70zWFPmSOZ8ilc8C9LR+qyR/xZvwPtDt0zBzve7gjcpF+Q6MDjsh18CV0ayoXdeCGSNd/Wp76illP/+5/fizOXw5/glULmhUTPQXq2fN6k4HxIYFZyuvJ8SpP5nc6/FhOJ89PR5gvX5ozUzsLGhPbjjE/uNsVlhXofMwfaOyByXB4Ywa3Ix1i6ZiS3vdOBS/5DZRbIUzgEREVG2YdtHREREACCkVAupivICIaYC+BhAAQAfgP8K4KdSynMqz50I4D8DWAcgF8AAgFlSyq7Uik3xqq6ulm1tbWYXg4jIdp58+RBeO9iFh+dPwbOPVJldnJjqGtqxvbUTKxdMi2vxbc3WNrz10VnNfz/xjHYmOADYs2cPampqEi2mZSS7UO3q9WBF/T6cON8ffKxyYhFeefQ21fdZs7UNpWMLwgI9QgPGiIyWaN1A6cd6goisytXrUQ0qHfb50dh+Bg/fMgXPrqgyu5gUh8iAXkUyGawZ8EnJUAKr85yBHb0i+6Z1De3Y1tKJsrH5eGPt4rBzK7I/q1U3bbzvC6oB7KEemj8Fw1Ki8cPT8PklnA6BZTeVB18brfzbWzrDspxHHlcReo386JeHg/28f9n7Kd496sLNU8fhmuJ8vH3kLCYV52HyuAKcujAAn1/imjF5mH1tCdzeIdX+IPuNieFYKPvo2d4RWQ37YJmBbTklwu5rMEREANs+IiKibCGEOCClVG3kEw5QH3nDNQD+O64mDB0G8AGAYwCuABgDYCaAKgSytIuR5/6VlPIXCR+QksYAdSKixNhtMSuV8h7pvozvvnAAXZcGgo9NHV+IX3zr1pjbrxo9OWr0oksqC9WLN7+DUxcHkOcUGPRJXDehEM3rl+heRqJU2K0uIyLKZlYONgkNKtUK+GTbYm2uXg/WbD2A0pJ8/O5Yj2pAbyIY8EnJ0FqQjtZnBaD5b39+61TNgPfIAHanQ+COmZMwcUw+Gg6eUs1eHqseU8p/we3FrsNn4BCBiW6160DrGlEef2j+FDR3nEOP2xv2HF5b+uFYKHvFuoGFyM7YThBlHwaoExERERGRXUQLUM9J5g2llPVCCAD4KYBCBLKj3zryX9ixR/4/AOD7DE4nIiKr07pvK/HbudIjnu3StcypGIeiPGfYY4V5zpjB6elg1HbM8W4HH83cihLUzC4LC64gsppU6gYi0p+VA5DJfEb1e/Rwzu3FyoXT8c0F07BsSzPUQtSTSXxA6bNldwcOnbqEGaXFKW2prEc/mtLLSm1PaHa0TcvnBf/cvK4Wi36ye1TQuHfYjzynA/dXVaj2Z3/0y8PBuilyTBa5hfigz4+p4wux6cEbsf6e2bj/+d+jp9cD38gxC3MdeG9dbVzlX7O1DasWqR9X6xqJtPP9rqjP4bWVOmUs1PhBN3wScApg2c0VHAtlgcjrP5n2jshq2AcjIiIiIiIiIjtLKkAdCAapvwngCQAPApiu8rTPAOwE8DMp5WfJHouIiChd9q6vxYr6fThxvj/4WOXEIrzy6G0mlipcWKBBiotvlweGMGtyMdYumYkt73TgUv+QwaWPzuhFFz2CdrWCK4ishAvzRNZi5QBkMo8dgk1C+z37f7gUX6vfh88s3E/OJKkGF0eeXx0uNwDALyVWLpye8E2WvPnNfoxse/QKfi8rKcDyqil47eDVoG2nQ2DZTeXYeN8X8NzbHar92VhjMuXmmnvmTsaTr3yAUyO7hpWVFMDV6wkLiB8Y8mPBU7vjqnujHVfrGunzDOGdoz2a7ykAfHnuZLynssMBJeeOf3o3rP7zSeD1Q9148/AZy7SvZJzQm+uYVIAyAftgRERERERERGRnSQeoA8BI0PmTAJ4UQpQCKAcwFkAfgNNSSu3ZdyIiIgsqKynA8MhqdZ5TYNAn0T2ymK0HPRbyIwMNUll8a914d/DPy26uSKo8eopcdMnPESjOz8VzX6/Civp9ugRAZHPQrpWyKJLxuDBPZD47BCCTeewWbFJWUgDfSD851ykw5JPw+SX7FAZ5pukoWo9fwOZdR/HsI1UJvz7a+ZXMb5bt/Wg7SUfbo2fw+5XBYcwsK8afXG44BODzS4zNzwEksKv9NP7sxmvRea4f0ycWobH9NNbePTPmeacEktc1tKPH7cXU8YXBf7tz5iScON+P05c98A774RDAV2+uwJo7r09pzBl5jXiG/Hj9UHfM10kAvz1yFhLgtaWT5nW1uP/5vejpG4TPL+F0CJSNzcfrj99udtEoDZhUgDIN+2BERMnhWggRERERkTWkFKAeaiQYnQHpRERke3MrSlAzuwzfXDAN//mlgzjmcuuWdS6Vhfx4Ag0yYfFt/yfnR4LTA4su3uFB/MOvj+BPPfr8DokG7WbSRCYz+GYXLswTmc9uAciUXnYMNgntJ/PmJ2NE9vl3HuzCzoNdCQcXG3F+8eY3ezCy7dEz+D10nPWjXx7Gwusnhp1bW3Z34NLAEDrOuPGnHje8w35c7B/Csi178cbaxVHP5Vjl3NjQjh2tgb8P+gLXxo6WzpTHSqHXyH1bmiFjvwQAcOesUkydUGSLa+tI92U8Ur8fLz+6CHPKx5ldHFVlJQVYesPksN946Q1llm5fiYiiOef24qH5U/DxmT7MLh+LHrfX7CIREVke10KIiIiIiKxBSBnvVPnIC4T4i5E/viOlPJXA6yoA3A0AUsoXEjooJa26ulq2tbWZXQwiItuJXNBWJJt1To/3c/V6dM2CmIo9e/agpqYmqddGC/iua2jHtpZOCCDqYn66Ms+6ej1Y9rO96HF7sXLBNNtOZOp9PhMRxZJJN/ekSgmCy3MGAqTs3J6Q/tZsbUPp2IKwoMTQG4wo+8za2IRB3+h+W16OA8cS7Lfx/MpeStuj0KvtUcakbx0+De+wRH6OwD3zypMak9Y1tGN7aydWLpiGtUtnBvsNd2x+V3XsEinaWCbW2Dn02lj2s2b4VQafqY6VXL0efK1+Hz473x/1eQ/fMgXPrqhK+jjp9qWfvocOlxszy4rx2yfvMrs4mlj/EVGmCW03OZ4kyg6prMFkM66FEBERERGlnxDigJRSdQI2mQzq/45AzNiDAOIOUAdw48hr/QAYoE5ERJamd9Y5Pd7Pjlk21ahlroicNNQKTg8NgDCantkBzcYMvkSUbpvfPIrW4xewuemorYKujMCMw+F480I47nZBkfaur8WK+n04ERLUWjmxCK88elvC78XzK3udc3sxs7QYx1xuzCor1i3T6tUxaWDE5h2WUcekanW+1jgLALa83REcuyhB8Fq8w37MrmtSHZvFGjuHXhv7f7DUkLFSWUkBfCOR77lOgSHf1c/iEIBfArPKiuH2Dqd0nHSp3NAY9vcOlzv42Iln7jOjSFGx/iOiTJFJ85NEROnAtRAiIiIiImtxmHBMYcIxiYiIEqJ3MLhe76cEuTU8djtWLpxuqy1dZ9c1oXJDI7a1dELKwIJK5YZGzK5rQvO6WtxfVYGC3EDXpCDXgcqJRRACcI70HBwCGPRFD4DQs6xqWTYcAmheX2vosY2QKTc3EJH1KXX9zve7AAA73+8K1vXZqn51NTYtn4c5FSXYtHyeadk7Xb0erKjfB5fJAfKhN6rZnVW+U8osZSUFGB4Jas0b6Qj7/DIr+228xpIzu64Jb310FsdcbgDAMZcbb310Vpe2eHZdE7a3dIY9tq2lU/O91er8hse+iIlj8lQnpbe1dGLB07vxxgfdGPRJODRmkZ0OgQeqKqKOzeIdO+s1VnL1evDg87/H8ud/Hzxn51aUwCEQFpwOBILTnULgc6VjbJPVe9faxZgyvjDssanjC7HricUmlYiIKHl26mOozZnGagOJiLIZ10KIiIiIiKwlnQHqyrFi79FKRERkAXoHg+vxflYJcotFbaEn2oKK2qShzy+xcuF0LLj+Glw/aQzG5OfgoVumRP3e9FpgUsrqjAiIeHD+FNtOZNr55gYisg8p1TOdaj1O6WN2YHi0G9XsyuzvlDLX3IoSrFo0Hb/83mKsWjQdcypKzC6SKZ5pGtmNY9dRs4tiK0YGssX73rM27tKs85f9bC/OXxlUnSDOcwIPVFXgzlnAFkpOAAEAAElEQVSlcEDAr9F98Plj37hcv7oaa5fMwN//+iOsXToj6thZa6ykNr480n0ZN/7dWzhy+nLwMVevB8t+thcHT17CoZOXgu1C/epq7P/BUtXvbN8Pl1h2PK9mTsU4FOU5wx4rzHNiTvk4k0pERJQ8O/XjGWhJRJQ4roUQERERUTrY6QZ4M+Wk8VjlI//vS+MxiYiIkqb3ltDZtMV06ELPpgdvBBB7QUWZNPzmgmnY0dqJnj5P8Huqa2jH9tZOFOY48ezqqoSOmwylrD5pz+3X1WTT+UdE5tm7fgm+Vr8Pn53vDz5WObEIrzx6m4mlym5W2RI+k7ZYtsp3Go2r14PHXzyIn39zPoNXRtjpO8n2flvkNbbzYBd2Huyy1DVmBVrntJGBbGrvve+T86Oe99WbK7Dz/S44BeCTgaDswWG/6i5VoQZ9wNj8HDz39flw9Xqw6Ce7NYPUT1282tfQ+i7iHR9qXXNqr3/ipUPo8w7jiRcPYft3FmLhT3Yj8j68yHYhUwILLw8MYdbkYqxdMhNb3unApf4hs4tERJQQO/Tj1ajNmRJR5rHTmNXqsn1MTURERETpoVd8UqZLS4C6EGIqgL8a+esn6TgmERERpV+shZ5oCypqk4bxLhwZscB0zu3FqkXhZbVThjsiu+OijD2VlRTANxJJlusUGPJJ+PySv6GJrBIYnkmZ/6zynUbDSbHR+J3Yh9amG9yLI1y0c7rrYj+uKcpD6dh8zK0Yp2vGwNAx3X9+6SCOudzBMkSOy3wjP5pnyI+H5k/BsJTBulOLMpY78cx9WF41Ba8d7Ar+m1MA111ThM8u9GPqhKLg45HfRarjQ63Xh+pwubHg6d2a7/GVuZPx45FxbaYEFrZuvDv452U3V+j2vuz3k1XwXMx8dujHq2GgJVF24JiViIiIiMge7HoDvFlEtK3WhRBPAHgi4uFKBNaEegD0R74m8i0AjAEwMeSxp6SU/yXhklJSqqurZVtbm9nFICKiDLNnzx7U1NSMevxI92Ws+tdWXPEOwzscvtCTzOKeq9eDTbv+iLcOn4Z3WCI/R+CeeeWj3k95ntoCExcViYxnxEK+snPCg1VTcOrSAIMEbGTN1jaUji3I+ht8rBTgsrGhHTtaO5HndGDQ58fKBdNMWezMpHPD7O9U6/yKnBRT6DkpZqVzOx7p+E5IX8q2mCdUduOwwzlntHjO6bqG9mBA9aqF+tdPWmXIcwrcc2N5cFzmdAjcMXMSJo7Jh9s7hEnF+djR2gmBwC5Vt8+YiIOdl9A/6Au+x5g8J179q9swp3wc1mxtw6c9V9DhcidUvjynAxXjC4LnUKLjQ2V82fjhafj8MvA5ZkzE0bN9OHM5vmB/pwA++cl9CZU7Wyn9frP6J0QKnovZwex+PBFRJK2+da4D6Hia/UkiIiIiIqthfNJoQogDUkrVRV9HjNeORyAgffrI/yuV9wRQFvKY1n/TAUwaeb4AcAzAswmWn4iIiAykBIC4dMjitqOlExeuDOqWHfVqttXADXXeYan6fpmUlZXIjkIz/KRqdl0TKjc0YltLJ6QEXjvYhdbjF7AoSoZKvelZL2aj+tXV2LR8HuZUlGDT8nm2DUBOlZ7XRaqUzK0Nj92OlQun65pJNxGpnBtWuy7N/k61zq/mdbW4v6oCBbmB6Z6CXAceqKpA8/paw49tVen4TkhfZSUFGB7ZjSPPKQCAu3GEiHZOh/ajFNtaOlG5oRGz65oML8PeDUvCxmV+KTF1fCGeXXEz6ldXB+vON/76DqxaNB3F+TlhwekAcGXQh3uf24vZdU2oX12N60vHYNWi6dj27YWonFgER+CUQEGuA/fMnYypEwqDry3IdUAAGPT5w25w8Az58esPuuM+h+74p3fxq0PdwV1hfH6JPcfOxRWcLgAU5Tpxx8xJcR0rm0S25ZH9fiPOVaJ48FzMLmb344mIImn1rf9/dxXGeCWpsdr8EVGm4TVGRETE+KRE5cT490sAPot4bDoCGdTPIXYGdT8AN4DjAHYD+Dcp5ZXEi0lERERG0WPrSLUsH95hPxwCKS30qL3vtpZOvHrg1KiMl5mybbrCbtlJKTsZsX2VsuX2rw51hz3ul0Dlhsa0ZLzllrqUCitu65YJW8Jb7bo06zuNdX4ZOSlmxXM7HpwotKe5FSWomV2WMX17Pamd004h8PiOg2h47Iv4590dePvIWYzEVsMpgC/NmYx/jKirUhlvRLuuoo3LIutOV68Hu//oQl6OwKDPj+GRWPXrJhRi0th8uCJ22rh9xiR81hqodzxDfrz50dmwcnmGVLK65whUjCtE5aQxcX++hse+iAee/z2GfFd3Hi0fV4Ahnx/XjMnD2iUzsbGhHZc9w3AIhH3XPgk8dMsUS7RVVhPZliv9frVMQ0TpxHMxu2TC2IiIMotW33p8fqw8g6TGavNHRJmG1xgREVFApsUnGUlIKWM/K/QFQvgRCFB/UEr5K0NKRbqprq6WbW1tZheDiIgsKJ6t4bXs2bMHNTU1wb8btYVNNm+Nw62lyQ6MukY3NrRje0tnWMBPOq7/VOpFIoVyXbx1+ExwcfGeefqfu9lyIxOvy3Dx1LtrtrahdGxB2KSYHjsZ2LlfZtR3QmSWyHP6vY9dOHVpACsXTIMEsD0kgzoArFo4ekyR6ngj1evK1evBsp/tRY/bC63paYcAqiuvCbZ1ocf8172f4vefnIer1xPsL2pR+/zRfP4HjfCpvGdo2xNaljVbA3Ov9aurdaljMq2Nj9aW//mtU7GjtRN5TgcGfX6Of8k0GxvaM+JczLT6g6yF5xeRcdT61t+4zh22BkPRcf7IWthmZB5eY0RERBSNEOKAlFJ1UjxWBnU1nQgEqMfKnk5EREQWpmeGKKMyU2Zjxku7Zic1Eiczrcuoa/Sc24tVi6bjgtuLXYfPwCGQluufmfNID6HXBWDcuZst2Wp4XYaLp941KiuknftlzJRpLPbV0k85p9XGDor7biwHAHx46lLYrlZ6jTdSua60FrYj+SXQevwCFjy1G60bl4Yd89kVVcGAUuWmxuJ8J4b9Ep4hP5wCuGNWKSYW58W9q1e0cpWPK8Drj98e/HtoWZrXLwn+WY86JtPa+Ght+Y9+eZiZhsgSMiXrVabVH2QtPL/sh/10+1DrW+/Zs8ek0kRn1fOK80fWwjYj89j1GrNqnUX2xvOKiCgxCQeoSykrDSgHERERpZmeQUauXg92tZ/GQ/On4tuLP6frYl6mLBLGy66TPEbiZKa1GXGNKosya7a2YdWi9F3/dg6+JOtQC27b1tKJVw+c0uVGo2y7kSn0uhRpulnF6szsG2Vbv4wCYi266N1X4yJP/KKNHbS+O63XrLnzeqyo3zfqe9f794gVnB66g06oBU/tHtXWvdjaCSkDmVQAwO31Bf/ND2Dq+MKEzsnI7ybU0hvKDD8fM7WNj9bH5g1EZBV2PBdD6+c7Nr+bkfVHNrFy/ydT26dswDlVMoJVzyvO61oD24zMZddrzKp1FtnbM01H0Xr8AjbvOopnH6kyuzhERJaXTAZ1IiIiGqHX4oFZixB6BRlt2d2BSwNDKMx1YE5FiW6Lea5eDy72D+HHy+ehbGwB1i6ZgcdfPAhXn8fykx7JsuskjxE4mWkPRi7kmxEkwOBLSpXRNxpl441M59xezCwtxjGXG7PKiuPOhBuNlQNAYjEzgMqOwVuUOq3FPKP6alw8jF8yYwet1+xo6Rz1vbt6PVj2s73ocXt1+z2Udqzxg274QgLRy8flY+kXrg3uoKPGO+zH7Lqm4Pm1/wdLw9pEhwCmXTMGm5bPw5sfnQnrx8VT7yvfTWRwOnD1/D7xzH0pfProMrmNZx/bHuzcP8pGoe1lJtcf2cLK/R+eX/Zj9TlVtjf2ZPXzCmCf0wrYZmQ2O11jdqizyH4iz6udB7uw82AXzysiohgYoE5ERJSCzW+O3CHbdBTPrqhK+n3MWoRINcjI6AF+5Pdi5cUaPdlpksdInMwkM9gh+JILedZm9I1GVrqR6Uj3ZTxSvx8vP7oIc8rHGXKMyL7GMZcbx1zusADFZGRLn4IoFbH6+nr31bh4mJxkxg6hr/nqz/ZiW0tn8N+U7z2SXr+H0o755NVs6bPKivG50kBg+ZqtbXjolinY/UcXLg8MBV/nFMCymyvCzq/INnHQ58fiGROxeOYkLJ45Key40er90L7VObcXX5xxDfb96QJCE7k7BfDcN6qS/tzxsFIbrzc79LGJ/aN4mT0e02ovHSKwo0Sm1R+Zzg79n0xunzKV1edU2d7Yk9XPK4B9Titgm5HZ7HSN2aHOIvuRKjv+AYDGw0RENCLlAHUhxBcBLAQwFUAJAGeMl0gp5bdTPS4REZGZRt0h+34Xdr6f+B2ydliEiCZygJ+fI1Ccn4ut31mQ0vtqfS+Rf7fL95QoO03yGImTmWRVZgckcCHP+oy+0cgqNzI98dIh9HmH8cSLh/DbJ+8y5BgMgCUyT6zrT+++GhcPk5PM2CH0Nft+sGTU9z447IdfZXXNIYDm9bUpl/mc24tVi662Y6cu9ONi/xBcfR7Ur67G37xyCJcHhjA2Pwd93mE4BOCTUD2/1NrE0L7aHZvfjVnvh/at6ldXY3Zd06jFRZ8E/uaVD7Hspikpf/5Y340V2niyB73GJewfJcbs8ZhWe3m5fxBTrxnD+sNm7NL/YftkL1adU2V7Y29WPa/IethmkBWwziIj7F1fixX1+3DifH/wscqJRXjl0dtMLBURkfUlHaAuhHgAwH8FcH0SL2eAOhER2ZrUuEVW63EtdlmE0KI2wPcOD2LH/s6UFulGB747MKk4H+fcHniHpe2+J0oeJzPJiswKSOBCnn0YfaOR2TcyVW5oDPt7h8sdfOzEM/fpeiwGwJJZzL4ZyQriuf707Ktx8dAcod+7AOAZ8uPeG69FjtOBxg+64QsZ4j44f4ouv0dkO1bX0I7trZ247endYcfr8w4DAJwOgW/+h2mq55dam/jky4cCO53tOhq13o91Y3QkPYLzYzG7jSd70Wtcwv5RfKwyHtNqL5/7+vzgc1h/2Idd+j9sn+zHinOqbG/sz4rnFVkP2wyyCtZZpLeykgIMj2R0yHMKDPokfH5pub47EZHVJBWgLoR4DMDPlL/GeLqMeA53tyAiItvbu34Jvla/D5+leIdsOhchjAqyOef2wgGh6yKd2lbtRXlODPpk8HtyCoHHd2R30FA24GQmWYnZAQnKQp4SLOYUwLKbK7iQl+XMCKLdtXYxvvvCAXRdGgg+NnV8IX7xrVsNOR4DYMkMZmdHtYpY15/efTUuHhpLq8045/ZiZmkxjrncAID2U5dx56xS+GQga7pfArPKiuEeCRjXS2TfyqfxPIHo55fyuQ51XsRgSIT7zoNd2HmwCw4RmJDOz3HAM+THvk/OA1APkrprVil+c+Ss6rbNd2x+lzcFkiXoPS6xav/IajeLWSmwku1lZuHvSUaw4pyqVdsbip8VzysiIi2ss8gIcytKUDO7jH13IqIEJBygLoS4HsA/I7A2cAbADwHsA/BHBOb61wD4vwCmA/gKgP8EoBjACwD+EYB/1JsSERHZTFlJAXwRe54ne4dsuhYhjAqyqV9dDVevR/dFusjv5TcfnQn7+3sfu3Dq0kDWBw0RUfqYHZBwxz+9Gx7EJYHXD3XjzcNnGCyVxcwIop1TMQ5Fec6wxwrznJhTPs6Q4zEAltLJ7JuRrCbdi3lcPDSW0mY8s+soTl0awM+/OR93bA7vXwDAyYsD2N7SCacQ+PVfL8aO1k6cutCPi/1DcPV5dAsiGr1zloDT4UD/4NVQ9XhuBFc+V7QsKkq9/8RLB9HhcmPL2x1Yu3Qm9n9yPrhrl3fYj9LifDxYNQWvHewKe335uAK8/vjtqXxcIt0YMS6xYv/IajeLWSmwku1lZuHvSdnEiu0NERERUbzYdyciSlwyGdQfG3mdD8CXpZSHAUCI4BKAS0p5BMARAE1CiP8K4HUAfwGgX0r5vZRLTUREZAFzK0pw6uLVzKFzKkqSeh+jBzLpCLIxYpEu8ntRvhsGDakzK7OY1TKaUfpk429vdkBC87pa3P/8XvT0DcLnl3A6BMrG5jNYKkuZ3R5eHhjCrMnFWLtkJra804FL/UOGH1MvnESmaMy+GYnICJFthhJ8vejp3dj/g6Woe/0w3j5yFqH3YN/2+YkYGPRh0tg8bFo+D3UN7dje2qlroKjqzlmOwL/lOgWGYmyVHPm51LbtVALc79j8Lrbt/yz4uNJuAsDMsmI89/X5YUFSM8uK0eFyBzPIL72hLGv6vGR96ZiDMZPZ/dxoGFhJRJQaK7U3REREREREZDxHEq+pRWC+/9dKcHo0UspTAO4FcBnAo0KIpUkck4iIyFIqNzTirY/Ohj321kdnUbmh0aQSaWteV4v7qypQkBto9gtyHXigqgLN62vjer2r14MV9fvgirHopizSNTx2O1YunI4etzflsqtJ9fMkIt7PbgWhmcWy4bhkvmz97dNV16kpKynA0hsmwy8l8nMc8EvJYKksls72UE3rxrvxm+/fhWU3V+A3378LrRvvTstxiYxm9s1IREZQ2oxIfgkseHr3qOB0APio6zI+OHUJi57ejcoNjdjW0gkpA4GilRsaMbuuSfVYiY6hIvtWY/JzsGrRdLz+vcVYtWh61BvB1dpCZYePPGcgmYoS4B753FAdLjfu3dKMV9tOon51NepXV+P60jFYtWg63vjrO7BqUXr7fETxMHNcYjSz+7nR1K+uxqbl8zCnogSbls8LC7QkIiIiIiIiIiKicMlkUK8c+f//1fj3vMgHpJRnhRD/C8D3AXwHwO4kjktERERJSDXIJt4tldOV/SSdQUNW205ajVmZxayc0YyMle2/vdmZnpixjxQMoiUyDutayjRKmwEgmBEcQHCHgMv9g9hz7FzYa3o9wwBGZyXPzxG4Z1655q4C0cZQajvwaO2cpfw9ns8V2hZOHV+Ih24pG3X9hj5XIUY+n9pOCWb3+YhiyeRzlP1cIqLUpbrzYTbunEhERERERET6SyZAfezI/09GPO4BkB/y75HeH/n/wiSOSURElPGMnPRNJsgmWhBq/d2FupYvUUYHDdkpALd5XS027fojfvPRGXiG/KrBFZl0XDIff3tzZXIgCiWOQbRExmBdS0YyK9jnnNuLVYum44Lbi12Hz8AhAM+QHzkOgX//y4Vw9Xqwadcf8dbhM2FjofwcgfJxhThxvh8A4B2WqoGi8YyhlOD1ZVv24o21i3X5/OfcXjw0fwo+PtOH2eVj4fYMB6/byOv3xdZAFniF8kfPEINfiayG/VyizMFAZ3OkmnjFDolbiIiIiIiIyPqSCVC/AqAEQOR+qJcATMbVDOuRckf+f20SxyQiIrKUbd9egFX/2jr68e8siPs9XL0e/D9bD0AIoH71rYZO+iYTZBMtCPXIgf26li9RRgcN2SkA16zMYsxolr342xNZR/3qai72ExHFYLV60qxgH2UMtWZrG1Ytmo6Lbi8aD59B6/ELAK728QZ9/rDXeYdlMDhdsa2lE68eOBV28260MVRk8Lqrz4sFT+3W5Qbg+tX/H3t/Hx9Ffe+N/6/ZTTabEAIIWSTcRUoIjahBcwKtqAloaxUV7Sn2Ejn2Op4erMcLv8fr9wB6SL+n1yne0O9lH5e0Xuek57TXaYFU64UprSFajcYmFhPDjQYpEgWMJMCG27CQ3U125/fHZpbdyczu7O7s7szu6/l4tJK9m8/MfO5m5j3vqUJdYzc+PjGIypkT8fzqSsXPldc1BzPHy1kADLg8CZWDjMdobZ9iw5vFiDIHA51TK9HEK2ZK3EJERERERETGJw8y1+Lo6H+nyl4/hMCTUW9T+d5fjf7XG8cyiYiIDGVJWbHy63OVX1eypaUH+784j32951H9dAu2dQSyuW3r6EXphiaU1zXrVdy4ZHMQqtnWXcos1vj4zVi1aHbKgivStVxKP+57MiPnoBsr63fDmWHZF0Mv9hNRamVqv5JpjNJPltc1o3RDU9qP+1o/GcC29z9H04GTAIAvzg0FyyHPMB7KnmsJ/ve+yhK0ra8Nez/SMVTbuloICr/pGfEntP6xbNO2dbUKvxDgR3gwbDbJ5H7MKG2fiChbGWXuE02mjYVt62pxb2VJ1Llbsr5PREREREREFCqeDOp7AVQCuF72eiuAGgC3CILwNVEU/yi9IQjCXwH4WwSenHognoISEREZjS3HgvxcC75325fwr+9+hqFhf/QvYWwWErlUZevWkk0smx+pbKZ1T1dmMWY0y17c92RGm18/hM6jZ7G5+RCeX1mZ7uIkjFnNyGwyKZOttC4zJ+YzG6SBGa2fNMpTmuTlEATgaxVT8aMVCwARimW0CgIa9/dFvXlX7RjKUWRH6eQCHA3JxG4VgOU3lCS0/rFsU0eRHYIAxQD8HItS+Hx2yMSstkZr+0RE2cooc59oMm0sTDTxitkSt1D2yaRzC0RERFpw7CMis4snQP1tBILNb5e9/isA3wdgA/AHQRB+B+AzAF8CcN/o6yKArfEWloiIyEgOh1zYfKxmrubvta2rRd3OA3jr4KngI8YFBAZJm1VI2UlfLSffszkINZvXnYgok8iDlHbs7cOOvX2mD1Iyy8V+IkkmBX4sfrYFfhHoHP2bwY/GZLR+Ui3YByKwsn53yi4yhZbDIgB+ETgycCm4bKUyDrg8uH/hdBw+eRHlVxepPj1H6RhK7QZtn4iEj3tjDqBSyQ6fjfHpmRzEnc62394zgEd+2YlfPVod0xP2iMjYGBASHz0CnZO57TN5LEw08YqZErdQ9smkcwtERERacOwjIrOzxPGdPwDwApghCMLXpBdFUfwcgQB1AUAugL8GsH70v7bRj70D4N8TKTAREZHZOYrsKC7MCwanA4Hr5GWOQvzuH5Zg1aLZqhf89WDkx6um6pGqqXx0a6Y9JpaIKBZG6ANFpVSpEV7XS7LXXeliv1UQ8ETDPo45FFGq22Uq557JXjdpXfwK3Qcfe288Rsz+KAX7ND5+c/C4L/QiU6r8pjPQHqW63ON0BdulUhnrV1ehINeKj08MAhBx7vKw5nbWtq4W91aWwJ4bOA1tFYCvfukqTB5nw/HzQwmth3PQjV3dJ/DAjdPDyqum45+WKb7evmFpQuUwI/l+sedaMqYfS2fbf3z7XvhE4PFte5O+LCJKnXSM1ZlCaV4Ri2Ru+0weC+tXV2HTigWoKCnCphULwm4iTMX3iZLByNe1iIiIkoFjHxFlipgD1EVRvAhgPIB8AG/J3vtfAFYDOIJAoLr0v0sAfgLgblEUx6bMISIiyjKnXR7MnJSPu6+bhruvm4aZk/Ixp3hcSk76Gvnke6ou+KTywpK0rOVb2k0VMGiEoFIiMj89+ttE+6P29Usxe3JB2GulkwuSHoyWirFGfrH/g2NnGThBUaU6wCaVc89kr5t8XYArmZfTHfisl2h9rtnmiIkGRcXjYP8FXPfPb+DgiQsAwrdZaLDPK11f4I2PT6Xl5o33v79MtV3KA5JaPxkIuxi2Y28fOo+exVeeadG0bHmwsB/AwEUvzl72YsbE/LjXAQi0+fNDw8jPsWo6lnYU2TFjUmCZudZA4505KT8j2m6sjHIDR7L6lFS3/dINTSjd0IRB9wgAYNA9EnwtlNn6UKJsx4CQxMUb6JyKbW+UsZCItDHydS0iIqJk4NhHRJkiJ54viaI4HOG97QC2C4JwDYCpAC4D+Euk7xAREWWbdGYdMeLJ91Q9UjWVj26VL8t50YPqp1tM85hYPi6MSBs+6luZnv1tov2Ro8gO32iK2FyrgGGfCJ9fTNr+SuVYI80nMvnR5KSfdNWTVMw9U7VuoetiEQLZp+9cMA1XjbNlzGPvo/W5zzUfQufRs9i86xCef7Ay9QWMUehx16YVC1KyzCdf2o+LnhE8+Zv9ePOp21S3adu6Wmza9Rf88eOTcA/7Yc+14OvXXo2Nd39Z9zLJy6DWLiECK+t3h81rpHL+fn9/2G/6xEBQrpZ2JgULv/xBIMisx+kCEFtb3fz6aN1rPoTXPjoRd5u/tqQINeUOPFQ9Cw2dvRHbbqbP86T9omVbJEuyjjtT3fa3PVqN7/56D4aGfcHX8nOt+PdHbgr7HI+zicwllWM1hUvVtjfCWEhE2hjxuhYREVEycewjokwhJPux5pReVVVVYldXV7qLQUREBrNmaxeKx9vDTr7HEjTf2tqKihsX63ax3jnoVr3ooOdBVqqWIy1r8bMt8CtMtYwcMCgP8JIYucyZwMzBL2Yuux7qGruxvbMXq6pnZUWQidb9rUd/q2d/lOi4F4tUjjXpXCaZTzrrSbLbYCrXLZX9SSpF63PV3rdZBRx++q5UFNHw5JmS1YSOYxsbu9HQ2Qub1QKvz6/7fCLSfq0pLx5Tl4sL8xTnNRsbu7G9ozfsN8ICxURonh/U7TyANw+egihe+Y01t87BD/9wMOz70pxjf+85eH3K56/zcgR4RsSktflsm+elUiYed17/wzeCGdQBoMieg49++HUAmbW+2X78R9kn2WM1qeO2p2zX2tqKmpqadBfDUDL1eJyIiEgNxz4iMgtBEPaIoqjYQcWVQZ2IiIjMTY9sYnpm/krVHcCpvNPYUWTHisrpeHVfX/A1qwAsv6HE0JmWmB0q+ZQu6Js5k56Zy56IbM1YrXV/69Hf6tkfpTKLZjqyWjCTBmmRznqS7DaYynVLR0buUMkKDIzW56rltxhRuhvTJKRt+cN7KoLB0VoDrZXsWrsE3/31HvSdHwq+lp9rhc/vh9cnKo5jyc7aGWm/hq7fK11fqM5rACgG1rqHr7SzusZuzfODowOXIIqARUCwrTZ09I75vjTnECJUMc+ICJtVgHvYjxxB0K1NZOs8L5Uy8bjTPeLHhPwcfO+2L+Ff3/0MQ8NX6lAmrW+2Hv9R9mKG7fThts9cvNmJ4pXu43EiIqJUM/vYx3kfEQEMUCciIkqqTJx0X7lYfwmAfhfrU3XRIZUXNy55R1DmKESP0wWLAPhEGD5gkEGOyRd6Qf+VPcdNG/yS7YE7mRRkokU8+zvR/tbM/VE6LqTz4j1pkcn1RL5ux89ewsr63Rk1DweSFxgYrc9tX1+LlfW7cezM5bDv+cVA5nAzjv///PuP0Xn0LB7btgdfnBvClrd6ACDu7VtRMgEFNmvYa1YL4B4RVccxo9y8EXFeIyLsPasA3DKvGJMLbWjoDMwHJJHmB/K5hHRvg9L3Q0W7BULKrt557KzWzRJVts3z0uX9z87APWy+eZ6awyF1/rGauWHvmXleK8n24z/KXmYPCDEzbvvMxZudiIiIiLID531EBACCqJYCiTJCVVWV2NXVle5iEBFlrVgeCW6WYHbnoBtr/08r9p8WI2bhowAzPnrLjGU2A7XHulsEwJZjMV17cg66NWXkzGSpfty0UqbXVG1raX+/ceBkMLDmzgXJ39/sj4goXrHMwxORqjm82jxCz8DAaH3uks1v4/i5IViEK8HFZhz/1balkli3b/XTb2FiQS4c4/PQ/ukZWATgIdlNIakex7SOpZHmNWrvxTIfVPpszbxi+AH86fBA8LXb5hUDAN76ixM+vwirRYDNasHQsA85FiDartOrTaR6npdt6hq7sa2jF2WOQrzw7YVZMc8z+7xWasNNH50Its3l108zVf9PRETplYpjmkzS2tqKmpqadBeDiIiIKGac9xFlH0EQ9oiiqHiykxnUiYiIkiCezFJmuYPUUWRHfo4Az4gvocxfZgnIT5QZs/2YscxmoJaJ0SoIaNzfZ7pMepmQBTBRqc5ELI0TT760H58OuFI6XoTubwAp29/sjygbZMucKFVSneE1VXP4VGR0jtbnXltShJpyB866PNh14CQsQurGAz1FCk6Xgu/j3b4XhobhvOjB4VMuAIHf2vb+53il64u465+8j4i1z9A6lkaa16i9F8t8UOmzUwrzIAJhr7158FTwBggA8PlFDPl9sAjA75+4BU++tA89ThcEhGdXtwrA8htKdGsTmfzEiXSS99E9Thfu2tKWFRcozT6vveXH74TtO59fxM79/Xj9wMmM33dERKQP6ZjmjQMn4BkRkZcj4M4F0/iUGiIiIqIMI837mj7sh0/U/7wdEZkLM6hnOGZQJyJKD3l2uLwcAYV5udj6d9WomDYh7LNmvIP0gZ+8joo5MxLK/JWqrJZERqKUiXHA5TFtJj2zZwE0i2iZXlMxXphxrCIyi9A50dplZQxWT1CqnvCRjn7RKBmdzT7+H+y/gL/+t9247PUpvp+XE//2jVT/ICKu9i0/btLrOEqvm2NiqQ9KnwUQ9trxs5dx6NRFDAy6gxewHEV27HziZjjG27FmaxcOn3Lh6OlLisvIlLmJ2v4x+01NfAqTeTkH3bj3xfdU2yYREZEWGxu7sb2jN/j3w4t4bUANM6gTERGRWfGaIlH2iZRBnQHqGY4B6kRE6RMaQCJNwJVOuCZygTbaxenQ97UGRGi54J3IyVEekKSW2QMYMo3ZA7ooPaRxQsowJcnLseDOBakJ6GEwEZH+It188s2F0/H8g5WpLVAGSUUgdzr6Rc4j9HPt//s6LoUEqNtzLCgenwcgkOU4ke2rVv9iDSyPdoOaRMtxlNIxgZFvGFbbhpG2iQDg6gmZEyyrtn+MvN+0MsrNNhQ77jsiIkoErwvEhgHqREREZFaBm9zbMXDRC59fhNUiwDE+L2PO2xHRWJEC1HNSXRgiIqJscdrlgQVC2EnXbR292NbRG3bSNZbHosttaenBB8fOYstbPYoXBUPfBxDxs1p/M1HSI50UswqagJEDvpXK9lzzIXQePYvNuw4x0M0AzP5Yd0oPaZzw+kRYBMA/mrHQ69M+XuhVhnjGKjKX9p4BPPLLTvzq0WosmVuc7uJkNPmcKNSOfX3Ysa+PF+rjdNrlwapFs8dkadZTOvpFziP0My4vB9Mn5WPt0jJsebsH5y8Po2390uD78WxfaS5eYLOG1b+Gjs+xLSRLpNIxoRJ5H5GXY8GUwjycdrnhGRFjOo4KPcZ7Zc/xqMeo6Rbahv+j/Qiauk9g7e1liJRoRQRw4oIbt2x+xzDrEQ954Ja0f+SMuN+0SkUfTcnBfUdERIkw+3UBIiIiItLGUWTHsvlT0dDZG3xa5bL5Dl5TJMpSDFAnIiJKkvrVVcHMik0fnQjeHbr8+mljTrrGepFP7aK1dHFa6X21z2r9Tb3EEswTSzB4qh6BnuwA/kRECjxhoBuRuUnjxJEBF067PJhcaMOXisenNCiEASnZ4fHte+ETgce37cVHP/x6uouT0ULnRGr4zLv4pCqQm/2ieXVuvD347+U3lOjym9JcfFX1rGC927RiAdYunRtXII78uMnr86PAZoVnRIQAwD3sx+7PzkT8DbXjQosACIIQ8Rg1nULbcEGuFeeHhrHlrR60r1+Kb9XvxudnLo/5jlUIbLOdT9ycyqIC0PeYs21dLep2HsCbB09BFBGsL2tunYN/+9ORjAjo4s02yZesG+u574iIKBFMfkBERESUPXjunIgkQqTMM2R+VVVVYldXV7qLQUSUtRJ9bGWkoGu1wHfHeHvwfenitVUIBDj5Qy5wS5+V/6bSBW/55x7+13ew7fFaQERcFz3XbO1C8Xh72AFJ6IVOSSyPL1f77FMv78er+/rwzYXTE8ogbuRHkEZ61L2cLceCwwxQJyLKOIkGIpVuaFJ979hzdydSNIpAmhPdee1UPLZtD1weX/C90skF+O1jX8mqi/VGflINkRotxwkbG7vR0NkLmzUQaP7Awun44txQ1LouP27648cnMSE/F586XRhvz8GgewQPL7py/CNvQ0rHeN4RP/wKp4MjHdeko21GO8bJtQoY9gVWRArg13LcmAyxHLdqccdP3kWP0wXL6HG89LvyepSu9SXj07tOEhER6UXrdQECWltbUVNTk+5iEBERERERRSUIwh5RFBUP7hignuEYoE5ElF7OQTfuffE9DAy64RPDs7pJAQORLvSrXVSMNQhC+qz8wr18+VoueNc1dmN7Ry9WLZoFAEm56BlLMHgswdlqv6GF1gD+dFAq223zivFx/yCOnxsKfi4bA90ofQ72X8CD9e/j5ccWo2LahHQXhwwg2wJPU72+iQYitfcM4Lu/3oOh4SsB0vm5Vvz7IzdhydxiPYtKKpZsfhvHzw3BZhXg9YmYOSkfbeuXprtYKcWAOjIjLccJ8kCcdz9x4vj5oZjqerTjnrwcC75104wxbUgpOP69z86oHqMq0aNtxjouBm/K/rA/WM7lN5TgwmUvZlw1Dg9Vz8KarYFznvWrqxQDnJI9Fut9E7Pa71kE4MizdzOgi6Iy8o31REREFBsGqBMRERERkVkwQD2LMUCdiCj95AEB91dOx/HzgWx5W97qiSsAPVrgOxAeBKF24b6usRvbOnqRaxWw84mb8cJbPaoXvLUEgut10TOWYHC1z+7qPhHMqBcqkQziRs5Yp1S21sMDWR/oRukjZX4scxTizaduS3dxSINkB3FlW+BpqtZXz0Ck63/4BgbdI8G/i+w5+OiHX0+4jKRNNgceMqCO0i3RMVBpLr52WdmY31Sr61qOUaTjnjcOnIBn5MpxTl6OBcM+9azoNeXFY/qWKYV5mo5rEmmb8m2qZVwM/c4tm99JuF9I9lis903MRr4pmsxB7cYO1iEiIiLzYYA6ERERERGZBQPUsxgD1ImI0k8ebPT2X06h/4Jb8bOhAejRLkzHGyztHHRj0TMtUJoBRHuse2iZLAIgAPCJSMqF81jWTy0gZGX9bhw7czn4Oa0ZxNUCVIwcOPadX3bg4ImL+MnKSrz+8UkMXAzUMaOWlzJX6YYm1feOPXd3CktCsUpWEFe2BZ7qtb5KY5Haa3oFs82ra0Z+rgXfu+1L+Nd3P8PQsD/um7pIm2x7soAaBmVSuiU6BiodJxQX5o35TeegGz/YeQBvHjwFvwhYLQJ8fhHfXDgdzz9YGXU50nGPAAS+LwB+AA8snI5hv6j5Bt+v/68/Yen8qXh0yTURjxMSaZv//bf7sWNvHywCVIPn5eNi6H5Yu6wM977YjoGLXvj8IqwWAY7xeREzvUtSOffQ+yZmI98UTcaXbfNuIiKiTMYAdSIiIiIiMotIAeo5qS4MERFRttGSgTz0Qj8QyIY+Pi8HnhE/8nIs8Iz4MT4vJ+xC/GmXB6sWzQ4LgtBiS0tPILJcIUjAM+JH6YYmxSDS0DLlWoDh0VVRK1+iYlk/pc86iuwYGY2EkDKI+/yipjJuaenBB8fOYstbPWHBAKFBG5tWLEhg7fQ3Y1IB3u05jdcPnFAMYDBaeWPFAD7z2LV2Cb776z3oOz8UfG3GxHz8/JGb0lgqimTexmZ4fVfGp20dvdjW0atbIEvbulrV4LZMpNf6Ptd8CJ1Hz2LzrkPBoEWl8UnLnEGr0GD0x2rmxvx9ip3anCPb6FmPiWIhP0aLdwwMPU54peuLiL95ZOBSMGDbN/qPHfv6sGNfX9TlSsc9RwZcOO3yYHKhDV8qHh/Miq6lDW1p6cH5oWG0fuLEkdMu1K++SbWtxdM25dtUHpyuNC6q7QeLEDhszcsJBGsvm+/Q1C+kcu4R73F5qn6PskvbulrVGzuIiIiMgud5iYiIiIiIsgcD1ImIiFIk0kNL1ALQ7184HYdPXkT51UUYcHkAKJ/A1RJ8HClAXmKzCvjlf/0r1feli+XzLKfw738RAASCMZJx4TyWYHC1z15bUoSacofmi/t6BaikkhnLHA8G8JlHRckEFNisYa/l26yomDYhTSWiaJZfPw2v7ruS4TQvR8CdC6bpFsSVbYGnia6vvF+XghZDyft6BrOZT7aM37FgPTYvvQJM0hGoojWQOZayta2rHfMkp/sqS7Dro37VJ81oDaD+0X0LVMuxZmtXxDYk73fOXPLizCUvFj/TgiPPht+gHLq+sbbNSE/rVBsX1fbDhctezLhqXMz9QirnHnrfxGzkm6LJ+BxFdiybPxUNnb0x39hBRESUKjzPS0RERERElD0YoE5ERJQi7evHBiqMz8vBvz58E17/+OSYi+31q6tQ19iNj08MonLmRDy/MnChWjqB+9yuQzh+fkhzAIf8or9FACyCEMwyDgBen4jXu09iydxixd+QLpa3tp5G2/qa4OtGvXAe68V9M2b5NWOZY8EAPnO6MDSMeVMLsXZpGba83YPzl4fTXSRSoJbh1DMipvWpGJkgkfVVi+uzCIAtx6LY1zOYzXyk8fuNAyeDAZR3Lsic8TserMfmpVeASToCVbQGMmstm9pNwTv39wf/bRUAnwhYLQJ8fhE2q6A5gFrp6RqSaG2obV0tFj/bMiajuV8ESjc0hc2vQ9c39rap/LguiwA0Pn6z4rioth9e+PbCqMtWu3kg2+YeRBLWfSIiMiqe5yUiIiIiIso+QqSsNmR+VVVVYldXV7qLQUREo5ZsfhvHzw3BZhXg9YmYOSkfbeuXjvmclmznEouAMRnv1Gxs7EZDZy9s1kAmLYhKoQMBkU4Mt7a2oqamRtMyzUa+jVZVzzJ8Jhczllkr56BbNQCfWeCIEiO1r9+HBM2F4gXC9HAOusfc0FY6uQA3zpqExv19mvr6g/0X8GD9+3j5scV8eoGBbWzsxvaO3uDfDy/Sd/zmY9Mp2dSOWWIdP/T6nXit2dqF4vH2sGBOKSg71rI5B91Y938/QuvhAU3LLnMU4oVvLxyzXOm3pDZ8y+Z3dNlGT728H6/KnsphFYA7KqbiX1Ys0GU5B/sv4O6ftofdcFWQa0XrupqIfVGk/RBJXWM3tnf2ZtQxEBERUSbg8QjJ8TxvbDL5GgwRpQbHYiIiIkoVQRD2iKKoeELfkurCEBERZbNrS4rw8OLZ+N0/LMHDi2ejoqQo7H0pKK3x8a/i3soS2HMDQ7U914Ka8mJMys8d85tSxrvyuuaoy5cyaTU+fjPKigshAvjmjdPHLOu+yhK0ra9NfIVN6LTLg/sXTkeZoxAPLJyBAZcn3UWKKnS/rlo02xRl1kprVkuiVJL6aqfJshHKyy21LzW8mTk9HEX24NNNbFYBAODzi7jkHdHc1z/50n5c9Izgyd/sT0WRKQ7ldc1hwelAIHuclvmcVqEZkIlioXWca1tXq8txhF6/E6/61VXYtGIBKkqKsGnFgrCg6FjL5iiyY/qk/DGvF+ZZg79htQioKS/GN2+cgTnF4xSXC4S3YbUhWURs85JL3hGUOQrDXvOJwJTCPDjG23XZFw0dvcHySuPY5EJb2Py9vWcAX/p+E9o/vRLIH2k/KCmva0bphiZsG13eto5ezcfFRKQfsx4bEVHy8XiE5Hiel4gotTgWExERkRGoRyMQERGR7qI9Hl06WdDQ0TvmZG3fuSGcGxoGEMiaLj2a3Z5rwW3ziuG86IHzojviCd361VUor2vGtvc/D762Y++VDHo8MRzYRnWN3fj4xCAqZ07E8yujZ+1LJaWMB9HqldnxEeVkNKEnds2UqVOp3KddHjxw43Ts/uwMTly40rZKJxfgt499JV1FzXrXlhShptyhmkVWra8v3dAU9neP0xV87dhz2p62QqnRtq5WNXNcovjYdPNLd4YrreOcXgEmRg5Uiadsp10e2HMtmDo+D7OuKsC+L85jxC8Gf8Pr82PGxHzVbavUhgFAQPjTr6Sxestb2ucl9aursGZrF9zDPgiCgN6zlzHOZg3e9CStr3vYDwGAe1j7vlDKNu/1ibAKwpgbs7+3bQ98IvC9rXvQ/T/ujPrbSpLZjxKRdmY9NiKi5OHxCEXC87xERMnHsZiIiIiMRGBWvMxWVVUldnV1pbsYREQUhdqj462CAIsFGPYpj9cWIRCkMLe4EJ8OuDQ91tw56EbdzgN48+ApiGIgwH1SgQ1f/dIUPLrkGk2PU8/Ux0uq7QcjnbThI+yJ0scMfYQSLeVesvltHD83hFyrgGGfiJmT8tG2fmmqi0oJOth/Ad/99R70nR8KvjZjYj5+/shNqJg2IY0lIyUbG7vR0NkLmzUQsKrX2M7HpptfuuZ78Yxza7Z2oXi8XfWGGq30+h09yG8QUCrbj+5bENNNBLGs38H+C1j9i064PMPwjIgQBOBrFVPx0fELOHHBDZtVgFfl+BAI7K+2dbWq5Zu3cZfi96X9vGZrF44MXMKnThfmOgoxp3icpn2hpe+R30gVKp4bqZLVjxJRdGY9NiKi5OPxCJE+MvUaDBElH8diIiIiSjVBEPaIoqh4IYEZ1ImIiAxAyv7W9GE/fCJgFYDlN5QEsr+JGHMiYVKBDV+dOxm/39+PYZ+IHqcLgLa74B1FdhwduARRDAS4e0b8WDbfEbyQn4kZuLUychY+ZjwgSj8j9xGRaCm3UsZuvSQrE3C6MwwbUUXJBBTYrGGv5dusDE43qGRljjNyNmqKLN3zvXjGOa1P8onWZxvpiUDybMBKZXvq5f3oPHoWm3cdwvMPVkb9zVjWr6GjF2cueQFceXLWkYFLuH7GBCz78tRgn3H87CUUFdgU99fm5kOB8jUfwvMrw8t3zw0l2LG3D1YB8I3esFwzrxgnBz2YV9cMb0gd7HG60ON0obyuOWod1NL35FgAhXhW5Fgi/rQqZuAko8vk+apZj42IKPl4PEJERJReHIuJiIjISBigTkREZAC3/PidsGAUnwjs3N+P1w+cxCebvjHmRIIUUL7+6/MjXhCUXwyVB734RxPnNXT2MtMcwk/a2HIscA/7kWMRDHHShhd/idLPrCd2tZQ7mYGB8kA/o/+u2V0YGsa8qYVYu7QMW97uwfnLw+kuEqlIZrsLDdr8RfsRNHWfwNrbywzfX2W7dM/3kjnOmaHP1nKDgPwzO/b1Yce+Pl1uIlDKRiwdr0mB4nk5FmxasSAsUN49HDh28Yz48dqH/di5v/9K+fb2YcfeQPkAjDnmBAD3sB+fDVzCpwMu3F85HSOiqPn4Uk4eMH787GWsrN8d/PyfNyzDV597GyP+KxnccywC/vz9+J7aokc/mskBxJR+Zuj74hVpzGC7IiLeREZERJReHIuJiIjIKBigTkREZABt62px74vtGLjohc8vwmoR4Bifh51P3Awg/ETCf4QGGUUJIpFfDE130IsZSNv6nMuDpgMn0Xn0bLqLBMC8gbFEmcasJ3bTUe5kZQJW+12bVcDhp+9KqMyZoHPj7cF/L7+hJI0loXQKDdrMz7Xi/NBwRgbHZRojzPf0Hi/SnRU+FlqOlURR+bsqLye0fIsACLiS5VwqS2jg5wfHAscqd8x3YFJhHra//7ly+UQR7euXBp7a9dEJ+PwihJCyS0/kenVfX/A7Wo4v5eQB43WN3dje2Rv8vKPIDv/oRpQyuPtFMa3HNJkcQEzpY6a+LxFqYwbbFREZ6ek42Yw3DBERZS+OxURERGQUgqh2ZYUyQlVVldjV1ZXuYhARkQYbG7uxvaM3+PfDi2YpXsiTLvKvqg68v2ZrF4rH28MuCLZ+MjAm+x4QCDL465tmoKGzFzarBV6fP/g7sWhtbUVNTU3M62gGSpkLARjiQrLSvg49yURElGqRLnY6B92qgX6JXBiV/64FgB/A3dddjRdX3ZTYChFlECPPaUhdps33kjUWJMvGxu6Ix0rOQTdW1u/GsTOXg6+VTi7Abx/7ii7rE7p8qf3m5YSXpa6xG9tCjhtD2awWTJtox+cK5btl8zuKfYJFQPDpUfZcCyYV2PDVuZPx6M1zNB1fKvUnkfqfmvLiMXX8R/ctSHnwFPtISiaz9X16YbsiIjIW+XUEMpdMvgZDRERERESZRRCEPaIoKl7MYgZ1IiIigzjt8mCCPQcX3COYYM/BgMsT9r6WDFzSXfDywInQi6E/+N0BU2b/TRUjZ5lnxoMrmAGISH/xtKtI2RGTlQlY+l33cGBMlEbGpu6TaNrQxAAYMgQjjFN6zWmMsC7ZJNPme0bICh+LaBnkHUV2jPgDyT5sVgFenwifP/EM4FI7K7BZg8tfszWQcKJ+dRUaOnvR0PG5amC6PdeC2+YVw3nRg1MXAmXOtQoYDilf4Kld7+HkhSvr5BifhyVzp6Bxf19w/yyb7wiO6VIdPNh/Aat/0QmXZxieEVG1P5HWo/Hxr+Lf/nQkanCu9Pt1jd0pz7Zs5OM+Ldg3G5vZ+j69mL1dERFlimx5kgcREREREREZnyXdBSAiIiKgdEMT3vj4FC64RwAAF9wjeOPjUyjd0BT8TNu6WtxbWQJ7bmD4tudacF9lCdrW14b9VnldM6qfaQnL6uce9uO1D/vhGG9H/eoqbFqxABUlRdi0YoHuGRml4HhnmgPf4y1Htl5INpvQoFgi0kcs7aq8rhmlG5qwraMXohi42Fm6oQnldc1hn5MC/RofvxmrFs0ec/NVvE67PLAIyu9lyjPCjDKeasXyhotnnNK7THrNaTjmUqKSNRYkg5ZjpbnF4+AYn4dffqcaDy+ejYqSItXfi9SuQ9+T2tmMifnB5betX4q29UuDZXn/+8vCjgetowNhriVwvHf4pAv7vzgPq0XAw4tnY+c/LAkr3y0/ficsOB0AnBc9+N3+vqj7p6GjF2cueeEZEWGzCvCM+GEVBDzRsC9s3Ta/fgidR8/iF+1HNfU/WucTyWD24z72zcZnpr5PL2ZvV0REmULrdQQiIiIiIiKiZBNEMVMu35OSqqoqsaurK93FICKiKA72X8B3f70HfeeHgq/NmJiPnz9yEyqmTQhmR5sxMR+N+/tUHzkPXHmU9Gsf9sMvBh6lPG1CPkon5+M//3aRLuWN9HjJRB4dqmcWuETKsWZr15jHzusdyE/x4SPDiQL07C/jaVfSWBMtM2oyyZ8WAgClkwvw28e+khFBMGZ7FLfZyvvff7sfO/b24Zs3TsfzKyt1+91ExqlkbMNE5jQcc4mUxdJW6xq7sa2jF47xeXht7ZKw8Ul6T4laO9vY2I2Gzl7YrIHAzzJHIT4bcMGvcHo39Decg278/dY92P/F+ZiWp9YPWAUBJRPtOH5+CKuqZ+GVPcdVP/eH/7ZEsf+RyjS1KA/vHh5Iy3zCjMd97JvTi5nrozNjuyIiykSh80a16whkbJGuwRARERERERmJIAh7RFFUPAnIAPUMxwB1IiLzuOMn76LH6Qr+XeYoxJtP3QbgShDEjIn5qL7mKnxy8iLKp42Hyz2ieKEv2SeglU6O6nGhXI/ALF6wz2xGCIolMgI9A1njbVdGuNi5ZPPbOH5uCDarAK9PxMxJ+WhbvzSlZdCb2cYxI5dXKYgs2eWN1J4gQjGozajbkGMu6SVTAjpjaauRPgtA8T0AsAjA1yqm4l9WLFDcVqGBn/f8tB0+lfO691WWhLVVad5QOrkAR09fubHLIgD33FCi2q6dg25UP9OiuAwtbFYBh5++S/E9qUxziwvx6YCLwVMasW9OL7PdkEdERNmLNwyZHwPUiYiIiIjILCIFqOekujBERESk7MLQMOZNLcTapWXY8nYPzl8eHhPY8MW5IXxxrg8AUDlzIp5fXan4W9KjpENPQCdb27pa9YCsKOTrua2jF9s6euMKzFIrx5pb52Bl/W7TB8ZkOz4ynLKdnv2lJN52layxJlIgo/y9a0uKUFPuSOl4l2yJjKfpYOTybmnpwQfHzmLLWz3BIDK1m/T1unk/Unuqa+weUx7AuNuQYy7pRaktmlEsbbVtXS0WP9syJrO5Z8QPm9WCeytLgr9jFQCfGAgW94vAZwOXVNtZaFDR7u8vDSsPEPgNEQi2Vfm8ITQ4HQgsb/dnZ8YsRxpv1TKuh7LnWlAzrxgH+gdx/NyVJ4JJTzWRk5dJuknbL4pYtWh2RozlycS+OT2SMQcnIiJKptB546YVC9JYEiIiIiIiIspmDFAnIiIyiM6Ntwf/vfyGEgBXsqM1fXQCPll0Q6QLouk4AZ3IhXI9A7PUytHQ0ZsRgTHZTAqUKbBZU34DBpFRJCuQNZ5g82SNNZECGeXvZeIFV7MFnhmxvJGCyNrXL8W36nfj8zNXgjTVgiijUbuZQt6eGjo+x7aOXsXyfLLpG4bchpJ03PRImSNSW2xbV2uYrOpaM7zH0lYdRXasqJyOV/f1BV+zWgQsv34aNt79ZbzwVk/Y7wAIBrP3OF0o3dAUNfA1tDxScPs3rr0akwrzgm1VPm9QXP+LHix+pgVHnr07+NpzzYfQefQs7lpwNT74/CwGLnrDviMF1dtGyz+lMC/4Xq5VwLBPhM8vKm6bSHOZdNcFs2DfnHpGvZmMiIiIiIiIiIiIyMgYoE5ERGRgt/z4HdXHv6fjgqgUvPFQqXKZ4r1QrndgVmg57vlpe8SgMDIPKTB1VfWsYCBqpgSkZhOtQWCkLFmBrEYI9I4UyAggq7JWmi3wzGjllQeR5eVYUJiXg61/Vw1HkT1401+0IMpo1G6mkLentUvnRg1qM9o2lBihbyDzihTQueWtQPtZvqUdr61dktA4Fs/cwjnoxpqteyAC+NKUcZpvZI2lrV7yjqDMUYhPnS5YBMDnF4Njdujv/Ef7Efz5s9M4f3k45sBXpfKEtlX5vMHr82P2VQU4dmZsJvXSDU1jfn/XgZOKy/WNBtPfMncKpk3Mx8BFt+anmhj5phyzYN+ceqy3RERERERERERERLET9HqMNRlTVVWV2NXVle5iEBFRnJyDbtz74nsYGHQHgwAAwGYVMOwXA4G6KcwGXtfYje2dvaiZkYP/8w9f1/W312ztQvF4e1hAQ+iF93hJWeiZoc+85EGrkkwNTM10Uj+S6v4rkySrv0y2aAGEkfpriGBfHodsviFkY2M3Gjp7YbNeyU788KJAv5NoG4pnXAotj9fnZx+oIpvrbDqkYnvL676AK5nCQyUyr4tnblHX2B12E6teZQnlHHTj6//rT1j6ZQcevXmOan/jHHTj7p+24bTLm5Q+Qt7ntX7ixPFzQ8Gs68CVm593fXQCw0o7CMCy+Q60HHIqvhfrNjPrXIayG+stERERpVJraytqamrSXQwiIiIiIqKoBEHYI4qi4slSZlAnIiIyMEeRHcvmO9DQ2RvM0lXmKMQL316Y0uya8kCsd74Y0fTY+UjkATHJygLHTGfmx8epZ4ZI2bHNdqNBugMozZo1Uy3btCRaf82+PHabXz+EzqNnsbn5EJ5fWZnu4qTUaZcHAqJn3o+nDcUzLhk1Q7rRGKnOpruvT4Vo/bIe5HX/+NnL+FPPwJggdc+IH+V1zTHNCeKZW8zb2AyvT/lpUABwX2WJbnPMLS09OD80jPwcKypKilT7my0tPRi46MWcyQUoyMtB+dVFGHB5dCkDMHbesGZrF2rKHTjr8mDXgZOwCAiOq+9tWIqV9bvDMqyXTi7Abx/7Cra81aO6jFgToMjL5Bx0Y2X97oxub2R+Zp2DExEREREREREREaULA9SJiIgMTimgKVKAg+Rg/wU8WP8+Xn5sMSqmTUioDPJALJsF+Mb1iQVvaAmI0SswKNlBYdkQwJROvMkgM2TSjQapCOjLJLEEEEbqr80S4GuEMUG+zXfs7cOOvX1pvyEkldumfnVV5Kz8CYhnXJLKk+66YVRGrLPPNY8Gy+86hOcfrExLGZIllTeNKQV0PvXyfry6ry/4ulUAlt8Q+7FFPHOL5ddPw6v7+iAAUAqp1mOOqbZ9bVYLKmdNDPYB8s8dGQ0KP3hiEEeevTuhMkQi7ZM1W7vw8OLwcdVRZMfI6N0DNqsAr0/EsTOXUf10i+rvSQHsieDcioiIiIiIiIiIiIgo8zBAnYiIyODizdL15Ev7cdEzgid/sx9vPnWbpu+oBU7JA7G8CQQIaw2IcQ66sfyn7XBe9CQcqJDsTGcMqEg+swSmkrpMuNEgk7LAp1IsAYSR+muzZK00QgZotUy2sWa41VuqA34j9TuJ3sgXz7gUWjfW3zmfweohjFRnxwTL7+vDjn3pv8FDT+m+aeySdwRljkL0OF2wCIBP1BYYLj9WiWVuId+vSjWrzFE4JnN56DIhQlO7lW/fvBwLCvNysPiaq7Dr45PBYwbpc7/f3x/2fb+IsKdVJevmFrVx9dqSItSUO0Ky3l9CUYEtuD6SHAsw4gd8fjHucnFuRURERERa8IZvIiIiIiIicxLSfYGakquqqkrs6upKdzGIiCiFSjc0qb537LnImfjqGruxvbMXq6pnjQm0XrO1C8Xj7Xioehb+Z+Nu5BZNDgtq0CpSNlPp5LI8UEFitEAFs5STyChC+xEpoDOefiRdtPRfpGxjYzcaOgPZY70+v+I4Y0ahF0hv2fyOYcYE56Ab36rfjc9Hs/ECVzLcpqOuxjJe6n3RWa3fueMn76LH6UKZo1DzjXzxUlt/AHh4UWa0hUQZqc7O29gMr2/s/rLlWHA4g+Z36e6X45kTKB2rhP7Of7QfwTuHnHjjH2+FY7x9THB56BgeSWjfFLpMAKrHSnKh21et/eflWDDs88OvcGrWIgDv/9MyOMbbIx6jJUprnytfnzJHIV749sKE53PS3KrpoxPw+UVYLQKWXz+Nc6sMwCAyIiIi0lMy58RG1draipqamnQXg4iIiIiIKCpBEPaIoqh4oYAZ1ImIiDLMrrVL8N1f70Hf+aHgazMm5uPnj9yk+h0tmeukoAPnoBvHXX5s+5v4stcqZTrMsQh4oiFygJ9FANrW18a1TCV6XDBPd/ZJIrMxSwZsNZmQBV5NsoOIMvUpCKFP0DBSBmhHkR2+0YjHXKuAYZ+YUIbbRKltAqWX9X4qibzfKd3QFHYzX4/TFfw72o188YpUB4ycLTiVwYVGqrPt62uxsn43jikEy2eSdPfLscwJtGbZLsi14vzQcLD/kPcnYU+E8vlxf+V0jIii4lxeaZnRlh/qtMsDAVANTr+vsgQb7/4y1r3yIY6duYzes5fDAtXvXzh9zHFRMvoLrX2uUn2pKClKeD53y4/D19HnF7Fzfz9eP3BSl3VkkHT68CljREREpAc+cYeIiIiIiMjcmEE9wzGDOhFRdpKygkqiZQeNJStwXWM3tnf0YlUCGT/lGRPf/cSJ4+eHsKp6FtYuKwvLoif55sLpeP7ByriWp0SvrCvpzj6ZDRhYQkZi9izwarIxE1UiImXEDiUA6Ni4LC19l1RXF18zCf/48oe4YeZEWCxCyvtStW0l3zapeirJwf4LqjfyVUyboNtyQillB5cY+UkMqe4X9OxfE507LNn8No6fG4LNKsDrEzFzUj7a1i+NqyyUuGhZtrX2yRYBeEgWZD2lME9xLi8/PrIIgX7LJ2pvt85BNxY/26KYId0qAJ89G7gpZuPo8ZVFAPwiMM9RiGuKx+FH9y1I2pNbjPIkKOegG/e++B4GBt3wiYHt4iiyY+cTN+vSJ3J+k3pGqVtERESUGbL5aYbMoE5ERERERGbBDOpERERZ5sLQMOZNLcTapWXY8nYPzl8ejvh5LVmB9cxWIgUbqf2mFJxhHf3vXEchXN6RmJahRo/1CA16Snf2yWzA7HsUi4P9F/Bg/ft4+bHFSQk2NXsWeDlmooqP/AkaeTkWTCnMCwt6BoBpE+xpu2Aq1dU7fvIuhv0iDp+6iIuekZT3pdK2+v3+/rDX5dsmVU8lqSiZgAKbNey1fJs1acHpgHJ2cACGfRJDuvoFPfvXROcO15YUoabckRXzOzPcCBgty7Zan3za5YZnRFQMYpHq2JqtXcG5/H+0H0FT9wmsvb1M8fgIiK3dOorsWFE5Ha/u6wu+ZhGAWVeNQ+nk/OBrp10ePLx4tuLNGcl4cotz0I2KaUU4OTiEExc8AJC2J0E5iuxYNt+Bhs7eYGb7ZfMdugfgc36TOnzKGBEREelJmpe7h/0QALiHjXcMTUREREREROoYoE5ERJSBOjfeHvz38htKNH0nWqB1Mi40q/3mhaFhzJhUkJQMxXqsR2jQkx7BVGYIDEoHBpZQPJ58aT8uekbw5G/2R3xyRDzibatGbuMMIoqPPHDR6/MHg55Db66aUzwubWUs3dAU9vegO3CjV6r7UmlbAZG3jZab5fSglNm1x+lCeV1zUrdHaMDzmq2Bp5zVr64yZPCzmfsFveYOmXYzUiR63QioNtbpMQa2ratVzbINqPfJXp8YtT8J3dcFuVacHxoObovQ46N42+0l7wjKHIX41OmCRQhkYF8yd3LYto5U35JxM+xXnm2BT5bV3T3sx2sf9uOFby9M+PdjlYx1NHM/Znah7VEQYMgbsYiIlBj5uJ0o2512eYJz6jJHIQZcnnQXiYiIiIiIiDRigDoREVGGivXCSrRAnNALzbkWfS40qwWjhQZG6B0UlEgAXLICpo2YIdwIF+YYWJI99Khv8mDcHqcr+Nqx5+5OuIxA/G3ViG1ckqqg4EwkD6j748cnVTPgpsOutUvw3V/vGZPV3WYFvnFdSUr70kjZgeWfS/ZTSdI1toSub9v6pcF/GzH42cz9AucO2uk9r1Ub6xIZA0PnB8vmO7C9oxcCAkHe8izbSn2y1v5Ey7YIbbdrl87FE7/ZB+dFd9R2Ub+6Cmu2dmHRnMlx9W163iwxb2MzvD6/6vt+UfWtpErGDSFm7scywWmXB2XFhTjsdGEeg8iIyCSMfNxOlM3kc/UepyslN5kTERERERGRPgRRTNPVB0qJqqoqsaurK93FICKiNKhr7Mb2zl6sqp6l24WVNVu7UDzejnmWUzjsn6pL8J30m4kE9MUa3BrvMp2DbtWgp3iCHZSyuAIwRIbwSPUnlcHrGxu70dDZC5s1kA1Tz/pMxqFHf3Ww/8KYYNwZE/Px80duQsW0CQmVT62t2qwCDj99V8zfM0IbD6VHP0zGdMdP3kWP0xX2miAg6/tSji3Rmblf4P7VRq95rdpYpyaWMTB0fjDg8uDIwCV86nQFn8KgV52MdVsk4zhLD9Hm6E+9vB+v7utT/b4tx4LDBpqfJMrM/ZiZmWX+S0QkYb9FZGx6n483k9bWVtTU1KS7GJQAIyQBIiIiIiJKBUEQ9oiiqHgCnhnUiYiIMkyysnwDV7Lbtbaext/U6JPdTo+MebFmOQpdZiwZECNl4ovnZKMRs3xqqT+pzCqVimy6lD569lcVJRNQYLOGvZZvsyYcnA6MbatWIZC99Z4bSmL6nhHauJJkZC4lY7gwNIx5Uwthz7Xg6OlLGPL6cV/l9KzPZHra5cH9C6fj8MmLKL+6SNP2yLaLimbuFzh30CaRDNOh7UFtrFtz6xz825+OxDUGKs0PQklZE6/5fhM6/mmZLm1y92eno26LeRt3weu7kugj3nmL3v2J9HszJ+aHzdGl1/f3ngsrt6oMS2Ji5n7MzMwy/yWizJQp5+aI6Ao+GYfMjE/nICIiIiICLOkuABEREemrbV0t7q0sgT03MMzbcy24r7IEbetr01wy/ZXXNaN0QxO2dfRCFANBIqUbmlBe16z5N0JPEmohBT01Pn4zVi2aHQxqi/V3AGOeYI9Uf/TY3rGqX12FTSsWoKKkCJtWLGDWQx05B91YWb8bzjQG7undX0nBuD/7Lwsxb2ohLgwN61JOqa26hwPBclKM1469fRHbgBHbOGWXzo2344//eBt+/8QtuO+G6fCJIvJzLVnfl9avrkJBrhUfnxjUvD3iGeczkRHGjmg4d9BObV4bTWh7UBvrKkomxD0GyucHeTkCpk/MR17OldOYhXk5EEXo0ia3tPRg4KIXZcWFEbeFdGOaVQj8HW3eotZe9OpPpN9f/GwLOo+exY59fWFz9MXPtuCDY2dxzw0lYdtTjaYgdqIoOP8lonTKlHNzRBQu3uMWonRJx3UUIoqPGc51EhERmR0zqBMREWWY0EBKAYB7OHMvrCSS5SjezM3yTHzSycZYf0ditCyfkS7MMatUZjFCBhe9LwR3brw9+O/lUbKbx+q0y4MHbpyOsy4v2j49DZ9f1NQGjNbGKfsk88kqZhTr9uD2C2eEsYPUxZo1NNYM02rtwSJAcayLdwyUH894RkT0nR8K+4zLMxJWhnjapHx9DjtduGtL25jfkn9OiuOOdpz1XPMhdB49i827DuH5Byt1708WP9sCf4SYcn/IDXUSab6VKbLt6RZmwfkvkf7Y30WW6BibSL+Vin3D/U/Zjk/GIbNJ5XUUjhEUD9abK3iuk4iIKPkYoE5ERJSBTrs8KHMU4lOnC2WOwozNKqIluFXtRIteJwkT/R0jnmBXuzDHrFKZwWjBlmYJYJHa6sbGbvhFUXMbMGIbp+zCm4vCxbo9uP0CjDZ2qMmUC2zxrkeyL6pFag9SOUPHukTGQOl4psfpAgBYBGDWVQXoO38Zw74rn8vLseDOBfG1Sa3tW/45q0XAomuuwicnL+K4LHAeGNteduzrw459fbBZLbi3siTh/kT++0pKJxfg5KA7uJxJBTZ89UtT8OiSa/A//3gIbx8aGPOdbX9XHVM5jIAXko1Jre1nSh9NlA7s7yJL9rm5SP1XKvYN9785cdwjyl6pvI7CMYLiwXpjnnOdREREmYAB6kRERBlGflDd43Shx+lCeV2zaQ+qI53QjxbcqnaiRa+ThEYN2k7kIkikC3NmCSaW40WhK4wWbGm2AG6ztgHKXkYdp9Il1u3B7RdgtLFDTaZcYJNn3o4mVRfVUtUelAKw/SJw7MxlAIFgdb8IWAXA64u/DLHc7DpjYn7Y5/b2noN72I8ZE/PH/K6oltVcgC7bT0sG9GNnLkMQrmRMXzbfEWwTv/xOddgToCRL5haPec2oc2heSDY+pbqTKX00mZtR+zU17O+0SfYcRan/SsW+4f43N457RNkt2eeQOUZQPFhvrjDLuU4iIqJMwAB1IiKiDJPIQbVRL9RFOqGvFtyq5USLXicJjRiwmqyLIGYLJpbwotAVDLZMjFnbAGU3I45T6RTr9uD2M/7YkSkX2NQyb0dbj1ReVFNrD9JxxNqlc/G9bXvx8mOLUTFtQlzLaFtXi3X/9yO0Hg7P8p2XI+D2L1+Nc5e9OO3yYHKhDV8qHp9Qm9R6s+uJiflYtWg2Xv6gFwDgHg7sp9C61rauFk/8Zh9+9w9fxePb9wYD6gFgxqR8vPr4V/GD3x1ISX8iCIi4HFuOBfm5Fnzvti/hX9/9DEPDykHvRp1D80Ky8YXWnVf2HM+IPpoyg1H7NTXs77RLxpw90hwzFftGWsYbB04G5+E15cVwXvTAedFtmLk4hcuUYxMiSkyyzyFzjkDxkOpN00cn4POLsFoELL9+WlbWm9BznYIAw53rJCIiyiSCqJrWhzJBVVWV2NXVle5iEBFRim1s7EZDZy9sVgu8Pj9WVc/SdOGtrrEb2zt7o36+tbUVNTU1OpZYmdrj67Wc0HcOulVP0EU7wWDUQH0tEtlmmYjbQ9marV0oHm8Pu3AbetKciIgIAA72X8CD9e/j5ccW44W3euIeO5I9t0pk3mck8zY2w+sbO2+x5VhwOMq8Jd75v16k44jxeTkYdI+gzFGIN5+6Le7f29jYje0dvWGvJfqbgPa6qDaHVLPrySVoeL83eCzVengAx88NwQLAD2CczYqP/+XOhMouUcp+Hvb+5AL89rGvJFT3zTCHTnedJ2VqdcciBPoyPftoMx+3U+qZoV9Tw/4ufaLNMVOxb+RzojJHIT4dcLEeGFimHJtQ+qXqGgyZF+cIFCszz4mTYc3WLhwduITDThfmOQpxTfE4XicjIiKKkyAIe0RRVBxILakuDBERESXfaZcHDyycjjJHIR64cToGXJ6w952Dbqys3w3naDah8rpmlG5owraOXohiILNL6YYmlNc1p6P4QW3ranFvZQnsuYEpiz3XgvsqS9C2vjbqdxPJ9BmaUctspG1mtQgAAKtF0LzNMlEidSiT1a+uwqYVC1BRUoRNKxbwpFsKyPtdo/0eEZGSJ1/aj4ueETz5m/0JjR3JnltlStaj9vW1KJ1cEPZa6eQCtGuYt0hZQxsfvxmrFs0eM/9PFvlxxKB7BADQ43ShdENT1GBqNaddHthzLZh9VT5umTsZhXlWXBgaTnj8U6qLSr+pNIesmTcFEwtyYRXG/u5dL7SHHUsdPzcEIBCcDgCXvD7djq9yLQoFCOHziwnXfTPModNV5ykytbqzYuF03Z/CYebjdko9M/RratjfpU+0c4vJ3jfldc1jbtjrcboMde6WxjL606eIKHNwjkCxaltXi6sn2IPnNawCMG2C3RRzYr2V1zXjjY9P4bDTBQA47HThjY9PcW5FRESUBDnpLgARERHpr351Feoau/HxiUFUzpyI51dXhr0vf6RxLI8DdA668UzHECpuiu1Rss5BN9Zs3QMRwM//5iZN3030hH6sj/fNhEew3vLjd8LWwecXsXN/P14/cNI066CndF0UYjY/ktP7UfJmezQ9EZmLPKhYCjYGgGPP3a35d1I5tzrt8qCsuDCY9ciMF2YdRXaM+ANPOrRZBXh9ouZg42Q/PlyNdBzxevfJMdnfZ0zMx88fuWnMd7TMk9RugKhr7I5r/ItUF79104wxv6k0h+w778b5y8NRl2XPteC2ecU42D+IL0YD1fV83Pp7G5ai+pkWxffKHIWYUzwu4WWYIbAqWp1v7xnAI7/sxK8ercaSucWpLFpWU6s7AzEem0eSCcftlHpm6NfUpGuMp4BI5xaTvW/k52stAiAA8In6zi1If7GekyYiigfnCBQrR5Edy+Y70NAZOH7y+vxYNt9hijmx3mK5Lk5ERESJYYA6ERFRhol0sRaA6nt/fdMMTRfqtrT0oOecP+agkC0tPdj3xfnAv2P4bjwn9JWCXrScoIt0QsIsAcdt62px74vvYWDQDZ8YyIDgKLJj5xM3p7toaZOOi0IMHiaJ3gE0DMgholTYtXYJvvvrPeg7PxR8TS3YOJJUXeyR942HnS4cdrpQXtdsur7x2pIi1JQ7TBPMIgX8yYPTASDfZkXFtAljXo9nnpTI+OccdKNiWhGKi/Lwp8MDwbroHfHDM+LHttHMpPLflOaQL38QyIzeM5pVK5RFAPxi4KlFPr8Im1WAe9iPNz4+FfY597Aff/iwHy98e6Gm9Y3EUWSHPdcC9/DYbd7jdKFHp7pv9sCqx7fvhU8EHt+2Fx/98OvpLo5pjif1oFR39AyeYSABxcvs/RqlRzqD/5RurABgupssshGDRomIyKg4Jw4w8w2sREREZiOIopjuMlASVVVViV1dXekuBhERpZBz0K1+sVaE6ns/+N0BFI+3q15ElgeFSKIFhah9T8t341XX2I3tnb1YVT0r5uDgjY3daOjshc0ayB4g/UYivxmrRIMX1NaBki/edmJk2RRMkwyR+uR4tqfev0dEpOaOn7wbFpBb5ijEm0/dFvPvpGJekoq+keOhskhzfcf4PHRuvD3497yNzYqB7FqDzOPdx9I8fm5xIT4dcAXr4v2V0zEiiqq/Ke3zH95TgX/705Exn7NaBDTu6wMAiGKgjbzw7YX4RfsRvPfZGZy8ELjIawEwa3IBSqeMw3/+1+qIZZWvs7T8H/7hYFjdW7O1C1aLgHcODWBiQS5ODbrhl2VTzdZ6Kn8CRKhYngCht1QeTyaTUfpCHvMSUbZYs7UreL52zdbAtb761VWK526JKLO0traipqYm3cUgIspYofMszq2IiIgSIwjCHlEUFQdSZlAnIiLKMKF3fQsCxtz1rXZHeLTMLvFmKWtbV4sf7DyAtw6egm/0vjiLANxRMRU/0pBBJpYL4HpkFpayB9x57VQ89dsPsb2zN5hVMd7fjFWi2bfTlQHBKMEK6SS1k6YP+4MZ7JffUGLqbH7MBp8YvTNxMLMHEaXKhaFhzJtaiLVLy7Dl7R6cvzwc1++kYl6Sir6R46GySMcI8u2//PppeHU0oBtATFmP49nH8mMD6YYLvyhi1aLZGLjoxpTCPNXflPZ5Q0ev4rIHXB6UFRfisNOFeY5CXFM8DhUlRXjtoxNhy/UDOHbmMk5cUK/7SvNoaflPvrQfnw64wupe/eoq3PGTdzE07EOuR4AIZlOVbHu0Gt/99R4MDfuCr+XnWvHvMT4BQi+Z9vQbo/SFzPpHRNki9Hxt2/qlwX8zKzcRERFRYvjEEyIiotRggDoREVEGOi0LlhhwecLei/dC7u7PTsMz4keuZWzguxpHkR1TCvOCwekA4BeB4sI8TYETsVwA1+NR39IJibrGbgy4PBEzK+pNr+AFtZMqyQ4gN0qwQjrd8uN3wvahTwR27u/H6wdOmi4AJV3BNEa+0SHesukdQMOAHCLzMnIfJxea+Xr5DSVx/06qLvYkq2/MtOBSvWkJHFfLsu4eji2Y+rTLg/sXTsfhkxdRfnVR2DGOkrZ1tajbeQBvHjwFUSW7+JqtXWH15vjZS7jm+00IfeCkdLOqVRDQ+PjNaOjsRUPH5/CHfOaw04XDThfK65rRtq4Wd/+0DQMXvQACN+dOLbJj5xM3q5ZVmkdvbj6EV/f2IfR5l1JgvVT35AbdIwACx2cPL56d9fOCJWXFyLUKGAq5pybXKmDJ3OK0lEc6Rn3jwAl4RkTk5Qi4c8E0093AarS+kIEERERERERERERERMbHAHUiIqIMI79wLAVLzNu4C4efvivuC7lbWnowcNGLeY5CPDx3BIf9UzUHP5x2eTBzUj6unzERAPDR8fNRA0riuQCuR/ZM+XJDszwmOyuhHgH2kSQrgNxowQrp1LauFve+2I6Bi174/CKsFgGO8XkRA5KMKtn1UY2Rb3SIt2x6B9AwIIfMwEyB2Klk5D7O7JLVN6ZrPDSTaDcHtK2rxeJnW8ICuiUNnb2a20L96irUNXbj4xODqJw5Ec+vjPzYZUeRHUcHLkEUA0HiSvN4eb2pa+yGKAKlkwtwctCtmBV+04oFWLt0rnq9EIGLo0HjQODm3GXzHYp94byNzfD6rsyjd+wNHHsIAAQBYdtMAPC1a6di9eLZWL+jG33nh4LvzZiYj58/chMqpk3QtC0znXvEjwn5OfjebV/Cv777GYaGx94gkSpXjlEDO9MzIpoyyz37QiKi9OGxFRERERERERGZFQPUiYiIMox04bjpw/6wrOX3xJn5Uing/f91Ank5X2gOPg4N/JA4B91YWb9b9eJKvBfAE82eqbTcSQU2fHXuZDx685ykZivWI8BeSbIDyBmscIWjyI5l86eioTOwfb0+v2pAktElqz6qMfKNDkYuG5He9Ap+YCB2uGT2IwxYSa5Uj4dmFO3mAEeRHV+/9mo0HzgZfM1qEbD8eu1ZpOWB3NHakLzNSYHeagHx8s8fO3M5+G+lTO9q9eKWze8oZovf1tGLV/YcH1PW5ddPC7shViICYVncpdcOn3RhSVkxCmzWsPfybVYGp4c4HLKdH6uZm8aSKD9BQK0+JFOiYwX7QiKi9OGxFRERERERERGZlSXdBSAiIiJ93fLjd/D7/eHB6UAgG1/phiaU1zXH9Htt62pxb2UJ7LmBaUNejoDxuUDjP3w1oXKGXlxREu8F8PrVVdi0YgEqSoqwacUCxeD4SJSWu2y+A89/qzLu34yFFGDf+PjNWLVodtRM81rI96E914L7KkvQtr424d8GGKwgl4x9mC7xrIt084kzjptD7q0sgdUiAAgErulZTxOR7DZEZCTRxudoyuuaUbqhCds6eiGKgSC8eOYfmSaZ/Uii+4yiy6SxPV0O9F0I/tsqAD5/5CzS8vnE8uunBb47Ok+I1obU2tz7/7RM9fM184qDf1sEIGf0rOkEe47iPpfXi4bOXsXgdAD4+rVTw8oq9ZVKwemRHD1zCaUbmtDjdGHe1EL87L8sxLyphbgwNBzT7xhFvPNGMzHKPFKPsYJ9IRFRavHYioiIiIiIiIjMjhnUiYiIMkzbulrc+2I7nIOesEfC5+UIuHOB9iyFEqXgYw+AhveVsw9GE0sG0USzocdLz+XGmqkuWgbKeKQigDxd+8qIkrEP0yWedXmu+RA6j57F5l2H8PyDlZqXdcuPwzOO+vwidu7vx+sHTqY9SzlvwqBsoFeGbz5VQ1ky+hE+3SF1MmlsTxa1Oa9S9mifGAgAjxTcKgXTLn6mJeyYxjf6h1JW81ChbU4QELXNOYrs6Pr8bPBvv3gl6/oF9wje+PgUSjc04dhzdwc/I68Xa5fOVXySFQAUF+aFLVveVwJAgc2Ky16f6jYJZbMK+OM/3gYAWB7nk7KMQNrPm5sP4YtzQxn5JIh0zyP1HCvYFxIRpRaPrYiIiIiIiIjI7BigTkRElGEcRXYsmz8V2zt6g69ZBMDri56lUC2Q+rTLAwuElAeupesCuJ7LNcpjeJMdQM5gBZIHv+zY14cd+/o09xGBm2vew8CgGz4xkF3VUWTHziduTmaxNeNNGJTp9Ap+SHcgnpHp3Y8wYIUSFeuNlJGozXkj1VOlZcrnE7I4b1gF4JZ5xZhcaIuavfm0y4Oy4kIcdrowz1Go+HnnoBvVz7REXb8ZE/Px80duGvPdv9+6B4IA1K8OvPf+Z2fCgtNnX5UPvzg2GN9RZMdrH/aHBd9rDU4vnVyA3z72FU2fTaZE6s+YeePeQCb5rzzTgs+evVvta6aVznkkxwoiIvPisRURERERERERmR0D1ImIiDKMUpZCvwhYBUFTlkKlQOr61VVwDroZuBYDo2U1ZQA5JZsojyCTXh/9r1IQU9hrRXYsm+9AQ2egnXh9fiyb7zBM38A2dIWeAY1kHHqOz7yhQ5ne/Ui2zKkoMfIg6tD6ETr/X7usLK6+PdqcN9Z6qpRZPJRPBNoOD0QNYpaX67DThcNOF8rrmsPm4ltaejStZ77NioppE8Je29LSg/1fnA/8+63A7zgvelDmKMQL314Y7P9C237oGHp1kR39F9ywCIHjNYsATJuQj9MuNzwjYvB4q/PoWZy44EauVcCwT4TPLxqinSdyI660n3+/vz/sdZ8IlG5oyrgnQaRqHqk0R+NYQURkbjy2IiIiIiIiIiIzY4A6ERFRhkk0S6FaIHXohe1cCxi4FkWsmeoY8Jle3P6Ja19fi5X1u3HszOXga6EZPpWCmDa/fgidR89ic/MhPL+y0vB9A+tJgFGeDEH606sN8oaO1DF6v0npFxpELY23avN/ADH37VrmvLHU09BjDptVgNcnQkDghre8HAumTchH6eT8iGVyDrpRMa0IxUV5+NPhAcVyzdu4C16fyt11o8bZrPinu7+MX/35GM5fHg6+rnRD8LaQp1f1OF24a0ubYpD1lpYedB49i+qnr2Rtl7Ko+0WgwGaF1yeGBRJfP2MCln15qmHauR434kr7WRAAAVe2AbN7J0ZtjsaxgugKsxzTmaWclHw8tiLKHOzbKVlYt4iIiIjIyARRLdUhZYSqqiqxq6sr3cUgIqIU29jYjYbOXtisgSzEq6pnBS9Qy09WRcqMLj+ZtWZrF4rH2zHPcgqH/VPHZARU+v1sFmk/yNU1dmN7Z2/Ez2SzZNerVGz/bGgbSza/jePnhoIBZTMn5cN50TMmiEuN0bNlZns7VQrIA4y/34iIspFanw0ANqsFd153tWqWciC2vj2WOa+c0vxIOuZ4qHoWnnxpH3qcruDTVbT8tjRezy0uxKcDLsVy/fff7seOvX2wCoGs3UoeXqS8LOegG3U7D+Ctg6eCgdUAgpnQ5cdTzkE3Fj3bovq0GQCoKS/G5EIb2g6fxteuvToskFh+vJVusRw/RiLt57MuD3YdOAmLELgRIVvnWYngHI1Iu6de3o9X9/Xhmwun4/kHK9NdHFXZfuxJRJSJYu3bW1tbUVNTk/yCkemZZX5DRERERJlLEIQ9oigqXsxgBnUiIqIMFClDmjyrWiyP/JaCI1pbT+NvapSz9jCz7hVaMtXpkYEwGySrXqVy+2dD27i2pAg15Y6wOr/jvgVjgpg8w34oxWgZ9eZZttMAKUtu04f98ImAVQCW31DCLKdERAbUtq4Wi55pURxvAXFMlnKrRYDPL8aVwTqR7MxK86PQgOw5xeOwaM5kxd+WB7fLx+sepwsA4BdFrFo0GwMX3WM+ExqcPs5mRU25AwDw0fHzGHB5FMvsKLKjuDAvLDg9sByEHU9BBFbW78bMifkQxcCTZU4OuhVvCmj9ZGDMvMKoWVJjOX6MRNrPa7Z24eHFzO6diFif3kWUjeT9/459fdixr89wx3Q89iQiyjzs2ylZzDK/ISIiIqLsxgzqGY4Z1ImISBIpq1pNeXEwS6GWTH1K2TuYtS0+emUgzFTJrlep2P7Z1jaUMqHKM6s+sHA6uj4/h8/PXA5+r3RyAX772FcMWe/ZTgOyrS4TUWTtPQN45Jed+NWj1VgytzjdxSEFUha1UNJ4+4PfHYgpS7neT4KJZUxRW7Y8A6GW8Vr6zBsHTsIz4odVAG6ZV4zJ4/Lg8gxrzlY+5/tNYwLUASDXKuDBv5qFgYtuvCnLsK7Fsefuju0LaRKa5d6omd4zlVp7SORJBkTZYN7GZnh9Y8cdW44Fhw10LMNjTyKizBNv384M6hSNWeY3RERERJT5ImVQt6S6MERERJQebetqcW9lCey5geHfnmvBfZUlaFtfi/rVVdi0YgEqSoqwacWCuIILIv0+qdMrA2GmSna9SsX2z7a2EZoJVSJlVm18/GasWjQbLs8IfKMRW7lWAQDg84uGrfdspwFt62px9YQ8WC2BfWa1CJg2wZ6xdTlRzkE3VtbvhpOZYClDPb59L3wi8Pi2vekuSloZua1f8o5gnM0K4MoJQGm8DZ3/zykeh4cXXxmnlTKHK43viYhlfiRfdnldM0o3NGFbRy9EMZCBsHRDE2758TtRx+vQMR0IZFCfMTEfz6+8QfEYSL5/pb9f+29Lwsqfl2PB5HE27HziZrzS9QXe+Fg5OL10cgFGpz5j5Kq9YUB6HD9SfNTaony+rfYEAKJs1b6+FqWTC8JeK51cgHaDHcvw2JOIKPOwb6dkMcv8hoiIiIiyW066C0BERESpkewToTzRGj8pmICPtR8rFfUq2ds/W9qG1sfVblqxAEAg82ZNucM09Z7tNFCXl82fiobO3mCW3WXzHRlXl/USGkBmhgymemdHjtfB/gt4sP59vPzYYlRMm5C2cpC60g1NYX8PukeCr5kl+7OepLa+fEs7Xlu7xFB9Yv3qKsVM10qfk0jjtCRZj6PXMj9SW7bNKqB0cgGOjT6JxWoRsPz6adh495fxg98diDheK2Vu39bRi1f2HFdcH3lfLv3d0NE7pvyeES8a3u9F27pabNr1F/x+f/+Y3zt25jJsVgsg+hGa6M5qAd7bsDSubUnZIVpbjNSOiSgw7oyM3jlkswrw+kTD3iTNY08ioszDvp2SwUzzGyIiIiLKXoIoxvisWTKVqqoqsaurK93FICIig0jkUeyhgWsH97yv+HhJPuqdkiET6lUmrEM0fBR5dlCqyz+6b4EhApuNQin4EUDCwZzJVtfYje2dvVhVPWtMQH0qg9fv+Mm76HG6UOYoxJtP3ZbUZVF82nsG8N1f78HQsC/4Wn6uFf/+yE1YMrc4jSVLLSO09XjaZqzf0Wt8V1putPmR0rK9I37FzOSAtm2vdX3U9m+ipk2wY+cTN+PWH78D97AfORZgxA/k51rwlx8Zd4yg9ONcmyhx2XBcTkREmaO1tVXxGgxRKM5viIiIiMgIBEHYI4qi4kSUGdSJiIiySCJZ1UKzB94+Sf/fzxRGyUCbSTKhXmXCOkSTLZnis51SXa5r7DZVpvBkkzLnKgWQGZGW7MipyAYvz8rd43RldVZuI1tSVoxcq4Ch4Suv5VqFrApOBwJtffGzLWOCpT0jfpTXNWsOUk9k7hhP24z1O3qN70rLjTY/Ulr2/ZXTcck7gjc+PhX+2fF5eG3tkoTWJ/QJDvK+PC/HgimFeTjtcsMzIsKea0HNvGJ8cW4IxYV5+FPPAPwiYM+1YPE1V+G9z87A7xfhk9UP6ckjt80rjprZnigU59rJw2P49EvVPsiG43IiIiLKLpzfEBEREZHRMUCdiIiIIlIMXANge6sZhw2cCTZdUhHER+aQjYEOfFxtdJlUL7QENmejZAeQ6V2HIgXUp3If71q7BN/99R70nR8KvjZjYj5+/shNui6H9OEe8WNCfg6+d9uX8K/vfoahYf0zTespNPC4YtoEXX7TUWTHisrpeHVfX/A1qwAsv6EkphtS4pk7xtM21b5jswqonDUpYp+SyPieaD+itOxxtrGnM79WMVWx/Ep9ptr6PPnSflz0jODJ3+zHm0/dFtaXe31+FNis8PrEYN/+2cAlfDrgggWAXwzsf8+IH5+fHcLwaGS6RQi8d9d103DVOFtwWQwioHhwrp0cPIZPv1Tug0w6HiMiIiIiIiIiIjI6QRRVnotLGaGqqkrs6upKdzGIiMjE5I8St1oE+PwivrlwOp5/sDLdxTMMefCNJNsDNbP54m9dYze2d/ZiVfUsUwY6ZPO+Syaz14tQ8vEhNLA52+tMMh+vm4w6tLGxGw2dvbBZA0GY0m+neh/f8ZN30eN0Bf8ucxTizadu0305lH2kuqV3nVqztQtHBi6hx+kKBiI/vEhb20xk7hhP25R/Jy9HQGFeLhbNuQrNB04mbVxyDrqxsn43jp25DAAQhEAw+Y9WLIirH5E/bSFU5z8tGzN3Ce0z1y4rU5zbRPrNhxdfCQb+48cn8bVrr8bLH/QGA9C1sAjAHRVT+Zh1IoPhMXz6pWMfZNLxGBERZbbW1lbU1NSkuxhERERERERRCYKwRxRFxYsgDFDPcAxQJyIiPWxs7Mb2jl7F93jxNoCBmsqy8eJvpgQ6mGHfmSmIPlPqhZxaYLPekpH92GySWYfUAuoP9l/AfS++h+HRjMHJ3McAUP30W5hYkIu1S8uw5e0enL88jM6NtydlWZQdIgUeH3vubl2WEe8NKYnOHePpf0O/o9SfANH7lFjGXrV+C4i+/eXLcQ66seiZFqidxcy1CniwamZw7vLKnuOqy/7mjdPx/MrK4N8H+y+MeYJDjgX4/X9bojjmOAfdWPxsC/waT6narAIOP32Xtg8TUcrwGD79UrkPMvV4jIiIMhcD1ImIiIiIyCwiBahbUl0YIiIiMiYpu6FT4THhp10efPPG6bitvBhWIfCaPdeC+ypL0La+NsUlNSZHkR3j83LgGfEjLycQ9DM+LydrL2yX1zWjdEMTtnX0QhSBbR29KN3QhPK65nQXLena1tXi3soS2HMDU22ztRUz7bvQR8EbndnrhZrTLg9WLZqNxsdvxqpFszHg8iRlOU++tB8XPSN48jf7k/L7ZqBWhxof/6rq+K1V/eoqbFqxABUlRdi0YkEwuPbJl/Zj2CeiyJ6j2z6ONN/o3Hg7/viPt2H5DSX44z/exuB0StiutUswfWJ+2GszJuZj15NLdFuGWvuJJtG5Yzz972mXBxYIqoHbWsYlaexdvqU9ar8j9VtKos0t5GP8c82HIAKYNkF5+wz7xLC5i2fED4uAYJ8ZasfevuDynYNu/PAPB8OC0wFgxA/c9UK74k0Ot/z4Hc3B6aWTC9C+YSmAyP0fEaUej+HTL5X7IFOPx4iIiIiIiIiIiIwsJ90FICIiImMIDTZ5be2SsAuCUqDNxsZu+AHkWhDXhcNEsx0bOVuyc9CNXd0n8MDCGXh0yTXBDJrJWI5Rt0GotnW1qpnQMp3ZAx3MsO/k2e+2dfRiW0evobPfmb1eqAkNxNy0YoHuvy8PDOxxuoKv6ZX92CzU6lBDR28wiFOvzOby7T7oHsFdW9oAJL7dQ4NOjfp0BsocFSUTUGCzhr2Wb7Ma5kkMUpB5aPZ1reLpf+tXV43JVgsAFgEQgYjjknzsdV70oPrplohjr9RvyanNLZSypEtjvOTEhbHbKC/Hgq8vuDps7nLbvGJ0fX4OZ1xetc0BURSDfVJejgUjfj98IbH7Mybm4+eP3DTme23ranHvi+04eSH8pgABgCAAfjGQ0X3YJ8LnF4PblP0fkfEk0g+TPlK1DzL1eIyIiIiIiIiIiMjIGKBORESU5WIJNpEuHM6znMJh/9SYLxwmGpRh5KCOLS09OD80jPxcSzCDZijnoBt/v3UPBAGoX31T3BdBjbwNQmX7xV8zBzqYYd+ZIYheiZnrRbrsWrsE3/31nrDMtmoBg9kgtA4t/2lbWNBmtBs1YrnBKRnb3Yw3llBmuDA0jHlTC7F2aRm2vN2D85eH012kIClgPJU3H4aO85bRYOpvXHs1JhXmRRyX2tbVYvGzLWMyh3tG/Civa0bbulrF9Tjt8qDMUYgepwtAIBhebW6xpaUHEIDSqwpwctAdDKBXYhGAbyyYho+On0dFSdGYucuRgUs44/KizFGIY2cuYdg3NuW5dzTrurQecoIFePDf3sfLjy0Ou6nBUWTHsvlTsT2kDxYQCPKfMTEft5U7wsZ69n9ExpXsmy0pulTuAx6PkcQsyR+IiIiIiIiIiMxOEEWNz6QlU6qqqhK7urrSXQwiIjIw56BbMdgEAGxWAYefvmvM662traipqdG8DHlQhkRrUEai34+H1otVWstW19gdDIB5eNGsmIPL9doGqbwIt2ZrF4rH2/FQ9Sz8R/sRvHPIiTf+8VZe/DOB0H0nXbgPDRwwgo2N3Wjo7IXNaoHX58eq6tjbFZnDHT95NxjYCABljkK8+dRtaSyRMcizIIfeqKHUz9Y1dmN7Z6/mtqL3do+1vETZIrRtrl1WlpJ52nd+2YGDJy7iJysr8frHJzWP80+9vB+v7usL/m0VgOU3lGDj3V/Glrd6xvQxavNXiwDcUTEV9aur0N4zgId/0RlxuYV5OXB5RoJ/l04uwG8f+0rYNpLmLi9/0KsYjC6Xn2vBLfOK8e4nTnhGROTlCAAETJ+Yj6fumIctb/fgM6cLPlG5/5OWd2TAhdMuDyYX2vCl4vGK21Le/wkC8LWKqfjRigWG6v8YrEdERNki1mMjIqJ0iPUaDBERERERUboIgrBHFEXFC03MoE5ERJTlHEV2rKicHhZsIrnnhpIxrzkH3XimYwgVN7k1By4kmu04HdmStWYqVyvbmlvnYGX9buzvPQevLEgmnqyJ8W4DeaBJKjOwhwbnFORacX5o2PCZ3ynADJkEmf0uexg5+3E6aX3aQbyZe/Xe7ql6OgMDLMks1NomAF3mS5HawoxJBXi35zReP3AibDnR2s8l70gwG7pFAHwi8IcP+7Fzf/+Y9cjLsUScv0q///j2vQCAHIsAEYDPL0IAMHvyOGxasQB/88uOsOB0ADh25jKWbH4Hh0P6MGnusnbpXMVldh49gxMXPLBZBXh9IqYU5qG4MA+ekcA83TMi4uFFM7Hp/utQuqEpbHk9TlfwtWPP3R22PC2UstYfGbik2kelqx8zy5OazIxjFJH5sN1mFj7VhIiIiIiIiIgotRigTkRERGHBJqF27O3Djr19YRdqtrT0oOecP6bABaWgtByLgCcatF3kS1VQGxD7xSq1sjV09OKDY2fxwMLpuOgZwVsHTwWz1FtHs0b+SwyBv/FuAynQ5CvPtCA0Tj5VF+F48Y+SxQxB9KSPzo23B/+9XOHGqWym5UaNeG9wSsZ2T8WNJQyw1BeDspJH3jZD6TFfUmoL0eZl0dpP/eoqrNnahUVzJgfb8fGzl1FUkKsahK42f5UHgY+EPM5JBHDszCU8+qsP8Np/W4L7XnwPPr8Y9sSne66bprjeanPm62dMxLIvX3k6TEPH59g+ekNA6PZ4Zc9xbHu0Gn/7nx+Mucn07gVXa9r2Sn7T2QtRDKwbcCXoXWkfx9KP6dFGOV9PHY5RRLExwjyE7TazSPOvpg/74RPDnwZDlImM0I9S9mB9IyIiIiIiJYIoRn/sLZlXVVWV2NXVle5iEBGRCXznlx3o7hvEvKnj0XnsLHx+MSwb+N0/bYfStEFr4MKarV0oHn8lKOTdT5w4fn5I8+N05d8fuOiOKXOhVs5Bd9RMj5HKtvynbWHBM2oeXhT7Y4Rj2QbyQBM5Leulh3i2J2UvXsggSo6Njd1o6OyFzWqB1+dXHHvN3v7Uxj0GWGqnVAfqGruxvbNX83yNYiO1zVxLIKu31SKEzcGjzZeU9lmktqB2w0pz94kxwdjSd7S0n42N3dje0QsBgQDs0Hmu2vy1vWcA3/31HgwN+8b8nlUIBJrvfOJmbHmrJ5hZXolSGbXMmaU56h/290MEIAC4tzIQoBbPMqPRMieOpx/To41yvp58HKOI4pPOeQjbbWbifqVsw+M5c2ttbUVNTU26i6EZ6xsRERERUfYSBGGPKIqKwUvMoE5EREQAgKvG5eHMJS9OXhiCXxTHZAMXRaB0cgFODrpjysAqkYJC4s3Ql6psyfFkKg8t2/vfXzYmwGNSgQ0CgIWzJgEAPjp+HgMuT8xli2UbKAUgXV1kx+dnL8NmTW4W+lCpzH5P+kpHsCqz0xElh5bM5WZvf/FmiqcrQuvAK3uOM6NyCoS2zSdf2ocepyuuJ+WEtttIbUEto3n7+qUJtZ/TLg/KHIX41OlCmaMwbJ6rNn999FddqjdT+gGcGnSj+ukW1WVGKmO0ObNz0I3qZ8J/WwSwc38/du7vj2uZ0WiZE8fSj+mZ9ZzzdXV6zYc5RhHFxghPdmC7zUxt62px74vtGLjohc8fuDnQMT4PO5+4Od1FI9KVEfpRyh5Gq29mT8BARERERJRpGKBORESU5eQnEI+euQwA8IsiBCAse+Cx0fcAxB24YIaLfFoC+dQoBXgsm+9IebCfUjl8fjHu9UpEItuT1Gk92R7vSflUBqsa7UIGUaaJFKyZKe2PAZbxU6oDAGARAFuOJWy+tubWOVhZv5sXenUS2jbnFI/DojmTo86XnINuLHq2JezJRvJ2G6ktKM3L4m0/zkE3Fj3TgtDc6z1OF3qcLpTXNYf1IfL5SNu6Wix+tmXMk4e2/V01Xj9wCsfPXkbr4QHVZSfSxre09EBAoI6HJo7Py7Fg8Zyr8O7h04rfcw8n1q9EmxPHsh/0PqbifF2ZXvNhjlFEsTHCeSMztFsG4MXOUWTHsvlT0dAZmDd5fYFzdtx+lGmM0I9S9jBafTN7AgYiIiIiokzDAHUiIqIsJ4rKrwuCgPe/H55N0SIA0yfmQxwewqLy6XFlATfDRb5Es7UbJcBDqRzS+iQzC71cqrLfZxutJ9tjPSmfjmBVo13IiIaBAJRJpPbX9GE/fCJgFYDlN5Sotj8j13+9x18jr6ue1Ppgq0VA476+MU/V4YXe5NA6X9rS0hP1yUaR2oLacuJpP1taegABKL2qACcuuIPz+zsXjB3D5fMRR5Ed/2V0WTZrIEBsVfUsLJlbjEf/Uz27ukQUgYbO3pjqoXyO45MdB826qgAzJhUACASvS8HzVouAW8qmYPK4vLiOfyRa9rHW/aD3MRXn6+GSMR82yjEikRkY5byR0dstA/DiY/T9SqQHo/SjlB2MUt8yJQEDEREREVGmEUS1qDTKCFVVVWJXV1e6i0FERAbmHHRjZf3usOzopZML8NvHvgLHeDs2NnaHBY7MLS7Ep04XVi2aFXYBLJYgrjVbu1A83h52MSg0KCJbpCLwLVuC67KJ/GS7RH6yXevn5JyDbtVg8WTWIXlfs6p6lmEvstc1dmN7Z6+hy0ikVax9RTbVf73XNV1jspblKvXBAy5PcL62/KdtYzJdA9HHlGyTzH2s1lYBQBCQ0jYZqSwA8HDIcUKkPqamvFjxmECai7z2Yb9qvZOC4LVsZ2m//PCeCvzbn44E5zhKLALw0KLZOOvyYNeBk7AIgIjUbl+teEyVPOmaDxPRFezj1MV7rE9E2YX9qPm1traipqYm3cXQxAj1jXN4IiIiIqL0EQRhjyiKigcBDFDPcAxQJyIiLZZsfhvHzw3BZhXg9YmYOSkfbeuXArhycvHlD3oxLE8ziCsXwORBXAyMji4VQX7ZFEiYLbSebE/kpHw6gsWNcCEjGgYCUCZyDrpx74vtGLjohc8vwmoR4Bifh51P3BzWV2RT/U/WuiZ7TFabe2lZbrQ+mBd6tdG6jyPNk5Xecw66sWbrHhQX5eFPhweCTzaadVUBNt2/AK/u7cM7h5x44x9vjbo/9Jijy+uDEqm9xFN3nINuLP9pO5wXPcFM5rOuKkDv2Ss31H7zxul4fmWlpnUK3S8iApnX1U6H2nIsOLzpG6aYl1BymenmSSLKLpyXERFlBzMFqBsF5/BEREREROkRKUA9J9WFISIiIuO5tqQIi665Cp+cvIjyaePhco8E35MCMdYunat4Aaz5wEmUbmgKfl56dKJVAPwAHzWsIBWPm+QjLTOX1semJvJ41XQ88jo06GvTigVJX1482tbVqgYCEJmVo8iOZfOnoqEzMEZ4fX4sm+8Y01dkU/3Xe11TNSZvaenBB8fOBudesSw3Wh8cz5iSTTcrxrqP5fsq2ntbWnqw//h5zC0uDO4Dr8+PJXOnYMncYrzefRLnh4Y1zbsjLVur0Ppgy7HAO+KHVQB8IpCXI6AwLxdb/656zGej1R2pzsycmA/nRQ/KHIV44dsLcc9P28OC0wFgx94+vPbRCXyy6Ruq66S0X4BAlvStj1bjsW174PL4gu9LT5ECzDEvIX2o9VXpmA8TEWmRyLE+ERFRJuMcnoiIiIjIeJhBPcMxgzoREWmlJeOjlIEiRwBGxMCj7tcuK4uaQRHIzAyr8UpFtitm1MpsWrN6Mvun/piJhzKR1r4im+q/nuua7DFZLeO7zWrBndddrdtyYx1TsukpLlr3caTs/AAU31OSaxXw4F/NQkPH5/ArnNZTmnfr8WSA0EDeH/zuQLA+PPnSPvQ4XcEgOQB4eNGVpyp9/X/9CUvnT8WjS66JWHfmfL9JcX1sVgtG/H7F95SoZW+3WgT4/CImj7PhonsY3ghPh6LskU19FRFljmw41s+mmx2JKDGZ2l8wg3piMrVeEBEREREZETOoExERkapYMj5KGSjmWU7hsH8qBi66x2Ru8vr8mH1VAU4Ouk2fYTVZJzFTke2KGbUym9asnsz+qb94MvHwgggZnda+IpsyUem5rskekyNlfH/hrR7dlqu1npjpKS6h/TNExNxXh35fyz6OmJ1fxJj3auYVww/gT4cHFAPf1Z5wpDTvbltXix/sPIA3D56CX0Rcc/TQTOWh9WFO8TgcGbikuN8tAiACyM+1oKKkSLHuqAXPA8B9lSXYePeX8dyuQ3h1X9+Y92dOyseAy6O4/lLbk26i9Y1GuJ+55FVdRybyyB5m6qsyCefFpIT1InbZcKyvx1NfiCg7sL8gJawXRERERETGwAB1IiKiLBcxUEZGugDW2noaf1Nz5QKYPIir9RNnSgOjk3UxM5knMVMR5Ke2DF78JYpfPIEAvCBCmSIbAmEkeq9rMsf9SAHw6bipIJa5ZbqF9s8AYu6rt7T04IOjZ3Hzs2/jr665Kuq2jnazgvy9KYV5uOz1wT3sh80qjPl8LDc/OIrsODJwCX4RsAqIaY4eLZC3fnXVmGzlEinreaTgX3mdAQCLEPiuVMZL3hFcM7kAR89cDvvuF+eGgv+W1gkisLJ+N3720EKcdnnwzRun49W9fdAUei4IWj5FGcBMfVUm4byYlLBeUCjeQEREWrG/ICWsF0RERERExsIAdSIioiynR1bP0CCutUvnoumjfjxw43Q8evOclARD6X0xMxUnMVMR5Ke2DF78jZ8ewf28QSB78IIIEUmSPe6rBaKn46aCeOeWqRwflfrn0H9H66vl3x/2i/jzZ2ew5/Nz2LRiQdxPIlB672D/IADg9oqrcdU425h5tZabEOTl9YUEja+9vSzq9tYSyKu030sna3uqUuh3pcD0OxdMC1vf+tVVuGXz2wCAaRPscA664RMBAYAtx4LnV16P94+cw8BFt2Kmd1FEWAZ2ixD4ri8kar0g14rWdTURtwVlDj5xKrU4LyYlRqsXPFY3Bt5ARERasb8gJVK9aProBHx+EVaLgOXXT2O9ICIiIiJKEwaoExERka7ZNbe09OD80DDyc6yoKClKajBUsi5mqp3cXnPrnGA2RqNerIx0QdVoF3/NSI/g/s2vH0Ln0bPY3HwIz6+s1LeAZCi8UEZEqWK07PbxzC1TeQOdvH8ODVbW0le3ratF9TMtY173jPhRuqEJx567W/W7kfZV6HuvdH0RNm/b1X0CAJCXY9H8e6HllY9HVxfZcezMZU3bW2sgb+h+/0X7Efzhw34M+0QIGjK2K9UZaX3kc9gTF67UJxGB337/s7N4Zc9x1bluTXkxyhyF6HG6gkHw42xWXPL6YLMK8PpETC60GXaOT8mRjqdMZCvOi0mJ0eoFb+Y3Bt5ARERasb8gJbf8+J3wG7T9Inbu78frB07yGggRERERURowQJ2IiIh0CWpSC362WQUcfvquhMuoJFkXM9VObjd09Br+YmWkC6pGu/ibbrFkR9MjuF/+Gzv29mHH3j7eIJAB1OpStlwoY6ZBIpKLZW6Z7BvolPoopf4ZQEx99aSCXJy7PBz22oyJ+fj5IzclXGZA33lb6PoCgHvYj2NnLgPQvr21BPLWr64Kbu+ZE/Ph9YmYYM/BBfcI5jkKMeDyqP5+pDqjdEOBKAaC0yWhWfBtVsDrA/JyBNy5IJApzzHejjVbu7BozuTgOvzx45O4/8YZSQtO5vho/G1gtJt7Mlm2zIspNkapF7yZ33h4AxERacX+guTa1tXi3hffw8DoU7esQmDOsfOJm9NdNCIiIiKirGSJ/hEiIiIiZc5BN1bW74bzojtw4q+yBPbcwPTCKgQ+c88NJUlbfjIvZkontxsfvxkCrlygFMXAv0s3NKG8rjnxldBJeV0zSjc0RSyjUS7+GkVoMH808vptz7XgvsoStK2v1bw8URRjel0PoW00nYxSDr3I1ydSXQrtS1Ytmh0xOM+sYmlLRERyeoyxkaj1UaH988xJ+Zg5KV9zX72lpQfnLg/DJk14R+XbrKiYNkGXcus9b5PWd9uj1SidXADLaNG1bu/61VXYtGJB8AlJoYG9oRY/24LOo2exY18fAOCCewQAcNjpwhsfn8K8jbtiLrt8W4gA7l84fUy9mVqUByAQnA4AnhExbJvJ16Fz4+2a1ileHB+5DShcNsyLKXZGqBfJnotQ7LTOO4iI2F+QnKPIjmXzHfAjcBO6H8Cy+Y6svQZCRERERJRuQjIDYij9qqqqxK6urnQXg4iIMkxraytqampQ19iN7Z29eGDhdHxxbggzJuXj1b19it+JlHkqkcx6a7Z2oXi8PSxLit4nop2DbtUMlqHlTWeGQK1lTMX2Sict+0CeHU0SLTvaxsZuNHT2wma1wOvzY1X1rJgy6TsH3fhW/W58PpqxFABKJxfgt499JWn1RWqjsZY1U8uhl6de3o9X9/VBQHj2Vkm2ZNqLty2lk9EzuWqRCetAJJfoGKskGX2U2m/mWATMKR6H85eH0bnx9rh+W0my5m2p3N4SiwD4ReCbN07H8ysrY/59pW0xpTAPDZ2BmzMjSfW4ZMbxUW/cBkRkNskYG4mIiBIhXYOh2GX6NRAiIiIiIqMRBGGPKIqKk24GqGc4BqgTEZHeDvZfwF1b2lXff+DG6Tjr8qLt09Pw+UVYBOBrFVPxLysWqAbSmSF4VcvFynSvBy+oKu8DeTDnwf4LWP2LTrg8w/CMiKrB/HJ6nNhesvltHD83hFyrgGGfiJmT8tG2fmlC66zEKEFBRimHXqIF32mtS5lC640xRpLKfjpZgeTpHmuIkiEZF4+T0UeZsd8DxvZHqdje0egxF5DWY9v7n6t+5r7KkpTvH7PWEz1xGxCR2TCQjYiIjIYB6kREREREZBaRAtRzUl0YIiIiMrcnX9oPACjMs8Ll8Y15/9W9fbAIgazCVgHwiUDr4QHF35IHe27r6MW2jt6EA1aSERQoPXY69GKlJFnroWcZM12kffCtm2bgg2NnseWtHmy6/zo0dPTizCUvgEBwlGfEj/F5OVHrSujF6U0rFsRVzmtLilBT7kj6PmpbV6saFJRKRimHXiLd2xtLXcoUjiI7xuflwDPiN/z6p6Of3tLSE9b3JMooYw1RMsQzxkab7yWjj0pmv5fMpyPI+6No21upLLFsbylben6uBUPDgW014hfh84u6zgWk9YgUoJ6OcckI42O6n7ZhhG1ARBQLPY73iYiIiIiIiIiIKJwl3QUgIiIicyjd0ITSDU3ocboAQDE43Z5rwX2VJRARCOT0jQZzuof9qH66BeV1zWGfb1tXi3srS2DPtYR9v219bUJlDQ3C0Uv96ipsWrEAFSVF2LRiQdjFy2Sth55lzHRK+8AiAJ4RP7Z19EIUA8GcpRuasK2jN/g9z4gfFggYcHlSUs5U7SOjBAUZpRx6aV9fi9LJBWGvFeRa8c0bZ6Dx8ZuxatHslNUlo5BujDH6+qeyny6vaw72NaF9j3wMjFWy18E56MbK+t1wZtHNTaSdEeuHlvleMvqoZPV7yZi/xtofSft58+uHxpQlUvmk7/Wdu4xVi2bDahEAAEOjmdQ9I374/GLw39JcwDnoxv0vvocVL76XUN3atXaJ4ut3XzctbeNSusfHZNSnWKV7GxARERERERERERERUXoJYqQ0gGR6VVVVYldXV7qLQUREGeBg/wV899d70Hd+KPjaOJsVC2dORPtnZ4JZ01dVz8LaZWVY/GwL/ArTDHmm142N3Wjo7IXNaoHX58eq6llxZ5qdt3EXvL6xC01Fdlk914PiI98HDyycjmG/GMzenZcjYEqhHaddHnhGwrN5mzVgOhKjPKLcKOXQy5LNb+P4uSHYrAK8PhEzJ+Wjbf3SdBeLNEhVP+0cdKs+OSDRviaZ61DX2I3tnb0cv0iRkeqH/GkCErM+TUCP9VHLlq3UH902rxjOix7Ur74pGCT+91v3QBCAD784rzh/VxJaPnn9kC/XIgCzrirApvsX4PUDp4JzgbrG7uCNgw8vir9ulW5oUn3v2HN3x/WbZpVp7YOIkiPdT1kgotRim89O3O/m19raipqamnQXg4iIiIiIKCpBEPaIoqgYBJKT6sIQERGROVWUTECBzRr2WsnEfIyz5+DhxbPxUPUs/Ef7ETR1n8Da28uwonI6Xt3XF/ys1SJg+fXTsPHuLwO4cpK8wGbFqkWzw4JX43XPDSXYsbcPViGQvT00KDDZpAyBeqwHRaZ2gUVpH4yz5cA97IctJxDMWWCzwuvLjGze0RjlEeVGKYderi0pQk25g23dhFLVTyfzyQHJWAd5MOO2jl5s6+hlMCMBAOZtbIbXZ6z60bauVvUmEDPSY31Cs2WHBnkr9UdHBi7h0wFX8LNbWnqw/4vzqr9957VT4Qfwp8MDY8oXqf/465tmBJfr9fmxZO4ULJlbjCVzi4OZ3UNJ37VZBVTOmhRTIM22R6vx8C86x77+d9Wavp9JMq19UPIxeC07qY0bRJSZ2OazE/c7ERERERERGQED1ImIiEizC0PDmDe1ELdf7cVbJ204f3k4LPi0INeK80PD2PJWDy55R1DmKMSnThcsAuDzi2EBetJJ8lXVs4JBq/EGr8qDY6Qk6u7h1AUgZ1oQbirEGwyhdoFFaR/csvltAMAd8x0QBWBX90ncff3V+IeaMgYXU1zY1s0rlfsuWcHwyVgHBjNSJMu+7EDzgZNpuflPjd43gaQ7ODOR9dFyg4nUH738QS9EEehxusI+q0Z6OtKUwjyIgGL55P2HRQC+VjEV/7JiAX7wuwOq/WDbulr8YOcBvPnxKfhDlndHxVQU5uXg1X19MQXSLCkrRpE9B4PukeBrRfYcLJlbrOn7mSSR+pTutkDpweC17MIbE4myC9t8duJ+N4+D/RfwYP37ePmxxaiYNiHdxSEiIiIiIkoKQRQ1Prs3CwiCcCOARQD+CsB1AIoBTEEgkP8cgIMA3gTwn6IontRpmccAzNb48XdFUayJ5ferqqrErq6uWItFREQUkfzxkmqPkrcIwEOywJTWTwZ0f+y8c9AdFhxjtQi4pWwKJo/Lg8sTHkRvBAz+CKhr7Mb2zt7ATQoagiHU6plS3VH7LACUOQrx5lO3xVdoIqIMtLGxGw2dvbBZA5mOtfbLlLkijaN3XXc12g6fTutF9DVbu1A83o47r70aT/12Pyqmjcd//u2iuH5LbT6idb6mx7xOWp+HqmfhF+1H8PYhJ974x1uj/p58Dhx6A4H8u/LP5uUIKLLbMODyKP723QuuxqTCvGBguVQ+aU4vza+l/sOCwE0MWudZGxu7sT1CgLxE6zHCvLpm5Oda8L3bvoR/ffczDA37cThLA3BC65N8f0US69yczC2WYyvKHLGMG0Rkfmzz2Yn73Tzu+Mm76HG6VI+h5NdgiIiIiIiIjEoQhD2iKCpeiGAG9XC7AExVee/q0f8tBbBREIT/Loriz1NWMiIiIgOTZ0/MyxFQmJeLrX9XjYppE+AcdOPwqYv42UMLcfqiB6t/0QmXZxieEVGXTJzyTIFenx8zJuYbNrAi27PUxZvJJ5Ysv/LPhupxulC6oQkAcOy5u3VaKzKaZN4IwptMKNMkK+M7mZdaLgOLALz7yQAueX148jf703bDlxRsW9fYjQGXBzMmqZ3KURdtPqJ1vpbIvE5pPMkPeSJRtN9zFNmRIwhwD/thswoRs2UrzZc9I74xn7vrumm4apwNAxfdik9qeKh6Jh6sfx8HT1xAxbQJ+E1nIDO79EvSPCvSvC7SDRD2XEtw7jZjUj6Kx+fBedEddbwNDUZ/rGZuxM9muliftsEsm9mJT1DJTno/hYSIjI1tPjtxvxufdF5awnPVRERERESUySzpLoABnQbwGoDNAP4fAN8GsArAPwPYN/qZQgD1giD8rY7LHQBwf5T/1em4PCIiIt2MPfEt4swlLxreD2RFDA3caejoxZlLXnhGRF1PkkvBdY2P34xVi2arZoNMp/K6ZpRuaMK2jkAgz7aOXpRuaEJ5XbPi552Dbqys3w1nhgUKtq2rxb2VJbDnBqai9lwL7qssQdv62ojfi+UCS+hnc63CmPdnTMzHrieXRC1rpu6DSDJlnUP7HTP9NlE61K+uwqYVC1BRUoRNKxYY7skjZBx+EbjkDYQiSxfR5RfXE6VlHIp1TqVEbT4iApp+W48yhI4nkX4v0jb54NhZAMAtZcUoLszD8fNDqsuT5st+UYQoAoPukTGf8fn9eKh6Jv786RkcPHFhzPv/0LAPFz0j+IftgVNk739/Ge6tLEFeTmA75uVEn9e1rauFZez0DADCbiw8fm4I+3rPY/EzLaq/RYmLd25O5maU4LVMOfYwEzOcOyEi/bDNZ6fTLg8eWDgdZY5CPHDjdO53g9m1dgmmT8wPe03ruWoiIiIiIiKzYQb1cMsAHBRFtVxh+BdBEL4P4JnRv58XBGG7KIp6HNlfFkXxdzr8DhERUVqcdnlggaCYfS/071CeET+sgqDLSfJYMwXGK5HMybFmqcvUTOuJBEPEkuU39LPf/vnusCCsfJsVFdMmRF1epu6DSMy+zsnMAsoMo0QUDzM+daF9fS1u+/9aMTR8JcO2PUfAxHE2nLxwZd42Y2I+fv7ITbouO9o45Bx048vTijC1KA/vHh6IO/Ov2nykXeN8LZHsw0rjCRDIUG/LsYz5vS1vjd0m8t9oOeQEAJw5PKC6XGm+fOe1U/Gd//MBRvxjT3+98fEpvPHxKQAIy5IvvxHh6OlLwddWLZoVLIvSvE7eBhxFdqyonI5X9/WNWX6BzYLL3vDs6n4xsHxbjiUsUzrpwyiBypR6RniCitmPPcwoFedOzDj3IcpUqTpfSsZSv7oKdY3d+PjEICpnTsTzqyvTXSQKUVEyAQU2a9hrWs9VExERERERmQ0D1EOIovixhs88KwjCtwFcD2AigJsBvJ3kohERERle/eoqOAfdYYE6eTkWTCnMw2mXG54RERYBEAD4xEBmvpp5xTg56MGPTHSBJJEL6FqDP7IhCDbeYIhYLqz96L4FeOI3+zBlvA32XCuunmDH2qVl2PJ2D85fHo743WzYB3KZss6JBAym87cpszFIJ7uZMfjOUWTH5EIbjp8bgs0qwOsTUTzeDnuuFSdxJUBdz4voWsehLS09+PD4ecwtLkw4oFZpPqJ1vpZIUK/aeGK1CGjc1xf8vT982I+d+/sVt4n0G78PeR8IzLNLNzRFHL//xx8OBoPTLUIgAFxJ6KPmcy3AsF/5c9tlN6Fu6+jFK3uOB5ev1AYueUdQ5ihEj9MV9l15cDoAWC0CfH4R91w3TbkAlDAjBCpT6qUzaDFTjj1ImRnnPkREmYJjrDlcGBrGvKmFms9VExERERERmRUD1ONzEIEAdQC4Op0FISIiMhJ5oI7X50eBzQqvTwwGNwEIBt18NnAJnw64DHPRMlIAoV4n97UEf2RDEGwqgiFCL4p3brw9+PryG0qiflevfWCmoNRMqXfJzALKDKMULwbpZCezBwZcW1KEmnJH2JxlX+/5pF1EjzYOybenFNjsF0WsWjQ7roDa0JvZQucjWoN14w3qVRtPBmS/d/zsZRQV5CpuE8f4wG8IozeASkHmkcZveRZ0YGxweoHNisveK5nzpSz5K372ZwBjg8dzrQK+cd00xTJGawNrtnbh+hkTcPqSF+2HB+ALKcvVRXk4ORi4GcI3Wsgd+/qwYzSA3wxtyEyYXZVSLVOOPSic2ec+RESZwAxjrJnOlyZLrOeqiYiIiIiIzIoB6vH5Usi/T6atFERERAYkD9T548cnsWrRbJy95MWu7hMYZ7PC6/NDFK8EFhnlomWkAEK9Tu5rCf5gEGxi9Lgortc+MFNQaibVu2RmAWWGUYoFg3SymxkCAyKJNmfR+yK60jiUYxHwREMgcEG+PQGgdHIBfvvYV+Ieq9TGaa3BuokE9Z52eXD/wuk4fPIiyq8uwoDLo/h7Gxu7VcdmaUw66/Jg14GTsAiIOH7vWrsE3/31HvSdH1ItV2hwOnAlS377+losfrYlLKDdIgDvbViKF97qUSxjtDYgre/Gxu6w4HQAweB0YXQ50hOYzNSGiEhdJh17ZLvQIEOzz32IiDKBGcZYM50vJSIiIiIiosQwQD1GgiA8BuCvRv88BeA9nX56siAIbyGQmX0igAsAjgJ4B8DPRVH8TKflEBERJZU8sOaVri+w7f3Pg69dGg16sQiACECMMdgkGRlWtAQQpvrkPoNg4xcpgC0WiewDswalZkq9S2YWUGYYpVgwSCe7mSEwwGjk49C7nzhx/PxQMHDhtQ/7wwKkj525jOqnW2IeX40wTtevrkJdYzc+PjGIypkT8fzKKsXPRRqbpTHpO7/shGN8Hn7y4A14/cAp1fG7omQCCmzWsNcK86wY8YtwD/shCECu1YIZE/Px1B3zwrLkO4rsKJmYj+PnhoJPRpo+MR+O8XbVMmptA6ddHliglJ8dEITA62xDRJknU449sp08yJBzHyKi9DPqGGuE4zAiIiIiIiJKLUEUxeifykKCINwK4KrRP/MAlAJYDmDJ6GtDAL4pimJzgss5BmB2lI/5APx/AOpEUfRF+WyYqqoqsaurK87SERERKWttbUVNTY2mzzoH3di06y9448AJeEZE5OUIuHPBNHxw9Cz6L7ghAIAArKqepSljSl1jN7Z39mr+fCxlVAogDL2QumZrF4rH28NO7ocGqyYTH30amznfbwoLYJOk6oKH1jpFRMamR9+7sbEbDZ29sFkt8Pr8uo5fZHzpnDskKp1zD3nggsQiALOuKsCJC254RvywCMA9N5Sojq9q65DOcdo56Eb1My2K78U7T4llflz99FuYWJCLtUvLsOXtHvSevQzPiB8CAL8IlDkK8eZTtyl+N576HO070j764T0VeHz7Xhw7czn4XunkApROGYcZkwpM2YaIiDJZpLH6IVlQJPttIiICeL40VrFcgyEiIiIiIkonQRD2iKKoeBKQGdTV/RjAIoXXfQDeAvB9URT36bSsfgCvA9iPQFZ2G4C5AB4AcB0AK4ANAKYB+I5OyyQiIkqJK5kTA9HCnhERO/f3B98XR/+vobM3YkBNsjOsvP/ZGbiH/bDlWOAe9iPHIow5MZ7OzMl89Glsbi0rxrEzl9B/YQjeETEsgC0VmDWXKDPo0fcmmrks025QyrT1icbMT11I59wj0tMHXnirBw2dgTmg1xd5fN38+iF0Hj2Lzc2H8PzKyuDrqRqnler7lpae4PtWAfApPE1IazuJZ37cufH24L+X31CCOd9vgiiOzskB9DhdKN3QpPgb8dTnaN95rjmwj37RdhQjo3cXShnafX4R//lfq2NeJukn2/psItIu0lgt9Rfst4mIKBTPlxIREREREWUfZlBXIQjC+1AOUD8C4EUAvxJF8YwOy1kC4M+iKCo9yRiCIHwPwE8RCFIHgIdFUdwe5Tf/HsDfA8DUqVNveumllxItJhERURiXy4XCwkJNn/3uHy9hWHGUG+s/7xyn+t55tx8vfeLF3lM+eP2AzQLcONWKb8+3YWKeRdsCVPzqYw/e+WIEJeMETC+04INTPkzJF/A/bytI6Hf1oLb9ci3Av39NfXtlk/NuP/73hx48XpkXVhd+9bEHrV+MIMcCjPiBmpk5eOTavJSVa8teNybmCaiZmYPWL0Zw3iNi7Y3aL7iorRcRJZ+R+l6pL0t1H5YsmbY+mcgo9V9tHNcyvmpZh0TH6VjWoWZmDtr7RiLOiWtH1++8249//vMQBr3R5y56zI+TOcdWW97//tCDI+f9GFE4JSkA+B9ftSdtn1Bs2GcTUSTpPuYmIiLzScVxWKaI5RoMERERERFROtXW1qpmUDdVgLogCH8HYIYevyWK4g9jWO44AOUAvgXg/wFgB3AcwApRFPfoUZ4oy/8nAE+P/nlIFEXNqT+rqqrErq6u5BSMiIiyViyPl5Qe3fnGgRPwjIiwWQX4/CJ8IVMQiwD8+tFqLJlbHPG3NjZ2o6GzFzZrIGPmqupZCWX0VHskdSgBQMfGZVEzuSQruyAffRpdXWM3tnf2jqkPa7Z2oXi83bSPFldbL7NiBk4ykytj18lgZq87F6S271Ubo/R6ckiqZdr6GEUy+lajzD0SGcfnbdwFr2/s+S6bVcDhp+/Su6hjqNV3AYAgAKOJwiEA+MqXJmPahHy4PMNo/WQg5nYS6/w4tM5ABJ74zT5MGWfDrgMnYcuxYDjG35DXiWh1UprfCLiyHULZciw4zD4h7dhnE5EWZj/mJiIiMrJYrsEQERERERGlkyAIqgHqZkvF+HcA/lmn/2kmiuIlURT3iqL4fQBfBXARgUD5twRBKEl8taL6CYALo/+eLwjCnBQsk4iISBdXHt0ZiEDx+kQIQvhn/CLQuLcv6m+ddnmwatFsND5+M1Ytmo0BlyehsrWtq8W9lSWw5wamRFYhECwPAPZcC0onFwACsOWtnqi/taWlBx8cO6vps3LOQTdW1u+G86J7zHupevRppDIYVXldM0o3NGFbRy9EEdjW0YvSDU0or2sGANSvrsKmFQtQUVKETSsWmOZCebT1MqtE2gilhhn7gWQJ7XsBpOWx0/Ixyp5rwX2VJWhbX5uyMugp09YnFmptS482l4y+1SiPXf/RfQtw+NRFTBlvi3kcb1+/FLMnhz8Jp3RyAdo3LFX8fKz7Itrn1er7/TdODwvKFgHMmTIOz6+8QTU4XQBQUVKkuixpfvyLR/4KxYV5OH7ucsTyhtYZ6d/vHh4AANwx36Fpjh2p3qm9J5/fKAWnl04uQHsW9AlmkM19NhFpZ9ZjbiIiIiIiIiIiIkoNswWop50oivsA/Hj0z4kAnkzBMt0A3g95qTzZyyQiItJLeV0ztnf0hr2mlLR8x96+qEG4el/8lAdg+UKCZdzDfhw7czlqgLCWYOJoQUzRgsv0DsyPpwx60TMANp2BM8kM5JXWyzp6t4TVIkRdLyMHFmdqwH0m0toPpLK+patuK41d2zp6U1pvjRIkrJdMW59YqLWtRMbeZPetes894mnLiWwfR5Edw6MTTuvozYfeEb9qfYt1WdE+r1bfL3lGMHNSPu6+bhruvm4aZk7KD27b4Pgvu5GzdMo47P/ivOqypPnx6wdOYMDlwYxJBWM+s6WlB51Hz6L66ZawOiP9+5LXBwBoOnAS297/HK2fDCguK1K9i1YnleZtBTYrgEBmewDw+cWs6BPMIJv7bCIiIiIiIiIiIiIi0ocgigopiygiQRCqAHww+menKIqLUrDM7QAeGv1zlSiKDVq+V1VVJXZ1dSWvYERElJViebykc9CNTbv+gj9+fBLuYT/suRZ8/dqrseujfgwrBKrbrAIOP32XvgWOIPSR1Gu2BsbMZx+4HnW/60bv2cvwiwiWeePdXx4TlKG2fqGfrWvsxvbOXqyqnoVN918X/G55XbNipsy8HAs+2fSNJK71Fakug9q20MI56MYTv9mHnz20MLhtNzZ2o6GzFzarBV6fP67f1bosvdYjmnj2STLLkygtbYTSK9Y6l8r6lq66bZR6GzpGNXT2YuCi29SZKTNtfaJRa1tqYhl7jVJHtYqlLScyNwkdv7/5v/+ML84NYdZVBeg9exkzJ+WjbX14BvVYlxXL5+Op7xsbu7G9oxcWQTnDuNKyIpVJFEV4fco/JD01KHQ5eTkC7lwwTbUeRap3EBG1TsrnbTMm5uO2ckfW9Almk219NhERERGRkcRyDYaIiIiIiCidBEHYI4qi4gWEnFQXJkNcDPn3xBQtc3LIv8+naJlEREQJU8u+996GZfhW/W58fuZy8LOlkwvw28e+ktLyhQZZhAYt3Tx3Cj7v7I2aMTBSdkF5wJCUqVIKLGpbVxsWyAPosw2iBVeHkpchLNBIR9G2hRah2Uql4DYpw2to4IwelJal13pE07auFve++B4GBt3wiYHMr44iO3Y+cfOYz2opTyz1IRnMnIEz3dsuVbT2A6mo/+lYlhKj1NvQMWrTigUpXXYypHN90tGe1drWmlvn4N/+dCShsTeeOhrPNkh0u8XTlhOZm4RmCpf0ng3MNb84N4TSDU2wWQVUzpqEnz20MOZlxfL5eOr7aZcHDy8OzGv+o/0I/vzZaZy/PBxxWZHKtLn5EHbs7YNVQGBOYRHg84uwWYVg4Lr0nkUAvD4xYj2KVu+i1UmleZu0bTKhj8s0mTYGERERERERERERERFRalnSXQCTmhvy79PJXpggCHkAFoe8dDjZyyQiItKTFIzS+PjNWLVoNgZcHjiK7PCNpmzMtQZSOPr8omGCQJXKHOtn29bV4t7KEthzA1Mue64F91WWoG19LYBAkM9rH/YHg9MB4NiZy6h+ugXldc1xlz00uDqaVAVhRtsWkZTXNaN0QxO2dfRCFAPBbaUbmlBe14z61VXYtGIBKkqKsGnFgoSzOkZaVqLroZWjyI5l8x3wI5D91A9g2XyH4j7RUp5Y6kMkzkE3VtbvhjOOmwBiaU/JWH68nms+hM6jZ7F516GULTMdtPYDUn0b7bJhFaB7/ZcvK5ltLRo96q2ZpaPNJdPm10fbc3Pq2rNa26oomaDL2BtrHY1nPIj2HeegGytefA/3/+/3FOtKPG1Zabvt/uxMcHlK9TJ0/FaTlxNY9j03lATXKdZ5ULLnTaHzmp+srMSy+VOjLkupTK992I/qp1uwY28fgEAAOhCYa5c5CvG7f1iCmZPyMXNSPqrnXIV5UwuxeM7kiPVI2vZ954dU611onXxg4XQ0dZ8I21d6z9uIiIiIiIiIiIiIiIjIuJhBPT5/H/LvP6dgeU8BmDD67x5RFD9NwTKJiIh0o5Z979qSItSUO3TPfq2HWDIGqn1WSxDTrWVTcOzMZZy44A5mGI03i3q8GYeTlYU8VCIBXanK8q5lWakK6Ne6TxLJ4B8rtazyWuiRgTM0uPT5lZVx/YZW8m23Y18fduzrS1n27nTQUudu+fE7YdvFJwI79/fj9QMndd8uRshgnu2ZYxNp80Yypj3v7cOOvbG150SyiKu1LT3GXq11VG08EAB0bFymuE5ax5AtLT3Y/8X5wL8V6kq8bTl0+/w/L+3DYacLd73QBlEEzl72jlmWfPyWMoULAEQEbqjxjPixc3//mHWyCIhpX4SW7RftR9DUfQJrby8DRCScpV9e17TWE/nnjp+9hKICW9j2uKVsCiaPy4PLM4yKkqKwJwdpIfUJq6pnqWY9D62TZy95ce7yML7/fz/CL/5rdYxbgoiIiIiIiIiIiIiIiMxOEEUx3WUwBEEQvgOgH8CbospGEQTBBuBZBALGAcAL4HpRFD9R+OwPAfzz6J+/EkXxOwqf2QjgVVEU/xKhXI8B+BkA6+hL3xFF8VcaVgkAUFVVJXZ1dWn9OBERkSatra2oqalJdzFMYc3WLhSPt4cFFsmzRc75fhP8CrOPWINhnYNu1eDqZAR1xhqwp2VbqNnY2I2Gzl7YrBZ4ff5AcFSSAiajLSuR9UgGtfLoVR/kQYqSVAVrp2P58zY2w+sbu0xbjgWHMzRAXQvnoBv3vtiOgYte+PwirBYBjvF52PnEzUnpY4zW1rJFutu83uZt3AWvb+wga7MKOPz0XZp+o66xG9s7e5M69iST0nhwdZEdn5+9PGadpLH9h/dU4N/+dCT4nbwcCwrzcrD176pRMW2Caj0BxtaVeNuy2r5TW1bo+O0Z8aPMUYji8Xk47fJgcqEN0ybk48+fncb5y8NxjYtK857QugEg4XqiVNecg26s2boHIoCf/81NmvvbWOdOavO6WPuETOtDiIiIiIiI0oHXYIiIiIiIyCwEQdgjiqLixT9mUL+iEsD/AXBcEIQ/AvgIwAACQehXAbgewP0ASkK+8/9TCk6PwbcAbBIEYR+AdwH8BcA5ADYAcwE8MLpcyTYAv05geURERIaUSGZSo5dHS3bTW8uKcezMJfRfGIJ3RIRFAO65oSTmDOGpzjisll1Xbfslko04FVnetS7LaFmVE8ngr0UqM9grUbuhNpk32ravr8XK+t04duZy8LV4n2yQSRxFdiybPxUNnYEsyl6fH8vmO5LWxxitrSWbUcbCdLd5vbWvX4pv1e/G53G0Z72fRJFKYfUpZDwAAPewP9i/yddJGtsbOnrHjCGeES8a3u/FpvuvQ9u6WtTtPIC3Dp4K3mRnFYA7KqbiXyJk1Q5ty9Hq/D03lGDH3j7VdbQIQNv62uDfSuO3PBBeCtqOZ1wMnfe8suf4mLoR+m95PYm2rpHq2rdumoF9EbLUS+LNvq60fpGy00frE9RuXFB7nYiIiIiIiIiIiIiIiDITA9THmgHgb6N8xgngSVEUX9JpmQtH/6dmBMBzAP6HWnZ3IiIiM5MHxKQ7SE8tQCdZ/vNvq8MCpry++APLUxHIHS1gT9p+y7e047W1S3TZh6kMVM2koFg96kOqb3yQSyS4NF6OIjtGRiMubVYBXp8In180xA006ZbKm0WyTarHHjXpbvN6cxTZ4Rttz7lWAcMh7TnafMPMwfry+iS13TuvvRp1v+tG79nL8IsIrlNz9wmUbmgKfj804FptzP/rm2aEPQHGJwJTCvM0ZyNf/tN2OC96sOWtHqxdVhbcF7dsfkdTMPP9C6druhEudD/H04cpzXskUhuxCICAwDaQtumaW+dgZf1u/OyhhVHbt1Jd84744RnxRw1+l8iXoXU+E21eF61PkLejbY9W45FfdiI0+b1VAH71aHXUbU1ERERERPpJ9zl2IiIiIiIiIgaoX/FPAF4DUAPgKwCmA3AAGA/gEoATAPYDaAawQxTFSzosczWAW0eXdy2AKQAmA7AAOAvgIAKZ1X8piqJ62jAiIiKTUguIsQiAiMhZIrWK5UR8OjOlxhowlYws5VqpBezJg9ucFz2ofrrFFJlmM5Ve9SGdQcmRgkuT6dqSItSUOxiILZNJN3Akm9bxx4hZujPtRgS19hwtaNiMwfpa6tPNc6fgc1kW8fb1SxXH9jW3zsG//emIYpD+D353ADMn5eP6GRMBAPt6z6Gp+wTW3l4WV50HAnM/+TxDQGBeGGqeoxAuz0jwb6X2Jr02c2J+cD/H04cpzXuuLrLj2JnLYXUDQNg2bejoRefRs6h+uiXi/gCU69r9ldNxyTuCP358Krj+FgGYYM/F9r9fFHV7au1DtNyIEalPkLejJWXFEGQ7TRCAJXOLNW1vIiIjY6AfERGZiVFuhKfswHkSEREREREpEZiQO7NVVVWJXV1d6S4GERFlmNbWVtTU1CT8O85BNzbt+guaPuwPy7Iol0iQXl1jN7Z39mJV9awxJ+LlJ02l8igF6KTipGqkk7jy9yKtl5bfS5SU8d1mDWR8X1U9C2uXlWHxsy1h2VQlDFI3F6NdUFiztQvF4+1hgXGhQYZERqSlnwaQ9rEnG8kDeiVKY1Uy+59ofW08fXG0+uQcdOPr/+tPWDp/Kh5dck3YOqmN7VKmc+kpL2p1Wsuca/8X5+HVkB1dulnRZg0Ea4+zWVFT7gAAfHT8PCpKisL2g9Ky53y/Sbc5ibRtIp1CmzkpH/Wrq7D8p22KywUQsX3L61pDx+eqv/PwoivrebD/Ah7+RScueUbgGYm9D3EOunH3T9tw2uUN2/fRAlgitSMRQH6uBd+77Uv413c/w9CwH4c5DySiDKB1fkdERJROsRzzknHpdQ0mVThPIiIiIiLKXoIg7BFFUfECKjOoExERUdrc8uN3FE+WS5QyOIaKFLilJZukPItMujOlRspqI723+JnwAPBIWTKTmSVHKZOmo8iOFZXT8eq+Kw9+sQrA8htKVPchGZPRMiwxa7ex6HEDg9FugtBTrNmM0z32xCoT9p2WjNGSZPY/Ul/73K5DOH5+aMw2jacvjlaftrT04PzQMPJzLagoKQpbJ6WxfUtLD5wXPShzFOKFby9UzKgfy5zr/srpGBFFNH10Ivh0DCAQkO4Xr8z9LgwNY8akgrCyvLjqxjHrGykbu5L7KuObk0jb5s5rp6LudwfQe/ZyWHk33v1lQASe+M0+vPbfloRlnbdaBPj8ImxWIWL7lte1tUvn4t4X38PJC2OfYBC6jb910wycveQFAM19SGg73tLSg4GLXthzLfiPR6rw+oFTEZ+aIH238fGvqmbXD132YzVzNW1jIsosmTBfCGXEJ94QERGpieWYlyhRnCcREREREVEkDFAnIiKitGlbV4t7X2zHwEUvfH4RVouAvBwLhoZ9wYyZkQJsIgV2RToRH+mkaU158ZjgrGSLVB4AYe/JE2kqXWBIxUlhtYC9S94RlDkK0eN0wSIAPhGGDrSkcLygQFrocQOD0W6C0FM8F4KVAoNTLVog2cH+C3iw/n3cOm+K6fddum8KkPe10o1di59pwZFn7064L1aqT1p+M3Rsf6Xri7DP9zhduGtLm2IZYplzyW9i84vAeHsOBt0jYfvihW8vBBCol4dPXcTPHlqouK5Ky66ZVww/gD8dHoB7OLBsKQA+3v1cv7oq2EZunDUJn5+9PKbu1DV244NjZ9HQ0TumfkUK8FfjKLJj2XwHGjp7kWu1wDvih3V0bmXPDfztGfGHBeR7RvywCMCAyxPxt7e09KDz6FlUP90SfM097MfD/9EZtZ5tfv0QOo+exS/aj5rq5hoiSq1Mm+sx0I+IiMwk3ce8lF04TyIiIiIiokgYoE5ERERpEwi8mYqGzkCAlNfnx+RxNtxW7ggLqpIHzUUL7JJ+W+1EfKSTpqEn6lOVqTniSVwRYe9JWTgB9SyZasFaJwc9cF50J/ViRP3qKqzZ2oVFcyanNdBSL5mW+S8aXlCgSPS4gSEbboKI50KwEZ4SEC2Q7K4t7QCApu6TAMy/72K9KUDP8UDqa3+/vz/sdb8IlG5ogs1qwb2VJXjjwAl4RkTk5Qi4c8E0zX2xUn1yDrpj6t9jGQ8i1fnGx7+K1b/oxLlLXvgRCEp3FNnx1bmT8ejNc/CL9iP4/f5+fPPGGXh0yTVj9oW8Xsr3g9KypxTmQQSCwekAUFvuwLSJ+QnNSaSynJiYH1Z3Gjo+DwsSl/5tEYDGx28OrlNoxnqt9Sm0nj750j70OF3B9ZSy0Uv7SBCAr1VMxY9WLFD9TXkfrMQz4se8umYclrVr+Xd37O1TXE8iym6ZNNcL66sZ6EdElHLZdk5Ob0a4EZ6yA+dJREREREQUCQPUiYiIKK2UTpZLwTvSf6WMlFJwUrTALunit9qJeKOdNI1WnvF5OcEgKyk4HVDPkqn0e58NXMKnA66UZLAzQqClXjIt8180RmsbZCzx3sAgZd5++bHFWXMThJkuBEcLJCvd0KT63fsqS0y772Idq2IZD6IFUkh9LXAlszcQ/lSUF97qgWck8IZnREy4L461f4/181Kdv/Paq/HUb/fj+LnLAIDlP21HyNQFPhE4ccGN1z48gee/VYn8XCtGRBH5uZawAG61emkVAD8Qth/U2pv0RBcAOHzqIn7xnb+Ka9vJy/LFuSFse/9zbO/4HB3/tAxrl86NeOOjUv3SWp9C6+mc4nFYNGdycBufveTB9EkFwfmgXwSODFyKWE/kfbAar0IQuyjKn+MTkGMRwvZdqjBgiciYMmmuJ++rzTS/IyLKBNl2Tk5vmXR+loyP8yQiIiIiIlIjqF1gosxQVVUldnV1pbsYRESUYVpbW1FTU6Pb74UGL1ZMmxB8XS3LY16OBX990wxs7+hVDeyKFqiyZmsXisfbw06ahp64j1e8wTKRyrNmaxcK83Jw+pIX7YcH4BOjr6v0ey9/0Ith39j5nhR4yOAeZZHqntky/8UqWW2DMsPGxm40dPbCZg089WJV9ayoF4rv+Mm76HG6UOYoxJtP3RbXb1DyRMqs7Rhvx8H+C/jur/eg7/zQmO8+vCj6vjP7OBPPeFDX2I3tnb0R67bU1551ebDrwElYBEAEsKp6Fl7ZczwpY1Cs/Xusn3cOurH8p+0YuOhBpDNN0ybYceaSVzEIOnR+oiWQWmmbRMoSHs82VGojVxfZcezM5WAb0Nqv6TG/CK1fDZ29YTcAaPm90LJGy6Ye+jvOQTe+Vb8bn5+5HHy/dHIBfvvYV9LStrW0MyJKD7PP9bL5WJCIyAjYDxMF6H0NhoiIiIiIKFkEQdgjiqLiRUQGqGc4BqgTEVEy6H1yVB68KIkUNPeD3x1QDexK58XvZAbLxHOhP1rgIYN7lDkH3fjBzgN48+Ap+DXcEECULWIJWI2UefvhxbNNeROE2YOt1UQbX6RxWjLrqnzcOs+had+ZfZyJNo6GiieQQqlN/ei+BZqXGancetRVrb8TKShcIt1U+PCiWVi7rAwr63fj2Giws9I6yuvl7KsKcHLQHXWbSGP4WwdPQbpHzyIAd1RMxY9WLIhre0hlUTuFZhGAhxZF79ecg27Ujc4vxBjnF1q2sZbfC61z/9F+BK/u7RvzmbwcAXcumIZv3TQD39u2N3gT6ZLNb+P4uSHkWgUM+0TMnJSPtvVLI5ZJb2YOWMrUMYRIzuw3vMYy9hMRkf7YDxMFMECdiIiIiIjMIlKAek6qC0NEREQkkQcv9jhdwdeqr7kKP3toIcbn5cAz4kdeTiDL4/i8HDjG28Oyi8sDHdNBHiyzraMX2zp6dQ2WiedRmY4iu+I2vGXzO0kvr55SHdDjKLLjyMAl+EXAKiCs7hFls1geEb1r7ZIxmbdnTMzHzx+5Kfi0DLM9ZjpTHzEebXy5MDSMeVMLsXZpGba83YPzl4ej7rtUjIupoDaOKo0HbetqVQMp1Ki1Ka3LVKNXXdXyO1oCpwHgzgXTcNU4Gxo6Pse2jt6w99zDfrz2YT9e+PbC4Gvyetn6iVPTNnEU2TGlMA+hD5Dxi0BxYV7c47hUljuvnYq63x1A79nLqjewRWobjiI7jg5cgigGgtrdw37s/uyMpjLI65cS97Aff5BtR7nQOveTlZX43b4++EVAAIKZ770+EePzcvA//nAQFz0jePI3+/HmU7fh2pIi/P/Z+//wJs47b/R/jyRLtpENxLYAm4BDMKTgJCZxgSSk4UfSpglJINmSboHTfba7S775Zsk52esAWdzr6dmQJtnrpNeGtPuUPe1z9ll+pEm+xE0bQ9Lilta0xK4JpCZpghMgBhsjm1+2sCXZ0nz/EDOMRjOjGWkk2eb9uq7dBiPN3HPf99wjrPd8ZvFsX04/d6dyno0UY/UaQqRm5fPiSGTl2k9ERPbjOkxEREREREQ0djCgTkRERDmjF1685frx2Hu0G1v3tScNzY2UL7+zEZZJ9Vi1+nC0hXuyGehRB+2kgNuulg6GiYgsmFM+HoVuZ9zPCtxOOZw+moyksHUmbthJdn1p2Xyv/N/Lby03tc3Rdp0xYvYGMTuDFKnclAbYN1etbKf+yTux9qctOH85DHWB8cqScdiyohrvftSNnv4gtqyoxvqlM7Flz1/wzoddiIqxytdTxhegsqQg7r3qeblue6vpcPRrLR0JP9vR3IE3D51O6ZxVtuWumaX4oqUjbowhAqu2HTQ8L9V9Gr3SWf7+kKnPN1rzq7KkUA7Lu10CyscXoLJ0nKVju2/OJJQV5ePznn6cC4RRnJ+H1i8uxN1EoLyJ9OSLDwLI3efu0RhYGknXECIyJ9XrMBER2YPrMBEREREREdHYIIh6zyemMaG2tlZsbW3NdTOIiGiMsfPxkvf94Hdo9wcMXzNawhub69uwq6UDbqcD4UgUq+dPy3qg2UpwUd3eR+dV4POeyxAEYNva27Ma9NFrt15VVjvmhN4++Sjh1GW70j2NfPOf34cJhXlxlbeVYefRYiStC3X1bdjZ0pGTa4xVI+G6mG3rtreirCg/LkihDDdnWjpzVbmGQ0TcdjwuB7weF7b/3fyEm0zq6tsSKqJL1ixIHHN/XxAPvtqE3kA4Y3Mjk+es1hiXeT1Jz0t1m7Qk+3yj3vf+T/3ovDhoaz/W1bdhZ3MHCt1OXA5H5J+rn4CRS7k+z6waSdcQIiIiIiIaHez8DoaIiIiIiCiTBEE4JIqi5hc1rKBOREREOXVpcAizJnmxfmkVfvDrT9F5MQhBwKistjoSqvtYqTSubu/vPvXj1IVYNftsVCpX0mt3Jivw6u1zNFbmHCmyWel+NGBgX7/y9mjrm5GwLozGCrwj4bqYbbl+sks6c1W9hqu3ExoOY9f7V58moncTmQBg4Y3X4cayIs0x39rYjp7+MGb5vPi3b87LyNzI5DmrHOM3W09pnpdupwM10ybErXHKNrmdAsIREU6HgEhU1Px8o7VOWqkqb3WdVY+nMpwOjKwnYOT6PLNqJFxDxqrR9nmCiIhGLl5TiIiIiIiIiIjsxwrqYxwrqBMRUSZksnrHWKy2mo0vudKpNK73XrPvT4eZdts9J8zsc7RV5kwm03Mwk5XuR7PRVOk621LtG7vmcirbyfW6wAq8uTPawipW56reGu4QAFEEtH5r5HE5UP/knVjz0xZcDg0jNJx8Tmb7WpHJc1aaE997aA5+/PvjcVXRPS4H7r3Jhz0fdSescco2Pf2zw2j3B+BxaX++eeb1I3jrcCcem1eBlx+vsdxGq+usVoX3onwXnr3/JvznwZOj9gkYI0WuryFjFT9rERGRXXhNIaKRhhXUiYiIiIhotDCqoM6A+hjHgDoREWVCJn85ajW88XHXJTy+7X28/sTCEVPVUS0bX3KlE1z09wVR9/ZR7Pv4LKJXPho6BeC+OZPwLyuqMxrGM9NuuwM912LIM9Nz8FrsUyMM7OtLt2/smsvSdsq8HryzftGomadj8Sau0WCsh1WM1vCX9n6C3R90wikAERFxf7d1Xzt2NHcAgByyfnReBU5dGNQM86v3IwjAV+dMwnMZ/qyRCco5saulQ/78pEdrjdP7fJPqOimF5o90XEA4ktggM+ss1xgaLfhZi4iI7MJrChGNVAyoExERERHRaGEUUHdluzFERERERpTB4y0rqpO+/umfHUF/aBhPv3YEv37mnkw2zTL1l1w7mjuwo7kjI19y+YrzUeRxITQchcflQGg4iiKPy1Tgy1ecjzKvJy5cFRGBUq9H8/12VpI1026rc8KOfWZSNivxZmsO5rpP9eSq6nHThiW6Yc+xIJ1+TbVv7JrL6u34+0OY/3zjqAkf9AZCWL1gelyglRLZde5n8zqeS9IaHhyKQgAQHIrinQ+78PaRLvk1Ut5Z6+8AIDQchUMAWk6cx+mLg9i6rz0h2Ky8VjgEICoCx3su5/xaoZRs7mjNiWQeqSnXXOP0Pt/o1ZFIVl5ia2M7/nTyPB6dV4GhqCivs3kOYCgKvLzqlqRt5RpDo8VY/6xFRETZw2sKEREREREREVHmOHLdACIiIqJUVG5qQOWmBrT7AwCAdn9A/tlI0bRhCR6uKUd+XuwjV36eA4/UlKNp45KM7E8KFf3027Uo83pw+uKgpfdeP7EAD948BQ/ePAXXTyxATyCk+VopALV1X7ut7a5/8i6sXjBdd792ysU+JXb3n5FszkGjPvX3BbFq20H4sxx0y2ZfK43UwL5d1P1qZXxT7Ru75nLThiVwCIk/Dw1HMbtur6Vt5cK2tbXYsqIac8qLsWVFdVpPkxjL7Dr3s30dzxQz52hvIIQqnxcAUOXz4u6q0rhjB4A7byzBY7dNxfwbrkPJODc8rtjJJAiAgFjg/NSFQYhiLLhduakh4bx6raUDogj5pjjp89tIOf9e3PsJWk6cx9f/rUmzv6Q5IR27xyXgkZpyfP3mybrbfPtIF+5+6bcWWqGXUNf++ey6vajc1IAdzbG+3f1BJ35xpAvBodg6O3QlT//Pbx1NumeuMTRajPXPWkRElD28phARERERERERZQ4rqBMREdGotGf9Ivz9fx1CpyKEPXVCAf7j27fnsFXxsv0llxQiqqtvQ08ghKkTCiy/10imKsnaXSF9pO4zF5V4szkHjfpUGRZVV9TNhJFQ9XgsVqHV61enAEQB0+ObSt/YNZd9xflYUVOBtw53yj9zCsDyW7UrHNPoYve5b3Xe5eqpDckkW4PV/dbuD6DdH4BDiEWlnUKsgnpPfwi7/n4h6urbcPD4eQCQK6HfUDoON08dn7Ty5Dv/uAhrf9qCQGgIoWEx7nW57D91H5y7HNZ8usLVORELi4eGRRR5XOi5EvD/zB9IiJdPGZ+Pt5+6y3RbDmxcinv+799iMHy1PYVuJ/b/n4s1+0ir6ufEQjfOXArGHVNfcFi+kfPkiw+abg/RSDUWP2sREVFu8JpCRERERERERJQZrKBOREREI5ZRxc855eNR6HbG/azA7cScKeOz1TxTslmpW11BU696aarGSiXZbFHP31z1Xy6rxWd6TuoZCXP1uUeqcexsP0qL3GOmCq26XyUREZbGN9UKvXbN5cvhYblStONK8JYV8saGTJz7VuZdrp7aoMfsGqzXbyJi53ZEVe18R3OH/F6pEvqJ3stxVbv1wvy7mjtw7nIYoWEx4XWp9J/eZ0WrT+7QKU6e8HSF2XV7sVNx/ECsX/d/2oMZZeMgaDyh4cylIO5+6bem2+QrzkfJOA+AWGV6ACgZ59btI60bKZbd5MOO78xHQZ7qs3KeEzv+br7h/olGC1b8JyIiu/CaQkRERERERESUGQyoExER0YiVLKh0aXAIN5SOw41l4zCjdBwuDQ5luYXJZfNLLruCeXoBqrH02GOrwbVUqOdvrvovl1+05ioonum+NjN/RlpQ1Q7qfhUEoLKkMOXxtXoe2jWXt62txYyycVizcDre+ce7sWZhdm/coMzJxLlvZt7l6macZMyuwXr91vzssrj3e1wOVEwogMcVi007hFh1dWnbU8bn47HbpqL+ybvw6LwKNLSdkc9vZR9JQsNROCBgV0tHyv2nt9ZaXYMPbFyCqRMTnzzztbmT4vpL1Emyi6KIbWtr8f6zyzB5fL7cL04hVkG9aeMSS22aW14s30hT5fOi8+KgYR9p3Ujxnf/VisGhSNx2B4ci+M5/tprqEyIiIiIiIiIiIiIiIqJ0uHLdACIiIiK12XV7ERqOyn/e0dyBHc0d8Lgc+HTL1+Wft2y+F3X1bdjZ0oHV86dhy8qbc9HcnPP3BfHUa4fxw2/NsyWYpwxQqft0rDz22OgY02U0fxfPLhsT/WdWLm9qyORcNZo/Ztev0Urdr/s/9ac8vpk8D5NRhoy3rKjO6r6zTXmNGAk3FGW6Pbm4TjVtWIIte/6CX33UjeBQFPl5Dnxt7mRsfvBLGd+3EStrsFa/qd8fjkRR6HYiHBEhCFerpyurdkvnckGeExcHh+Tz27CPRMT9nSAAX50zCc+tqNadL7M270E4cjUsLq21ambXYF+x9lws83ri9ntg41J8Y9tBfHFuQP5ZZUkh3njiDnk7y27yYVdLh9xn/r4g5j/faLpN6utIuz8AIFZNXep39RzTWtMqNzVoHpNy20Rj0Ui77o017F8iuhZx7SMiIiIiIiIiSg0D6kRERDTiSCGm9452y6Go+6vjg15jPQRqhTLkmU4wz0yfjvZQZzbmjVEIT/lF5vqlM/HUa4fh7w+O6S84c3VTQybmqpn5M1KDqnZR9+u67a1YPNtnaXy5fmdXLm8EyEV7snmdsvsGsUwwuwbr9Zv6/b/6qBtVZV4c8wfgEIDJxR785Nvz5W0bnd9/dftUzT7y9wVx8PNehIajEACIInCsux++onzU1bdpzpeHbi3H7g864RSAiCKwve4rM/Dj3x83XIP1AkZzy4shALhl6gQAwJ9PX0x4uoKvOB+RaHwV9UhUjNuOus9On7+M4kK36euCdB1p+LALigw+vB4n+kMROAWMqDlGNNKMtOveWMP+JaJrEdc+IiIiIiIiIqLUCHqPJ6axoba2Vmxt5eObiYjIXvv378fixYszuo/N9W3YqaiEuWZBfIV0f1/QVAh4tDOq0qQOgUlSDXleC32arWPcXN+GXS0dcDtj1VO1Kvyz+v/oY3b+mBn/a9m1sNaMBHZfI8Zae+zwT28cwe4POvHYbRUIhIZRVpQfFwRXhr5zxc5qj2bGUH1+e1wCvJ48bP+7+XhlX7tmH9XVt2lWP7dK+qyYbA1O9/q7bnsrjvdcxmf+AGb6vJhRNi7pWKvbVOb14J31izTHRK+f1RwCcPyFB3X//pcfduIfXzuS8PMffqsGy2+pSLp9otFmLF5nRhL2LxFdi7j2EVEuZeM7GCIiIiIiIjsIgnBIFEXNL8sc2W4MERERUTKz6/bGhdOBWAXO2XV75T/7ivNHbLVSOymrNKk1bViCh2vKkZ8X+0iXn+fAIzXlaNq4JKV9me1Tf18Qq7YdhF+nCmuyv08m3fcbyda8kaqn1j95F1YvmB5XgXV23V5UbmrAjuYOiGJsblduaoib3zQyKeePYFDB1mj86dpZv3PN7muEVeq1XGqPxxVrj8eV3fbYSVrHd3/QCQDY/UEn3vvoLN5sPYU55cXYsqI6a+F0f18QK3/0B6z40R80r5tGnyOsatqwBA4h8eeh4ah8DUs8v0WcuxzGrvc78Nwj1Th2th+lRW5sWVGN/Z/2yNfDZKT5u2f9orh57XQIWDy7DI/dNhU9gRD8fUHsaTuDR2+rSFiD7bj+zq7bi/c+Oot2fwAigHZ/AO99dDbpNpTXhaoyL/z9Id0xSVZIwuMS8EhNOd7/52WGr3voVu0Q+rUWTs/k50oaWXJ93Rvr2L9EdC3i2kdERERERERElB4G1ImIiGjE0fsC6KffrsXN//09fHzmEoDMhUBHQpDFTIgqEyFPM32aLOym9/dm+9XOMJ2WbISHt62txZYV1ZpBxdH2BedIOB9Gkt5ACFVlXogiUFXm1Zw/RuNPMaMlxD+a538mrhFW+uPFvZ+g5cR5vLTnk4T2APo3eIwGegHiXDyhbmtjOw6fuogjpy7GXTf1PkfM2rxXHkOr89tXnI8VNfHhZqeAhGtYbyAEB4S4apM7mjsw//uNaDlx9fquvh6qeT0uAIibv3PKx8fN66goYuqEAry86lZsW1uLrY3tuDg4hAKXM2ENtuP6m+qNFtvW1uLN1lN4YGsTjvkDcp9oB+Q17gK4wiEA4Yho+twRBMDtFPDf7pwOt1OAoL/pMSvTnytp5OANcJnF/iWia9FIWftG879LiYiIiIiIiOja5sp1A4iIiIjU9L4A+r9++TH6Q8N4+rUj+PUz98SFPresqLZt/8ogy5aVN9u2XbP8fUHMmVKMsmIPfn+sB8GhKPLzHPja3MnY/OCX4l4rhTy/NX8adrV0oCfNL6uM+lT9aOMdzR3Y0dwhP9o42d8n69dk77fLtrW18PcF8dRrh/HDb83L+heLI+ULTrNyfT6MJOo5eswfwDF/ALPr9vLx3hZlav22Wy7mv53rU7JrhNV9mekP9Xmy+3Andh/u1HztjuYOvHno9Kg7fw5sXIpvbDuIL84NyD+rLCnEG0/ckbU2qPsZiL9uNm1Ygi17/oJffdQd9znCJQh460inHNa1Mr/9fUH89lM/bigpxIkrxx4RkXANk66zyv3rtfPBm6cgOBSF2ykgHIkF/KX/Ho5GsWZh4vzVmtdGnyGaNizBU68dxvcemoODn/emdf3VutHi4OfnTL1Xb0yUn+1m1+1FOBLVfL8DwMIZJZhR5jX9ee/ECw/K//3fHx65a20mZOtzJY0sdv/baLTJ9L9xrvX+JaJr00hY+/h7GSIiIiIiIiIarYRcVPii7KmtrRVbW1tz3QwiIhpj9u/fj8WLF2d0H+u2t6KsKB/fmj8ND2xt0n3dyRcf1P07q7TCXgCyHmSpq2/DzpYOzCzz4rOeANxOB8KRKFbPn5bTL6LUYTNlsMpXlJ/w9x6XAK8nD32DYQxpZK3U/Sq9v+HDLkTEWFXW5beWy9u3k9THuepT5fyWvuDMVZVtvSDLSDkfRpJk58BIYDaYlMubNEaDXM7/bK5PZvdlpT9mbdYO2OY5BXz95ikj+vyxYtFLv8HpC4Pyn6+fWICmjUtNvTed80967/cemoN/2H4org0OAbhvziQ8t6IavqJ8bK5vw66WDridDs3xU0s2v+vq27CjucP0e6X95zligXOnQ0AkKsaN/WP//kecujCIiYV5KMhzwukQsG1treVro9H6vHVfu/y5qt0fQH6eAz/5di3ePXrW8vVX71xwCsDnLyT/TKock3AkivvnTsaB9l68/sRCzJkyXj6OXxzpinvflPEeHHz2XvlYuX4nNxqu2UR2y/W/cYiIyF78vQzRtS0b38EQERERERHZQRCEQ6Ioan7hpv0cZSIiIqIc27a2FltWVGNOeTH2rF+EigkFcX8/dUIB9jy9yNZ9Nm1YgodrypGfF/uIlJ/nwCM15WjauMTW/eiZXbcXlZsasKO5A6IItPsDEEUgKopYvWA6egKhrLRDT7LK34l/L+Lc5TAerqnQ7Nf6J++Me0Tx3f/6W/ziSCycDsSqsr59pAt3v/Rb245B3cc7mjtQuakBs+v22rYPM5Tze8uK6pyF04H4SlxKuT4f0pWJR2CPhur3euOZ6uvsNloeTZ6L+Z/N9cnqvqz0x4GNS1BZUhj3s8qSQvxh09IRf/7oUc/b2XV744LhAHDqwqDpsUrn/Nva2I6WE+fxwNYDCW2IikCZ1yP3qVTtsf7Ju/DYbRWYPD5fHkOHEAtVA8nnt3K+qBm9V9r/z/+/i1Dl8yISFeWx/+WHXZj/fCNOXTmGCwND6LoUhL8/lHBtNLNuaK3P71zZh/JzFQAEh6JY85MWvNl6Svf6q7fPpg2J8xuIfWYxc74qx2T1gun4/bEe+elAyuMAYmMEALN8XtwydYK8jVyt36PNaLhmE9llpPwbh4iI7DXafy9DREREREREROTKdQOIiIiIkplTPh6FbmfczwrcTsyZMh6AfZUkcx1kqX/yTqz5aQsuh4YRGk6/0mMmKmwme7RxbyAEB4S4Ck+7P+iU/1vZr7uaO+IeUdy0YQke/tEB9PSHEYnGKq36ijx4+6m7bGk7EPtyT6+aphVjoXqpuhLXjuYO7GjukCtxSedDcCgKAbFA32gJdvn7glj+6gH4+0O2PwJ7JDzeW0uy8bT6ukwZLY8mt/t6YGbNsGt9MsPqvqz0h684H8PR2J1GbmescnYkKsJXlD9iz59k1PM21bFK9fzz9wWx4IVG6D0AzwFg8vh8QEDczWzK8PXLq2rk6t3SGAIwNb/VxytVQnc7BcP3Kvc/o2wcFswokcf+9PkB/L69B1HVMYWGo5hdtzeuP7TWDa1zSj2/Tp+/jOJCN9472q1ZeVJrX0b71KtgCcD0HNi2thb+viDmf78x7uft/gAqNzUAAL42dxLWLIw/T55eViX/vSTb6/doNFrXHCKrsvkZgoiIsifXv6ckIiIiIiIiIkoXA+pEREQ0KlwaHMKsSV6sX1qFH/z6GE72Xoa/PwhfUb6tgcdcBll2NXfg/OUwAHOBsWRe3PsJWk6cx0t7PsHLj9fIP7carla+Xhk227KiOuG1UvBKHZCYWOjGnTeW4juLbsBDrx6Iq8KqDFj91e1T5fBcOBLFspt8tn7xZteXe6MlZGvETJClNxBClc+Lz/wBVPm8Oa/ib8aszXsRjmQugJ3sHMgVs8GkXAWY7AzGZ+sGETuvB2bWjGyGD1LZl5X+mFtejMWzfQmvtXL+jIQbgYzm7V/dPtXyWKV6/r249xOIInD9xAL0BEIJIfGhqIilN/mSXo+UY7hueyuA2JgkG0+t+VLl8+KVb84zfW5ojf0zrx/BW4ev3sTmdAhYfssUuT+M+v8bt09NOKe09rG5vg3hSBQOAXFhePW+JHr7dDsFzC0fj7JiD/Z9fBZREfI2pZu4XIJgaq5ubYxVPi90OzEQjsT93YPVk/GjNbcnHMd9P/gdAMDrcWI4Klpev0fC+ZQLI/WaTWQ3BhiJiMYu3nBHRERERERERKMZA+pEREQ0KrRsvlf+7/ePn8POc5dxx/cbEVGEjewIouYiyKJVkTM0HAtTKQPBZsNF6u3tPtyJ3Yc75X6xGq62+nqtgMQyRXDu4LNLdQN63/350Yx/8ZbOl3uZrD6d7fBYsiCL+ljb/QG0+wO61WZHgtl18eF0iUPAmH8EttlgUq4q4ycL5lqZ/9m6QcTs9cCo7VbXjGyGD6zuy8r10Y5r6Ui4Echo3qZyvbIaIFTPn1MXBuX/jkTFtELiTRuXyv9tZoy05suc8uK0PitdDg/jhtJCnOgdgEOIHZPUH/6+IKp8Xpy+MIjBoYj8ZJnwcBSh4ah8o5vZc+rznn583NmHS8FhOFX7UtIbc5dDwO4POpGf50BURFxQv2pSEfa0nUHLyfOGx6seT3U4HQAajnajYVMDBADNm5dh/vPxldYDoavvsRJAHQnnE5l3rd5QQOlhgJGIaGziDXdERERERERENJoxoE5ERESjhjrYo471jNZHmRsF4JShFLPhIlHU/nloOIrKTQ3yn5OFutIJYxsFJIwCetn44i2dfWSy+nQq4bF0A0xG45SrStup0rrRQ7KypmJMBrzU4282mJSLyvjJgrlm5n8mbxBJh1Hb1eeRx+WA1+PC9r+br7kt6SkU2QgmjtSgw0gaZ7uvV/6+IPa0ncGjt1XgO3fNSBog1LueOwXgrxdMtyUkblYm5su2tbW4+6XfAAC+PncyJno9cn9sbWzH0a4++bVS/6+sqcCwKCa92eV7D83B9375cdx5tG57K8qK8nXXSOm9UycUyGMeHIri7SNd8muCQ7G5GRVFOAVBvnkLiN1AULmpQXOuagXuAWCc24lpJYX4y5l+ALHPsqVeD05fGMRLez7BnvWL8Pf/dQidF6/enDDO7cRLj92C90+cTxpAHUnnE5nHGwooFSP1uk5ERERERERERERE1y5B1PvGk8aE2tpasbW1NdfNICKiMWb//v1YvHhx1vfr7wsmBGZdDgGBUAROAYgCWD1/2qgMcmyub8Oulg64nQ6EI9G449AL3uqFi/x9QazadhAnzw3IP7t+YgG2rb0dP/798aRBeOV2zATnU6EVElOGKrSMlGqSRmOVCqPxbdqwxPCY6+rbsLOlI2Pz3u5jzSRpvjZ82BX3ZIUbSsdh1iRv0vk1GqUy/lbXEztpnff7P+0x3Z5MrkmpMNuXyvNIev2aBfpjlunzOlXprMFW3jvSxjmV65Ueq2OrdT0HgBtKxuG3/+filNqgtY9cXFuNbirS4xCA++ZMQqnXo3ttkvp4ZpkXn/UELJ1H0nunTijAPbN9+Nb8afjJgeN464NOzde7nQ7cf/NkU3O1rr5NrvoOxNYJqe3NJ87LIXczqnxe/PqZe0y9dqSdT2Qsl9doIiIiIiIaWXL1HQwRjTwj5bsxIiIiIj2CIBwSRVHzC1RWUCciIqJRQ1nJFLhaxRKAHEjd1dJhW6BP75c+mfhlkJ2VrH3F+RiOxjrEIQBRETh/OYw55ePhEgQEh6JwO4WECsZa2zGqeGwkWR+lUuEv09UkzY6r2SrVZhmN79Z92secrYqodh9rJknzNSJenfezfF7cUDZuzIXT0xn/XFbG1zrvjcKTaumsSZlgti97AyEIQNIxG+mVjtNZg628d6SNsx0VaVMZW+maFBpWPy8GOHHusvxElJMvPphSmyR2XFtT+Vykd/6s+8oMvNLYjvc+Oiu/VgqmP7eiGr6ifKzb3ppwbVL3sRT4NtPX6veeujCIHe9/gTdbT6FpwxL87tMenLsclv/e6RCw/JYp2Pzgl/DKvnbDuaoXOJZ+pgytG5k1yYv1S6uw9TftuDgwZOo9wMg7n8jYaHt6DRERERERERFlHp+0RkRERKMZA+pEREQ0qkiB2fvnTkbdz9vQcX4AUREZCXDo/dInE78MMgrApRIu6ro4CCAW0gWAy+GIHGYDgHvnTMZ149xJA8epBpSVfbR+WVVagf5shTbNjqsdYUUlrfH95YddePtIl/wa9TGrA0wAUFlSiDeeuCPt9ijZfayZ1hsIYc3C6YaVjsdCtZF0AmwjLaxotT0j6aYJs23ftrbWVBB/pAYT01mDU31vrsY5U+uDNLbvHT2D0HDswpxszZauSVMnFOCBmyej9eQF+PtD8t9PnVCA//j27Sm3yc5rayqfi/TOn5X//seEQHdUBPZ9fFZez41udnnvaHfc+91O4Os3lxueR8luFDt3OYzifBf6g8NwCEAkKsrnerK5Wv/knVj9k2ZcGhiC1CopcP/0sqq4J9t4XAKcDgcGwldvSpDmiTQfl99abqp/lUbSuknGRto1mohoLBoL/x4kIiIiomvDSC9oQkRERGQGA+pEREQ0qihDSXfNLMXJ5g4IiFVTlwIc6X7hqPdLH7Vs/jJIL1ykd6zvP7sMq7YdxMlzA5rb29N2BgDgcTkM92s1oGzUd6kG+jMd2hwJv+RTj+/p8wMoLszTPWZfcT7e+bBLvgEBAE6eG8D85xuv6V9OmpmvY6HaSLoBNuWNPs+8cQSnL2ivE9liJTw50m6aMNt2M2OWrWCi1WukUaXrVdsOGm4n1fU7V+Oczvpg1K9m1mzp/Uc6LiAcufrCUxcGcerCYML+Tl8cxIOvHEDz5mUpzRGzY2N0XOleP7XOn6YNS/Dwjw7g7KUQRMTC3PkuJ+bfMNFwW9L5E45E4RSuPlknHEHCeaQ+JuW5Jwix6ubvqG4U6wsOAwAcDgF//eVpOH3+csL8V4blpe3vau7ABVXF86gIlHk9mFM+Pu6cD0eiKLzyscztFBCOiIhExbTXgJG2bl7rkq3BvKGAiCizxsK/B4mIiIjo2jBSC5oQERERWcGAOhEREY1avYEQqnxefOYPoMrnRU8gVln0xb2foOXEeby05xO8/HiN5e0ahfGUlS4z9csgreCKXrhI68tVdWBMj0MAmjYusbXtWpW9JakGvzMd2rQjpGfm741eozW+m+vbDI/5K1WlOHluAGcuBREajsIhAA/dalwl9lo2Em5EsFM6ATZpvtXVt6EnEMLUiZMy1UxL7QH0w5MjtdKhleCnmTHLRjDRaihHbw3e1dyRdDujpRqwHeuDUb/OrtsbF06XKK/D0vsfnVeBoagYd01aPKsMv/m0B2FFGx0CICL1m7/Mjo3RcaX7JZne+bPspknY1dIBjzMW2n70tgpTx9gbCMEBARExvrN3NHfgzUOn5RsBlr96AP7+UNxTXgrdTlSVeXHMH8AsnxflE/JRXOjWfFKJrygfdfVt2NnSEdcv0jpVOs6NlhPnMf/5Rs12uhyQP7Oqz/lffdSNlbdNZTh5DEu2BvOGAiKizBhr/x4kIiIiorFvtPxulYiIiMiIIIoa35LSmFFbWyu2trbmuhlERDTG7N+/H4sXL85pG8yGsAGk9IXj5vo27GrpgPtKOGr1/GnYsvJm3Z9bkSxoKYWejLatd/wel0MOjEnVWt1OB/KcAi6HI3Gvfey2Cry8qialNhqR+ijP6UB4+GolU2Vwzeo2121vRVlRflxgSxngSZeZcU02LmbGTXrNo/MqcOrCoGH/mjlmO+bjtcLfF9QNUl5rv9A1Wj9GajjDzPlFxtIZd+V6tPzVJs2wtd52Mr1+2yGd9cFMv0rbb/jzGUQUnffYvAq803ZG9/OMVFV79fxpEAHsaumA3q9wUjl/jcbG7HzJxHUonTljNJZ3v/Rb058drfK4HBiKRDXPDSMnX3wwI+2hkWc0XnuJiMYS/nuQiIhGm5HwHQwR5d5o+N0qERERkSAIh0RR1PyQwgrqRERENCppVe0MD2sHg1K5HU+viq0d1W31KidaqehlVLXUVxSrqiDiarhteokX7f4AHAIQFYFZPi8CoWHLbTQTXFf20dM/O4x2fyDt6g6ZrrBsNK7JxsXMuKlfs/uDTgDAHd9vxOcvaIfTzBxzNqotZ5tdlbLV22G1katG06NBWenQPumMu3I9ev/ZZZa2o17L/H1BrNp2cERVw09nfTDTr9L2I1ERzivX4Zk+LwLhYc33Tyx0484bS/GdRTfEre2rF0zH/XMno+7nbeg4P4Co6uYvq4yuM2aOy98XxJ62M3j0tgp8564Ztl2H0qkgrTeWVsLp0rH29IfQdXEQXZcGER4W4RCA8QV5uGXqeDSfOB/3+dNq8H3qhAL8x7dvt/QeGt1G07WXiGgs4r8HiYiIiGg04pPWiIiIaLRjQJ2IiIhGJa0vF1fWVOCDjgs4eW5Afl1lSSHeeOIOy9vX+6VPOr8MSha0tBJcSfblqjq4/KuPurFm4fSkVRaStVEvuC7x9wVxYWAIz62ohq8oHzPKxmHBjJKsBKiTtc1IOiE9M+MmveYXR7rith0RgcpNDSmHba3MR7uC35mWzjgm245dgf7R0pd6RlM4g4E++9g17ulux65z3G6prg9m+6M3ENK9Dqvfv+wmn9w3Wmv7XTNL8UVLR0bPXzPHtbWxHRcHh1DgcmJOefGI+ZJMayyltURdxV6LdKyvfHMeNte3YWdzBwTEbiy4MDCE5hPnEz5/Dosi3jvanRBUL/K40K9xQ+Dpi4N44JUDrKB+DRlN114iorFqLN7gTUREREREREREo//7+7GMAXUiIiIatbS+XBxWhY4iUdHWKszpSBa0NBNcUbbH6MtVdXBZGRozCpDptXHv0W5UbmqQX6dXxVgdPMxGdYdMV1hONi5mxk16jSBADrkB6VW+tWqkhkIldo2j2e2kMx9Hel+aMRrCGdJ6N3VCAQN9NrFr3FPZzkivhp/O9cqoP7Q+R6i3b7U/la//yYHjaGg7g/X3VgEibP3lm167RutYSlXsBcSeriP9r/Lv/8ea2/HuR91xT86B6nXBodixR0URqxdMR09/EKVeD8KRq33iABAFMKEwD6+vW4jlrx6Ie8qPQwDeWb/IluOl0WM0XHuJiMYyVp8kIiIiIiIiIhqbxsL392OVIIrGlaNodKutrRVbW1tz3QwiIhpj9u/fj8WLF+e6GZrWbW/Fvo/PIiICTgG4d84kzUrhZvj7glj+6gH0BEJYPX9aWh9klUHL+iOdcDsdCEeiCdtdt70VZUX5mhVWpfb4+0NYsyC99hjZXN+GXS0dcW1cv6xKN1zvK8pPCKtJshFW8/cFDdtmB6NxMfP3ytecD4Sw52g3HEIs8Jbu3Eoml2NjhV3jmMn5MFr6cqyoq2/DzpYOTJ1QgHtm+5I+AYKsyXYlgVTOzbFQ7UCax5la65XbB5DRfUmycd21m78viPnfbzR8zfUTC9C0can8Z701X8njcqD+yTvx8A//gK9VT8L5y2GcC4RR6vVgRplXXq/u+8Hv0O4PyO+r8nnx62fuSe+giIiIiIiIaMwayd/BEBERERGNFPz+fmQQBOGQKIqaX+CzgjoRERGNGcoK3wAQEYH3PjqLyk0NOPnig5a2ZXd1UOmOzTMTCgwrJypDl+uXzsRTrx2Gvz+Iu1/6rW57mjYsyXjF1GRVwpNVh88kMxXM05Ws0pqZSmzSa9Ztb8WahdmrnpnLsbHCrnHM5HxIpy8/7rqEx7e9j9efWIg5U8YbvnYshHLToV5/T10YxI73v8Cbraey+ouEsTYO6uOxs5KAmb5K5dwczdUOMl1lXGv7mdiX1thm47prt62N7RAEYPp1hejuC8pV0Me5nRgIRzDT58WMsnFx71Gv+WqP1JRj84Nfwur/pxnDURHHugO6ofNLg0OYNcmL9UursPU37bg4MGT/QRIREREREREREREREV1DRksW4lrGgDoRERGRit5dlg4BaNq4JK1tWQlaSsG8O77fiIjGQ2+k9mzdZ2+ATy9srRVclyjDam6ngOBQFC5ByHhYTQrOFbqdhsH/kSRZmN3uUOxoChIazbFcbEc9Fun05dM/O4L+0DCefu1I0qq5ozmUawc7fpFgx3k0msdB6/hf3PsJWk6cx4LnG6G8pNgRZjbbV2bPzUyHu7Mh078QU2/fIQACYjfn2bkvvbG1a53NNPVcOnluIO7vL4cjAIB2fwDt/gCqNu9B+/MPALh6/dQKpwPA20e68PaRLvnP7f6AfLOk+sbIls33yv+9/NbyNI6IiICxdxMZEVGmcd0kIiIiIiIiorFoNGUhrlUMqBMRERGpiBphcInVD7JSgKzhwy5ERMApxIJJRqGxWZv3IKxIpEd0XhcVgfnPN8p/znSAL1mwWgqrnb8cxp62M2g5ed72NqhJwbnV86fJbdKrYG5Vpr/A1dt+JkKxoyVIaKYSfTa3ozUWVvtS/WQHowDjWAjl2sGOXySkcx6NhXFQHv+bh07HHY/6EpdOmNlqX5k9N8dCtYO4G7dcjtiNWw77btzSOk8A2PbLt2Rja9c6m2nJqqCrTZ1QEPfn11o6dF4JTCzIg8ftQPelUNz7/+Pbt6feYCIyZTTfREZElAtcN4mIiIiIiIhorBotWYhrlSAaJbBo1KutrRVbW1tz3QwiIhpj9u/fj8WLF+e6GQl++WEn/vG1Iwk//+G3arD8lgrT2/H3BbFq28G4KptejxO1ldfhP//bfEtt0qvGbhR0/Kc3jmD3B51wAIgC8LgElBXl4/SFQfk1AoCyIg/mTZuA3x3rSQjwpRpKSyeUbeVYre5H/fpU+tWquvo27GzpiIXfFV/g2hVcV28/G8dE2tKdX0Zz4uOuS/j7/zqEzotXz18pwDhnyviE7eiFcq+1u7zXbW9FWVF+3C8SlIFYPXacR6N5HPSOX4/H5UA4Ek1Y58zKZF898/oRvHW4E26ngKGomHIbMynZ9UCaxxcCITQc7cb1EwvQtHGpbftXnifrtsf+3b9tba2lc0aP1bEdyVU5N9e3YVdLh+ENiFpOvvig3A/SjYZKaxZMQ/OJ82j3B+SfVfm8SZ+SQUSp4+dlIiJruG4SEY1eI/U7GCIiIiIiIjVBEA6Joqj5xaQj240hIiIiypSHbtUOoVsJpwOxqqTD0VgKye0UAAATC92Ww+lArHLn5PEeOB2x7TgdAqaMz0fTxiUJr521eQ8qNzVg9wedAGLhdAAIDYsQEAs9CYhVYRcBfHXOJJR6PSlVGZZC+H7V3aPKqlqpHOvDNeXIz4t9xMzPc+CRmnLNY1XvR689eq+3sq9kx6w2u24vKjc1YEdzLMy2o7kDlZsaMLtur2ZbrNLbvijC8jGleowUL935ZTQn5pSPR6HbGfezArczIZwO8BFkStvW1mLLimrMKS/GlhXVpoO2TRuWoLKkUP5zKufRaB4Hrbn7tbmTMHVifFXowjwnHrttKuqfvAurF0xHTyCktbmkMtlXf7ryFI5750y23MZsrYXKc19rn/s/7cGO979Aw9FuAMCpC4Nx15N0Kc+Tpo1L0bRxadJzRt1Ovb7SG1uISPvzg7TPj7sumRqndMdTqpyx4zvzIZh4/dQJBdjz9CIAV/tBGU6fdl0hrp9YgJ5ACJcGhzBrkhc//Ot5mDXJi0uDQym1kYjMSeXfAERE1zKum0RERERERERElEuuXDeAiIiIyE6CAOQ5BKxeMA07mzswFE3taTFzy4uxeLYv7ccA+YrzseymSdjV0iFXql12k08zvPfQreVyOF3t1IVBOARg9cLERxOl8rgi9eOd1VW1djR3YEdzh6WqWmaCinr7cQqxQL76cdNG7fqr26fG7cspCHhql371VrOPtG7asESzauyeP3ehclNDWn1ktP3ND34Jr+xrT/mGg6deO4zrJxbwsd0WWJlfWmNh9ryRAozrl1Zh62/acXFAP8DIR5ClTqs6YHAoil9+2IVXvjnP8L3q6s+jeRze//wcgkNX526Z1yP/ndspIBwRUeJ14+VVtwIAtqyoTmt/dvWVNAZHTl1EWDGOe9rOAIhVeTTL7Hpvtk3q64reuQ/EX8eM1vtU9msHdd+o/6zct9bY2vH5QdrG0z87gs96AknHKZ3x9PcFcWFgCM+tqIavKB8r51XgrcNXP2sJiN30p9R7OYRSxXnTGwhhjerzl3QDgNRf82dch1/dysrpRJk2mm8iIyLKBa6bRERERERERESUS4Jo9RnHNKrU1taKra2tuW4GERGNMXy8pDXrtreirChfM9gE6D9yWaIMtKX7JaLevtxOB+6/ebIcogOAypJCvPHEHZb2mexY/X3BuLCeHinYpn69si+++/Ojcfv63ad+nL44iNXzpxmG3NX70LK5vg27WjrgdsZuKlg9fxoGhyLY/UEnnAIQEdMbF63tb1l5c9L+03Pjsw1x1V31jjGTocfRQH38VuaX1lgYvT9Z/17rY5EJ0ni882EXoiLgdgkoH1+AytJxSZ+AUVffhp0tHQnrh9X953JM/X1BLH/1APz9IVT5vHjlm/PiAuOprC3ZJI3BypoKDItiSudVKuu9FuVNP28d7kyYF2auZdI+9dZ7I3bMR7VknzUkjitPaTF7LXU7Bdx/8xRT45WsDepxsjqeWuegsi/fPHRad//j8114fuXN2FzfhkvBYaxZYK7vMzFWRGQs1c/LRETXKq6bRESjE7+DISIiIiLKjlx/xzsWCIJwSBRFzV84MaA+xjGgTkREmcBfjsZL9wOrOujmdAiYVORB16WgblAsnbbqBWoXfr8RWgXnrQTBzFCH9aZfV4juvqBusE0v3CdX2+24gLBGOttMyF2v3covcB969QAiOp+ZzQbYjLafzhfERmG/R2rKE47RTJBuLP8DTOv4UwmPKqX6foYaMyPZeKjnt12BZgD4pzeOYPcHnXjstgq8vKom3UOxxI7jyNW5b7SOSU8eMXuemF3vkx2rmZt+pLmW54hVpXc6BESiYsI+raz3ds5HNXXfeFwCSr2xpwWYCY1rhfIrSwrx76tvw7f/3xb0BsJJ10FpG+8dPYPQsBi3j/urJ2PdV2bge7/82NRNRFrjZiaM7hAAUUysmp7s+NUyOVZERERERERE/A6GiIiIiCg7+L19+owC6q5sN4aIiIhorNna2I4/nTyPrfvaTQfolME49SOXw5FYSH3Nwun41vxp+OmB42hoO4P191alHRo0erzzV6pKcfLcAM5cCiI0HIVDAB66tRzrvjIDq7YdTAjyWT1uSW8ghNULpsthvf2f+g0fN61+vVQNWNr/o/MqMBTVrrYrOfh5r6VHWivDgwefXZpwA8HdVaUoGedBTyBk+rj1tr9lRXVK2wCApg1LEgKD0k0NymNUB+l2NHdgR3OHZpAu1XEdyYyOf/HsMs35ZZbe/EylLVZDjWP5ZoJUJRsP9fxWn0Na60cy6jHd/UEndn/QmbWgql5Q1iEATRuXmN5Ors59rTGYWOjGnTNLsLKmAs+88SFOXxw0tS2ja5yS3rGauelHopxrT//sMNr9Ac19Wlnv7ZiPerQ+axS6nQhHrvZVZYn2DWPS+6WnE0hOnhvAA1sPAABm+bz4N1XVfr02hCMiHAIQFQGnAIQjsT7b1dwRNy5mx1NrXQVi54Db5ZCPJzwc1bwRTzLO7cRwNIrQsJi07zM5VkRERERERERERERERJRZdn5vT/oYUCciIqJrkhTs/N5Dc+KqdVqR6gdWrWCcVqhSCrIV5DlxcXDIttCgXoDzP/92gVwRVgqvaQXG0v2grg7rrdveisWzfbqBUvXrZ9ftReWmBvlnuz/olP9bK8C2tbEdPf1hU+E5LcqAnNsVC7iVjHPj5VW3mt5GpijbJoX9vj53MiZ6PXHHKAXpGj7sQuRKIHD5rfFhy7H8DzCjIKHyvE/lZgGrNxvYGWq0O1A8FgLveuNhNL//6vaplm5gUdN7Klm2nlamPr8lK+dVmDqOXJ/7WiHkZTf5sGXlzXjm9SPw94dwd6Hb9PaMblJIdqxmbvrROk9mlI3DghklKd3oErc9k4HsVKn7Zm/bGZR5PfjBqhq8+1F30hvGvlJVhpPnLqPr0iDCw/Hz+5g/gAe2NiWdN1IbjvcE0BsIocTrRvPx83KoHLB+E5HeuuoUBNQf6ZSPZ2VNBf54/Bz8fUHNoPrlcET+72R9n+mxIiIiIiIiIiIiIiIiosxhMaLsELL1pTnlRm1trdja2prrZhAR0RgzFh4vKT2mp7JkHE70XsZjt1Xg5VU1lrbh7wsmfGC9Z1YZ/P0hbFt7OyAiLsSmV5lVL8xl9fV2WLe9FWVF+fjW/GlY/mqTZoDL7XTg/psnJw37ZopWv08sdOPOG0vxnUU3yAG2/Z/22NZ/Ur9cCITQcLQb108sQNPGpbYFetPZjnLMpGNXhnQBc3NJq1+zMa6ZDEUrt/3KvnbsaumA2xm7+SKdR3Sp22z1GKQbQbTaYmZbmVobRvrjy9KZK0bz+7s/P5r0HEq27W9sO4gvzg3IP6ssKcQbT9xh65w2Ov7N9W3Y2dwh36gyy+fFDWXjTB1Hrs59JfU6tvP9L6D1m4p057iZY5XOTwAQRWDZTT5MmVAgzwu7z5NnXj+Ctw534rF5FXj58RpTa7resVk9P9THYmbfUv/kOQSEIyKcDgGRqJjWvEk2LmaOTepHt8uBoSvrak8glHA8pV4PdirC8F6PC0ORqLymVpaMw5YV1Xj3o+6kfZ/qWBER0dg1Fm74JCIiopFhLHwHQ0REREQ00hl9b0/mCYJwSBRFzS/JWEGdiIiIrinqYOeJ3ssAYlW4d3/QaSn8plU983jPZXzWE8DWfe0YHIqg5cR5vLT3E7y8qsbyHZi5uGNTGax6/9lluvt/ZV+7paqhVr6oT1bd3qjaLnC1arI68OZxOeD1uLD97+Zb7hd12P3UhUFUbmqAUwCiQNoVrNOphG2mgnfThiV4+EcH0NMfRuTKXQeFbif2/5+L5dfkohqsvy+I5a8eQE8gZPnYP+66hMe3vY/Xn1iIOVPGa75G2a9GVZWtUo+X1fEzaouZbdm9NuS6grZZ6ZwnRvPbahV8rW1L51WeU8BQREQkKtp+7hgdf28ghDULp6cUlB0JlaDVY7Cr+Qto3Uuf7u31Zo61NxDCynkV2P+JH+cHhnDsbD9++jdfTnh6R7rnifq82324E7sPx38OsTIfrZwfZs55ad/qtVa5fj39s8No9wfSnjfJxsXMsf3p5HkAwH03+eSniGg9gUV9c08gNAwA8pNjFs0swaKqUiyqKk3a7nTXjmsNQ5tEdC2w+wlHRERERESUHH/nQERERKmyM0NA2lhBfYxjBXUiIsqE0Vy9Qwot/+JIl+bfu50Cjj3/gOntSdUzX/9TB4Yixp+rPC4HHrx5SqzCp1PAUFRMegem3h2ber9ws/sXcXr7t1o11ErFWem1M8u8+KwnoPkes/tXtl8Kpa1ZYK1atfQ6ZSBYj9WgYjar5M94tkGzIr5yX9msBmv22PXG6L4f/A7t/gCqfF78+pl7Utq2XW22Yz9W22zn3dwjoYK2EbvGM5PzO5PbzsY6MVIqQRudY3ZVpU92rEZtmFiYh4HwMELD8RXD1U9MMWPW5r0IRxL343Y5cCzD1xGjc159LEZrrbovT58fwMBQxLangZh5EoqV49frc4cAvPOPd7MKeoaN9Kd0EBGlIxdPPyMiIqKxbTR/B0OUbf/0xhHs/qAzpSclExEREVH6jCqoM6A+xjGgTkREmTDafzkqBTvVH4Oun1iA0iIPtq293VTYTBmchQh89+2j+NXHZzWrvgKx8Puk4nycujCIB26eguvGuZMGofSCdHohH7vDP+mGFq18UZ8s/JvKl/vrtrfi1x+f1Q1mf+P2qab7Sx0Inn5dIbr7gmkFerMZDP6b/9mMk+cGcOZSEKHhKBwC8NCt5TkJIeuNtUMA3v/nZXHtUc9pZQVjtZMvPgggc/2qVZW/1OtBbyCYEFi1uh+rbV63vRXjPC4c6+7H7MnFCISG8Nwj1SnfoDKSH1820gP0meTvC2Ld9kMoK/bg98d6snr8dt7wlM7NQA4BiIqxa3TTxqVptSMZvbVJQHz1dunPj82rwMuP16R07fX3BbFq20GcPDcg/yyVEH6q54feOS8di9GviqS1Vs3uzyBmjs3K8dvV52QNQ5tEdC24lj+vEhERUWaM9u9giLKBv3MgIiIiGhmMAuqObDeGiIiIKNekx/RMKvIAiAXNAODc5TAOd1zES3s/iXs0tx7la3zF+Tjec1k30CUACEdEnLowCADY03YGO97/Ar/66Cz8Bo8J2ra2FltWVGNOeTG2rKjG/k97ULmpATuaY+GxHc0dqNzUIP+f+uez6/bK25KCWUb7S7Z/q1VFmzYswcM15cjPi33szM9z4JGacjRtXKL7Wo8r/iOqxyXovsdM+99/dllCGxwCEBqOGvaXmjRv6p+8C6sXTMdwVERoOBZSDg1HUeRxWQ4f+IrzUeRxpb0dNeVYS//9r9+4FXfNLEU4EtuXCCTdl9acSWUeqUlj7RTif75yXoXcntl1ezXnNABMHu+Je9/UCQXY8/Qi+c+Z6lfldgUBCEeiKHQ7EY6Iae/Hapu3ra1FYZ4TH53pQ0GeA9vW1ppat/So53dPIGR5G5mSqfEcSfTOq62N7Thy+iJO9FzO+vGbmU9m1wPltozeoxxrx5X14etzJ2PNwumYU16c1vGYIa9NjvjFSX1pl/68+3Bn0muvHl9xPoav3D3lvrIYRqJiWtcRt1NAcCgKlyAk3Y76nN/V0hF3LFrUa600lrN01msz/WD22PTmvtFr1HNN2eeSVPqcrLHyWZCIaLS6Fj6vEhERERGNNHrFOFmkk4jsZMf3okRWcM7RWMOAOhEREV1zpNB1zbQJWLNwOlxXgmED4QgAYPcHnQkhq1mb98j/ENALzrb7A7r7nDI+PyGcU1lSCAiwFCbVC/nsWb8oafgnnfBqqqx8US+9NhyJysFlhxAL9qfz5b5WG1bUVFgOS6nD+nPLi1MK9Kr/UZmJYLByrJX/bXVf6jnj7wti+asH0p5H0phERMgh1Fk+LwKhYfk1WnP9+okFAIDLwUjc9grcTsyZMj7uZ5kKXPcGQqgq80IUgaoyLy4NDsXt5/SFgZR/aSC1+affrkWZ14PTFwc1X6e3BqUTDt22thbrl87E9375EdYvm2n5ZpRMG8kBeiD9XxapzzX1GLf7AxBFICqKGT9+vfmlNZ+SXVdmbd6TsK35329Eywn990hj/c4/3o01C6djWBQ1b5DKxA008toUFeEUYjeXFbrN/9pE61pi1KaZZV74ijz4n//ty2mF8KU+u3fOZABAy8nzSd+jvqZp3czl9Tjj3qNea6XxX37zlIwFkPXOfX9fECt/9Aes+NEf0HlxUPM1WufV6Qvx6+qpC4NpB+nJGEObRHStGOmfV0cyfvFKRERERKk4sHEpppcUxv2ssqQQBzZl9imMRHRtycX363Rt45yjsUbg3YNjW21trdja2prrZhAR0Rgz1h4vOWvzHoQj2p+JpEdzD0Wi2NPWjcduq8DG+2+Ke3y3x+XAxHFunL0UjKuyWj4+H//6V7fi3Y+60dMfRKnXg10t+pVJzT52cHN9G3a1dMDtdCAciWL1/GnYsvJm3Z+n+phDf18QT712GD/81ry0QkTrtreirCgf35o/DbtaOtDTH9QNv0qv/bynH+cCYZR6PZhR5jV8T6ptkMZD3V9K6j5IpU/U76mrb8POlg7N/aVLb6yVzMwzM9uxsj0tZuaFNKf1zhmXA5hR5sXFgSG0bL7XchusMnMupTO+0ly5fkIB3jrSqbsNf18wYQ0q9XrQGwgiNCzC4xLg9eRh+9/NTwjuG8nk3BzrUu07vTnldjpw/82T5TGWrkXrvjID3/vlxymty2bXL2l+NXzYhYgIOAVg+a3l2Pzgl+KecKDdbgE10ybK+/inN45g9wedcAqAzmU25TVEq8/tmMPKtemhVw8gYvA7E4cAlE8owOkLg/C4tK8lRm0y014z42bX44zVnyPyXQ64XQ70DQ6juMAFj8uJls33Gl4j9PrBbnX1bdjR3AEAePDmyfjR6tvlv7NyDQMAt8uBY3zsc0ZZ+SxI9rDrczwRUTbw3yFERESJxtp3MESZsuil3+D0hUHkOQUMRURcP7EATRsZUCei9Nn1e3ciszjnaDQTBOGQKIqaX/wwoD7GMaBORESZMNZ+OervC+Ib2w7ii3MDcT93uxwI6wScHAIgAnKIa2aZN6GCepXPi18/c4/8Zymcc//cyaj7eRs6zg8gKl4NwSvDf1K7tIIlWiGf5x6pxtf+7fdYetMkfGfRDXHhH3WYVWt/Wvuy40tif18Q/7D9EAQB2Lb29pwEZKz0ozospe4DKWz52G0VeHlVjan9S9sQAEQ1Pnrb+Y9K9Vg7r8xTo3lmZjt6HALw/j8vy9i4SmP0s5YvoHUqup0Cjj3/gOntpRvWMjqX7n7pt2nfCLLw+42m54g6SDqzzIvPegJwOx1yO9YsMHfuZvoXHmM5JJdu3xnNqVf2tSfcRAMg5XXZ7Jpu5pj02u1yCHjrcKfueqf2SE25qTXJTPu0pDuHpadG+Pv1K6BeP7EA98z2JVyTF7zQqHlzjccVqzJudt6YDbFv2fMXvHe0W65SfX+1ufVeuQ3l5wi9cL7H5UDThiUJ4z+x0I07Z5bgO3fNSLim6q0BVtYG6bVHOi7o3lQoXRP05ue6r8zAkzs/wEnF573KkkK88cQdY25tImLYk4hGA37xSkREpG+sfQdDlCm8KZ6IMsXM9+tEduKco9HMKKDuynZjiIiIiEYaX3E+IleSdFKVBa/biTeeuBMPbm2CVgxKFIHVC6fLv/T61UfdCa9p9wdQualB/nJV+Uuxu2aW4ouWDnhcsTBpkceV8A8L5eOblMGS5x6pxlOvHUZpkRtbVlQDiIVQLg4OoSDPgTnlxfLPpeMr8rjk0JrW/pT7evPQ6bgviXc0d2BHc0dKXxJvbWzHkVMXY/+tOo5skY7tpb2f4NSFQfzwW/MAEbgwMITnVlTDV5Qf119A4hflUh9Idn/Qid0fdBr2iXobzoItagAA5HxJREFU6nmk/EelXbTGGoDhPDOznXAkiunXFeLU+YG4KshLZvvw1C5zFZlTCShL58z6pTMTbiKRQoVW9qF3Tpkl9UtwKAoBQHDoap9qBTYXzypDd18I/v6gYZtaTpzH/OcbNf9eCvCq9QZCWL0gfg1yQEjp3NVqu51zM91+H6n8fUHMmVKMsmIPfn+sJ6W+M1qflWO8/NWmuDXIyrqst57pvbdpwxI8/KMD6OkPIxIV4XQI8BV58PZTd+m2OzgUxdtHuuS/N3sbvNk1Sd0+9XxdeMN1+PD0JVwODSEcATwuAUtm+5Kef8n4ivNx35xJ2KnoewCYPrEA1VMn4M+nL8Zdc5XXZFGMrVPdfcHEuSEi6TlnZdyU4wHA0nov2drYHvc54uCzSw1/Eaqet8tu8snnt/qaqrcGWFkbpNc+Oq8Cuz/o1HyNFFzXO6/mlI/H8JXPe26ngHBERCQq8he7NKZYXfOJiHIp0/8OISIiIqKxT/m9m/p3UkRE6TDz/TqRnTjnaKxiQJ2IiIgIwNzyYixWVUCdU16M5n9ephuMlf4xsGVFNbasqDa8q1VNHS7t6Q/Kf5csWJJKmFxvf1r7AmKVsd1XQoepfEmsVQkt2wEZdRukQNsd32/EX8+fZhiKU39RrsfoaURaX7ZPLs7HyXMDuv+otKPKrHKs122PPUln29rauHE3sz31nNn/qR8RMTY3pMrI7x8/h4GhSNJw4UvvfoKWE7GbBMxWnlfSuolEHSo0CjraGdbqDYRQ5fPiM38AVT4vegIhuY3qXxp83nMZn/UETLVJTepnvV88qH/xbnUNUsrULzzGekhua2M7jpy+iJll3rT6Tm99Vo7x+88uw6ptB+XKz1bWZavBH19xPu6cUSpXQo9ERdwxoyThZhRlu39y4Dj++HkvLg4MJax3Wk8jmTI+H3feWCqfP1Zo3Sjy/onzcWt1aFg0PP+s6A2EcP3EAtwydQIA4M+nL+Km8mL894fm4KnXDuO5K198+fuCCVXTlZW61XMj2TlnZdz0rrlvHjqd1g0Mf3X7VN02Gn2OSbZtNfXaIF2jvvfQHDz46oG4PtULp0ukGwMXzy7TbJ/W5z2isYRhTyIaTfjFKxEREREREY1kZn4PTmSndObcx12X8Pi29/H6EwsxZ8r4DLaSyBrBKFRDo19tba3Y2tqa62YQEdEYc609XnLRS7/B6QuD8p+vn1iApo1L5T8rw76v7GvHrpar4avV86dZDsbphUz3tp2Rq4Mq6YXJzXypq7cvp0NA/eFOuJ2x6tlWj8PfF0Td20ex7+OzcpjZKQD3zZmEf7lStTzTpGP7haKqrx6twOzm+jbsaumQ+2Cc24lAKCL/vfpGBS3qbUydUIAv33AdjnX3Y/bkYgRCQ3Eh1Lr6Nuxs6Ujob72fpyqV7a3b3op9H/sRMfj3g7of7Xxku96jOs3sw65HoiXbl9TG1//UgSGNc9WoTU4BcTcAPHDzFFw3zm35kaTqOWd2jDPxKNSx+ig6vXmQ5xTw+Jen2f4YWb39OQTg+AsPmtqG1Xlx90u/wakr170bSgoxHBVx+uKg4fu01rt7rgSBv/HjP+JyOCLfYKK+jlq1bnsrjvdcRrs/YPo9dt8YoV5H6+rbsKO5A17P1WuFQwAqJhSg0O1C9dRiBILD8twwc86ZHbd0zjWj937350fTWhf0tr3uKzPw498f122v1Lczy7yxp9GoKtEb3TgmPXViNK8xROlK9bMAEVEuZOLfIURERGPBtfYdDBERERGl574f/A7tVwqs/fqZe3LdHLrGCIJwSBRFzV/qsYI6ERERURJzy4vRNziEvuAwivNdmFNeHPf3ysrNvYEQqsq8OOYPYJaiurIWvbtY9aqIHdi41DBMnkrFMb199aR5R7ivOB9lXo8cTgdi4dtSrydroTHp2AQBEHC16rfjyp8jonEVYvUdyv+/Q6cA6Ffw1qJ1l3NhnhMfnelDzfUT8PKq2Gd0q1Vm3U4BNdMmmqqorpRORetta2vlsOF7R88gNHx1cD0uB+6vvtqP0k0b0ah2iFB9k6yZiu56j+o0UynUrsp8yfYltXH90plJq11rtWmWz4t/++Y8ea6k8kjSVO+sz8SjUNPtdzueKJAJRvMgE+2U9vfOh12IioDbJaB8fAEqS8eZ3obZeaEVhj+hqAJutGZo7UOaS4uqShOCR6lK9vQBILbOA7F13+7qwcnWa+WNTFERsRvcBODLlRPx8toa+e+kc87fF8Sxs/344bfmJezL7Lilc64ZvTfddUFv23PKx8s/F4Sr1eXvfum3cX0r3YCgrERvFE4H9J86QXQtYWUnIhpNMvHvECIiIiIiIiKia0Xlpoa4P7f7A/LPTr5ortAVUSYxoE5ERERkQP2Bvi84jPc+OovKTQ1y2EqiDhQf8wdwzB/A7Lq9muHfp392BP2hYTz92pGEu1i1giWZCpNr7UsKI//D9kMQBGDb2tstbVPa7vUTC3DL1AkAgD+fvmgY2LeLMhQqHdv5QAh7jnbL1akBJA3xqb8o7+kPWg5YKrfxZusp3XC4XuBVr8qsyyHgrcOd2LqvPWlFTGV/mAlzG5HmYDgiyn3pFIBwJL4fpZs2Hp1XgdYvLuALRbhQqjyvpLzJw2qFT7PBTK15bjVAbGZfWuHZ4FAU73zYhVe+GR9A1WrTnPLitIIZIy3gkU5I7qV3P0HLifN4ae8neHlVjfzzdOaLHczOObvaKe1PRGzdCkeiWDSz1NI2lfPiW/Ovx+Pb3sfHZy4lPOKvacMSLHyhMe7mIiWjNcNo7qU6L7XOUWkde+9ot25lebPrvFX+viDmTClGWbEHvz/Wg+BQbA6Uej3o6R9EOJL4HvHK/9ML9xvNEyv9ls651hsIYeW8CvnpHnZeq3sDITw6rwKfdvdj9pQiedtaN/Tpja1DAKZdV4gtK6tR/0Endn/Qqbkvh4CsfM4gGulG2mcBGtlyfeMfERERERERWcd/yxERkWTP+kX4+/86hM6Lg/LPpk4owH9823q+gygTGFAnIiIiMmD0gb50nCcu7CuF1HoDQYSGRd0gX7K7WP19QVwYGMJzK6rhK8qPC5bohcklqYRQ9N6/tbEdR05djP13CgHLXD2We2tjO1pOnMfyrQfwzvpF8BXlY932VqxZGOu3ddtb5falWmF6/dKZeOq1w/D3B03/8i9Z1eVkVWY9LgeCQ1G8faRL3qaZCujq8GO6lcSlsOGvPj6LMq8Hk8Z7cGNZEXr6gwnhbGWIUKvyvJmK7mZ+0WommKk1z+vq2ywHiJPtS13t2uNyYMr4AlSWFJhq01iTyjFqzSOtQKqVJwDYzWgepPOkglT2Z5Z0LvX0hXRvjvIV52NFTQXeOpzY326nYGvYW03rqSJa4e2rN8pE4RRiT8OQjM93YU5FMb7ovYzey0P46be/jHc/6ratevDWxnYcOX0RM8u88joajkRR6HZiKIq4G3eiAKZfV4juvqDmDUF2zxOtc83sF1Xb1tairr4t4ekedkjY9tqahGOXbujb/2kPHrx5CkLDUbkvHUIs5L9oZikWzSzDopllEEUkzNGCPAd+t2HJmPlCjl8yElG25PrGPyIiIiIiIrKO/5YjIiLJnPLxKHQ7435W4HYmFKkiyhVBFHVKo9GYUFtbK7a2tua6GURENMbs378fixcvznUzsua+H/wO7f6A/Ocqn1cO9W2ub8PO5g4IiAWoqnxefNYTgNsZC62tnj8t4ZdDH3dd0g29z5kyHnX1bdjZ0qH53mTsCDRpVYCW5CIIapZeuzPR5lTHaHN9G3a1dGjOj3XbWxMqtG9bWxv3858cOI4/ft6LiwNDmiF3Jb3+cAjASkU120Bw2NLNBP6+IJa/eiBWuV91/P6+YEIIf2KhG3feWIrvLLoh4aYKrderjyed80FPpueK0ThTcrM270E4kvjv1DyHgK/fMsVwvowEZuZ1LqhvjlJSPuJv3fZWHGjvxeVwRA4Jj3M78eYTd2reGGUX6Vpb5fOi4/yA4TkqrYuf9/TjXCCMUq8HM8q8ctvsXjf01ow8p4DHvzwNv/qoG1+dOxnHewLoDYRQ4nXjxrIi7P/Uj86Lg5prQTrzxOy13kw/ZHI91Nu22+nA4pvK8OuPz0IU4yvzP/bvf8SpC4OYVOTB+MK8hLEFzM/l0SwT1z4iIqVs/tuJiIiIiKy71r6DISJz+G85IiLSMv/5fZhQmIf1S6uw9TftuDgwhJbN9+a6WXQNEQThkCiKml8gM6A+xjGgTkREmXCt/XLU6AP9uu2tON5zGZ/5A5jp8+LS4BC+OneyboVziVboXS+Q53YKOPb8A6baakegyd8XRN3bR7Hv47OIXvmo6BSA++ZMwr9cqepuFzsrhPr7glj4QqPcZiW7fjmXyi//lMf43Z8f1QyhW2E2/GwUfty6rz2leWLm+K2Gs/VerxtsdDlwLM2xzHSAWO9mAzLH3xfEN7YdxBfnBuSfVZYU4o0n7sAr+9pHRfh/JN2kYHTTkfLmKKVszmGjsHF+nsPSOWpmjUrluuPvC+K7bx/Fr69cF822R32D0W8/8eO9/+Mr8ntSnSfJrvVWrlXSevje0W65Kvz91fash0Zr7er/pxnt/oBcId2B+Gr4Rm3+uOsSHv0ff0Rw6Oox5uc58NaTd476iiD8kpGIsmWk3lBHRERERDHX2ncwRGQO/y1HREREI5FRQN2V7cYQERERjTbKu0uX31ou/7c6RCQFzt9sPYUtK6qxZUW17jYvDQ5h1iRvXOi9acMSbNnzFzT8+QwiipT1Q4p96lG3ZUdzB3Y0d6QUaPIV56PM64kLekdEoNTrAURg1baDtgTKAXsfQ+grzseKmgq8dbhT/pnTIWD5LVOw+cEvpdtUAJDHSOuXf3qUx6gMeBrNDyO9gRBWL5geFxzV4ivOR5HHJQcOQ8NR/PLDLrx9pEt+jZV5YlSRvWnjEsvtS/Z6dV87HQIiUREP3TzFcHtmaPVNkcdl2y9w7Rjna5mvOF9eA/OcAoYiIiJREb6ifMvzK1dGUjulc+m9o2cQGo5PAOs94i/Tc1gZEt+zfpHmU0VuuX489h7ttnSOmlmjta47yULrvuJ8HO+5LF8XzbZH2Y+FeU5cHByK26/WPDFqi9lrvZVrlXI9tHJsZmitte+orkNSn4oC8HBNuak2zykfj+snFsbd6Hf9xMJRH04HUvucQUSUikx/HiYiIiIiIiL78d9yRERENNowoE5ERESUonRCRFqhd70A8O4POrH7g07DELHdgabeQAjXTyzALVMnAAD+fPoiegIh2wLldgbqlS6Hh1Hl8+KzK1VZI1HR1l/OWfnlX6aO0UpwVB1+PH1+AMWFefI8cQjAV69Uxk9GvoHiw664Krcr51XEHb/VYKve66W+lirkSoHl3Yc7sfuw8flgxkgKEFOiueXFWDzblzA+oyX8n2477Xy6xNV16+qJu2hmKfz9QVwcGMpKG9Ska8lLez/BqQuDcLuEuL8vcDsRiYryOfrTA8fR0HYG6++tMmyL0RpttCZ/4/aputc2rWuzKAI7mztwzB9I2j9mrwXSPKmrb9Nti9lrfTrXKqmNbx46bUvF7sTr0GWcPDeAk1eekJCf58A9s8rg7w/BJQimv1zTutFvLOCXjESUTfw8TERERERENPrw33JEREQ0mgiiqPEMZRozamtrxdbW1lw3g4iIxhg+XvKqzfVt2NXSAbfTgXAkitXzp5kObqvDf/6+IB7+0R/gvxSEMirmcTlwf3XyR/Sl05Zk7VzwQiO0PjaaDQlrHWumHkO4bnsryory40LZA0ORlEOW6rart9/TH4wLoyrfNxIftSjNEwdilfGrfF78+pl7TL93Z3MHHEKs6u0snxc3lI3TPH47rNveCq/Hhd7LYRw41oOIiBHTj9mSyZAwWZet8airb8POlg5b1nG9m5+Srd92tiFZWwAkhI2VN3JZaYveGq21JoeHo3FPC5Eo+8bfF8TCFxo1XwcAaxYYt8nstcDsOJm91mfiWpXu/DcafwCYMj4fy740KWmbxzqzY0dERERERERjF7+DISIiIiKi0UIQhEOiKGp+meXIdmOIiIiIxhKpUkH9k3dh9YLp6AmETL9XWY0ciFXNXHaTD6IAOK4Uk3UKQDhirnpmOm1J1k5RBCpLCpGfF/v4mJ/nwCM15WjauMT0NtTHmqkKodvW1mLLimrMKS/GlhXVmDqxIG7fVqnbrt6+FHxcte0g/IpKFUbHqPX6bHmtpQOiCLkKers/gMpNDZhdtzfpe3sDIaxZOB3v/OPdWLNwesrhdLPHv21tLV5eVYOpEwoQBdKaK+p92jkGmRxP9fyj3MrkePj7grhhUwMqNzVgR3PsPN3R3BF3fqYy15o2LMHDNeWm1+/ZdXsN25DsGIzaJ7VFy7GzAfzTmx/iV//HPXI4PZW2aK3RgPaavHJeRdK+8RXnY0VNhe7+krXJ7PXO7DiZvdbr9UOq7QPSn//SMToE7b8/cymIHe9/gZX//gfDNo91ZseOiIiIiIiIiIiIiIiIaCRz5boBRERERKOZMjS0ZUW1qfeoK4juaO7AjuYOeFwOLJ5dhtULpuN4TwC9gRBKvG7cWFYU94g+vQqmUlDaruq+6naePDcg/7fZkLCZY1VWCE2l/XrvMdq3marvVt6vDO0pK9nqPWpR7/WpHKdZ0vvf+cdF+PHvj2tWy022v1Tmuxarx2/HIyulfS7fegDvrF+U0hgk27Yd25KkO39Zed1e6Y6HkY+7LuHxbe/j7lmlgABUXleI7r6g5vmZylyzekNQ04YluhW1k0nWPqktggAIgFyVXG8fZttidr5rrSWlXk/SvrkcHkaVz4t2fwAOAFEAToeASFTUbJO6PWbWMLPjZNc6nKxflOya/77ifLgEAVERcDsFhCPaZen5pD8iIiIiIiIiIiIiIiKi0U/gF39jW21trdja2prrZhAR0RjDx0umx98XxJY9f8F7R88gNCzC4xJwf/UUbH7wS6aCpHX1bdjZ0oHV86clBACN/k65fzNBPqmdUjDQIQDTrivElpXVePfoWfT0B5NW9VRvQxnk09q3mfabfY/VfafSdnVoT6IX2rP6ejPHaZby/SKAXS0dcDsdCEeipudSuqHndI4/VXr7VBMEoPmfl5meG0+9dhhHOi5oBiztOJ5052+684XipTseRm7Y1AC9f5ULArB6/jS8eeh0WufOuu2tKCvKjwsgG63fm+vbkq4REn9fEAteaITWrxa02ie15XwghD1Hu+EQABHQ3YeZtqQz3832jfJ1T//sMNr9AXhc2m0yui4ZraFWxylb7Jz/d7/0G5y6MIgHbp6C/DwH9h49g8Hw1bldWVKIN564gzfWEBERERER0TWN38EQEREREdFoIQjCIVEUNb/UZAV1IiIioiy7WiU1luYLDYtpVyOPbSe9at/67YzKIbxFM0uxaGYZFs0sM2yrMoRnpiJsKtVZk71HqxqtyyHgqV3mAtZSpdfgUBRunbZbrTSsfr3HJcDrycP2v5uv2w6zfWOlkjwAOAUB9U/elVAt12h/37h9atzcsRpYT6cyc6qaNizBwhca5UrNak6HgOsnFuDkuQHTVamlc+jReRUYioqGx5NqqN9q1WtJJit9jySZrBCvte1Ux8NI5aYG/b8rGYctK6rx7kfd6OkPpn3uWK26LVXUvn/uJDzzxoc4fXFQ97VbG9shirFgsV7ld622rNveijULkz8Zwai6tx3z3WzfKF83o2wcFswowbfmT8NPDhxHQ9sZrL+3Cne/9FvD9iS7/maiOnqq4s6DNOe/1k0Me9rOxL0mzylgKCIiEhUZTiciIiIiIiIiIiIiIiIaAxhQJyIiIsoyrYrOO5o78Oah0wmBOmVAzDCgKAJb9vwFDX8+g0hUhNMhYPktU+LCgakE+YyCgVqk9l4/sUAO4ZnZRirhSzPvUe/7d5/6cfrioOkg8p9OngcA3HeTDxO9nri2S8c6dUKB6dCeVsgvNBzGrvc7dNtjtm/0go9G7/cV5SeEILVeHx6OIjQclcPt0txxCkAUMN2fZkOOdoePJxa6ce5yWPPvIlERJ88NxB2X2Qr4uz/olP9b73jM3hCixer5B+TmJoBcSKdfU9220XikMmf3rF+Ev/+vQ+hUhb8FAItmlmBRVSkWVZXKP7c7IG9ECkrX1behJxDC1AkFCa9Rnw/SeQQAwaEoXIJg2L5UguF661XDh12IiIBTAJbfWp6R+a4cY2WbCvOcuDg4hK372jXPv8WzyvDuR2fjbkgYDTeOqM+DVNYj5bakmxhOXRiM+5xyaSCMqdeNS2m7RERERERERERERERERDRyMaBORERElGVSgO29o2cQGhbhcQm4v3qKZqBOHRDTCyiqg4KRqIi3j3Th3aPdcvgtleCq1Wqud7zQiIgItJyI/VkKNHtcDmxZUa27jVSqnZsJO0vttxrOV7++4Wi3fBwSaWzOTCiwFNrrDYTggGC6PcmOM5VK8lZD9CtrKjAsXq0ULomI5vpTqfPCAMq8HvxgVY1cHVrNzvDx1sZ2nLscRnG+C33BYTgE6FZTt1oBPz/PgYmFbtx5Yym+s+iGuPHPZmVnJTsrfScLXWeyirmeTFaIT7Zto/GQ5uyLez7B6YuDpvpkTvl4FLqdcT+bNrEAX5nt0zwv0gkIW2Wmn9Xng0MApl1XiBvLvGj8xI+WKzf4ZNLd/xpfsTwiAm8f6cIvPuxC8z8vs3VeqtclvT5yCICIqzetfN5zGYD5CvNmZPLcMzP2Ztcjo5sYpM8pHpcDn/7tAkvbJSIiIiIiIiIiIiIaSXLxnRkR0WjAgDoRERFRll0NkMZSsqFhMSFAahR80wooNm1Ygod/9Af09AXlKrK+4ny8/dRdGvu1vwKvVlV4ySM15qrZplLt3Gxg02o43+j16mM9dWEQO97/Ajvf/wLNm5MHIretrYW/L2ipPUbHmUoleTMhevXrS70eee6EI1FMvy61sOXUiYX4XXsv3j16JmFc7Qwfq7fVFxwGADgdAm4sGYd2f0A+DwD9CuhKynNIEIDQcBTLbvLJx6EMV+aykrldQeZkNwpksoq5nkz2ayrbVs+ztw7Hquov/H4jjr/wYNJ9XhocwqxJXqxfWoWtv2nHxYEh3ZBuKjcspMpMX2hdU06eG5BDyKcuDKJyU0NGq4THrn0H0NMflqtye5wODAxFbJuXeuuS2+nAwzXlCX10aXAIUycW4vU/dUAUgXZ/AEB8ODvd628mzz07zzH1tpS0PqcQEREREREREREREY1GufjOjIhoNGBAnYiIiCjLtMLcO5o78Oah06aqnUuBNmVA0Vecj2U3+bCrpUMOEC+7yZcQftMLrqZ7V7dWCE2qIms2hJdKtXOzgU07qohLr9cam8nF+fji/IDpXzpYbY/RcVqpJG/UT8o5oPX6ddtb4+bO/k/9lm52SKUis53BSOW2vvvzo1gwowTfmj8N67a3yn1kNrxfVebFMX8As3xe9ARCmq/L5A0hyVgdb3Wbko2VHTcSpFqdPZP9msq2pXn2iyNdcT+PijAVzm7ZfK/838tvLU/7GOxiti+U15SfHDiOP37ei4sDQ3JF9a/OmYR/SSNMn2yexK59k7CrJfa0jkhUxEA0AsC+6vpGa8kr+9oT+uiVb84DAKxfOlOzwvyWldV49+jZlG4cyeQTBCR2nmNa2wJg+DmFiIiIiIiIiIiIiEa2j7su4fFt7+P1JxZizpTxuW5OTmXj9/ZERKOZI9cNICIiIrrWNG1YgodryuFxxT6KeVwOPFJTjqaNS+TXpBIQk4KC9U/ehdULpmsGZ7etrcWWFdWYU16MLSuq5SCr8q7uVCjb6xBiP/v63Mm67TAi9U9+Xqx/8vMS+ycVZvrHzOuVxwoAwaFY1WBRjP3SoXJTA2bX7bW9PWa39ei8CjS0nYHfYvgx2RxQz5255cWG7ff3BbFq20G5HWbGNdPBSGlbymNp2rgUTRuXJpwTWmbX7cV7H53FsSsVkY/5A3jvo7O6460e49MXBrBq20F83HUprm/spu57rb9f/uqBhPGW3lf/5J2GY6UeS0EAvjZ3kulzVNp/ywn9+fbi3k/QcuI8XtrzScLf2XnupLttaZ4BkNc+wL51K5e0+kI9t5Tn0g9W1WDZTZMQGo7CKcRC+p/3XE4rgCytSy/t/UR3Tkvt3PGd+agsKZTHIZUx0Dp3jNYSo/mifp8IYNHMUiyaWZZ0rdGTqeujWm8ghJXzKlDl8+LReVNtuz5dP7EA108syMi5S0RERERERERERETZ8fTPjqA/NIynXzuS66bkXLZ+b09ENFoJoijmug2UQbW1tWJra2uum0FERGPM/v37sXjx4lw3Y1TbXN+Gnc0d8p/XLJiWUHl73fZWlBXlx1U7TyXQZkSrmjuAlO7qtrO9m+vbsKulA3lOB8LDUTx2WwVeXlWT0rYyQTrW++dORt3P29BxfgBREZqV7rOtrr4NO1s6sHp+4pzSYuccULdjR3MHfEUevLN+EXxF+fK4up2x6rlabTQ7j8xU/bf7HPL3BbFlz1/w3tFuOXR6f7X58ZbGZmaZF5/1BEyPkZX2PfXaYVw/sQBvHe7U3L7ReH/j9qny3BEBw7F65vUjeOtwJxxXgshVPi9+/cw9SduYbL7p/b3bKaBm2sSUn/KQSdI8Ox8IYc/RbvnpEemMb7pPtciUZOvLjGcbENX4FYN6PZGO73sPzcH3fvlxwnHqzQOnAHz+woO67TOzxqRyfKmuJam8Tz326j+ne4xmWb2WaLWdiIiIiIiIiFLD72CIiGgkqtzUoPt3J1/U/939WJet39sTEY1UgiAcEkVR80tQBtTHOAbUiYgoE/jL0fToBjBdDhxLEgi2O/wlBW5/9VE3gkPRERGwBq6G+i4EQmg42o3rJxagaePSnLXHyEj5pUOqQXP1HPC4BBS6XaiYWID/+TdftjwPjNqxeHaZbYHxVMKTdjBzc4maXp9I9MK7Vs/zG59tQMQgHJysHWpOQcAv/3ERdrV04PT5yxgYispt0vslpACgefMyzXbr7d8hAO//c+w9szbvRTii/Zp0Q9+ZZucNEbma33rMri9mrynJbtaQtvOLI12a7dFb11Idg0zdqJMK9dir/5zpm9fS6Ysndx7CnrZuPHjzZPxo9e22tYmIiIiIiIjoWsPvYIiIaCT6uOsS/v6/DqHz4qD8s6kTCvAf374dc6aMz2HLcisbReeIiEYyBtSvYQyoExFRJvCXo+lRB/icDgGRqIjH5lXg5cdrDN+bidBiLgPWekHcdMLWRsHeTFR3TfWXDiPpZgPlHFD2u5nwtVY7Fr7QaKqKcipyGSRN9yaA946eQWhYjHufVgV2u6rgA8AjNeXy9qV2NHzYFRdkf+DmyXA5HYZzR2qTAGiOLQB4PU5cDkd02y3v/89nEFFsRLn2+fuCWLXtIE6eGzA85lwEh4Hklb/Tlan5ne56Y2V9MbqmWLlZQ9qOcs5l6iaqTN6sZbbvzd5AYtdc0JvDqfTFSAr4ExEREREREY0F/A6GiIhGqvt+8Du0+wPyn80+YZeIiMYuo4C6I9uNISIiIrrW+YrzUeRxITgUC3NJQc3dhztRuakBs+v2Jrxndt1eVG5qwI7mDogisKO5Q/O1UrjT3x803Z7eQAirF0xH/ZN3YfWC6egJhNI4Omu2NrbjTyfPY+u+9rifN21YgodryuFxxT6uelwOPFJTjqaNSzS3Ix33S3s/0dxesv2lQtrncyuqsWVFNeaUF2PLimrTd8Tb2Rbg6rwKDUfhccWC5kUel6lwZW8gBAeEhICh3jxL1o4VNRVxP3M6BMPxs0KaG/l5sbmRn2c8N1KldS7p3dub7JZfaWzCEREOIfYzpwCEI/FjZPY8V1P3CRCrOC4IiNu+rzgf76jC6QCwp60b73zYpTl31G3SC6cDQCAUMWy31A+RqAinEKu2XuXzIhAejnvN8JWduJ2xzipwOzI+3mZJ5+3TPzti6/krydT8tmO9Ofh5r6n1Re+a4u8LYs6UYnx17iR4XELce7TWeGk798+dLP8sOBSFSxBsf8KHmfUzlesrYL7v1WPvcTlQMaFA7qtU5oJWm5PN4VSuJXrBeitPbCAiIiIiIiIiIiKike/S4BBmTfLih389D7MmeXFpcCjXTSIiohHMlesGEBEREV2LegMhPHDzZPzhs3PoHxxCFPGVYdWaNizRrWiq9OLeT9By4jxe2vOJZjV2rUquykD1lhXVum22s+K3utrqjuYO7GjukKutKgNyQCzkdvDzc7rbkyp2t+hsL9n+zFL2gTJ0aKXKuF1t0SIFOpXV3M3YtrYW/r4gvvv2Uez7+KwcYHYIwH1zJuE5g3mh5XJ4GFU+Lz7zB+AQYjdhmA3LJ5NOEN8KrfE9sHFJQnXvypJCvPHEHUm31xsIYeW8Cvz647Mo83owabwHN5YVxY2R2fNcTdknDiEWIv/63MmY6PUkzIGvVJXi5LkBnLkUlF//0K3luDQQxtTrxiXMHa02TS7Ox8lzAxAQC+dL/ytRVobX6oc1C6cbPnFgbnkxFs/2ya/Z/6kfnRcHMzreyajPW6k6iJ3nL2D//LZrvdna2I6e/jBm+bz4t2/OM1xfpPVEfb3Y2tiOI6cvovK6cQgNi3AAiEL7Zg1pO0DsKRWzfF4cu9LnLSfPW+yF5Px9QexpO4NHb6vAd+6aoXl8Vtd8q32vvHlNQOy6V+h2IhwRU54Lyja/eei04RzOcwD5eS68/sTCpNcS9fjmOYAhjSx6HksiEBEREREREREREY0pLZvvlf97+a3lOWwJERGNBgyoExEREeXAtrW1eOb1I/Jd5cnCZ8lCi+og3O7Dndh9uDMhCJdqqDrd96olC+KqjwcA/P0hLPx+I46/8KD8M63XSR6pKZe3l2rwF0gMpbecOI/5zzfKf68VOjQK86fTlmTM3mygxVecj1KvJ666dlQEyrwey+HYbWtrsW57KxbMKLEcljfDShDf6o0VeqFSAUDz5mUIDUcAAHlOAUMREZGoaGq729bWoq6+DYHQMB65tVzzHEq3Cr66T7TmwH/+7QJsrm/DrpbYnJWCwa98c578GuX7tNoUiYpyyPzpnx1G+5UbEaKifthY2Q9a+zF6zbrtrXGBdTvnklnSefvOkS4oVxyjMH6qUr3RREu66436fDjmD+CBrU1JA+5GwegT5y4DiIXTZ03yosTrTrhZQ2//AHDqwiAqNzXYdlOA1N6Lg0MocDnlp2HotcFsyD+Vvu8NhOSbe6p8scozqcwFrTYDsZuO8pyOuL/zuATcXz0Ffz59CSd6L+Pp147EPY5V6zxVfx74w6ZluOOFxrjrh1MA/vDsMlPtJSIiIiIiIiIiIiIiInuLBhKNBAyoExEREWWZVuAuNByFUxDQEwjpvs8otCiK2u+RfpxOFd1Zm/cgrEid2VExWC+ICxFYte0g6p+8Ez/+/XH84khX3PuiIuKCieoAIAA5KKusuJ5O8FcrlK6kFTpMFuY/+HlvxiuAp6I3EML1Ewtwy9QJAIA/n75oOCeNpBOWt3PbVm+saNoQXyVdqhj+xfkBbN3XDpcjVhL4q1+ahIleD06fH8CqbQcNf0lg5fwzE05O50kIZveR7PXSPmaUjcOCGSU43hNAbyBkGDZOVSbnkll3/+tvNW+GycT5a+fxGq19Zn7BZTVkbRSMjmpcp46dDcBzzoHX/l77KQRNG5ag7u2j+NVHZ+WfOa882eFfbJgLZs5NO55sYGat16vS/2brKWxZUW1pLui12ekQUH+4M+61oWERbyuute3+ACo3NQAATr549YYwf18QC77fGPe0BGV/5bkciAxF4XIAw1HA7XKMiOsaERERERERERERERHRaGFn0UCikYABdSIiIqIs0wuTO50Ctq2t1Q0NGoUWD2yMD9UCQGVJId54Ihb6S6eK7kO3lmP3B51wCkBE1A5kp0Ir9Cr9g2tXc0cssI74YKN638oAoPS6+6unoP1sP9r9gbh/uHVeGESZ14MfPH4r3j16NmnVbXUQT0nqC7cqdGgm7Li1sR09/WHM8nnxb9+ch58cOI6GtjNYf29VRsN8ZsKoyjk22qVyU4bWzSPBoah8XklhWwBoONoNIDY/RcDwlwRWzr/nHqnGU68dRmmRWzeQmu4vJqwGoI1eP9LmTLpVBfTe37RhCR7+0QH09IcRubIglXrduGd2mXwTx0itaNB5YSC29q2qwbsfdeP0+ctYte0grp9YkHQeJQtZq49ZNxgtCKg/0gkBV9dzQQC+OmcSnjOYg1o3BkRE4Ncfn8WP05h7Urulm6HeO3oGoWFRriauPDet9oGSlZtBpL5772i3vK9Uq/PrtXlXS4fuZxClqRMK8B/fvj3uZ1sb2wEBqLyuEN19wYS17Ls/P4qyovycPumAiIiIiIiIiIiIiIhoNEqn4CDRSObIdQOIiIiIrjUHNi5BZUlh3M8qSwpxYOMSAPHhU7N8xfkYvpL6E678LBIV5bBcKhXEZ9ftReWmBuz+IFZtVSqiHhyyp2LwtrW12LKiGnPKi/Fm6ym899FZ7GiOhed2NHdgZ3MHnIKA++dOBhALAmu1WwoAvvOPd8MpCNjTdkauPLujuQOVmxowu24vpk4sQE8ghHfburFlRbV8M8CqbQfhVwXppCCe1+NMaHeeU0BEBGb5vPj5k3dh9YLpckC1acMSPFxTjvy82Mfs/DwHHqkpR9PGJXJ/SiHnY/4AHtjahJ8f7sTFwSFT463XXjOvT2VemWW1XdnYr9FY6JHe47hyEuU5gUK3U/4zcPX8kkRFyHNWmmtqVs4/o3FSziHlPmdp7PNalWyeJ5ureu/3Fedj2U2TEBVFeFwOCAJw/9zJePkbNXJIP5PnWKr8fUF8fKY/tvYdPYMtK6rR1N6LlhPnsfuDzqRzF7gacP/pt78ct94BicesN9cvh4exesF0eT0HYufN8Z7LhteSpg1LMHm8R/6zAKAwz4m7q0rT6hf1zVCh4dgFLjQswuUQ8NSuw3FzRLrO1KvWfK0+UFJe56Trjh5l38Xakt61VqvN0hMg1NTrWoHbiTlTxgNIXHdOnhuQn1iibKOVYyUiIiIiIiIiIiIiIqKrpO+pnVe+tHEKSPrdNtFoIIhmymfRqFVbWyu2trbmuhlERDTG7N+/H4sXL851M0a1RS/9BqcvDMLtFBCOiLh+YgH8/aGESrEATN8Vu257K473XMZn/gBm+ryYUTYuLiC2bntrQnVTowCZvy8YVwnX6RBwd1UpSsZ5EAgN2Ro+8/cF8d23j+K9j84CiP2Da/mt5bpVWfX2rW5zfp4D4eGoXLFXyeNy4Bu3T8XOlg6snj8NW1berFlBW00AsHrhdN12bK5vw66WDridDoQjUXnb6rbpMRrvuvq2uPYmU1ffFlf12+x+rLLaLj1WK1An26/eWBhRv2dmmRef9QTiKj9LwVuvx4lAKAIgvrq/VtuTnX96c085TlrnZCQq4rF5FXj58Zqk/TWWmek/QH/OmHm/3hia3Xe2mVnPJI/UlOvOXa0+09u22+XAktllunN9xrMNuuuxVl/Z3bdW+mTNAuP1Iltts3MeSTdoqJ+20h8cRonXjfVLq7D1N+24ODCEls33yu/ZsucvaPiwS75RrbJkHLasqMa7H3Un/SxBRERERERERNbxOxgiIiKia8tI/b6RyAxBEA6Joqj5hSED6mMcA+pERJQJ/OVo+rSCjs89Up0QrjYKvCql8g8WM2HgVAK+qbDrH1z+viCWv3oA/v4QPK5Ymx+dV4GhqGgqtO52OnD/zZPx3tEzckVdPXptMwoiK/szNBxFZUkhuvuCScfbav8YhTCtzKtkjEKqxxTtMhs81wrCar3XbH9YvSlDes84jwvHuvsxe3Ixdn9w2rgTFJwC8PkLD5p+vZLWzRVa47S5vg07bbzpwOpNAbmi107p5997aA5+/PvjeLetC+EI4HYCX7/5aug62Zwx2/96bUv1vZng7wtiwfcbobeCSTdYALEnU4iA5tpu1Gf1T96JNT9tweXQMELD5m+WsNpX/r4gHv7RH9DTF0REjJ1jvuJ8vP3UXab6Vj1v1Pv3uASUevPRG9C+QUw6Xq3zyu5xz8Y8Mrt2Kvvt7pd+y1+IEhEREREREWUZv4MhIiIiurbEvhM7gJ7+MCJREU6HAF+Rx/R3YkS5ZBRQ136+MxERERFl1La1tdiyohpzyouxZUU1tq2tha84H0UeF0LDUTlAWORxmfoHh/TIp/y82Me7/DxH0kc+bW1sx59OnsfWfe26r+kNhLB6wXTUP3kXVi+Yjp5AyPrBJmEUprb6yKqtje3w94dQ5fPKbQ6EhhP6dUVNBb46dxKEK4/IkvrrwKYlKPK4EI6IcAja+0jWt1pjK1H255qF0xEajiI4FIU7yXg3bViCypJC021QzwfnlYNxOwVL8yoZ9aPGJA/dPCXuz8nm2uy6vajc1IAdzR0QRWBHcwcqNzVgdt1ezfeane9GY6Fn29paFOY58dGZPhTkObBn/SJcN84Nj+vqvr42dxK+NneSPEc8LgcqS8bh7qrSpNvXY/b87w2E8NhtFbhndpnc72bOdz1m1oGRQK+d0s93NXdcOXdjPw9HENd/yeZMOutvOu/NhK2N7YAQq4ytPjdvKC1EOBKV5+7X507WXduN+mxXcwfOXw7La3fkyh0/uw93yueuFqt95SvOx7KbfIgidp5FASy7yWe6b9XzRr3/cEREoduJcCS2DislO6/sHvdszKOmDUsweXx+3OMhp4zPTzjGF/d+gpYT5/HSnk+uvMcjX0ecDkHzPURERERERERERERERJSa2HdikxAVxdh3YqJo6TsxopHKlesGEBEREdFVUoBZWfFZzd8XxD9sPwRBALatvR2+ovy4YJsgwDDYpg6E72juwI7mDs1qqMpA75YV1ZptTrcCc9OGJdiy5y9o+LALEUXJ38duqzBdIXfBC41QPhio3R/AA1ub4HY6UDNtAkLD0YR+PdFzGaIYqyCs7K/eQAgCoFlhHTDu22TU/fm7T/0AgPtu8mGi16M53loB/uBQFL/8sAuvfHOe5n60go5VPi9e+eY83XmVirv/Vbuy7u7Dndh9uDPh53pzTZoDUuVgSWg4ih1XqoWr35uJIKfeuSGRzq0yrwciYpWnpUr9i2aWpP10ATPnv7IavxTaTeX49Y5VOmdGSkX1ZGOi/LnWz3Y0d+Dkiw+aCv+a6X896bw3HUaVrk+eG4h77SyfFxcHhxLaqbe2a/XZLz/swttHunTbo6z6rac3EMLKeRXyUwqS3fiUSt8aXecWzy6L296vPuqW//zX/3EQl4LDCdcFO9tm97EqGV2Ppb+788YS1B/ulNcu6ZebWpX3pbVcqrSvfg8RERERERERERERERHZI1ffNxJlkiCKeg/+prGgtrZWbG1tzXUziIhojOHjJXOrrr5NDmOuWTBNDsX+zf9swfsnziE4FMUsnxc3lI3TrBjt7wvGhYGVgcJUAmfPvH4Ebx3uxGPzKvDy4zUpHdPm+jbsbO6AQ4gFw43aryb1R2VJIbr7gnHH5BIEvHWkE6vnX+0nvYrtDgE4/sKDABL7yCEA064rxJaV1Xj36Fn09AdNtU2PXhu0bhKQ2vLOh12IioDbJaB8fAGmTMhHJArdIPG67a0oK8qP+wdsOm3WIj9qrC8Ud3OB2wl8/eZyrPvKDPz498dNzbUZzzbo3hQAqIKvIvC1f/s9lt40Cd9ZdINtx6cedz1fmzsJABL697lHqtO6WUPZjmTbSXd89dYBrXMmm9THrtdO9dzyuBxwCAIGhyLytqZOKMB/fPt2zJkyHkB2zolsq6tvw86WDqyePw3rl1VprFvjsGVFNd79qNvU8ar7X91nx3sC+KS7H5dDwwgNx8aj1OvB6QuDcLscGIpETc0dqd0raypw+uKg7TdEWL3OmbkuZEs6N30p54N6DKS/mzqhAPfM9iWcB8rPFmqCgIRfiI72c4eIiIiIiIhoJON3MERERERENFoIgnBIFEXNLw9ZQZ2IiIholNAK0OlVEz7mD+CYP4DZdXsTAs9mKgmn0h6p0qpWyDqZ3kAIaxZaC7+p96+sFhwcisZV+VVWz1VX69aq+Kvuo1iF7FIsmlmGRTPLLB2bFjNtULclvlp3KQBgZ0sHtu5rl4OIymCjmer36ZIeNbarpQNOAXJIPRwBijwuzCkfb3qufaWqDCfPXUbXpUGEh0X5poAvzg/A7Yx/b119Gy4ODqEgz4E55cW2HZ9y3N0uB8IagVUAeO+jsxAANG9eBl9Rvrz/uvo2/OnkeXlMUg2abm1sj9uOlnTHVz3Hjc4Zq+dzOtTHrrdeqedWOBL7+eDQ1W0VuJ1yOB1Iv89GEr0K4epK14tmlmBRVSlmTfLiqdcOw98fNJyL6v5X91ldfRv++Pk5AFer91+4HAZg/CQIvXa/deVJCwu/32hrENzqdc7KmpxpZs5/ibTGHOm4gLDiLiHlExGGotG4J4ycujCIHe9/gTdbT+HTLV/H7Lq9qNzUoLuPypJCvPHEHXLfjfZzh4iIiIiIiIiIiIiIiIiygwF1IiIiolGiacMS1L19FPs+PitXmnYKQBSA1kNxHALQtHGJ5rZ6AyGsnFeBY939mD25GD2BkOX26D2IR4T1CrCpBEelQGHDh11yMNrrcSIQimBG6TgMDEVwcSCsWT3XTHAxk4/QshqeVLbloVcPxN2UoAwSf+P2qaaDjXbpDYTggICIakLsaO7AzuYO3DOr1FQ//uffzsfm+jbsaumQw7WRqBj33l3NX+geu10hamVfP/2zw2j3B+TK/kCsknuZ14NTFwbx0t5P8PKqmqRhYbPjobedVI8v2XmoPNafHjiOP3x+TvOcyQajY188u0xzDqnP0TdaT2HWJC/WL63C1t+04+LAkN7uRj29QPWlgTCmXjcuoa+ShZ6TzT2tG6SkP18Ox6rWNxztBhALridr9y8UN0MAsfOrclMD3C4HjmXgXE62hptZk7XOp3Sqnaulcv5L4/rovAoMRcWE+TA0HMWeo90oH5+P7r4goiISzm31XJLkOQUMRUREoqKt1e2JiIiIiIiIiIiIiIiI6NogiHrJIhoTamtrxdbW1lw3g4iIxhg+XjJ3Nte3YaeqYvpjt8WCacqgtvTzl1fV6G7rn944gt0fdCZ9nR5/XxALvt8IrU+TUnB+9fxpGQtKawUmtUhhZ2Vb1m1vRVlRvqWK7UZSCSmm2gZ/XzAhmBoejsoBaqVsVb/WapMU4n7stgpsvP8mU/2TrE+09qO88cBuUnvOB0LYcyV8q8XtdOD+mycnBDzVko2H3cdXV9+GnS0dps9D6QYBtzPxnMm0bIxtqmFiO0PIdjIzXnrrpHouJut/rb+/Z1bsaRK/O9Zjacyk65jyxg+nQ0AkKuKxeRV4+fGa9DsnBXrrjzT+108owFtHOuP62eo5ZsTKOWB0/ZMC9noEIfHarJxLoeEoZvm8+LdvzrPl+khERERERERE1vE7GCIiIqJr00j9XpLIiCAIh0RR1PxCkRXUiYiIiEaR3kAI108swC1TJwAA/nz6IgKhYZR6PYiIkAN/s3xeBELDmttQB9t2f9CJ3R90phRmdl2psKom/SgTFa4lTRuW4OEfHUBPfxiRqAgBkMPy+XkOTCx0484bS/GdRTckVM9NpWK7EamK7Ut7P8GpC4OG/2DU+kellTZoVfrVq56brerXyjYBQHAoilMXBgFcnV9A8kriycbFauX5dEntWbe9FWsWTsfPWr6Adu5TTGhXZUkhuvuClsbDruNLtRJ7Jp8aYMaB9ljQ2e0UDI891V/MJKsibvf7UmHl2MyMl1al9cWzytDdF4K/PyjvI9nc0/r7cW4Xmj7rsTxfewMhrFk4Pe7Gj8iVpPruw53YfTi161G69NafhS80IioCLVf+LJ1PSnZc65R9LAhAaCiKg5+fQ29/CE/tip8TWuOqvOYtf7VJ86YlIPb0k10tHXFzWWsuzSkvtuX6SEREREREREREREREROZk83tJomxgQJ2IiIhoFNGrYioFaM1U49Z7go7VJ+tsbWzHUEREcb4L/cFhOIRYMD2VYG4qfMX5WHbTpFjVV1esijhwtXrsspt88j/aMhWy0wr7A8Ad32/E5y88qPkeO/5RqRUmLPV6EBqOwu1yIDgUhcshWArJp8PfF8SetjN49LYKvH24UyfEbU+IU+vYM30nuXQurV86E9/YdhBfnBuQ/66ypBBvPHEHvvvzo3Ht2v+pP6WguR0hca3wqpnz0O4bN6zY2tiO85eHAAD3zpmM68a5dY/d6jmUamA/1felw8yxWbnJRStY/nnPZXzWE0jYh9Hc8/cF8c6fu3BdoRuvfHMe3v2oG7/71I+e/nBCte1klDd+PHZbBXovh/G7T3sAxCqpL79lStZurjFiVKX8/rmTEAXwe43q8enoDYRQVebFMX8A4/Nd8PeH8Oj/+CNCw9G48dIaV+U1z+UQENa4eQwAHqkpT2hnLs99IiIiIiIiIiIiIiKia10uvpckygbBahCJRpfa2lqxtbU1180gIqIxho+XHN38fUHdkK2ZAK1eaC/PKeDxL0/D/k/96Lw4CLfTgXAkitXzp2Xs7t5121tRVpSPC4EQGo52w+t24o0n7kwa0reLvy+ILXv+gl8c6dL8e+U/GPX6zco/Ko2C2Oq+uH5iAZo2LtXcTl19G3a2dNg2NsrtrV9WlTC/JMoQpx2VsaXXXz+hAG8d6czoXJMseuk3OH1hEHlXnh6g18/SeJi5aSQTNte3xW7eyOB5aMeNAUYhYPW5keo5JJ2nWoF9o3an+r5UWDk2q+evNBdf/1OH5hMvzKxBdfVtctVwp3D1KRlWt6Nmx7qYKR93XcLan7bg3OWw5t87hNhTO+w6x4zOBSWpb4zWGH9fEPf837/FYDhxe2sWZH6dJCIiIiIiIqL08DsYIiIiomtLNr+XJLKbIAiHRFHUDEOwgjoRERHRNebuf/1tQgju5LkBzH++EfOmTcC2tbcb/iPHqDqzrygf67a3YvFsX1oVoM3a/2lP3LEEwhE8sLUpa+FGqYqtIAACgOiV0KZWNV2zVa2NQr9G1ZXVfXHqwiAqNzUYhuTTvfNab3sSKcQNwFQlcSuVsf19Qcz/fiMAoMWm40m2v6deO4yZPq+p+Z3risR2VGJPxo6nATRtWIK6t49i38dn5fPHKQD3zZmEf1H1W6qV4bWqTZupaJ/q+1Jh5tjMnr/qNUT5BAC9feitO1X/3IAhVcZZHU5Pp3p404YlePhHf0BPXxARMTb2vuJ8vP3UXZa3ZRfljS9a4XSnQ4CvyIPZk7yYet04286x+ifvxJqftuDC5TD0ygg4BKBp4xIAxmuM1nUeAJyCgJ5AKK12EhERERERERERERERkb2y+b0kUTYxoE5ERER0jZBCd/VP3om//V+tcYFAt8uBwaEoDndcxNZ97Vi/rEo3JJ3sH0fZDOamGli1kxQEPh8IYc/RbjgEaP6D0ew/KrVCv2aCqWb6wu7+0tvepYGwHNxctz32NJ9ta2t1Q5xWg/NGlYYfqSnPyPhL47J6/jR5XucieG5WJs9DO2908BXno8zrkcPpQCwAXer1WF57jKQa2M9G0B8wd2xmz1+9GweM9lFX36b5nqnXjcOJ3stx23cIQPmEAvlJGXrjYKbCvq84H8tu8mFXS2z+hCNRLLvJl/Iv2+yo6r/whUZExas3vig5BCAqilh2ky+un+w4x5a/eiDuPNCycl6FqePSWx8jooj9n/ak0jwiIiIiIiIiIiIiIiLKoGx9L0mUTQyoExEREY0heuE8f18Qy189gJ5ACLuaO+RAIBALgw4OaVfB1quMPFL+cTQS7iSWgsDrtrdizULjPjHqN6PQr5lgqpm+sLu/9Lb3yjfnya9p2rhU/m+9EKf6+ACgsqQQbzxxR8JrjcLpAGwff7urzo8Fdt/o0BsI4fqJBbhl6gQAwJ9PX9St8pzq2pNqYF/9Pn9fEKu2HcQPvzUPEJF2GFpJOrb7507GM28cwekLA3F/n+z81ZurbqeAY88/ELcPqf92NX8R99QD9VMQtETF2BMjko2D2Qr7VsY0WQA9nar+RmvLlPH5uHNmCb5z1wxbrnnK47j7Je1q52qzfF4EQsNp7Re4WoGdiIiIiIiIiIiIiIiIRo5cP6GbKBMEUUxSootGtdraWrG1tTXXzSAiojFm//79WLx4ca6bQRrq6tuws6UjVuVZp/q2xCkI+F9/+2VseqsNpy8MGm53JIdx121vRVlRfly4UfmPt1TYUYU3lX3qhX59RfnYXN+GXS0dcDtjVYaVYywx0xd295dd25vxbINm9WD13JP6qeHDLkQUr192kw9TJhTYMv5KycZFek0250su5qeaej6WeT14Z/2iMf+YOeUaCwA7Wzrw6LwKnLowGDce6YyR1joubfNr//Z7LP2SLy4oLc139Vx1CrEbkB67rQIvr6qJ247UNojQnN/fuH0qNu5uQ+fFq9eGgjwHbp8+EV+cG8Cc8mLd80zvmmPHdUSvb+zYp9R/vzjSpfn3dl4Hn3n9CN463InH5lVg49dvwpY9f8F7R88gNJy4CKaytn3cdQkPbD2Q8PMHqyfjR2tuT7v9RERERERERJRZ/A6GiIiIiIhGC0EQDomiqPlFJiuoExEREY0BepVz9TgE4OA/L4WvKB/3zCrDTtVrpWCjFFZc95UZctXgVAOomQrVZuJO4nSq8KYqWXVkM1WGzfRFKv1lNHZ29f9Xqspw8txldF0aRHhYhEMAHrq1PKEqt9RPETE2j6NirLKwyylk5E5yM1Xnsz1fcjE/1ZTz8X//2WEc8wdy2p5Mm7V5L8KR+DVWsvuDTgDAHd9vxOcvPAggtTFKVq1/a2M7Lg4OocDlxJzy4oT5Ls1V6SkE0g0cuz/oxO4POuO2o2yb1vxeVFWGQrczbvtTJxZix98tTHocdlfYN9M30j6lkLfHJeD+6imWrl1S/6k5hdjf/fTbtWlfB9XzaPfhTuw+3AmHAGiVDhjndiasbWaupXPKx2v+fJgFCoiIiIiIiIiIiIiIiIgoSxhQJyIiIhoDrobzuuWg4f3VsWD5j39/PKHa9Mp5FXHB5+snFuCWqRMAAPs/9eNyOCKHFV0OAX/z//4J/v5QWgHUkRCqTSZZCDLTjELouXykVzbG7j//dr5cldvjilXlVgfBJb2BENYsnG5r1XwjeuOS7fmS6/mptG1tLWbX7cWO978YEe2xmzoEvPyWKXjrcCecDgGRqCjfHKEUEYHKTQ1xP5P6xO0UUDNtorw9rZCxXrB7b9uZuO0a9XNvIIRHb6vA+UAYTZ/1IhIVk27HIUBzfl8aHMKsSV6sX1qFrb9px8WBIVN9Z+amDrOkfqp/8k78+PfHdUPvV/cZG5TQsIgijwu7mjssrV3S2nI+EMKeo90AYuO67Caf5W0p2y+N83A0sco7EAunr14wHcd7AugNhFDidePGsiLNtc3seuwr8mBCYV7c+GVynSQiIiIiIiIiIiIiIiIiUhJEVtAa02pra8XW1tZcN4OIiMYYPl5yZNpc3xZXCX3NgmnYsvJm+efKatM3lI1LCKr5+4L4h+2HcKL3Mu790iR8Z9ENWP5qU0IIE4ClAKo6VJvKNrLF3xfUr/wrIiMV4EcyO8bOSuX8ddtbUVaUb3vwPFPV+43mSybmSLb3N9raY6e6+jbsbOmAgMQgupIyqJ6f58A9s8oAAL871hPXJy6HgLcOd2L1/Ni6LG1f+rPkmdeP4K3DnXC7HBiKRLF6/jSsX1ZluZ+lmz3cztjNHqluJ1V2ncvKfhKBhGOS+k5vrVJTr11aa0Oq2zJqf7J59Ni8Crz8eI3u33/cdQkPbD2QcjuIiIiIiIiIaHThdzBERERERDRaCIJwSBRFzS+DWUGdiIiIaAzQCtTtaO7Am4dOY/HssoRq0889Uo1V2w7GhfK2NrbjyKmLAICCPAdW/vsfNAN1DgFo2rjEdNv0qgJLlW/tYkcI2ajyb119W1pVxDMVks4kO8bOSvX1TFWJz1QFeDsrRY/E/VltT3AoioOfn0trm7k6T6T9Hjl1EWHFWqpeAp0CcPesMhw72w+nIODmivHYc7QbDgEIDUdR5vVABOL65O0jXfL7parl6j9LIeM/nTwPALjvJh8mej3o6Q+mNO5aVf8zMX/0xivdc1nraQFA7Prz029/Gc+8cQSnLwzIf69eqzwuB0q9HvQGgggNi7prl9bakLgtAaXefPQGQggNm1sHZ23ei3BEfx6p7T7cid2HO+FxOdC0YUlCnz79syMAAK/HieGomNFrKRERERERERERERERERGRHRhQJyIiIhoDjILEytCgFBSUwtYv7f0Ebx3uhPqhOsowoDqkvrKmwlKgMVuhWrtCyOpg567mLwwDpUaU4c1MhaSTSSfwa3XslPu6+6XfJgRMzfabXbRCrna3QSsInEnS/u6fOwnPvPEhTl8c1H2t2bFPZ44oj//pnx1Guz+Q1hzP1Xki7XdlTQWGRTFuLZ1cnI+T5wbgccUqd0+dUIB/fewWPPXaYQyEhxNuAAIg98lPDhzHHz/vxcWBIcOw8962M6jc1CC3p+FoN4BYdWzA+jxTB8T9fUGs2nYQhXkOS9uR5sb3HpqDzfVHIQL4j//t9rgbmzIxXkbXtK372tETCGHqxEny69VrVTgSRaHbiXBE1Fy7kq0N2tsyfw1bfssUvHW4E06HgEhUhCAAFRMKcPrCoHxdLR+fj7N9QUSuXGMrSwrxxhN3YOu+q32qvPYAQCAUkf871zeoEBEREREREREREREREREZEUR1GonGlNraWrG1tTXXzSAiojGGj5ccmTbXt2FXSwfczligbvX8aQmBQa1K6xJlGN0pQA7NaWnZvMxSKG7d9laUFeXHhSKVAcp06B2TXSFkf1/QVPhfS119W0LA0O72JVNX34adLR2a88GMv/mfLfj4TB9+8PitePfoWcOxU+5r/bKqlPvNLumMXbLt2lnlO5XtmRlXs2Of7hyx4xxMto1M9bm6Yrp631Ig/Z7Zvrj1q8zrMdVn/r4glr96AP7+kLy9mWVefNYTiFurM32+mB1jdT9L75tZ5kW7PwAAWLNgGt48dDqj6y5w9ZqW5xAQjohwANAaKWmf6uvMrz7qxlfnTta87iRbG9TbevfoGTgEIek6aHSNHed2YuVtU+Vt7nj/i5T6ZZzbiZceuwXvnzhv67WUiIiIiIiIiEYOfgdDREREdG0ajU9lJxIE4ZAoippfWjKgPsYxoE5ERJnAX46OTGZC4FIo7xdHupJu74GbJ+M3n/gRHLoatnNeCbGvXpBakDUTMhVCVjIT/lcyCilmKyRtV3DfTLBVb18OARCBhH6z4x/WWtvQ+pnVsTMj3UB3OtszM65mx96uOaI+Bz0uB7weF7b/3XzMmTI+pW0ozxOIwPJXD6AnELK9z7Uqpk8sdOPOmSX4zl0zEtZSq30m3aRS5fPilW/OMwxO2z1X/X1BLHihMeEJGer2xj3pYV87drZ0wAHjm5SubkdAaFjMyLorXdPOXw5jT9sZTBnvwZdvKLFtrd9c34adzR0QEFun1hhc19TnqN4a9nHXJaz9aQsCoSGEhvU7cM/Ti/Cvez/ByXMDOHMpiNBwFAKA8gkF6L40iIgIOB0Clt8yBX8+dREnzg3I763yefHrZ+6xfLxERERERERENHrwOxgiIiKia9Nf/Y8/oPWLi5g/fSLe+P/cmevmEJliFFB3ZbsxRERERJQZyjD6lhXVmq/xFeejyOOCIAACrlZMdwiA2+VAvsuJ26dPxLGz/YhERVw/sVCumgtcDSzuaO7AjuaOrFUBNyIdU2g4FowNDUdR5HHZekdxbyCE1QumxwVKAf2QeNOGJXFhW6dDQCQqwu0UbGvf1sZ2/OnkeWzd164ZqlS3IS7wa4I6iGs05nr7ujQQxtTrxiX0W7K2A8kD+Frb0PqZ3tilwkqfZGp7Wn29eFYZuvtC8PcH4SvK1x2PdV+ZgVXbDsp9mu4ckWidg6HhMHa932E6YK13Ht/90m+T9pGVGx5mbd6DsCJ5/dbhTvm/pf0uu8knt1u9lprtM/XYtvsDeGBrU8LYKrevnKs/PXAcDW1nsP7eqpTWCqlyuygClSWFOHV+IBZ6FoDlt5bHtXdrYztaTpzH/Ocb5Z9FDLbtEICKCQU4dWEQoWExY+vu/k974vrwzKWQfHOVHfvsDYRQ5fPiM38AN5QUava33jkq3XyjXsN2NXfg3OWw7j69HicCoQiefu0Ifv3MPfJNCdLxdF4clF8biYp4+8rxzprkxfqlVdj6m3ZcHBhK6XiJiIiIiIiIiIiIiIhoZFJ/J9XyxQVUbmoYEXkMonQwoE5ERER0jZFCkOcDIew52i0H7a6fWIjPegKYUJiHKRMK8NyKaizfegAzSschEo2iNxDG5XAstihVdrUaZM0UO0PIWvTC/3pBa62wrbKCcjZC0ukG962El/X29co358mv2bKiGrPr9qJyU0PStgP6fat3/Ep629W7cUMt2Y0H7x3tlo/1/mrrgW719qwExLX6+vOey/isJyD3ld547GruiOtTO2/u6A2EIACmA/dafaw+j3c1fyHfRKPkEICmjUvkbVw/sSDpDQ+Sh24tx+4POuEUYjfc6FVM12O2z1IZW+U6U5DnxMXBoaTHpNWP6nPkpKL6dkQE3j7ShXePdgOIHy+l/DwHXA4BgVBiVD0qAqcuXA1Sh4ajcAoCegIh3XamQqsPJxa6ceeNpfjOohvSWkvVfSRVKF/4/UYcf+FB3TZIoqqbtcyS+rPdH5DXwjULr96U8M6fz2A4EpVvJvAV5+Ptp+6Sx3b5reUpHS8RERERERERERERERGNXHrf2en9nGi0YECdiIiI6BojhSDXbW/FmoXT8fqfOjAUEeVK6bs/iFUUvuP7jfj8hQdRV9+WEMCTKru+e7Q7pTt2rVQ8NsNM9Xg722MmJK4Vmp9TXpxS+5SsBF/TCe6bDeJKfVeY50i6L62wZ2VJId544g75Ncn6Vuv475lVBgD43bGetCqBS4wqvL//+Tm5felWcE41IC6N6+t/6oAoQj53lX21eHaZPB4PvXog7hzWe106gd9ta2vh7wuanptafaw+j9cvnYkte/6Chg+7oCh6jpXzKuAryseNzzYgIgItJxKPS70uqeeVtL3gkHHFdC1mziur54+09szavBfhiPmq+up+VB+nmtMhwFfkwdtP3QWI0HzSg9QvWpbd5MPBz88hOBxB9ErAXxpjs+eBdMzfe2gOvvfLj3XXXa0+tDpWeqR1RKrILomKiKtGIbUhOBSFgNjNXJUlhTh1YRCRqCjfrDU0HMWeo91yH0r/K71n0cwSfNBxEQPhq4H/qRMK8B/fvh1zpowHALy8qgb5eU65ono4EjteO6vSExERERERERERERERERFlCwPqRERERNcoKQwqhUDVQb3IlaCeFmVlVyvkiscTzFc8zgajQLIWMyHxdEPzeqyEmtNtgzKI+5MDx9HQdgbr762K25fUd6vnT5P3obcvX3E+3vmwK64q9slzA5j/fKNhAF3Zt1rHX+b1QATSrgSeLBy/8IXGhIreO5o78Oah0yk/Wi2VmwjU565WXymP/eCzS69Ufj+D0LAIj0vA/dVTEl6X7jz1FefDJQgIDkXh1hkHs08AkLZX5HEhIsaqpkdFYJbPi/rDnfKNNGqP1JRrBuLV88rpEHB3VSlKxnksV/42e16ZGVv12rP8lil463CnHHDWC/nr9aPb6cDDNeVo+PMZOWwu0Qo9az3p4b8/NBdrftqseUwHPuvFX90+VQ5Rp3KuScf89M+OxFX+N9uHdtzgJM0tNSlwvu4rM7Bq20H88Fvz0BsIocrnxWdXbgSJq0h/5WYt5Z+l/1U+NUPraQCnLw5i5Y/+GDfvM/00ECIiIiIiIiIiIiIiIhp59qxfhAe2Hkj8+dOLctAaIvswoE5ERER0jZOCeoIACIAcovO4HCj1etAbCCI0fDVZ53Y5MJRiZVcp4Nty5c/JqgNnmpWwrFKqla+tMAphZivEqAziFuY5cXFwSLdSs9m++0pVGU6eu4yuS4MID4twCMBDt5YbBtDVfat3/Kn0ibKf9cLxe492696soReINiudmwjMzsOrr4udx6Fh0fb5KvnTyfMAgPtu8mGi15MwDlaeAADExnrNwvhx3fF3CxIq8TuEWKVqo+N6//NzCA5F5aD21AkFGb1Bxmhs9c4fibKSudYxafXj4lll6O4LwSVV8b4S6i90O3HdODe2ra1NODe0zqVFVaV4dF4F3jp89SYApwAsv3KefvfnR02fa8pq6Q9uPQBlRlur8r967dDqw7r6NltucOrVuDFBCpz/8sMuiIg9SSQiJr5X4hAAt9OBoGIsF88uQ4nXjUBwWH5qxht/6kBYY0OiGP+zTN3YRERERERERERERERERCPXnPLx2j+fov1zotGCAXUiIiIikkOK5wMh7DnaDYcAhCNRFLqdCEdEuXrx+HwXXvuHOyyHotVhTKV0A77pUIc8AaCypBBvPHFH0vfaFRLXC6IbVXW3O8RoFIbXr9Qs4OGactNBY+U+XtnXLldgDkfMB9DNHr+VPlH3s1bg++dP3ok1P23B5dCw3BfSOZGpoLdZZuah1vmXTuV3rfmi3kfD0W4AsRtd4l5v8eYOvbGWtiGNw9fnTtYMxEu2NrbD3x9Cfp4DP/nfvox3P+rOaXXqpg1LsGrbQbkat/qGIKcA3D0rFnTWqvCu1Y+f91zGZz0BnAuE8NhtFfi0ux+zpxQhEByW+1F9buj17+XwMKp8XrT7A3AIsSdqSONkZf1RVkuHAFReV4gzl4Jxc0VZ0d9IqjfFmNmWmnSjVkT18/w8ByYX5+PkuQG534Oq7ez/tAcAcPLFB+WfHdi4FN/YdhBfKKqvm73WEBERERERERERERER0djnK/JgQmEe1i+twtbftOPiwFCum0SUNkFdsYvGltraWrG1tTXXzSAiojFm//79WLx4ca6bQRmwbnsryory5bDrjve/0HydMhBoFG6W+PuCmhWPoyKwZsG0jFYxTmbGsw1yGFEpW1Xd6+rbsLOlA6vnT9OsTJ5Oe8yMjVYb1NvQq3gtBc3dzljQXOv9WvvoCYTi5llPfzAu9JoNev3sEIBvqQLfZV6PXN1amrcP3DwF141zm2q72XGwwmib6r8zGsNU2qM1X4z2sXVfO3a2dGBlTQVOXxxEYZ4DU68bl9b4q9cqvW2kcj5lYrzMtEm48v/MnE/A1T54/U8dGNIp853O+mq2j7UkC4BLpMr3yY4VMJ5jVsdJ2tZ7R8/ITxaQzu3KkkJ09wXla5UWqar/q79tx3tHu+OuIfl5Drz15J0JFS0WvfQbnL4wiDyngKGIiOsnFqBp41JL7SYiIiIiIiKiawO/gyEiIiIiotFCEIRDoihqfpHMCupEREREJFNXxl2/dCa27PkLGv58BpGoCKdDwPJb4ivdqitQa4U7ldV+pRDg/dVXA76ZYiZo+pWqUpw8NyBX9XUIwEO3pl7V3Wy4Vb8yucNSZXIjRlXYjdqgDO/6ivPhEgQEh6JwqypeG1XvlvrhSMcFhBXhWSno7XE5sGVFtS0V4FOhrp6vFXZ9s/VUQsg2KsaCrJFo1HTbk41DKrY2tqPlxHks33oA76xfZFh932rVcj3J5ou0D7czNl9++WEX3j7SJb/+rcOdAGL9d/yFBQBSfwKA2SreTRuWYOELjQk3oYSGo5hdt1czpJ6J8VK3acuev+CdD7sQFWPnwpTxBegPDuHrN0+JO5+01hP1z6R1WnkDkCSdKuPpPKlBOkZlAByIjf2068ahxJuH/uAwSr0ezCjzmroOaM3jg5+f03xtsnX46rautk26Ju3/1B+bxy4Hwor57nYJKB9fgMrScXJ//I/Vt+O+H/wO7f6A/LrrJxZqPm5xbnkxFs/2pf3UDSIiIiIiIiIiIiIiIiKi0YABdSIiIiLSdfe//jYukBqJinj7SBfePdoNAJphVacARIGEcKdWmDnT4WQzQdP//NsF2Fzfhl0tsRBnOJJaeNfKPgHjgPQr+9rTChObCZ4na4PSn06eBwDcd5MPE70eOTh7YWAIz62ohq8oP2EspX54dF4FhqKiLYF7O5kJbScLsScLwZodByvU2/T3hzD/+UZ4XA4A2uekx+XA4tllujcTyNtKcjxSfzR82IWICDgFYLniZg7pHD9/OYw9bWcwuTgftTdch18oQurAlSrVmxqy8pQCX3E+VtRUyOF4ILHdkkyMl16bijwuiIC85iyaWRK3XkjnU119W8J6YnQDgtspxN0QonesmSa1KRwR5ZuSpGuD+litUF5H/vefHcYxf0BzrbV6cw4A7Gk7AwHAPbNK5SD50z87jHZ/QDFOpQnbuzQ4hFmTvEkft5hO4J+IiIiIiIiIiIiIiIiIaLRhQJ2IiIiIdDVtWIKHf/QH9PQF5UCqrzgfbz91FyBCs2qvlI1UhzuzGc6zGjQ1qgSeqX1qBaRdDgFP7TqMwjxHWu0xGzxPFtJWH1PDlRsTPC6HbgBU/Z7dH1wNBqdTvduI2ar1asnGPVn/JAvBqsdBEICvzpmE59KY/0YVwY2q7yv7Re/8S3Y8CTesiJBvWPl0y9ex/9OeuL/vuhSUw+lSSBlAyjcppDrOl8PDqPJ50e4PxKrfi9Ccg2bPGzskm3t664mS1g0Ir/8p/jXqMcom6RiP9wTQGwihxOvGjWVFaVUO37a2FrPr9mLH+1/IP1P2A6B/k4by+EVRdQJJPwcwdWKhfI7MKBuHBTNKDNfils33yv+9/NbylI+NiIiIiIiIiIiIiIiIiGgsEfS+mKWxoba2Vmxtbc11M4iIaIzZv38/Fi9enOtmUJZI1cXdzlgF2dXzp8nhVfXfTb+uEN19QcNwbDb4+4KGla9Hyj7XbW9FWVG+HH783ad+nL44GNfHqTIaN6M29PQH5ZsJtI4pPBxNCEcDkAOgWu+ZWOjGnTeW4juLbkjYhx3q6tuws6XDln5T0+ofdRBbonUzgjQOAmIB7SqfF79+5p602vTM60fiK4I7BCy/ZYpcfd/MuCtpVZPWOh5/XxAP/+gAevrDiERFOB0CfEUevP3UXXJFeeXYe1wCoiLw1bmTIEaBPUe74RBiIWCzY6UMpW/d157yOBvNcyWz5426bXavK1rn0eJZZYgC+P2xHt01JtkYWW2DHcdndjtWXqd7I4Hqxim9ddjfF8Q3th3EF+cGdPeTjQr/RERERERERERa+B0MERERERGNFoIgHBJFUTMAwgrqRERERGSoNxDC16snY/+nPXhgzmT0BEJykFBd6Xv/p37datNm2BWITFb5OhPM7lN5jFJA1mr1dTPMVoU3qmyvdUwrayowLIq6Vaa13rPsJp8c8rWzen4m+k1Nq38MA7Iqr7V0QBRjoWwAaPcHULmpIa02ShXBP5MqgkdFea6l8jQAKxX3l900CbtaYn0cjsTGVprjWmMPABML3OgJhLBmofWnAmxtbEfLifOY/3yj/LNUxtnsExys9F+yivNqVtY3rb4s9XogAoZrTLIxssLq8aW7HbOvU/aN2ykgOBSFSxDkYzSzDqufBqD2SE15RirnExERERERERERERERERFdKxhQJyIiIiJD29bW4r4f/A4D4Qga/+LH7zcswUt7P0HLifMo9brxr9+4Fb6ifGxZUY1121uxeLbPMNxpFNK0KxAJJAZNT58fwKptBy2H362ESs2EW7WO0WxA2AplFfRjZ/vxw2/NS2k7WsdU6vUYBkBTCUmnIhP9ZoaVGyDef3ZZRsZ23fZWLJhRktDHZoPYZo9HOf8hAnvazuDReVPjquEr9QZCcEBIuHEAiFWk3rKi2lS79Kq6A8joOJvpv1RvjLC6vnVeGECZ14MfrKrBux914/T5y/jw9CXD/gfSP//suvHD7HZS2Z90jGcuDqLxEz/+eLw34e+Mjr9pwxIsf7UJ/v5w3M+lCv+ZvqGJiIiIiIiIiIiIiIiIiGisE0RRTP4qGrVqa2vF1tbWXDeDiIjGGD5e8tpRuanB1OusBBefef0I3jrcicfmVeDlx2sA6IdRrWw3WZD8/8/e34dZXd934v/rnLkFB9AAIwwqxAgYxAiGBRMxAW1qEhPvsjVd0au7tV1TN7Xfb/e3aAp7fXNtyI3ZK722tPm2bLd7dSuaNvkaahMgplJNMVUIRgyaRGiUjII4o4gwwNye8/tjOIdzzpxz5szMB1HzeFxXrzKf87l5330+Aef5eZ3VG3bFfdvbY8Xi80YUfh/tcaXmrNocvQOV+7hqw664f3t7NNYNVj0e6/Vykmp/xMkxHt9YF+ecNb4oAFoY7H0znapxq6bjcHdc/T/+Oa58b2vcdvn5w47B6WjjSN1+746YOqF5yJwWrp+IqGktVaswX2vot/QcdamIgWxEY306+k7zGI60f3NWbYregaH/7h7u+VZ67yZ5L1eTxPyN5Dyjud5Y/zej0vHpiLj5spmn9ZkGAAAA4HcwAADA20UqlXoym82W/eWqCuoAAFS06c6l8fG1jw27X09/Juau3lw1GFgaCHzgqX3xwFP7oqk+nUgl7ErViUuD4bVWA06qinDOJ943Pb791L580LapPh0fnX+yj0lXHS8NxY61/REnx3jF4vPy1aVrrdI9UrVWrn8zqrWXtmXtlj1x6HhfjKuvi3ltE4cdgzerovxYlFYOn7t6c9ELKrkq6Lk/V1tLI6kwX0m5c8xpbYn/8ZsLT/sYjrR/n7ykLR748cl7v7khHR+eMzU6jvREx5Hu/HG5dbaz/fWy927pz2O5l5Ps31jPU7hfKhXDXq/jcHfF6vrlXsAv9yzZunJ5XPv1x+KVN3oiG4OV05vr62Lxu886Zc80AAAAAAAAgF8lAuoAAFQ0r21SvHvy+HjhtWMV90lFxNUXnR3/bZhQX6Uv7snG2AKRwwXJ88HwdCoGMtmaw++lofl0KuLX55XvZ7UwdWn7crnT0j6WBoTHqlwodqSh/5wkw/q1Bs8rvXBQKulxq9aWy760JTIF67jWcXgz2jha5eaj43B3zJs+MaZObIp/3t2ZX/+pqH0tJRHKL3eO0hcCal1PScl/i0BDetj+Vbr3u/sy8Xzn0fjXzq5Y+/CeuPOq2fHZbzwV5541Ln6092DcuHBG9GWy+WdPU30qprQ0x6tdPdHTP7oXeEbq1a6euGHhjNh94EjMnTYxOrt6Rn2eWtbBq109MXtqS+zu6Io5rS1Vr7d2y56IiGhpqouunoH89lmTx8c3P/OBon07DnfHJ/70sejs6il6lrRObI6rLjw77j8R/M9mI268dMZb7psNAAAAAAAAAN6uBNQBAKjqaO9AjG+si2O9A2U/z0bElJamYcOhj921PG5a93jsLQi7FwYKRxtorVR9ffMzB4oqQA+cSBZ399UWfi8MzedC3r/oPFp0XC6seu6Z4yqGqXPt+4ed+4dcY/229vjmjhdjwXlnJRawrRaKHU0V5IjKYzyagGwu7P2VTT+Plw4dH9LvpCvXj0VpW0rfsUg6KPxmh60jyr8IsHbLntj50qG4YGpL0UsjEVHzCyRJhPJrOUetLzIkZSTfIlB639SlU5HNZiOTjdjT0RURxdXRt78weNwDP96XP0dTfTp6BzIxvrEuegfGVtF8JNbduihWb9gVz758OBace2Z87aay38hW03mGW9el99nujq7Y3dGV/1aOfGX5Fw9Fb8F+heH0iMFn/EieJa929cTE5vp4o7s/JjbXjzqEDwAAAAAAAMBQqXJfgc07x6JFi7I7duw43c0A4B3m0UcfjWXLlp3uZvAmuuCPNkV/pvrfG/d+5Zqqn5eGBXPGGjzOVcjtONKTD3OuWHxe3HnV7OJwaCriijlTY3JLY3R19xeFXys5/3Mbo1y3c20e7vOcVRt2xf3b2yMVkd8/F26uT6fi20/tGwy8JhCw7TjcPSQUe8XsKTH5jKbo6umrqd/l5PrQWHdyjEfS3krzn05FPP/lk2untP2FIfA3K7RdrS3TJjbH3teORSo1uE9S8xYRsXrDrrhve3ui56yk0nyU01CXiqktTfFqV0/87//wb+J7z7wSnUe6y66lNytkf6qeJyO9XmNdOhacd2bF/pbeNx+9aFpsf+FgdPX0RU9/5Wfq9EnN8cH3TInblr477t/eHt9/9kD8+kXTil7gGe29PJykx3a4dT3cPZ87/oYFM6I/e7KyfCV7v3JN1efNE390VSz+4paqxwMAAACcTn4HAwAAvF2kUqkns9ls2V9eq6AOAEBFhRXIK5k+qTkmtzRGx5HuqoHUrSuXx7Vf/2F0Hu6OgWxEXWqwSvmDn718TG1cu2VPdBzpidmtLfEnv7kwH94srICeC66fc+a4EQV/n/jcVbFm089i49P7823+xCVtQ6qzF7puQVvc/qHz46Z1j8fnPzkvPv+dn8b4xrpYsWRmHOzqiU3PHIh0arCi+YMFVdWTqhSeRL/LGW2F+5xKleQz2cF1lut3afvfjGrRlZRry0AmG3NaW2J3R1fMaW1JpOry6agaX64q/ofnTI2IiB/s7hwSFF778J64b3t7fG/Xgapr6c2qaD7Wqv4jDdJvXVn8DRC56/X1Z2LTMwfink0/j699esGQ40rvmx881xGvHe2NiIjG+nT0FnxDQ8RggDobEVdd2JofvzXXzy+q0j7aivS1SuobE2pd15Xu+SvueaTo+G8/dbKyfEM6olxG/aoLp+b7cNmXtwx5gSiTjbjinkdi051L43f/5snYd+h4/rNzzhwX//O33j+iPgIAAAAAAABQXvp0NwAAgLeu9bctjnENdUXbUiX7dHX3xzP7Dsc9m39e9VytE5vjqgtbIxODlXgzMRjCHG3weO7qzTHr7o2xflt7RETs6eiKj6/dGt/a8WK+snAuHLrhjstjxZKZ+TBxx+HuuGnd49ExTMj6iq8+Ev+wc38+PDqQjcFQeTYb1y5oi+aGk3+dTp8YmAlN9XH/tvb40d6D8Qd/uzN+tPfgYED8+vkxkM3GLZfNjO/+/hVx46Uzio5vbkjHdQvaYutdy0c1HoX92vf6sbL9HosvXDc/dr9yJKZMaIw1188fcfXmXAg14uRYRZTvd6V5Ox0K25KKiBdfPx67O7oiImJ3R1c89OwrMXf15jFdY+vK5UXrKYm1MJxyoeCpLU0xpaWpaNt3nt4fi7+4JdZva49sdjBkPOvujUP6XHg/VttvNMrdr2N5kSH3rQvbXxgM0g933TmrNsXiL23Jh9MjTr5gsumZAxER8cBT+8r2d92ti2LN9fPjhv/3h7H+iV/Gi6+fDET39mciFYPPldw98bGLpg275kvHo9bnWa3nS+olkZGs68L77MaFM2Ljrpdjwx0fHHL89EnN8an3z4gHP3tFNNaV/q9RxJafd8asuzfGFV99JCp9WVw2m415bZNifGPx/7aNa6yLedMnjaiPAAAAAAAAAJQnoA4AQEVLZ0+NhpIQYDYiJo07+UU8R3r6IyLigR+XD2gWSjJ4XEv4MRcOndc2sShUXVjlebhrTJvUFHUn0qN16VRMn9Qcj919ZT7AmQuWfnT+9KhLpfJVgrPZwdB8YVj30ec682HVb/94X3QXlADu7hsMAw8XAq0WRs3165yzxpft91jUOmbVvNrVE7dcNjM+etG0iBgM5ZYLv1aat9OhsC1PfO6qUxIkrxQIjmyMKXg8nFe7euKGhTNidmtL3LjwnOjs6hlyj35o9tSa+lx6P6ZTER+96OxEQvaV1t5onidzV2+OxV/aEh1HBvetFqTPXfeTl7TFtQva8vd6Y/3QYHROhUx0bF25PGZNHp//OTeOH54zJf/Syi2XzYz+bDa/5ivd66XjMdZ7s9zxSTyrRxJ0L7zPxjXUxaHjfXH/tvYhx191YWt87TcWxMfXbo3egfKjnVufqUrTdOKDN473xZyzW+LP/t3CmHN2S7xxvG/EfQQAAAAAAACgvFS2Ulkx3hEWLVqU3bFjx+luBgDvMI8++mgsW7bsdDeDN8mc1ZtjXEM6fu/D74mvfO+5YfevT0WMa6yPv/vMZae8Gu2qDbvi/u3t0ViXjt6BTKxYfF6sueHiivvPXb05evozQ7Y31afjuTUfG9E1br93R0yd0Bw3Lz4v7t/eHp1HuuML182PNZt+Fg89c6DoOk31qfjo/Omx6pr3RuuE5pizalPZcGUqIl74yjVV+7x6w664b3t73LhwRrz4+vH4s5sXxhX3PDLiftVqNGM2nHJjVxpC7zjcHZ/9xlPxZzcvLBtorfT5cMeN1UjXXK3KjcnUlqa4b3t7YtcoJ7eeql2jtM83LJgRLx06PmSMc/ulY7Aq+OzWlvjHP/xw2XOWm6fSbWNde7WeL52KeOKProrIRnz2G0/FzvbXK4afm+pPjsGP218vqqo+a/L4+OZnPjBk3VW77vNfrny/l85NpfOUa2Mt43Mq7u1SlZ6T5e7RauP03d+/ouhZ8dP9b8Tv/s2Tse/Q8SH737JkcLw6DnfHh//7o3G8byD/2fiGunh05bJT8mwAAAAASIrfwQAAAG8XqVTqyWw2W7bqoID6O5yAOgCngv84+qur43B3rNn0s/j+sweiuy8TqSiuGDxr8vhIpVLxwqtHq4ZTk1JL0Lla+5sb0nH1RdPywfGxXqPjcHd84k8fi44jPVGXGgzpplMRmWxE64Sm+O6dS6N1QnN0HO6O31j3ePyyhnBrTqXwZl0q4vHPXTXiftVqNGOWhOGC05U+ryVwPRa337sjWprq47kDR2Lu9AnR1d1fMXA7Wm9GcHgk1yi9B37wXEe8dOj4kDE+/3MbI1Pmn5flzllunkq3jXXtVTrfxp+8HAMFDf3UwhnxtU8vKHr5oy+TLbruWeMb44PvmRK3LX13/jnw7P7D8dLrx6OhLhV9A9mYPqkpHv/crw1pR+663316f2SygxXY2yaNi1lTzoi//g+Lh+w/Z9Xm6B0YOjeNdan46MXT8+1KR0QmIv8cHun4nI57O/eM7OzqGbJ+RtKeys/DVPzavNb8M3rpPf8UL71+PBrrUtE7kI1zzxoXW++68pT0DQAAACApfgcDAAC8XVQLqNe/2Y0BAODtq3Vic0xoqo+e/kw01afzAcFcQLOwmvCejq6YdffGiIjYO0xV8NEqDIqvuX7+sPuXa/+EpvqqYcyRXGPtlj3RcaQnZre2xJQJjfFaV29MaWmKziM9saejK9Y+vCfW3HBxtE5szgdkc2M3kMlWbcfWlctjzaafxT/s3F+0fSAbsfhLW/Ih1ca61JB+jaWq+GjGbCxKg6frt7XH+m3t0ViXit1f/HjFz0vlticZ6o4YXA83/+Xj8cz+w3HmuIZY/7uXxeoNu+JHew/m53escnNdLqiblK0rl8dN6x7P37OpVMSvzzs7vlBmjefugUpjn4qIbauuiidKXpRoqk9HS1N93Ps7J0PYtcxf4dz92/efM+K1V+kaufMNZLJRd+LFkVlTzogHntoXDzy1L7//Az8++efcda+6sDU/t7nnwO337ohlc1vj9a6e2PjMgUhFKm5a9/iQ+yx3D2XjZAX2pRdMqbhWPvG+6fHtp/ZFXToVA5ls0fz/ycN7ortvsG+5Huai9t19I7s33yr3duE9+sQvXsuvnWrt2bpyeVzx1UdKvqkiHVvvWl60/0VtE2PZ3NaiF4wAAAAAAAAAOPXSp7sBAAC8vbza1RMrlsyMDXdcHueeNS7OPWtcPPiflsbHLp4WzQ3Ff71srEvF+t8ZWiH4dCps/4olM6Ozq2fM55y7enPMuntjPmi7p6MrHv/Fwdj9Slf8yy9eiz0dXRExGMicdffGmLt6c1zUNjFuuWxmPPiflsYtl82MeW0Tq14jFyZNpQarsuc0N6TjugVtMW3SYCjz1+ZNG9KvtVv25APUo1HrmHUc7o6b1j0eHWMIgW5duTyuXdCWX0t1J/r6yUvayn6e6/+mO5eW3b71ruWjbkup3Dz/yy8ORkTEY794LT/v2Wzx/I7FqQ4Oz129ORZ/aUvRCyXZbMRDz74y7EsSpWM8a/L4iFTE2of3lG33a0d746/++YWq57j6orPj6ovOjqb6wcluqk/l524092ulNZI73y2XzYzv/P4VseKymdF/olL5rMnji/afPqk5PnXpOVWv++hznbH+iV/GxmcORETE/je6Y/sLB+OyL20Zsm8t/citr2+fCMvnXmIpDJ6/2tVTdP8XSqdixM+zcu1K4j4uVanieToV+Xu08AWf4ea7NJweEdHTn4kr7nmkaNu6WxfFmuvnx7y2ibHm+vlVv2EDAAAAAAAAgOSkstky38HOO8aiRYuyO3bsON3NAOAdxtdLUslH/vgH+TB2zi1LzkukqvRIjaVq+EjP03G4u2zF69s/dH78xT8/X7YS9mjadPu9O2LqhOY42NUTm545EOkTVaDLaaofDNuWC4UmXVU8Z/WGXXHf9vZYsXhsc75qw664r0xV9IjIV8G+f3t7NNYNVqPOXW/Vhl1ltycl940AVfeZPD6++ZkPjDlMnpvrwsrPuXBt6Zoc6VrPrdfSavw51dZHbowr/TMyF54uty5z5y03T9mIojkf63NjuLVQKTAdMVhNvpa1M5ZxrHa+3POiLhVxxZypMbmlMbq6+4vmv7D6fURy6y4iufu4UK5vG5/eHwMFa+NTl86I7/7k5RE/p+as2hy9A0OPaaxPx+5T8GwDAAAAeDP5HQwAAPB2kUqlnsxms2UrhamgDgBAYt443jdkW7Wq0klU6q10jrFWDR/JeSpVvJ7XNqliJezR9D1XDXggm41bLpsZ3/39K+LGS2fEtElNZatFV6sknaTCCvKllcRH089Xu3rixktnxLI5U6PuROK5tAp2uWrUp6I6fqH6SqWrC+x97Vgs/uKWMVdRr1b5uXRNjnSt59ZrRPlq/NXWR26M19+2JGZNHh+5w+vSg1XPn/ijq6I+Xf6fmdmSc+Tm6f7t7UNeSFi/rX1MYzjcWii9N9KpwZD3+t9ZXPPaqTSOhRXgR6L0OZKJiJ/uPxx3ffTCovlvndgc/SfeAGg88RUDA5nsmMPp1e7jscr1bSB7cqzmtLZEV09/fi5y35ZQl4phx++xu5YPVu8vMGvy+Hgs4WcbAAAAAAAAAKNTf7obAADAO8f2Vb9WsZr4qmveO2T/wmDtaCv1lp6jtDLy+m3tsX5b+4irGY/0PLlAbGHF62rbx9L3wrDqH9+0IF8tujQEHxEVA/JJ2rpyecU5X/vwyPuZ69+qDbsik81GY10quvsyUZ9KReuE5qL+r7l+/pDjSrcnpVo+vbE+Fb392UinIj55SVvZ9T5WldZk6c+1rPVXu3rilstmFlXjr2V95Ma4tC0DmWw8uHN/fO+ZA/HYXcsrVvjOnaOw6vudV15Q8zOjVsOthdIweO9AJpZeMCWWXjA1ll4wtebrlI5jRERPf3bU91nh8+L/+tunYndHV9l756K2ibFsbuuQ58pYVLuPk5Abq5sXnxf/67Hn45Gfd8T6310SV9zzSPFaykZ+LVVax6Uh/d6BbCIhfQAAAAAAAACSIaAOAECiKlUTLwwOJhEir3SOxrpUXH3R2fGPP30lMtkYdchypGHNWkPTuSrFpe0eaYC+UKUQfETEvtePx9SWpvjjT18S33vmlUSCrKXKzfl3n94fD+7cn99nNP3M9evg0d7YtOvl2L73YOJtH4nH7royFn9py5DtN146IzY8tS8fdD4VLwFEDF2TTfWpmNLSHK929URPf+U1WhgGz7Urty5vv3dHPjQ8kqDz1pXL49qv/zA6D3fHQHaw6nXrxOZ48LOXDwkcRwxWlr/inkfyc1/6gka1bxoobXtSqt03tVp366Ihz6KIwfX+rSdfiq0rl4+o/bnzrX/il0XnKr13TsXLGLU8u8fiC9fNj89+46mYMqExIhvx+rG+uGfTz0+spcei80hvDGSyUZdOReuEpnjws5dXPd+pCOkDAAAAAAAAkAwBdQAAEjdc8DMXtH3omZejpz8bTfWp+Oj86SMKkVcLkK/4y22RORGaHU3IMheKPefMcYmGNTsOd8e86RNj6sSm+OfdnW9KtehzzhoXP9jTGd/bdWDUVeprUTrnLx08GhPHN46pGvOjz3UWBX9ffP14zLp746jD/GMNO1/x1UfKbv/7p/aNOehcqlxby1X9Ht9YF70D1ddotWr9Iw06F7brqgtb4/7t7fkK1h88f3K0TmjOB44PvNGTP276pMHweqUXS1KpSPybBqq1vVol/pFK+hsEkqhkPtq1nruPP3rRtPjDb+6Ml14/NvxBNVq7ZU9sf+FgLP7iyZc8HnhqXzzw1L5IpyKyEfl1fdWFrcO2+1R/YwIAAAAAAAAAoyegDgBA4oYLDp4M2mYjIqKnPzvi8He5ar/fKanaPTB4+rh/e3vZcGilEGcuFPvymePyodn/9djzsXHXy3HzkvPi89/56ahCzmu37ImdLx2KC6a2nLIqxTlJVKkfidI57zjcHdf86dYx9TOJoG6hSmHnWsO8pVWyczLZk+s8qaBspbaWvgjw/WcPVAzHn4o1UNiuShXur/jq0ArqL7/RHVfc88iQOa1Lp2Igk40bF8woGsNK3zSQiohtq64adh2Vm9OxhN3Lna9w23DPopGMfRKVzGvpa7XK+qs37IrOrp4456yza75mJeUqzJfKRvkXFAAAAAAAAAB4e0pls9nT3QZOoUWLFmV37NhxupsBwDvMo48+GsuWLTvdzeBtrFJgcaTB2dvv3RFTJzQXVO0+FhPHN5QNNJcLd67esCvu294eKxafF2tuuDjmrNoUvQND/37cVJ+O33j/OXHf9va4YGpL/GtnV/6YsfS3oS4VZ41vjHltE+Ov/8Pimvtdi47D3RXD3UmH4ctZvWFXrN/WHnNaW+J//ObCfOi0MMhei1Ubdp2o0j1YWXkk454z3HorXQeV/HT/G/Fv/+LxONY7kN92RmNdfOv3PhDzpk8aUZtG29aRSHIN1BIyzmmsS8W7Whqj80hvDGSyUZdOReuEpnjws5dH64TmWLVhV9y3rb3ssbl+lmv7tInN8cuDx2paA4Vz+q0nXxrzmObOd8OCGfHSoePxZzcvjLUP78lfo7OrZ0zPolKlz7Za752RrJ9y6z6J9ffT/W/Ep9c9EX/3mcti3vRJQ+YyFYOB9JxZk8fHNz/zgTfluQQAAADwduB3MAAAwNtFKpV6MpvNlv1ltoD6O5yAOgCngv84yljlAov/UFBh+LoFbYmEp2sJNFcKYaYjIhMRdanB6uvNDeno7c9EpspfmWsJblYKCtenUvHtnfuGDdzWWuG7VBLh7pGqNeBaa59GG9QtVGn8N+96ueILCeXmNMnw+EjbOtp7I6k1UK5dl50/OXa2H4rjfQPR01/c1j95eE/F695+745oaaqPV4/2xmO7O/P3Wmk/c22v9E/WcuNeLUifq0Y+kjEdSTC/tD1jHfvR3Pe1rJ9q67i0wn3EyAPkH/njH8Sejq6Y3doS//iHH46I4rHIXbuxLhW9A9k496xxsfWuK2s6NwAAAMCvAr+DAQAA3i6qBdTTb3ZjAABg8Ze2FIXTIyIe3Lk/Fn9xy5jP/WpXT6xYMjM23HF5rFgyMzq7eobss3Xl8rh2QVs0NxT/dTgX2cxllrv7MnH9ghlx7YK2aKov3repPhXXLWiLrXctH7ZNrRObY0JTffT0Z6KpPh3dfZl4cOf+eOCpfZHNRqzf1h6z7t4Yc1dvLnv82i174kd7D8bah/dEx+HuuGnd49FxpDuRsUha6dg2N6TLjlNhn6pZd+uiWHP9/JjXNjHWXD9/xOH0iKHj39OfiQlN9fHYXVfW1NacSkHlnv5MzfMy3H6V2jraFzeSWgPl2rXv9eNx6Hhf2bZWu+66WxfF125aEOecOS4yERX7mTvH+tuWxKzJ4yOdGtxebZ423PHBmHxGYzTVp/L7zpo8PiJiVGOaW8/VVGrPWMe+1nukUC3rp9o92jqxOb779P58OD0iYu9rx2LxF7dUfD7lzLp7Y8y6e2Ps6eiKiIg9HV35bYVjce5Z4+Lcs8bF3/+npXHLZTNjXtvEkQwLAAAAAAAAAG8D9ae7AQAAkKTCAPOa6+eX3adciPOcs8bF/kPHI5ONqEun4orZU2LyGU3R1dMXU1qaoncgk6+snk5F9A5kRxQczgU0b158XvzVY8/HD3/xWrx+tDffho/OH6xyXKi00vH6be2xflt7RESsfXhP2WrMhVWXaxmLpA0XkK3UpySrkJdTOP65Suy1hsFzY1qfiugvU827oS5VFCauViW7lv3KtXW0klwDuXb93Y8Gq5rngsgRg+HvdCryIexarjtcPwvPcfkFU+KX29uL5imyETete7yowvj929rjtaO9+eO6+zKx97VjFdtZSW7Od754KHqHqaBead2MduzHeo8MN67DrfsPzZ4Se187Fu0Hj0UmG5GKiGtPfMNFNZvuXBq//X9+FAfeODm255w5Lv7nb70/5k2flN9WWC39zXouAQAAAAAAAPDmSmUrfV867wiLFi3K7tix43Q3A4B3GF8vyVi9++6NUe5voamIeOEr15ySaxYGt1snNMft9+6IqROa4+bF58X/euz5+Psf74tMRNSlBiupr1h8Xj5AnNv3F51H4rWu3pjS0hTnT22JziPdo6roHRGxasOuuO9E2Dwi4pYl5w0JLHcc7o41m34W33/2QFFF40KlodXVG3bFfdvbi9r/Zisc21xANjdOpX1qbkjH1RcNhvNHWyX8VLU1JzemqezJKvvDaaxLx4Lzzsyvt9LQcc6pDuYnpfD+iWy86XN4+7074oym+th94EjMnTYxunr6YmpLU36tf+vJlypWuM8ZSTtzc37DghnxL8+/Gh2HeyJT8tBqaaqPv7jl/fG9Zw+M6VlQqONwd9x+75MxdWJTbPnpKzGQHXwmfeKStkTH9/Z7d0RLU308d+BIzJ0+Ibq6+/PtH+1anXX3xoqf7T1Fz3UAAACAdyK/gwEAAN4uUqnUk9lstuwvy1VQBwDgTbftj66KxV/aMnT7qqsqHlMaMB+p0srVlcKYAydCqPdvb88HvAuDpz/d/0Z8et0TsfoT7y2qCjwS5QKg67e1x7eefKkoAFpY6bixLhW9A9moS6diIJMtCtuWO+ebVZm8nGqVo0datXy0851EW0vHtNKrveeeNS46jvQUVcOvT6Xi2zv35dfbhjs+GLf81fY42tMfPf2ZIfM3Em/W2BQqvX9qmcMkrbt1UazesCuefflw/PTlw0Vh8dy3CqRTEY316ejuy+TvkzMa6+Jo70CkU5UrnRcqnfNvP7VvyD7pGHxR4azxDbF09pRYOntKUt2MtVv2xFMvHiraNpCNeHDn/vjeMwcSuZc7DnfH68f6oqWxPp59+XAsOPfM+NqtC/Kfb125PK79+g+j83B3PiDfOrE5Hvzs5WXP9dlvPBU721+veL2GutSY2wwAAAAAAADA24uAOgAAb7rWieUDouWCo7kA5JSWxtj+wsG4Z/PP42s3LSi7T66683+898lIpSLW3fr+uOKeRyoGtyOibKXgdCriiT8qH5b/g7/dGUd6+uMPvrEz/vEPP1xrl4tsXbm8YgXqUq929cSKJTPj5sXnxR/87VOxp6OrbCh4JOc83Qr7lKtaXqo0EH06lI5pJS++fjz/557+TDy4c3/+59x6S6ciH6oea6j7zRybSi8+pFMx7ByeqjaUviiQW+t16VR8+8eDgfKBE4N9tHcgIk6OfeGLJ+VsXbk8Vj/4TPzjT1+J7Ilw9kA24t1Tzojpk5rj1a6emNzSGO+ZOiHRPleqWh4RUZdOReuEprIB8dG47MtbIpON2H7i59KXWVonNsdVF7bG/dsHt/UOZOKqC1ujdULzkJcj7vnez2P7Cwfj4xdPi027DpS9Xt+Ab20DAAAAAAAA+FUjoA4AwGlx9UVnx9QJzcMGXD/w5S1RmG984Mf74oEf74vGunQsOO/M+LObFxYFdiMidp6oQLz24T3Vg9vZiDWbfhbffXp/UUXmGxbOGBIcnnX3xqKf93R05bft/co1NfW5MNxZawXqwgrf5089I5acP7nsmNVamfytYCRVy09lJfjhKpGXG9PRKlxfPf2ZSKciOrt6RnSO01Elv9r9kwss737lyODLIaNQSzX4cm2YNrE59r52rGitd3b1xKcunRGvHu2NHzzXWfZc9enq1bxbJzbHC51HI3tivnLPnhdePRovvHo0murT8f3/+8P5tl//9R/mX4YZy71W2sdcML6xPh19BQHxWlQa02oh+OsWtBW9zFLpJZLcs/YDXyp+LlcKp0dEbPqDpTW1GwAAAAAAAIB3DgF1AABOi2oh5YjqYcqIiN6BTGx/4WAs/uKW/Lb129qL9ims9pyNk5Wr69Op+Oz9J4PiheHhOa0t0dXTP+R6m+5cGr/7N0/GvkMnq2Wfc+a4+J+/9f5auhsRxZWvSwOgLx08Gjete7xqUHe4MaulMnmtagkOnwpvZiX4WiqRF47px9durXiuXKC4XHh61uTxceBwd9mA90icjir5w734MNZq7rUcX64NA5ls3HJZ8VrP3R+rNuyKVCryIfOcWZPHxzc/84GKban2zCk31mu37Cl6GWYs1ezL9XFOa0v8j99cOOJ7udKYVvtGgNKXWUqfNXNXby56SWegxrac0VgX86ZPqrntAAAAAAAAALwzCKgDAPCWlAtTPvTMy9HTnx3+gIhIp4orVadisFJ7d99AnPOuM/Jh1h881xEvHToel31pS9H+ERG7O7rilwePDTn3vLZJMb6xrmjbuBrDl+UqX0cMBubXXD8/1lw/P1Zv2BX3bW8fU9B1uAD7SIw1eDxab0Yl+JFUIi8c0013Lo2Pr31syPnOfde4ePHg8Yrh6Uef60ikP6erSn65Fx/GWs19pMeXa0NujZeu9dy+33/2QHQc6YlUDL6gMpDJVh2ralXMC8e6XJA9iWr25fo4r23isPdy7mWSne2vR29BWfPSNrVObB7ybRE5929vr3qfn3weH8ivv7p0Ko71Vo+qHx3mcwAAAAAAAADemQTUAQB4S8qFcQsDl+mIqFxTPYYEL7MR8b1nXxkMaP72kiHB0tKc5nAVqd843hfvnnLGYEX27ODPw+k43B3zpk+MqROb4p93dw6pfD3WoG/S3grtSbISfDkb7vhg3PpX2+NId2/0DkQ01kVMaG6Me39ncdXjyoXTIyJePHg8PnXpOXHb0neXDU/ffu+OWDa3NZH+DK28f2zYyvtjVe7Fh47D3WOq5l6uGvyH50yNjiM90XGke0hfan35ouNwd7x+rC++cP386DzSHVMnNNc87rVWMd+6cnmsfvCZePinr+SfOXWpiI/MOzv+2xheDKk0zsN9k0HuZZIbF86Ivky26px8aPbU2Pva0Wg/eCzf9usWtFWct8Lr58YmIqKnPxNnlL6w05CObMSbVt0fAAAAAAAAgLcuAXUAAN6ycmHc5zu74tWunpjc0hjTJ42LzbsOxPG+k5V5W5rq4i9ufX+s/NbTceBwT1FQffqk5njws5dHxNCq7E31qZg+aVzsfe1YTRWpt6/6tXyl8xWLz6upsvjaLXti50uH4oKpLWUrX5cL6iYZ7Kwl4FporO0Z6fXKSbISfDn3b2uP14725n/uHYh47Whv3P9E9SrS1YxrSFesdp1kf0rPlUTl/dHM2ViruZc7/vnOo/GvnV1j6kth5f/RjHstVcxbJzbH1JamoufMQDZiSktToi8J/HT/G3Hd138YfQPZsmNS+jLJAz/el/9zuTnpONwdP9jTGdmSN3Me3Lk/vvfMgfwLKIXr4Subfx7bXzgYS764ZcgLPaXV0Y/3ZSpeGwAAAAAAAIBfLQLqAAC8ZRUGTAttf+Gf4qXXj0djXSp6B7LR1TMYlHztaN+QKuovv9EdV9zzSDy35mMFodjBnXr6szGQycYtlw1frXuklcVL99/T0RUREZlsNlYsmZm/zliDvsMpDOzWEvoda3tGer1ykgi5l1M6J6WGm9NNdy6Na//ssSh3itJjy/VhpP2qtn+Sle5HO2fDVbofrr+54//uR+2RzZ68R0bTl6TGY92ti2qap1e7euLcs8bF+845MyIifvLSoejs6qn5OqVKr1mpP411qdj9xY9HRPmXSc4a3xgffM+Uomr+Ofd87+eRzQ5+U0TfwOCzry6ditYJTfmXeCIG18P2Fw7G4i9uyW8rDac3pAe/saLgCy4inYpYPrc1/vOvzz0l33wAAAAAAAAAwNtHKltaPo13lEWLFmV37NhxupsBwDvMo48+GsuWLTvdzeBX2O337oipE5rj5sXnxfVffyx6B7Ixsbk+Dnf3Vzxm71euqRhQriXE2nG4+0T19QP58PZH5w9WFi8XYs3tX64SeWlgeXxDOs551xlFQd9K4fxajaWvheNba3vGcr1SI61SX6uTc/hy/iWFQk31qfjo/OkV53S4gPusyePjm5/5QLROaC7bh5H2q9r+tayv4SQ5ZyNtf6Ek+pLEOXL+8O92xref2hefWjgjvvbpBSM6drQKx2r9tvaK+33q0hnxtZtOtmnVhl1x//b2aKxLR+9ApuxYV1u3qVTkjxlufec01Q9eqz6dir6ChPrE5vr4yeevHvZ4AAAAAKrzOxgAAODtIpVKPZnNZssGSlRQBwDgbWfdrYti1t0bY/0Tv8xvqxROP6OxLr71ex+IiPIVh3Mh1uEUVhaPiGErixfu31ifju6+wUBn4f65ytUrFp8Xa66fHxGR///ljKQC91j6WhhGr9aepK6Xk2RV8HJyc9I7kI10arACdCoGq0OnUxG9A9mqczpceHfva8eKqk4X9qHctlqr75fbP4nK+0nMWU7h2rzinkcqtn/ryuVD1vBo+1J0PyQwHqXj/sBT++KBp/aVnaekqvzPWbU5egeKx6qaB368Lx748ck2DVfFPiKi0kvp9emI31x88tscStdDqfENdfGxi6fnq7Pft+2XMWlcffzeh98Tf/6DX8TxMscAAAAAAAAA8KspfbobAAAAo7H+tsUxrqGuaNu4hrpoqk8N2Xfe9EkRMbZQ79zVm+O+MkHjuas3VzwmFx79yIWtERGx/YWD+XPNuntjrN/WHtns4Hlm3b2x6rkiTgba1z68Z9j2JhHYHYmkAtPXLmiL5obBf6Y0N6TjugVtsfWu5UX7dRzujpvWPR4dZcK4w3m1qyduXDgjzmiqj/OnnBFnjm+IOWe3xGXnT44VS2ZGZ1dPxWP/9N8tGPb8V190dlx90dlFffjoRWfHr5dsK9evnFrHIbe+Ntxx+bBtLyfJNVK4Nqu1v9IarqUvpfNeeq6xjkelLxcrt3kk92K5tud84n3TIyKiLj343MqN1bsnjy97nrpUxHUL2mLDHR+Mm9Y9Hl+4fn6suX5+zGubGGuun1/2mw4eu+vKmFlyvlmTx8e/fO6qomNK10NOY91g2ya3NMbXbrokf60XvnxNPP3/XB2fWXZBPP3/XB27E3iJBAAAAAAAAIB3BhXUAQB4W1o6e2o01KXieN/JbQ11qWhuaIwzxzfEnVfOjrX/tCcOHesrOq6WisPl5KoLb3x6fwxkB4Oin7ikrWq16Uef6yyqyPzi68dj1t0bo7EuFdcuaIuHnnk5evqz0VSfiuVzW+PA4Z7oONI9JCA82sritfY1qWrQox3bnFoD04Xh4DU3XDyia6y7dVGs3rArunr647pL2kZ0/O9/Y+ew+zz07CuRTg2GmnN9mNLSFNmImoPgw41DufmqpdJ9ueNGM2e1VEsvHYPvPr0/Hty5f8h+uTVcS9X+3Lxf9qUtkSlIjZe7H2qt/F/osbuWx03rHo+9rx3Lb5s1eXx88zMfyP882ntx7ZY9sf2Fg/GJtY/Fd+9cOmTcBk50qLsvE995en9R/woNZCMe3Lk/vvP0/shG1HQPXPHV4mtFDFb7v+KeR4a0uXA93H7vjogYvGdGcz8DAAAAAAAA8KsrVenrvnlnWLRoUXbHjh2nuxkAvMM8+uijsWzZstPdDIg5qzfHuIZ0/N6H3xN//oNfxPG+zCmr4lsaTM2pFkztONwdazb9LL7/7IHo7stEc0M6rr5oWqy65r3xJw/vKarIPru1Jf61sytWLD5vSOA0V305F5wtPE8SFdFXb9gV921vL3vtN9vt9+6IqROaiwLTufDyaOagUKXjG+vTNa2bWXdvrPp5XToVrROaYu7ZLXHOu84YEvqu1K9yqo3DaOcrqXkuPM+dV80uu8bfONZbNAYvHTwaE8c3lr0XhlvDleYtJ8n7Yek9/xQvvX48//O5Z42LrXddmf+52j0d2RjyAkCltjfUpWJCc0O8caw3Bk78k3xSc30snTMlNv3kQNmq7dVUuwfmrNoUvQNDz9hYl4rdX/z4CK8EAAAAwKnmdzAAAMDbRSqVejKbzZYNPwiov8MJqANwKviPo/wq6jjcHdd+/bHoPNyTD5SOb6yLR//Lsqqh2FUbdsX929ujsS4dvQOZWLH4vPjWky9VDdxGnAycVgq4plMRz3/5mjH1aSyB76Sqro9EtXBwLW0oPb4unYqBTDY+tXBGfO3TC4Y9vlpAPVcx/MaFM+LF14/H5z85Lz7/nZ8mOj6jna+RHldpbqutxWxE0RovF4Avdy/UEpQvN+/TJjbH3teORVP9yM5VTbX53fuVk/dapX6UewGg43B3XPblLRUropdKpyKe+NxVQyq5Rwy+SNHbn4lZk8fHy2905yvsf3R+9Xug1n4BAAAA8NbgdzAAAMDbRbWAevrNbgwAALwdtU5sjo6CcHpExLHegVj8xS0xd/Xmise92tUTK5bMjA13XB4rlsyMzq6e2LpyeVy7oC2aGwb/Ol6XGgymRgxWg75uQVtsvWt5RERsXbk8rr7o7Pz5GutTMWvy+PjQnKlj7lNpO0qvXc3aLXviR3sPxtqH94y5HbVqndgcE5rq88Hcnv5MTGiqrzkAnju+u28wZD1wIjX8wFP7YtbdG6vOY7XPIiIy2YhsNuKBH++LH+09GH/wtzsTH5/RztdIj6s0t5XO86E5U4es8XLK3Qu1KDfvA5ls3HjpjJjd2hI3Ljyn5nNVs+nOpTHjzHFF2845c1xs+oOlQ/px48IT1750Rty/vT1m3b0x1m9rj2w2Yv229vx6ap3YHNcvmFFzGzLZiMVf2pIPpzfWDT4Yzmisi7+/4/K45bKZ0Z/J5l8UGOk9AAAAAAAAAABvhvrT3QAAAHg7mLt6c9kqyOlUVA0Ir7v15Iuia66fn/9zaeA2IsqGrlsnNsfznUfzx/X2Z2PpBVOKKjSPtpL5aALfpVW0129rj/Xb2muqup6EXMj55sXnxf3b26PzSHfFfcuNzatdPfGpS2fEq0d747HdnTGQjaJK7JVsXbk8Vv5/P4lHd3cO28ZsNmJPR1dEJDs+ow3o13rccHNb6Tx/8psL88cUrvFSle6FQpXWc7l5H99QF8++fDgWnHtmfO2msi9kj+j+mNc2KcY31hVte/VoT0xpaRrSj9UbduWv/cTnroo1m34WG5/eHwPZwRdOfm3e2dFxpCc6jnTHwaO90dyQzr8YETG4z0CZ50lzQzqWzZkajz//Wvzae6fFbUvfne/vvLaJ8a0dLw6pYr9+W3t888mXYneF9fWflp0fX3/0+SHbf//K86uOBwAAAAAAAACMlgrqAABQg1z16BMFjfNuWDgjWic0R8fh7rhp3ePRUSUwXaiwmnTbpOZorE/HX/37RUWVpeeu3hyz7t6YDzvnrN/Wnr9Wrtr1Vzb9vOr1K7WvWlXrcseMpep6EtbduijWXD8/5rVNjDXXzy8KPZcqVwl83a2L4ms3LYhzzhwXmSj/UkBOYf9bJzbHP++pHE5PpSJmTR4fTfXFC6SpPtnxGW0V8lqOq2VuR3v9WlWq3r7u1kVx55UXxOe/82x880ft8dCzr5StWF7r+Sp543hfTBpXH6kYrF7e3ZcpOjZ3TxZee/GXtsQ/7NyfD5wPZCMeevaVeKr9UKx9eE9s3dNZFE7P7ZOTWzHp1GBF9F90Ho3D3f0xriEd89omxp1XXhCvH+uLjiPdsXXl8jjnrJNV3utOfPXCJy+eXrFP/+Wj5V+8+M+/XvmFDAAAAAAAAAAYi1Q2W6ZsG+8YixYtyu7YseN0NwOAd5hHH300li1bdrqbAW+6VRt2xX3b2vM/z2ltiXdPPSNfUfm+7e2xYvF5+ermhcpVcs5tO/fMcfHtnfuGHNtxuDsu+/KWspXbK0mnIp7/8jVDtg/XvnIqHbNqw664f3t7NNalo3cgM6JzvhlKK4HnFFYxv/3eHTF1QnNRRe7SsHtp///9/95esYJ6OhXRdua42HfoeKQiInOiknYm4i03PtWc6rmtVNG8ljnLzceNC2dEXyYb33/2QHT3ZYoq4OfOWcv5Ss1ZtTl6B4YeU3jshjs+GLf+1fbo6umLnv5sNDek48NzpsZT7YfitaO9MVDjzTpr8hmx5vr5ccd9T8bh7v6Y1Fwfx/oGoq9MWfV0anA9pWNwPVVTqX+z7t4YERGLZp4ZO355KCIi9n5l6HMCAAAAgNPP72AAAIC3i1Qq9WQ2my1bWVBA/R1OQB2AU8F/HOVX1e337ognfvFavHEiUHrZeybHo8911hSELRf2Pv9zG8uGzwuP/cO/2xnffmrfiNuaO8dogrrDHVNLuPt06jjcHWs2/axqgLmaSv2vJJ2KeOKPror/+vfPxNQJzfF8Z1cceON4dHb1xq/PmxZdPX3xhevmx3+898lIpSLW3fr+mtpxqpULi5/qua300kO1ObvinkcqzkdT/WCQ/saFM+LF14/H5z85Lz7/nZ/G5z85L/7in58f0RrI3Wt1qeIK5031qfjo/Omx6pr3xtqH98T6Ey+p5K694sRY1ZJNT6cishFR7Z/hzQ3pIRXXhzPSNQ4AAADAW5ffwQAAAG8X1QLq9W92YwAA4O0oV4E4543u/njo2VciIuLaBW1lg7ARQ8PO67e15wOu5Vy3oC1/bETE0d7+OPescfHi68eH7JurrFyoqT4dH51/8vob7vhg3PJX2+NoT3/09A9tXzlbVy6Pm9Y9HntfOxYRMeSYdbcuqlgJ+62gdWJzTGiqj57+TDTVp6OnPxMTmuprbufWlctj9YPPxPdPzG9dKuITl7TFgzv3l90/k41ondBcFOTOBbHHNaTjazcNVtjf+eKhiIhY+/CeMVUlT2rs127ZEz/ae7CoPYV9uPPKC+Kz33gqOo50j3mOK90HuZceWic2R30qFd19mWgsmbOtK5cPCa+fNb4xPvieKXHb0nfH/dvb4wfPdcRLh47HH/ztzvjXzq64f1t7zWugtG2F4fR0KqJ3IBvffXr/kPnv6c9EXSoVnV098aHZU2Pva0dj/xvHo7e/cvr8YxdNi7NamuIXHUei/eDx2Hfo5H19zpnj4n3nTorNzxzIt7kWjXWpEa9xAAAAAAAAADiV0qe7AQAA8Haw6c6lMb6xrmjbOWeOi01/sLRqEHbryuVx7YK2aG4o/qv3OWeNK9qWTg3+/9KQaaXq1blw+qTm4ndOS69//7b2OHi0N3r6hwZ/y5m7enMs/tKWfDg9IqK7LxPffXp/0TGF4ea3ole7emLFkpmx4Y7LY8WSmdHZ1VPzsVd89ZF8OD1iMLD84M790VCXGrIG6lIRE5rro+NId0QMjt+suzfG+m3tkc0OBrFzP+fkts1dvXlUfRvr2Fdq49zVm6PjcHfctO7x6DjSnegcl94HzQ3puG5BW2y9a3l+nx/tPRgRER+5sLVozsq9cHDVha3xtZsuiRv+3x/G+id+GS++fjyy2Yg9HV35Pt23rT1SEcOugUr36ISm+rjs/MmxYsnMuGL2lLLtf/yProx1ty6Kv/7txXH5BVOib6ByOD0VEf3ZbKy5fn584z9+YMhaGtdYFwOZbH7dfurSGUPOUXeiiY11gw+MMxrr4u//09IRr3EAAAAAAAAAOJVUUAcAgGGUVljOeenQ8Zg3fVI+DH3z4vPi/u3t0XkirBxxMlzb3Vd8/EslFdE/On96vOuMxqJjK1034mTl9De6+4d8VqlKe29/JtKpqBpkzVWr/u7T+yOTHazIPn3SuJg1eVzZNpVWwk7CaCuEFx5XGOxfc/38ms9Rbcx/ePeVsfy/P1q8MRXR1dOfr0JeWu27qT4dZ53RGK+80R256HJdKuIj886O/zaCdpVrW61jXzqe5SqS5yrkr314T2x/4WAs/uKWEV+nmsKQeWN9Orr7MlGfTkXrhOYh/dr4zIGIGFx7Oa929cQNC2fE7gNHYu60ifk1nOvLQ8+8HD0Flcsb69LxsYsH+9Q6obnqGqh0jx7p6Y9/+cVr8eQvX4/n1nwsVm3YVbUie+458NGLzo7PrH8yunoG8p/Nmjw+vvmZD+T3L/1GhojBcP2ejq7Y+5Vryn4eETGQibjlsuJnzby2iSNa4wAAAAAAAABwqqmgDgAAw8hVWM5pqEtFS1N9TGlpjIjBKudrrp+fD4qWVj3/xvahYfGc9bctiVsumxkDmcyQY7euXB7nnDWuaP90KuLqi86OTXcujVmTx5c956zJ42PTnUvzVdkLZbIRj/y8o2J7cmHdbAwGhHsHMrH0gsnx17+9pGgsqlXCHqvRVu5OouJ3rn91JWP3qUtnxBX3PBJHeweKtg9koqgK+RVffaSo2nfvQCY/nvljshFTWppGFL4vbNtIx750XMpVJP/O0/tj8Re3lH2xIak5zgW4P3Jha0REbH/hYM39WnfrohjfUBfPvnw4xjWk4wvXzY8bvv7D+I/3Phn1qVT0DmSL1ntu3Gsd41e7euLGS2fEsjlTI3eaulQUtWO4qvy558DS2VPjzPGDz4aGEwtpIJMtasumO5fGjDOL7+3cNzJERKy/bXGMaxharf/9551Z9VkDAAAAAAAAAG8FKqgDAMAwcoHeVGqwMnPvQCY+vaAt1txwcU3HP/G5q2LNpp/Fxqf3x0BBUvnjF0+Ltf+0p2yl8EqVvDPZiH/86Svx0LOvVLze3teOxcfXPlY2oB4RMaG5ITqOdFcM79ZSEb5SJenRVj+PGH2F8ErHNdalY8F5Z46oLbn+Fc7TnNaW6Orpr1hZPee6BW2x6pr3xn/9+2eKxu/7zx6Ic88aF+8758yIiPjJS4eqVrEfrm3VqngXqjaey+ZOLWrjSwePxcTxDfmq6nXpVAxkstFYlxr2OrV69LnOova8+PrxmHX3xmiqT8e/ff85FftVqR85r3X1RDYbRS8BFO639yvXDNu2dbcuGnKdgWzEgzv3x/eeORDPrfnYiKryX9Q2MZbNbS17D0VEzGubFOMbiwPo4xrrYt70SRERsXT21GioS8XxvpOfn9FUHw/ccfmwfQEAAAAAAACA001AHQAAalAttD2ccqHnSc31seulN+KlQ8dj7cN7hoTdt65cHms2/Sy++/T+yGQHv/po2qTmGMhmo7tvIBace2b8YPer+f3r04OB2mx2sMr6Jy9pizeO9caP2w/F4e7+onO/drQ3Fn9xS8Xgd7Ugbsfh7ti06+W48dIZcdvl5w8Zi8Jq3bUG+Ev7nAtJNzek4+qLpsWqa947quPqU6n49s59I27Lq109Mae1JXZ3dMWc1pZ499QzYt2ti+Kn+9+IT/3Fv8Tx3uKgejo1GI7OhapLx2+4MPNIjGQdVhvPwrB5rn2rNuwqConPbm2JP/nNhSNe76NpT2mov/B6W1cuj5vWPR57XztW9rwvvn684jUbSkrhV3uBIpstjbgPymSqv5hQTi1h9jeO98Wcs1vizitnx9p/2hOHjvUVfd7dn4lJ4+rj9z78nvjzH/wijveNvB0AAAAAAAAAcDoIqAMAQA1GUj25nG9sby/6+Y3u/njjRHC8XKXwXKg9GxFN9YNV26+8sDUiIu7b3h5PtR+KiJPh6HdPaYl/7eyKxvp09PZn4jsngu3V9PRnYu7qzUNC6tVCvGu37IlDx/tiXH1dzGubmB+LkVY/L3eNkVYIzyk9rrsvEw/u3F9zWwqV9mN3R1fs7ujKj1M6hpalnzSuIa58b+uoqqKP1EjW4UjH89Wunrhh4YzYfeBIzJ02Mbp6+ormeKyqtadSvyp9k0A5ZzTWxdHegfzPLU118U//v2VF+1R7geKxu66MJV/aMqQSe18myt4nY7V91a/l//yJS9qGfL674HqfWXZBotcGAAAAAAAAgFMpfbobAAAA71SP7emM93xuYzz2r53xxOeuimsXtEVzw+BfwdOpwf+LGAygX7egLbbetbzo+Fy17A13XB6pOBm0zmYjXxU9c6Jq+p6OrlixZGZ85ESIfdrE5rj6orMjdeIa6ZJcdV0q8tfsONwdN617PDpOVK0uDPHmzF29OWbdvTF//fXb2mPW3Rtj7urNETFY5bqwf80N5fuUU+4apX1esWRmzaHvwuM+demMmDapuWpbOg53xw1f/2Fc//Uf5vtdSz/OaKqP+hP/imppqou6VMTrxwYD+7mQdel4nk4jGc91ty6K8Q118ezLh2NcQ7ooNB5Rvl8j7Wu59lQ7R24+cuu3oS4VdUPfEYhPLZwRAyUV0AvD6sOt34jBAP20SeXD+7mXOQq9leYZAAAAAAAAAN5KUpW+xpx3hkWLFmV37NhxupsBwDvMo48+GsuWLTvdzYC3vPd9/qE43N0fE5vr4yefvzpWbdgV929vj8a69JCq0LcsOW9IRedCHYe7Y82mn8VDz7wcPf3Ff4efNXl87D90PHoHqv/dfmJzfRzu7o90ajDYnrvm6g274r7t7ZGOiHKnaKpPx9aVy2PNpp/F9589EN19gxWwW5rq497fWRzzpk+KiCjqX+9AJlYsHtqnShWxa6luPhKlbZna0hTfvXNpvnr46g27Yv22war2pWNfqR+1VPNuqk/Hb7z/nLhve3vZ/r9VzVm1OXoHKs9Lx+Hu+MSfPhadXT1F/cqtndH0NVdF/9wzx8W3d+4re47cdTuO9OS/SSCyUVTl/IzGujjeN1D2GwPSqYjnv3xN/v7Jrd/mhnRcfdG0WHXNe4sqyt9+74546NlXyra3sS4Vu7/48fzPY+k7AAAAAFTidzAAAMDbRSqVejKbzS4q+5mA+jubgDoAp4L/OArVzbp7Y8XPbrlsZvzdj9qjr0wSfLiQ9vmf21g2hJuTTkU01qeju69yiLoulYrv/P7SuH97e9y/7ZdVz1ca4l21YVfct609UnEyIFwY7r793h0xdUJz3Lz4vLh/e3t0HukuW4W7lqDwWBW25f/626did0dX3LLkvPjWky9VDJnnxr9SP3Jt3/j0/iFB/uaGdPT2Z8qOZ9Lh+1PhD/9uZ3z7qX1Rl07FQCZbNC9X3PPIsMH8nJH0tdJ6LjxH7kWC2a0tsaejq+K5Fp57Zkyd2BTfrxAub6pPx799/zlVX6Co9gLCrMnj45uf+UC0Tmh+016yAAAAAOBXk9/BAAAAbxfVAur1b3ZjAADgnW79bYvjd//myTjeN5DfNq6hLv7yt94fSy+YGndeeUHFkHY1H5o9Nf61syteev140fZ0KuKTl7RFXSoVG3bui8b6wbB0obpUxEfmnR3/7fr50TqhOdZcP79sO6ZNbI5fHjyWr/I+oak+Hxx/tasnIoqrV6/f1h7rt7UPCeeuuX5+2T60TmyOCU310dM/WIW99BpJWXfropi7enOsf+KXRW2NiEjF4JjlQubpE2PzhRNtLgzVF/Zj6T2PlK0yHhHR3ZeJT106I/oy2RHP6+lUGrYeOJEY7+4bnJdK4fRURPz6RWfHD3Z3jriv1YLg1y1oi1XXvHfIPpXC6eecOS7ed+6k2PzMgbhgasuQzwvb9V///plYsWRm0YsHhaq9vD2QyebXaOm3Cbwd5hkAAAAAAAAA3kzp090AAAB4p1k6e2o01KWKtjXUpWLpBVMjYvQh7b/+7cUxrqGuaFtdajAwPqGpPo729seKJTPj7++4PGa3Fod1B7IRU1qaIrIRN617PDqOdJdtx0AmGyuWzIwNd1weK5bMjM4TofS5qzfHQxWqU1+3oC223rW85vF5taun7DUq6TjcnW/zcAr33bpyeVy7oC2aGwb/2dPckI7rFrTFDZfOKKqAnslGTG1pGnb8+yqE0yMirnnftOjq6a9pXkfSn1MtN0ZN9YPrNZ2KWDZ3anzq/TOis6sn/3nJco4bL50RU1qaoqc/E6lUjOhFg9J5iYhInTh/7hz566YHP6hLp+K6BW3x7snji8710qHjsWnXgchmy4fYc0H71gnNse7WRbHm+vkxr21irLl+/pDq/o/ddWXMLDn/9EnN8alLz4l5bRPz296slywAAAAAAAAA4O1KBXUAADgFuvszMWlcffzeh98Tf/6DX8TxvuJwcy6kXamac6lKVaczEYMh7yPdRYHb86eeEfsPHY+jvQNx3rvGRzabjc6unli7ZU/8aO/BWPvwnlhzw8Vl25GrGl5YPXzryuWx5EtbolyN6e8+vT/+5DcX1jw2625dFB2Hu+Oz33gq/uzmhVWDvR2Hu+MTf/pYdBzpybd5uH07u3riK5t+Hi8dOh7nnDluSJC4s6sn2iY1x/G+gbh05lmx+8CRqiH5ahW/c84a1xhrbrg4br93R9ywcEbsPnAk5k6bWPa8pXNQqS/DjU+tY1jNybD14MxmsoNVyQvbVZ9KxUB28O3mTETMaW2Jrp7+6Orpj9lTW2J3R1fMaW0Z9kWDodc8OabnnjUuPjSnNV46eDRuWvd47Gx/PXoL3iIYyGTjwZ37IyJiztktceeVs+OP//G52HeoO1KpwSB6OemIYdv12J7O+K3/vT3+z22L8xXkG+pS0TeQjfp0Kr520yVDjhnp/QsAAAAAAAAAv0pS1b7GnLe/RYsWZXfs2HG6mwHAO8yjjz4ay5YtO93NgF8pHYe7Y82mn8X3nz0Q3X2ZaG5Ix9UXTYtV17x3SDi5lkB1TlN9Op5b87H8NSoFnqudc9mcKfHXv71kRP1ZvWFX3Le9PVYsPq9iSLvSNQvbXEv7brmsOEi87tZF8Z+/uTMe+PG++NSlM+JrNy2o2tbc2P/DiYB0NU316fiN959Ttm+19Cc3B+eeNS6+/dS+suPz0/1vxKfXPREfmjMlNj1zoOoYFvah3NxWalNjfTp2n2jTFff8U7z4+vH4+MXT411nNEbnke74p593RN/A0H9Llpubcs7/3MbIlPmnaC4E//GLp8WP2w9F5+HuGMgOflNA68TmePCzlxe1/w//bmd8+6l9+UB5oVmTx8c3P/OBYcP77/v8Q3G4uz8mNtfHB94zOaZOaB6yXgAAAADgzeJ3MAAAwNtFKpV6MpvNlv2luoD6O5yAOgCngv84CqfHqg274v7t7dFYl47egUzFYHIuUL3xJy/HQCYbdelUfOS9rZGJiH/e3Vkx4F4pNF4t/H3NxdPi6yveX3Mfag2dV9ovnYp44o+uqilkXe78Iwm9j+T8zQ3p6O3PlA1d586dm5eHnnk5evqz0VSfio/On140B+/53MYok/suat+suzdW7WM5lea29MWHnE8tnBHf3fVyxbFqm9QcL7x2LFIRkT3R/0ovTJTTcbg7blr3eOx97diw+zbVV17vufB8rh3ljq00JpXGMSJi71euGbZdAAAAAHAq+B0MAADwdlEtoF7/ZjcGAAAYnVe7euLGhTPiuQNHYu70CdHZ1VN2vyu++khRsHggk43vPftKpFODId6m+nT09GdiQlN9tE5oHhLAXr+tPdZva8+He7euXF6xgvjGXQfi4dWba6qaHRH5c5WrBF9uv1zIPueGBTOGBKC3rlwe//XBZ+KhZ18Zcr3S81d6Qbfai7tbVy6PZf/90TjWN1Bxn57+TNy4cEb0ZbIV+9Y6sTkmNNVHT3/2xDHZmNBUH5GNePfnNkalJuQqgVcLVOf2yclVTN/Z/nr0FiTeS+c216bCcHpExANP7YuIwRcCGuvT+f5092Wipz8TL5wIlufO3N13cj0NZyQV/lMRseGOy/PVzCudo9LsVXsde/1ti+N3/+bJOF4wr+Ma6uIvf6v2Fy4AAAAAAAAAgKHSp7sBAABAbdbduijGNdTFsy8fjnH1dbHu1rIvocbWlctj2qTioPD0Sc3xoTlTY8WSmbHhjstjxZKZ8dLrx+OmdY/Hhjs+GNcuaIvmhsF/HjQ3pOO6BW2x9a7lEXEyWF1JT38m5q7eXFMfToa0M0OC8uX2G8hkoy41GFSe3doSrx3tiZvWPR4dBWHl1onN8Xzn0SHXSqdiyPkfu+vKmDl5fNF+syaPj8fuvrJse+eu3hyLv7Slaji9Pp2KFUtmRldPf9W+zV29Oe7b1l507Ppt7fGBL2+JbHawHbk5KLT3tWOx+ItboiEdMePMcWXbkNsnNw9rt+yJH+09GJ+8pK3q3EZEfGN7e9lzplMR1y+cUdSfj188LaZNLJmrCU1xzfumVXxhIidXNT233tKpwe2pGFyfpX2fNXl8bFt1Vcxrmxhrrp9ftN63rlxe1K+m+nSc0Vg35PjHCvpZaunsqdFQlyra1lCXiqUXTK3aDwAAAAAAAACgOhXUAQDgbWC4KueFSiuoR0S8/EZ3HDzaG8+tWRwREWuunx+rN+yK+7a3x/3b2vPB6lSZUHe1itd1qYhPXNI2pAJ6Na929cSKJTPj5sXnDamMXbrfLZed3O+lg8fipy8fjs6unlj78J5Yc8PFVdv23d+/Ysj5Wyc2F1VkjxisMF+p8neukvt3du6vWI27P5ONO6+6IFonNMe//9/bY2pLU/zxpy+J7z3zStG1S6vH569/4sR7T1QlL+e6BYNjvOIvt1Xc5+qLzo5HnussqrT+wI/35f9c6YWAJz53VcVq9V09/UPm6mhPX9F1J41riK/fPHzV8Xu+9/PY/sLB+KvHXogJTfWRjcEQfCYb0dJUH3XpVLz0+vFoqEtF30C26rwUvuiQSkX0DmSiPj0YUG+sS0XvMMfndPdnYtK4+vi9D78n/vwHv4jjfbVVdgcAAAAAAAAAKhNQBwCAt4HScHNzQzquvmha2WD41pXL49qvPxadR3oHK5CnU9E6oSke/OzlEVE+7F7o/Mnji6phVwpWRwyGq8tVQK+msBL2muvn17Tft3a8WDag31iXjmsXtJUdl9YJzUPOXy7Q/uLrx2Pu6s1Dgv4RJ4PQlcLpObnA/DlnjYsf7OmM7+06EGtuuLjsuXIVyXsHMjHzXePjwOHu6O7LRDoVMa6hLo72Dq3W/uDO/fHgzv1V2/B859F4rMw6OWt8Y3zwPVPitqXvLvtCQGG1+lREZCNiYnN9dPX2V52DnD0dXUO2dRzujs9+46n4s5sXxhX3FL8wURiaz41r7hx1qVQ8+J+WVn1xIefVrp6YPbUldnd0xZzWljh0vC9uuPScYV98KLS7YM4/s+yCYfcHAAAAAAAAAIY39PvjAQCAt5zScHO5StiF+1514dmRyWajqT4dmWw2rrqwNb/v1pXL49oFbVGXKn+t5187Fg89+0rMWb15yLXLWb+tPeae2PdUqFYl/e8/+8GY0FQf3X2ZSEVEd1/lcYk42fem+sF/CjXVp+O6BW2x9a7lFa99X0mAv5z129pj1t0bY/229shmT/5cOi656vF/9Vv/Jqa2NEVPfyY/p9mIaDtz3JBz16VTMX1Sc6y/bXHMKPN5zp6Orlj8pS3x3af3F62Tqy5sja/ddEnMa5sYa66fXxQ6z7n/RB9zgfHD3f3x0LOvFLU/my0f0288sZA6DnfHTesej44j3bF2y5740d6DsfbhPRWPS0VEc8PgPDQ3DM7D4390ZdV25sxdvTkeevaV2H0i2L67oys6jvTEt3a8WNPxAAAAAAAAAMCpI6AOAABvE7lw84Y7Lo8VS2YWVTkfyb5XfPWR+Ied+2NgmLLg/QMnQ+G5862/bUnMmjw+ctn2unSqasB7tArDzltXLo+rLzq77H73P9E+WEm7tSUiIma3tlQdl9KwfbWgf8TJQPtw6lIRM84cF031gyOTC1yXjssXrpsfu185Ehueeik6u3qiPp2Kj82fFnXpVHz84mnxxvG+uOWymfHx+dMiIiKdihjIZOOD75kcS2dPjX2HjldsQ+6aH5o9JT/3NyycERt3vRwdw1QTv2HhjMF+pCu3/7G7royZk8cXHTdr8vh47O4rIyJi7ZY9sf2Fg7H4i1uKgvq9FRZaKhU1vXBRTm5eSgPuSa9DAAAAAAAAAGDk6k93AwAAgNoUVoRec/38Ue+7deXyWPylLcNeL5ONmHX3xmiqT8dzaz4WEUOrmQ9ksvHgzv3xvWcO5PdJQmEF7m89+VLV6u2F9nR0xZ6Orpi7enPZ9sy6e2PZc6zf1h57v3LNkM9qGaeIiIFs5MPj1QLXH/jylhjIRmx/YfDnF18/Hi++Pnjclp91xD+vXB6tE5rj9nt3xC2XzYzXu3pi4zMH4js/eTnu+tiF8a7xDXHwWF/ZNuSqx//Jby7MbxvfUBeHjvfF2of3xJobLh5yTLn5LDxXYftbJzbnP2+oS0XfQDYGMtm44p5HKs5Pc0M6evszkSmTUc9GxIolM+PmxefF/dvbo3OYEH2hkXyjAAAAAAAAAADw5hJQBwCAXyHlAtqVNNWn4qPzp8eqa96b37Z15fK49us/jM7D3TGQHawc3jqxOR787OWjblPH4e747Deeij+7eeGQsHNpAL1yWwdDys0N6bj6omlFbS606c6l8bt/82RRJfLpk5rjr/79yUB/YXs23bk0bvzzf4nuvvIB7EKNdan45IK2uO3y84cErkuD4OV092Vi8Re3FPUnp7d/8LO6VKWjB78eK1c9vvR6uRB+4csGEYPzuWbTz2Lj0ycr6i+bOzUmtzSWrUR/UdvEWDa3NW5efF786SN74vvPvhL/57f/TXxzx0ux8Scvx0AmG6kYDJ831qWipz8TNyyYEd/9yb7oHTh5nvENdfHoymX5QPlwL1yUk6vqP5qAOwAAAAAAAABw6qRPdwMAAIA3z/rbFse4hrqibXWpiIYT/zJIFwSgeweyZatSZzLZfJh5IBtx1YWtw1au7jjcHTetezw6ToSIC38urJa+deXyuHZBW/4fKqmImHHmuKr/cHn35PHRO1BbJe15bZNifGNx/4/29Me86ZPyPxe2Z17bpDj3rPFV+5Yzc/IZ8bXfWBDz2ibGmuvnF1Wxz/WruaG2f4Jls8VzkTNQphJ5xOA4PbHqqvw1c9drqh+8XlN9Oq5b0BZb71pedNwVX30k/mHn/qLzPvpcZ3z36ZeL2p/zhevmx+5XjsSUCY3xr690xUAmG7f+r+2D5zhRJj13qlyF9KO9/dE3UHyeyS2NY652vu7WRbHm+vllxxsAAAAAAAAAOH1UUAcAgF8hS2dPjYa6VBzvO7ntjKb6+MB7JsfUCc3xi84j8VpXb0xpaYrzp7YMqUq9dsue6DhSXFm7XKXtnFw18ilnNMb2Fw7GPZt+Hl/79IK453s/j+0vHMxXDI84WeW7UDaiqNp5OS+8dizSqYgNd1w+bCXtcpXMD3f3l60sX6491ezp6IpZd28cUqU8YrDK/ISm+ujpz0Q6FZHJRrRNao79bxS3NRUR1y5oi1XXvDcu+9KWqFXrhKb47P2DVd9bJzQXXS8iKgb3ByviPxYH3jg5h9MnVa6Iv3bLniHzVpqZL6yqX7hfoRdfrz6nAAAAAAAAAMDbl4A6AAD8iunuz8SkcfXxex9+T/z5D34Rx/syw1afLhfsznno2Vdi1t0bY+9Xrhny2WVf3hKZggTzA0/tiwee2lf2PM0N6ejtzxTtX4vrTgS6Wyc0x5rr51fdd+vK5fFfH3wmvv/sK/lgdToV8ZF5Z8cfXDU7/uKfn4/vP3sguvsy0dyQjqsvmharrnlvRDZi8TCB8ca6iI9dPNiWcl7t6okVS2bGzYvPi/u3t8ejz3UM2ScbkQ+Sf2j2lNjxy0PR1dM/7Bg01qfzVd/X3HBxzFm1KXpLyq2v39Ye33rypaLw/BVffWTIvL78Rndccc8jRftVm/+IiDMa6+JY70A01qejdyCTr6q//rbF8bt/82QcLyihPq6hLv7yt94/bJ8AAAAAAAAAgLcnAXUAAPgVs7sgePyZZRfUdMzWlctjzaafxT/s3F/T/sMFmsvp6c/EDQtmxI/bX4+9rx3Lbz+jsS76Bgaid6D8ceUqg1dSLpCdyUY8/NNXYt2ti/JVx5vq00VVx+eu3jzsuXsHIr7z9P74k99cWPbzwpcA1lw/P26/d0csm9saz3d2xatdPTG5pTHeM3VCvgL8X//2klh6zz/VFFDPVSTPVX1Pp4o/r0tFfOKSoeH5bLb82wCl24eb/6O9A3HLZSfD97k+lKvY31CXiqUXTB22TwAAAAAAAADA25OAOgAAMKzWic0xoak+UhFRLtL8pRsuKvo5F2h+6JkDQwLh9emIwk0tTfXxF7e8P7737IG4f9svh1RQP1ohmX72xKb4yLxp+TB0LbauXB7Xfv2HceCNk8eMa6iLJe8+KyKGVjnPnXvryuXDVlCPGAy7z129uaj6eCXDVa2fdffGYc/x7snj4+Jzz4yNP3k5BgoGrnQMB7IRD+7cH9975kBR20qrrFfanp//VESq4PwNdaloqq+L5oZ0vnp9aRX7chX7AQAAAAAAAIB3LgF1AACgJq929cSKy2bG+id+OeSzm5fMKvo5F2juHTgZRk5HRCYisgXh5r6BbJw1viGWzp4SS2dPiTuvvCCWfGlLPgRfl05FfToVn3hfW7z8xvEhlcZLw9DDKVdB/XjfQDz+/MGIGFrlvLA/H3zPu+JffnGw6vmvvujs+MII21TJpjuXxu/+zZOx79Dx/LZ0KuLcd42L//LrF8baf9oTu1/pihcKqs1XM31Sczz42ctH3Z5ceP9gV09seuZApFMR/ZlsfHpBW6y54eKKx42mYj8AAAAAAAAA8PYloA4AANQkF95e/8QvIx0Rn7xkenzn6ZejUj3sXKD5F51H4rWu3pjS0hTnT22J7z97IH79omlDqpSXqxg+kMnGQCYbX7vpkkT6MFhB/bHoPNIbA5ls1KVT0Tqhqabg9nDh9IiIqS1N0TqhOYmmxry2STG+sa5o23umtsQ//uGHIyLiE5e0Rcfh7rj26z+MzsPdUaEYet5VF7YOadumO5fGx9c+NmTfTX+wdMi23Pzffu+OuOWyoVXmAQAAAAAAAAAiBNQBAIAR2vuVa/J//pN/V3m/wmrkhQorkxf+ef1ti+N3/+bJON43kN9Wl4pYeN5ZY2htsdaJzXHVhWfH/dvbo6k+Hb0DmbLB7XIa0qnoy5RPgV9z8fT4yUuHorOrJ7G2RkS8cbwv5pzdEndeOTvW/tOeOHSsr+jz1onNceCN6gHxsyc2xUfmTSsbJJ/XNqnsMfOml98eUbnKPAAAAAAAAABAhIA6AADwFrF09tRoqEvF8YIM9hlN9fH//d4HE71OrrL7SCuAp1LltzfWpeLrKy5NsIUnbV/1a/k/f+KStrL7vP+8M2Pni4eKKqjXpSK+cP1F8dOXu6LzSHfVIHnrhKY4c3xDxRA8AAAAAAAAAMBICKgDAABvGd39mZg0rj5+78PviT//wS/ieF8m8WuMpgL4rLs3Vvysd6B8VfU3ywN3XB7v+/xDcbi7P7/tjKb6uHnJrJqOryUEDwAAAAAAAABQKwF1AADgLWP3mo/l//yZZRecxpYUW3/b4vjtv94evQNlPvudxW9+g0q8GcF+AAAAAAAAAIBaCKgDAAAMY+nsqdHcUB+9A/1F2+vTEUsvmHqaWnXSWzXYDwAAAAAAAAD86kmf7gYAAAC8HXT3D1Ylb6pPR1N9KiIi0mn/pAIAAAAAAAAAKKSCOgAAQA0Kq5QDAAAAAAAAAFCecn8AAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAA/P/bu/do3cq6XuDfHyBogELe8HhDPWYqgpnhpTyipYIeNSVDjmSi52g6yjwerdQuakPLymFl5SFTKSgFpdTMSxcDLTWVSETzpKTgJTVuyXW7hd/54527PV1j3fZac13ezeczxjvWM+d8nmf+5jvfvf9Y8/s+CwAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJlHdvdU1sIGq6t+TXLTVdQCw17lVkku2uggAAAAAAIC9jGcwAADAvLhzd996sQMC6gDAHquqj3f3/be6DgAAAAAAgL2JZzAAAMDeYJ+tLgAAAAAAAAAAAAAAgL2DgDoAAAAAAAAAAAAAAJMQUAcA1uL3t7oAAAAAAACAvZBnMAAAwNyr7t7qGgAAAAAAAAAAAAAA2AtYQR0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQC4kaqqfavqiKp6WlW9tqo+XFXXVFUPr5euYc5jq+qMqrqoqq6rqq9X1d9X1f+uqgM34DIAAAAAAAC2jaq6RVX9aFW9rqr+oaouraqdVXV5VX2iqn6vqr5vD+f0/AUAAJgr1d1bXQMAsAWq6qwkT1ymy8u6+6WrnOuAJG9KcuIy3S5M8sTuPn/VRQIAAAAAAMyJqvqZJC9PcsAqup+e5Fndfc0y83n+AgAAzKX9troAAGDL7Ltg+7Iklya5+xrm+sMkJwztS5P8fpJPJrlVkpOSHJ3kbkneW1UP6O4vrqliAAAAAACA7eu7sjuc/q9J/jrJPyW5JMmhSX4wyfGZPaM5Kcltquq47r5hifk8fwEAAOaSFdQB4Eaqql6c5OAk5yY5t7s/X1VPy2wljmSVK6hX1eOTvH3YvDjJQ7r74tHxfZL8QZKTh11v6+4nTXENAAAAAAAA20VVvT7J7ZL8epIP9CKBjKp6SJJ3Jzlo2PX07n7TIv08fwEAAOaWgDoA8J/WGFA/L8l9h83HdPe7F+lzsySfSXKnYdd9uvuC9dYLAAAAAACwXVTVod19+Sr6/WSS1w6bH+juhy7Sx/MXAABgbu2z1QUAAPOrqu6e3b8c/exivxxNku6+NsnrR7t+dINLAwAAAAAA2FSrCacP3jpq32fhQc9fAACAeSegDgCsx6NG7fet0Pe9o/axG1ALAAAAAADAPLhy1L7ZIsc9fwEAAOaagDoAsB5HjNrnrtD3n5JcP7TvVVW1IRUBAAAAAABsb+PnKxetcNzzFwAAYO4IqAMA6/Fdo/YXluvY3d9K8uVh88Akt9+gmgAAAAAAALazZ47af7HIcc9fAACAuSagDgCsxyGj9iWr6H/pEmMBAAAAAAD2elX14CQnD5vXJfnNRbodMmp7/gIAAMwdAXUAYD0OGrWvW0X/a0ftgyeuBQAAAAAAYNuqqsOSnJndWY1f6O4vLtLV8xcAAGCuCagDAFPprS4AAAAAAABgO6qqA5O8I8nth11/keTVqxjq+QsAADB3BNQBgPW4atS+2Sr6j/tcOXEtAAAAAAAA205V3TTJO5McPez6+yQndPdS4XPPXwAAgLkmoA4ArMcVo/YtV9F/3OeKpToBAAAAAADsDapq/yR/muThw66PJnl0d1+9zLArRm3PXwAAgLkjoA4ArMe/jNqHL9exqvbL7j9beXWSL29QTQAAAAAAAFuuqm6S5K1Jjht2nZfk2O7+xgpDPX8BAADmmoA6ALAeF4za91+h732T7Du0P73Mn60EAAAAAACYa0Nw/M1JHjfs+mSSR3T35asY7vkLAAAw1wTUAYD1eN+o/agV+h47ar93A2oBAAAAAADYclW1b5LTkhw/7Pp0kh/q7ktXOYXnLwAAwFwTUAcA1qy7P5vZn6NMkrtX1XGL9auqmyb5X6NdZ250bQAAAAAAAJutqvZJ8sYkTx52/UuSH+zur692Ds9fAACAeSegDgCs18tG7ddV1Z3GB4dfxP5ukl3739bd4z9NCQAAAAAAMPeqqpKckuSpw67PJXlYd391DdN5/gIAAMyt6u6trgEA2AJVdZckz1iw+8gkjx3aH0zygQXHz+ru8xbsS1W9JckJw+Ylmf3y9YIkt8zsl7BHD8f+LckDuvuL674AAAAAAACAbaSqXpnkRcPmziT/J8lqnon8ZXdfs8h8nr8AAABzSUAdAG6kquqYJH+7h8NO7u5TF5nrgCSnZvefq1zMhUmO7+5P7OE5AQAAAAAAtr2qOjvJQ9cw9C7d/YVF5vP8BQAAmEv7bHUBAMD86+4d3X1ikuOSvDWz1UB2ZLaax4eTPD/JUX45CgAAAAAAsDqevwAAAPPKCuoAAAAAAAAAAAAAAEzCCuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACT2G+rCwAAAAAAAGB7qKo7JDkiyWVJzu3u67e4JAAAAABgzlhBHQAAAAAA4EauqvavqlOSXJzkPUn+Iclnqup7Vxj3oqp6R1V9rqq+UVU7quoLVXVqVd17M2oHAAAAALaX6u6trgEAAAAAAIAtVFW/l+TZixy6LMl9uvsrS4y7LskNSc5PsqvPEUnunuSbSZ7Q3e+evmIAAAAAYLuygjoAAAAAAMCNWFUdluRZSXYmeVqSg5McmeTcJN+Z5LnLDH9EkkO7+4Hd/cTufmKSeyT5qST7J3lDVe23geUDAAAAANuMgDoAAAAAAMCN2xGZPTM6rbv/sLuv6u5PJnnGcPyopQZ29we7e8eCfd3dv5PkwiSHJbnXBtUNAAAAAGxDAuoAAAAAAAA3blcusb+Hn/+xxnl3Dj93LNsLAAAAANirCKgDAAAAAHCjUVWHV1UPr1O3up7txHszrTl7P/8xyVeT/FhV/XhVHVRVRyT5g+H4O/Z0wqr6sST3SPLZJJ+brFIAAAAAYNvbb6sLAAAAAABga1XV4UmeNmye3d1nb1kxwKbr7p1VdXKSP0ty6vDa5S3Da1lV9QtJ7pbkwCT3THLvJF9JcmJ3Xz9xyQAAAADANiagDgAAAADA4Ul+abR99taUAWyhDyS5NMntR/s+3N0nrnL8Y5I8YLR9UZKndve5E9UHAAAAAMwJAXUAAAAAAG40uvsLSWqr62DvN4eftZ/Jt4fTk+SOqx3c3Q9Mkqo6NMmRSV6W5Jyq+vnufsVkVQIAAAAA294+W10AAAAAAAAAW6eq7pDkhcPmJ4ZXktyhqm65J3N19+XdfU6SRyU5P8kvV9X3TVYsAAAAALDtCagDAAAAAADcuP1Kku8Y2i/ILFi+y5FrmbC7dyQ5I7NV5B+7ruoAAAAAgLkioA4AAAAAMMeq6uZV9ZSqekNVnVdVV1TVzqq6rKr+sapeXVV3W2LsMVXVSf52tPuXqqoXvpY5/z2r6req6oKq+o+quraqLqqqM6vqCSvUfszoHC8d9n1XVf1uVX22qq6pqq9U1Z9X1YMXGf+YqnpXVX2xqq4bzvt7VXXYMuc8fHTOU5erb+j/HVX1nNF5rh1e/1pVf1pVz6yqm680z4I596uqrw01fK2q9lvFmPuM6j5riT5rvherrPuloxqOWU/frbj3C8YfVFXPq6q/Gs6zY/g387GqenlV3Xo186xwjhU/a0u8D3ca/t1+pqquHv5Nf2j4HK74WVlDnUcnecqw+e7u/uskF4y6HLWO6f99+Lnu9xMAAAAAmB+T/yITAAAAAIDNUVX7J/l6kgMWOXzo8PqeJM+tqud19+9OfP6XJXlJkn0XHLrT8HpSVZ2T5PjuvnQV8x2f5I+yeyXnJLlZkv+e5DFV9YzuflNV3STJKUlOXuS8z07yhKp6SHd/bi3XNarn2CSnJrntIofvMryekORBi9SypO7+VlW9Jclzk9wmySOSvGeFYT82ap+2SK2T3ovNtpn3vqqOy+y+3mbBof2T3H94Pa+qTurud67jsvbY8Jl7c5JDFhx60PD64ap67LA6+VRek9kq59cneeGwbxxQX9MK6oOHDj8vXMccAAAAAMCcEVAHAAAAAJhf+2QWTv9Kkr9Kcn6SryW5Ickdkzw4yWMz+13w71TVV7r7z0bjL8gsYH1Ekl8e9p2R5C0rnbiqfiXJzw2b1w9j3p/k2iT3SfL0zILdD03y/qp6YHdfu8yU9xvm+2aS30zy8eH6jk1yYmYB2tdX1QeT/HRmAeXzk5ye5KLhXM8cruWwzALIP7DSdSxzfT+a5E+yO/B9fpKzMgvajt/fRw217anTMguoJ8lJWSagXlX7ZPYeJMllSd694PjU92Kzbdq9H4LwZ2R2X69P8q4kf5Pkq0kOTvKwJCcM7T+rqkd09/snvt6l3DezgHhlFsL/cJIdmQXmfyLJgZl9meElSX5xihNW1ZMz+xwnyRu6+9NDe1UrqFfVI4e63tnd14/275/kOZndv2uyiv9TAAAAAIC9h4A6AAAAAMD82pnkuCTv6+5erENVHZnkfZkFd3+jqt7R3TckSXdfkuTtVXXFaMhnuvvty520qh6U5GeHzauTPLq7PzDq8uaq+o3hvPfPbAXml2f36syLeWxm4e+Hd/fFo/2nVdWnkrwis1DxGZmtCv+6JD+561qGut6Q5COZhbK/v6qO7u6PLnctS1zfXZK8cTjfDUmen+S3F3uPq+rQLBPgXUp3f7yqPpPkuzNbFfug7r5qie7HJLnD0D6zu785Ov9G3IvNtin3vqrumN339WtJHtvdH1tQyxur6rcz+8LHLZL8YVXdtbt3Tne5S3p8kouT/FB3f3a0/y1VdWaSv8/suc5PVtUr1ruKelXdNMmvDptXZRR67+6Lq+obSW6e5N5VtV93f2uRae6V2QrsX6+qc5NcnuTWmd2Hw5Jcl+Sp3f2l9dQKAAAAAMyXfba6AAAAAAAA1qa7r+/u9y4VTh/6nJ/kxcPmXbN7teT12LXKc5K8cEEgetd5L0vyI5mtnpwkz66qQ1aY96QFAeVdXp3kyqF9v8xWd37uOKA8nPOa7A7cJrPVzdfiRZmtCp0kr+ru31rqPe7uy7v77DWe5/Th53dktpL9Uk4atU9bcGyj7sVm24x7/8LMAtdJ8qRFwum75vpYZl9KSGZfDHjSqq5gGictCKfvqumjmQX0k+TQJEdPcK4XJLnz0H5Vd39twfFPDT8PSHKPJeZ4T5Jfy+wLBt+T2Xv1oCSXJPmtJEd091kT1AoAAAAAzBEBdQAAAACAvd+HRu0HrGeiqjogyaOHzUuTvGGpvt19UZI3D5sHJnnkMlOf290fWWKeHUk+Ptp1yhKrOSfJ343a91rmfIuqqn2TnDBsXpnkV/Z0jj1wepJdwfeTFuswrHJ9/LD5r939odGxjboXm23D731VVZKnDJsf7e4PrlDTGUl2nWez3qvzVqjr/aP2Hn+2x6rqdtm98v6XM/siwEIXjNpHLjZPd/+/7v7Z7n5wd9+uu/fv7oO7+z7d/bzuvnA9dQIAAAAA82m/rS4AAAAAAID1qarDk/x4kmOSfHeSQ5LcdInud1jn6Y7KbEXlJDm7u7+5Qv+/TPKMof2AJGcu0e8fVphnvLrzR1fZ79AV5lzMkdm9yvbfdveVy3Vej+6+qKr+LslDkvxgVR3W3V9d0O1xo3pOX3Bso+7FZtuMe3/vJN85tC+rqh9eRV1XZfZv6Z6r6DuFRUP6I18etdfy2R57ZZKDhvZLuvvaRfqMA+pHZfcXHAAAAAAAliWgDgAAAAAwx6rqeUl+NbuDyiu5+cpdlnW7UftfVtF/3Od2S/aarQC+nB2r6dvdO2aLZSdZOqS/nHGA/5/XMH5PnZZZQH3fJCcmec2C4+OV1RcG1DfqXmy2zbj3h4/axw6v1VpvGHy1Llnh+Ph9WMtnO0lSVfdL8tRh858y+wwuZmFAHQAAAABgVQTUAQAAAADmVFU9Jd8eaP5gknOSfCHJlUl2rah9mySnDO1913nag0ftq1fR/6olxi50wx7UsCd999Q4wH/Vkr2m89Ykr83sCwYnZXQ/q+qW2R2k/kh3f3bB2I26F5ttM+79LdY4Lkn2X8fYPbGRn+ux1yTZZ2i/oLuXOq+AOgAAAACwJgLqAAAAAADz6+XDz28leVx3v2exTlV17wnPeeWofeAq+h+0xNjt6huj9kFL9ppId19RVX+e5EeS3K+q7tndu1ZuPyHJTYb2Yqtcb+d7sc/KXTbVOJz/0u5+2ZZVsoWq6keS/LfRrr8erTq/nNtV1a26e6VV3gEAAAAAtt0viAEAAAAAWIWqumuSuw6bb18qnD6484Sn/rdR++6r6D/u85UJ69goXxq177lJ5zx91D5pkfbOJGcsMm6z78WOUXulVcVvtYb5N9KXR+0pv7AxN6rqgCSvWscUVlEHAAAAAFbFCuoAAAAAAPPptqP2hSv0fdQKx28YtVdaTvkTmQWVD0hyTFXdpLt3LtP/kaP2R1eYezs4P7NV1G+e5GFVdXB3b/Rq4+9OcmmSWyb5H1X180nukuRBw/H3dPeli4zb7Htxxaj9X1bo+4A1zL+Rzsvu+/rIqjqwu6/e4po22/Oy+0stf5Pk71Yx5pgkDx3aRw3jAAAAAACWJaAOAAAAADCfrhm177ZUp6q6Q5KTV5jrqlH7wOU6dveOqvqLJE/MbJXspyV5/RLnvmOSE4fNq5P85Qp1bLnuvr6q3pzkWUkOTvKiJC/e4HPurKozkjwnyeFJfiDJw0ZdTlti3Gbfi0+P2g9PcuoS5/r+JPdbw/wbZrivf5zk2Ulukdk9fcnWVrV5quo22f05virJSd391VWMOznfHlAHAAAAAFjRPltdAAAAAAAAa/LPmQWNk+TxVXX0wg5Vddsk78gsaL2cz4/aqwkW/3p2r7r+6iGQvPDchyZ5W3YH3l/X3VesYu7t4FXZHdr/2ar66apadGX5qjqkqh662LE9dPqofVKSpwzt/0jyrmXGbea9+Eh2r6L+5Kr63kXOdbd8+7VsJ6/M7vpfVFUvqKoln5NU1a2r6uer6shNqW5jvSKz1eOT5NdWE04ffGrU3hveBwAAAABgE1hBHQAAAABgDnX3N6vqlCTPT3KTJB+oqjcm+ViSnZkFzU9OckiSP0ry1GXmuryqzkvyPUkeVlX/N8nfJLly1Oe9o/ZHqupVma0ufnCSc4ZVx9+f5NokRyT5n0luOww5P8kvTnDZm6K7P19Vz0jy5swWevnNJE+vqrcl+VySTnL7JA9KclyStyY5Z53n/HBVfS7Jf81sJfT9h0Nv7e7rlhm3afdiWLH9tUl+IbPP3NnDZ+XjSQ7I7P14apJK8s4kj1vLeTZKd3+pqp6cWW37Zxbuf2ZVnZXZFz6uySzEffckD0zykCT7Jjl7SwqeyBCwf/qw+eUkr96D4Z/O7PNeSe5VVTfp7p0TlwgAAAAA7GUE1AEAAAAA5tdLMoTKMwsIP3t4jZ2S5NeyTEB9NNefZxbIfdbwGvu2FcS7+8VV9a0kLx7GnDS8FjonyfHdfe1KF7OddPeZVXVNkjcluVVmq0cvtYL0DUvs31OnJ3lpdofTk+S0lQZt8r14RWbh7UckOSjJCxYc/0Zmq7/fP9ssoJ4k3f2+YcX7P05y18zC6D+3zJCrMlvFfp69Jrv/ou6Lu/ua1Q7s7quq6uIkd87sc/ndST45fYkAAAAAwN5kyT9dCQAAAADA9jasrP3IJM9J8uHMVjzfkeSiJGcmeVR3/0RWEaDu7vck+f4kf5Lk85mtvr3SmF/MLLT92sxWWt51/i8lOSuzMPQx3X3pHl/cNtDd78osxPz8zFaU/1pmq9Nfm+TCJG/LbJX6n5rolKcv2L4oyQdXWeum3Ivu3pHk0Zl9EeJDmQXSr8tsZfnfTnLf4X3btrr7I0nukVmI/8zMPu9XJflWkssyWxH+9UlOSHJYd89tILuqHp/k4cPmP2YVX3hYxKdG7aPWXRQAAAAAsNer7t7qGgAAAAAAAAAAAAAA2AtYQR0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJP4/sbnRItLIkXoAAAAASUVORK5CYII=\n", - "text/plain": [ - "<Figure size 3686.4x2073.6 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Read in workshop's data set in pandas data frame\n", - "data = pd.read_pickle('Cu_df4_2.5eV_25A3_8K.pckl.gzip', compression='gzip')\n", - "fig1 = fc.PlotData(data)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As already mentioned, your data needs to be stored in the ``input.data`` file. This file is used for ``mode 1`` to generate all the needed files for the NN training in ``mode 2``. In this case the ``input.data`` stores all the information of the electronic structure code like the total energy and charge, the structure (lattice constants, atomic positions), atomic forces and may the atomic charges. If used in ``mode 3``, only the structural paramteres are necessary, since ``mode 3`` is the prediction mode and we may do not know the outcome of an electronic structure calculation.\n", - "\n", - "The ``input.data`` follows a certain format with certain keywords. Each structure is embedded between the keywords ``begin`` and ``end``, to separate different structures from each other. For periodic structures the three lattice vectors are introduced by the keyword ``lattice``, for non-periodic structures this keyword is just missing. Information about the atoms is given line by line, thus each atom in one line, beginning with the ``atom`` keyword, followed by the Cartesian coordinates (x, y and z), the element, the atomic charge, an unused column and the atomic force components (fx, fy and fz). The ``energy`` keyword is followed by the total energy of the current structure, equivalent, the overall charge is marked by the ``charge`` keyword. Comments can also be added with the ``comment`` keyword. Important aspect: the data is given in special units. A length is given in ``bohr``, an energy in ``Hartree``, thus forces in ``Hartree/bohr`` and charges in the elementary charge ``e``. In general, periodic and non-periodic structures can be mixed, as well as different numbers of atoms per structure can be combined. Information can be given in a free format (number of digits), but it is recommended to use at least six digits and the order of the keywords is arbitrary in general." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "begin\n", - "lattice 2.34735543 -4.06574009 0.00000000\n", - "lattice 2.34735543 4.06574009 0.00000000\n", - "lattice 0.00000000 0.00000000 13.45504276\n", - "comment x y z element atomic charge unused fx fy fz\n", - "atom 0.00000000 0.00000000 0.00000000 Cu 0.00000000 0.00000000 -0.00000000 -0.00000000 0.00000002\n", - "atom 2.34735543 1.35524733 10.09128112 Cu 0.00000000 0.00000000 -0.00000000 0.00000134 -0.00000002\n", - "atom 0.00000000 0.00000000 6.72752138 Cu 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000004\n", - "atom 2.34735543 -1.35524733 3.36375974 Cu 0.00000000 0.00000000 0.00000000 -0.00000134 0.00000003\n", - "energy -0.4746414926841609\n", - "charge 0.0\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# The RuNNer Workflow\n", - "\n", - "We discussed the ``input.data`` and will have a look at the next steps. Here, the ``input.nn`` is explained. Keywords can be given in an arbitrary order, but grouping keywords by the modes is useful for the general structure. The units are the same as for the ``input.data``, see above. If a keyword is not specified, **RuNNer** uses default values, if possible. A summary in the output files give more detailed information in the specific case. Most keywords can only be specified ones, to avoid contradictions, otherwise an error will be printed. Also comments can be added to the file, which are indicated by a hash ``#``. In principle, it is possible to change the ``input.nn`` for every mode, however it is highly recommended not to do that. Anyway here, you will not have the opportunity to explicitly change the ``input.nn``, since **RuNNer** is called via the pyiron environment. At the moment, the implementation of **RuNNer** to pyiron is on a very early stage, thus no changes are possible for the input.\n", - "\n", - "In the following we will discuss a subset, but the most important keywords. Beginning with some general keywords of the ``input.nn``. I think the first keywords are self-explanatory together with the given comments. The data set splitting in ``mode 1`` and the initial weights in ``mode 2`` rely on random numbers. For the reproducibility, a random number seed (keyword ``random_seed``) has to be defined, which will give the same results, if the run is repeated later. Together with this, the generator for the random numbers can also be defined (keyword ``random_number_type``). The second group of keywords describe the architecture of the NN and the activation functions of the nodes via the keywords ``global_...``. Usually, we use 2-3 hidden layers with 10-40 nodes each." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "### general keywords\n", - "nn_type_short 1 # 1=Behler-Parrinello energy is a sum of atomic energies\n", - "runner_mode 1 # 1=calculate symmetry functions, 2=fitting mode, 3=predicition mode\n", - "number_of_elements 1 # number of elements\n", - "elements Cu # specification of elements\n", - "random_seed 20 # integer seed for random number generator\n", - "random_number_type 6 # 6 recommended\n", - "\n", - "\n", - "### NN structure of the short-range NN\n", - "use_short_nn # use NN for short range interactions\n", - "global_hidden_layers_short 2 # number of hidden layers\n", - "global_nodes_short 15 15 # number of nodes in hidden layers\n", - "global_activation_short t t l # activation functions (t = hyperbolic tangent, l = linear)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pyiron RuNNer Fit\n", - "\n", - "Here, you will not have the opportunity to explicitly change the ``input.nn``, since **RuNNer** is called via the pyiron environment. At the moment, the implementation of **RuNNer** to pyiron is on a very early stage, thus no changes are possible for the input." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from pyiron import Project" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "pr = Project(\"runner_fit\")" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "!cp ../../datasets/Cu_training_archive.tar.gz .\n", - "!cp ../../datasets/export.csv ." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "pr_fit = Project(\"imported_datasets\")\n", - "if len(pr_fit.job_table()) == 0:\n", - " pr_fit.unpack(\"Cu_training_archive\")" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "<div>\n", - "<style scoped>\n", - " .dataframe tbody tr th:only-of-type {\n", - " vertical-align: middle;\n", - " }\n", - "\n", - " .dataframe tbody tr th {\n", - " vertical-align: top;\n", - " }\n", - "\n", - " .dataframe thead th {\n", - " text-align: right;\n", - " }\n", - "</style>\n", - "<table border=\"1\" class=\"dataframe\">\n", - " <thead>\n", - " <tr style=\"text-align: right;\">\n", - " <th></th>\n", - " <th>id</th>\n", - " <th>status</th>\n", - " <th>chemicalformula</th>\n", - " <th>job</th>\n", - " <th>subjob</th>\n", - " <th>projectpath</th>\n", - " <th>project</th>\n", - " <th>timestart</th>\n", - " <th>timestop</th>\n", - " <th>totalcputime</th>\n", - " <th>computer</th>\n", - " <th>hamilton</th>\n", - " <th>hamversion</th>\n", - " <th>parentid</th>\n", - " <th>masterid</th>\n", - " </tr>\n", - " </thead>\n", - " <tbody>\n", - " <tr>\n", - " <th>0</th>\n", - " <td>43</td>\n", - " <td>finished</td>\n", - " <td>None</td>\n", - " <td>df1_A1_A2_A3_EV_elast_phon</td>\n", - " <td>/df1_A1_A2_A3_EV_elast_phon</td>\n", - " <td>None</td>\n", - " <td>/home/pyiron/workshop-material/day_2/runner/imported_datasets/Cu_database/</td>\n", - " <td>2021-02-08 10:33:52.341472</td>\n", - " <td>None</td>\n", - " <td>None</td>\n", - " <td>zora@cmti001#1</td>\n", - " <td>TrainingContainer</td>\n", - " <td>0.4</td>\n", - " <td>None</td>\n", - " <td>None</td>\n", - " </tr>\n", - " <tr>\n", - " <th>1</th>\n", - " <td>44</td>\n", - " <td>finished</td>\n", - " <td>None</td>\n", - " <td>df3_10k</td>\n", - " <td>/df3_10k</td>\n", - " <td>None</td>\n", - " <td>/home/pyiron/workshop-material/day_2/runner/imported_datasets/Cu_database/</td>\n", - " <td>2021-02-08 10:33:53.993230</td>\n", - " <td>None</td>\n", - " <td>None</td>\n", - " <td>zora@cmti001#1</td>\n", - " <td>TrainingContainer</td>\n", - " <td>0.4</td>\n", - " <td>None</td>\n", - " <td>None</td>\n", - " </tr>\n", - " <tr>\n", - " <th>2</th>\n", - " <td>45</td>\n", - " <td>finished</td>\n", - " <td>None</td>\n", - " <td>df2_1k</td>\n", - " <td>/df2_1k</td>\n", - " <td>None</td>\n", - " <td>/home/pyiron/workshop-material/day_2/runner/imported_datasets/Cu_database/</td>\n", - " <td>2021-02-08 10:33:54.435308</td>\n", - " <td>None</td>\n", - " <td>None</td>\n", - " <td>zora@cmti001#1</td>\n", - " <td>TrainingContainer</td>\n", - " <td>0.4</td>\n", - " <td>None</td>\n", - " <td>None</td>\n", - " </tr>\n", - " </tbody>\n", - "</table>\n", - "</div>" - ], - "text/plain": [ - " id status chemicalformula job \\\n", - "0 43 finished None df1_A1_A2_A3_EV_elast_phon \n", - "1 44 finished None df3_10k \n", - "2 45 finished None df2_1k \n", - "\n", - " subjob projectpath \\\n", - "0 /df1_A1_A2_A3_EV_elast_phon None \n", - "1 /df3_10k None \n", - "2 /df2_1k None \n", - "\n", - " project \\\n", - "0 /home/pyiron/workshop-material/day_2/runner/imported_datasets/Cu_database/ \n", - "1 /home/pyiron/workshop-material/day_2/runner/imported_datasets/Cu_database/ \n", - "2 /home/pyiron/workshop-material/day_2/runner/imported_datasets/Cu_database/ \n", - "\n", - " timestart timestop totalcputime computer \\\n", - "0 2021-02-08 10:33:52.341472 None None zora@cmti001#1 \n", - "1 2021-02-08 10:33:53.993230 None None zora@cmti001#1 \n", - "2 2021-02-08 10:33:54.435308 None None zora@cmti001#1 \n", - "\n", - " hamilton hamversion parentid masterid \n", - "0 TrainingContainer 0.4 None None \n", - "1 TrainingContainer 0.4 None None \n", - "2 TrainingContainer 0.4 None None " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pr_fit.job_table()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "import pyiron_contrib" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2021-03-08 19:11:01,830 - pyiron_log - WARNING - No HDF5 file found - remove database entry and create new job! fit\n" - ] - } - ], - "source": [ - "j = pr.create.job.RunnerFit('fit', delete_existing_job=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "ename": "ValueError", - "evalue": "The HDF5 file of this job with the job_name: \"df1_A1_A2_A3_EV_elast_phon\" is empty, so it can not be loaded.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m<ipython-input-10-439aea888c63>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# Be aware of fitting a larger data set, since it will run some time, roughly six hours!\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_job_to_fitting\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpr_fit\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'df1_A1_A2_A3_EV_elast_phon'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/pyiron_base/project/generic.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(self, job_specifier, convert_to_object)\u001b[0m\n\u001b[1;32m 762\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwarning\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Job '%s' does not exist and cannot be loaded\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_specifier\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 763\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 764\u001b[0;31m return self.load_from_jobpath(\n\u001b[0m\u001b[1;32m 765\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconvert_to_object\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconvert_to_object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 766\u001b[0m )\n", - "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/pyiron_atomistics/project.py\u001b[0m in \u001b[0;36mload_from_jobpath\u001b[0;34m(self, job_id, db_entry, convert_to_object)\u001b[0m\n\u001b[1;32m 207\u001b[0m \u001b[0mGenericJob\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mJobCore\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mEither\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mfull\u001b[0m \u001b[0mGenericJob\u001b[0m \u001b[0mobject\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mjust\u001b[0m \u001b[0ma\u001b[0m \u001b[0mreduced\u001b[0m \u001b[0mJobCore\u001b[0m \u001b[0mobject\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 208\u001b[0m \"\"\"\n\u001b[0;32m--> 209\u001b[0;31m job = super(Project, self).load_from_jobpath(\n\u001b[0m\u001b[1;32m 210\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdb_entry\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdb_entry\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconvert_to_object\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconvert_to_object\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 211\u001b[0m )\n", - "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/pyiron_base/project/generic.py\u001b[0m in \u001b[0;36mload_from_jobpath\u001b[0;34m(self, job_id, db_entry, convert_to_object)\u001b[0m\n\u001b[1;32m 783\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 784\u001b[0m \u001b[0mjob\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjobpath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdb\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_id\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0muser\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 785\u001b[0;31m job = job.load_object(\n\u001b[0m\u001b[1;32m 786\u001b[0m \u001b[0mconvert_to_object\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconvert_to_object\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproject_hdf5\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 787\u001b[0m )\n", - "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/pyiron_base/job/core.py\u001b[0m in \u001b[0;36mload_object\u001b[0;34m(self, convert_to_object, project)\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mproject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"..\"\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mjob_dir\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 548\u001b[0m \u001b[0mjob_dir\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_mode\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"a\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 549\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_object\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mproject\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mjob_dir\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mjob_name\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 550\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 551\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/opt/conda/lib/python3.8/site-packages/pyiron_base/job/core.py\u001b[0m in \u001b[0;36mto_object\u001b[0;34m(self, object_type, **qwargs)\u001b[0m\n\u001b[1;32m 477\u001b[0m \"\"\"\n\u001b[1;32m 478\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproject_hdf5\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mis_empty\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 479\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 480\u001b[0m \u001b[0;34m\"The HDF5 file of this job with the job_name: \\\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 481\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjob_name\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mValueError\u001b[0m: The HDF5 file of this job with the job_name: \"df1_A1_A2_A3_EV_elast_phon\" is empty, so it can not be loaded." - ] - } - ], - "source": [ - "# Be aware of fitting a larger data set, since it will run some time, roughly six hours!\n", - "j.add_job_to_fitting(pr_fit.load('df1_A1_A2_A3_EV_elast_phon'))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "j.run()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "j.lammps_potential" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The data set, you will fit is a strongly reduced subset of the data shown above. For comparison, the same plot is shown here.\n", - "\n", - "**Be aware of fitting a larger data set, since it will run some time, roughly six hours!**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "df1_job = pr_fit.load('df1_A1_A2_A3_EV_elast_phon')\n", - "df1 = df1_job.to_pandas()\n", - "fig1 = fc.PlotData(df1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## RuNNer Mode 1\n", - "\n", - "In **RuNNer**'s mode 1 the following steps are performed:\n", - "- calculation of SF values,\n", - "- splitting of data set in train and test data set.\n", - "\n", - "The amount of test structures is defined by the keyword ``test_fraction``. Here, ``test_fraction 0.10`` means 10% of the data set will be used for testing and is not part of the training data. ``use_short_forces`` keyword states to use also the atomic forces for the fitting process in ``mode 2``, but it is recommended to use it also in ``mode 1`` to create the necessary force files." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "### symmetry function generation ( mode 1):\n", - "test_fraction 0.10000 # threshold for splitting between fitting and test set\n", - "use_short_forces # use forces and prepare the files in mode 1 for fitting in mode 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In the next group of keywords, the SFs are defined. There are two different types of SFs: the radial SFs ``symfunction_short XX type XX ...`` to describe the atomic distances and angular SFs ``symfunction_short XX type XX XX ...`` to describe the spatial distribution of the neighboring atoms. ``cutoff_type`` keyword describes the cutoff function type. All mentioned SF types are shown in the next section." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "### symmetry function definitions (all modes):\n", - "cutoff_type 1\n", - "symfunction_short Cu 2 Cu 0.000000 0.000000 12.000000\n", - "symfunction_short Cu 2 Cu 0.006000 0.000000 12.000000\n", - "symfunction_short Cu 2 Cu 0.016000 0.000000 12.000000\n", - "symfunction_short Cu 2 Cu 0.040000 0.000000 12.000000\n", - "symfunction_short Cu 2 Cu 0.109000 0.000000 12.000000\n", - "\n", - "symfunction_short Cu 3 Cu Cu 0.00000 1.000000 1.000000 12.000000\n", - "symfunction_short Cu 3 Cu Cu 0.00000 1.000000 2.000000 12.000000\n", - "symfunction_short Cu 3 Cu Cu 0.00000 1.000000 4.000000 12.000000\n", - "symfunction_short Cu 3 Cu Cu 0.00000 1.000000 16.000000 12.000000\n", - "symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 1.000000 12.000000\n", - "symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 2.000000 12.000000\n", - "symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 4.000000 12.000000\n", - "symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 16.000000 12.000000" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Definition of the Symmetry Functions (SFs)\n", - "\n", - "Different types of SFs for the radial and angular SFs are implemented in **RuNNer**, but only the most common types are shown here. SFs provide the input for the NN and describe the local atomic environment of each atom and are rotationally and translationally invariant. So, SFs describe the relative positions of the atoms to each other. In contrast, Cartesian coordinates describe the absolute positions to each other and change with a translation or a rotation. That means the numerical input will change with translation or rotation, but not the energy of the system. However, different numerical inputs belonging to the same energy leads to problems in fitting." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The Cutoff Function\n", - "\n", - "Another kind of symmetry function is the cutoff function, which is included in the radial and angular SFs. The cutoff radius $R_\\mathrm{c}$ (usually $12\\,\\mathrm{bohr}$) defines how much of the local atomic environment is considered. All SFs will decrease to zero, if the atomic distance is larger than $R_\\mathrm{c}$. A decrease to exact zero is necessary for numerical reasons. There are several cutoff funtions defined in **RuNNer** and we will use here\n", - "\n", - "\\begin{equation}\n", - " f_{c}(R_{ij}) = \n", - " \\begin{cases}\n", - " 1& ~ \\text{for $R_{ij} \\leq R_{inner,c}$}\\\\\n", - " 0.5 * [cos(\\pi x) + 1]& ~ \\text{for $R_{inner,c} \\leq R_{ij} \\leq R_\\mathrm{c}$},\\\\\n", - " 0& ~ \\text{for $R_\\mathrm{c} < R_{ij}$}\n", - " \\end{cases}\n", - "\\end{equation}\n", - "\n", - "with the atomic distance $R_{ij}$, the cutoff radius $R_\\mathrm{c}$, the inner cutoff $R_{inner,c}$ (here $=0$) and $x = \\frac{R_{ij} - R_{inner,c}}{R_\\mathrm{c} - R_{inner,c}}$." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "distances = np.arange(0,15.1,0.1)\n", - "cfct = np.array([fc.cutofffct(i) for i in distances])\n", - "plt.plot(distances, cfct);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The Radial Symmetry Functions\n", - "\n", - "To define the parameters for the radial SFs, it is important to know which are the shortest bonds in your data set. Usually, 5-6 radial SF are used for each element pair, with different $\\eta$ values to increase the resolution for structure description. It is possible to shift the maximum of the radial SF $G^2$ by $R_{s}$\n", - "\n", - "\\begin{equation}\n", - " G_{i}^{2} = \\sum_{j}^{}e^{\\eta (R_{ij} - R_{s})^2} \\cdot f_{c}(R_{ij}).\n", - "\\end{equation}\n", - "\n", - "Below, the defintion of a radial SF in ``input.nn``, again ``symfunction_short`` calls to define a SF, ``Cu`` defines the specific element, ``2`` the SF type, the second ``Cu`` defines the neighboring atom, and the last three parameters define $\\eta$, $R_{s}$ and $R_\\mathrm{c}$. The gaussian exponent $\\eta$ for the radial SF are chosen to equally distribute the radial SF turning points, whereas the turning point of radial SF with $\\eta = 0$ is set to the specific minimum bond in your data set. There is no need to define element specific SF, also global SF are possible, which are used for every element combination. It is also possible to define for each SF a different $R_\\mathrm{c}$, but it is recommended to use only one $R_\\mathrm{c}$ for all SFs. " - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "symfunction_short Cu 2 Cu 0.000000 0.000000 12.000000" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here, different radial parts of radial SFs with different $\\eta$ are plotted. Feel free and play around with the parameters." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "rsf1 = np.array([fc.radialSF(i, 0.1) for i in distances])\n", - "rsf2 = np.array([fc.radialSF(i, 0.05) for i in distances])\n", - "rsf3 = np.array([fc.radialSF(i, 0.025) for i in distances])\n", - "plt.plot(distances, rsf1[:,1], label='');\n", - "plt.plot(distances, rsf2[:,1], label='');\n", - "plt.plot(distances, rsf3[:,1], label='');" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### The Angular Symmetry Functions\n", - "\n", - "For the angular SF it is quite similar as for the radial SF. But here, three atomic positions are included.\n", - "\n", - "\\begin{equation}\n", - " G_{i}^{3} = 2^{\\zeta - 1}\\sum_{j}^{} \\sum_{k}^{} \\left[( 1 + \\lambda \\cdot cos \\theta_{ijk})^{\\zeta} \\cdot e^{\\eta (R_{ij}^2 + R_{ik}^2 + R_{jk}^2)} \\cdot f_{c}(R_{ij}) \\cdot f_{c}(R_{ik}) \\cdot f_{c}(R_{jk}) \\right],\n", - "\\end{equation}\n", - "\n", - "the angle $\\theta_{ijk} = \\frac{\\mathbf{R}_{ij} \\cdot \\mathbf{R}_{ik}}{R_{ij} \\cdot R_{ik}}$ is centered at atom $i$ and the atomic distance vector is defined as $\\mathbf{R}_{ij} = \\mathbf{R}_{i} - \\mathbf{R}_{j}$. Mostly used for the angular exponent $\\zeta = 1, 2, 4 ,16$, gaussian exponent $\\eta = 0$ and for $\\lambda$ only $+1$ or $-1$ is possible. If many atoms of each element are present, angular SFs are usually not critical and a default set of SFs can be used.\n", - "\n", - "Here a definition of an angular SF is given, which is similar to the definition of a radial SF. ``3`` defines the used type of SF, which needs the following parameters: ``Cu Cu`` to describe the neighboring atoms included in the angle, followed by $\\eta$, $\\lambda$, $\\zeta$ and $R_\\mathrm{c}$." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "symfunction_short Cu 3 Cu Cu 0.00000 1.000000 1.000000 12.000000" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Below, you find different angular parts for angular SF with different $\\zeta$ and $\\lambda$ values. Fell free and play around." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "angles = range(0,361)\n", - "asf1 = np.array([fc.angularSF(i,1,1,1,0.0,1.0,1.0) for i in angles])\n", - "asf2 = np.array([fc.angularSF(i,1,1,1,0.0,1.0,2.0) for i in angles])\n", - "asf3 = np.array([fc.angularSF(i,1,1,1,0.0,1.0,4.0) for i in angles])\n", - "asf4 = np.array([fc.angularSF(i,1,1,1,0.0,-1.0,1.0) for i in angles])\n", - "asf5 = np.array([fc.angularSF(i,1,1,1,0.0,-1.0,2.0) for i in angles])\n", - "asf6 = np.array([fc.angularSF(i,1,1,1,0.0,-1.0,4.0) for i in angles])\n", - "plt.plot(angles, asf1[:,1]);\n", - "plt.plot(angles, asf2[:,1]);\n", - "plt.plot(angles, asf3[:,1]);\n", - "plt.plot(angles, asf4[:,1]);\n", - "plt.plot(angles, asf5[:,1]);\n", - "plt.plot(angles, asf6[:,1]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Output Mode 1\n", - "\n", - "As said, the data set splitting and the calculation of the symmetry function values takes place here. Among general information of your data set and your SFs, you find explicitly how the data set is splitted. As shown in the example below, it is written what happens to each structure (called ``Point``) and if it goes to the training or test set and which number it has there. ``mode 1`` will prepare the necessary files for ``mode 2``:\n", - "* training data\n", - " - function.data: SF values for each atom in each structure\n", - " - trainstruct.data: structural information\n", - " - trainforces.data: force information (if force fitting is used)\n", - " \n", - "\n", - "* test data\n", - " - testing.data: SF values for each atom in each structure\n", - " - teststruct.data: structural information\n", - " - testforces.data: force information (if force fitting is used)" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - " -------------------------------------------------------------\n", - " Maximum number of atoms: 128\n", - " -------------------------------------------------------------\n", - " Calculating Symmetry Functions\n", - " for 8073 structures\n", - " -------------------------------------------------------------\n", - " 1 Point is used for training 1\n", - " 2 Point is used for training 2\n", - " 3 Point is used for training 3\n", - " 4 Point is used for testing 1\n", - " 5 Point is used for training 4\n", - " 6 Point is used for training 5" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**RuNNer** ends without any problems, if at the end of the ouput file the following lines are written:" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - " Normal termination of RuNNer\n", - " -------------------------------------------------------------" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Short quick example of SF calculation\n", - "\n", - "To clarify how the SFs represent the atomic environment for an atom. Let's have a look at this simple structure with three Cu atoms below:" - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "begin\n", - "atom 0.00000000 0.00000000 0.00000000 Cu 0.00000000 0.00000000 -0.00000000 -0.00000000 0.00000002\n", - "atom 0.00000000 0.00000000 6.72752138 Cu 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000004\n", - "atom 2.34735543 -1.35524733 3.36375974 Cu 0.00000000 0.00000000 0.00000000 -0.00000134 0.00000003\n", - "energy -0.4746414926841609\n", - "charge 0.0\n", - "end" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here we define the atomic positions as vectors, calculate the distances and angles for the SFs. Finally, we will end up with the SFs vector for the first Cu atom. We use the 13 SFs, which were introduced in the section above \"RuNNer Mode 1\"." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Define atomic positions as vectors\n", - "d1 = np.array([0.0, 0.0, 0.0])\n", - "d2 = np.array([0.0, 0.0, 6.72752138])\n", - "d3 = np.array([2.34735543, 1.35524733, 3.36375974])\n", - "\n", - "# Define distance vectors\n", - "d12 = d1 - d2\n", - "d13 = d1 - d3\n", - "d23 = d2 - d3\n", - "\n", - "# Define angles\n", - "a123 = np.dot(d12, d13) / (np.linalg.norm(d12) * np.linalg.norm(d13))\n", - "a213 = np.dot(d12, d23) / (np.linalg.norm(d12) * np.linalg.norm(d23))\n", - "a312 = np.dot(d13, d23) / (np.linalg.norm(d13) * np.linalg.norm(d23))\n", - "\n", - "# Calculate radial symmetry function values\n", - "for eta in [0.000, 0.006, 0.016, 0.040, 0.109]:\n", - " value_sf = 0\n", - " for d in [d12, d13]:\n", - " d = np.linalg.norm(d)\n", - " value_sf += fc.radialSF(d, eta)[0]\n", - " print(value_sf)\n", - "\n", - "# Calculate angular symmetry function values\n", - "for Lambda in [1, -1]:\n", - " for zeta in [1, 2, 4, 16]:\n", - " for a in [a123]:\n", - " value_sf = fc.angularSF(a, np.linalg.norm(d12), np.linalg.norm(d13), np.linalg.norm(d23), 0.0, Lambda, zeta)[0]\n", - " print(value_sf)\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## RuNNer Mode 2\n", - "\n", - "In ``mode 2``, the magic happens and your data will be fitted. The part below of the ``input.nn`` defines how the fitting in ``mode 2`` has to take place. ``epochs`` define how often **RuNNer** will loop over the training data to optimize the weights and biases of the NN, ``fitting_unit`` defines in which unit the output will be presented in ``mode 2``, all other files and units will stay in ``bohr`` and ``Hartree``. ``precondition_weights`` effects the initial weights and biases of the NN. In the second part, there are some parameters for the Kalman-Filter, ``repeated_energy_update`` repeats the energy update after a force component update, to increase the impact of the energies. This is slower in general, but might be necessary, since there a many more force components than energies. ``mix_all_points`` mixes the order of the training points for each epoch to improve the training. Often, the ranges of the symmetry functions are rather different in their order of magnitude and thus a rescaling of SFs can be advantageous numerically stated by ``scale_symmetry_functions`` keyword. Together with that, a centering of the SF average value to zero is performed for numerical reasons, since zero is the non-linear center of most activations functions. ``short_force_fraction`` defines how much of the force components is randomly used for training the NN. The last part, defines to write certain files for each epoch, to analyze it in a later stage. There are many other keywords and options to present. However, you got an idea how **RuNNer** works and what to do to fit your first NNP. In the next part, first steps for analyzing the fit are presented." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - "### fitting (mode 2):general inputs for short range AND electrostatic part:\n", - "\n", - "epochs 10 # number of epochs\n", - "fitting_unit eV # unit for error output in mode 2 (eV or Ha)\n", - "precondition_weights # optional precondition initial weights\n", - "\n", - "\n", - "### fitting options ( mode 2): short range part only:\n", - "\n", - "short_energy_error_threshold 0.10000 # threshold of adaptive Kalman filter short E\n", - "short_force_error_threshold 1.00000 # threshold of adaptive Kalman filter short F\n", - "kalman_lambda_short 0.98000 # Kalman parameter short E/F, do not change\n", - "kalman_nue_short 0.99870 # Kalman parameter short E/F, do not change\n", - "use_short_forces # use forces for fitting\n", - "repeated_energy_update # optional: repeat energy update for each force update\n", - "mix_all_points # do not change\n", - "scale_symmetry_functions # optional\n", - "center_symmetry_functions # optional\n", - "short_force_fraction 0.01 #\n", - "\n", - "\n", - "### output options for mode 2 (fitting):\n", - "write_trainpoints # write trainpoints.out and testpoints.out files\n", - "write_trainforces" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "During the fitting process of the NN, the error function $\\Gamma$ is minimized, which is defined as \n", - "\\begin{equation}\n", - " \\Gamma = \\frac{1}{N_\\mathrm{struct}} \\sum_{i}^{N_\\mathrm{struct}} (E_{NN}^{i} - E_{Ref}^{i})^2 = RMSE(E),\n", - "\\end{equation}\n", - "if only energy fitting is used, which defines simultaneously the root-mean squared error of the energies $RMSE(E)$. This defines the differences of the reference data and the NNP predictions. During the epochs, the error decreases as you can see in the part of ``mode2`` output." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - " -------------------------------------------------------------------------------\n", - " RMSEs (energies: eV/atom, forces: eV/Bohr):\n", - " --- E_short: --- - time -\n", - " /atom min\n", - " epoch train test\n", - " ENERGY 0 0.486020 0.481254 9.86\n", - " FORCES 0 0.543702 0.502894\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 1 0.039459 0.039840 19.05\n", - " FORCES 1 0.201312 0.174885\n", - " INFORMATION USED FOR UPDATE (E,F) 1 1998 45\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 2 0.024635 0.026306 19.14\n", - " FORCES 2 0.132738 0.123616\n", - " INFORMATION USED FOR UPDATE (E,F) 2 5565 112\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 3 0.022316 0.024581 19.13\n", - " FORCES 3 0.120274 0.111427\n", - " INFORMATION USED FOR UPDATE (E,F) 3 6033 131\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 4 0.021333 0.023145 19.16\n", - " FORCES 4 0.113496 0.105447\n", - " INFORMATION USED FOR UPDATE (E,F) 4 6132 142\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 5 0.022327 0.023597 19.13\n", - " FORCES 5 0.113152 0.102596\n", - " INFORMATION USED FOR UPDATE (E,F) 5 6064 137\n", - "-------------------------------------------------------------------------------\n", - " ENERGY 6 0.021007 0.022555 19.15\n", - " FORCES 6 0.102685 0.094464\n", - " INFORMATION USED FOR UPDATE (E,F) 6 6094 168\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 7 0.021018 0.022213 19.15\n", - " FORCES 7 0.098023 0.097181\n", - " INFORMATION USED FOR UPDATE (E,F) 7 6226 158\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 8 0.020692 0.022248 19.15\n", - " FORCES 8 0.095995 0.097202\n", - " INFORMATION USED FOR UPDATE (E,F) 8 6186 183\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 9 0.020880 0.022219 19.16\n", - " FORCES 9 0.094960 0.095833\n", - " INFORMATION USED FOR UPDATE (E,F) 9 6122 176\n", - " -------------------------------------------------------------------------------\n", - " ENERGY 10 0.021217 0.022457 19.41\n", - " FORCES 10 0.097554 0.094895\n", - " INFORMATION USED FOR UPDATE (E,F) 10 6226 203\n", - " =============================================================\n", - " Best short range fit has been obtained in epoch 7\n", - " --- E_short: --- --- F_short: ---\n", - " train test train test\n", - " OPTSHORT 0.021018 0.022213 0.098023 0.097181\n", - " -------------------------------------------------------------\n", - " max Eshort error in last epoch (train set): 0.281291 eV/atom (structure 788 )\n", - " max Eshort error in last epoch (test set) : 0.261851 eV/atom (structure 253 )\n", - " -------------------------------------------------------------\n", - " Total runtime (s) : 12095.013\n", - " Total runtime (min): 201.584\n", - " Total runtime (h) : 3.360\n", - " Normal termination of RuNNer\n", - " -------------------------------------------------------------" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A first and simple plot to anlyze the progress of the fitting procedure, is to show the RMSEs over the epochs. Here, you can easily identify overfitting, if the training $RMSE$ is much lower than the test $RMSE$, for example.\n", - "Anyhow, the $RMSE$ is a rather strong reduction of the really complex potential energy surface (PES) and can only be understood as a rule of thumb for the quality of the NNP fit." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Load here an example fit\n", - "# Use results of the workshop participants\n", - "fit2 = fc.RuNFit('runner_fit/fit_hdf5/fit', 9)\n", - "#fit2 = fc.RuNFit('MH-df4-2', 7)\n", - "figRMSE = fit2.plot_rmse()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For a more detailed analyze, you could have a look at the predicted energies and forces per structure. This is quite useful to identify inaccurately described structures. The training data set may has a specific order of different structures (bulk, slab, cluster, ...) and you can identify, if some parts of the data set are described inaccurately in general. The second plot shows the atomic energy prediction of the NNP over the reference values. For a perfect fit, all points will be on the blue line, but as we can see this is not the case. In this plot, we can identify, if some energies ranges are not well described in our data set. This is related to our first data set analysis above." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "figE1, figE2, figF3 = fit2.plot_points()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The same plot can also be done for the atomic forces." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "figF1, figF2, figF3 = fit2.plot_forces()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The ``mode 2`` output gives further information about the parameters of the fitting procedure, about the fitting data and it gives information about the defined SFs and the SFs ranges. These ranges define the known configuration space of your NNP and are used to identify the already mentioned ``extrapolations``. If the NNP is made to predict energies, forces or stress, it first calculates the SF vectors and compares these values to the trainings range shown below. If a SF value occurs, which is not in the range, **RuNNer** will give an ``extrapolation warning`` and tell the user, but you will still get your wanted energy, force or stress. Another usage of these ranges is to increase the data set and the known configuration space." - ] - }, - { - "cell_type": "raw", - "metadata": {}, - "source": [ - " =============================================================\n", - " Short range symmetry function values for element Cu\n", - " Training set: min max average range stddev range/stddev\n", - " 1 6.72393532 25.25447208 14.00001115 18.53053676 4.02011080 4.60945921\n", - " 2 5.03976308 19.37796546 10.59714429 14.33820238 3.11321693 4.60559053\n", - " 3 3.25577537 13.11073890 6.98744718 9.85496353 2.14525332 4.59384607\n", - " 4 1.25883453 6.21227127 3.05195579 4.95343674 1.07630994 4.60224009\n", - " 5 0.06568766 1.53442885 0.48718005 1.46874120 0.26713619 5.49809898\n", - " 6 2.42989188 42.06637435 12.30898440 39.63648248 7.96564228 4.97593051\n", - " 7 6.59284339 109.34982696 33.28285935 102.75698358 21.03610544 4.88479124\n", - " 8 0.78142670 19.11390444 5.22756080 18.33247774 3.61016236 5.07802030\n", - " 9 5.20079617 86.39735705 26.20143575 81.19656088 16.68008353 4.86787495\n", - " 10 0.15497639 7.72411752 1.91198556 7.56914113 1.46079520 5.18152107\n", - " 11 3.59136462 60.38094318 17.95854981 56.78957856 11.72399989 4.84387403\n", - " 12 0.00059457 1.66933490 0.34750355 1.66874033 0.32743124 5.09646040\n", - " 13 0.52030958 18.24849080 4.70826264 17.72818122 3.59567219 4.93042198\n", - " -------------------------------------------------------------" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "During ``mode 2`` several files will be printed by **RuNNer** and some are printed every epoch:\n", - "- scaling.data: information about the SFs if ``scale_symmetry_functions`` is used\n", - "- xxxxxx.XXX.out: weights and biases of the specific epoch xxxxxx for atomic NN of element XXX\n", - "- optweights.XXX.out: weights and biases of the epoch with lowest RMSE defined by **RuNNer** for element XXX\n", - "- trainpoints.xxxxxx.out, testpoints.xxxxxx.out: optional, giving information about training and test energies of epoch xxxxxx\n", - "- trainforces.xxxxxx.out, testforces.xxxxxx.out: optional, giving information about training and test forces of epoch xxxxxx" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## RuNNer Mode 3\n", - "\n", - "**RuNNer** ``mode 3`` is the prediction mode and brings the NNP to application. Via N2P2, NNP can also be used in LAMMPS. For ``mode 3``, the ``input.nn``, ``scaling.data`` (if scaling is used), ``weights.XXX.data`` and the ``input.data``, contaning the structures to predict, are needed. A first application of the NNP in the Cu case is to predict the correct energy-volume behaviour." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pr_ev = pr.create_group(\"E_V_curve\") # Creating a new sub-project within the main project\n", - "a_list = np.linspace(3.4, 4.0, 7)\n", - "for a in a_list:\n", - " job_name = \"job_a_{:.4}\".format(a).replace(\".\", \"_\")\n", - " job = pr_ev.create.job.Lammps(job_name, delete_existing_job=False)\n", - " job.structure = pr_ev.create_ase_bulk(\"Cu\", a=a)\n", - " #job.potential = '2012--Mendelev-M-I--Cu--LAMMPS--ipr1'\n", - " job.potential = j.lammps_potential\n", - " job.calc_minimize()\n", - " job.run()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "pr_ev.job_table()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def get_volume(job):\n", - " return job[\"output/generic/volume\"][-1]\n", - "def get_energy(job):\n", - " return job[\"output/generic/energy_tot\"][-1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Analysing the data\n", - "vol_list = list()\n", - "energy_list = list()\n", - "\n", - "for job in pr[\"E_V_curve\"].iter_jobs(status=\"finished\"):\n", - " vol_list.append(get_volume(job))\n", - " energy_list.append(get_energy(job))\n", - "\n", - "args = np.argsort(vol_list)\n", - "vol_list = np.array(vol_list)\n", - "energy_list = np.array(energy_list)\n", - "plt.plot(vol_list[args], energy_list[args], \"-x\")\n", - "plt.xlabel(\"Volume [$\\mathrm{\\AA^3}$]\")\n", - "plt.ylabel(\"Energy [eV]\");" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} +{"cells":[{"metadata":{},"cell_type":"markdown","source":"# Getting started with **RuNNer**\n## Constructing a HDNNP for Bulk Copper\n\nThis Jupyter Notebook is written for the RuNNer tutorial at the workshop \"WORKFLOWS FOR ATOMISTIC SIMULATION\" from 10-12 March, 2021 by **Marius Herbold** (marius.herbold@chemie.uni-goettingen.de, Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie).\n\nIt is written in text form for an easier understanding, if participants will get back later to this notebook. Anyhow, during the tutorial, we will\nnot explicitly go through the text.\n\nFor this tutorial it is intended to use the RuNNer release version 1.2.\nRuNNer is hosted at www.gitlab.com. The most recent version can only be found in this repository.\nFor access please contact Prof. Jörg Behler (joerg.behler@uni-goettingen.de)."},{"metadata":{"trusted":true},"cell_type":"code","source":"### Import python modules\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport pandas as pd\nimport ase\nfrom pyiron import Project\n\n### Import Marius Class and functions\nimport functions as fc\n\n### Varibales form RuNNer UC\nBohr2Ang = 0.5291772109030 # CODATA 2018\nAng2Bohr = 1/Bohr2Ang\nEh2eV = 27.211386245988 # CODATA 2018\neV2Eh = 1/Eh2eV\nf_conversion = eV2Eh/Ang2Bohr","execution_count":1,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"# About RuNNer\n**RuNNer** is a stand-alone Fortran program for the construction of high-dimensional neural network potentials (HDNNP), written mainly by Jörg Behler. It relates the local environment of an atom to its atomic energy $E_\\mathrm{s}$, which contributes to the sum of all $N$ atomic energies, resulting in the total energy of the system $E_\\mathrm{s}$\n\n\\begin{equation}\n E_\\mathrm{s} = \\sum_{a}^{N}E_\\mathrm{a}.\n\\end{equation}\n\nThe atomic energy is described by an atomic neural network (NN), which is element specific. This gives the oppurtunity to describe different numbers of atoms with the same NN, which would be not the case, if there is only one NN for the whole system. To feed information to the NN, the local environment up to a certain cutoff radius $R_\\mathrm{c}$ is described by so-called symmetry functions (SF) (more details are shown in a few moments) forming the SF vector $G$, which forms the input layer of the NN. In the next layers of the NN - the hidden layers - this information will be processed and in the final layer - the output layer - the atomic NN will provide the atomic energy $E_\\mathrm{a}$. In each layer, there are a certain number of nodes $y$ which are connected by the weights $a$ and can be biased by the biases $b$. For the NN training the wheights and biases are optimized to represent best the data in the training data set.\n\n\n\nIn general **RuNNer** can be separated into three different stages - so-called modes, in which different steps are performed.\n- mode 1: SF calculation, data set splitting in training and test set\n- mode 2: training of the NN to construct the NNP\n- mode 3: prediction of energy, forces, stress, charges\n\nAll these steps are performed consecutively beginning with mode 1. Needed input files are:\n* ``input.nn``: \n - main control file needed in all modes\n - contains all control parameters (NN architecture, symmetry functios, ...)\n* ``input.data``:\n - needed in mode 1 and 3\n - contains structural information (lattice vectors, atomic positions, forces, charges, total energy)\n - output of electronic structure code must be converted to ``input.data`` format\n - RuNNer repository provides the RuNNerUC (universial converter) to convert from several formats (FHI-aims, VASP, xyz, LAMMPS) to input.data format and vice-versa"},{"metadata":{},"cell_type":"markdown","source":"# Getting the First Data Set\n\nBefore we are gettinger deeper into **RuNNer**, we will go one step back. At the beginning of each NNP, there is your data set. For sure, the data set does not have to be good/perfect/large, because you can increase your data set step by step and train different generations of your NN, ending up with an accurate potential. For getting your first data set, there are several ways like:\n- small random displacements,\n- thermal displacements by a simple potential - like force fields - in MD,\n- experimental structures.\n\nThe question \"What is a good data set?\" is not that simple to answer and it strongly depends on the purpose of your potential. But one important point is for sure the distribution of your data over the configurational space you like to handle with your potential. If some configurations are missing, the NNP will provide inaccurate results, because you make the NNP predict energies and forces for an unknown configuration. In **RuNNer**, this is called an ``extrapolation``, that means the NNP is not trained to such a configuration.\n\nHere in the workshop, we are dealing with bulk-Cu. So, a first application of your NNP could be to predict the equilibrium lattice constant of bulk-Cu and you will calculate the energy of a bulk-Cu unit cell with different lattice constants to give an energy-volume curve, which provides the equilibrium lattice constant at its minimum. Thus, your data set should contain information of different cell volumes."},{"metadata":{"trusted":true},"cell_type":"code","source":"# Read in workshop's data set in pandas data frame\ndata_pr = Project(\"../../datasets\")\nif len(data_pr.job_table()) == 0:\n data_pr.unpack(\"Cu_training_archive\")\ndata_job = data_pr.load('df4_2_5eV_25A3_8K')\ndata = data_job.to_pandas()\nfig1 = fc.PlotData(data)","execution_count":2,"outputs":[{"output_type":"stream","text":"Number of points in plot: 8073\n","name":"stdout"},{"output_type":"display_data","data":{"text/plain":"<Figure size 3686.4x2073.6 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAC6gAAAaACAYAAADfRZCRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde3wU1f3/8fds7hiCCAkQEaIVsEAVbQQU1AD1VlFRW7wgrZf6xVqr/fb7LaCk1gtq9au2Rf21tLVVQdS2GK0CasVGg0ViFBS8gReMgpBwDQFy3fn9seyyu9lrdnZ3dvf1fDx4kGx2Z8/uzJk58zmfc45hmqYAAAAAAAAAAAAAAAAAAAAAAIiVI9kFAAAAAAAAAAAAAAAAAAAAAACkBxLUAQAAAAAAAAAAAAAAAAAAAACWIEEdAAAAAAAAAAAAAAAAAAAAAGAJEtQBAAAAAAAAAAAAAAAAAAAAAJYgQR0AAAAAAAAAAAAAAAAAAAAAYAkS1AEAAAAAAAAAAAAAAAAAAAAAliBBHQAAAAAAAAAAAAAAAAAAAABgCRLUvRiGUWAYxrmGYfzGMIwVhmE0GIbRZhhGk2EYHxqG8VfDMCZZ/J4bDcMwI/xXbeV7AwAAAAAAAAAAAAAAAAAAAICVspNdALswDGOapD9IKgzw5xxJxxz4d4VhGC9K+oFpmo0JLCIAAAAAAAAAAAAAAAAAAAAA2BoJ6gcdqYPJ6V9L+pektyQ1SDpE0imSLpWUL+ksSa8YhnGSaZr7LHr/Rkn/FeY52yx6LwAAAAAAAAAAAAAAAAAAAACwnGGaZrLLYAuGYVTKlXj+a0nLTNPsDPCc4ZJekTTgwEO3m6b5qxjfd6OkwZK+ME2zLJZtAQAAAAAAAAAAAAAAAAAAAEAykaB+gGEYvU3T3BnB8yZLev7Ar/WmaQ6O8X03igR1AAAAAAAAAAAAAAAAAAAAAGnAkewC2EUkyekHLJO098DPgwzDKIpTkQAAAAAAAAAAAAAAAAAAAAAgpZCgHiXTNDsl7fN6qCBZZQEAAAAAAAAAAAAAAAAAAAAAOyFBPUqGYZRIKj7w6z5JjRZtuo9hGK8YhtFgGEabYRiNhmHUGoZxj2EY37DoPQAAAAAAAAAAAAAAAAAAAAAgbkhQj95/ef38ommaTou2WyhpklzJ7zmS+ko6UdJMSR8bhnG3YRhZFr0XAAAAAAAAAAAAAAAAAAAAAFjOME0z2WVIGYZhHCVpraQeBx4abZrmWzFuc6NcCekvSlojaaukXElHS7pQ0re8nv6YaZpXxPJ+AAAAAAAAAAAAAAAAAAAAABAvJKhHyDCMQyT9R9KxBx562DTN6y3Y7nhJ/wk2E7thGD+W9KAk9+zpl5um+USYbf6XDsz0XlBQ8O0jjjgi1mICSDPb9ptqbjdVmGOob4GR7OLYRqcp7Wgxta/dlCnJkNQjx9Bh+Yay+Jp8OJ1OORwsxAIAAAAAAAAAAGClePXBbN9vak+7qZ45hvrQPwh0QV8xkL4y7RrYaUoN+5wq6eFQltH1/OYtVc91XzQ5u3wWyfV5Bhelfi6L+5gNJl0+ZyJl2nkgkdavX7/NNM3iQH9LqQR1wzB+JGmgFdsyTfPWKN43S9Izks478NA7ksaZptliRVkieP+bJd154NePTNP8ZqSvLS8vN+vq6uJTMNhWQ1OLrn9ytR667HiV9MxPdnFgI8Mql6m1o+t4mLxshz6ee3YSSmQ/c6rWalFtvXKzHGrrdGra6EGae8G3wr8ww1RXV6uioiLZxQAAAAAAAAAAAEgrVvfB0D8IRI6+YiC9ZOo1sLJqrZ6orfc5hx110xI5g6SJXj6m67nODrlnocrQ0NSiuUs/1Mvvb1FLu1P5OQ6dOaK/5pzzzaDltcNnCifYMesWyedMNrt9z5l6HkgkwzDeNk2zPNDfshNdmBj9SNIYi7Z1ayRPMgzDIelRHUxO/1jS2YlKTj/gAUkzJfWSdIxhGEeZpvlZAt8fKWbe8g16a+MOzXtlAzdL8BFsUFIqDVaKt23NrZo2ZrAuGz1Ii2rr1bgnkad7AAAAAAAAAAAAwDo1MycETeAC4Iu+YiC92O0aGK/EXfd213y5S21eibgLV9Vr4ap65WU7dOqQYm3cvlebd+9XW4crR6hiWLH6FOaqsbm1yzbtkHsWqgwlRfnqmZet1g6n8rIdau1wqmdedsjv1Q6fKZxAx2z/onx9sWOfcrMi+5zJZrfv2W7ngUyTagnqCWUYhiFpvqTLDzz0qaRJpmk2JLIcpmm2GIbxpqQzDzw0TBIJ6ujCf8SPd0ODET+QpBWzJur781fqi+37PI+V9emhv117UhJLZS/zpx8c0DV3ysgklgQAAAAAAAAAAACITXcSuIBMRV8xkF7sdg2MV+Kue7sXjDpcHaYZdFZx9yoRedmuVSIGHlrgKUckSe6Jyj2LNP8t0kFFqZRPF+iY7XSacRs8ZeWgCbt+z3Y7D2SalEpQN01zbILf8iG5Zm2XpC8kTTRNc1OCy+C23evn3kkqA2zOf8RPXrZDhXnZWvCj0ckuGmyipChfnQfW7MnJMtTeaarTaXLRBQAAAAAAAIA0ZbfltQEAices0ACATGWHa2C8Enf9t/vM6oNpjYEScUN9F5EkuSdKpDNeRzqoKNVm0A60n9yfz+rBU1YOmvD/nh2GdMbwfrrdBgO+7HAeyFQplaCeSIZh/FbSdQd+/Uqu5PT65JVIfbx+3pWsQsDeAo34ae1o06I3622xZAYSJ1SHw4jSIlUMK+GiCwAAACDtkYwFAABgv+W1AQCJx6zQAIBMZYdroFUJ0v7x7kDb7d0jVycf3UdXjzuqS05QoO8i2iT3SMoVK6tnvE61GbQTcczGY9CE9/ecZUidpvRp415bfM92OA9kKkeyC2BHhmHcK+nGA79+LVdy+mdJLE+eJO/Z49cnqyywv23NrTKkLheRstlLNKxyWfIKhoTy7nDwN396ueZOGanhpUWaO2Wkz0UYAAAAANJJqHsjAMhEDU0tmjp/pRqYsADICMMql6ls9hItXFUv06SvAAAAAACSwaoEaf94d6DtTjqmRPd/f1REOUENTS06uqRQvXvkKC/blUaan+PQgF75uujbh6vqunGaNmawGptboyqXFdwzXkdahkRvL9XVzJyg80aVKj/n4H4/f1SpamZNiHgbgeKMT9a64g+dpuv3DQ3NxCEynGGaZrLLYCuGYcyVNOfAr1slVZim+VESiyTDMG6SdNeBXzeYpjk00teWl5ebdXV18SkYbKuhqSXoyLtoGzfMNpda/Ee4ucW6LBDgr7q6WhUVFckuBgAAADJcsHtW7o0AILDKqrV6orZe00YPYhZlIANY2VcAAEgc+mAAAEg/MxbUqbhnvi4bPcgzs3mkE0qGindXDCvu9nYrq9Zq4ap6n+21dTojjhulYxw+k/Lk5lSt1aLaeuVmRbff3QLFGYlDZCbDMN42TTPgiYcZ1L0YhlGpg8npjZImdTc53TCMWw3DMA/8ezTIc+YYhhFyrQ7DMK6VdIfXQ3d2pzzILFYuTWLFKDdmZkocK0a4AXbDOQQAAADB3PPiR6r9fIfuWeYbvuHeCAB8MYsykJlSbRlzAAAAAEhX86eXa+6UkRHNbO4vVLzbf7t3nD8ybH6Fd5zIW2uHU4YU8ezi6RiHT8VVWbubU9PdWeVDxRmJQ8BfdrILYBeGYVwj30TwhyQNMQxjSJiXrjBNc1s33/b7kuYahrFa0muSPpS0U1KupKMlXSjpWK/nL5T0eDffCxnGfRHxHiEXDf9RbgtX1WvhqvpujXLzvngzM1N8caFHOuIcAgAAAH/+96yL39mkxe9s8tyzcm8EZKZMmuEoWjUzJwSdvQhAeou1rwAAAAAAkFzB4t0ypanzV/rEwiLJr6iZOUGVz63TKx9sldN0PZZlSKcP76fbp4yMOK6WTnF4K/PkEq27OTXegyTmThkZ8evCxRmJQ8AbCeoHjfP7/bYIXzdBUnWM7338gX/BdEj6taTbTNM0Y3wvZICGphbt3NeuOw40GqK5iLhZ0WkV6cWbzkNrcaFHukjlGwAAAADEV7DwiPfj3BsBmYcBzsGlU4ehP2KLQGjd7XAGAAAAgExj5xhDoHi3dyzs729/FXF+RUlRvooL8zzJ6ZLUaUp9C/Oi/tzpEodP1OQO7mPs1nOH69bnP4jpWEtWTk24OCNxCHgjQT25pks6VdJJkkZI6iupjySHpB2SPpBrZvW/mKa5KVmFROqxojPOik6rSC/edB5aiwu9LzvfQCA0ZncDAABAMCtmTdT356/UF9v3eR4r69NDf7v2JM/v3BsBmYMBzpFJlw5Df8QWAQAAAADITFbngyQzxhDus3jHu/9e92WXWJgkOQwpN9sRUX7FtuZWHdG7QMcOPFSS9N5Xu9TY3Bp1udMlDp+oyR3cx9iNT63RJ43NMR1rycypSdc4I6xHgvoBpmleIekKC7d3q6RbwzxnraS1kh626n2R2azujIv1YhLu4k3nIRKBTsrUlc6zuwEAACA2JUX56jwwvUtOlqH2TlOdTpO2IpChGOAcmUR0GCZyogBiiwAAAAAAZDar8kESEWP4YPNuXTz/TT197VgNH9DL528NTS2a/OAKNexpjeiz+MfCJNcELicM7q2q1Zsiyq/wjhPBJZ5J1/7H2IaGZkmxHWvJzKlJl4EJiD9HsgsAwDo1MyfovFGlys9xVe38HIfOH1WqmlkTPM9paGrR1Pkr1RDBRXT+9HLNnTJSw0uLNHfKyG41TtwX76rrxmnamME+o+2sLi/gbVjlMpXNXqKFq+plmq5GXdnsJRpWuSzZRUMUQp1DAAAAkNlGlBbp8rGD9dxPxuvysYM1vLQo2UUCkCQMcLYP747hcGKN+0USWwQAAAAAAOnH6nyQRMQYbnxqjfa0dujGJ9f4PD6scplG37VcDXtcuRCRfJaSony98O5mT3K6JG3cvk/PvLNJhpTU/IpUzvOKJE+uu5/PfYzlZRs+j+dlx3asRZJTk8r7BKmPGdSBNBJJZ1yiZ5MONWIqkeUNNRIR6YnZ09IDoy4TK5Ez3QEAAMSKtiIAbywrm1zdmWks1rgfAxMAAOmKOC0AAEBoVueDxDPGUDZ7ic/vGxqaPY+538ufw1DYhOVTh/TVxu379PXuFrV2OOUwpHOPK9Wcc76pkp75SYuZJzovLdG6+/ncx1hbpymHITlNKcuQ2jpjO9Yi6SdJ930CeyNBHUiweAeVgnXG2XXJ20SV13sk4r9+fppl5UfyBatTdFIC0ePGBAAAAECqYtBKckXTMWxl3I+BCQCAdEScFgAAILR45IPEK8aw9Ibxuubxt7Vp137PYwN65euRK8olU5r+SK127muT0zz4mgtGHR72szx61RjNqVqrRbWumEqsic6xindeWrIHcVrx+dzH2GeNzdrW3Ko+hbn6RnFPy+NZ7u9qTf1OtXUePLDskiuIzEKCOpBg0QSVunNxDdYZZ9fZpONd3lAjETf++pwYSg67CFWn6KSElPwblVRg10FMAAAAAIDUEE3HsJVxSgYmAADSCXFaAACAyFmdDxKvGMPw0l7qkZvl89je1g4NH9BLlVVrtX1vmyTXbNpOUzq6pFDNbR0RbdsuOTENTS0aPqBIxUV5en19Y8h4T3fzN5I9iNOKeJb3MRZP7u/qwuMPV7vTtF2uIDILCepAgiRjmVtvdppNOpLGhlXlDTQSceChBfrjD78d02dA8kVSp+ikhJT8G5VUYNdBTEguBncAAAAAiEaknaJ2ilMCQLojvpNaiNMCAABELpXyQTY0NPv83tTS0WXCzU5TyjIMHVV8SMSJzHb5DuYt36A1X+3S0cWFYeM90eZv2GUQZyrEs/y/q8XvbPL8bNcyI/05kl0AIFPUzJyg80aVKj/HVe3ycxw6f1SpamZNUENTi6bOX6mGA502wyqXqWz2Ei1cVS/TdF1cy2Yv0bDKZTGVwd1JVHXdOE0bM1iNza0xf67u8G5shGJFeQONRCzIzdLwAb2i3hbsJVSdAqT4nUvTUSrcTCHxIr1eAwAAAIDk6hSdO2WkhpcWae6UkSE7U+0SpwS6yz+mn67vidRHfCe1EKcFAABIT7U3T/LJb8nLNnT4oQXKyz6Y73LmiH469oheusPmyfbe/HMyNjQ0yzQlp2l2ifd0N3+jZuYElfXp4fndPzcokffKscazPti8W9/61Uv64OvdcSlfoDyqAb3yddEJA4nBIWmYQR1IkFBBpcqqtT6jw+I1Q0KyR85FO6rNqvLu3t+uof0KdcPEIZr36gbt2tfe7W3BPgjUIhxmm4mOXZb/QvLZZRQ6AAAAgPSV7DilN2YXRnckY8U+VglENIjvpC7itAAAAOnDO+bgnd/S1ulUj9wstXU6lZtlqKXdqfVbmrVxx96UuucLlZPhH2PpTv6G/32NJLW0O/XCu5v1u0uOl5TYe+VY41k3PrVGe1o7dOOTa/Svn59mZdEkBc6jmnRMied7SXYMDpnJME0z2WVAHJWXl5t1dXXJLgYOmLGgTsU98z1BpUWrvpAzQBXMy3boe98eqEW19crNcjVMpo0elDINkGAamloibpgAkfCvU417WiJe6gixqa6uVkVFRbKLEdacqrVpdy4F4o3rNQAAAIBMUlm1Vk/U1hMzQEQCdY5LimvSbzLeE6mP+A6Q2lKlDwYAAATX0NSiyQ+uUMOeVl0+ZpAam1t98ltefn+LzhjRP2TuWCrc80WTkxFt/ob7vuaFdzfLabq+kwG9ClTWp0ArP9uRMvfKZbOXBP3bxl+fY+l7kUeFZDAM423TNAMeaMygDiSQ/0iqGyYeHTRA+Mtn16XdDAnMeA2r2Wm2LdgTs80A0eN6DQAAACATpOrswlbN+M7M8d2TjBX7WCUQ3UF8BwAAALBepPfSgWIOkit5eu6UkZo7ZaT+XvelFr75RcDXnz+qNKn3fNHEDKLJyYg2f8N9X2NKnpnnxx/dR3Mv+FbIQbl2s/SG8brm8be1add+z2MDDy3QH3/4bcvfizwq2A0J6kAShQoQpusFg2RRAImUrudSIN64XgMAAABId6ma9GvV0tWJXAI7nSQj6ZdEY3QX8R0AAADAWpHcSwdbBcthSDWzJnh+949LuJ9jSgm75wuWiB5NzCCanIzu5G8Eu69JpXvl4aW91CM3y+exgtwsDR/QK0klAhKHBHUgyeIVILTrDDgkiwIAYH9crwEAAKxh1/gMkCriWYdSqSNTsm7G91SdOd5OkpH0S6IxuoP4DgAAAGCNaO6la2ZO0Ni7l8tp+m7DaUqn3PNvz/O94xIOw/X3s0f0V+/CPDXuaUlIXNE/Ed0OMQP/zx3qviaSe2W7xGd372/X0H6FumHiEM17dYN27WtPWlmARDJM0wz/LKSs8vJys66uLtnFQBJUVq3VE7X1mjZ6EDPgALBcdXW1Kioqkl0MAAAAIK3YJVgO6xCfAWIT7zo0Y0Gdinvm+3Rkend8Wi2W83yopauj2ZZV2wEAAPFDHwwAAPYS6F66YmixtjS16q4LRurW5z/wudf/+dNr9MzqTT7bGNArX89dP87n3jtUXCKeMZFgs7znZjl01rf6dztmYEV8O9Tn7s72ic8C8WcYxtumaQYMqjKDOpCigl107TCaDQAAAAAARC+apVNhb8RngNgkqg4lenbhWM7zVs34nmozxwMAAAAAkoPJNA4KdC/98dZmfb5tr36yaLU2bt+rea9s0A2Thuj6J1erR45DQ0oKtaGh2TM7+qRjSrp8j4HiEomIidTMnBB08PrvXtnQ7ZhBLHGPSD53pNtvaGrRmLuXy3ve5njGZ6krQHAkqAMpKthFN1QjAgAAAAAA2A/JzOmH+AwQm3SrQ1ad5yNZujqR2wEAAAAApC8m0/Dlvpd++q16mab0+ba9kg7+777Xl6SLTjhceTlZGnNUn6jvvauuO1mXP1Krva0dau2IT0wk1OD17sQMrIh7hIoFRbv9ecs3yDSlsj49tKWpJe6xJeoKEBwJ6kCKCXfRTcQMOIz8AgAAsM4Hm3fr4vlv6ulrx2r4gF7JLg4AIAnSLRETzFAMxCrd6pBV53mrZnxP9MzxEjFlAAAAAEgVTKYRmPte+unaL8I+d/E7myRJedkOzZ0yMqp770Wr6rVjb5vn9fGKiQRLRO9OzMCKuEeoWFCk2/c/djdu3+f5OR7fI3UFCM+R7AIAiE7NzAk6b1Sp8nNc1Tc/x6HzR5WqZtYEz3PcjYiq68Zp2pjBamxutbQM3iO/AAAAEJsbn1qjPa0duvHJNckuCgAgSdItERMu8Y7PwKWhqUVT569UAzNAp510qkPxPM/btQ74l4uYMgAAAACkhkjyktJZuPvs80YdHvG2TNOM+P2GzlmqstlLPLOwS66kakOKOiYSSaxg/vRyzZ0yUsNLizR3ykifxPRoWRX3CBYLinT7/seuw3DNor7wR6PjEluquu5k9TkkV3nZhqTMqytAJJhBHUgxkVx04zUDDiO/AAAArFM2e4nP7xsamj2Pbfz1OckoEgAgibqzdGo6SqcZdpMxQ3EmuufFj1T7+Q7ds+wj3T91VLKLAwulWx2K13nerstIu8s19q7lcnr1xxNTBgAAAAB7S+XJNKyILQa7z/bPmQqnrE8P/e3ak8KWd/KDK9TY3KoLjz9c7U4z4Czh0X6WZMQKrIh7hIoFRbJ9/2O3rdOp8Uf31fijizX+6OLoP1QYi1bVa3sCZrsHUpkRyUgdpK7y8nKzrq4u2cWAxWYsqFNxz3yfi24sI9ki1dDUEnTJFC6uQHoKdgNXXV2tioqK5BUMANLAB5t365rH39amXfs9jw08tEB//OG3NXxArySWDACA5KmsWqsnaus1bfQgWyVawn6CdQqS9IpMYdc6EK7DnpgyAADh0QcDAEi2ZOUlxco7tnjDpCFRJauHu8/2z5lyGFLfwjxtb25Vp1f6ZbZD6nBKR/QuUM2siVG/n/s92zqdUcdIh85ZqrbOrrmgyY4VJFIijt1g+y7LMPSd4SUpUVcAKxmG8bZpmgEPfEeiCwMgdpEssxKvpV1XfrotJUdJAugell8GgPgZXtpLPXKzfB4ryM0iOd2m4tW+BgC4DKtc5lnC1jRdM+yWzV6iYZXLkl002FSwiVeYkAVSZrTd7LrkeqBylfXpIYnZxAAAAAAgVUSSl2QngWKLo+9artrPg+c6+McOamZO8Ny/Sl3vs/1n5zYl9SrIkVOu+11JGlJSqH9ef4ouHztYw0uLQpY3WHL6RScMVNV14zRtzGA1NrcGLGsw5x5XKknKMgJ/hkwQ7Ni1MlYULCaz8uaJCZtgNt3jXkgfJKgDaSoeSaXzlm9Q4542DSku7NIYApBeSA4BgMTYvb9dQ/sV6qFLj9fQfoXavb892UVKa7EEbBi0BQDxZddES9jXilkTNdir01ByLZ28YnbwmamQOTKh7WbXJdcDlavTaerysYOJKQMAAAAA4sI/tugtWK6Dd+xgWOUyjb5ruTZu3+f5e0u7Uy+8u9nnPntbc6umjTl4f7tzX5uKC/P0yBXlunzsYB1VfEhESf3u8roTyd0uOuFw3T/1uC7bCBfncOd3LH5nkyR5ZnRvabdHrCDewvX/NTS1aPKDK0IOWIhGsmMymRD3QvrITnYBAFjLf5TdwlX1WriqPqblWvy3ub6hWd+dV2PJEjANTS1RLakDIDFqZk7wWZ7Ke/llAIB1aud8x/Pz5AOzGiB+vAM2kS6JGI/2NQCgq2QH9ZF6Sory1el09bblZBlq7zTV6TQ5ZjJcprXd3B3j3stW20Ggcs2dMlKSPP8DAAAAAGAV79hibpahtk5TWQ5DnU6zS65DoNiBJDkOJIs7TdeM6AN6FaisT4HP+3gnnd8w8Wi9/P4WNexp1Ytrt0Tc7+Rd3k7T9b5OUxpaUqjm1g6f50Ua5/DP78hyGDplSF/1OSQvIwaJ/3rZR6r9fIfuWfqR7r94lM/foo0VRZrHloyYTKbFvZAeDJY8TW/l5eVmXV1dsouBBGpoagmaVNrdDrp4bNOtsmqtnqit17TRg6JqrAGIvzlVa7Wotl65WQ61dTp96ml1dbUqKiqSW0AAACIUbKnESAI28WwLAwB8zVhQp+Ke+T5BfbsvH4zk4piBP9puAAAgHdAHAwBA9LzjRDc+tVobGpo9E2GU9MzTCzeMV0nP/KCxgyzDUNWaTQHzI/xF2u8UKtk5kriWf1nzsg0V5uVowY9Ga/iAXj7PDZXfEU48JhdNxISl4fZDsL87DOnNmycFLJed89iIe8GuDMN42zTNgIF5ZlAH0kw8ZhyLxzYZ1QXYn11n4QIAIFqxrAzCjL4AkDjeHTDMsItIcMzAXyLbbqwMCdgLdRIAAABIvmS2y73jREcVH6IxR/XRWSP660ePv6WGPa2e1XWDxQ4aI8yPCJX0XDNrgs93EGpl30jiWoHK2trRpkVv1nfZXiz5Hd1ZgTgZ2/QXbF5m98Pu/sEl733tWYlRki4YdXiX4zMV8tjos0QqIkEdSEPxSCq1epuxJAkBSAw6+gEA6SLWgA2DtgAAAFJHotpuiehoBTKFFUks1EkAAAAg+ezSLp8/vVzDKpdp4ZtfeB7zTjiuGFbcJXYQaX5EuKTnyqq1qv18h0bfuTzge0eb7LytuVUOGWGTp7uT3xFrUnage7lEJnqvmDVBU+ev1Mbt+zyPlfXpob9de5Kkg/2DnU5TWYbkNKWjSwrV3NbRZVupksdGnyVSjWEGG0qCtFBeXm7W1dUluxhAQLEsL5OOmOEFqYTlJQEAqSaSpRIBAACAcCJdxhtA5GJZQp06CSAd0QcDAEg1dmuXByuPIWnVnEkx5+QcddMSOaNIufROdu7Oezc0tQRNno7ls8S63UD3cvEqazDj73lVX+3cr9wsQ22dpo7oXaCaWRM9f4+mf5A8NqSTROYhGobxtmmaASuWI67vDAAhuEd1VV03TtPGDFZjc2uyi5RU97z4kWo/36F7ln2U7KIAAACknfnTyzV3ykgNLy3S3CkjSU5HRmloatHU+SvVwEwaAADErGbmBJ03qlT5Oa7ulfwch84fVaqaWRMsfy+u4amF/RW9YZXLVDZ7iRauqpdpumbWK5u9RMMql0W8jUTWSQAAAACB2a1d7i6PP1PS6DuXa2gU9xyBnDqkWGV9eig325AkOQzpzBH9VDG0WA7XQ8o68H9uiJV9I72PjHWlYKu3G+peLl5lDWZEaZEuHztYz/5kvC4fO1jDS4t8/h5N/yB5bEgn3itaJFN2Ut8dQEbrzvIy6ch/5ObidzZp8TubmOEFAAAAgCXssqwqAADpIJEdrVzDUwv7K3pWLKGe6OQHAAAAAF11p10ez9l93eUJ5jvHlGjq/JXdfu9HrxrtmW07L9s123ZxYZ5Wfb5DTtOVnN5pSkNLCvXbS473zNztL5L7SPf31CPHoWljBvvMBG4Fd1J2NNsNdy/XnW12l5W5Z+SxIR345yEuXFWvhavqk5aHSII6YGOJXGoByWOagdf9CfY4AAAAAETCbkEoAADSRbw7WrmGpxb2V/dZlVyeyOQHAAAAIJUkMu8o2nZ5vAf5bmtu1eVjB2tHc6uWrtvi8zf372PvWq7P7j6n29t3f95zH1yhhavqPX/rPJDus76hWTdXrdUff/Btn+8/2H1kbpZDowYd6rO/3N/TtNGDPEnTgZKnu7uvu5OUHe5eLpUTvcnVQ6qzYjIAKxkkQKa38vJys66uLtnFQDdVVq3VE7X1rkYGM66krYamFn1//kp9sX2f57GyPj30t2tPSovGDo239FRdXa2KiopkFyPtfLB5ty6e/6aevnashg/oleziAACAFNfQ1BI0CEXbHAAA++IaHj/xiFWyv2IzY0Gdinvm+ySxhFpyHQAyAX0wAACr2DHvyD852y1eg3xnLKhTYV62tu1t02sfNwZ8TqzvHei+sH9RvjYeyAO6fIzv9x/sPjLbMPTMmk2aNnqQ/v72V1F9T4ne1+l6L2fHOgNEy73CQ26Wa4WHeB/PhmG8bZpmwBMAM6gDNsSMK5mlpChfnU7XYKGcLEPtnaY6nWbadF6wtC0QuRufWqM9rR268ck1+tfPT0t2cQAAQIqzakZKAACQWFzD4ycesUr2V2xSeWY9AAAAwK7snHeU6Nl93fccc6rWSpIchnQgRSfq9w426Nn7vlCSWtqdnuR0qev3738f2dLu1HNrNvs8313W3AN/D1bWZO3rdLuXs3OdAaJlp5XmSFAHbMhuSy0g/kaUFqliWIktLgxWofEGRK5s9hKf3zc0NHse2/jr7i0pBgAAINkrCAUAACLHNdxa8Y5Vsr8AAAAA2Imd846SNch3W3OrLh87WJt37derHzXIYSjoewdLRA816Nl9X3jWiP6a/cx7+mrnfs/fHIZ0+vB+usMrkdv7PvKRFZ/pjU+3a9e+Np/9leUwVLV6U8jvyc77OpXwPdpDPFa+y0R2GkBCgjpgQ8y4knnsdGGwCo03IHJLbxivax5/W5t2HbxJHXhogf74w28nsVQAACAdpOO9BgAAmYBruLXiHatkfwEAALshwQvIbHbPO0rGIF/3fdsp97wqSTp7RH/1LswL+N7uRPR7ln2kL3fu15ovd6ktzKBn7/vC04YW64kDs6BLrhnbiwvzfL7/O84fqeufXK2+PXN1/9RRmlO1Votq6332V2ME35PV+zpTrx92rzOZIh4r3yG5SFAHbML/As+MK0h1NN6AyA0v7aUeuVk+jxXkZmn4gF5JKhEAAAAAAED6IFYJAAAyDQleAOycd5SMQb7+K2stWbdFkpSX7Qj6nMXvbJLkmgH9vFGlPoOeK4YWa0tTqxr2tHS5t9zW3KojehdoaL+eWl2/U/m5WWpsbvV5jv95etPOfSouzNMDU0epavVXWrL2a73036d6th3qe9q0c7/rtRcfpxfXbY1pX2fy9cPOdSbdxXvlOySPYZpmssuAOCovLzfr6uqSXQxEoLJqrZ6orde00YPS9gKfqaPsMtmMBXUq7pnv03jzvtHIVOlQF6qrq1VRUZHsYqSV0Xe+okN75OiGiUM079UN2rWvXbVzvpPsYgEAAAAAkNLSIQ4DaxCrBACkCvpgEAv/BC83ErwAZLqGppagK2u54wXu5/xzzeag28nLdqit06mjiwu1oaFZJT3z9MIN4wPGHALlggU7TzsMyZQ0bfQgSYoqh8yKnDOuH0imSOon7MswjLdN0wwYZCNBPc2RoG5/drjAJ6qTJhOS8IFIpENdIDgKAAAAAABSQTrEYQAAQGahDwaxIMELQDqyKq9pTtVaLaqtV26WK8k8UKzA/RxDkvNAWmV+jkNF+TnqNE3t3t+ujs6u+ZbeeV6hcsFqZk7wOU9HIjfbofUBcsiszDnj+gEpuRM9RFI/YU+hEtQdgR4EkDg1MyfovFGlys9xVcf8HIfOH1WqmlkTElYG7+VZ/DU0tWjq/JVqiGHZkmGVy1Q2e4kWrqqXabqW4SibvUTDKpfFUmzAFj7YvFvf+tVL+uDr3WGfS10AAAAAAABIDOIwAAAAyEQlRfnqmZet1g6n8rIdau1wqmdeNsmFACxhRQ5Rd4TKa4rGtuZWTRszWFXXjdO0MYPV2Nwa9DlnjegvyTWzeWuHU70KcrRjb5vOO7ZUDqPrtls7nJ6YQ6hcMP/ztCSV9enheW6WIc/2sw78cO63BgT8PFbmnHH9gGRdXeuOSOonUk92sgsAZLpkXuD9R9ItXFWvhavqfUbSeV94ujsqyX/0n/coO0SPZYnt5can1mhPa4dufHKN/vXz00I+l7oAAAAAAACQGMRhAAAAkKncCV6XjR6kRbX1akxwIimA9BVpDpFVeS2R5DVFqqGpRTv3teuOKSNV0jNfc6eMDPi8+dNdkwDPWFCny8cO1tNv1au909SGhmZJ0jOrN3V5TZbD0ORjB3hiDuFywQ4mwffTz//2rlo7nD7Pdes8MIX74tWbtHj1pi6f2+qcM64fmcvKutZd7ronKWj9ROohQR2wge5c4K1ozIXqpLHywsMoO2t1Z9CA1UntJMlLZbOX+Py+oaHZ89jGX58T8DXUBQAAAAAAgMQgDgMAAIBMRYIXgGhEkv8RbQ6RFZNhStYOPo+2TO5z6Q0Tj+5Sht49cpWTZah+x345DFciuX/MYdPO/SouzNMDFx+nF9dt9ckFc2+7smqtGptbNfDQAk/e2IwFdep0mhrSv6dWrG9Up6mQn9vKpHKuH5mLiR4QLySoAzbQnQt8JA2ncI3IUJ00Vl94GGUXu1gGDVjV+I/X9lLR0hvG65rH39amXfs9jw08tEB//OG3Q76OuhBfDJ4AAAAAAABuxGEAAAAAAAgtkvyPSHOIupPXEqqP34rB58HKlJvl0KhBh4bNLfAug2FIrR1OTTqmRK+tb5QknT2iv3oX5nWJOQzsXaDXNjTqxbVbunyv/mX6cud+LXzzC/297kvP9zSnaq2cUtjPTVI5rMBED9EjPykyJKgDKSaaxlwkjchgnTRWX3hoEMXO3eBf8u5mdZpSliFNPq405KABq5dgscOSLnYxvLSXeuRm+TxWkJul4QN6hXwddSE60TboGDwBAAAAAADciMMAALqDRAMAAFIX1/HIRZP/EWkOUXcmwwzXxx/r4HNPrs17X6vTaSrLYWjysQOUbRh6Zs2miHILtjW3akhxodY3NEtyfVduS9ZtkeRKJJci+14j+Z4YdI9E45iLTqLzk1L1+maYppnsMiCOysvLzbq6umQXAxGK5ETS0NQStJHifo1/Y8ct2iTiGQvqVNwz3+fC492pg8Tqzn6N5HiJhtXbS3Wj73xFh/bI0Q0Th2jeqxu0a1+7aud8J9nFSojq6mpVVFTE/X0qq9bqidp6TRs9KGSDzqrzHgAAAAAASLxU7WABAKSnSOPSQLwkqg8GANIR1/HIRZv/EWkO0ZyqtVpU65qhvK3TGXRfxNrHH2ksIdj7RPq+4V6fl+1QYV62FvxotIYP6BXx9xrp9wTAXpKVn2Tn65thGG+bphkwqZQZ1AEbiWRkTSSjErszItHNuwHXnRmG6EyKn5qZE3TewyvUuKfNM6qzpGeenrt+XNDXWD0TPku6+PJORp98XGkSS5J+op2tP5bzHgAAAAAASC5WRAMA2AGryAIAokV+hH1wHY9epPkfgY7zUDlEkc7CXHXdyZr+SK2aW9vV2mEqL9uhHjlZOvywAjXsaQlbpyKNJbhybd5QY1OLOk3JYUi5WQ6Zklo7wucW+OciGIZ0+KEF+mrnfs/31trRpkVv1nvK8ean29XSHvp7ZbZqIDUlOj8p1a9vjmQXAIDrRFI2e4kWrqqXabpOJGWzl2hY5bKAz3c3UqquG6dpYwarsbnV5++xJBF7N+C6I9bXI7iSonxNOqafnKarYe40TU06piTsfg13vETL6u0BgdTMnKDzRpUqP8fVVMnPcej8UaWqmTUh4PMZPAEAAABktoamFk2dv1INdOQAKSXauCg43wFAPEUblwYAgPwI++A63j2R5H9Ee5zPn16uuVNGanhpkeZOGRlwlnVJWrSqXtv3tnmS01s7nNq5v13rNjWFfK9wsQT/+2ZXrk2JnHLNcGxKOuKwHmrrDJ5b4L0N71wEhyGZprRzb5schrokjZbNXqKxdy9Xw55WDSkpDPm9Rvo9AbCXROcnpfr1jRnUARuIdmRNJDObRzvSLtbRNqk+WidVdGcEZXdmwk/k9oBAutOgY4QxkoXZMQAAAJLvnhc/Uu3nO3TPso90/9RRyS4OgAil6opot956q2677TZJ0r///W9VVFQk7L3TYbb5HTt26P7779fSpUv1ySefaO/evTJNU7169dKuXbuSXbyYVVRU6LXXXpMkmaaZ5NIk3qOPPqorr7xSkvTXv/5VV1xxRXILZLHq6mpNmODqBP7Vr36lW2+9NbkFgqWYCAUAEKlI8yPSpQ8pFT4H1/HuCZX/Ea88IP/tSurye6j3cscSXlr39YHkdkNnjRzgiSUEum/2zyV4+f0tIXML/LfxZK0rGd59h7e3rVPSgdnYsx1qaT9YfueBJ21oaNZ359WQNwWkoUTmJ6X69Y0EdcAG4nEiiTaJONbOoFTtTEo1JIcjk0TboIt3/UiFwAuSIx2SAwAAAFKVf4fW4nc2afE7m+j4ASxiGIbP72+++abGjBkT8jVPPfWULr30UknhkzdTvYMlkdJlgpCtW7dq7Nix2rhxY7KLkhbWrFmjZ599VpI0ZcoUjRo1KqnlgbWqq6tVXV0tSbriiitUVlaWlHJ88skn+tOf/qTq6mpt2LBBe/bsUUFBgUpLS3XiiSfq0ksv1Xe/+92It7dy5Ur96U9/0muvvaavv/5a+fn5OvLII3XBBRfo2muvVd++fYO+duPGjTryyCO79TkCDRjZsmWLXn/9db311lt6++23tWnTJn2xaavaW/aqsPAQ5ffur2dqR+rskv/WuHHjuvW+qYhYOACEF2l+RLr0IaXK52BCM2vFKw/If7t52Q717pGrhj0tnuTuLEM6fXg/3R6g3/9gLMH15NYOUz3zsnXKPf8Oe9/c0NSi9Vv36IUbxnvaOd65BcHuvXOzDJUeWqCN2/dJkue7yDIMVa3Z5IlplPXpoS1NLeRNAQmW6HuYROfvpfL1jQR1wCaSfSKJtTOIziQAVrPbgIxUCbwgcdIlOQAAACCVBZuZNhNnrAUS4eabb9by5cst3Way46KpIl0mCLnzzjs9yenjxo3T5Zdfrn79+skwDOXk5CS3cClozZo1ntn8y8rKSFBPM9XV1Z79W1FRkZQE9V//+te65ZZb1N7e7vP4nj179PHHH+vjjz/WwoULNXHiRP3973/XYYcdFnRbpmnqf/7nf/Tb3/7Wp622f/9+7dy5U++8844eeughLVq0SBMnTrT0cwRLav/tb3+re+65J+DfmnbvVtPu3WrY+LHGv7pYF154oR577DEVFhZaWjY7SuVYOMn1ABIlXH5EuvQhpdrnsFv/cqrrbh5QuOux/3bbOp3qmZ+tLU0Hn9NpSn0L8wK+PtAM7K4kcofOG1Ua8r45XDsn0L13W4dTbZ2mJzldklranXr+3c06fXg/n5hG9ccN5E0BSZDK9zCRSOXrGwnqgE1EeyKJR4Al1s4gOpMApKNUC7wgcdIlOQAAACCVrZg1Ud+fv1JfeHUQlfXpob9de1ISSwWkr1dffVWvvPKKvvOd71i2zVTuYEmkdJkgZOnSpZKk3r176+WXX1aPHj2SXCLruWe8zlRXXHGFrrjiimQXAxb47W9/q5tuusnz+6mnnqpzzjlHRxxxhHbu3KnVq1drwYIFam1t1auvvqpzzjlHK1asUFZWVsDt3XTTTfrNb34jSTrkkEN09dVXa/To0WpubtbixYv1r3/9S1u3btX555+vmpqagAMuSkpKVFVVFVH577jjDr3zzjuSpCuvvDLo83JycvTtb39bJ5xwgo444gj1799fhxxyiLZu3aqamho988wz6ujo0DPPPKPt27fr1VdflcPhiKgMqSYdYuHpnpgCwF5C5UekSx9SunwOdF938oAiuR77b/fl97foiN4FOnbgoZKk977apcbm1oCvrZk5QVPnr+wym/mcc76p372yQS3tThlyJZG775tDzYy+/s6DqwEFuve+8PjD1e409cK7m+U0pdxsQ6W9ClTW95AuMY0ZC+pUMayEvCkgRpHmRabDPUy6I0EdSFHxCLDE2hlEZxKAdETgBcGkS3IAAABAKispylfngbV/c7IMtXea6nSatMkAi/Xo0UP79rk6fm+66SZLE9QRObtOEBLNZCpffvmlJGnYsGFpmZwOpIt9+/bpl7/8pef3Rx55RFdddVWX591888065ZRTtGnTJr355pt6/vnnNWXKlC7PW716te69915JUq9evfT666/r2GOP9fx9xowZuvXWW3XbbbepublZ//Vf/6VVq1bJMAyf7fTo0SPg9v3t2rVLl156qSTJ4XAEHTRx7bXXqrKyMuis6Ndff73effddfec739G2bdv02muv6e9//7suvvjisGVIRakcCycxBYBVomnbhsqPSJc+pHT5HOi+aPKAwl2PvevXHeeP1PVPrlbfnrmaO2Vk2G27X7umfqfaOn1XTnTPZv67S47XtuZWDSkp1CcNzRpSUuhJcvdv52QZrlnazz2utMt7Bbr37luYJ1PyzPg+/ui+AXO1yJsCrBFpXmQq38NkivQc3g2ksWGVy1Q2e4kWrqqXaboadGWzl2hY5bJkFw0A0hKBF4TiDlBUXTdO08YMDjqSHwAAAPEzorRIl48drOd+Ml6Xjx2s4aVFyS4SkHaOOOIIXXDBBZKkuro6PfPMM0kuUWaaP71cc6eM1PDSIs2dMtKn4ztZGppaNPnBFar93NVpGE5bW5skKS8vL95FAxCD//znP2pubpYknXjiiQGT0yXpyCOP1OzZsz2/19TUBHze7bffLtN0JRLdddddPsnpbr/61a80evRoSdJbb73lWXGhOxYtWqSWFtcgnkmTJumII44I+LyysrKgyeluxx13nG6++WbP70uWLOl2uewulWPhNTMn6LxRpcrPcaU/5Oc4dP6oUtXMmpDkkgFINd4JcbFKlz6kdPkc4TQ0tWjq/JVqsMlA4FQU7nrsXb+irWvu5597XKnOG1Uqx4FxjLnZhsr69NCpQ4s1rHKZXnp/qzY0NMuUtKGhWS+9v1XDKpd52jkt7a4EeneO++J3NnXJuQp07+2uB4/88EQVF+bpq537BMB60eZFpvI9TKYgQR1IMXYLsNBIB5AJ7B544VycPHZMDgAAAMg0tMmA2EVyXzl37lw5HK6YZGVlpTo7O7v9foZhyDAMVVRUxPzciooKz3Mkyel06i9/+YsqKipUUlKiQw45RN/61rd05513as+ePT6v3bJli375y1/q2GOPVVFRkXr16qVTTz1VTz/9dNSfaenSpTr//PM1cOBA5eXlaeDAgbr00ku1cuXKiLexbds23XnnnTrllFPUv39/5ebmqri4WKeccoruvffeLuX3V1ZWJsMwVFZWJklqaWnRvHnzNH78ePXr108OhyOi7zyYffv26Te/+Y0mTJig/v37y5GdowED+uu939+o3Sv/psdf/zBgp+Gtt97qs48k6bXXXvM85v5XXV0dVXkeffRRz2sfffRRSdIbb7yhyy67TGVlZcrPz1f//v11/vnna9myyCd4+fDDD3XjjTdq5MiR6tWrlwoKCjR48GBNnTpVVVVVYV/vf0xGUu4PPvhAM2bM0De+8Q0VFBSoT58+mjRpkp588klPUm+gbVx55ZWex6688sou36n7WPC2efNm3XLLLTrppJN02GGHKScnR71799aQIUN02mmn6bbbbtNbb70V2ZcV4efz51+v9+3bp/vuu0/l5eXq3bu3DjnkEI0YMUI33XSTdu7c2e2yuHkfg+7jzIo6G45/ncnLy1NJSYnGjx+vu+++W7t37w5Z3ttuu83z2IQJE7rs31jqczgNDQ2en4cMGRLyuUOHDvX8vHfv3i5/37Nnj6cOFhUVBZ3N3DAM/fSnP/X83p1zsdtf//pXz8/BkuujMXz4cM/PW7ZsiXl7dmb3WHgwJKYAiFU8JgpMl3hFunyOcKwcnJBodukrDnY9PuWef3epX/517cjZSwKW379uLn5nk/65ZrOcpms28/ZOU+OP7qtHrxwdNp9qW3OrLjzhcFUMLVbWgQz3SHOu3PXgxXVfq7G5VQN7syIYEA/dyYtM1XuYTJGd7AIACCzY0lF2C7BEuqQGgMwUzTJ4dmb3pbg4FwMAAAAAYhHJfeXw4cM1ffp0PfbYY/rwww+1YMGCoEmGydLc3KwpU6Zo+fLlPo+vW7dOlZWVWrx4sZYvX67evXtr5cqVOv/889XY2Ojz3JqaGtXU1Oitt97SfffdF9H7/uQnP9H/+3//z+exTZs26amnntLf/vY33XLLLfrVr34VchuPPvqobrjhhi5J6Nu2bdOKFSu0YsUKPfDAA6qqqtJJJ50Utkyff/65zj33XL3//vsRfYZw3nzzTV100UXavHmzz+Pmvt1q3bdbrZs+UNNbz6r4vP9V7Z9+Ycl7RuvXv/615syZI6fz4JLyW7du1T//+U/985//1DXXXKM//OEPnoEWgfzqV7/SnXfe2WUARn19verr6/X3v/9dp512mhYvXqw+ffpYUu5HH31U1157rVpbD3agtrS06NVXX9Wrr76ql156KWiid7SWLFmiSy65xDMzttuuXbu0a9cuffLJJ3r99df1m9/8Rrt27bLkPcP57LPPdO655+qDDz7wefyDDz7QBx98oCeffFLV1dUBk+27y4o6G06wOtPY2KjGxka98cYbuv/++7Vo0SKdccYZMb2XN++BEZ9//nm3v7d+/fp5ft6wIXSSlvffv/nNrsuov/baa57j+9RTT1WPHsGTec4880zPz9EMLPG2bt061dXVSZJ69+7tWQEkFp9++qnn5/79+8e8PTuzeyw8FHdiymWjB2lRbb0amdAFQBRqZk7Q3KUf6uX3t6il3an8HIfOHNFfc87pem1DehlWuUytHQfvIdzJ03nZDn089+wklixyduorDnQ99q9fDkMy5JrFPD/Hof5F+fpix76A5Q9UN3v3yNXJ3+irq8cf6XPND5RPtfLT7Z5tuds5c6rWymmaMgxFnHOVDscJkAq6kxeZyvcwmYAEdcCmQjUg7RBgofEFIBJ2uhlOR5yLAQAAAACxiPa+8rbbbtOTTz6ptrY23XrrrbrsssuUm5ubyCKHdOWVV2r58uUaN26cpk6dqv79++uLL77Qww8/rC+++EKrV6/Wz372M912220688wz1dbWph/96EcaP368cnNzVVNToz/96U/q6OjQ/fffrzPPPFOnn356yPf83e9+p2effVZ9+/bVj370Ix177LHat2+fXnzxRS1evFhOp1O33nqr+vTpo+uvvz7oNn72s59JkvLy8nTRRRfplFNOUZ8+fbRjxw69+OKLeu6557R161Z95zvf0VtvveUzm6+/1tZWXXjhhXr//fc1fvx4XXTRRSotLVVjY6O2bt0a9fe6Zs0aTZw4Ufv375ckHX/88Trvwu9rVaNDb33wuZo/rFHrpg/k3N+kxn/crg+uPUUlXjM7X3LJJRo1apQkeRJFR4wYoblz5/q8z8iR3e9EfPbZZ/Xcc8/pkEMO0dVXX60TTzxRnZ2dev311/X444+ro6NDf/rTn1RUVBR04MFNN92kX//615KkrKwsXXLJJZo4caIKCgq0du1a/eUvf9HWrVv12muvaeLEiXrzzTdVUFDQ7TJL0osvvqi///3v6tWrl37yk5/o+OOPl2EYev311/XXv/5V7e3teuyxx3Tqqaf6zAI9ceJEVVVV6dVXX9WDDz4oSfrpT3+qiRMn+mzfOxF406ZNPsnp55xzjk4//XSVlpbK6XSqoaFB7777rv71r38Fndnbak1NTTrnnHP00Ucf6bzzztPZZ5+tww47TJ999pl+//vfq76+Xl988YV+8IMf6PXXX7fkPa2os+EEqjOXXXaZBg0apC1btuhvf/ub3njjDW3fvl2TJ0/Wyy+/7DMburvOPPXUU55ZxO+4444udaRv377d+xIiMG7cOPXt21fbtm3TW2+9pb/+9a8+M/a7bdy4UXfffbckqU+fPrr88su7PGfdunWen7/97W+HfN/i4mINHjxYX3zxhbZt26aGhgaVlJREVfa//OUvnp8vu+wy5eXlRfV6f59++qnuuusuz+8XXnhhTNtD/JCYAiAWdpsoEImTyoMT7NhXHOx67F+/3Frandq4fZ+kwOUPVDcnHVPiyT3wv+a786nOGtFf1zz+lhr2tHbJVdjW3KohxYVa39CsoSWFEc22nMrHCZBq7JAXCeuQoA7YTCQNSDsEWGh8AQjFjjfD6YhzMQAAAAAgFtHeVw4ePFgzZszQgw8+qC+++EJ/+MMfdMMNNyS41MH94x//0J133qmbb77Z5/ErrrhCo0aN0ubNm/XEE0/o3XffVX5+vlasWKFjjz3W87xLL71UJ510kn7wgx9Ikn7zm9+ETVB/9tlnNWLECL366qs+SZRXX321nn32WX3/+99XR0eHZs2apfPOO0+DBg3yef3bb7+t//3f/5UkDRs2TM8//7yGDBni85wZM2ZoyZIluuCCC7Rv3z5deeWVWrVqVdAybdmyRVu2bNEDDzyg//7v/w5Z/nCcTqcuv/xyT6LtjTfeqAceeEAOh0Nzqtbqw4J69So/VztWPKldK56Qs7NDP/jBD7R+/Xrl57uSeY455hgdc8wxPtvt27evpkyZElPZvD333HMqLS1VdXW1z/f3wx/+UNdcc43OOOMM7dmzR7/5zW908cUX68QTT/R5/cqVK3XPPfdIkg455BAtXbpUp556qufvl156qf73f/9XZ555purq6vTee+/plltu0f/93//FVO6nn35ao0aN0ksvveRz/EybNk1nnXWWJxH2vvvu80lQHzRokAYNGuQzy/kJJ5wQ8jt98sknPcnp99xzj2bOnBnweaZpasWKFTF8qsitXr1aubm5ev755zV58mSfv11zzTU68cQT9fnnn6umpka1tbUaPXp0zO8Za50NJ1Sdcbvhhht0xx136JZbblF7e3vQOrNmzRrPa8aPH++TxB5v+fn5+sMf/qBLLrlEHR0duuqqq/Too49q8uTJOuKII7Rz50698847WrBggVpbW3X44YfrmWeeCbiywPr16z0/RzKjuztB3f3aaBLU29vbtXDhQs/v3vUmnI0bN3q+887OTm3btk1vvvmmnn76ac/+vOKKKyw9dwEA7IWEuMyUyoMTktVX3J1V1L3r14wFrtVu7r7wWFU+u1b1O/bJeWA29Yqhxfpq535Nnlej7CyH/viDb0dVN+dPL9ewymVa+OYXnse8cxUk+eQxrG9o1vqGZg2rXBYyjyGVjxMg1dghLxLWCb6OIYCkqJk5QeeNKlV+jqt65uc4dP6oUtXMmpDkkvmi8QUglFQ5l6U6zsUAAAAAgFh0576ysrJShxxyiCTpzjvv9CS82sGZZ57ZJTldcs3I654JubOzU++++64eeughn+R0t+nTp3sSnJcvX66Ojo6Q75mdna2nn346YALllClT9D//8z+SpH379un3v/99l+fcdttt6ujoUF5enl544YUuyelu55xzjmbPni1Jqq2t1X/+85+Q5brgggtiTk6XpBdeeEHvv/++JGns2LH6zW9+40m03dbcqsvHDtbzPz1FP/mf2Rp03HhJ0pdffumTIGqFhqYWTZ2/Ug0hEhH+8pe/BPz+xo4dq3vvvVeSK3n4gQce6PKc//u//5Npmp6fvZPT3Q477DD94x//8MxK/vvf/94nQbw7cnJy9I9//CPg8XPBBRdo3LhxkqQPP/xQX375ZUzv9cknn3h+vuaaa4I+zzAMnXLKKTG9VzQqKyu7JKdLrtm4vevzSy+9ZMn7xVpnwwlVZ7z98pe/1DnnnCMpPnUmUqHq1kUXXaQXX3xR3/ymK8Hp9ddf18yZM3XppZfquuuu05///GdlZ2frvvvu03vvvRd0AIF3PYlk1nfvJPdo69gLL7ygxsZGSdJxxx2nE044IeLXvvjii7rgggt0wQUX6Hvf+56uvfZaPfroo9q/f7+OPvpoPfzww/rrX/8aVXkAAKll/vRyzZ0yUsNLizR3ykifBDmkN3cCdNV14zRtzOCIZtS2g2T1FXuvoh4p7/pVM2uiFv/4ZM17dYNOGNxbpuQp/6eNe7Vuc5PWbW7Smi93ad4rG6Kqm/4T6bkZkoaXFqnqupO7nceQqscJACQTCeqAzaRSsiGNLwDBpNK5LNVxLgYAAAAAxCLa+8qSkhL97Gc/kyQ1NDTot7/9bfwLGSF3Enog7kRfSerXr5++973vBX3u+PGuROu2tjZ9+umnId/zzDPP1IgRI4L+/Wc/+5mysrIkSVVVVT5/27lzp5YsWSJJOv/883X00UeHfK/LL7/c8/PLL78c8rk//elPQ/49Us8884zn51/84hcyDMPzu3+SwBMP3R3wdcFEknTuFi4BYsSIETrzzDODvv6qq65S7969JUn//Oc/1dnZ6flba2urli5dKsmVGHv11VcH3c7gwYN16aWXSpL27t0bdj+EM3nyZH3jG98I+veJEyd6fv7ggw9iei93Yr0kTwJ1smVlZXnqbaDjwcrP7xZLnY1EqDrjzz3oxP91sTBN0/MvktnKw9WtCRMmaN68eRo+fHjAv+/du1cPPPCA/vznP3sGefjzHsjkniU+lIKCAs/Pe/bsCft8b3/5y188P0cze3ooOTk5Ov300zVmzBhLtgcAAOwnlQcnJLKveFjlMpXNXqKFq+plmq6ZyctmL9GRs5f4tOPdbfsPNu8Oes/nboe+9fkOTRszWJ1Op0xT2tDgOwje/R7DKpdFVEb3RHpZDt92eFmfQ7Tmy11atKq+23kMqXycAECyZCe7AAC6SpWlo1hSA0AoqXIuS3WciwEAAAAAsejOfeUvfvEL/f73v9eOHTt033336brrrtNhhx0WryJGLFTyYL9+/Tw/f/vb3w44o3Gg5+7cuTPke06aNCnk3/v3769vfvObWrdundavX6/du3erV69ekqQ33nhDTqdrZrf8/Hw9++yzIbfV3t7u+fnDDz8M+rysrCyddNJJIbcVqdraWkmuWbVPP/30kM89+eSTVVhYqObmZq1atSrstr0TY+de8K2Az/Gf/c57afabvPL5w+2H3NxcjRs3Ti+88IL27dunDz74QN/6lus93333XbW2upI4KioqlJubG3JbZ5xxhh555BFJ0qpVqzR16tSwnzWYsWPHhvz74Ycf7vk53LEYzumnn67f/OY3kqQLL7xQN910k77//e9r4MCBMW03FkOHDvUMHAh0PFj5+d1iqbORiGedsVKouvXx3LMlSY2NjbroootUU1Oj4uJiPfzww5o8ebIGDBig3bt36/XXX9ftt9+ud999V7NmzdJ7772nxx9/POT5NVTCfqy2bNmiF198UZKrzk+bNi2q11977bW69tprJbkGKH399df697//rXvvvVe///3vNX/+fM2dO1c33XST5WUHAADorkT2FdfMnKC5Sz/Uy+9vUUu7U/k5DvUtzNNXO/frtn++r8bmNj102fGetv2NT63RJ43NPm18/3bolzv3a+GbX4ScYffMEf10R4SfzT2RXqfTVJYhdR4YQ/n59r2SXO1eScoyDFVdN448BgCIMxLUARsi2RBAOuBcBgAAAABAeurVq5dmzZqlWbNmaffu3fr1r3+te++9N9nFUp8+fYL+LS8vL6Ln+T+3pSV0R3W4Wc/dz1m3bp1M09SWLVs8ya4bN270POfxxx/X448/HnZbbqGSdfv06RPRLMWR+PrrryW5knZ79uwZ8rkOh0Pf+MY39O6772rHjh1qa2sLmuz95mfbtfFAYkCgxFi3QAkQZ47orznnfFNLFz/leV6k+8Ft8+bNngR192eUXAnT4Xg/x/u13dG3b9+Qf4/mWAzn7LPP1mWXXaZFixapsbFRP//5z/Xzn/9cQ4YM0cknn6xTTz1VkydPVklJSUzvE42+fftGlCgtxf753WKps5GIV52xWqi6JblmRh8/frzWr1+vPn36aNWqVTryyCM9r+/bt68uvPBCffe739XEiRO1cuVKPfHEEzrppJP0k5/8xOe9CgsLPT/v378/bNm8nxPuO/T2+OOPq6OjQ5JrVYpw5/pQcnNzNXjwYF1xxRW65JJLNHnyZC1fvlw333yzevXqpeuuu67b2wYAu2poatH1T67WQ5cdz4rI6DaOo/TmTv5uaXe131vanfpqp6vttmTtFknS6DuXe57vng3du43v3w51O/hTVy+9v1XVHzd2uV8MZltzqy4f65pI788rPtN/Pt2mXfvau7R7S3rmk8cAAHEWagASAAAAEJNolusGAAAAAKSOn/70pyotLZUkPfTQQ9q8eXOSS6SQs/Z253mR6NGjR9jnHHLIIZ6fm5sPLle+e/fubr9vW1tb0L8VFBR0e7v+9uzZI8n3M4TinYjqfm0gfQvzlJ/j2g/5OQ6dP6pUNbMmdHmeOwEi3PLrsewH73JG8jkj/YyRsPJYjMTChQv15z//WSNGjPA8tmHDBj322GO6+uqrVVpaqssuuyzmxPtIORyuBJXzRpVGdDxYIZZjJRLB6kywGJmVx1M0wtWthx9+WOvXr5fkWjXDOzndW35+vh544AHP7w8++GCX5xx66KGen7dv3x62bN7P8X5tOI8++qjn56uuuiri14WTn5+vv/zlL576escdd3hWvwAAu4umj8Z7NROgu+x2HNFPab1NO/d52u6Ryss2PG18/3aoJJX16eGzTYffojsDeuX73B+E26/zp5dr7pSRGl5apAemjtKkY/qFvacEAMQHCeoAokYjHgAQKbsFogAAAAAA1igoKNAvf/lLSa7Zbm+//XbL3yMVEgD37dsX9jl79+71/OydjOr986OPPirTNCP+V11dbennCMY9e7H3ZwjFO5k31MzHWQ4j4gSBbc2tmjZmsKquG6dpYwarsbm1y3Ni2Q/e5Yzkc0b6Ge3IMAxdffXVWrdunT799FM99thjmjFjhoYMGSJJ6uzs1JNPPqkxY8Zo69atCSlTpIMQrBLLsRKJYHUmWIwsmcdTqLq1ZMkSz8/f+c53Qm5nzJgxnu/p448/7jL4xnvVAe+VI4L54osvAr42lJUrV+rDDz+UJA0cOFBnnHFGRK+L1KBBg/TNb7pml9+yZYs+/vhjS7cPAPESSR/NsMplKpu9RAtX1cs0XTMdl81eomGVyxJYUqQ6ux5H9FNaa1jlMlWv3+Yz83k4DkNq6zR92vje7dDLxw5Wh9P03A8YhvSN4kIZhjy/TzqmxOf+INr9Gsk9JQAgPrKTXQAAqce7sTf3gm8luzgAABuKdHlmAAAAAEDquvrqq3Xffffp008/1SOPPKL//d//jeh1ubm5amtrCzkLuCRt27bNimLG1SeffBLxcwzDUP/+/T2PH3744Z6f33//fesLZ4EBAwZo165d2rJli/bs2RMygdY0TX366aeSpD59+ig3Nzfoc9s7nbpqjGvJ9UW19WoMMRnK/Onlnp+DLb8ezX6Q5Jn9X3J9RrcNG8InOHg/x3s7qeaoo47SUUcdpR/84AeSpHfeeUc/+tGPtHr1an355Zf6v//7P913330JKYs7YSSS4yFWsdTZSPjXmfJ7VgSNkX10x1kR15l4CFW3vFfFKCoqCrkdwzBUVFTkSbbft2+fevXq5fn7yJEHt11XVxdyW42NjZ4E9b59+6qkpCTMp3D561//6vn5hz/8YVxWJ/A+/+3atcvy7QOAlaLpo6mZOUFzl36ol9/fopZ2p/JzHDpzRH/NOeebiS425Jos8PonV+uhy45PqRme7XYc0U/Zff7HoPv3NV/uUltHZInp2Q5p1BG91dTSrr6FeTqquNCnje/fDp2xoE4Vw0p02ehB+vOKz/T8u5t14fEDdfX4I33uD7q7XyO5pwQAxAczqAOImF1HvQIA7CfRyzMDAAAAABIvJyfHM3N6R0eHbrnllohed+ihh0ryTYAMZNWqVTGVLxFeffXVkH/fsmWLZ1bfoUOH+iRtnnrqqTIM19rlzz33nC1njB89erQkV/L58uXLQz73P//5jydB1f26YIb26+lZcn3ulJE+CQPdEa5sbW1teuONNyRJhxxyiIYPH+7523HHHae8vDxJUnV1tdrb20Nu6+WXX/b8HO5zxlNDU4v+32ufeX43TTOm7Z1wwglasGCB5/cVK1bEtL1ozJ9ebunxEEosdTYS/nUmVIwsXJ3xTrKOdf9Gyzsp/csvvwz53P3796uxsdHz+2GHHebz94qKCk8de/3117V///6g23rppZc8P599dmTJY/v27dPTTz8tyZUsf+WVV0b0umiYpqnPPjtY3/r27Wv5ewCAlaLpo0n0aiYILVVn/LbbcUQ/Zfe5j8FfL/1IU+ev1D0vfqS3Nu7Q5G8N0HmjSpXlMMJuo8Mp1X2xU19s36dF14wN28b3vh/okZOlDqepghxHl/sD9isApB4S1AFEzI6NvYamFk2dv1INcZxRBQAQPbsFogAAAAAA8XHppZfq2GOPlSQ99dRTevfdd8O+xp0c/MUXX/gk/PmbN2+eNYWMoxdffNGTzBrIvHnz1NnZKUm68MILff5WUlKis846S5K0fv16PfLII/EraDdddNFFnp/vu+++kEmy99xzT8DXJcL777+vf/3rX0H//uijj2rnzp2SpPPOO09ZWVmev+Xl5emcc86R5Jq1/9FHHw26nS+//FJPPvmkJFei+xlnnGFB6btn3vIN2ri70/P73r17Y95mWVmZ5+eOjo6Yt2dHsdTZSPjXmeKeeUFjZOHqTGFhoednK/ZvNLxnPX/qqadCPnfx4sWegR3f+ta3PMnoboWFhfrud78rSWpqagpax0zT1EMPPeT5/eKLL46orIsXL1ZTU5Mk18Cfb3zjGxG9LhrPPvusGhoaJEn9+vWLy3sAyFzx6O+Oto/GvZpJ1XXjNG3MYDU2t1pWFkQmHSYLTMZxFKz+ZEI/pdXnDv9j8JnVm1T7+Q4tfmeT5/d/rtmsTmf4gZMOQzp/VKmqrjs54jJGUgcyYb8CQLohQR1AxOzY2EvVEcQAkAkIaAJA+mBgKAAACMYwDN15552SXMmFDz74YNjXuJOyJWnWrFkBk55vueUWvfLKK9YVNE46Ojp08cUX+8we7Pb888/rvvvukyT16NFDP/7xj7s8Z+7cucrJyZEk/fSnP9XChQtDvl99fb1+8YtfeBIl4+2cc87RiBEjJElvvPGGfvGLXwSc6f2uu+7S888/L0k64ogjNG3atISUz9tVV12lTz/9tMvjtbW1+sUvfiHJNSP1f//3f3d5zi9+8QvPbNX/8z//45lt3dvOnTv1ve99z5Mo/OMf/9izGkAieSduZPfq53l8zp/+GfJ1t99+u/71r3+FnKn///2//+f5+bjjjou9sDbU0dGhk04/Vx983nVW8EjqbDiB6kxj0/4uMbJI6syRRx7p+fmdd96J6P0Nw/D827hxY9Tld7v00ks9Pz/yyCNBz03vvvuufvazn3l+nz59esDn/fKXv/SsGHHTTTfpvffe6/Kc22+/3bNyxoknnuhJag/nL3/5i+fnq666KqLXSNInn3yie++915PcHswrr7zis91rr73WZ3Z7AIhVvPq7o+mjSeRqJgjMjpMFRisZx1Go+pMu/ZTBYvPdOXcE21ZDU4uGDyjSGSP6BXmly4Be+frusf1VMbTYM5O6+1i98PjDZRhSXrZDpqSeedlatKo+4jJGWgfSZb8iOejrAhIvO9kFAJBa3I29y0YP0qLaejUm6aI9rHKZWjsOBtIXrqrXwlX1yst26OO5kS37CACIL+/A09wpI0M8EwBgd97B7rkXfCvZxQEAADYzefJknXzyyfrPf/4T0Sy/V111le69917t2LFD//jHP3TKKado2rRp6tu3r+rr6/XUU0+prq5Ol1xySdiZe5NtypQpevbZZzVixAhdc801+ta3vqV9+/bppZde0t///ndP8v0999yjI444osvrTzjhBP3+97/XNddco9bWVk2fPl3333+/zj//fB199NHKy8vTrl279NFHH+mNN95QbW2tTNPUjTfemJDP53A4tGDBAo0bN0779+/X/fffr3//+9+aNm2aBg4cqK1bt+pvf/ubVqxYIUnKycnR448/rvz8xE5q4t4Po0aN0tVXX60TTzxRnZ2dev311/X44497Znf+7//+b5144oldXj927FjNmjVLd999t/bs2aPTTjtNl156qSZOnKiCggKtW7dOf/7zn7V161ZJ0rHHHqvbb789oZ/RrWbmBM1d+qFefn+LzOIyZR1yqDr37tL+D6s1a9YsjR07VgUFBZKkgoICnXbaaZKkV199Vb/61a/Uv39/nXnmmRo1apT69+8vp9OpzZs365///KdqamokuWaV//nPf56UzxdvQ0dP1PraV3XiqOP0s+t/HHWdDSdQnTnhBFedWdc2UP22btVrf/ub/hhBnTnllFOUk5Oj9vZ2/d///Z8Mw9Cxxx7rmaH8sMMO0+jRo2P4NoI766yzPPXK6XRq+vTpWrBggSZPnqwBAwaoqalJr732mp5++mm1trqSgo477jhdf/31Abd3/PHHa+bMmbrnnnu0e/dunXzyyfrRj36k0aNHq7m5WYsXL9bLL78syTXj+h//+EdPQnson3/+uV577TVJUlFRkb73ve9F/Bmbm5s1a9Ys/epXv9KkSZN04oknavDgwerZs6f27dunzz77TC+//LL+85//eF4zbtw4zZ49O+L3AIBQ4t3fTR9NaollssCGphZd/+RqPXTZ8Rkzk3Qk9ScV6kAk+84/Nh/LuSNYnH/e8g1a89UuHV3sWsHHYUjeE6UbkkxJJx/VR/dfPEpzqtbKaZo+x2qjVy7R5AdrtHBVfVRljLQOpMJ+hX3R1wUkHgnqAKJiRWPPihsk7yB8S7tT+TkOnTmiv+ac881ubQ8AAABAVwwMBRIrEzsUgUSgbiXG3Xff7UmEDae4uFgLFy7UhRdeqJaWFr3xxhtdZqyePHmyHnnkEdsnqN944406/PDD9fDDD+uuu+7q8nfDMHTLLbcETdqUpKuvvlolJSW65pprtHXrVq1Zs0Zr1qwJ+vw+ffokNAH8+OOP1/Lly3XRRRfp66+/1jvvvBNwNufDDjtMixYtUkVFRcLK5nb++edr7Nixuvnmm/W73/0u4HOuvvpq3XvvvUG3cddddyk7O1t33XWXOjs7tXDhwoCzRp922mlavHixJwk80bwTN/Jzc3ToKZdr+4sPqb29vcvnGzx4sGcWbfeMz1u2bNFjjz2mxx57LOD2+/btqyeeeMIzC3i62f2N76hnR4H2vLOk23U2HKvqTN++ffW///u/uvvuu9Xc3KxbbrnF5++nnXaaqquru13OcBYtWqT/+q//8tSDl19+2ZNE7m/ChAlatGhRyHpx9913q62tTb/97W+1d+/egHW1pKRETz75pEaNGhVRGf/61796BhVcfPHF6tGjR0Sv89bS0qIlS5ZoyZIlQZ/jcDj0ox/9SA888EDCB+AASF/0d8NfdycLzMSEy0TVn3jHE0Ltu2Cx+dwsh84bVRrVZw+2LX8bGpoDvv6IwwpUv2O/ajfukBT4WPXOJXrzpkk++8cwpDOG99MdYXKM7DJhJtIPfV1A8pCgDqQoqxvCieyos+IGKZYRxAAAAAAiQ0cZkFiZ2KEIJAJ1KzFOPfVUnXXWWXrxxRcjev7ZZ5+tNWvW6J577tHy5cu1ZcsW9erVSyNHjtRVV12ladOmRTR7rh089NBD+u53v6s//OEPevvtt7Vt2zb17dtXp5xyim688UaddNJJYbdx7rnn6vPPP9fjjz+upUuXavXq1dq2bZs6OzvVq1cvHX300SovL9cZZ5yhM844Q7m5uQn4ZAeddNJJ2rBhg/74xz/queee0wcffKBdu3apqKhIQ4cO1eTJk3Xdddfp0EMPTWi5vM2aNUvjx4/XQw89pP/85z+eY2rMmDG67rrrdPbZ4Tudb7/9dl1yySX6wx/+oOXLl+vLL79UW1ubiouLNWbMGF122WW68MILE/BpQvNN3DhC74wcqrxPXlVdXZ0aGxs9M1p7e+GFF1RTU6Ply5dr5cqV+uSTT7R9+3YZhqHDDjtMI0aM0Nlnn62rr746qfsx3nKzHMo//ccqGjpaueuXa//XG7Rj+/ao62w4VtWZu+66S8cee6wee+wxrVmzRjt27FBbW1vM5YtEQUGBFixYoJ/+9Kd67LHH9J///EcbN27Unj17VFBQoNLSUo0ZM0aXXnqpzjrrrLDnbMMw9MADD+j73/++/vjHP+r111/X5s2blZ+fr6OOOkpTpkzRj3/8Y/Xt2zei8jmdTp+BFldddVVUn++4447T2rVrVV1drddff10bNmzQ1q1btW3bNuXk5Kh3794aPny4xo8fr2nTpukb3/hGVNsHgHDo74a/aCcLzOSEy3jWH+/cmXjFEyLZd6Fi8797ZUNUnz3YtmacepT+8PpnWvLe1+p0mspyGJp87ADt3temgYcdoqffqld7p6n6HfslSV/u3K+y2Ut8yjl3ykg1NLVo6vyVnnwj7/3jno39s8a9Xcron6fE7OiIF/q6gOQx3KPKkZ7Ky8vNurq6ZBcDcVBZtVZP1NZr2uhBXRrC3Uk2D7U9q/g3st26e4M0Y0GdinvmBx2VCSB+qqurkzIbFgAASLw5VWu1qNY1M0tbpzOu9wxAprL6fhmAC3ULSG+PPvqorrzySkmuWZSvuOKK5BYItnXrrbfqtttukyT1u/Qu9TpqFPc2AGyNPpjMQX+3faXCSlwNTS1BEy7tWmYrxav+VFatDTi7uGRdPCHSfRcsNt+dzx5oW39/+6uQcZNIyxko3+iom5bIGSAlMTfLoVGDDnUNAHhlQ9zzlAA3+rqA+DEM423TNANeiJhBHUgxkYykjGYUZyJH1UY6Is19s3frucN16/MfBL3pY/QkAAAAEH8sqwnEHzO4APHhrltL3t2sTlPKMqTJx5VStwAgg50+vL9uumoc9zZIaamQNAkgMvR321ciV+Lq7nk902fht7r+BBvkLsnyWF2k+y5YbL47n917W4+s+ExL1n6tqutO1lWP1amxqUWdpuQwpCyHoaqfnNylnIahLuUMlW/05k2TAsY7sw1Di1dv0ug7lwd8HRMKIF7o6wKSgwR1IMWE6rTuTrJ5IjvBI21ku2/2bnxqjT5pbI76po/AHAAAAGAdOsqA+Mv0DkUgXk65998+sbJOU3puzWa9uG4LHZ4AkKGuHn+khpcWcW+DlJbIpElkJvpakckSOcGfWyzndRIureOfO5PlMNTpNJWbZcQlVhfJvrMyNu+9rYKcLO3a365Fq+o16ZgSLaqt98QknZ2mHqn5XPdPHeUp55DiQq1vaNbQkkI1Nrd6thMq36ikp2+8s6XdqefWbA5YNibrQCLQ1wUkBwnqQIoJ1WndnWTzRHeCh2pk+9/sbWholhT9TR+BOQAAAABAqqFDEcGQHNJ9NTMn6LyHV6hxT5s6naayHIZKeubpuevHJbtoAAAAUUtG0iQyE32tyGSJnODPivM6CZfWCZQ7M6SkUL+75Pi4xOqC7bt4xoGGzlmqtk7T8/vCVfWen72PxcXvbNLidzZ1ef36hmatb2jWsMpl+nju2SHzjRqaWrR07de68PiBunr8kXro3xv0rw+2ymFIrR2msgzXRAK5TNYBwGLE0+2FBHUgBQXrtO5usnkiO8FD3SC5b/ZeWrfFp/Gbl23orJEDwt70JSowx4UMAAAAAGA1OhQRDMkh3VdSlK9Jx/TzzATW1unUpGNKiOcAAICUlMikSWQmBkEAiZ3gzy7ndfIfDgqUO5Po1XfiGQc697hSLX5nkyc53H3MLX1vs9qdXZ+f45DOPrY05DEaLN9o3vIN2rW/XQU5Dg0vLdJhPXLVfiA53l23hpYU6rdxGgAAIHMRT7cXEtSBFBSq07o7yeZ26QR33+y1dTo9DWKHIbV1mhHd9CXqBo4LGQAAAAAAiDeSQ6zB6gQA7IxkIPjjmEAoiV4VGZnHLsmyQLIl6j7SLud18h8OSmbuTDzjQP7bdk+i3tLuOubemD1J35+/Ul9s3+d5TlmfHvrbtSfpd69sCHmM+n9nwyqXqWz2ki6fw1trh1NZhqEjiw9J+AAAhMb9CFIZ8XR7MkzTDP8spKzy8nKzrq4u2cUAIjZjQZ2Ke+br08Y92t7cpr6FeTqquFCNe1p8GrbBzKlaq0W19crNcs2KNW30IMtuovwvZG5cyJCJqqurVVFRkexiAICtEcQBAACxaGhqCZocQtsCANJDZdVaPVFbb2kcG6mNYwLhuPvRvJMmI+k/Q2pJZh9MPPtaER3iy5khmed18h/sJZ5xIP9tZzkMnTKkr/ockqfm1nZVf9wY9FioGFYc1THqfq+X1m1Ra4dTuVmGinvma1tzq1o7iG/ZHfcjSGXE05PHMIy3TdMMeHFgBnUAthLrzVY8RzMzawAAAIgGs44AAIBY2GUmNQCA9ZjVKzqZkKDHMYFI2WVVZKQvViCyD+LLmSER5/VgbSnyH+wlnnEg/223dTo18NACz7mloalF5z28Qo172tTpNOUwpCyHoaqfnKzhA3p5tuN9jAY7rrzfS5LaOk31yM1SWyfxLTvjfgTpgHi6PTmSXQAAsNL86eWaO2WkZxkgK0cXcyEDAACRcC9fuHBVvUzTFcQpm71EwyqXJbtoAAAgxbiTQ6quG6dpYwarsbk12UUCAFigZuYEnTeqVPk5rm66/ByHzh9VqppZE5JcMnvyTtBLVxwTSDcNTS2aOn+lGkhuTjnx7GtFZIgvp4ZUOs8Fa0uR/xBauH0cj2MgnnGgbc2tuuD4wzWkpFAXHj/Qs213ovnJR/WV0zSVl+2Q05TaO00terM+6PaCHVfDKpfpiVW+r9vQ0CxDIr5lY9yPIF0QT7cfZlAHgCgwawAAAAiHWUcAAIBVmCETANITyUCRyaRZ/DgmkG6Y+RnoPuLL8WfF6iypcJ4bOmep2jpNz++B2lLkPwR3z4sfqfbzHbpn2Ue6f+qoqP/eHfGMA82fXq7KqrV6/+smjTriUN0/1fVe7mP560ML5JARtP1dM3OCrn9ytdbU7wx5XIU6h5X0zCe+ZVPcjyBdEE+3HxLUASAKXMgAAEA4BHEAALAXKzqeAQCwGslA4WVagh7HBNJBJg0sAeKF+HL8xZJcnkrnuXOPK9XidzYpy5A6TQVsS5H/0JX/Pl78ziYtfmeTZx+H+3skrIxVRbKtYMetty937pckOQwpN9vRpf097xVXvbnw+MPV7jSDttE5h6Uu7kcAxAMJ6kCKonMVAADAvgjiAOCeDbCPVJjVDACQeUgGCi/Tkls4JpAOMm1gCRAvxJfjw4rk8lQ4z/l/Tvdk1y3t6d2WsoppmiEfD/f3SFgZq4pkW/7HrcOQTh1arNxsh15f3+hzLGc5DFWt3uRpf7/w7mY9t2azZ1uL39nk+TlYGz3QOYx4uf1xPwIgHhzJLgCA7vFuZAbT0NSiqfNXqoEbVgAZjvMhgESbP71cc6eM1PDSIs2dMtInqAMgM0RyzwYgvoZVLlPZ7CVauKpepunqeC6bvUTDKpclu2gAAMBLqNidO7ml6rpxmjZmsBqbW5NQQiA2mRSfzrSBJUC8EF+Oj5qZE3TeqFLl57hSpfJzHDp/VKlqZk2IeBt2Oc+Furb4f84sh6GKYcW66ISBQdtSmXStCmfFrIka3KeHz2NlfXpoxeyJEf09FCtjVeG25b1PvY/bLENymtKbn21XYW7XY3lva4dP+/uUIX19jidJ6pGbpYtOGBi0jR7oHEa8HMgcXFPgjRnUgRQTzaheZggDABfOhwAAIFFSaZlfIN2lwqxmAAAgdOyOWfyQDjItPp2smZ+ZmRVAOFYll9thhvtQ1xb/z9nW6dTAQwtCXoMy7VoVSklRvjqdrtnQc7IMtXea6nSanuMk3N9DiTVW5X2tC7ct/336ZK0rkb3zwLZa2p16ZvUmZRmGqq4b5zmWA7W/j7ppiZxeE8Tva+vU4ne+0gvvbQ4b8yZeDmQerinwZkSzxAhST3l5uVlXV5fsYsBCDU0tQRuZ7gavfwPPjQYeAKtUV1eroqIi2cUIi/MhAABItEju2RBfJCXA25yqtVpUW6/cLFeH7LTRgwiKAwBgE8TukO44xhOrsmqtnqitT4s2f6r0wQCpaMaCOhX3zPdJLk+lGeojvbZE+jm5VgUW7Ptzxx175Dg08LBDunUcdTdW1dDUoskPrlBjc6vnNe5t5TgMtXWauuj4w/XC2q8D7tPcLIc6nE6fRHO3cPv7ir+s0sbt+/T17ha1djjlMKRzjyuNKOZNvBzIHFxTMpdhGG+bphnwQugI9CAA+4pkVK8VS1OlC5YNATIb50MAAJBodlnmN5OxXCy8uWc1C7bkMAAAdpQpcW1id0h3HOOJMaxymcpmL9HCVa6ZYReuqlfZ7CUaVrks2UVDGsqUa3Q6mz+9XHOnjNTw0iLNnTIypZLTpciuLQ1NLdq5r103TDo67OcMtr2q607O6GM92HHijjsO7N2j28dRd2JVQ+cs1ei7lqthT6vPte7J2npNGzNY3xneX5JUu3GHZ59mOQzP6/OyHXr2+pMVbA7bcJPbPnrVGI07uq/aOl0xb1OKOOZNvBzIHNz/IBAS1IEUFK7BSgPvIBITgMwWy/kwliAjAUoAADIbCbHJQVICAkn1jmcAQGbKlLg2fRlIdxzjiUEiDBIpU67RsK9Iri3RHKfBtrdoVX1cjvVU7UONJe7o/5mjjVUNq1ymts6uCeQOQ8rOcmjhm19o6dqvJUlf7tyv0Xct1z/XbFan11TprR1Offd3K2QYUmFels92yvr00LM/GRd2v8QS8yZeDmQG7n8QiBFuFBRSW3l5uVlXV5fsYiAJUn1pqnDCLdnOsiFAfKXS8pLdPR/GshxoOi0lGm8fbN6ti+e/qaevHavhA3oluzgAAMCGwt3/eT+P5WIBAEAqy8S4drr3ZQAc44kxp2qtFtXWKzfLobZOZ8rH5lOpD8ZKkd7/J0MmXqMle++TTBbs2tLd49R7e5MfrJEzQBqZVcd6qvahxhJ3jOUzB9unknTRCYdr1lnHdClXxdBi1W7cqR1720JuOyfLUHunqSN6F+i0ocUpuV8A2E+q3//Q9ukewzDeNk0z4I4mQT3NkaCefjgRuoRrxJOYAMRXOgdHYwkyZmqAMhanP/CaNjQ0a0hJof7189OSXRwAAGBD0XTipFtSAgAAyCzEtQGge1I9EcZfOvfBePPv97Zz4mqmXqPtvE/QVbjj1F3nbj13uG59/oOAOSfxOtbToQ812rhjqM9cM3NCxBNyjL17ecBBAw5D+uzucwKWy5T0xKp6n+cbks4bVard+9o08LBDdNnoQTr3wRXqDJA3mEr7BQCsRNune0IlqGcnujAAYuO9HFMmngj9G/ELV9Vr4ar6Lg1klg0B0F01MycEDbzE87WZpmz2Ep/fNzQ0ex7b+OtzklEkAABgM5He/3lzLxfrnZQAAACQKohrA0D3eCejz50yMoklQTTc/d5j7/JNvozk/j/RMu0a3Z2YDJIv3HHqrnM3PrVGnzQ2B8w5idexng59qNHGHUN95nmvRJb3U1KULwWZdzY7yxFVuUxJz63Z7KrHV42RJK28aWLK7xcAsAJtn/ghQR1IEZwIXaNDvzmgSP2K8vTa+sawDWQSEwB0RyyBl0wLUMZi6Q3jdc3jb2vTrv2exwYeWqA//vDbSSwVAACwk+50XJGUAAAAUh1xbSCxWLkYSDz/fm//3Eu7Jkhm0jU6HZKJM9W25lZdcPzhWr9lj4b1L1Jjc2uXOrehoVlS8JyTeBzr6dCHesf5I3X9k6vVt2duRHHHQJ/5hXc367k1mz3PiSTv59Shxar7YoeaWzs9j5X16aG/XXuSpODx0IamFp338BtqbGpRpyllGa4yPXf9uJBlTLX9AvuinY1UQtsnfkhQB1KE/4nQMKQzhvfTHRnU4T5v+Qa9+9UuHV1cGFEDmcQEAN0VS+Bl0859Ki7M0wNTR+nF97ekdYAyFsNLe6lHbpbPYwW5WRo+oFeSSgQAAOyGDhIAAJCJiGsDiZXpKxcD3hKVSBYoAah/Ub42bt9n6/v/TLpGE5NJXfOnl6uyaq3e/7pJo444VPdPLVdDU4vmLv1QL637Wq0dB4eE5GU7dNbIrsl38TrWU32QR3faDP6f+asde1XUIzeqBMhHrxqt8fe8qubW/crNMtTWaaq1o1PXLwp9vi4pytekY0q0qNaVAN/W6dSkY0q6PD/V9wvsi3Y2Ugltn/ghQR1IEd4nQochOU2p+uNG/dfjb+uPP/h2Wp8Qg43odZqmpo0ZTAMZaeODzbt18fw39fS1Y0nSTbJYAi8De/fQaxu26cV1X3OjFcbu/e0a2q9QN0wconmvbtCufe3JLhIAALAZOkgAAAAAxAMrFwNdJSqRLFACUKfT1OVjuf+3E2IyqSfUte173x6otk7Tk2uSZUhtnYlNvrPjII9IBubE0mYI9JnnVK2NOgFyRGmRKoaVeOrjax83RHS+jqQeW71fmDUbtLORqmj7xIdhmv4LJiGdlJeXm3V1dckuBixy1E1L5AxQZbMM6dO7z0l8gRLEPaI30ChSd4OWRi7SwekPvKYNDc0aUlKof/38tGQXJ6Tq6mpVVFQkuxi24n+j5caNFgAAAAAAwEHEcpHuOMZTQyR9T0CyJLoPJhn9GzMW1Km4Z75PApB3kiSQzuLVVgh1bfvls+tU3DNfnzU2a1tzq/oU5uobxT0zvu5VVq3VE7X1mjZ6UNBEb6vbDLGc/8Kdr+3QDo3kO0V6o50NZB7DMN42TTPgxYwZ1IEU8uZNkzT27uVdktQ7Tals9pK0TYKMZBmNeI/ot0NDHumrbPYSn983NDR7Htv46/QdfJJuAi1JGW5JNgAAAAAAgEzDMt9Id6l4jGdiHwhLuAMHJaN/w44zKSP1pcr1LF5thVDXtkxOQg8kmhmerW4zxHL+C3e+DnRsJapeMGs23GhnA/DmSHYBAESupChfU0Yd3uVxhyGdOaKfamZNiHqbDU0tmjp/pRpsviyFexmNquvGadqYwWpsbpXkauSWzV6ihavqZZquRm7Z7CUaVrnM0vf3bsgDVlt6w3gdfmiBz2MDDy3Q0hvHJ6lEiJb7xj7bMLjRQtRS5VoMAAAAAEAsEhXLBZIllY/xTO0DCdb3BGQaEslgF7H2l9j9ehasrTB0zrKIPnck3w/XtsjUzJyg80aVKj/HlTaXn+PQ+aNKg+bcWPG9WtEfGOx8fco9/w7aDk1UvYj2O0VkUrUfmXMRADfDNM3wz0LKKi8vN+vq6pJdDFhoxoI6fda4Vxsamn0ev3xM95bHSfXldeK9NEwylrRDZjr9gdd86vWQkkL96+enJbFEoSV6eUm7c59LBx5aoNOGlbAkJaKS6tdiAAAAAAAiwTLfSHepeIzTBwLYU6g+mHjNhDtjQZ2Ke+bTv4Gk6m5/Sapcz4K1FbINQ8+s2RT2c9OfZK05VWu1qLZeuVkOtXU6o/5eoz0fu/ffhccfri937g/7umDb9z5f/3nFZ/r3Rw168NLjdcNTa7RrX5ucB9IAHYY8P3tz14t4XE9i/U7RFfUeQCowDONt0zQD3jxkJ7owAGIzf3q5ZiyoU0t7p44deKgk6b2vdkU92iwey+skY8mseI/oT8aSdshMu/e3a2i/Qt0wcYjmvbpBu/a1J7tIiID/ufTLnfu18M0v9Pe6L20V8II9sdQdAAAAACCTMDsr0l0qHuP0gdhXMvrckBq8Z8K1MlHNOxl97pSRlm0XyZNK55FY+0tS5Xrm31ZoaXfquTWbPX8P9rnpT4oP9wzP3gNzouE+H/966Uf6alfghPOGphaNuXu5vOeOXfzOJknSSXct16d3nxN2+/7ne+/zdY+cLO3a367pj9TKPxfdabqS1HMPHGv+9SIe15NYv1McRL0HkC5IUAdSkBWj1eNxkxavgEg48Wzk2jmgnEpBBYRXO+c7np8nH1eaxJIgGqkS8II9cfwAAAAAADINCQtId6l2jNu5DyTTJavPDfEVS98eiWqIViqdR2LtL0nm9Szaeu3dVnhkxWd649Pt2rWvLeTnpj8pPro7MMf/fPzMalfC+di7luszv4Tzecs3yDSlsj49tHH7Pp+/dZpS2ewl3RqQEGzVAH9OU2pp960Xp9zz77hdTxjsZB3qPYB0QYI6kKGsvElLdkAk3o1cuwaUUymoAKQrOnAQC44fAAAAAECmIWEBqS5cEloqHuN27QPJVMnuc0N8xdK3R6IaIpWK5xEr+kuSdT2Ltl57txXunzpKc6rWalFtfcjPTX+SvbjPx//0mv1eciWDuxPOJfnUQ//kdElhByS8tO5rtXaYyss2dNbIAZ7nNTS1aPiAIhUX5em1jxuDJqpnGa5j5+Sj++jqcUd56gXXk9RAvQeQLkhQBzKYVTdp6d6AjSWgHI9ZzlMxqACkMzpwEAuOHwAAAAAAgNSRjhPHpGJSfTpL9z63TGVF3x6JaohUqp5HYu0vSfT1zKo++0g/N/1J9uE+H0uSw3Alpkt+CeemNHfph1ry7mZ1Hvh7WZ8eOrx3gd74ZLsMuRLYV3663bPdhqYW/deCt2UY0pF9DlFrh+uFrR2mz/l+3vINWvPVLh1dXKi2TqeyDHnew81x4LFJx5R42qze9YLrSWqg3gNIB4ZpmuGfhZRVXl5u1tXVJbsYyADukb25WQ61dTo1bfSgtAnOxqKyaq2eqK239PtoaGoJGlTgpgGJUl1drYqKimQXAwAAAAAAABkuHpOEAP78k9DcmDgmNOpn9BqaWnTOgzXa1txGn1saibZvL1gfzIwFdSrume+TqOZOyqW+wRt99y7xrBeJ6LOnXtuL9/745bPrVNwzXzuaW7V03RY5DMmUPHVt6JxlausMPLO5JH33WwP0ydY9Wt/QrMvHuF5TWbVWC1fVR10uw5CGlBSqb2Gevtzhmql9/vTyLtcJb6GuJwAARMswjLdN0wx4IWEGdQARCXfzw8g9X/Gc5ZwZEgAAAAAAAADAJR1ntIb9pOpstMlG/YzevOUb1LinTUNLCvXbS47PuD63dE3GtKpvL9QM0dQ3eKPv3iVUvYj1fJOIPnvqtb2498fkeSv0wg3jVdIzXzMW1Onysb51raGpRT3zs7V9b5sMuRLX/S1d+7XnZ3cuSTDudueMU4/SH17/LOJBEaFWEmAFHQBAopCgDiAi4W5+aMD6inewmqAC/KVr0BYAAAAAAAAIJJJJQoiZwSpMHBOdeE7ik678v7P1Dc367ryajPvOrE7GtMt1oKGpRUvXfq0Ljx+oq8cfaWnfHvUNgYTru7dL3YiXSOqFFeebePXZhyt/uu8/u/HfHw17WjX6zuUB98cp9/xbo+9a7nmud3L6Eb0LtGnXfjlNKevAjOtOU8rLNtS7R54a9rTIeeAF7sT23CzD0+4cXtqL9igAIOU4kl0AAPY2rHKZymYv0cJV9TJN181P2ewlGla5LNlFs7V4B6vnTy/X3CkjNby0SHOnjGS5JfgEUQAAAAAAAIB0VzNzgs4bVar8HFdXV36OQ+ePKlXNrAme5xAzg5XcSWhV143TtDGD1djcmuwi2VYk9dMuGppaNHX+SjUkeSKgVPrO4iFe/ZF2uQ7MW75Bu/a3qyDHYXnfnt2PHbvUMTvy/m4S/T11p26k0r4MVS+sPN/Eq88+XL22y7ktU9TMnCCH0fXx1g6nhlUu8+yPk+5a7pPI7u2cY/trx942T3J6p+lOTneordNUz/xsT3K65EpOH1JSqGd/Mt6n3Ul7FACQaphBHUhhiRgZy7KV3ccs50gEZsZIHmYnAAAAAAAASJ5Qk4QQM0M8sJJs5FJpxvlYZ9C1Kk6cSt9ZPFjdH2mX60AiymH3Y8fqWfHTiX+ScSK+p1iOyVTal6HqRSrkPwQr/yn3/NsW57ZMU1KUrymjDtczqzd5HnPPgN7a4dTCVfWSpM4Q21jy3hbPz51eieiP/PBE/fxva7Rjb5uO6F2gYwceKkl676tdOqr4EM/gBzfaowCAVEOCOpDCvG8Cb5g0JC6JknYPatgZNwdIhFQIoqSrVArEAQAA+GOwHQAASAfek4T8ecVnWrL2a93wnSHEzAAbsPskPlYlDlsZJ7b7dxZPVvdH2uU6kKhy2PHYSfYgATvHPQJ9N94/x/N76s4xmex92V3B6kWq5D8EKr9dzm2ZaG9bh4aUFGpDQ7McB2ZAv/D4w9Vhmj77I9thqLk1VKq6fPbbvFc2qLG5VdNGD6K/GQCQlkhQB1JQsJtASXFJlLRjUAOAS6oEUdJJqgbiAAAAvDHYDgAApAPvSUJ65GRp1/52T/uGmBmQXHafxCfWJL94xInt/p3Fm5X9kXbpO0lUOex47CQ7kdbOcQ//78ZhSIZcCa/x/p4CHZPZDkPXLwqezG/Vvkz0oIFQ9SIV8h+Cld+9/wxDtHETaP70cs1YUKcxR/XxOW76FuZ52gMt7c4wW5EcB/bb8+9u1nNrNnset0t/s50H9wAAUhMJ6kAKqpk5Qb98bp3+9cFWOU3fv8Wj4WrHoAaAg1IhiJJOkh1UBQAA8ZXuQXgG2wEAgGSzur0VrH3jMETMDEBQsSYOEye2ntX9kXbpO7FLOawW7npeUpSvbMNQS7tTOQ5X4ma2YcQ91pIKcY9A5x9JCRtM4X9MvvZxg77atT9oMr9VAy2CDRpIRiwulfMftjW3akhxodY3NGtoSaEam1uTXaS0Ee5YDHTczFhQp2ljBuusEf01+5n39NXO/ZJcg036F+Vr4/Z9Ptvwzu85b1Sp7doRdh7cAwBITSSoAymopChfnzXuldN0jbB0mlLWgWWEJKmsTw/97dqTkltIAAmTykGUVBRNIC7dE9wAAEhH6R6EJ4kCAAAkm9XtrVDtG3c8hpgZkJnCxWdjSRy2ywzd6SzW+Lpd+k5iLYdd+xkiuZ6/tXGHJGnAoT1Uv2Ofag/8Hq1ovoNUiXt4n39mLKiT5DpWEjGIwX1MRpPMH8v5Mtz7pHsszkr+3+X6hmatb2jWsMplthmAkcq6cyx6n+MLcrIkHZwlvdNp6qITDte2vW1asb6xyyoJv3tlg23aEakwuAcAkJoM0zTDPwspq7y83Kyrq0t2MWAh/4ZhKDQWAcRLdXW1Kioqkl2MpJmxoE7FPfN9AnHeAQi3yqq1eqK2XtNGDyKoBgAIyK6djJko2L1WOt5Xzalaq0W19crNcqit00lbBQAAJEQ821u0bwAEEu/4bKRxYnRPuP2XzjEV7z4Yu/UzRHI9D9efHe21P9rvgHZBZBqaWsIO8ovn+yxb+7XaOrvmK6VjLM4qidpnmSbW+5Rgr3cY0ps3TdLZv6vR9r1tys0y1O40PeckO7UjOLYAALEwDONt0zQDXsSYQR1IMYFGfRfl5ygv26GGPa1q7XDKYUjnHleqGacepanzV6ZlYAYAkincjCeMMgcARIoZguwjVWbYskK6Li8OAADsLZ7tLdo3qSWdk0phD4mKz9plhu50E+n+S/eYil37GSK5nruf89K6r9XacTABOS/bobNGRn7t7+53QLvAJdz1NlErQQR7nxWzJmZMLM4qrN4RH925T/GuX6FeP++VDdq+t02S9J3h/XXYIbmec5IV7Qir2tUcWwCAeCFBHUgxgRqGknTikYepavUm5WW7RoL3zMvWolX1KReYSVZgmoA4ACtlUoIbAKB77NrJmMkyKQhPEgUAAEiGeLa3aN+klnRPKo0GfRPxQXw2tYXbf5kSU7HrcRzJ9dz9nLZOUw5DcppSliG1dTq18tPtEb9Xd78D2gUukVxvE5XMH+h9MikWZyUGYFgv2LEoU0EnhPSvX/6vf/7dzXpuzWaf1yxd+7Uk12Adq1jZrubYAgDEAwnqQAra1tyqC48/XB9v2aN9bZ36bNtevfX5Dk9jcfKDNVq4qt7z/FQKzCQrME1AHICVCKoBAMKxaydjpiMIDwAAEF+0t+IjVZKcMyWpNBr0TcQH8dnUFm7/ZUpMxc7HcSTXc/dzPmts1rbmVvUpzNX2PW1a39Ac8TnPzt+BnUVzvU1UMn+w96FtGD0GYMRHoGMxUDstWP0yJBX3zNMDFx+nF9dt1Vc79ik3x6FXPtgq54GFJLIM6fTh/XS7BfstHu1qji0AQDwYpmmGfxZSVnl5uVlXV5fsYiAOvnHTEnUGqL552Y6QgRm73rD7N6Dd4h2YTtb7AqmuurpaFRUVyS6Grc1YUKfinvk+gQzvG3sAAOZUrdWi2nrlZrlWQZo2ehAJCQAAAACiVlm1Vk/U1tv+nqKhqSXl+i7ihb6J+CM+m9rC7b90j6m4+2BS4TiOZJBULOe8VPgO7IbrLRCbUOesYLk42Q5Dz6ze5HM9mlO1Vk94TSwpSZePseZ6RT0HANiJYRhvm6YZsJHODOpAignWGJak80eVehqcqTaaPFmzHWTKLAsAEo9R5gCAcJghCAAAAEAsIp050S4zrDMT7kH0TcQf8dno2eVcIYXff4mOqSTruwn2PdhpX0WyEkQs5zzqcvSivd7a6XgKxO7lQ2oKdVz5n7MMQzpjeD/dMWVkl1yclnannluz2fNa7/Z4xbBiHdG7QMcOPFSS9N5Xu9TY3GpJ+WlXAwBShSPZBQAQnZqZE3TeqFLl5xysvg5DMgz5NDjdgZmq68Zp2pjBljV04yVZDWga7gAAAEiW+dPLNXfKSA0vLdLcKSOZ/Qkpq6GpRVPnr1QDgywAAAASyr+/ID/HofNHlapm1gSf53knDyZbqvVdxAt9E7AjO50rwkl0TCXcd9PQ1KIpD7+hC/7fGwm5N7bDvhpWuUxls5do4ap6maYrKbNs9hINq1zW5bnRnPOIMVjzHURzvbXD8RTqM9uhfEg/oY4r73OWw5BMU1q/pVnXL1qthj0tPvXrwhMOV/9eeQHb4/Onl6tm1kQ9PO0EPTztBNXMmmjp9Yp2NQAgFRimaSa7DIij8vJys66uLtnFgMXcy9YZkpymdM7I/updmJfyS5ola4k2loYDoudeXhIAAACorFqrJ2rr025JdQAAgFTg7i/IzXKordPp0yYLtiKr/wzrSA76JmAXwc4VhiGtunlSRAMn0nWG40jPo5VVa7VwVb0k6fIxsd8bB+uDsdN5vaGpJeis6IGOgUjPecQYIvsOrKhzdjqe3J/5wuMP15c79+uhy47XKff82zblQ/oIddzXzJzgqVdj71ouZ4B0uixD+vTuc3weC9UeB1JZurbvAFjPMIy3TdMMGNAgQT3NkaCeniK9gU+VxkIs5UyVzwikGxLUgczFtRcA4GanjkwAAIBM1NDUojN/+7omfrNEV487qkt/QbTJgwAyU6BzRf+ifG3cvi/iZOt0TSoOdx4Ndl8sxXZvHKwPxm7n9e4kZQaLLxNjiO47sKLO2eF4CvaZswxp5U2Tkl4+pJ9Qx/28VzZ46tUNk4Zo7tIP9c81mwNuxzuhvUeOQwMPO4RBh0g76dq+A2C9UAnqjkQXBkDsgi1b57/0VaosdxVLOVPlMwIAkC649gIA3GpmTtB5o0oDLmELAACA+Ju3fIN27W9XQXZWl/4CSSopylfPvGy1djiVl+1Qa4dTPfOySeoCDvDvV8tU3ucKSWppd2rj9n2SpIWr6lU2e4mGVS4L+NphlctUNnuJFq6ql2mGf74V33ki91u482jNzAk6Y0Q/OYyDr8kypLNG9IvLvbHdzuvbmls1bcxgVV03TtPGDFZjc2vY1wSLLxNj6PodSFJZnx4+30G0dS4UOxxP7s/sr9OURt+1XC+8u9k2xzvSQ6Dj/oV3N2v0nct96pX7+DMM39fn5zh01oh++uaAIt3z4kd6a+MODezdQ3OnjFTfwlyt37pHd0wZmZwPh4jQ/gvPymsNAGQnuwAArOO+ofdfbmjhqnotXFVvuxHm/iOioylnLK8FAADR49oLAPBnh45MAACATBTNPbo7edB7RkccxEpxmc07UTbTZ4V0nyu+3rVfyz9q8DzuPbNsIDUzJwSdiTYQK77zRO+3UOfRkqJ8FRfm+fTLdppS38K8uJ1T7HRe9x4UNTdMQma4a1eiYwx2PP+XFOXrhXc3+xxPG7fv0+g7l3u+p5qZE1T53Dr964OtMs3wdTScZB9P7v1uGJIheT67+3Pt3t+ugb172OJ4R/rwP+6/2rFXRT1yu1zL/rlms0y/17a0O/Xi+1slSWu+3CXp4Pksy5CcEu0Km6P9F1607TsACIUEdSAN+N/Q+zeS7dpYiKVRQ4MIAIDE4toLAAgk2R2ZAAAAmSiae/RokgczEQkqmYmJGLqq/rjR5ztxa2kPnSQcaVKxFd95svZbuPPotuZWHdG7QMcOPFSS9N5XuyKaSTxe5YlEMpKzI7l2JTLGEOz8n+zE9VOHFGvj9r3avHu/2jpMOQzp3ONKPd9TSVG+Pm/cK9OUHIZiTuS/4/yRuv7J1erbMzdp7QT3ft/R3Kql67b4fK7fXXK853m0Y2AV7/PoDROP1vVPrtZhDqPLtWzVzZM0d+mHXQaOBNN54Dm0K+yJ9l/kmJgGgJUc4Z8CwO4CLXlW1qeHJNm6sRBLo4YGEQAAicW1F8gsLHOJSM2fXq65U0ZqeGmR5k4Z6dPBAwAAgPjgHj12LFufOuJxfxqoX+38UaWqmTUhKeWxA//vJMthqGJYsS46YWDYZGt3cmnVdeM0bczggM+P5TsPt42q605O6j6ZP71cNbMm6uFpJ+jhaSeoZtZE298beydnWy1YHYnk2pWIGEO48388v5tIPHrVaI07uq/aO03lZTtkSp7vyV32DQ3NklyzjZumtKi2vtvvl+zPKx3c752mqcvHDtYLPz0l6LkEqcuq66fV12F3HXjr8x1drmXu85YpV96NYUhlfXp4rkOSa6CIId/Hu3ONQ/xZ0RbJJJG07wAgEsygDqSBQDf0nU7XDZzdZ7GLZSQ8M/UBAJBYXHuBzMEsggAAAIC9cY8eG/dMvi+t+1qtHabysg2dNXKAz0y+yZ5F1w7s8B3E4/40VKJsuM+crvfL/t9JW6dTAw8tiOgzRjKjtxUDa4JtY9Gq+rTcJ/GQiNljQ9URO1y7gs3kvmzt1yqbvcTzvGTOrBvse7JylVM7ziTMqi/pzarrp1Xb8a8DX+7cr4VvfqG/133pUwf862P1xw1q7XDKYbgGiZw9or96F+Z5HmfwaHxY0SZlkG90OCcDsIphmhGsQ4KUVV5ebtbV1SW7GEiAGQvqVNwz3+dG1b0kVyYHTwHER3V1tSoqKpJdDAAAYDH/wLwby1wCAAAASDdzqtbqiVUHZ529fMwgn0Snyqq1eqK2XtNGD8rYpNdkfgfxvj8N1K82f3p50M+cjPvlRA8QCPad2Gn73ts498EV6gyQ65AOMYx49cE0NLUET3A2FdPxlkoxpTlVa7Wotl65Wa7BGNNGD9INk4YE/W7s1M8eqOzdOT+HOhbs9HmR+iI9N4S75kV7jgm3vUB1oGJosbY0teqPP/h20HoQ7FoW72toprOqTZqK+8kOA0YBIBzDMN42TTPgCZUE9TRHgnpmI3gKhEZjvvtIUAcAID3ROQUAAAAgE4RKcpKUMkmW/qyKedsh0TTR96fhPnMy7pczrZ8v2uM3nWMY8eyDCZbgHMnxFmofpdL+CJagaFXyd3dFUgesTK5M9udFZoj03BDuHBRoO6cNLVbDnlbNn941odx/e4Hql38dOLq4UJ80NlMXbMQObdJky7T2IIDUFCpBPTvRhQEQf3Zckguwo3RdihMAAKC7WOYSAAAAQCaomTkh5CzCQf8WpURPkmJVzDvk95Mgib4/DfeZE1meTO3ni/b4LSnKV7ZhqKXdqdwsw/YxDCvPB7Fsa1tzq6aNGexJcF606gst9FpNItTxFmofpVJMyTuhe+6UkZ6f/b+bxj0tCS1XJHUgWNm7I9mfF5kh3Lkh0mteoO181rhXnzQ2+9SZYNvLMiSn5PNcdx14+q16maa0oaE5ZBmQeHZokyZLprYHAaQfEtSBNJTJjTQgEjTmAQAAgqNzCgAAAEC6C5csZVWSZaImSbE65m2XRNNA96fxSvqP5DMn6n450/r5Yjl+39q4Q5L0neH9ddghubaOYVh5PohlW/4JzjdMPDrs8RbpPkr1mJKVyd/RSFa/ZbI+LzJPqHND1XUna/ojtWpubVdrhxnymhdJQnnNzAmaOn+lNm7f5/PaTlNdnuuuX5GcB5EcdmmTJkOmtQcBpC8S1IE0lMmNNCASNOYB+0j0LFIAgPDonAIAAABgNTvGgEIlS8WaZJnoZMN4xLxDfQeJ2p+B7k8rq9bGnOQbrPzh9nui7pczrZ+vO8evfx1buvZrSVJetiPu5Y1WJOeDSOtUPM4tkRxvke4jYkrdQ78l0l2oc8OiVfXavrdNksJe8+ZPL1dDU4vWbdqtfkV5em19o0+dWbb2a42+a3nAMuTnOILWr0y77qaaVB/81F0clwDSBQnqQJrK1EYaEAka84B9JGoWKQAAAAAAACSPHWNAoZKl7jh/pK5/crX69sztVpJlopMN4xHzDvX9JGN/WpmYG6z8dkquzaR+vu4cv92tY8kYLBNJWSOtU/E6t4Q73uhXiy++X2Qi/+u6JLV2OJVlGGpsbg36unnLN+jdr3bp6OLCLnVmxayJmrv0Qz2/ZrNMSTlZ0uGH9lBbh1NfN7WErF+ZdN1NNXZqnyUaxyWAdECCOpCmMrmRBkSCxjyQXMlashIAAAAAAACJE68YULyTTGNNwE5GsmEiYt7JjOlFmpgb6thIpZhkpvXzRXv8dreORVq3rTzHhCprsGMyxyFtqIhuW7GI5Hizw6oK6SxZ/ZbsOyRLyOu6KU2dv9LnuPQ/X25oaJYkOU1T08YMVuOeFs850jzwnPZOafzRfdXY3KqJPfuFrF+Zdt1FauC4BJAODNM0wz8LKau8vNysq6tLdjEAAGmmurpaFRUVyS4GUlhDU0vQwBNBUABArOhcAwAAAOwhXjGgyqq1eqK2XtNGD7J0Bu9As3lK6lYC84wFdSrume+TDOWdZJKKkh3Tm1O1Votq65Wb5VBbpzPg/g91bCS7/N3FPW5g0dSxaOu21eeYYGUNdkxO6L1TU86cGNW2kile5+R4oD75SqV9h/Tjvq7nZDnU1uHURSccrvunjupyXDY0tWjGgrdVVJCt1zdsk2kq4DU80nM95wEAAA6y4rpoGMbbpmkGvClhBnUAAAAkHEtWAgDiKRnLzQMAAADoyuoYULxnwI50lu5IpOOMh8mO6YWaYTiSYyPZ5e8uO97j2iG5L5o6Fmndjtc5JlhZgx2Th+Y5ot5Wonjv+1Pu+XfKrErgZsf6lAyptKIE0pf7ur6zuVVL1m3R4nc2afE7mzx/dx+XWYbklFyzo5uSw5BaO5xa+el2bdvTqusXuc5Joc713ucuzgMAABwU7+siCeoAbM0OAS4ASIRMPN8la8lKAED6onMNAAAAsB8rY0BWJpAHkqoJzImUzJheqMTcSI+NVIpJ2vkeN9WS+yKt2/E+xwQS8JjsHbe3i5n3vo/X9xWP/hI716dkSMaxDvir/rgx4Izn/jpN1/9NLR2SJOeB3xv2tOonT6zWxh17PdejYOf6yqq1qv18h0bfudyz3Uw/D8BXJvbVA8hsiWofk6AOpJl0aDRZNXo1Hb4LAPFjt3NEqgX0rZDsmV4AAOmHzjUAAADAfqyMASUigTyaBGa7xRgTwa4xvUiPDbuWPxA73uNGksRg13oRSd1OxiCVQMdkdXV13N6vu4Lte4chmZKl31c8+kvsWJ+SiQFZsAP/epllHExGdx+Xknwe9/f59r2SfM9JFxx/uNZv2aNh/Yu0qNb1eCCZfh6Ar0zsq0dy2LWtjMyTqPZx8LWhAKQk70ZTqpq3fINn9OrCVfUyTdcNRdnsJRpWuSzo6xqaWjR1/ko1HAgopcN3ASB+7HKOGFa5TGWzl0R1vgMAAIHRuQYAAJCZ/GPDSG/uJNOq68Zp2pjBamxutXT786eXa+6UkRpeWqS5U0b6JI/6iyXGyHFrvXgfG4lmx3vcmpkTdN6oUuVlG5KkvGxD548qVc2sCZ7nWBl7t7KeRFq30+04sop73+fnuFJM8nMcOn9UqU4d0tey7yue/SV2rE/JxrFuL5nYLnDXy5Z2VyK6dxK694CYYMnp/s4fVao3b56kHjlZev/rJhXkOPTmTZN8zl1ZDtf1KzfL4DwASfTVI/HskqcCJKp9bJhmhFdypKTy8nKzrq4u2cVAAviPWnfLzTI0alDvlBh5FewzSL6jV4N9jsqqtXqitl4OBb5JYWkmwDrV1dWqqKhIdjG6Jdi5xopzRHdGuzY0tQQdlWj38zYSjxHVABDejAV1Ku6Z7zMjWqiEEgAAAKQ+d2x42uhBzHaHhLAixshxi0jY8R53TtVaPeE1G+3lY1zHcDxi75laT+zUB+Mdk/7dKxu0qLZeuVkOtXU6Ld8v8e4vsWN9Atwy9Xw3Y0Gd1m/Zo8+37/M8lpftUN/CPG1rblFrh6ksQ+p9SK6K8nN02CG5WvPlTgVKKwk207p7pYfcLFfy3ZCSQv3ukuM5D0ASffVInHjmqQDdZVX72DCMt03TDPhCEtTTHAnqmSNYo6m906mla7foohMO1/1TRwV8nV0S3dyfYcl7X6vTefDclJvtUHuIIEeoxHYpsuR2ANGxU3A0WvG8yexu8GhO1VpLgrp2OqcjPjI1QBkL6gUAAACsRhsTsA86eJEsscQYOW6RykIdv6GWiI+2zZTp9cROfTDeMenG5ta4J3hb1V8CpIpUP9/Fcn8cLs/DMORzLvj7218Fff7lYwfrqx17VdQjt8t1aPf+dg3s3YPBKQiKaw8SgcEQSGehEtQdiS4MgPjwX3ahpd2p59Zs1tK1WyRJi9/ZFHAZGjstHXLKvf/WP9ds9klOlyTTNEMuKxZoSbmyPj1kGGKJNgBdxGOZmliX/rJqGUU7ndNhLZaX6z7qBQAAAKxGGxOwj0Cx4fNHlapm1oQklwzpLpYYYyzHbUNTi6bOX6mGPS0xf4ZMw3dnjVDHr7tetLQ7ZUhqae9+7J3ze/IFikm/9P5W/b3uSw0vLdLcKSPjkuBpVX8JkCpS/XwXy/1xzcwJOmNEPzmMg485JB3Ru0B9C3O7nAvc35XnuYZU1qeHKoYVa+6UkXr0qjEB22ePXjlac6eMjOu5C6mNaw8SIR55KkAqyE52AQBYx91oumz0IJ0zr0aB1kdwr5rgPxp14ap6LVxVn9SRuDUzJ+i8h99QY1OLOk3XEkwlRfl67vpxIS/IgS7inU7T8124R8ECgJv3+dKKc0SomWEi4Q6ENDS1aP3WPXrosuOjen87ntNhrViPMSulymyR1AsAAABYjTYmYD908CKZuhtjjOW49U4CY1bH6PDdWSPc8butuVVDSgr1SUOzhpQUdjvBi/N78uOwyYpJeyeOzp0yMq7vBdhBqp7vIrk/DnceKynKV3FhnrznL3RKOm1osc+12n0u8H9Ppylt3L5PX+8+2AaLpn2W7PMs7INrDxLF6jwVIBWQoA6kEXejaVjlsoDJ6ZK0YvZESfZKdPPmdJrqNF0zn7d1OjXpmJKIbgYCXcTdDUcakAD8WX2TaVXwqLudJFXXnazLH6nV3tYOtXZYd04nMGMfdgpQpkpnnl3bOgAAAEhdtDEBe6KDF8kSS4wx2uM2EYOk0jUWyAAz6wU7fv2/6w0NzdrQ0Kxhlcu69V2n4vndynqU7DisnWLSQLpLxfNdJPfHkZzHtjW36ojeBTp24KGSpPe+2hV0cJNrwsMVatzTpk6nqSyHoZKeeXru+nGe50TTPkv2eRZA5mEwBDIRCepAGnLfDPxzzWafx0t75XuCBnYMKsxbvkENe1wzK/zukuOjuvmK10X8g827dfH8N/X0tWM1fEAvy7YLIP3EEjyKtZNk0ap67djbJkmWntMJzNhLsgOUqdaZ593WMQzZoq0DAACA1GbHeBoAOniRmqI9bhMxSCpdY4EMMLNesOPX6u/a/30amlo0df5KWw+isKIeHYzD7pWU3DhssmPSQKZIxfZsqPvjaPqTvD97JO856Zh+WlRbH/WEh96s6u9K18F9AABYiQR1IA2dcu+/fRrUbluafIMGsQYVrGpwB5pR4bvzamyR8HbjU2u0p7VDNz65Rv/6+WlJLQsAe4sleNTdwL3/+VNyJeE6DHV76dRA27V7InKmSHaAMhU787Y1t2pIcaHWNzRraAxLCgMAAABuJOkAAJIhnoOkUiUW2N0+KQaYJU48vmvv/W7nQRRW1qOamRN0w1+rtWabmfQ4bLJj0gDsLdj9sX9/ksOQzhjeT7dbcB6x4p7cqv4uO1+XAACwCxLUgTQUydJGUuxBBasa3HZMeCubvcTn9w0NzZ7HNv76nGQUCUAa627gPtT5M5agvx3Py0i+VOvM8+8UWt/QrPUxLCkMAAAASCTpAACSJ16DpFIlFhhLn1S6DDBLhZlarf6u5y3foNrPd2j0ncs9j9lxEIWV9aikKF8F2YZaOzpTIg4LIHMFuz/27k/KMqROU/q0cW/E57FQ1zsr7slj6e9qaGrRmLuXyzQPPmbH6xIAAHZBgjqQhqxa2igYq2fTsGPC29Ibxuuax9/Wpl37PY8NPLRAf/zht5NWJgDprTuB+3idP+14XoY9pFJnXqp0rgIAAAAAAEQiXoOk7B4LtKJPKtUHmLkT9foW5qr28x26Z9lHun/qqGQXKyCrvutAq4e62THOZ3U92t1qpkwcFkB6i3ZwlPv5b23cIdOUOg887p4QMDfL0Po7vxtyG/Gcmdxdvh45Dk0bM1hnjeivn/9tjb7auS+i189bvkGmKZX16aEtTS30PwEAEAYJ6kCaimcCWTwSvuyW8Da8tJd65Gb5PFaQm6XhA3olqUSIVSrMLILM1t3AfbzOn3Y7L8MeUqkzz+6dqwDQHbRpAQAAAMSDnWOBTEIgnXT3cnV6zdS6+J1NWvzOprSeqdV/v2c5DHU6TeVmGbaN81lZj244IV8VFa74q93jsADSW7TJ4u7nXzDqcHWY5sHz+IGZ1M89rjToa62eKDFU+aaNHqS5U0aqsmqtGptbNbB3v5Cv8y/bxu0HE9rtel0CAMAODNN73RGknfLycrOuri7ZxYCNWJXQMKdqrRbV1is3yzVD+7TRg7o1etXOCRaj73xFh/bI0Q0Th2jeqxu0a1+7aud8J9nFQjdVVq3VE7X13T5W4au6uloVFRXJLgYAhDRjQZ2Ke+b7dAp5J9kDQKqhTQsAAAAgE1nVJ5VqQs0iLimiWWhTmfd+b+1wakhJoX53yfEZEeejDwaxsHP/O1JHsGtQoGTxhqYWjbl7uaJJPwu2nV8+t07/+mCrnKbvihmxHsvhrqmhyuUum/fAKYchDTqsh+ZeMFIvrtua9tclAABCMQzjbdM0A14ImUEdyDBWLYdk1SwAocqT7Jtn72T0ySFG8sLeEjHSGgBgT3aa8T3Z7RoAqY02LQAAAIBMZucZ3uPJPYv4P9dsTnZRkiLQfh9eWpT0OB9gd1blAyCz+a9k4TCkM4b30+0BzsHzlm+QaUplfXpoS1OLZ8WT3j1ydfzgQ7WvpVM1n2xTp9MMuRJKSVG+PmvcK6f5/9n7+/goz/ve9/3eM3oYsJDtgIQtE1BSgxKQY7nRAlzjRrLTxq1dW252SBrMStduu/B2s+y9ss4GstF6ta9GSUz3dl87ND1nKXt1ne6CcZIerHg1QnYSErJEX1iyMKTYjmvVMZYNxiPAIASMHmbu84cYMTOaGc3TPffT5/2PzUiauWbmfriu3/W7fpcUNK5VJpcpbew+nPP8Srr5mNT3U11haElNSGfGJzQxPf8OLam79k5GY9pw6xJtuLVOG26ty/PTBQDAP0hQB3wgPBbRum8cUOKC1WITGopN+MolwcLJyetwD7b/BAA4wZN9r2vwrXPauf91PfX5FrubUxb01+Aldh/P9GkBAAAA+JmTihCUUzwZLp0FlQH9fGt7mVtUXn793oFCUeAApZSYkB00pKgpvTl6KSk2mnrMnTh7efb/J6Zjuvdj9Xr83pV64K8PKRozVV0RmE06T42xrtqxX5PRaxkt8f/dOzgiSXktukiXZ5IuwXxhVVCT0VjWdiXy64I5AACKQYI64AO7DgxLhtT4oeQVq3YmNGRLsCg2eR1IlDrYzGVwCQBAqaT2a/YdPal9R0/6YlKA/hrsYkUyud3HM31aAAAAAPCX+Nh2YVVQj6xfoR+/elrvX5yQIcmUtKSmmjEhgCQUOECpPTM4ItOUolf/PRweV+P23tn5jXRV1pd/aKG6Hm7W86+8r9GLEe06MKzwxQmtrK/Rt75wR8bE7t+7vUH7Xj45mwwfqgxocjqmmDmTLyLNv+hivjyT1ATzH716Oq+EcxZOAQCQPxLUAQ+bb8WqnQkN2RIs0g2e21bV6fTYhFZ19mmSld/IE6uZAQB2Mc0Mj5e3GWVFpR7YrZTJ5E46nunTAgAAAIB/xHfj++wdt6iro1mjFyOqWxRiTAggIwocoNRe/Oq9SXkbVUEpZhr62z+cSdROV5V8w61LtOHWOv3R3w0lxVWHw+P63V39c+KqqfHXeOX0yFRMv3/HLZo2zZwXXcy3SCM1wTwxyZyEcwAArEGCOuBhqR1wSWq4PqS//J9u1/OvnrY9eJUpwSLd4PnN0Uv619FxPdyS3yAEkFjNDPtYUcEVgLsc2taujd2HkxYKNi5eqO8/eqeNrbIWlXpgFyuSyZ10PNOnBQAAAADvy2U3PsaEADKhwAFKKV3ehmTqP/e8op/9b+2SMh9zucZV+7e2q/O5V/Tj196XaUrBgKG7Vy7R4uuqNT4xpSU11TkvumCRBgDAacgZIkEd8LTEDnjc+MS0Nqxcog0rl9jYshnZEiziA5nvvTSzbdRweFyS9OzRk7O/w6ACgNOVsoIrAHeqrw1pOjZT8qMqaGgyaioaMz3ddyEIDLtYkUzO8QwAAAAAKKdsu/G9duqCPt/9or736Hqtvvn6srbLCUjuAOZHgQOU2skPLss0lZRz8tbZy2rc3itJOvHk/bOPJx5zucZV62tDemv0kkxTChhSzDS17IYFs/OqW3YP5bXogkUaAAAnIWeIBHXA854eGEn691hkOu1gwWnig+fH77l1TpLJjQur9Bu3LtYf3fVRBhUASqLUgW0rKrgCcK81DbVqa6r3VUCUIDDsYFUyOcczAAAACkEiJYBCZNuNb9P/PaCLE9N64plj+vFXPmVjK+1BcgcAlN+yGxdm/Fll0JCUvt8bHoto//H39Pu/fkvGvI7U+dSrtX60d3Bk9jqf76ILFmkAAJyAnKFrDDPTMmx4Qmtrqzk0NGR3M2Cj105d0J/8/RGdPH9l9rFlNyzQd770SddUV9jRc1x7B0dUFQxoMhrTprXLCTwBNjt48KDa2trsbkbJdPYc19ODIyW7voTHIhkruDIhCQCAdbbsHlLdolBSMnnipAQAAABQLqWONwHwjw07f6p3P7gyuxtfNk4uRlUqqckdcV5O7vDaHAwA98l07U302Ttu0VOfb0nb782lL/zaqQva/LeDGp+Y0sS0yXwqAMAz/JYzZBjGEdM0007IUkEd8LjVDddrYVUw6bEFVUHXJKdLVCwEYB2rVi1aVcEVAOAeVEu0BxVyAAAAYDeqZAEoVupufG+GL2rk3JW0xaj8oH9re8bkDgBAacXj2j2P/Yb+y//41ey1N519R09q39GTs/+O93sTZesL7x0Y0dlLk5LEfCoAwFPIGbqGBHXABy5cmdKqpTV6/J6V2vXTYZ2/PGV3k/JCkgkAq1gZ2C52cY0TEhud0AYAcKsn+17X4FvntHP/63rq8y12NwcAAABAmZBICaBY6ebFfuuvfp70O24rRlUMkjsAoHx2HRjWSyfOae/AyJxr70eWXKflixfq0BujipozSeVLaqp1ZjwyWwH9U6vqJEk/f2M0Y184XXX2iemYgoah0fGJsr5fAACsQkHeGSSoAz4wuOPTs///wO0NNrYE8CaSeN3LysB2sYtr4gGgXT8Ztm0baCe0AQDcJjW4Hq8iQ7VEAAAAwB9IpARgBbcXoyoWyR0AULxsc9rpdgGSpIAh9Tx21+y1d0lNtWKaSU6fjMa0sCqoyag52++tq6mWKWXtC2db0EmfGQDgFRTknUGCOgBXKmdCMMnHmA9JvO7mtMC2E7aBdkIbAMCtTDPD4+VtBoACMPYDAACl4rR4EwD383sxKpI7AKB42ea050saj197t+weSurn/ujV09q0boXuW3OTvvL9Y3r3g8uqrgxm7QuzoBMAAP8wzEyz5/CE1tZWc2hoyO5mwAG8NtHe2XNcTw+OaNPa5ZYnBJfzteAu6bYfk+SoJF6rzv2DBw+qra2tZM+Ha8JjEdurBjihDQDgVuGxiDZ2H9aJs5dnH2tcvFDff/ROrqGAwzH2AwAAAAA4AXMwAEpp1Y4+TUbnn9Pe0XNcewdHVBWcqY6eT4ws37jalt1DqlsUSkpiT1yMBAAA3MMwjCOmaaa9kVNBHfAJr1R4LmdVXyoIYz7ZVpI7hVfOfT9xQtUAu9rgtcVUAPypvjak6djMQvCqoKHJqKlozOS6BjgYYz8AAAAAAAB41QOfuFnPHj2pYMBQNGZmnNMuZBegQuNq7IwBAIA/kKAOeJzXJtrLmRDshuRj2MsJicSZeO3c9xsnbANtRxtYUAHAK9Y01Kqtqd7W6ziA3DH2AwAAAAAAgNekzhdHrxZWiUyln9MuJGk8Na4WMKTfXr1Uf0HSOQAAEAnqgOd5baK9nAnBTk4+hnM4IZE4Ha+d+37jhKoB5WwDCyoAeI0TruMAcsfYDwAAAIAV2DESQDZcI2C11PnioCHdvapOi2uqNDo+UZLXqK8NqcIwZpPTY6b05ugljmlYyovXTy++JwCQpIDdDQBgLS9OtMcTgnseu0ub1q0o2eDJ7teCO3VvblVXR7NWN9Sqq6M5KSHNTl489+Fd/Vvb9WBLg0KVM13TUGVAD7U0qH9bu80tAwAAfsHYDwAAAECpJe4YCZRLeCyijd2HFXZIQSVkxjUCVkudL45JWnbDAj31uZaSzmk/e/SkpJnkdEkaDo+rcXuvmjr78noerl/IlRevn158TwAgUUEd8AWnVnguVDkrUlL9Em7mtXMf9ijHam0WVAAAALsx9gMAAABQKuwYCTslJrh1PXyb3c1BGlwj7OOXCsWJ79PK+eLUYznRQy0Nee/szfUL8/Hi9dOL7wkAEhmmadrdBliotbXVHBoasrsZABzALwNulMfBgwfV1tZW8uflOHWezp7jenpwRJvWLrc0GLRl95DqFoWSAmRO2ZEAAAAAAAAAAHIVHouoa/8v9aNXTysyFVOoMqDPrLlJO+7/OHFv5KSQOZhMiaIkuDkP1wj7lGvOy07hsYge+OtDGh2f0Ka1y/X4vSstm3tNPZYlKWBIppTXZ8z1C7ny4vXTi+8JgP8YhnHENM20CT5UUAcAn2DFsf1Ivp6fH45TtxwH5V6tTdVSAAAAAAAAAF7AjpGwQ//W9owJbnAWrhHl55cKxZnepyRL5l4Tj+WAIcVM6XfW3KQba6rzqtTO9Qu58uL104vvCUD5OTkPiQR1APA4vwy43cAPydeF8tNx6pbjgGAQAAAAAAAAABTmzPiENq1bkbRjJGAlEtzchWtEebl5zivXhLNMVcjjrJh7DY9FtP/4e/r9O5bpjzZ8ZPZYzrcQFdcv5MOL108vvicA5eXkPCQS1AHA49w84PYKPyVfF8rrx2l4LKJ13zwg07z2mNOPA4JBAAAAAAAAAFAYdoyEHUhws4YVFSm5RpSXm+e8ck0469/arvXfPKCYmfFXZEj6+M21Cl+MlOS97zowrPNXprSgMqDVDbVFHctcv5ArL14/vfieAJSHG/LRSFAHAI9z84DbK7yefF0KXj9Odx0YlmlKjYsX6vRYxDXHAcEgAAAAAAAAAADcgQQ3azi5IiVy57Y5r3wTzuprQ+pouUXPHj2Z8TkbF1+nX7x7vuhj2YpkOK5fAADkzw35aCSoA4APuG3A7TVeT74uFS8ep6kBmhNnL8/+vxuOA4JBAAAAAAAAAJAfK6otAyg/N1SkRO7cNueVmnBmSLphQaWe/vfrMv7Npclprayv0b+GxyVJqcXU3zp7SVLxx7IbkuEAAPADN+SjBexuAADAet2bW9XV0Ty7tVbiABzlEU++7nnsLm1at0Kj4xN2N8lxvHic9m9t14MtDQpVznS5AsZMFfU9f7yW4wAAAAAAXCo8FtHG7sMKe2BhNQAAflHO+3ditWUA7pU6xxOqDOihlgb1b2u3uWVwg2LuO/GFThUBQxPTMQWMmWTzD65Mae+LIxn/rntzqz5ad502rV+h9b/2Ia1aWqPf+LXF+uyv36Kbrg/NHsuGIX1mzVL1PPYbBbXRDclwAAD4hdPz0aigDgBAGbhtVT5KIzVAMxmNacOtS7Th1jptuLXO7uYBAAAAAAqQmHRWzLboAACgfMpx/6baMuAtJOGiGIXed8JjET3w14cUvjihwbdmHkushD7fveVrDzWn3cVjR89x7R0cUcCQYqb0q9FL2jswUvC90Ys7YwMA4EZOz0cjQR3wKbYXBIDyIEADAAAAAN5A0hkAAO5Tzvt3/9Z2de3/pX706mlFpmIKVQb0mTU3acf9Hy/J8zO3B5QfczzIVzH3ndS/TSdgSL+1eqm+liEBLVNi/DODIzLNa8nuw+FxDYfH825juntROZPhuBcCAOAuAbsbAMAebC8IAOXRvblVXR3NWt1Qq66O5qTViwAAAAAA9+jf2q4HWxpmt0UPVQb0UEuD+re129wyACit8FhEG7sPK0wSHjygnPdvq6stM7cHlJ/T53i4ZztPofedXJLTpZnq53U11XPuLU2dfWrc3qs9AzOJ6HsGRtS4vVdNnX2SpBe/em9Su4yEv83n3pjrvciqY5N7IdyC6zMAzCBBHfCZ+QYmfkFnEAAAAAAAAPmwOukMAJyCxB94Sbnv3/Fqyz2P3aVN61ZodHyi6Odkbg9AJtyznafQ+048sT0YMLL+niTtHRzJ+PeZEuPj7YpMzSTBmwl/G5mK6R9/cSprG/O9F5X62OReCLfh+gwAMyrsbgCA8rJ6e0G3yLS1FVAIthIDAAAAAG9hnIdM4klnX1y7XHsHRzRK8QMAHpJauXPPwIj2DIyouiKgf+n6HRtbBhSnnPfvxOrKXR3NJXlO5vZgt0LGR4yprMU929kKue/EE8ijMVMBSTFJCyoNXZm6lkoeNKTfWr1Uf5Hm/pKYGF8VNBSZiqnCMJLOvzPjE/rsr9+iM5cm9fN/GZUkVVUYarh+gRqXXJe1fbnei6w6NrkXwi24PgNAMiqoAz7j90pPrKyFFVj9CgAAAADewjgPmXRvblVXR7NWN9Sqq6M5KQkNANxuvsqbsAc7whbP7fdvv8/twX6FjI8YU1mLe7azZbvvZLuvnxmf0CPrV+i+226WJAWM5JSuqCktqanOeP2PJ8Z/evVNkqTBE+fmtOupjS1adsMCGYZUXRHQVNTUhluX6O/+3dqs7ynXe5FVxyb3QrgF12cASEYFdcCH/FzpiZW1KCVWvwIAAACAtzDOAwD4GYk/zsSOsJD8PbcH+xQyPmJMVR7cs90r23394L+MJp0/lyajkqSAIf1O883653fPa3R8QtK1XQr+/PdW68//8TV9+4t3zPn7dz64osbtvXPOv0LvKbn8nZXHJvdCuAHXZwBIZpimOf9vwbVaW1vNoaEhu5sBn3DLVm07eo5r7+CIqoIBTUZj2rR2OUFdFCQ8Fsm44MHJ50ApHDx4UG1tbXY3AwAAAABKys/jPAAAJGnL7iHVLQolJf64rdp0oZw2x5Ga5BlHkifgfU6ZgylkfMSYqnz8fM92o1zu6/mcP509x/X04IhuravRv46Oa9Pa5Xr83pWOOP84NuF3nAMA/MYwjCOmaaa90FFBHUDJuKWKBytrUSqsfgUAAAAAb2GcBwDwu8TEia6OZhtbUn5Om+NgR1gAditkfMSYqnz8fM92o1zu67mcP6mJ7sPhcUnXdisIGJIp2Xr+cWzC7zgHAOAaEtQBFM1tW7X5rTPotKovXsOCBzgV5z4AAABQGMZ5AAD4i1PnOEjyRCovxHy98B78ppDxEWMqYK5c7+snP7iiuppq/dXnb9fzr7w/5/yJJ7q/8MrpORXZGxcvVOOS67TsxoWePf+4jwAA4C6GaZp2twEWam1tNYeGhuxuBjyOrdqcLb6916a1yx1R9QXe4JTtJZEZ5z4AAAAAAAAwPyfPcWzZPaS6RaGkJLPEIjzwFy/EfL3wHsqBORjAm+L39fvWLNUT3z2m6VhMP/7Kp5L6G7lcJ3f0HNfewRFlSveye5GdlbiPAADgPIZhHDFNM22wggR1jyNBHeUSHwRVBQOajMYYEDhAatWXOC8PSFE+BEedi3MfAAAAxaIaFQAA8BvmOPzJLf1eL8R8vfAeyok5GMCdcr2vdPYc156BEUnSI+tm+hz5XCfjie6/fO+C3jg9rkuT04qZUsCQfu/2Bkcssis17iMAADhXtgT1QLkbA8Cb4lu19Tx2lzatW6HR8Qm7myRpZhC4sfuwwh7buioX/Vvb9WBLg0KVM5f6UGVAD7U0qH9bu80tA2Alzn0AAAAUa9eBYb104px2/WTY7qYAAACUhVPnOGAtt/R7vRDz9cJ7AArh57nqfHnhs5rvvtLU2afG7b2zyemStGdgRI3be2Wayvk62b25VV0dzdr3v9ylB1saZGomUduUtKi6wnPJ6RL3EQAA3KrC7gYAsFepqkMkbinZ1dFciqaVROIg0G/VTuprQ1pUXaGJ6ZiqKwKamI55dkAK4Bo7zn23VBoCAABAdqnVqPYMjGjPwAjVqADAwxjTAzOcOscBa7it3+uF+R4vvAegEH6eq86Xkz+r+frMud5X+re2q/O5V/ST195XzJx5LGhIv7V6qf6io1nf+slw3tfJ+CK7L65drr2DIxp1cYJ/NtxHAABwJyqoAz638/nXNfjWOe3se93uppRU4upj07y28rips8/uppUVVV8Afyr3ue+WSkMAAADIjmpUAOA/jOkB+JEb+71emO/xwnsAcsVcde7c8FnNl1OR632lvjakuprq2eR0SYqa0pKaatUvChV0nfzaQ8164/2LWrKoSl0dzUmL7ryG+wi8zAu7SABAOoZpmvP/FlyrtbXVHBoasrsZcKDUVbxxTq0Oka/wWERd+3+pH716WpGpmEKVAX1mzU3acf/HWUULlMDBgwfV1tZmdzNgs3LfS6jqBgCA/bgfe9+OnuPaOziiqmBAk9GYNq1d7rjKZQCA4nk9PgwA86Hf6x5+HIcyB+N+zFXnzsmfVT595lzvK1t2D+mfhs9ofDKqFTcuUEzS6obaghPLO3uO6+nBEe5jgMtxLgNwM8MwjpimmbYzU1HuxgBwhkyLU7yyaIUtngDAev1b2zMGDa3g5O0dAQDwC+7H3ueXraEBwO/KPaYHAKeh3+sejEPhRsxV587Jn1U+ORW53FdSE97f/uCKJCl8Mf9K4KnPtWdgRHsGRlhwCrgM5zIAryNBHfCpQ9vu0ee6D+vts5dnH2tcvFDff/ROG1tVWgQXAcBa5QoaMjDPzI/VgwAA9uB+7B+JFbu6OpptbAkAwEpOTgQCgHKg3+t8jEPhdsxV587qz6rQuZR8cipyua9kWySabxtZcAp4A+cyAK8L2N0AAPaorw0pGptZ2VsZNCRJ0ZjpmQmI8FhEH1ye0uP33qrVDbXq6mgueFssAEBm8aBhz2N3adO6FRodz7/Kw3z6t7brwZYGhSpnuq6hyoAeamlQ/7b2kr+W2yRWDwIAwErcjwHAeuGxiDZ2H1aYxBWUSTnG9AAAFIpxKNyue3OrujqamavOgdWfVaFzKcXmVKSO8bItEs23jSw4BbyBcxmA11FBHfCxNQ21amuq9+Sqbbb7A+A3dlXSLkelIQbmc1E9CABQbtyPAcB6xLNQblQPBgA4GeNQAMUqxVxKMTkV6cZ4qdXi9w68rT0DI/O2Md08IFX6AW/gXAbgZYZpmna3ARZqbW01h4aG7G4GUDapg8w4EvaA0jp48KDa2trsbgYSdPYc19ODI9q0drknExm27B5S3aJQ0sDcz9VGwmORjNu9MUEDALAK92MAsAbxLAAAgPT8Og5lDgYoDbvmUvIZ4+Xaxvg8YF1NtX74+AbmggAAgGMYhnHENM20AzUqqAM+Z1fFXav0b21PGsBVVxiqqa7U7j9ea3fTAMASfqmkTVW3ZFQPAuzjtf4zkA/uxwBgjdR4VmJCAgAAgJ8xDgX8waqYq5VzKdnaPDdnIaCa6oqknIXXTl3Q57tf1PceXZ+1janzgOGLE1r79QOemwcEAADeFLC7AQDslbitlBfMHWSaOntpUntfHJn/j4EU4bGINnYfVpgtlOBg/Vvb9WBLg0KVM926UGVAD7U0qH9bu80tmx/nWHHi2731PHaXNq1bodHxCbubBPiC1/rPAADAfixABQAAAOBnVsZcT35wWXU11frbL/2bks6lZGtzujHe2UuT+tv/8dbs7zzx3WO6ODGtJ545lnW+p39ruwLG3NefmI6pqbOvJO8FAADAKlRQB3zKyxV3z4xPKCDDs+8P5ZMYWOh6+Da7mwOk5eZEBs6x4lA9CCgvL/efAQCA/eIJCV9cu1x7B0c0ykJeAAAAAB5XSMw132rry25cqJ8Pn9Hzr7xX9FxUeCyidd84IDPhsUxtPjM+IUNKen/7jp7UvqMnk55zODyu4fC4pJm5ntT5nvrakDpabtGzCX8XNKQHbm9g1y0AAOB4JKgDPuXlrYO7N7cqPBbx7PuD9UhAg9u4LZGBcwyAG3m5/wwAAOzHAlQAAAAAflNIzDXX4kdWzEXtOjAsGVLjhxbq9Fgka5u7N7dq1Y4+TUZjGZ7tmmU3LNB3vvTJjD+/NDmtlfU1Gg6PK2BIUVM5FavKN5kfAACg1AJ2NwCAPdxccTcXXn9/sFb/1nY92NKgUOXMbTJUGdBDLQ3q39Zuc8uA9Lo3t6qro1mrG2rV1dGclNjgRJxjANyI/iUAAAAAAAAAlE4+Mdemzj41bu/VnoERmeZMwnnj9l41dfalfe5SzUWFxyL6yFd7k177xNnLikzNJJ5na/Ohbe1qXLww6bGa6rl1RBdUBbX65usztqF7c6s+WnedHlm/Qj/8D3frkfUrNDo+MW/bE5P5SyE8FtHG7sMKO7xQFgDAf7hHORcV1AEfc1vF3Xx5/f3BOiSgAdbiHAPgVvQvAfegQhQAAAAAAIDz5RpzzbfaeinmosJjET3w14dkmlLj4oV670JEE9MxBQxp+YeuU1dHs55/9fRsm1PjUfW1IU3HzKTnHJ+YnvM6F65MzduWfHbdsmon41yr1wMAUG7co5yLBHXAx9y6dXCuiQZufX9wBhLQAGtxjgFwI/qXgHsQjAQAAAAAAHC+XGOuhSScFzMXlZrkfeLs5dn/j5nShlsXa8PKJdqwcomka8ns4YsTSfGoNQ21amuq131rlqrzB69o5NxlxUwlJdiXurhCvsn887Eq4R0AgGJxj3I+wzTN+X8LrtXa2moODQ3Z3Qw4WLZkb6dWnOvsOa6nB0e0ae1yEg0Amxw8eFBtbW12N6MsnHotBCSOTwAAUqUGI+MIRgIAAAAA3MJPczBAPrbsHlLdolBSwnligns+cyaZfjc8FtG6bx5QLqlU8XhTpniUIWlgx72zz7+j57j2Do6oKhjQZDSWMd8hPBbRlt1HZEr6zr/9ZEHzP7m+Vi7CY5GMCe/MTQEA7MQ9yhkMwzhimmZrup8Fyt0YAM6SWFUun5/ZoamzT43be7VnYESmObPqqXF7r5o6++xuGgAPc9q1EEjE8QkAQLL+re16sKVBocqZkFeoMqCHWhrUv63d5pYBAAAAAACgGN2bW9XV0azVDbXq6mhOSk6X8pszSf3d8FhEG7sPa2ff6zJNqXHxQgUDRtLfxBOsEuNN2ZLTZSipLfGK7j2P3aVN61ZodHwiY9uOvnNex945X/D8T+JrPXzHLeo9/p7CBe5mXEj1+lKJfy+Fth0A4G123qOQGyqoexwV1JFJtqpykhxZcY5VT4Bz+KF6B9U34WQcnwAAZFbKClEAAAAAAJSbH+ZggFLKZ84k0+9mY0iqqQ7q4kRUVUFDUzFTm9Yu1+P3rtS/331ES2ur9ZNfhhWNZc6/ymX+Jlvbipn/KcUO9fNVr7dKKdoOAPA2u+5RuCZbBXUS1D2OBHVkEk/2fuGV07OriO5rnkn2lilt7D6sE2cvS5KjEsFJNACcwQ/BURbFwMk4PgEAyIxgJAAAAADAzfwwBwPMJzwW0ZefOapvf/GOeec98pkzSf3dbBoXL1TXw816/pX3te/IO7oyFdPv3nazPnRdlUYvRlRXU62nB0d0a12NhsPjChpSzJSuqw7q8mRUMTO/XIvwWET/+blX9JPX3lf0aipXwJB+a/VSfa2jOe/5HzcXO3Jz2wEA8JtsCeoV5W4MAGdI3OJC0uwWF3fv/Nmcjn5kKqZ//MUpfesLd9jR1CTxragSEw0AwApsBYRyyyfYyvEJAEBmicnoXR3NNrYEAAAAAEonn/ghALjdrgPDeunEOe36yfC8BevymTNJ/N2qioAmr+ZGBA0lJYXHTGnDrUv0R383lJQ/sf/4e3Oeczg8LkkyDEN1NVWqCBi6NBnNe/6mvjakJTXVs+2QZtpRV1Nd0HW/f2t7xsR9p+t57De0+W8HNT4xpYlp01VtBwAA15CgDvhUuhWnewZGVBU09GBLg374i1OKmVJVhaGG6xeoccl1NrU0GYkGAMqJRTEop3yCrRLHJwAAAAAAAOAn+cYPAcCNUvMY9gyMzOYxtCy/MeMinXzmTE5+cEWmqdnkdElJSeH3NV+rkp4uyftTq+okST9/YzQp8bvCMPTssZNadsOCjG2Zb7HRmfEJffjGBfrEshskSf/87nmNjk/k/PklcnOxo70DIzp7aVKSXNd2AABwjWGa5vy/BddqbW01h4aG7G4GHCjbNlff+smw9g6OqCoY0GQ0pk1rlxPoApCE7SWB0mGbQgAAAAAAAACZED/0H+Zg4GeZ8hgqAoaePXqyJLkLv/bV3qSE9DhD0u//+jKNT0wlFc7b0XM8KX/i4ZZb9PM3RmcTqDNJd53u7DmupwdHcnof4bGI/v3uIzIMqXvzJwtKzt6ye0h1i0JJyfKJ781pMt3zgoahT6+ud3TbAQDwK8MwjpimmfYmTQV1wKfSrZYNGoa+vPeoFlYGqMgKwBZsUQo/cvMWi/AmrsUAAAAAAMArvBDnIH4IwE9S8xgiUzE9d+zU7M/jFdULWaSTKfk5rnHJdXpq4+1zHk+tzv7zfwknJacvqq7QdaEKnb88mfE6nakyfLb3sevAsI69c37m/wvcPcNtO9Rnu+e59T4OAICfBexuAAD7xAdSPY/dpU3rVuilE+f00olzWnbjQnV1NGt1Q626OprLsgo1PBbRxu7DCueRDF/I36D8+J6Qj8QtSgG/cPMWi/AmrsUAAAAAAMArvBDnIH4IwG8S8xh+/9dv0U3XVytUOZPeNJOwvFSrG2rznn/u39quB1saZp8r1VtnLqlxe6+aOvuSHu/e3KqujmY9/P/+J+158W2988GVpJ9fnJjW6QsRRaYyX6dTXztUGdBDLQ3q39Y+px1NnX1q3N6rPQMjs4/tGRhJ2zav4Z4HAIC3kKAO+Fi6gZRp2jO4KSRA6IWgoh/wPSEXiYEWu65DyA+LT0orddHY6PiE3U2CD3EtBgAAAAAAXuG1OAfxQwBeljrnFM9jWN1Qq7/a2KJ7P7Y0KWH5V6OXdOyd8/POP8ef97VTF7Sx+7BkaDb5OWDM/E7D9aHZ/6+uMJKSxlPb1b+1XZ9Zs3T29xNVVwR0/yduynidzifxun9ru3475XWChnTfmqVpE9q9hnseAADeYZimaXcbYKHW1lZzaGjI7mbA4cJjEdu2Scq0jVa2rawK+RuUX6bvqaoioDf4nlzv4MGDamtrK9nz2XkdQmH+0/ePad/LJ/XZX79FT21ssbs5AEqAazEAAAAAAPAK4hxws1LPwcCdwmMRffmZo/r2F+/w3HUr9b119hzX04Mj2rR2uboevm3O72/ZPaS6RSF976URTUXn5jhlyhOIP++tdTX619FxbVq7XKPjE6pbFNIX1y7X3sERHfyXsN5NqIj+yLprbUjXrh09x/V0QmXzuJX1NfrxVz6V9X3H30f8tUcvRjLuZp/udRLbBgAA4BSGYRwxTTNtp6ai3I0B4Dx2bpPUv7U9Y4CwlH+D8kv9noIBQ9GYqd+77Wa7mwYHYru29JwYfExdfLLv5ZPa9/JJFgmVmBO/e3gf12IAAAAAAOAVxDkAuF3iLtVeS0qOv7c7v3FAifnmewZGtGdgZM6cUzyJ+/F7bk2afw4Y0m+vXqq/6GhOev7Uuazh8Pjs80szCe1dHc36h6F35hRci7ch3WPVFQG1NdXpwzcuUPhiRJXBgKorgopMRXXhytS87zsxGb0rpc2pzoxP6MM3LtAnlt0gSfrnd89TSRwAgByQa+EsJKgDkHRtm6TE1brlUEiAkKCiO8S/p8jUzKA+GpuJLuw7elL7jpLMirnsug45mRODj5l232FXntJy4ncPf+BaDAAAAAAAvII4BwA3Sk2uzpS07Uap7y2a8vP5CtMl5gkEDSlqSm+OXpqTJxAvpPbCK+9pYvra/FV1RUD3NV97/kyF8aamY9r/yunZAmx27MKRqbI6AADIjlwLZzFIJvK21tZWc2hoyO5mAFnls5VVMX+D8tuye0g11RU6c2lSh94YVdQU22h6BNtLWis1QBfnhOBjeCyiz3Uf1ttnL88+1rh4ob7/6J2c0yXg5O8eAAAAAAAAAGA95mD8LTwWybibuNvnYdK9t5tqQ3r73GVVBQOajMa0ae3yrMlkH/1qr2Jp0pxS51F29BzX3sERGZJiphQ0pJg05/njv1cVDKSdn4l7ZF32dgEAAHuRa2EfwzCOmKaZNnGTCuoAbJfPVlbF/A3KL/497eg5rphU9or3bNsCt8pUsSFTxYhyqq8Nze6IUBk0NBU1FY2ZnGMl4uTvHgAAAAAAAADgHsyTuZOXdxNP996iMTOv3S5e/Oq9Oc2jxHfR+NXouM6MT2hxTZV+rW7RnOdP3G3jbw/9Sv/05lmdvzypyNRMlfa7V9VpcU2VRscnSv55lArnOgAA5Fo4FQnqAADL2bWN5pN9r2vwrXPauf91PfX5lrK8JlAKTg8+rmmoVVtTPVvjWsDp3z0AAAAAAAAAwB12HRjWSyfOaddPhqn87DJ2za2WQ7r3Fi9Il2thuhffPKvIVPZ5lFx3X0/8vac2tsxWVK+umKnovuyGBY4/fzjXAQBWcNsCKHItnMkwzTR738AzWltbzaGhIbubAZdy240GiGPbFuuxvaT1tuweUt2iUFKALtdgGtyN7x75os8GAAAAFIa+NAAA2XGvtEexczDMk8HLOnuOa8/AiEKVAf3Xf/tv9OzRd/Wz18N64T/+Zk7Xqfmua26ao+FcBwBYqbPnuJ4eHNGmtctdswDKTfdxLzEM44hpmmk/aBLUPY4EdRTDjTcaQJJW7ejTZHTuYLyqIqA3GIyXBAnqAOAc9NkAAACAwtCXBgAgO+6V9ih2DiY8FlHX/l/qR6+eVmQqplBlQJ9Zc5N23P9xFhrAtTIlYwcNKSblfJ3y0nWNcx0AYAUWQCFfJKj7GAnqKAQ3GrhdeCyijd2HdeLs5dnHGhcv1PcfvZPBeImQoA4A9qPPBgAAABSGvjQAANlxr7RXKeZgdvQc197BEVUFA5qMxjyRjIvysnoHhXyfPzwW0fpvHlBsnhSnTNepclzX7Nh1gnMdAFBqLIBCvrIlqAfK3RgAzte/tV0PtjSoumLmElFdEdBDLQ3q39ae93PFE4XDFyOlbiaQUX1tSNNXoxNVQUOSFI2ZdJQAAJ4S77OFKmf6bKHKwvtsAAAAgJ/Ql86MeC4AQOJe6QVnxie0ad0K9Tx2lzatW6HR8Qm7mwSX2XVgWC+dOKddPxku+XOHxyJ64K8PafCt3J//7r/8Wdbk9OqKgBZfV6WeP/2NtD8vx3XNys8sE851AECp1deGtKi6QhPTMVVXBDQxHdOi6gpyrlCQCrsbAMB5Em80koq60SQOwlipi3Ja01CrtqZ6fXHtcu0dHNEok2oAAI8hOAAAAAAUxqq+tB0VE0uNeC4AQCLu5AXdm68VMOzqaLaxJXCb1ErjewZGtGdgpGSVxvN9/ngfu+ex39Af/n9fUvji3ATsqqChiemYJqYn9bf9b+mpjS1Jf/vtL95h6XXN6s8sG851AIAV4gugyLlCsUhQBzBHuu2t9gyM6B+OvJvzAMrOQRggMRgHAPgDwQEAAACgMFb0pd2c3E08FwCQirgT4E/9W9vVtf+X+tGrpxWZiilUGdBn1tykHfd/vOjnTpeHIEkBQ3MqmYfHIvr3u4/o3XOXdebSpPYOjOj6BZVJCerBgBSNSZPRa6XV9718UvtePqnqioA+98llSf1zq65rVn5mAADYgZwrlIphmln2wIHrtba2mkNDQ3Y3Ay4THotkHEDluoK4FM8BwLkOHjyotrY2u5sBAAAAAABgu0yJNm5K7iaeCwCAczAHA7vt6DmuvYMjqgoGNBmNadPa5SVZgBnvc/b+83uKxq7lKn32jlv01Odbkn73o1/tVazE6UxW9s+t+swAAACczjCMI6Zptqb7WaDcjQHgfKXY3oqt/wAAAAAAAAD4Qf/Wdj3Y0qBQ5cyUS6gyoIdaGuZUgXQy4rkA4HzhsYg2dh9WmErmACwSv86cPH9Fm9atUM9jd2nTuhUaHZ+Y/49zEO9zRmOmgoZkSFpZX6PxyenZ32nq7FPj9uKS0xuuD+kza5aWtX8er85e6s8MAADAzSrsbgAAZyrF9lZs/QcAAAAAAADA67yS3E08FwCcbdeBYb104px2/WSYqrwALBG/zmxau1xdHc2SNPvfUjkzPqFH1l/rc7577pI+uDyl8MWI6heF1L+1XZ3PvaKfvPZ+2iT1eH87mw8uT2pJTbUmpmOqChqKTMVUYRiW9s+7N7cqPBbRl585qm9/8Q7XjQUAAACsYJhmiffEgaO0traaQ0NDdjcDLsUACkAmbC8JAAAAAABwzZbdQ6pbFEpK7u7enHZnWwAA8tLU2Zc2GbO6IqB/6fodG1oEqzEHg3Kz8zrT2XNcTw+OzCTFX118s6PnuJ4eGEn6veuqgvrQdVXq3tyq/3roV/rB0ZPzVlkPGNJ9zTdr//H39OEbF6h/2z1WvQ1J6d8LAACA1xmGccQ0zbSBUBLUPY4EdRTDrgEUifGA8xEchRtxfwEAAAAAAADgNuGxiLr2/1I/evW0IlMxhSoD+syam7Tj/o8T5/Qo5mBQbnZcZ7IlxU9FYxmrp8cT5jfs/Kne/eCKqoKGJqO55z1ZkXTPQiIAAOBn2RLUA+VuDADna+rsU+P2Xu0ZGJFpSnsGRtS4vVdNnX1lef3ELQrhLK+duqDb/uwFvfbeBbubAgB54/4CwGvCYxFt7D6s8MWI3U0BAABAAvppAIBSqq8NaVF1hSamY6quCGhiOqZF1RUkpwMoGTuuM/1b2/VgS4NClTNpS6HKgB5qaVD/tnZVBNKnMiWmoa9pqNUj61foB3+6Qb//67doQWUw6XeX3bhAn1mzNO3zl/O9AAAA+BkJ6gDmsGsAZXdiPOb3xHeP6eLEtJ545pjdTQGAnHF/AeBVLLxBOZBgBwBA/uinAQBK7cz4hDatW6Gex+7SpnUrNDo+YXeTABTAyXGWcl9nsiXFH9rWrsbFC5N+v3HxQh1KyFfo3tyqro5mrW6o1V9tbNHimipJUlXQkCQZkpbUVJcl6Z6FRAAAAOlV2N0AAM5j1wCqf2t7xq3D3CI8FtGXnzmqb3/xDk8NOBu39yb9ezg8PvvYiSfvt6NJAJAzL9xfACBR6paxewZGtGdghC1jYYnEBLuuh2+zuzkAADga/TQAgFW6N1/bLb2ro9nGlgAohpPjLHZcZ+JJ8V9cu1x7B0c0ejVxv742pOnYTL30qqChyaipy5NR3ft//lzfe3S9Vt98/ZznWtNQq7am+qTnyvT85XwvAADAel7N1/MCEtQBpGXHAMoLK4udHFQoxv7HN+hP/v6ITp6/MvvYshsW6Dtf+qSNrQJgBS923L1wfwGARCy8QTmQYAcAQP7opwEAACAdq+Msbp3byZYUn5pw3vPyu7o0GdWW3Ud0/tLUnET1+RLsrU66ZyERAAD28Wq+nhcE7G4AAOcJj0X0weUpPX7vrVrdUKuujuakAZWVit06zK5t0Zo6+9S4vVd7BkZkmjNBhcbtvWrq7CtrO6yyuuF6LawKJj22oCqYdnU6AHfz6jbkbIELwEtYeINy6N/argdbGhSqnAkdhSoDeqilQf0JWykDbuPkrdQBeAP9NAAAAKRjdZzFSXM7qWPvQsbiifkKv7urX3tefFuXJqOSpHfOXdHFiWn97rcOWdJ+AADgHl7P1/MCEtQBzLHz+dc1+NY57ex7veyv3b25VV0dzQUnxts1+LYreaOck+sXrkxp1dIaffsP7tCqpTW6cGXK8tcEUD5e77gXe38BAKdh4Q2sRoIdvMhJE/YAvIt+GgAAANI5/OaZksdZnDi3kzr2LiT3IPE59j++QbfcsCDt7zVu71Xj9t6StBsAALfzY4EWii05n2Gapt1tgIVaW1vNoaEhu5sBl0jdWizODVu4O6HtO3qOa+/giKqCAU1GY9q0drnl24Z09hzX04MjZXktINHBgwfV1tZmdzNQQuGxSMZtyElEAwDAn7bsHlLdotDsVsqjFyMs8oIrOSFmAAAAAAC5Yg7Gezp7jmvPwIhW1dfo//rCHSWLszhpbifT2DtVtrF4rs8Rt+yGBfrOlz7Jrt8AAMi/OWR25OshmWEYR0zTTNuxrSh3YwA4V6YFK25YyNK/tT3j4Ltc4tWREpM3rJI6ON8zMKI9AyNMrgMoGFVSAQBAqsRJ0q6OZhtbAhTHCTEDAAAAAID/pM7pvhEe1+/u6i/ZnK6T5nZSx96ZZMs96N/aro3dh3Xi7GVJUtCQold/3ZCU+pcLqoIkpwMAfM/vOWTlzNdD/gJ2NwCAcxzado9WLF6Y9Fjj4oU6tP0em1qUu1IMvovd6qR7c6u6Opq1uqFWXR3NllYWZIsS+I3TtyJ67dQF3fZnL+i19y7Y3ZSisA05AAAAvMhJE/YAAAAA4GZOn69xmnLM6Tplbqe+NqQf/uJU1uT0bLkHTZ19WvuNA7PJ6dK15HQpOTl9w62LtWppjS5cmSq22QAAuJ7fc8jKma+H/JGgDmBWfW1I0djM0K4yaEiSojHTNRO2xQ6+dx0Y1ksnzmnXT4YtamHpMLkOv3H6+fnEd4/p4sS0nnjmmN1NKUoxHXeC0gAAAHAyp0zYwx0Y3wAAAADpOX2+xmnKMafrpKSs31y5RI2LF6q6IjkVybj632y5Bz2P/YY+dF2VAkbaH88KGNJ11RX60X/8lAZ3fLoErQYAwN3IIYOTVdjdAADOsqahVm1N9a7c9qLQ7efdutUJW5TAD5x+fjZu703693B4fPaxE0/eb0eTbJMYlO56+Da7mwMAAAAkKTRmAH9ifAMAAAAkc/p8jZMVMqcbHovoy88c1be/eIfjksuyte3v/ud12tFzXE8PjCQ9Hq9+fvL8lYzPu3dgROcuTUrSbHJdoqAhPXB7g3bc/3HHfSYAANiNHDI4lWGa5vy/BddqbW01h4aG7G4G4GjhsYi69v9SP3r1tCJTMYUqA/rMmpsY3AJZHDx4UG1tbZa/jtPPz9dOXdCf/P2RpIDashsW6Dtf+qRW33y9jS0rn9SgdBxBaQAAAABuw/gGAAAATlCuOZh8OH2+xskKSTbv7DmupwdHtGntcsctmp2vbVt2D6mmukJnLk3q0BujiprKerxkGodJ0nVVQV2ajCpgSDFTemSd8z4PAAAAvzMM44hpmmm38QmkexAAvCx1m2Y3bHXC1tLwK6efn6sbrtfCqmDSYwuqgmVNTrf7+tC/tV0PtjQoVDnTrQxVBvRQS4P6t7Xb0h4AAAAAKBTjGwAAACA9p8/XOFniDk3zaersU+P2Xu0ZGJFpzlSqb9zeq6bOvox/U655olzb1r25VU9tbNGyGxYoJs17vGQahw3uuFcbVi7RI+tX6If/4W49sn6FRscnLH2PAAAAKC0S1AH4TrogQHyrk57H7tKmdYUPbq0KAOQTuAC8plTnp1UuXJnSqqU1+vYf3KFVS2t04cpUWV/f7usDQWkAAAAAXsH4BgAAAMjM6fM1TlNIsnkhi2bLNU+Ub9tyPV4Sx2FVQUORqZgqDEP1i0Lq3tyqro5mrW6oVVdHs7o3py3MCQAAAIcyTNO0uw2wUGtrqzk0NGR3MwBHKMc2zaXebo2tpeFUTthespAtEb3ESdeHLbuHVLcopC+uXa69gyMavRghSAgAAADAlRjfAAAAp/J7TNxPnDAHg+KFxyLq2v9L/ejV04pMxRSqDOgza27Sjvs/nvUc3tFzXHsHR1QVDGgyGss472zHPFGubctV/Lq2sCqoZTcu1LlLk9p//D19+MYF6t92TwlbDgAAAKsYhnHENM20QXQqqAPwDSu3aS5kBbzdbQbczu7K4XZz0vWBChYAAAAAvILxDQAA+bFqZ1nM5feYOOA2he7QlGvl8VLOE2W7lif+LLVt735wuah7QPy61v/GqPa8+Lb2H39PkvTOB1dKMtcOAAAAe1XY3QAAKBcrt2nu39qecQW8U9sMuFVqRYg9AyPaMzDiu50FuD4AAAAAAAAAsFti0nQpdpbFXMTEAfeKJ3Qn7tA0n/gi2fBYRG+8f1Hf/uIdaX+vFPNE8QrmH75xQcZreeJ1PnEBb1dH8+zu4vneA1Kva9GUn5dqrh0AAAD2IkEdgK8UEgTIhZWJola1GXArqxaEuBHXBwAAAAAAAAB2IGm6fIiJO0c8mffbX7yDYjHISWpCdz5yWQBU7DzRnd88oKgpDb418+/Ea7mkjNf5bD/L5R6Q7rp2U21Ib5+7rKogRZkAAAC8ggR1AL5STBBgPlYlilrZZsCNqBx+DdcHAAAAAAAAAHYgabp8iIk7BzsGoBzyWQCUa7X1+V4j0UMtDTPXclOZr/PZfpaDdNe1aMykKBMAAIDHBOxuAABnC49FtLH7sMIMAOfVvblVXR3NWt1Qq66O5qTEUQClFV8Q0vPYXdq0boVGxyfsbhIAAPApxkwAAMAJ6JMAKDeSpsuLmLi9mjr71Li9V3sGRmSaMwnDjdt71dTZZ3fT4CCl6o/1b23Xgy0NClXOpPOEKgN6qKVB/dvaM/5N4uKJfF6jusKYfSxgSIah2Wt5tut8rveAbJ9J6nUtPsfOXDsAAIB3UEEdQFZUAgDgRFQO9za2SQUAuMnO51/X4FvntLPvdT21scXu5gAAAJ8ijgvADlbtLIu5iInbix0DkIt4f2xn3+t654MrBc9x5LMAKJ9q6+lfw5x97HfW3KQba6qTruXZrvO53AOy9VFTr2vxZHbmhgAAALzDME1z/t+Ca7W2tppDQ0N2NwMulGlbr/kGswD84eDBg2pra7O7GfCYeGL6h29YoGePndSmtcuZVAcAOBZjJgAA4AT0SeAnxRQ1oCACgGLt6DmuvYMjqgoGNBmNWRq/Zg7GXTL1x4KG9OY37y/oObfsHlLdolBS8ne6iuLhsUjGxRPZ7neF9CET76UylfW+Wsjzd/Yc19ODI8wNAQAAuIxhGEdM00y7/U2g3I0B4A7xbb2CgZltvYIBY96tw5yArWwBwL3Wf/OABt86p31HT7JNKgDA8TIt+KcQAAAAKKd4HDdUOTPdE6oMuCKOCxQisQprOf8WAKRr1aJ7HrtLm9at0Oj4hN1NgkPE+2OpoqYKnuPo3tyqro5mrW6oVVdHc9rkdCm/auvp2pxPHzLxXjrffTWf52/q7FPj9l7tGRhhbggAAMBjKuxuAABnuvsvf5a0qjkaM/XcsVN6/pXTjq68k+tWtlRLAQDnyFRJQ5Ieamlgm1QAgCMd2naPPtd9WG+fvTz7WOPihfr+o3fa2CoAAOA3hSYlAW6SGjvaMzCiPQMjOe0UUMzfAnAvK+YBExOEuzqaS/Kc8IZ4f8wwJENS7GrtgsRq5nFWHJvxxRPxauvvnrukjd2Hs75GPn3IdPfSxP9Pd1/N5/n7t7ZnrAIPAAAAd6OCOoC0+re266brQwrOFFBX0JBuvj7k2Mo7+a6sploKADhHaiUNSbq6gQeT6gAAx6qvDSl6dcax8urAKRozuW8BAICyc1pFV3a5RKkVs1MAuwwA/sQ8IMot3h+7b81NkmbmONIlZVtxbKZWW19248KsrxHvq5384PKcPmS6flzqvTRgaDaHINt9Ndc+KgsuAQAAvIsK6gDSqq8N6d6P1Wvv4MyK58loTPd+rN6xA8FcV1ZTLQUAnCcx+BgwZqqL3Nd8sz50XZVGmcwGADjYmoZatTXVz1ao4r4FAADs4LSKrrnucgnkqpjENZLekA9233U/5gFhl3h/bMvuIT2yfsWcWNGqHfs1GTVnf9+KYzPX4z/eV9u0dvls37Gro1nhsYh+51v9OntpUjv3v66nPt8iKf29VFLSfVWm5lRtz6ePmloFnhgbAACAN5CgDiAjNw0Ecw0ys0UYADhTunuOEybVAQDIxmnJYACA9Eg2A8qDpEBYqZj5CjfNdcBeLLBxP+YBUQrFjB8yxYp+7/YG7Xv5pIKGFDVlybE53/Gfra8mKeln+46e1L6jJ2f7cYn30i27h2bfa/y+mu36mcvnSYwNAADAm0hQB5CR2waCuQSZqZbiXUw2A+7mtnsOAAAAAPcg2QwoD5ICYaViYkfEnTAfFth4B/OAKIVSjh9Sry/xIuqRqdIfm/Md//1b2/Wfn3tFP37tfcUSkuT7jr+XVN09UcyceTzxXtq/7Z7Z//+HoXfmvX4yHgMAAPAvEtQB5MQNyb+5BpmpluJNBDcAAAAAwF5uiB3AX0g2A8qLpEAAbsUCG29hHhCFsmL8kHp9CQYM3b1yiRZfV63R8YlSNX1WtuO/vjakX41eUsyUgoZm+2qHtt2jzude0Y9efX/O8z14e0Ne7y/x+sl4DAAAACSoA8iJl5J/qZbiLQQ3AAAAAMAZvBQ7gDeQbAaUH0mBANyIBTbewjwgpMIWUKeOH6orAqqprtDuP15bcDtSry+T0ZiW3bDAsjFz6vEfHotoY/dhHRv5IKlKevx/9w6OqOvh21RXU532+fa9fFL7Xj6Zcd412/WT8RgAAABIUAeQFcm/cDqCGwAAAABgL2IHcCqSzeBFTt+tgqRAAG7FAhvAWwpZQJ1u/DAxPam9L44UlVBe7PWlmP5f/HP4/Ttu0VTMzDifemZ8Qh++cYFWLV2kX743pvcuRGRKOc27Znp/jMcAAABAgjqArEj+hdMR3AAAAAAAexE7gJORbAavYbcKALBG9+ZWxy8CAjC/YhdQnxmfkCGVdBF2tgV8uVx3Cun/pX4O+14+Ofv/6eZTE9u4o+e49g6OqDqY27xrtvfHeAwAAMDfSFAHkBXJv3ADghsAAAAAYB9iB3AyqjnDK9itAgCsxyIg4Bo7F2wU89rFLqD+2kPNCo9NaHR8Qu9+cGX28cbFC/X9R+/Mqy25yHbdKab/l+5zuHFhlX7j15bojzZ8JOt86nzzrvl8P4zHAAAA/I0EdQDzIvkXTkdwAwAAAADsRewAAKzFbhUAYB0WAQFz2blgo5jXLnYB9fpvHlDMnPv4ibOXtfbrB0p2XcjlulNM/y/d53Dvx+pnP89s86nzzbuymAcAAAC5IkEdwLxI/gUAAECpsW02AHgLsQMAsBa7VQCAddyyCIhYCsrBzgUbpXrtQhZQp752KkPSgy0NJbsu5HLdma//N981odQLyVnMAwAAgHwF7G4AAG8Lj0W0sfuwwlROAwAAQILESjtu9dqpC7rtz17Qa+9dsLspAAAA8IF4klHPY3dp07oVGh2fsLtJAOAJblkE5IVYCpyvf2u7HmxpUKhyJpUkVBnQQy0N6t/W7prX7t7cqq6OZq1uqFVXR3PSgmop/fy1aaYpm35VwJBkqKTXhVyvO9n6f/NdEwr5HLKx89gAAACAO1FBHYCl2OILAAAAibxUaeeJ7x7TxYlpPfHMMf34K5+yuzkAAADwOHarAADrlLrScCl5KZYC57NzwUa5Xjvd/PWhbffoc92H9fbZy7O/F6oIqOGGBbrp+pA+WldT8utCLteddP2/Yq8J4bGI/v3uI3r3g8s6Mz6Z8zy+WxbzAAAAwDmMbCtB4X6tra3m0NCQ3c2AD2XaBo1gWXpsywi3OXjwoNra2uxuBgDAhcJjkYzb17qlH9S4vTfjz048eX8ZWwIAzsLYFgAAoDj0p5COk2MpHLPWsHsOZsvuIdUtCiUlTqdW33bja883f71h50/17gdXVBk0NBU19eEbF6h/2z1zft/O4z48FtGW3UdUV1ut//HGaNI1YctvflR//o+v6dtfvEMylbGNv/bVXkXTpAnlMo9v57EBAAAAZzIM44hpmmk7hYFyNwaAP7DFV37YlhEAAPiFFyrt7H98g265YUHSY8tuWKD9T2ywqUUA4AyMbZGvfLeUBwDA6+hPIR0nx1I4Zr2pe3OrujqatbqhVl0dzXklIBfbxy/mtecz3/z1moZaPbJ+hZ770w16ZP0KrW6oTfs8dh73uw4M69i75/XW6KU514S9AyOz7UrXxqbOPjVuT5+cHjCU0zy+ld8PAAAAvKfC7gYA8CYnB8uchG0ZAQCAHzl52+xcrG64XgurgkmPLagKavXN19vUIliBKnBA7hjbzo9rSnqJSRO5bCkPAIBX0Z/CfJwWS+GYRSZO7uPPN3+dmGzd1dE85+/tPO5TX3s4PC5JipmmAjK0Z2AkqV3p2ti/tV2dz72in7z2vmIpSeoPt9zCWBUAAAAlRwV1AJaJB8t6HrtLm9at0Oj4hN1NchwqzQMAAD/yQqWdC1emtGppjb79B3do1dIaXbgyZXeTUGJUgSs/Kim7F2Pb+XFNSRav3LdnYESmOZM00bi9V02dfXY3DQAAW9CfwnycFkvhmPWHfMbpbunjFzN/bedxn+m1/2n7PTr81XuSfhYwpKChOW2srw2prqZ6TnL6yvoajU9OW/4e7ECsCQAAwF5UUAdgmflWmWfip6piVJoHYCc/XW8BoNQGd3x69v8fuL3Bxpag1KgCZx8nV1lDdoxtM+Oakl7/1nZ17f+lfvTqaUWmYgpVBvSZNTdpx/0ft7tpAADYgv4U3IZj1h/yGae7pY9f6Py1lP24t3q+Zb5zLvVnktL+3pnxCX34xgX6xLIbJEn//O55fbTuOtsXvViFWBMAAIC9SFAH4Dh+Gyg6bVtGAN6SLSjqt+stAAC5cMuEqpeQwOsNjG3T45qSHglNQOFYbA54F/0puA3HrHcVMk53Wx+/0D5VpuO+HPMt2c65xJ/98f/zks6MT+hv/7BVz7/yftLveTURPRWxJgAAAGcwTNOc/7fgWq2trebQ0JDdzQBykjpQjGOgCDjPwYMH1dbWZnczkIPOnuN6enBEm9Yunw2KOvF6ywQ7AMBJdvQc197BEVUFA5qMxpLuoyi98FgkYwIv/QJ4AdeU9LbsHlLdolBScoVfkiWAYqQb5wMAAG+xew6m0HG6m/r4pepTlXK+pVTzJPQXiTUBAACUk2EYR0zTTNvxp4I6AMegqhgAlE626hBOvN5SzR0A4CROrALn5cVcbquyBuTLidcUJ0hMVOnqaLaxJYA7UAUSAODlcSGcpdBxuhv6+Jn6VIYhDfzv9+Z9bpVyviXXeZJM1wL6i9cQa0Ipcf8FAKBwAbsbAABxDBQBoHT6t7brwZYGhSpnunuhyoAeamlQ/7Z2R11vmzr71Li9V3sGRmSaMwHTxu29aursK3tbkFl4LKKN3YcVJpkKgE90b25VV0ezVjfUqquj2RHVvhInKb0onsDb89hd2rRuhUbHJ+xuElAyTrymAHCfbON8AOVHrAR28Pq4EM7i1XF6uj5V4+KFMk0VdG4VO98SHovoI9t7086TfGR7b9r7TKZrAf3FZF49hlF+3H8BACgcFdQBOApVxQCgNOYLijrleuvEau6Yiwr3AGAfv1S/ckOVNQAA7OSkxeYAiJWgvPwyLiwlqt0Wz6vj9MQ+lSRFpmI6cfaypMLPrWLmW3YdGJYMqfFDC/XehSuamDZVXWHo5usX6O1zl5PuM/NdC+gvJvPqMYzy4f4LAEDxSFAH4CgMFAGgdLIFRZ1yvSVg6mwE3wCUA5PG2bGYC4CduEYDzuKUxeaAnxErgR0YF+aPRST+Nt84Jt6num/NUnX+4BWNnLusmKmCz634fEt4LKI33r+ob3/xjnn/JvV+Ek+Sl6SJaTNt0nwu14Jy9hcZL8LruP8CAPzA6j5doOTPCAAAAEfo3tyqro5mrW6oVVdHc1JSupOwzaJzsSUogHJgi9TsWMwFwE47n39dg2+d086+1+1uCgC5Z5wPeJkdsZLwWEQbuw8rzKIU32JcmLumzj41bu/VnoERmeZMcm/j9l41dfaV/LU4N51rvlhTvE+1YWWd7rp1iUypJOdWPjGu1PtJJqn3mcNvnsl6LShnf9GLMT3O69Jz82fK/RcA4AdW9+mooA4AAGZR7QDZWHV8OKWaO+Yi+AbASlQezB3VUgGUW+o1et/LJ7Xv5ZNcowEAvmdHrIRK0JAYF+aqnNVuOTetl++cRCGxplKcW4W8buL9pCpoaDJqKhgwFI2ZChpS1JSqUu4znT3HNXpxUqvqa/R/feEO2yqkezmmx3ldem7/TLn/AgC8qlx9OsM0zZI9GZyntbXVHBoasrsZAACX+Mr3junZoyf12Ttu0VOfb8n4ewcPHlRbW1vZ2gVn6Ow5rqcHR7Rp7XJXBpFQmC27h1S3KJQUfKNKH4BSCI9FMk4asxAGAOy1asd+TUbnxo2rgobe+Prv2tAiAACco1yxktTJ4jgvJAACVtrRc1x7B0dm/13qeHY5zk3mYGbkOycRr9R84uxlSSpbrKnQGFfi/eSJ7x7VcHh8dvFTYhL60y++rXRZPVbfDzJ9/l6M6XHPLT0+UwAAnK2UfTrDMI6Yppk2MEIFdQAAMLc63tGT2neU6niY4eVqGJgfFe7hVewaYj92acgPxyzgbm47hw9tu0ef6z6st68mdkhS4+KF+v6jd9rYKgAAnKFcsZJyVoIGvOTM+IRW1tXojfC4VtXXaHR8oqTPz7lpvULmJNIlw0amYvrhL07pW1+4w9L2FhLjCo9F9MHlKX2to1n1i0L6aN11WvfRxUmLn1Y31Kqro1lXJqe17+WTs5XVE485K8aa833+XozpcV6XHp8pAADOVq4+XaCkzwYAJRRf5R5mmyTAcpk2VGGfFUgzQaQHWxoUqpzpOoYqA3qopUH929pL/lpc+wGUy5N9r2vwrXPauf91u5via/EtUnseu0ub1q0o+aSxlyRuhwvAfdx2DtfXhhSNJY8IozHT1QkHAAC4jRcTAFEcYqfza+rs0wuvvq83wuOSpDfC43rh1ffV1NlXstfg3LReIXMS8b8JGDP/rq4IqHHxdbp75ZKsr1Wq8yrfGFfqGLF7c6u6Oppnk9K7N7eqqbNPjdt7te/lk5JmktOlmcT7+DFnxVgzl8/fazE9zuvS4zMFAMD5ytGno4I6AMdKHFCXcus9AHMd2taetO2hRHU8XFPOIBLXfvdwWxVQII5dQ5yle3Mr15N5sJMJ4G5uPofXNNRqYWVwtvLkR+qus7tJAAD4TnyyOLGiLvyL2On8ylWxl3PTWoXMScT/xtRMcvpkNKYNty6e91wp5rxKjGnlurtGPmPE1OM5GDB098olWnxdtfYOzvxdLs+Tr1w+fy/tvBr/HhdWBjivS4xrJQAAzlaOPh0J6gAcx82Tt4Bb1deGNH21Ol5V0NBk1HRUdTwS1+xndRDJSdd+rx5vpX5fO5+/Wn2673U9tbGl+AYCZcKuIc6TOhHo1etwodgOF3C3+Dn8wivvaWLaVHWFofuab3b8OZzaP38jPK43wuNq6uwjNgMAQBl5KQEQhXNS7NTpylVshXOztBJjQTI1kyxcFcx7TiKfeYxSnFeFxLTyifOkHs+T0ZiW3bBAXQ/fpm33Nalr/y/V+8/vKRozFQwYeuATpRtr+imxOP49blq7fPZ85rwuDa6VAACABHUAjkMCBmCPNQ21amuqd2Swicow9rM6iOSka79Xj7dSva851adfPql9L/un+jSJs3O57TNh1xDnyDQRGDBmFgw44TrshOPbT9vhOuHzBkrt2jk8sxRqYtp0xTnspP45AACA39E3y4+fEmu9IjF2LangZOF85jGKOa8yxbSChhRT9pjWfHGe1NhIpuP57r/8WVIbojFTzx07pedfOV2SOL0fEotZ/AMAAGA9EtQBOI6fEjAAJ3FisIngkH844drv1eOt1O/LzFB+OtPjdrAywdHJCxjsSux08meSTurkjSSdOHtZd+/8mavPdTdKnQiMu7qpiyOuw045vv0yuf5k39XdOfa/rqc+32J3c4CSSO2LSTPXt3848q6j7ztO6J8DAABgBn2z/DhxrgPppYtdJ/6/lXGhYs6rTDGtaI4xrWxxntRYVKbjuX9rux78m3/S6FhEUVMKGjPv6bkv31XIx+FLLP4BAACwHgnqAIpmRTKUXxIwAGRHcMi5lUS9eO336vFW6vd1aNs9+lz3Yb3t4OrTViQ4umEBQ7kTad3wmaTjhkUWfpFuIrBx8UKdHovYfh122vHt9cn1ObtzHD2pfUf9szuH3zi1f2sVN/cx7e6fA5L/rhkAAGRC3wxelDpeCl7dVS9mqixjp/h5dd+apfrK93+hd89fyenvUmNak9GYVnwo95hWujhPvrGo+tqQ7v1YvfYOjsy24d6P1dNnzgOLfwAAAKwXsLsBANwvddu1Uuje3KqujmatbqhVV0dz0kDdSuGxiDZ2H1aYwB7gCASHrLnGloLbr/3prvdWH2923WPi7ysyFZMhKTJV3Puqrw0perW8cWXQkDSzfagTzsumzj41bu/Vs0dPSppJcGzc3qumzr6in7t/a7sebGnQ1besoCE91NKg/m3tRT93seLve8/AiExzZvKiVO87m/hnEqqcGVaGKgOO+UyyObTtHq1YvDDpscbFC3Vo+z02tcjf4hOBPY/dpUfWr9B0zHTEfd+tx7dbZVofwrIR98rW73Fq/9Yqbh7T2BWbARL57ZoBAEAm9M3gdIXEv1PHS1FzJjm9XGOn+Hn1/CunNTo+oWU3LMj5bxNjWpvWFR/TKiQWldqG0fGJnF8PM/gMAQAArEUFdQAFc1pVwVIod+VRAPPza2UYp15jndqufGW63lt5vNl5jzkzPqGV9TX61/C4VtbXFB1kXdNQq7amesedl1YmON79lz9LOvajpvTcsVN6/pXTth/7dlVmdWvCXep3KUknzl7W3Tt/Zvt36UepFaO27B5yxPXFrce3Wx3a1q6N3Yd1wsG7cyA/6fo9XulHFsKvYxqgGH6+ZgBAubBLBYBSKjT+nThe2rJ7SNJMvKgcY6di+pxfe6hZX37mqJYsqipJTKuQWJTXd9wrBz5DAAAAaxlsY+5tra2t5tDQkN3NgEeFxyIZk6HcFsxMDUDEuXnSi+AyrHTw4EG1tbXZ3QxPc+o11qntypUd13u77zF2v345xav0pEtwLPb4DI9F9ODfHNLoxUlFY6aCAUP1i6r13JfvcsSxv6PnuPYOjqgqOLOd66a1y8uyEGLL7iHVLQolTbw4vYKX079LOIcbj28327Dzp3r3gyuqChqajJr68I0L1L+NnQ3cJlu/I9uCKq6/AFK5fewJAG7Q2XNcTw+OlC2GACB3bpqDcXP8uZg+53zX0ELmaf/wvw3otfcu6q82tuj5V08Ti4KvkesAAIB7GIZxxDTNtB1XKqgDKFjiSm7DkKurCtpVedRKVIMH3M2plVud2q5cxa/3vb84pagpBQ3pgdsbLL3e232Psfv1y6m+NqTp2MwC3HiCYzRmluT4rK8N6d6PLdXewZkKOpPRmO79WL1jjn27KrO6scKM079LOIcbj283c+ruHMjPfEnobu5HAigvt489AcDJ2KUCQCm5Of5cSJ8z12toIfO0y25cqJ8Pn9Hzr7zH3C58j1wHAAC8gQR1AEU5Mz6hlXU1eiM8rlX1NRodn7C7SUlyXVnrpUkvgsvlxeptWMmuhNP5OLVdubj7L3+WdI2MmtJzx07p+VdOW3aNtPseY/frl5uVCY5OPvZJpM2Pk79LwK+4jnnDfP0Orr8A8sE1AwCs4eZkUgDXOGV+yu3x50x9zkyfb//W9qRdPFOvoZnmaauChlqW35j2+2JuF7iG8wEAAG8xTNO0uw2wUGtrqzk0NGR3M+BRbtiyLd32apkCClt2D6luUSgpAOHGbdPYArm8/LoNqpu2lwQShccievBvDmn04qSiMVPBgKH6RdV67st3WXqNtPseY/frAwAA/6DfAQAA4Hw7eo5r7+CIqoIzO4v5Lb4NOF0uczBOmp/y4jiws+e49gyMqH5RtX74+AbVLwplnBsPGNKvvnm/pMzztBUBQ88ePZn2+2JuF7iG8wEAAPcxDOOIaZppBwBUUAdQsHiVjR/+4pRi5szg+/dub3BElY1sK2s/98llabeD8krFPjdWKnBKlYd8sHrb+dx4XMF69bUh3fuxpdo7OHO+TkZjuvdj9ZYfI3bfY8r1+px3AADA7n4PAAAA5scuFYB7OXF+6msPNevLzxzVkkVVrh8HrtqxX5PRa0UewxcntPbrB1RdEZgzN15VYajh+gVqXHLd7O+nztNGpmJ67tip2Z+n+77cOLcLWIXzAQAAbwnY3QAA7nX3X/5M//3YzABckmKm9NyxU7p758/sbZhmkucfbGlQqHLmMheqDChgSBPTMe0ZGJFpzgQAGrf3qqmzz+bWll48uNzz2F3atG6FRscn7G5SVrsODM8uGnCLdMfYQy0N6t/WnvNzhMci2th9WGELgv9WPrdbuPG4Kje/Hiduu0a6CecdAAAAAACA83VvblVXR7NWN9Sqq6PZ9ZWOAT8pxfxUqXkpLvzp1UvTPj4xHdPdf/kzLaqukKmZHcWnoqY23LpEf/fv1ib9buIcxEcWL5QkBQOGpMzfF/MWwDWcDwAAeAcV1AEUzDTNvB4vp3Qra3//jls0FTPTbgflNW6pWOfEKg+5KsXq7cSAXam3X7TyuZ3OzcdVufn1OHHLNdJNOO8AAPAndk8BAAAAUCjGE4UpVXXhUnz+88WFrf6OS/n8qe8lUTBg6IFP3Kwd939c//kHr8y7A0X35lY1dfZpz4tvzz4WvVrxLTKV/vti3gK4hvMBAADvoII6gIIlbm+Wy+Pllrqydnximu2gHMaJVR7yUejq7abOPjVu77Wkmr+Vz52Nkypxu/24Kge7jpNScdLxhhmcdwAA+JOXquQBAAAAKC/GE4UrRXXhUnz+88WFrf6OS/n82QqwRWPm7Jxy6g4UX3uoWRu7D+u1UxeS5i1SP5ugIbU11en+225S7/H3mN8AAACAL1BBHUDBAoYUSzNWv7pDme3Srazdsnto3lXtKJ9SVXmwS6Grt/u3tqtr/y8tqeZv5XNnY1cl7nTVMdx+XKWyosKIXcdJqcSPtyf3v653z1+hwo4DeO28AwAA2bF7CnANlT8BAADyw3iieMVUFy7m80/t+2aKC9+982eWfsdWHEOHtt2jz3Uf1ttnL88+VlMd1H/Z/Ek9/8r7GeeU4/MVT3z3mP51dHx2niz1s5mMxrTshgWSpPNXpny3sy0AAAD8iQrqAAr24lfvTf/4/57+cSdIXdWeGMCBPUpR5cFtrEzkLHeSqFWVuHOtkJ2pOoaXjisrKoy4NZk49Xh79uhJDb51Tuu/ccDupkHeOu8AAEB27J4CXEPlTwAAgPwwnrBXMZ9/ur5vuriw1d+xFc9fXxtS9GpltsrgTDW2GxdWacOtdWnnlFPnK4bD43PmyRI/m4CM2UT6bPNp7CALAAAAL6GCOoCC1ddeS2Q0JMWLqTs9wRHOUkyVBzeLB6WsqOZv5XOnsqoS93wV2eerjuGF48rqKjLlPE5KJX68/fdjp5Iej5lS4/ZeKuzYzAvnHQAAyI1bFzwCpUTlTwAAUE5e2rWF8YS9Cvn8V+3o02R0/r5vYlzYyu94vveQer7kev6saahVW1N9TvMm8fmKF155TxPT17Ycr64I6L7mmXmyxNc6/NV7cppPs2vHYgAAAMAKJKgDKMpn1ixV3aKQqxIcvRTEg3tZmchZziTRUgeSc53gtyox3kmsfo9uTCaOH2+pvPj9AwAAd/Dz+NKNCx6BUvLDuBQAADiH15JWGU/YK9/P/4FP3Kxnj55UMGAoGjNz6vta/R1ne/7U8yXX8yd13iRezTzdmD8+XzEZNRUwZgrpSMo4TzbffBoLYAEAAOBFJKgDKIobExy9FsQD7FbKIGOuE/x+qLDih/eYr9QAbVxkis8GQP78nFQKoHR2Pv+6Bt86p519r+upjS12N6es3BgPAEqJMRsAACgHK5NW7YyNMJ6wV66ff+rxF72ahZ1LTN7q7zjd82c6X1L/nev5s+vAsAbfOqcHdh3SDx/fMOf9xufHfjU6rldPXdCFK9NaWV+j0fGJtM+XbT6NBbAAAADwIhLUAfgGK88Ba5QyyJjPBL8fKqz44T3mIzVAGzSku1fVaXFNVcaALwBkwqJFAMVIHV/ue/mk9r18kvEl4DOM2QDnY2EqALezMmmV2Ajm47aYfGp7qysMLakJ6cz4hCamcz9/Usf84YsTWvv1A3PG/N2bW+f87nB4XMPhcTV19s2JD2SbT2MBLJyEPjQAACgVEtQBlIUTBjGsPAfcIdcJfj9UWPHDe8xHaoB2MhrTshsWMHkCIC8sWgRQCqZp5vU4AG9izAY4Xzz5cmff63rngys5x6edEM9G6fB9ws2sSFolNoJcuS0mn669C6uCmozmd/70b23X+m8eUCxliD8xHdOqHfv1xtd/N+l3SzX/zAJYOAULmAAAQKmQoA6gLOKDmExboJUDK88Bd2CCH9kQoAVQrPik0QuvvKeJaVPVFYbua76ZRYsA8nJo2z36XPdhvX328uxjjYsX6vuP3mljqwAAQFy63U4k6c5vHNCb37x/3r8nKcdb+D7hdqWOiVLQCflwW0w+tb0/evV03u2vrw2po+UWPXv05Jyf/d7tDXN+t1Tzz8yPwW4sYAIAAKVmUNnJ21pbW82hoSG7mwEfSx3ExNk1iNmye0h1i0JJQYjEwT6A3Bw8eFBtbW12NwNIi6pYAOazo+e4nh4Ymf33I+uWk6QAYFaufYkNO3+qdz+4osqgoamoqQ/fuED92+4pY0sBAEAm4bGIuvb/Uv/92Km0P88Un3ZaPBvF8dr3ScyrcHx2c+3oOa69gyOqCs5Umd60ltiIkzAHkyzfc7gU5/yW3UP61eglDYfH0/488V7C/DO8It6HTreAifsnYC36qwDczDCMI6Zppu0AB8rdGAD+0r+1XQFj7uMT0zE1dfaVvT3dm1vV1dGs1Q216upoJjgA2CQ8FtHG7sMKO7zSBtwpsSoWAKRq6uxLSk6XZirB2NE3BeBMufYl1jTU6pH1K/Tcn27QI+tXaHVDbZlaCAAA5hOvZmoYSopPhyoDeqilQf3b2tP+Xf/Wdj3Y0qBQZSCn34ezee37JOZVOD67ueJVpnseu0ub1q3Q6PiE3U0CMsr3HC7FOd+9uVUfrbtOv//rt6htVZ2CCR2KxsULk+4lzD/DK9iRHrAP/VUAXkUFdY+jgjqc4CvfO5a0BVrQkB64vYGVtoCLFVu9o7PnuJ4eHKEqC0rKa1WxAFiDKjAAMqEvAdiDClFAfjhnchevZnpufEL7XzmtgCGZ0rzxKKoKe4sXvk/6qYWz8rPjegwr5ToH4/XjMN9zeNWOPk1GS3/Of/SrvYqlSavhOgwvYkcAoLzo6wPwAiqoA7DVpclprayvkTRTrSZqipW2gE81dfapcXuv9gyMyDRnKtY2bu+lai1KwslVsdg1AHAOqsAAyMTJfQnAy6gQBeSHcyZ38WqmUdPUI+tX6If/4e6cqgRnqirM2N6dvFAlmn5q4Ur92SVeB7gewwm8fhzmew4/8ImbJWm22nk+5/xrpy7otj97Qa+9d2HOz35zZZ0aFy9UVcXM8wYMcR2GZ7EjAFBe9PUBeF2F3Q0A4H3dm1u1ZfeQ1n10cdJKWwD+07+1PWPVWqBYTk46TZwocFuVLsCL4gkK9E0BJHJyXwLwotQKUXsGRrRnYIQKUUAGnDOFS0yq6epoLvj3Gdu7U77fvxPRTy1cqT+7XQeGNfjWOa39+oHZx7geo9TCYxF9Y+CKVn8ykvFYLXW/wKmV2HM9h1M/j+jVcueRqZgqAsbs72d7n09895guTkzriWeO6cdf+VTSz/7uf147uyNHdcXMjhxchwEApUBfH4DXkaAOoCy8EAQGUDwGWLCa05JOSSAAnIm+KYBMnNaXALyMBcxAfjhn7MPYHk5AP7VwpfjsUq8Dibgeo9R2HRjW8AexrAuiSt0vyLQIy87E9fhrL6wKznsOp34eQUNaWhvSqQsRDb51bvb3Ut9neCyitd84kPRcw+FxNW7vlSSdePL+2ce5DgOAczh1YVWhuMcA8DLDNE272wALtba2mkNDQ3Y3AwDgMQcPHlRbW1tBf7tl95DqFoWSBlhsDwevCo9FMk4UeCFgAgAAABQjXoWwKjhThXDT2uVUJQay4JyxB2N7AKnXgaAhRU2pqiKgKa7HKJFMCyEyLYgqRb9gvtfs7DmupwdHbDnG833t+OeRT/pL/FxeWBXU5cno7OPLblig73zpk1p98/WFNB0AYDE7708AgLkMwzhimmbaxK9AuRsDAAD8rXtzq7o6mrW6oVZdHc1JyenhsYg2dh9WmFXBnuTH75ddAwAATuDHezBQKpw/1opXiOp57C5tWrdCo+MTdjcJcDTOGXswtgeQeh2ImtKq+hr9gOsxSqh/a7sebGlQqHImhSNUGdBDLQ3q39ae9vdL0S/I9JqmpMbtvdozMJPwvWdgRI3be9XU2Vfw+8tVU2dfQa8d/zz2/NE6NS5eOPt40JA+s2apPrNm6ez7jIteTWZPTE6XpAVVwXmT0xkrAkD5FXqPAADYp8LuBgAACue1rYuATNtIwhv8+v2yLRsAwG5+vQcDpcD5Y63EBctdHc02tsSZiPsgFeeMfRjbA0h3HYgXYQFKIXEhRGVA8y6IKkW/INMirENb2zPuHmK1/gJfO/55rNrRp8notarwUVN64dX3FTAkUzPV4SejMa340EKdHosoMjXzuzXVFfrq73xM/8/hEzp/eWredjJWBIDyK/QeAQCwDwnqAOBiBD/gFanbSO4ZGNGegZGMW1fCXfz+/ZJAAACwi9/vwUAxOH/gBMR9AOdgbA+A6wDKIb4QYlXgfb0RW1qWBVHpFl/YuXtIsa/9wCdu1rNHT8rQTEJ6/L831YZ0z8eXzr7Pg/8Snn2NyWhMHS0N2rR+hTatX5H1+RkrAoB92N0KANzHME3T7jbAQq2trebQ0JDdzQDKxi+VpVKDH3FODn745bvxi4MHD6qtra1kzxcei2Rc7czx4n58v4A7ce8G3I97MFA4zh/YyY1xHwAAAC+yKz5W6jmYQmzZPaS6RaGkxPXEhRpW+sP/NqjX3hvTX33+dj3/yvs5vXamPnSqeJ+60PfHWBEA7GXn/QkAkJ5hGEdM00x7MQ6UuzEAYKXEylJe1r+1XQ+2NChUOXMZD1UG9FBLg/q3tdvcssyK+W7CYxFt7D6sMFvneharnb2N7xdwJ7/0qwAv4x4MFI7zyhHbNAABAABJREFUB3ZyY9zH6YgtAQC8gPtZ+fk5Pta9uVVdHc1a3VCrro5my5P/Eo/vZTcu0Oj4hJ4/fjrn107tQwcMzf5/3IdvXKCP31yr8NVkxkLeH2NFALBXue9PAIDiVNjdAAAoBb9tp+am4Ecpvhu2tPaHdNtIwjv4fgH38Fu/CvA67sFA4Th/YIVcqnC6Ke7jFlbGlth5CLAO5xeQjLmS8nFafMwP18NdB4Y1+NY5rf36gdnH8vncE/vQkhQzpchUckX1dz64onc+uKI7v3FAb37z/oLbylgRAAAAyI1hmqbdbYCFWltbzaGhIbubAVjOj9upuWXromK+G7a0di4nbC8JALCGH/tVAAAA5fKV7x3Ts0dP6rN33KKnPt+S8ffcEvdxunLEljp7juvpwRFtWrucZEGgxDi/gBnMlZRfLvExK5PGf/D8T7X37QWzz+3l62Gm41tS3nHJeB/6vjU3qfMHx3Xi7OWsv885BAAAABTPMIwjpmmmDV5TQR2AJ/ixslTipGRXR7ONLcmumO+mf2t7xgAgAACwhh/7VQAAAFZLTbzZd/Sk9h09mTEpxi1xH6dJTRSzMrbktMqqgJdwfgHJmCspv1ziY1ZWtH/uzSm99O4Vrf/GAcUS6g168XqYenwHA4aiMVNVQSPvuGRiH/quW5fo7XMjCkiKptRs5BwCAAAAyiNgdwMAoFTi26n1PHaXNq1bodHxCbubhKsK/W5IkAMAwB7l6leFxyLa2H1YYbbBBQAAHpdpI1P2Ny2txEQxydrYUv/Wdj3Y0qBQ5cw0S6gyoIdaGtS/rb3o54Y7MJ6xDucXkIy5Entkio81dfapcXuv9gyMyDRnksYbt/eqqbOv6NeMP/fP3pmWaSopOV3y5vUw9fiOxkytrK/RD/50Q1Fxyfj3t/ajH9KqpTVauqhakhQwxDkEAAAAlAkV1AFYysrt7VI5pbJUOd+zWxTz3cQDSIlbWhejHN8PxwAAwO3K1a+ystIUAAB2YDyITA5ta9fG7sM6cfby7GONixfq+4/eaWOrvCNbteW2prqSxpbiSBYE4xnreOH8ok+AUiv1XAnmlyk+ZmVF+/hz//djp9L+PDLlvuthNvFr5cKq4Jzje3VDbVFxycTvT5K27B5S3aIQ5xAAAABQRiSoA7CUH4P0fnzPVip1glw5vh+OAQAAsmO7dgCAV+18/nUNvnVOO/te11MbW+xuDhykvjak6aslMKuChiajpqIx0zPJRXbLliiW+BmXevElyYL+xHimPNx+fhEjRqk5pUgTrF1EE39uaabSd7yCetCQ7l5Vp8U1VZ7aQfrJvpnx02fvuGX2uLbq+OYcAgAAAMrPMDPtLQpPaG1tNYeGhuxuBnwoNUgf5+UgvR/fs5uU4/vx0zFw8OBBtbW12d0MAIBLhcciOSUQAQDgFn4aD6Jw6ao2plZ2ROF29BzX3sERVQUDmozGtGntcpJCYQnGM8iGPgHgD1b267bsHtLU2FmFrl+i/a+cVsCQTMlTfZtirpXsUAEAAAA4i2EYR0zTTDsgCpS7MQD8oX9rux5saVCocuYyE6oM6KGWBvVva7e5Zdbx43t2k3J8PxwDAADkxgvbtQMAkChTERCKgyBR9+ZWdXU0a3VDrbo6mklOL7F4teWex+7SpnUrPFVdFM7CeAbZECMG/MHKfl335lb92zXVipqmHlm/Qj/8D3d7rm+TaZiUy+gpcYcKAAAAAM5WYXcDAHiTH4P0fnzPblKO74djAACA3Ll9u3YAABId2naPPtd9WG+fvTz7WOPihfr+o3fa2CpnouIhrJKYGNbV0WxjS+AHjGeQCTFioDz80Kf0Wt8m8Ts7tK1dG7sP60Qe46fUqut7Bka0Z2CEHSoAAAAAB6OCOgDL+LFqkR/fs5uU4/vhGHCG105d0G1/9oJee++C3U0BAGRABVEAgJfU14YUjc3U+6sMGpKkaMz0bLJMMah4iFIJj0W0sfuwwiQGwwZOH89wftiLGDFgPfqU7pP4nd39lz9LSk6XpBNnL+vunT/L+PfsUAEAAAC4j8E2s97W2tpqDg0N2d0MAIDHHDx4UG1tbXY3I6Pf+qufazg8rpX1NfrxVz5ld3OAkvFDZSAAAAC32rJ7SHWLQknVdJ2WsGin1IqHcVQ8RKE6e47r6cERbVq7XF0P32Z3cwBHKfX5QTwCgFP4pU/p9DmYuFzuD5m+M0kKBgxFY6aCAUP1i6r13Jfvynqf2dFzXHsHR1QVDGgyGvNVP5B7MQAAAJzKMIwjpmmmnQypKHdjAAAArNK4vTfp38Ph8dnHTjx5vx1NAkoqscqMXwLvAAAAbpGYjN7V0WxjS5ypf2u7uvb/Uj969bQiUzGFKgP6zJqbtOP+j9vdNLhMapLTnoER7RkY8VxiGlAIq84P4hEAnII+pbPkcn/I9J0FDUM9x07KMKSYaerej9XPm3gd36EicVGwX3AvBgAAgBuRoA7AcqzoBlAu+x/foD/5+yM6ef7K7GPLblig73zpkza2CsiukCozJGAAAADAbeprQ1pUXaGJ6ZiqKwKamI5pUXUFsSLkzarENGKY8IJSnx/EIwA4DX1KZ8jl/pDYt0r3nY2OT2hlXY3eCI9rVX2NRscn5n1dPy4K5l4MAAAANwvY3QAA3rfz+dc1+NY57ex73e6mAPC41Q3Xa2FVMOmxBVVBrb75eptaBMwvsfJJJv1b2/VgS4NClTPd91BlQA+1NKh/W3u5mgkAAAAULV7xsOexu7Rp3YqcklCAVFYlpuUyNgOcrtTnB/EIAE7kxD5leCyijd2HFfZJRe/+re1qXLxw9t/p7g+JfavU72zv4IheePV9vREelyS9ER7XC6++r6bOvrK/F6fjXgwAAAA3o4I6AMukruje9/JJ7Xv5JCu6gTLwc9WvC1emtGppjR6/Z6V2/XRY5y9P2d0k1/LzcVQO+VQ+oTIQAAAAvMCPFQ9hjXiS0xfXLtfewRGNFpEMRlVKeE0pzw/iEQCcyIl9ysRk7K6Hb7O7OZZK7TtJUmQqpn/8xSl96wt3pO1bSVJ1RUBdHc3q6mjWF9d+WJv/dlDjE1OamDZLtiOOF3EvBgAAgJuRoA7AMqZp5vU44Eevnbqgz3e/qO89ur6kVb79FAxNNbjj07P//8DtDTa2xP38fByVQ77bbpdyghkAAAAA3KyUiWn5js0Apyt14ibxCMA5ci0oQuGR8vHjQrd43+mHvzilmClVVRhquH6BGpdcl/TzbH2rvQMjOntpUpJsT7p2w/nCvRgAAABuRYI6AMsc2naPPtd9WG+fvTz7WOPihfr+o3fa2CrAWZ747jFdnJjWE88c04+/8qmin8+PwVCUHsdReeRb+cSJlYEAAAAAwO2oSglkRzwCcI6dz7+uwbfOaWff63pqY0vG36PwSPkUu9DNDcnRUko7r/adTM0kl09GY9pw65LZYy1b3ypd9fWJ6ZiChqHR8Qkb3pk7zhfuxQAAAHArEtQBWKa+NqRobKZaemXQ0FTUVDRmOjrAkqtsASO3BJNgr8btvUn/Hg6Pzz524sn7C35eqn6hFDiOyofKJwDgDlbtegMAAJyBsRkAwMlSk3r3vXxS+14+OaegCIVHyi9dMvbhN8/m/PduSI6WrrXzyf2v693zVxQ0pLqaav3VxhY9/+rpOX2nTH2rbHMP5Z5T5XwBAAAArEeCOgBLrWmoVVtT/byTO25L6s4WMHJLMAn22v/4Bv3J3x/RyfNXZh9bdsMCfedLnyzqean6hVLgOCofKp8AgDuUetcbAADgLIzNAABOZppmTo9TeMRameYyE5Ox/9fvHtUb4fF55witSI62Yq41tZ3PHj05+/+GIT3/yntp32emvpWT5h44XwAAAADrBexuAABv697cqq6OZq1uqFVXR3NSQCJRYlJ3OYTHItrYfVjhPKshNXX2qXF7r/YMjMg0ZwJGjdt71dTZl/VnQKrVDddrYVUw6bEFVcGSVOSMB0N7HrtLm9atsG1bxEK8duqCbvuzF/Taexfsborvufk4Atym0H4JAOs1bu9V4/ZeDYfHJV3b9SZ1NxwAANyIfigAAO5waNs9WrF4YdJjjYsX6tD2e5Iec1Lyrxdlmsvs3tyqfxh6R7+7q19vXI0fzDdH2L+1XQ+2NChUOZOuEaoM6KGWBvVvay95+4oRb2c6hc6FOmXugfMFAOAkxGgAeBUV1AHYyq7t0wqtcp51Nb0pVtojLxeuTGnV0ho9fs9K7frpsM5fnirJ87q56hfVSZ3DzccR4DbsvgI4l1W73gAA4AT0QwEAcIf62pCisZlq6ZVBQ1NRU9GYmTaRNrGad7adjd2ilFXBC32uXOYy863GXcrkaCvnWuPtzKS6wtB9zTfnNReaae7Bjt22vXa+AADcixgNAK8iQR2ArdIFbD61qk7hixMKX4yUPABRbJBmvoARK+2Rj8Edn579/wduT1+Bwi2KDRymViGNVyeVpBNP3l+SNgJWsyOADneza6GeE3C+wC2s3PUGAAC7lLIfSr8OAIDyWNNQq7am+nkTab1WeKSUyVqWFK+6qpCE81IlR+ebHJ+vM1kqnE9Mm/rhL07pW1+4o+jXsSMxz2vnCwDAffw8VwjAHwJ2NwCAv6UL2Pxq9JKOvXO+pFvQxZViy7xsW885ZVs6oNyK3Tpy/+MbdMsNC5IeW3bDAu1/YkMpmoccsXVYcazYQjVffIfOk+07sWIrX7dwwvkC5Cq+6823/+AOrVpaowtXSrPrDQAAdillP5R+HQAA5dG9uVVdHc1a3VCrro7mpMRaL2rq7FPj9l7tGRiRac4kazVu71VTZ1/ZnyvX5PN85whL9Z1map9MzRsrzha7fO3UBTVu79ULr76f8e8/fOMC3b1ySUHtjivldw3YgXkZAMXw81whAH+ggjoA28UDNt97aSbwMBwel2TNysBSbJmXbTW9HSvt86lURVUrlFqpVvRSndQZ2DqsME5a2c53aL/Ue22276SUW/m6hZPOFyBXXtr1BgAAqTT9UPp1AADASqWsCl6K58ql2rmd1bjTtS+XWHHq7yTGNp/47jFJUk11hcYnptP+/cnzV9S/7Z6i2m51BXjAaszLACiGH+cKAfgLCeoAyioxsCFTSQlcj99za1kCEKXaMs8p8hn0MkBGqZUycBivTvr4PSu166fDOn+5uOqkLMjIHYkFxXFCAJ3v0Dni99r13zigmHnt8Uzfidf6JfNxwvkCAACA4vuh9OsAAICVSpmsZXXxKidIbN8/DL0zb6w4Uzw5YEgxU1r79QOzP0uXnG5c/e/6jy5OeryQeRkS8+BWzMsAKBW/zRUC8BcS1AGU1ZN9r2vwrXPauf91LagKJiVLlysA4fQgUq7yGfQyQIZVSnnelro6KQsyckdiQXGcEEDnO7Rf6r3WTPl5pu/EK/2SXDnhfAEAAEDx/VD6dQAAwGqlTNbyU+JXLrHi1N+Ji6UGNa+6riqoO5bfoEP/enY2iV2SPrrkuqTfS5yXefzelTknq/vp+4F3MC8DoFT8NlcIwF9IUAdQFqlJW/uOnpz9/8Rk6bamOgIQOcpn0MsAGVZyWuCQBRn5I7GgeHafB3yH9kt3r72pNqQTZy/znaSw+3wBAABAadCvAwAAViplspafEr9SY8WRqZgOv3k24+9UBQ1NRk0tu3GBzoxPKDIVk6HkAhwNNyxQRWCmbnq6XSNTJT6eSxEhP30/8A7mZQAAAOZHgjqAsjAzrLiXkiuKJg7YCEBkl8+glwEyrOS0wCELMgpDYkFxnHAe8B3aK929Nhoz9ch6vpNUTjhfAAAAULxc+nWvnbqgz3e/qO89ul6rb76+XE0DAACwVXgsknP1cCskxoqf+O5RDYfH5ySKx3/nxJlxHfrXszozPpEU27x+QYW+3nGbdv10WOcvT2ndRz4kSWpcvFCnxyJJ8y9bfvOj+i//41dzKrJLFBGCtzEvAwBwKrv7o0AcCeoAyuLQtnZt7D6sE2cvJz1eFTRIli5CPoNeBsjwCxZkFIaEUffjO7Rfuntt/LvgOwEAAIAfPfHdY7o4Ma0nnjmmH3/lU3Y3BwAAeIiTk252HRjWSyfO5VQ93Ardm1vV1NmnPS++PftYaqL4wX8ZTdqNNp5YHjNnim6MXozogdsb9J/+4ReamI7NVkRPnOudmJ6pzr7j/o9rUXXFnOT0uIAh9W9rt+KtArZiXgYA4FR290eBOMPMVtYYrtfa2moODQ3Z3QxAkrRh50/17gdXZreKu64qqH949DdmE7gSB3B+4eTgGZDNwYMH1dbWZnczMtqye0h1i0JJSaJuvcZwnQAAAAAAuE3j9t6MPzvx5P1lbAkAAPCqzp7jenpwRJvWLndM0k1TZ19S0ndcvtXDSzEHEx6LZNxttn5RKOf+WurzBAzplhsWqCoY0MnzVxSZjumRdcs1Oj6hN94f11tnLs15vs/++i16amNLUe8HAAAA8ytVfxTIh2EYR0zTTJuUFSh3YwD415qGWj2yfoV+8Kcb9Mj6FdqwcolWN9Sqq6N5TuJoeCyijd2HFb4Y0WunLui2P3tBr713waaWWydxxRqA0une3KqujuaM1xg34ToBAAAAAHCb/Y9v0C03LEh6bNkNC7T/iQ02tQgAAHhFU2efGrf3as/AiExzpjJ44/ZeNXX25fU8iXORpdK/tV0PtjQoVDmThhGqDOihlgbbqoe/+OZZRabS7za7//ENWlgVTPr966qCc/prqbvWmpLe+eCK3jxzSZGryU97Bkb0wqvvp01OX1Vfo/GJaWveIAAAAJI4rT8KVNjdAAD+kcsWV/FKwR++ccFsQubAW+c8txVw6oq11G31AIDrBAAAAADArVY3XD8n4WlBVVCrb77ephYBYJc+wP04j2f0b22fU9H7t1cv1V9kmHvMJLE4TKkqsKcmc6cmhZfTrgPDCl+c0Mr6Gn3rC3fobw/9Sr3H39Pjn16p+kUhrW64Xkaav0vXXzszPqFN61boey/NLArIJP6egwFDd69cosXXVWt8YsrVRYQAAADcxEn9UUCigjoAh7nzmwc0+NY57Xv55GzVg+HwuCRpODyuxu29WbeccwtWrMFKVlT9QPnFrxPVFTPXieoKrhMAANiBvhUAAIW5cGVKq5bW6Nt/cIdWLa3RhStTdjcJ8DV26QPcj/N4RmLSTdCQYqb05uilpKSb8FhED//NP6njb/5pzni+VBXYM4knc/c8dpc2rVuh0fGJssUWwmMRfeSrvbPvT5qZX/3dXf36wdGTOn9lKun4ua66Iqm/dl11+vqG8V1r/2nbPfrtNUsVSJPZ/pHFCzUZnUmEipmmlt2wQE9tvJ3kdAAAgDJL1x8F7EIFdQCOkFopOJNlNyzQd770yTK0yFqsWIOVrKj6gfJLvE5I4joBAIBN6FsBAFCYwR2fnv3/B25vsLElgL+xSx/gfpzHcz0zOJNcHr3673iRq/hnsuvAsI6+c16S5oznUyuwhyoD+syam7Tj/o+XpG3pdpTu7DleltjCrgPDMk2pcfFCnR6LKDJ17biJXq18nun4ydZfS6zeX1dTrVhKFfXaUIUuTUa1ad0KfXHtcu0dHNEoC/3zwg4JAACgVNL1RwG7GGa2PZjgeq2trebQ0JDdzQDmFR6LJAWDJClwtepBopX1NfrxVz5lQwtLb8vuIdUtCiUFaqgigGJkWuhhRZD64MGDamtrK+lzIlk5v0+UH8FmAHA+7sUAAADwgtTYe2IiJjEJwB04j+fK9Jn0vXJakxkKYhmSBnbcq/pFIe3oOa69gyOqCgY0GY1p09rlliSOFxpbSJyDySWWnK0QmGFIKz50LWG9kOOns+e4nh4c0aa1yzU6PqEXXn0/7e8RMylc4mdMgQQ4EfNaAAAgE8MwjpimmTbpMVDuxgBAOomVguPbwv3OmpsUqgyopjroya2A49vhrW6oVVdHsyOS063cYrBc2xf6Wf/Wdj3Y0qBQ5cztPVQZ0EMtDerf1m5zy1AIu7/PQ8Oj+rWv9urQv46W5fX8hu14AcD57L4XAwAAAKXAbp6A+3Eez5XpMzm0tV2fWbNUQePa7wYM6cM3LpAMzcZjz4xPaNO6Fep57C5tWrdCo+MTlrSzFLGFXGLJqa8TMGaqqO/547XatG6FpmNmQcdPU2efGrf3as/ATMX6PQMjeuHV91UVNIiZlEi6z7hxe6+aOvvsbhqQhHktAABQiAq7GwAAcfFgUGJF8de/ltvWciiNxIFl4ur8UqyIzvTcKB2C1N5i9/f52NMvK2pKj+15Wf/8558py2v6AdvxAoB72H0vBgAAAEolXewdgLtwHs+V7jOprw1pSU21ogk7NMdM6Z0PrkhKH4/t6mi2rI3FxBbyiSWnvs5kNKYNty7RhlvrtOHWOm3ZPaS2pvq8j5/+re1JleqrKwzVVFdq9x+v1dMvjhAzKYHUzzixwj3gBMxrAQCAYpCgDsARwmMRfXB5Sl/raFb9opClwSDMNd/Aspjkcgat5eWmIDVbwc3Pju+zcXtv0r/HItOzj5148n7LX9/rCDYDgLu4qW8FAAAAZJK4eyexd8CdOI/nyvSZnBmf0IdvXKBPLLtBkamoDr95VpHpqGKmLI/Hppv3KDS2kBpLDhjSb69eqr/I8P1ne51Cj590CfYT05P6w//2klY31BIzKQEKJMDpmNcCAADFIEEdgCOkJkCTuFpemQaWfa+cTkpWLSS53I+DVjuPXzcFqamqPz87vs89f7RWf/L3R3RlKjr72ILKoP7vL32yLK9vJSfcWwg2A4C7uKlvBQCwnxPGHAAAAH6XOJaXpB09x7V3cKQs8dh08x6lSA4PGlLUlN4cvZSx7VbFMM6MTyggI6kYVfjihML/MqrqioC6OpqJmRSJAglwMua1AABAMUhQB2CrTNW140hcLY9MA8tDJUgu9+OglcTr7Kiq72wbVtapMmjoytS1xyqDhjbcWmdfo0rEKecmwWYAAADAm5wy5gAAAMA15YjHWjXv8czgiExTipeTGQ6Pq3F775znLXShZC5/1725VeGxiNZ/84BiZvLPJqZjaursY26nSBRIKC8WFuePeS0AAFAowzTN+X8LrtXa2moODQ3Z3Qwgo/BYJCkBOpOqoKGW5TcyULTQlt1DqlsUShpYdm9una0sURUMaDIa06a1y/OeZM303G6QT5AiNQAZ58XE64MHD6qtra2gv0097xMXPnB+O8Oqzj4tqAzof/nUr+n/8/M3dWUqpjdcfAz76dwEAAAAUH6MOQAAAMrHicmlpZ73iM/B5Pq8nT3H9fTgSN5zePn83Ve+d0zPHj05+++gIT1wewNzO3CdQs8XAAAApGcYxhHTNNMmAlJBHYCtEqtrZxIwpN+7vUHPHj1JBSoLZVqdX4oV0W5e+Z9P9bP+ElSc9wM/VtV3m8Rk9EfbbrWxJaXBuQkAAADASvExR+8vTilqJifrAAAAoLSs3LWm0OR3q+Y96mtDqjAMRaZiqgoac5630Mrthfzdpclprayv0XB4XAFDiprK6T06cUEB/IkdngEAAMqPBHUAtjszPqHfv+MWvXJyTJcnp/XOB1eSfh4zpX0vz6zIn2+gSJCj9NycXF6MQoIUJF7njq3gUE6cmwAAAACsdPdf/iwphhA1peeOndLzr5wm0QEAACBPr526oM93v6jvPbpeq2++fvbxciSXFpP8btW8x0snzkmSPr36Jn3ouiq9e+6SHv6bf5Ipqeex39B/+R+/yqs4S3gsoo/fXKultdX6+RujOf9d9+ZWbdk9pHUfXZzXe7RyQQGQD4oZAQAAlB8J6gBs1725VZ09x/VG+KJurauRNFNpKmZKjYsX6sp0VOcvT2UdKMYT0z9844LZIMfj9650bbI6ifb2KzRIQeJ1bvy68AGlUcg1knMTAAAAgFX6t7brwb85pNGLk4rGTAUDhuoXVeu5L99ld9MAAABc54nvHtPFiWk98cwx/fgrn5p93Mrk0lIkv5d63iO1TfuPvzfnd/YOjORdnGXXgWEde+e8QpUBRabyK+qSz3ukWjWchmJGKBVyOQAAyB0J6gBslRqcGA6PS5ICAUN/8G+Wa/RiREtqqrV3cCTrQPHObx5Q1JQG35r5dzzIIalkK/LLOdCgmoD9Cg1SkHgNWK+QayTnJgAAAACr1NeGdO/Hls7GryajMd37sXomqgEAAPLQuL036d/D4fHZx048eb+lyaVOrKyc2qZ04nOhAUPqeeyurMVZUudk488ZM01tWrei5EVdnPiZAhQzQimQywEAQO5IUAdgq2zBiXhAacvuoYwDxdRgSjqlWpFfjoEG1QSchSAF4CxcIwEAAIDSo/JXaRBDAAAAKM7+xzfoT/7+iE6evzL72LIbFug7X/rk7L+t6nM5sbJyYpuyCRjSi//7vapfFMpanKV/a7vWf/OAYmby41NRU/8w9E7JY+xO/EwBihmhGMxTAgCQPxLUAdgql+BE4kDx8Xtu1ZefOarwxYjqF4XSVg8IGFLMlIKGFL0aZGlcvFDff/TOgtpYzoFG/P288Mp7mpg2VV1h6L7mm6kmYBOCFICzUHEFAAAAKD0qf5UGMQQAAIDcZFogubrhei2sCib97oKqoFbffP3sv63sczlxweEzgyMyzey/83DLLTklfdfXhtTRcouePXpy9rGgIT1we4NlMXYnfqYAUCjmKQEAyB8J6gBsd2Z8Qg/fcYveOH1RTTfVanR8IuPvpk6aJia4xxPTf2fNTep95fRscroknTh7WWu/fqCgpPJyDjSuvZ+Zxk9Mm1QTAICrqLgCAAAAlA6VvwDAPuXcvYKdMgA4TbYFkheuTGnV0ho9fs9K7frpsM5fnipbu5y24LCps29OtfNU11UFNT45nfNzXpqc1sr6Gg2HxyXNFPqyMsbutM8UAIrBPCUAAPkL2N0AAOje3KqFlUG9+t6YFlQGkoIVcU2dfWrc3qs9AzOVAvYMjKhxe6+aOvtmV9//8D/crUfWr9C0aapt1RI1Ll6o6oqZy1zAkB5qaVD/tva821fOgUZTZ5+eHhhJemzPwIiaOvtK/loAsguPRbSx+7DCVPRwlPg1v+exu7Rp3Yqsi5oAAAAAZNa/tV0PtjQoVDkTOwlVBgqOnXgN40EAVktMzvTSawFANtnm+uIGd3xaP/qPn9IDtzfoR//xUxrc8WkbW2yveH89aCQ/fssNId1/28368I0LtGHlkrTzqokS+7YH/2V0Njk9jnlIAMgd85QAAOTHMOfbEwqu1traag4NDdndDCCj1GpdcanVusJjkYxVzDMliu/oOa69gyOqCgY0GY1p09rlBW9VvWX3kOoWhZK2oJsv4FOIQt5nMa9F5RwU6uDBg2pra7O7GZbq7DmupwdHirp2wJ+4vgIAAMAtShk78RInjAcZVwDelGs83G2vBQC5yDQHtuU3P6o//8fX6Pck+MHzP9Xetxdo2Y0L9OzLJ2d3kV5VX6OP1F2X1xxlYt/28XtXlm0eEgAAAIA/GIZxxDTNtIMUKqgDsNXs6v/AzPL/YMBIW62rkCrmpVi9Gq8q8LWOZnV1NGt1Q626OpotSU6Xylutfefzr2vwrXPa2fd6yZ8bcLNcqrgA2bilMhlVIQEAAEDlr2ROGg+6ZVwBID/l3L2CnTKA0iCGVjqZ5sD2DozQ70nx3JtTeunEOb301jk9sv7aLtKJyenzHZvp+rZrv3FAP/zFqbLMQwIAAAAAFdQ9jgrqcLp8qrgUUsU8sdqUTOVdecqOillWV2uncg5KwcsV1Mu5kwG8Zb7r62unLujz3S/qe4+u1+qbr7ehhcnsqgpJJUgAgJtw3wL8xQnjQeI2gPeVc/cKdsoAiueEnVXcJts4KnEO7IG/7lcsTaqCn/s9+fQF/9P3j2nfyyf12V+/Rdvu+5i+/MxR/fnvrZ6tRi9Tafu2Fy5PatmHrrN812gAAAAA/pCtgnpFuRsDAIn6t7brwb/5J42ORRQ1paAxU0HhuS/fNed3E4MjXR3NOT1/arWp+P/PF0RMDQDtGRjRnoGRsgTFCnmf+ci0MIkFS/Cr1GB5OXcygLf0b23PmMwiSU9895guTkzriWeO6cdf+ZRt7bTzHicl35uZ1AMAON2TfVd3ntr/up76fIvdzQFgMSeMB+cbVwBwv/juFYmJgV54LTgPiy2LY3cMzc2yxf8S58Be/Oq99HtSxPuCz//zKU3GlPYzST029718UvtePilpJgb9r6Pjs599ur7tt75wx+zfWjEPCQAAAABxJKgDsFV9bUj3fqxeewdngnqT0Zju/Vh90cHSdIHDxP+fL4jo5cnAQ9vu0ee6D+vts5dnH2tcvFDff/ROG1sF2CddsJzJOxQiUzLL2q8fSPq94fC4Grf3SpJOPHl/2dtp1z2OST0AgJvMmfA/elL7jp7kvgX4gN3jQSckyQOwltUFSux6LTgPRQKK4+V5IqvkG//zYr8n14UhmX4v/plMxZTxM8lWcGo4PC7p2mcfMMRcBwAAAADbkKAOwHa5TvzlU+0jNXAYMCRDUtScqTbQtqpOp8cmFL4YSftcXgyKxdXXhhS9umdiZdDQVNRUNGZ64r0B+cg1WM7kHfKR7p62//EN+pO/P6KT56/M/t6yGxboO1/6pC1ttOsex6QeAMBNMs33s+8U4H1OSOa0O0keAOBuFAkoDS/PE1mlkPif1/o9uS4MyfZ7Z8Yn1P7hCv2/Hr4z7WeSrhBVquqKgO5rnvns48cscx2Af7GrCgAAsAsJ6gBsl+vEXz7VPtIFDqVr1QbeHL2UtMVdOl4LiiVa01CrtqZ6z7w3BtUoBMmysEKme9rCqmDS7y2oCmr1zdeXrV2p7LjHMakHAHCTQ9vatbH7sE6w8xQSMPZEuTghSR4A4F7EPUvHy/NEVigk/ueVfk8uC0PCYxGt++aBpAXR6X6ve3OrDh48qNUNtWk/k3SFqCQpYEgxUwoa0mSU2CuAa9hVBQAA2IUEdQCOl2+1j/iE8cLKwGzgcMvuIUnS6bGITHPuFnfpnssrQbF0vPbeGFSjECTLopwuXJnSqqU1evyeldr102Gdvzxla3vsug8wqQcAcIv62pCmr074VwUNTbLzFCQ92fe6Bt86p537X9dTn2+xuzkAAABpEfcsHa/NpZSDX+N/uSwM2XVgWKY5s/j59Fgk5wUk6RbKJhaiis+BfvhDC3VmfEKLa6r0a3WLfPPZA8iMXVUAACgMxWpKhwR1AI4WHovo4zfXamlttX7+xmhOwZp4svKmtctnA4b92+6ZfT4qh3gHg2oUy6/BcpTf4I5Pz/7/A7c32NgSezGpBwBwE6/tPIXCpY499x09qX1HTzL2BAAAjkXcE1bLlLARj/+FxyJ64/2L+vYX77CriWWVbWFI6ngicaeuXBaQ7Hz+6kLZvtf11MYWSclx1vgcKACkYlcVAAAKQ6HU0iFBHYCj7TowrF+8e1631tXMW+0jl2RlKod4C4NqFItkWQAAAH/Jp+oFfUXEmWaGx8vbDACAC1BhC05BXxZWmy9hw48JHZkWhqTOZQUMafmHFqrr4WY9/8r7GReQzFko+/JJ7XuZhbIAckduBAAvYbyNcsi1UCrHY+5IUAfgSKkX/OHwuCQpZpratG5F2mBNrsnKfqsc4uWbIoNqAAAAAPnwY5IEindoW7s2dh9OqnTYuHihvv/onTa2CgDgRPQ1AH/x8vxLJvMlbPh559tMC0MS57IMY2ah64Zbl2jDrXXacGtdxuczM6yUzfQ4AKTjt9wIAN7FeBvlkGvuIcdj7khQB+BI2S74mYJ8uSYrl6tyiFMCk16/KTKoBgAAADAfPydJoHj1tSFNx2aSQKqChiajpqIx0zdJSACA+dHXAOxj51xMuedfnDDvNF/CBjvfpndmfEIr62r0Rnhcq+prNDo+Me/fTEbTJ6JPRk2FL0YYjwDICbuqAHA7xtsop/lyDzke8xewuwEAkE6hlbHjyco9j901U2k9hwCPVRIDk3Zo6uxT4/Ze7RkYkWnO3BQbt/eqqbPPlvZYpXtzq7o6mrW6oVZdHc1Jg+xyee3UBd32Zy/otfcuZPyd8FhEG7sPK0wCfVZ8TgAAALBC/9Z2PdjSoFDlTCgsVBnQQy0N6t/WbnPL4BZrGmr1yPoV+sGfbtAj61dodUOt3U0CADgIfQ3APnbMxdg1/2L3vJM0//ydH3a+zXceo6mzTy+8+r7euLpb9Bvhcb3w6vtZj5c/+dGlrM+5/hsHcm8wAMC1mDsHGG+j/LLlHnI85o8K6gAcq5DK2E5YAeyU1VJUqZhRjooiT3z3mC5OTOuJZ47px1/5VNrf8Xol+1LhcwIAAIAV/JAkAWs5Id4AAHAu+hpA+dk5F1Pu+RenzDvFzTd/5/Wdb/OdxyjkePk/fnOBfnr+Rv33Y6fS/jxmSo3be6nUCAAex9w54P3xthN2SUKybHMBXj8erUCCOgDH6t7cWvSN2I4buVMSw7kpzrBy0Na4vTfp38Ph8dnHTjx5vyTnBY6dis8J8AYG0AAAJ/N6kgQAALAXfQ2gvOyciyn3/ItT5p3i5lu86dXFnYXOYxRyvNwQCmhRdeZUDruPAQCAtZg7B5J5ebzNQhT38fLxaAUS1AE4WrE3Yjtu5E5KDPfzTbEcg7b9j2/Qn/z9EZ08f2X2sWU3LNB3vvTJ2X87LXDsVHxOgDcwgAYAOJlXkyQAAIAz0NcAyu/FN88qMjV3LqYcRRTKOf/ipHknP0udx6iuCKimukK7/3jtvH+beLz810O/Uu/x9/T4p1dm/Q7PjE8oaBiKmuacn0WmOAYAwMuYOweSeXG8zUIU9/Li8WglEtQBOFKmG7EhaWDHvWkDLokBx7t3/szWG7lTEsP9fFMsx6BtdcP1WlgVTHpsQVVQq2++fvbfBI5zw+cEuBsDaAAAAAAAAJTTrgPDCl+c0Mr6Gn3rC3ckzcWUo4hCuedf7Jh3snu3RLtfP1W6eYyJ6UntfXFk3uMs8XhZWBnU+StT8x6f3ZtbtWrHfkWjc39mSBodnyj0rQAAHI65c8D7WIgCvyBBHYAjpbsR31Qb0tvnLmcM2CQGHO2+kfs5MdwpyjVou3BlSquW1ujxe1Zq10+Hdf7y1JzfccqCBafjcwLcy+77LgAAAAAAAPwhtVDCcHhcv7urX9UVAUlS4/be2Z95qYiCHfNOdu+WaPfrp3NmfEKGVFCxjkKKfBzado8+131Yb5+9PPtY4+KF+v6jd5KkCAAex9w54G0sRIFfGGaaLaHgHa2trebQ0JDdzQAKsqPnuPYOjijTZSoesEkN6MQFDMmUVBUMaDIa06a1yx0TwEJ5bNk9pLpFoaRBW2IQF4U7ePCg2tra7G4GAAeJ37e57wIAAAAAAMAq4bFI5kIJpjL+jESP3GWadytXor/drz+fbMdgtuMs9e8ChvTbq5fqLzqa5/xd4hzMhp0/1bsfXFFl0NBU1NSHb1yg/m33WPkWUQJO2wEAAAA4DzlN8ArDMI6Yppn24KWCOgDHiq8IvW/NTer8wXGNnLusmKk5VVkzVW29cGVKy25cyIpSH6OSPYBCEDguDJUcAAAAAAAAYLX5Kg1ShbB4du+WaPfrpxMei+jf/d1LOnH2kv7h0TvnHGeH3zw7799/+ZmjWnbDAk1MxxQ0pKgpHXxjdN7XXtNQq7ameuKuLuPEHQDgXcxrAYA7kdMEPyBBHYBjJd6I77p1id4eHEkbUMwUjPzWF+6Y/Xtu5NZj4AvAKwgcF4YBNAAAAAAAAMohW6EEiihkl8tcznyLAKxm9+uns+vAsF49NSZJeuKZY/po3XWzx9n/+t2jeiM8PieenPhZx2POg1d3jY5e/Z3IVExrv34ga3V44q7ukroDwJ6BEe0ZGHHMDgDwJua1AACAUxmmadrdBliotbXVHBoasrsZQNHm29bEadue+DFZu7PnuJ4eHNGmtcsZ+PpA4vaS8BcvX9+cvnUsAAAAAAAAABQj17kcu+fd7H79uEwx42zi8eTOnuPaMzCS999JzMG4WXgsknEHAK/NqcB+zGsBAAAnMAzjiGmaaQdsJKh7HAnqgD38lKzNwNefCI76l5evb34JHHt5kQEAAAAAAADgV9nifszlFCY8FtH/9v/7hX7+xpmkx2++PqT/43/6hL5/5N058eS+V05rMkNSe6gyoLqaar3zwZXZx4KG9MDtDUlxaOZg3G1Hz3HtHRxRVTCgyWjMk/MpcAa/zGsBAABny5agHih3YwDAy5o6+9S4vVd7BkZkmjPbtjVu71VTZ5+kmUHixu7DCntoS8n+re16sKVBocqZW0qoMqCHWhrUv63d5pYBKKX5rm9e4MStY63wZN/rGnzrnHbuf93upgAAAAAAAAAokV0HhvXSiXPa9ZPhOT9jLqcw9bUhLbtx4ZzHa6ortGFlXdp48qGUzzoYMCRJVUFjdpHAyvoaSVLAkKKmPBmH9rMz4xPatG6Feh67S5vWrdDo+ITdTYJH+WVeCwAAuFeF3Q0AAC/p39qecZWylBwc9MpKebcNfKkcDBRmvuubV8QDx4lbx3pFapWkfUdPat/Rk0lVkrhGAgAAAAAAAO6SGvfbMzCiPQMjSXE/t83llEtqPDTdv/cff0+hioCW1oa0/EML9fLIB7pwZUpS+nhyus96ZX2NvvWFO5Jizus+utiTcWhI3ZuvFY/s6mi2sSXwAy/PawEAAPcjQR0ASihTgO/unT+bNzjoZm4a+HpxkQBQDn6ZwPBy4Ng0Mzye8P9cI+EnLMgAAAAAAABekGtxETfN5ZRCuthP6mOp8dB0/z5/ZUqb1i5X18O3Jf29lDmenO6zXt1Qmzbm7LU4NIDy8vK8FgAAcD/DzJSpAk9obW01h4aG7G4G4Ctbdg+pblEoKej0tYeaMwYH/ZIQZXcSWGoFkTivLBIot4MHD6qtrc3uZqDM0l3fEgNfyMzua2C8DRu7D+vE2cuzjzUuXqjvP3rnnIVUcVwj4WWdPcf19ODI7AQjAAAAAACAW+3oOa69gyOqCgY0GY0R71D62E/8MUNSrIA0CUMzBT8+e8cteurzLSVsbTLmYAAAAAC4hWEYR0zTTJs8RAV1ACixTKuU/VB5OJsn+17X4FvntHP/65YG7TLJtYIIgMyowlA4J1Qmr68NafrqrEtV0NBk1FQ0Zqp+UYhrJHwll22vAQAAAACAvzihwEQx/FYdPZtMsZ9Eqbnp1RUBLamp1pnxiCamzTn/Tv27fUdPat/Rk7PxpNdOXdDnu1/U9x5dr9U3X2/ROwPgdm6/1wAAAOQrYHcDAMAv4sHBnsfu0qZ1KzQ6PmF3k8qiqbNPjdt79ezRk5JmgnaN23vV1NlX1nbU14Z8v0gAQPnFr4F7BkZkmjOTIXZcA+PWNNTqkfUr9IM/3aBH1q/Q6oZaSVwj4S/9W9v1YEuDQpUzw+FQZUAPtTSof1u7zS0DAAAAAAB2SSwwkSq+M2HYwUnf3Ztb1dXRrNUNterqaPb1zpfpYj9tq5boxoWVqq649ljj4oWSZpLTJ6MxLawKajJqpv13JvGE9Se+e0wXJ6b1xDPHrHxrAFwu270G9nPD/R4AALehgjoAlIlfKw+bGbZILGDnxKJRQQRAuTmtMnm2exHXSPgFCzIAAAAAuB3VN4HSyWWnNSfsjojcpYv9nDwf0QeXpyRp9rFozNQj66/FQ3/06umk+Gjiv//roV+p7/hpXZmKzr5O4+KFOnH2shq3984+Nhwen/33iSfvL+8bB+BY7OrpDv9/9v49PKrrzvN/P7tKN7AQOCBhBDaKY5ADcluONUACjpHJxYkdW046JB3MSZ/upMnP7bZn8psDpFGfznSUxM5z0mdCJzOjzGSmJ2Ccy3EUJxE4iYlJRAZQhMEBO7bVsbFsMCkBBiFAt6p9/iiqqCpVleqyq/al3q/n8WNRKlWt2rUva33Xd38X13sAAKxnmKkyB+EJLS0tZl9fn93NAFDCIncaHzt9MfpYw+zp+sHn3s3kiYvt2bNHq1evtrsZgCts6TqiHb0DqvCHK++sW3YdgS3AZhu29al2RlXcDRmlXFkMAAAAgLu0dx3RY70DxBgACwSGRlIWmLjt0WfiEgojMk0o5GYS+0RiP9//3YDGg5PzIXyG9P4lc7OKB6169Fd6461LqvAbGguauvbqaepcf6s++92DOn72UvR5C2ZN07c/fauWzJuZc/uZgwG8Jd21huuD/RJvIIjgBgLki74ggFJhGMZB0zSTDq5Sr0cFAC7DkkvOVFdTpYlQOPhX4TckScGQ6bkOOPsfgFQilcm7HlipdcsXanB41O4mASWPZa8BALAe42IAKLzG9l1q2Nyt7QcGZJrh6psNm7vV2L7L7qYBrpVupbWeja26p7leVeXhKfWqcp/uba5Xz6bWjF47thIriiPSJ/1SW5M62pr02013JP0O9//9minjQYn926X1Nbp/xUL9+G9X6aPvmq/h0QnNmVGp6RX+uL+bVuHPKzkdgPewqqez5Xu9B1KhLwgAUpndDQAAq7DkknMtra/R6sa6uCqlXsP+ByCV2ImOjrYmG1sCAAAAFA7jYgAovJ6NrSmrbwLIXaTAROIcRq4JhYmVWLcfGND2AwNUYi2CxD5pPkmhia8VG+edXu7X2Uvj2vp0v85dGtfiudV66I5F2vqrfp29OF7IjwjApVJda2A/biCA1egLAsAVhmlOXtIK3tHS0mL29fXZ3QygoFhyCXYq1f2P5SUBAAAAAFLpjosBwC5buo5oR++AKvw+jQVDWrfsOm4MAgpow7Y+1c6oiksozKTydqqbSbyQ7BYYGtGDjx/SNz91i2M+T6o+qSHp9sZaLbh6esbfYbr+raSUv+vZ2GrZdmEOBgCKK5frPZCK1/uCgBM5cYxSSgzDOGiaZtILp6/YjQEAq0WWXIoEhirLpl5yiWWnYRWW/AIAAAAAlDLGxQBQXJHqm10PrNS65Qs1ODxqd5MAT+tc36KOtiYtqa9RR1tTRslqU1VidfscVWxlcadI1idtmD1dMqQFs6Zl9R2m69+m+50TtwsAIDO5XO+BVKjKDxQffXHnKrO7AQCQr9jOnaS4zl2qO6RYdhpWYXABAAAAAChljIsBoLhik2U62ppsbAmAdCI3k8RWYo3IdY7K7qqAiZXFtx8Y0PYDA45YOaeupkplhqGR8XD7RsZDOnb6oqTs2zlV/zbxdz997oSePHwi+vdO2i4AAMAe6fqCAKzj5DEKwkhQB+B6yZba235gQD88+IY+fuuCuCAfFyYUglsGF3YHrwEAcBKuiwAAWMct42IAANyA8Wo8t26PZDeT5DtHZXfxpZ6NrerY+Qf94vmTGhkPqarcpw8uvUZb7npn0duSzO+OnZEkzZpWruqqMp04e0khUzm18/hbF1VbXan/991L9E8/e0FvvHUx+rvEvu8bZy6qZnq5Y7cLvMGt50IAKFXcWAwUR2SM8vOjb2p0wlRlmaE7m+bRF3cQn90NAIB8JVtOz2eEK6lvPzAg0wwH+Ro2d8s0TZadhqUCQyN66+K4Hlpzg+OX/GJJGwAAruC6CACAdVgKGwAA6xRyvBoYGtHazn0KuOhmMi9tj2TzWZnMUTW271LD5u5Jc16N7buK0ewop66cE9k+r791SZJ09tK43ngrnJyeazsXXD1dg8Oj+o//v+cUOD+qBVdPj/4use/7r3+1zJHbBd5CLBMAAGCyK2MUU5I0OmHSF3cYKqgDcL1kAbH7mudrwjSTViv4xtP9BIlgmUd2vajeV8/o0Z0v6uufaLa7OUmxcgAAAFdwXQQAAAAAOFExxqt2V+DOhle3x74/nsp6jspJVQGduHJOz8ZWrfjqboXMyb8LmabWLV+YcTsT97uR8fDPU+1/Ttwu8AZimQAAAKkl9pWkcH/phwffoK/kECSoA/CEZIGfOdWVSYN8BIlghcROzhOHjuuJQ8cdGRBy+rKbAAAUE9dFAAAAAIATFXK86sYERy9uj627+zV4fkyL66r1nz95S8ZzVE6qChi7Uk5HW1PR3z+ZupoqtTXP148OHY8+5vcZuvvPwkn8mWynwNCIHnz8kLoeeI/u/pe9SZPdfYZSVrt34naBNxDLBAAASI2+kvORoA7AE5IFfjZs60uaiE6QCFYwkwQnJSnFw7Zy6rKbAADYgesiAAAAAMCJCjledeOkvZe2R2JC/MuBYX14a0/GCfFUBUwv2fYJhkz99LkT+sYnb5ny7wNDI7r7X/Zq8Pyo/vJ//U53Lr1GO4+enPS8+5rnEz9C0RHLBAAASI2+kvP57G4AABRK5/oWdbQ1aUl9jTramuIS04F87d3UqobZ0+Mea5g9XXtTVM+wW2TlgK4HVoaXsxwetbtJAADYhusiAAAAAMCJch2vBoZGtLZznwIpqnG7ddK+UOP3Ym+Pno2tuqe5XlXl4an5qnKf7m2uT1mN2+q/97rI9vEZ4X9XlBlqmD1d711cO+XfNrbv0rKv7Fbg/KhMSYHzo0mT0xfVVWt4bMLilgOZIZYJN5uqjwIAQL7oKzkbFdQBAMhBXU2VJi6v8VjhNzQWNBUMmY4N6LNyAAAAV3BdBAAAAAA4Ua7j1a27+/W7Y2e09el+ddx3U9LnRCbtE1eddbJCjt+LtT0CQyN68PFDWnD1tJwT4t16g0E2Itvpm5+6RXUzqib9O53I9jElVZb5NBYMadUNc1IeC5HXPvz6WY0lVF6P5TOkn/3dbdH9g0JYsAuxTLhZJn0UAADyQV/J2UhQBwAgR0vra7S6sc5VAf1cZRMMBgAAAAAAAAAUXmP7Lo3GJNhuPzCg7QcGVFnm00sdH4p7LpP28WK3x0N33KAHHz+kwPkRy+PfkcS8N89Oyysh3o03GGQjMYEx24TGbLZP5LWNKV6zzO+LrtIMAMhONn0UAADgXYZpmna3AQXU0tJi9vX12d0MoCi8mEDrxc8E58lkP2vvOqLHege0btl16rjvJu3Zs0erV68ubkMBAAAAAAAAAFGBoRF17PyDfvH8SY2Mh1RV7tMHl16jLXe9s+TmFPKZT0mMf1shMTEvgsS8eKm2UyIrtlum7yVJDbOn6wefe7dtxxFzMADcjj4KAAClwzCMg6ZpJl1yylfsxgBAocRWU8hEYGhEazv3KeDgKhPZfiYgF+n2s8b2XWrY3K3tBwZkmuG72xs2d+uzv7hgQ0sBAAAAAAAAABF1NVWaUVmm0YmQKst8Gp0IaUZlWUkmfuUyn5Iq/t3Yvivv9vRsbNU9zfWqKg9Px1eV+3Rvc716NrXm/dpekridJOmqCr8qy8L1za3cbonvVVlmpKyiHgyZJXkcAYBV6KMAAABJKrO7AQCQr1yXh8p2ecBiYskrFEMm+1nPxtakd7e3Xv2WXc0GAAAAAAAAAFx2anhU65Yv1KeWXacdvQMadHBRnkLIZz4lVfx7y13vzLtdhUjM8+Kqu3U1VfrZcycUiln0/cJYMPpzrtstMDSiv9l2UIYhda6/VXUzqpJ+J5K0uK5ac2ZU6tTwqGZXV+gdtTNK7jgCgEIo9T4KAAAgQR2AB2QbQHRD8nchg6JARCb7Waog+qzK+EVYvBgYBwAAAAAAAACn61x/ZRXtjrYmG1tij3zmUwpd3dXqxDwnF17Kx3sXzdGx0xf15rmRuPm7NTfWad6saTltt627+3X49bPhn2O216nhUflkxL3Py4FhvRwYVmWZT7/4D7fn92EAAFGl3kcBAAAkqAPwgNgAomFMXU3BDcnfLHnlHF5OvM50P0saRL86/rW8GhgH4FxePj8DAAAAAAB4USHiOfnOpxSyuqtViXluKLwUK9vv+V//arm2dB3RYwcG4h7f/WJAklRZ5kv2Z0klbitp8vYKDI04fp4QAAAAALwg89EcADjYqeFRLaqtlmlKi2qrNTg8mvK5bkn+jgRFux5YqXXLF6b9TCicR3a9qN5Xz+jRnS/a3ZSCyGQ/61zfoo62Ji2pr1FHW1NcUL2xfZcaNndr+4EBmWY40NuwuVuN7buK+TEAlKDYG2OQvxdOnNNN//hzvfDmObubAgAAAAAAPKpQ8Zxs5lMCQyNa27lPgcuJ6Oni307Rs7FV9zTXq6o8PLVfVe7Tvc316tnUanPLksvlez41PKqPvWu+bm+sld8IP5bL5+zZ2KoPLJ0rn3HlMb8h3bl0bvR13DJPCAAAAABuRwV1AK6XWA0hshTf4vZdejlF5YhCVsSwSuf6FqrD2ihxv3ri0HE9cei4YyuS5CrfCi5uWJEAgLe4rWKUWzz8vcM6Pzqhhx8/rF9+nqWMAQAAAACAdQodz8kmzu3G1UDdklCdz/cc+Q63dB1RSMr5c9bVVKm2ulIh88pjQVOaU10Z9zpumCcEAAAAALcjQR2A6yUmyPp9hoIhUx+5aV7Kv7FqWcVCSxYoJWm9OEwzxePFbYbjuSUwDsA7uDHGWg2bu+P+3R8Yjj527JG77GgSAAAAAADwGCfEc9xe9MANCdX5fM+Rua/p5b6cP+cLJ87pE5371bRgpq69epr+bMEsSdLv3zg7qaq+W+YJAQAAABQOOXiFR4I6ANeLJMiOjIcDi8HLZRHcXPE6XaD047cucF11Dzfau6lVazv36djpi9HHGmZP1w8+924bW+VMbgiMA/AOboyx1s6HVumz3z2o42cvRR9bMGuavv3pW21sFQAAAAAA8BInxHOckCSfDzckVKf7nqdK/IgUbFq37Lro58v2c0ZWCDx1flQ9m+6w5DMBAAAA8C43rrDlNiSoA/CEU8Oj+ti75uvUhTHtfXlQQVOuCy7GShYoHR0PaXQipO0HBiS5r7qH29TVVGni8s0OFX5DY0FTwZDpmgTIYt7l54bAOABv4cYY6yypn6npFf64x6ZV+LVk3kybWgQAAAAAALzI7niOE5LkvWyqCuiRxI9Hdr6oN85eis5d5FvZPjA0omVf2R33GCsEAgBKCdV/ASB7bl9hy018djcAAKzQub5FX1/brAWzpikkuSa4GBga0drOfQokBGKTBUob5lwV9xy/Id3bXK+eTa2WvjeuWFpfo/tXLNSP/3aV7l+xUEvqa+xuUsZi7/IDAK/pXN+ijrYmLamvUUdbU9yNMsjeuUvjWjy3Wt/8i1u0eG61zl0at7tJnkBfCwAAAACAK5wQz4kkyXc9sFLrli/U4PBo0dvgVZE5iRfePK+H1twQ/Z73vDSohs3d2n5gQKYp/ejQcfW+ekYrLieV92xs1T3N9aoqD6ctVJX7spr72ro7PAeSWIBhwaxp2vnwKgs/IQAAzkReAABkL99xCDJHBXUAnmJ3BY5spVsqJPJZvv+7cNDu1VMX4n4fNKUnD5/QU0dP5nT3FsuUTM2NlcG5yw8AkK3eLe+L/nz3zfU2tsRb6GsBAAAAAHCFE6p7ujHm73SJcxKB86Na9uXd0TmJyIrBPzl8Iu7vQqbUsLlblWU+/fmtCzKubB/Zjw6/flZjMe97cSwY9zxWCAQAeB15AQCQO1bYKh7DNE2724ACamlpMfv6+uxuBlDSkgVdEwcLEckGC4GhEXXs/IN+fvRk3N/4DGluTZWefHBlVhfIbN4b7hPZX37x/EmNjIdUVe7TB5deoy13vdPSjtSePXu0evVqy14PAACvoK8FAADScUJyHgAAdmjvOqLHege0btl13MidIyf2IwJDI1rx1d0KJUk5iMRCtnQd0WMHBuQzFH1e7NzFP/z4qGpnVMUVn0qssB/57NfOmqYfHT6u+5rna8I0o3MhknRVhV9//+F36n/vO6azF8fjijK4DXMwSMWJ5wEA9ihWXgAAeNWGbX1TjkOQGcMwDpqmmXTj+YrdGAAoNcmWVMpmqZDIXVtjwZCMmMdNSWturMt6cJHLMiWBoRGt7dyngMMr0oO7/AAAsBtLwgEAgHRYehsAUGoa23epYXO3th8Irxa7/cCAGjZ3q7F9l91Ncx2n9CNi54zqaqrU1jw/7vd+Q3GxkFPDo7p/xULdufQaSeECTLFzF53rW9TR1qQl9TV66I4b9NbF8UnzUSu+ulu9r57RE4eOyzSlHx06rp8cPqGR8ZD8lyfP6mdN07oVC/WL/3C7q5PTgXScch4AYD/yAgAgP7HjkI62JpLTC6TM7gYAgFWKecd4Ju811ZJK2QwWHu8NB25jmaa0o3cg60ojuQxUYoMdVDZxvlPDo1q3fGHcXX4AShPVVIDiIygMAACSYeltAECp6tnYmrK6JzLjtH5E4pzRhbEJLaqrVn9gWD5DCpqKi4VEEj02bOvT/SvSz11EXvvRXS/q9bcu6fDrZzWWZKW6WMHL82f9gWE1bO6mfwVPctp5AIAzkBcAAHA6EtQBeEYxk6gTA2TJEv+mCrpmM1jY/4U1lgZwM31vgh3uFHtXX0dbk40tAWA3bjAC7EFQGAAAJCI5DwDgJMUsauCUG7ljP7NMuaqog1P6EenmjFY31mr59bPTxkLSzV0kvvYTzx6XJBmS7mmuj352KVyBPWRKH3vXfI2HTNu3C1AMTjkPAHAW8gIAAE5HgjoA1ytmEnWqANm7v7Jbf/zqXXHPnSroms1gweoAbqbvTbADANyJG4wAexEUBgAAiZySnAcAgFT8ogZOuJE79jNLclVRB7v7EZHk/q4H3qP/9ptXks4Zxbalo61JgaERre3cl/FNAJH5qJ8cPhH3uClFH4skpt/ZNE9vu6pCg+dHNKe6kv4VSoLd5wEAAAAgFySoA3C9YiZRpwqQBU0lXTbQyqCrHQFcgh0A4E7cYAQAAAA4jxOS8wAApc2uogZ23sid7DPH/uyWog529iMiyf07DgxkPGeU7U0QkfmoVHyG9LO/uy362SP70YZtffSvUDIYTwAAACCZYq6Sli3DNE2724ACamlpMfv6+uxuBlBwW7qOaEfvgCr8Po0FQ1q37LqCVb2IvJehcKUGSSmrRHjBhm19qp1RFRfsiA0mozTt2bNHq1evtrsZANIo5rURgPc4OZABoPRwTgIAALBGYGgkZVEDr/azEj+z3whX5Q6Z3p7bsUJicn9EYrJ47JxRqr/J5CaADdv6VF1Zpn1/PK0T564k3jbMnq4ffO7dJfUdMQcDAAAAIFPtXUf0WO+AbTkhhmEcNE0zaTKhr9iNAYBCiNwx3vXASq1bvlCDw6MFf687l14jKRyI83Jl8c71Lepoa9KS+hp1tDWRnA4ALlHMayMA70lc+hwA7MQ5CQAAwBqluGpq4mcOmuHkdK99/sDQiNZ27lMgh4rKqf62Z2Or7mmuV1X5lZSChtnTtf/v16ScM0r8m6pyn+5trlfPptYp29G5vkU/+/2bccnpknTs9EXd9ugzWX8uAAAytbd/UO/4Qrf2/tug3U0BACBjje271LC5W9sPDMg0w6uENWzuVmP7LrubFpV6nSwAcJHO9S1Fq6gWCbZt2Nan+1ewjFqpo5KfNdiOgPXsXDoZgHvZtdw7ACTDOQkAAMB6kaIGpTS3EfuZN2wLrzzdub7FU58/9qbObCvmJfvbSMy+79iZ6GrCUjhZfNmXd8swpAN/v2ZSPD+XmyBi5wd6Nrbqnm/t1clzV4ptzJtZpScfXJnVZwIAIBsPPPasgqb0wPZn9fsvftDu5gAAkJGeja0pV0lzCsM0zamfBddqaWkx+/r67G4GUBR2L1eB0lSq+53Vy0uW6nYEAMBpSnG591LCTYFwG85JAAAAyEUpjX0Sb+qMyOSmznR/+/FbF+ix3gHNq6lSRZlPb54b0ehESIakisuJ5/cvTx7P37CtT7UzquJugki3Om/s/MAPD76R9vOUyndr9RwMACC5hs3dKX937JG7itgSAABys6XriHb0DqjC79NYMGRL3pVhGAdN00w66PMlexAA3MQNy1XAe9jvrMF2BADAWUpxufdSElsVD3ADzkkAAADIReLYJzA0orWd+xTwSLX0WD0bW3VPc72qysPT/lXlPt3bXK+eTa05/a3PkEYnQtGY/YlzIzp2+mI0adyUoj+niud3rm9RR1uT5lRX6OU/ndeXUqzumGx+IPLafp8R/f+8mVXRz8O41h28fMwBbsQxmdr2v16maeX+uMemlfu1/TPLbGoRAADZiawY1vXASq1bvlCDw6NT/1ERkaAOwPUiATS/ceWxhtnTMwq+FYrbBnlua68T5BP0xRVsRwAAnMfpgQxkj5sC4WackwAAbkS8FbBHqrHPu7+627NJzfnc1Jnsb++7Zf6kmP28mVXyGclfw2coZTw/VTJ55BzZ9cB71DB7evTxyPzAR981XyHTVGWZTyHT1Job63Tbo88wrnURbiQoHfR53IFjMrVVi2pV7o+/yJX7Da26odamFgEAkJ3IDcJL6mvU0daUdvUqO5TZ3QAAyNdtX3tm0nJ/x05f1LIv7067hGEhlwGMHeQVe9mMXLitvU5AJT9rsB0BAHCe2MBFR4oqZ3CXno2t6tj5B/3i+ZMaGQ+pqtynDy69RlvueqfdTQOmxDkJAOBGxFsBeySOfSKCZvj/2w8MaPuBgbRzR24UuanzU8uu047eAQ1mkSia7G/nVFfGxezX3Finh9YsUsfOP6j7928qGDKjf/+hpddMiuc3tu+Km7eLbPcKv6GXv/xhbd3dr95Xz+jDW/fG/d3IeEg/e+6E3rdk7qQ2Ma51h1TfvdeOOVzhpD5PIef+3YpjMjMjEyHNnFam/+v2d+i//vqPujQemvqPAABARkhQB+B6PRtbdde/9Gjw/Fjc43cunat/SjN5XYgBs9sGeW5rr9PkE/TFFV7Yji+cOKdPdO7X9z+3QkvmzbS7OQAAAHG4KRAAAKA4iLcC9koc+4wFQ1r4tuk6OTTi6aTmfG7qTPa3G7b1TYrZR7ZtMGTKb1xJ+v/98XOTXjOSTN793Ino8yRpImSqYXN30nZUlvk0b+Y0NcyelvLzMK51Pm4kKB1O7PM4KVneKRLPx35Duvvmeo7JBC/H7LOfW32DjS0BAMB7SFAH4Hp1NVX6wJJr9NiBgbjH51RXJg1MFXLA7LbAi9va6zRU8rOGF7bjw987rPOjE3r48cP65edvL8p7UgkCAABkwws3BQIAADgd8dbSQFzO2RLHPnteCpDUnKVUMftTw6PyxSSnS9Lrb11Sw+buuDm2ZCsfS1JM4fU4FZdvJlh1w+y0SaWMa52PG+RLh5P6PE5MlneKxPNx0JSePHxCTx09WfLbBgAAFIfP7gYAgBVODY/q2qun6a6b5umum+bp2qunaXB4NOlzeza26p7melWVh0+BVeU+3dtcr55NrXm3w22BF7e1F3Cahs3datjcrf7AsCSpPzAcfazQYitBAAAATKVzfYs62pq0pL5GHW1NcQkHAAAAsAbx1tJAXM7ZEsc+S+trtG75QnU9sFLrli9MOXeUq8DQiNZ27lOgCMnSxXyvZDrXt2j/F9aknGOLtK/rgffompmV8hvxf29ImjczfD70Xf7dzKoy/TjD74ZxrTtEbiQo1DEHZ3BSn6eQc/9u17OxNXw+vnzS9fsMzZtZVdRtY/e1CwAA2IsK6gA8oXN9S8ZVS6YaMOdb/cRtFRzc1t5SREUe59r50Cp99rsHdfzspehjC2ZN07c/fWvB3pNKEAAAAAAAAM5FvNW7iMu5U6FX8Iy9YSFd9W83vFcmcxHp5tjau47od8fOaMeBAa25ca529A7IH1Nx3ZT05rnwOTFSTf3cyIQ+vLWH48hDvLBqLjLjlD6Pk5Llnaaupip6Pq68vFrFmhvrirptinmdBAAAzmOYZoq1tOAJLS0tZl9fn93NAIqiveuIHusd0Lpl1005uNmwrU+1M6riBsyRgEk2r5MMycSwWr77ZCHs2bNHq1evtrsZjvD+f/51tIK6JC2qq9YvP397wd4vMDSSctlEzjnOxvUBAAB4Hf0dAADgZcTlECvxhoWIQiRaW/le6frsmc5FJM6x7TjwWjThPJbPkEwznJiezr3N9RxHCZiDAbKTbu6/1Nm1bYp5nQQAAPYyDOOgaZpJOxgkqHscCeooBVYNbqx6HScmE8OdnDxwJzh6xbIvP61Z08v10B2LtPVX/Tp7cVy9W95X0Pfc0nVEO3oHVOEPVzvgfOMOXr8+kJAGAAC83t8BAAAgLoeIYt6wEHmvnx89Ga0QfGdTbu+VrM+e71xEum0hU1rbuU/HTl+c9Hc+I1xJ/f7lHEeJmIMB4Hbc2AcAQOlIl6BeVuzGAIDVeja2pg58FfF10i3v2bOxlaQ9ZM2qfRuFFZuMfvfN9UV5T6csm4jMlMryzyzTCABA6SqV/g4AAEApxeUoRhCWajvU1VRpRmVZNGF8dCKkGZVlBdlWse8lKaf3Stdn73rgPVr/nV4Nj45rdMLMei4itn0VfkMj4yGVGYZue/SZpInvEXc2zdPbrqrw9HEkcSwBKE3FvE4CAADn8tndAADIl1WDm3xfp2djq+5prldVefjUWlXu073N9erZ1BqXtAdkioE7Uulc36KOtiYtqa9RR1sTyxQ6XLrrg9UCQyNa27lPgSJO6jS271LD5m5tPzAg0wxPbjVs7lZj+66itQEAANirmP0dAAAAO5VSXI55jbB02yFyw0LXAyu1bvlCDQ6PFqQNje279NiBgbjHth8YyCr+lq7PvuPAgE5fGNPohJnzXERkW7xvyTWSpN5jZ6Lv6TPCz/EZ0oyqMt26cJbuX7FQwVDI88eRxLEEoHQV6zoJAACciwrqADzBqqol+bxOsmTinz13Qk8ePhF9DlXkkK1SqsgDeFUxbzaxo4o5qz0AAABurgUAAPAOVscJy2Q7xCZWd7Q15f2eqSptWxF/i/TZR8ZDMiSNjE+ew5LC1dn9hpF1EuGelwbjttfrb13Ssq/sls+QTEnG5f/fe3N9yay+yLEEoNRZfZ0EAADuQ4I6AE+wanCT6nUyXX4vMZn4jTMXVDO9gqQ95IyBO+ANhb7ZxM7JDhLSAACAxM21AAAAXkExgjA7tkOq4hNWxd9ODY/q7XOu0qunLujtc67SwrdN07HTF3Xs9EVJivuM2b52qu117tK4Trx1SS8HhrW4rrqkqudyLAEAAAAodSSoA0AGMq1ImyyZeEvXEVcl7WWajA8AyFyhbzaxe7KDhDQAAMDNtQBQeE6K2zmpLQCsRTGCsGJuh0yKT5waHtV9t8zXyyfPq/GamqwTvRPf49VTF/TqqQtxzxkZD+mnz53QNz55S9afIdUqw0HzynNeDgzr5cCwGtt3FbSohlOuURxLAAAAcDOn9Kvhbj67GwAATtbYvksNm7u1/cCATDMcFGzY3K3G9l0Zv0Ykaa/rgZVat3yh46tDxCbjA4AbBYZGtLZznwJpkqRfOHFON/3jz/XCm+eK2LLCsXuyo3N9izramrSkvkYdbU1xCWoAAAAAAGs4KW7npLYAsJ7b5jUKpVjboWdjq+5prldVeXjqvqrcp3ub69WzqTX6nM71LTIkHT0xJMnMOv5mmmba31eUGWqYPV3vXVwb93hsrHWquGvi9rpt0ZwpP1chOOkaxbEEAAAAt3JSv3oqmeSIwB7GVINRuFtLS4vZ19dndzMA1woMjaSsSOu1u8MSq2dExFboACL27Nmj1atX290MIKn2riN6rHdA65Zdl3LVi/f/86/VHxjWorpq/fLztxe5hYWxYVufamdUxVUxJ1EcAADYgcoqAGAtJ8XtnNQWAPCSLV1HtKN3QBV+n8aCobjYphXn3sDQiD7euU+vnb4Yfay60q8LY8Gk7xkRG2uVNGXcNZvPZTUvXaOYgwEAAIBd3NivziRHBIVjGMZB0zSTJqeUFbsxAOB0cRPpKSrSypTWdu7z1GR7z8bWlMn4AOAGmSyF27C5O+5v+gPD0ceOPXJX8RpbALHJ6B1tTTa2BAAAlLrYyioEgwEgf06K2zmpLQCswc2FzhCptB1bfCIiVcG5ZI+n+j7raqoUDIWfX+43NB40FQyZKd8zWaw19ufEuGsun8tqXKPcjXMRAACAM7ipX51Jjgjs5bO7AQDgNIlLlCRbfs9Ny5hkKlUyvhuDQCzdApSmTJbC3fnQKs2fNS3u7xbMmqadD68qalsBAAC8qLF9lxo2d2v7gQGZZjgY3LC5W43tu+xuGgC4mpPidk5qC+B0bolTe3G+w40617eoo61JS+pr1NHWFFeMYu+mO7Rw9vS45zfMnq69m++Y9Drpvs+l9TW6f8VCPfm3q3T/ioV67+LalO/Zs7FVC66+Ekf1GZLfiH//2LhrMoGhEb11cVwPrbkh6XtYjWuUu3EuAgAAcAY39aszyRGBvaigDgCXZXJX1Q/7Xvf0nVfFrGRRSFTrA0pTJgOlJfUzNb3CH/d30yr8WjJvZrGbCwAA4DluqqwCAG7jpLidk9oCOJnT49RUmnOP2OrnEcGQGRf3zOT7zHQFxsTXkqSEt9ex0xe17Mu70+4vdhwDXKPch3MRAACA87ilX+2mZPpSZaRaEgze0NLSYvb19dndDMBxki0TFxgaSTmRns1zYJ9kQVNJBLEKYM+ePVq9erXdzQAm2bCtT7UzquIGSolVeZZ9+WnNml6uh+5YpK2/6tfZi+Pq3fI+m1oMAADgLVu6jmhH74Aq/D6NBUNat+w6RyZkAfCeZPE+ALBDtnFqu85fzHe4R8Pm7pS/O/bIXZKs/T4Xb9mlseDkfVhSNOnDZ0gfubk+6eszV5O/UpqD4VwEAACAfGSSI4LCMgzjoGmaSTe6r9iNAQAnSLZMXCZ3VXHnlbOxdAuAdEvhRvRueZ9+8R9u19031+sX/+F2ktMBAAAsFKms0vXASq1bvlCDw6NFe+/A0IjWdu5TwKHVXAAUVrJ4HwDYIds4tV3nL+Y73GPnQ6s0f9a0uMcq/Ia2f2ZZ9N9Wfp97N7WqYfb0uMcaZk/XR981X2PB8OubUsrXZ64G2eBcBAAAgHxkkiMC+5TZ3QAAKKTEyiNTLROXyRIlblnGpBQRxAIAAAAAe8UGfzvamor63rHJXVRtB0rHVPE+ACi2TOPUTjh/Md/hDkvqZ2p6hT/usbGgqa6Dx7XqhtroY1Z9n3U1VZoIhVdhr/AbGguaCoZMXRidyOj1matBtjgXAQAAAN5kmKZpdxtQQC0tLWZfX5/dzQBs0951RI/1DkSXFGeZOO9j6ZbiKKXlJQEAQObsWpoeQGlLTO6KIDkVKA3E+wA4USZxas5fiDXVeHrZl59W4Hzy1YkK0e/Nd66FuZr8MAcDAAAAwC0MwzhommbSAR8V1AF4UrrKI39+6wKqNniYndX6AAAASh3ViwHYoWdja8rkLgDeR5VWAE6USZya81d2vH5D9FTj6d4t79PiLbs0Fpx8Y2Y+5ehSbdd851qYq0E6Xj+eAQAAAIT57G4AABRCz8ZW3dNcr6ry8Gmuqtyne5vr1bOpNbpMXNcDK7Vu+UINDievOAEAAAAgM43tu9SwuVvbDwzINMM3iDZs7lZj+y67mwagBJDcBYB4HwC34vyVudgEbi/JZjy9d1OrGmZPj3usYfZ07d3UmvP7R7br3Vv3KnB+JOfXAbLh1eMZAAAAQDzDNPO5pxpO19LSYvb19dndDMAWW7qOaEfvgCr8Po0FQ1q37DqqOAIWYXlJAAAQi6XpAdhtw7Y+1c6o0qeWXacdvQMaPD8SV7WxWKgECAAAnMQLfZPEFXMjKst8eqnjQza0yFqJ4+nKMkPVleXa9pllWjJv5qTnr3r0V3rjrUuq8BsaC5q69upp6tl0R9bv6/Xt6nZenYNhvwMAAAC8xzCMg6ZpJp2QoYI6AM+i8ggAwEqBoRGt7dxHJSEASILqxQDs1rm+RR1tTVpSX6OOtiZbktMlKgECAABn8ULfJN2KuV4weTxt6vSFMe3YP5A0Hrm0vkb3r1ioH//tKt2/YqGW1Nfk9L49G1vlMyY/PjoRYjU0FIzXj2cAAAAA8crsbgAAFErsZHRHW5ONLfE+L1RhAYCpxE7osSIHAEwWuUE0tnoxAJSKxEqA2w8MaPuBASoBAgCASYoRT/dS36QUbog+NTwqQ0r6nUnSo7te1NfXNkuybu6rrqZKbc3z9aNDx6OP+Q3p7pvrteWud+b8ukA6pXA8AwAAALiCCuoAgLx5oQoLAKTS2L5LDZu7tf3AgEwzPDnUsLmbSkIoKCr2w42cUr0YAOxAJUAAAJApK+PpqeIHXuubeGXF3FTfV+f6FrU1z5ck+ZOUNX/i2eMFiUdeGJvQorpqSZLPkIKmSBZGwXnleAYAAAAwNSqoAwBy5qUqLACQSs/GVnXs/IN+8fxJjYyHVFXu0weXXkMlIRQUFfsBAHAXKgE6Gyu/AQCcoBDx9FTxA6/1TbyyYm6y7ytxvwiGzJR/b5qpf5eLzvUt2rCtT8uvn53Vamj0rZAPrxzPAAAAAKZGgjoAIGckbcIOBL9RbF6b0IOzcfMXAADuFakEmE1yD4qDm/8AAE5gZTw9k/gBfRPnSPd9Je4XfkNadv3b9PvXz+nCWDD6Nw2zp+sHn3t31u+dLJ4e+1guycL0rQAAAAAAmfDZ3QAAcINUyy6WOqckbfL9lBYrl8AFMsWyoygWry3BDZQC+qIAIjrXt6ijrUlL6mvU0dYUl+wDezS271LD5m5tPzAg0wwngzVs7lZj+y67mwYAKEFWxtMziR/QN3GOqb6vfX88Fd0vQpLeMadaV19VIUkq9xuSwpXVc9lXIvH0u7fujY5bc42x07cCAAAAAGSDCuoAkAGqQaTmhCosfD+lgarCsJPdy46yckDpcMrNXwAyR18UAJyLld8AAE5jVTyd+IG7xH5fFWU+jYyHVOYzVDejSu1dRzR4fkyL66r1nz95S3S/WFpfo9WNdTnvK4nx9MD5US378u6452QbY6dvBQAAAADIBgnqAJAGCbFTszNpk++ntBD8Rikj+bG0OOHmLwBToy8KAM5H8h4AwGmsjKefGh7VR2+Zr5dOnlfjvBms+OdwkXjPW8Oj6j56Uk88e1xPPHs8+vuXA8P68NaepGPKXPaVrgfeow9v3Zv2OdnG2OlbAQAAAACy4bO7AQDgZJkskwnrBYZGtLZzX3S5yVT4fkoLwW+UIpbNLU0swQ24A31RwJkyHU+idESSwboeWKl1yxeSvAcA8IzO9S2aVu7X828OaVqZn/iBw+15aVDb97+m7qMnk/4+lzFlur7vjgMDkx7zG1LD7OkyDOUcY6dv5UyMgwAAAAA4ERXUASANEmLtkWmlYL6f0kNVYZSano2tWtu5T8dOX5SUfVUjAEDh0BcFnImVZ5DoS/c26cHHD2nOjIqir/wGAEChsKKT+yRbIfSamiq9duaiKvy5jSmT9X0T941YQVMKhsy8Yux2rqqL1BgHAQAAAHAiEtQBYAokxBZPLkF1r38/gaERPfj4IX3zU7eQ7CSC3ygtySaTRsZD+tlzJ/SNT95iU6sAALG83hcF3IQkLaRCsg5QuoirwUpO25+SJTtT1MBZEveZZDc555osnq7vm7hv+AzpurdNV8d9TXrq6J80eH4kGlsnxu5+ThkHOe0cCQAAAMAZfHY3AACcJnEZvM71Lepoa9KS+hp1tDVltEym15fSK9Tn69nYqnua61VVHr48ZbKkZS7fj5vETqQDKC2Rc6LPCP+7ssynhtlX6bZFc+xtGAAgyut9UcBNchlPwtsa23epYXO3th8YkGmGk3UaNnersX2X3U0DUCTE1WCl2P3JCfF/VnRypsi+8cKJc7r7X/aq99Ur56DA0Ih2HnlTH71lgboeWKl1yxdGx5LZjinT9X0T9w1T0qob5mjVDbW2jVudcMx4lVPGQVxzAQAAACRDBXUASGBFZS2vV+cq1OcjqH6FU6peALBP5JxoKpycPhYMadUNsz15XQEAAMgX40kkorIsULqIq8FKqfYnSSnj48WqJMyKTlMrdlXnrbv71fvqGX14697oY5F9xmdIpqRp5b5oQnouIp9pzlUVGhkPqSJJ39dp+4bX58zsZPc4iGsuAAAAgHQM0zTtbgMKqKWlxezr67O7GYDjJAtKJgZRIrIJouTzGm5Y/s6KbTSVDdv6VDujKi5wWoqVKANDIykn0p2wf+zZs0erV6+2uxmA53FOBAAAyBx9JyTa0nVEO3oHVOEP3/C5btl1JEUBJcDpcTW4S+L+lExifLy964ge6x3guuMAxfouUs2dpJPLvEpgaER3/8teBc6P6qoKvy6MBXVX0zW6urrSkX3fYswpeVU2czB2joO45gIAAAAwDOOgaZpJByFUUAdQkpJVa7CislY+r/HoUy+q99UzenTXi/r62ubo405KXC9G9bHYoFmuFUS8wO6qF4DbOOlcaSXOiQAAAJmj74RETqseCqA4iKvBSrH7U4Xf0FjQlN9nKBgyJ8XHqSTsHMX+Lno2tmrFV3crlKIu3FUVfgVNM695lcTPdGEsKEnqPnpSUjjp22lY0aY47BwHcc0FAAAAkA4J6gBKylRByVRBlEwTH3MJxCS26Ylnj+uJZ49H2+SkpQ8JNBUXE+lA5px0rgQAAADgDNy0AJQu4mqwUuz+9PD3Dqk/MJw0Pk4yrnMU+7uoq6lSW/N8/ejQ8aS/jySTS8ppXiVdhfbKMkN3Ns1z5H7GnFJp4JoLAAAAIBUS1AGUlKmCkqmCKNkkPmYbiDHN5CU1RidCatjcHf23U6qtEGgqHibSgalRmQoAANjJq6u4AADgdsTVUvN6/6UQny92f7q+9iotv3520vg4ybjOYcd3cWFsQm+ffZVePX0h+pghyYz5/5rGWs27enrG8yqR/bnrgffov/3mFXX//k0FY8q0G5LGgqaj9zPmlLyPay4AAACAVEhQB1BSpgpKJgZRGtt3ZZ0knm0gZu+mO/Txzn167fTF6GMNs6frv6x7l/7bb15xXLUVAk0AnITKVAAAwE6s4gIAgDt5PUk7Ha/3Xwr9+aaKj1uVjFvK+6hVrEyMnur7CAyN6BfP/0mJ5YjMhP/vfmlQklRZ5svovSL7844DA5pRWaZgyJTfkIKmNHNamZbWz9T1tdWOTvpmTgkAAAAAShcJ6gBKTjZByWIkPtbVVEUrXpT7DY0HTQVDppbUz0yaTC9TWtu5T1/8yBJ98acvEKAG4DjFnECjMhUAALADq7gAAOBuXk/STsbr/RenfD6rknFLcR+1mpWJ0cm+j0gM9IsfWaIPb92b8m/f/Y7Z6n3ltIKmMppj2rq7X72vntGyL++OPrb9wIAkyWdIP/2726JzW7GfEQAAAAAApyFBHUDJySYoWazEx6X1NVrdWDcpaT5ZMn0kEPrw9w7r3waHCVADcJxiT6CxTCwAACg2VnEBUAhUywUKzylJzHbwev/FK5+vlPdRJ0r3fXz81gXqffVM2uT0j71rvqrK/dr/yukp55gS3ytRZZlPXX/7Hi2ZV0MlcgAAAACAK5CgDgBTKEbiY7Kk+cDQiN66OK4vtTWpbkaVftj3elxwsj8wLMk9AWomWQHvs2sCjWViAQBAsbGKC4BCKMVqucSLUGxeSWLOhdf7L175fKW8jzpR4vdhGJIhaXQiFK1qnsriumoNj05oeHQiozmmxPdKNDoR0oe/sdfxc0EAAAAAAET47G4AANgpMDSitZ37FEiTdN65vkUdbU1aUh+uSlGsJRNjJyWlcHDynuZ6VZYZcc+rLPPp3uZ69WxqLUq7cpX4eQB4T+Q8VVUe7mJWlbvj/AR4WSZ9HQBAbiI3M3c9sFLrli/U4PCo3U0C4FKN7bvUsLlb2w8MyDTDN/s2bO5WY/suu5tWcMSLUGxeSWLOldf7L174fKW+jzpN7PfhMyTTlBa+bXrSuZqINTfW6f4VC/X22qvUub4l4zmmyHuNjIeU/JXDRidCJdFHAIqF+CkAAABQOFRQB1DSnFiZKl0F4j+/dYHGgqZ8hhQyJb8hjQWdHaB2ypKkVOQCCo8JNMB5nNjXAYqBvh+KgVVcAFilFKvlOiVehNJUjBUzncrr/RevfL5S3ked6PHe8A1k5uV/v3r6ol49fVGSonM1kYTyG+qqVeY3ct7/Tg2PalFdtf4tMKyaqjINjUzE/d5vSHffXO/pPgJQbMRPAQAAgMIhQR1ASXLyJFi6Scl/+PFRrVu+UK8MDuvU8KhmV1foHbUzHB2gdsokKwEmoDiYQAOcwcl9HaAY6PsBANykFG/2dUq8CKXJK0nMpaBUbzwt9X3Uad/7/i+sUcfOP+gnh09EH5s3s0rvuWG23jw7MmmuJtdVeBNjOYnJ6ZIUNOX5PgJQLMRPAQAAgMIjQR1ASXLyJFi6SclcA5t2snuSlQAT3M5pEzJTKfUJNMApnNzXAQqJvh8AwK1K7WZfu+NFANyBG09Lk9O+92Vf2T3psTfPjeiJg8d17JG7LHufVLGc3716RifOjejDN83T266qcGwfwW1xbID4KQAAAFB4JKgDKElOnwTz2qSknZ+HABPczmkTMgDcwel9HaBQ6PsBANyqFG/2LXa8iMQ5wD248bQ0OfV73/nQKn30v/4fjYxfaVtVuU//49MtWtu5z7LrSmwsp6LMp5HxkJ6Mqdq+88ibkqTKMl/e71UIxLHhNsRP3YN+PAAAgHuRoA6gZCWbBIsd4MqUbYNdr01K2vl5CDDBrZw6IQPAPbx2wxuQCfp+AAC4R7HjRSTOAbkrdmIYN56WJid977H7/JL6mbr26unqDwxHf3/t1dP11JGTll9XIrGct4ZH1X30pKaV+2RKtm+PdIhjw82In7oD/XgAAAD3IkEdQMlKNgnW3nUkOsCVxGDXIwgwwY2cNCEDWIVKJ8XltRvegEzR9wMAALFInEOpKcTYu9iJYU688ZSYRuEl+979hqEHdxR/u8fu8w+tWaRjpy7o+jlX6fPvX6y/e/yQ+gPD0YR1K68re14ajLtmXYqp2u6E4yCZbOPYHEtwEuKnzpHs3EA/HgAAwP2cuQYYABRZY/suNWzu1vYDAzLNKwPcyM8Nm7vV2L4r6d8Ghka0tnOfAiS+OFbn+hZ1tDVpSX2NOtqa4gJOgFM5cSIOyFfs5B4AFAp9PwAAEKtnY6vuaa5XVXl4OqSq3Kd7m+vVs6nV5pYBhWHl2DtZ3DxdrNxKkRtPux5YqXXLF2pweLTg75kOMY3iSPzef3fsjGXbPZO5nGT7/LKv7NZ4yNR73jFbd99crwN/vyar60o2c0iJ1yyfITXMnq7tn1nmiOMgmWzj2BxLAJJJdm6gHw8AAOB+VFAHAE2u8OA3JFNSyNSU1R6srB5D5QgAsagAC6+g0gkAAAAAu3ADOEpFIcbedq7w55SqtsQ0iivyvRdiu2cyl5O4z8eKbcOf37ogp4TsqeaQEq9ZY8GQVt0wR6tuqNWqG2pz+tzFkEkcm2MJQDJTnRvoxwMAALgbCeoAoOQTVZKiP5f5Ji8jaVeAFEDpcMpEHJAvOye0AQAAAIAbwFEKshl7Z1ooxY4bPJxWxIWYhj2s3O6p5nIMQzrw92vi9rPYfb7Cb2gsaMrvMxQMmXFt+IcfHy1YQrYbr1mZxLE5lgAkM9W5wY3nRAAAAFxBgjoAXBY7wN2wrU9SOKi2o3dAv34poDfOXopLHC9GgJTKEQAAL6BiIQAAAAA7cQM4SkE2Y+9sCqUUOzHMaUVciGnYw8rtnmwu55qaKh07fTHpfha7zz/8vUPqDwxPakMhE7K/dG+THnz8kObMqPDUNYtjCUAyU50b6McDAAC4GwnqAHBZ7AC3Z9Mdkoq3rBiVIwAAXkelEwAAAAAACmuqsXcuhVKKlRjm5CIuxDTsYdV2j01+lKSR8ZCOnb4oKfl+FrvPX197lZZfPzurNgSGRrRh20GZkupnVmlkPKSKLOaQnHaThpU4lgrnhRPn9InO/fr+51ZoybyZdjcHyArnBgAAAO8yTNO0uw0ooJaWFrOvr8/uZgCuFRgaSZk4XjejShu29al2RlXcgDk2eJmNLV1HtKN3QBV+n8aCIa1bdp3ngo/wjj179mj16tV2NwMO5LRlmAEAAAAAABA2VbybtiEdN8f9InM5dy6dqy/86Ihef+uSJKmyzFB1Zbm2fWaZZUm97V1HtP3AgCTpqgq/LowFdVfTNbq6ujLtHFLiTRoRTrhJA8WX7RzM+//51+oPDGtRXbV++fnbC9cwAAAAAEhgGMZB0zSTDnapoA4AaRRzWTHuDgfgBV6u8FNsbp70AwAAAAAAzjNVvJu22cvpsSA3xP1SbcPYuZyqcr8kyW9IoxOmRifGtGP/QNafKfG9kiWYXxgLSpK6j56UFE42T4WVdpGLhs3dcf/uDwxHHzv2yF12NAkAAAAAokhQB4ApFCtxvFhLpQJAITh5GWa3csOkHwCgtDg9YQYAAABTc3KhFCe3rRicGgtyU9wv3TZM/BzBmEXGc/lMie/Vs7FV//DkUT39wp/iXlsKV2q/s2le2mRzbtJALnY+tEqf/e5BHT97KfrYglnT9O1P32pjqwAAAAAgzDBNc+pnwbVaWlrMvr4+u5sBQCRzwFuyXV7SKTgOC4dlmK3Dcr7W4rgHAOu0dx3RY70DWrfsOkclzAAAAABu5vRYkNPjfoGhES3/ym4lm/GO3YaJn0OSDEmmlNVnSvd9/fmtC/TYgYG4x31G+D0yGUdt2Nan2hlVcTdpxBY3QunIZg7m/f/8a/UHhqP/XlRXrV9+/vYCtQwAAAAA4hmGcdA0zaSD19TriAEALBVbTQOAPTgOC4cKP9bp2diqe5rrVVUe7qpXlft0b3O9eja12twyd+K4B4D8NbbvUsPmbm0/MCDTDFcXbNjcrcb2XXY3DQAAAHA9p8eCnB7327q7XzKkhtnTJ23D73y6RTf948/1wpvnVFdTpZ89dyKanC4pmtQ+Mp75Z0r8vgxD+uDSuep64D3aeeRN1c+s1F03zdPcmkpVV/q14vrZWrd8oQaHR6d87c71Lepoa9KS+hp1tDWRnI6MnLs0rsVzq/XNv7hFi+dW69ylcbubBAAAAACSpDK7GwAAXuem5S+TofIsvMDtx6FblPoyzFZx+qSfW3DcA4B1eja2pqyYCADwNuJCAKzC+SQ1N8SCnBj3S4z9HDt9Mfrz6ERIZT5Dn/lun0bGQ3r48cP65edv13sX1erY6Qs6ce6SxibC6emrG2s1u7oiowRyKf778hlSyJReGbygHQcGdPbSuO66iRWnUFy9W94X/fnum+ttbAkAAAAAxCNBHQAKzO3JHLGVZwmqwq3cfhy6RWxFn462Jhtb4n5OnPRzG457ALCOGxJmAACFQVwIgFU4n6Tn9FiQE+N+ibEfQ+GK6Gsaa7X7pUE98ezx6HP7A8Nq2NwtSVq3PLyNK8t8GguGtGDWtIz2ycDQiP5m20EZhvTc62dlmlcqsPcHhtUfGJZEkQQAAAAAACJIUAeAAnNrMgeVZ+Elbj0OUbqcOOnnNhz3QLwXTpzTJzr36/ufW6El82ba3Ry4kNMTZgAA1iIuBMAq2ZxPSrnKOrGg7EViPyPj4f0rkiy++6XBlH+z8+FV+sbT/TmNbbbu7tfh189Kkj56y3xNmGY0Od5vhN8/ZIoiCQAAAAAAXOazuwEA4AaBoRGt7dynQI5JGJFkjq4HVmrd8oUZLxVpp56NrbqnuV5V5eFLRVW5T/c216tnU6vNLXOvfPcj5MeNxyGA/HDcA1c8/L3DOj86oYcfP2x3U+BSnetb1NHWpCX1Nepoa4pLoAEAeE8kLuT3GZIkv88gLgQgJ1PFmWNjprFV1oFMnBoe1fVzrop7zGdI82dNm/Tct8+5Skvmzcx6bNPYvksNm7u1/cBA9LEfHTqunxw+oZHxcGGEoBlOTqdIAgAAAAAAV5CgDgAZyDcwXoxkjmyTn6d6PpVnrccEi71IqgJKD8c9IDVs7lbD5u7oUuORZc0jS5uXGm4YBAA4mZOuU7d97Rn95PAJBUPherTBkKknD5/QbY8+Y3PLgMJy0nHoFVPFmbfu7lfvq2e07Mu7tf3AgEwzXGW9YXO3Gtt32dx6FEOux11j+y79/Pk/6ZVTF+IeD5nS8bOX4h6bWVWmC6MTObWvZ2OrPrB0ri7fsyVJ8htS3YxKfezW+ep6YKWuvXqarr16GkUSAETRpwAAAABIUAeAtGIrYzg9MJ5t8nMmz6fyrDXctB85HQE9AACys/OhVZMqxy2YNU07H15lU4vsxQ2DQHL0swFncNJ1qmdjq66ZWSX/5WQ8vyHNm1lFBXV4npOOQy9JFmdOVpU6gtU8S0uux13PxlZ9cOlcGUb84z4jXMn8Y+9aoJ0P3ab7VyzUinfMVu+W9+XUvrqaKtVWV+ryPVuSpKApfWDJXH39481aUl+jnk13qGfTHRRJABBFnwIAAACQDNM0p34WXKulpcXs6+uzuxmAawWGRtSx8w/6xfMnNTIeUlW5Tx9ceo223PVOx1QSb2zfpdGJ0KTHK8t86tnYqgcfP6RvfuqWaHvTPf+ljg8VvL2lyA37Ubb27Nmj1atXF/1927uO6LHeAa1bdp067rup6O8PAIAbvf+ffx2toC5Ji+qq9cvP325ji4qPPjCQHv1swF5OvU5t6TqiHb0DqvD7NBYMcY6Apzn1OMxHYGhkUmzYSe+VGDP1G+Gk34oyn8Y555QEK467VKuD+Qzpla/elVf7Ym3Y1qe9/ad0YSyo666eJlPSkvoaEtFRMHbNwSC5bK5zXuxTAAAKr5jjNwCwmmEYB03TTDpApoI6AKQx1fKjqRSz+lzPxlbd01yvqvLwKT22ukyyu/PTPR+Fket+hCuoQg8AQO7OXRrX4rnV+uZf3KLFc6t17tK43U0qOvrAQFjiWJV+NuAMTr1OsbIeSolTj8N8FLNyay7vlRgzDZrS4rpq/ZhzTkE5aeWcfI67SD82mYbZ0/XexbWWtbOxfZd+/vyfdGEsKEkaeOuSXn/rkva8NGjZewBwtmyuc17sUwAACo+VNwB4VZndDQAAp4tMxn1q2XXa0TugwQwCt7Gdx0JXeUmW/PzT507oycMnos/ZfmBA2w8MRO/OJ1m6+HLZj3BFz8bWlFXoAQBAerHLmN99c72NLbEPNwwCYYljVfrZgDM49ToVWxW2o63JxpYAhefU4zAXiZVbE2PDTnqvZDHTJfU1nHMKqJhzF1PJp0DQknk1qq2p1G9eHtTI+JV90DCkVTfMsfSz0WcGSlcu1zkv9SkAAIVXzPEbANiBBPUYhmG8S9JySf9O0k2SaiXNUXg7vSXpBUm/lPSvpmmetPi9yyX9paRPSloi6W2SBiUdkrRd0g9M0zStfE8AmclmMs6uzmNiIP+NMxdVM708ZcDUbcnSL5w4p0907tf3P7dCS+bNtLs5OWFSNz8E9AAAQL6s7gOz5CbcJN1Y9c9vXUA/G3AAt8VqAC/yynE4VTJtYj82n35tvom7xEyLx6mJL5ked7H76dbd/Tr8xlklmzU1TWlH78CkBPVs9/O45xObBkpWrtc5r/QpAACFF7nW/PzoyWh/884mboYE4B0kqMfbKWluit9dc/m/OyRtMQzj/zZN89tWvKlhGA2SfiTploRfzb/8392SPmMYxsdN0zxrxXsCKAy7KmkkC+Rv6TqSMmD6pXub9ODjhzRnRoWlgf9CJek8/L3DOj86oYcfP6xffv52y14X9sp2fyGgBwBXkBgLZM/q5BcnVR4EppJurPoPPz5KPxtwAJI0AfsV6jgs9vhtqmTaxH5sPv3aUkvcdfNY3KlVwDM97rbu7lfvq2e07Mu7Uz7HZ0gfubk+6WfKdj9PfD6xaaA05Xqdo28PAMhU7LVGkufHVABKDwnqk52StF/S85LelHRSkl/SDZLaFE4ir5bUaRjGhGma/zOfNzMMY5akXZJuvPzQHyT9T0lvXH7Pv5F0raT3SfqRYRgfME1zIp/3BJC9TAPPTgrIpwuYFiqZxurXbdjcHffv/sBw9LFjj9yV9+vDXo8+9aJ6Xz2jR3e9qK+vbZ7y+QT0AOCKR3ZdPofufFFf/0Sz3c0BSopTKw8C6aQbq9LPBgCgsOy4sTFZbDhVPzbx39n2a3OpgO3WZAs336TqpLmLbCTut7Gqyn26pqZKx05fVGWZT2PByZ8p3fitZ2PrpH0yk/EefWbn88L5Bs7BDSrpcbwBQH6S9Xe3HxjQDw++wXwDAE8wzGTrn5UowzCWSnrBTLNRDMP4gqSvXP7nWUnXmKY5msd7/n8l/fvL/3xK0n2maY7E/P5tkp7WlerqD5qm+a1MX7+lpcXs6+vLtXkALmvvOqLHege0btl1UwaeN2zrU+2MqrhAReyEv51SBXPzTaYp1Ou+cOKcPvvdgzp+9lL0sQWzpunbn75VS+bNzPl1kb89e/Zo9erVSX83VTCqUPsLAJQCzqGA/QJDIykrDzIRBydz8lgVAAAvSjV+MwzpwN+vKXrfMbEfW1lmaE51lU4Nj2p0ovD92mxi7E7jlbG42/qDgaERbdh2ULU1lfrNy4MaGQ/Jb0hBU6oo82k8GNKCWdN0e2Ndys+Ubvy29en+Sfsk4z1vcPP5JiLdHAzgJF443gDATvQ/AXiBYRgHTdNMGmCggnoM0zSfz+A5XzUM45OS/kzSLEkrJf0ql/czDKNO0gOX/3lB0qdjk9Mvv98ZwzD+H5J+L8mQ9A+GYfw30zSDubwngOzkUh3RydXnMl3GM9u73Qu1POiS+pmaXuGPe2xahZ/kdIebqpJQqvvAuGkOAKaW6lTJGRQoHrdWHgScPFYFACtQvRFOkyxmGqn2bEcF7mT92NMXRgver/XCCkSFin8Xm9v6g1t39+vwG2d1Q2113H66uK5a//mTt0QT0iOfJfEzRa4LC66eFvf3P33uhJ48fCL6vMR9kvGee3nhfAO4BccbAFiD+QYAXuezuwEu9ULMz9fk8Tptkiou//y4aZqBZE8yTfOoriTBz5V0ex7vCSALPRtb9YGlc2UY4X9Xlft0b3O9eja12tuwHGXauY1NMLbydXNx7tK4Fs+t1jf/4hYtnlutc5fG835NFEZj+y41bO7W9gMDMs1wMKphc7ca23fFPW/vpju0cPb0uMcaZk/X3s13FLO5AOBKeze1qiHZOdSlfRPArSLLO3c9sFLrli/U4HDOC6sBAACLZBvPAgotNmYqSSPjIR07fVFS6rhZocX2YxfVVWtkPKRFddUF7df2bGzVPc31qioPT0m6Mcaeb/w7MDSitZ37FDg/MvWTS0zitgkMjejtX+iOizP3B4ZlmlLINHX/ioV6e+1VWlJfo462prQV4CPXhd+9ekbrli/Udz7dordNr9BVlWX64NK5KfdJxnvu5YXzDeAWHG8AYB36nwC8jArquXlHzM8n83idD8T8/NQUz31K0prLP9+pHKu2A8hOXU2VXh28INOUfIY8cbdipHMbu+RlRD53u6d73Xz0bnlf9Oe7b6635DVRGJlWEqqrqVIwFK71W+43NB40FQyZrj6uAKBY6mqqNHH5HFrhNzTGORSwhdsqDwIA4GVUb4STRWKmdy6dq/YfH9XAmYsKmbKtAnfn+hY1tu/S9v2vRR/rDwzrw1t7CnbMeKUiYD7x76lWnCxlidtm6+5+mWb4ZvyTQyMaGQ/JZ0gfWDJX/9TWlNF+k3hdeP2tS9q+/zXtOPCaLodU9MrghZT7JOM99/LK+QZwA443AEgvm1Xe6H8C8DIS1LNkGMbnJP27y//8k6Tf5vFysVeVg1M8ty/F3wEokMQgZiRwuaN3wNVB5HSd28QEYykcCP7B596d1+uiNGQTjFpaX6PVjXWW39AAAKWAcygAAABwRaY3zAN2iI2Zrrxhjl7rHbA9icuOY6ZQxU2KKZf4NzfQpJZq20REVhuQwnMzfxy8kPHxkmyeI/I6Ef2B4cuPmeEqlS7cJ5GcF843gFucGh7VfbfM18snz6vxmhoq/gJADG5SBYAwEtRTMAzjvZLedvmflZIaJN0tadXlxy5J+n+applTL9swDJ+uVGIPSnpjij95Lebnxbm8J4DsJAYxK8t8qq4s07bPLEv7d9ncCek0dTVV+tlzJ+ICtcdOX9SyL+8maI6MZBr85YYGAMgd51AAAOB1bo6toPio3gi3cErSpB3HTKmOYzO9GaCUrnsvnDinT3Tu13c+3aIfHHwjZv7F0JzqKp0aHo1LXI/oDwyrYXN3RvMUyfbxBVdP04mzl6JzHz5Dev+SufpShlXZ4R6ler4B7NC5vkXtXUf0/JtDar52lr6+tmXqPwIAj+MmVQCIR4J6al+TtDzJ40FJT0v6gmmah/J4/Wpd2f5nTdOcmOL5p2N+npXH+wLIULIg5ujEmL7T86pef+tSymCx2++EfO+iWh07fUEnzl3S2IQpnyF95OZ6qk4hIwR/AQAAAAD5cntsBcXnlMRfIB0nxc04Zooj05sB7LzuFTs5/uHvHdb50Qn9p5++oGVvf1t024wFQ5pe4ddY8Mq2apg9XSeHRnKq9J+4j+95KRBXmCdkSrXVlSSnA0COSMAEgORY5Q0A4hmmaU79rBJkGMZ+JU9Qf0XStyT9b9M0Tyf5faavXy/p+OV/HjdNc8EUzy+XNHb5n2OmaVamee7fSPobSZo7d+6t3/ve93JtJlDytj47okOBoJKdKX2S/uedV0X//dlfXND45MIeKvdJ//0DV03+hYP97+dHtef1CZX5pImQtPraMn16acrTDkrQ8PCwqqur7W4GAAAAAMBDvBRbQfGdHQnpvzw3qgeaKzWr0md3c+Bh7GvIxtZnRzSr0tDqa8u05/UJnR019dC7wknRTrjuReYCCj0H8JdPXUj5u396T5X2vD6hg3+a0K1zy6Lb6veDEzo9oozmKdIdl6m2syHpf91J/wLOxBwMnO7sSEjfe2lMz/4pqLGQVOGT3jXXr0/eWEH/CEDJI98GQKlpbW09aJpm0uV0XJWgbhjGZySlTeTOlGmaX8zifa+S1Cjp45L+vaQqSW9IajNN82Au75+QoP6GaZrXTvH8Mknjl/+ZNkE9VktLi9nX15dLEwFcFhgaUcfOP+gnh08k/X3kTvDI85LdCem2KhwbtvWpdkZVXAWd2Ao/wJ49e7R69Wq7mwEAAAAA8BAvxVZQfO1dR/RY74DWLbuOyvsoKPY1WMXO615i5duIQlW+feHEOX32uwd1/Oyl6GMLZk3Ttz99q5bMm5n0b7KZp0h3XKbazhvee72++NMXilY9HsgGczBwgy1dR7Sjd0AV/vBKGPSNACCMfBsApcYwjJQJ6mXFbkyePqPkVc1z8cVMn2ia5gVJz0p61jCMH0j6tcKJ8k8bhrHUNM3kWavpDcf8PC2D50+P+fl8Du8HIEeRZTgNI1xRI7IMZOJSPJku11kIVi/DWezlZou9jCgAAKWI6y0AAHA6O2MrcK/EJMvtBwa0/cBAwZIsUbrY10pbIcbUdl73eja2pkyOt1pgaERf/OkLqigz4h6fVuGPS05P3MaZzFNkclym2s47Dgzod8fOaOvT/SRUAkAOTg2Pat3yhXEJmACA4ufbAICTsbZOlkzTPCTpa5f/OUvSwzm+1LCkicjrGIbhn+L5s2N+PpvjewLIUWSAfefSayRJPkNJg8WR53U9sFLrli/U4PBoUdq3dXd/NJAaERga0drOfQq4IBiQrP0AAMBaXG8BAIAb2BVbgXv1bGzVPc31qioPT3dUlft0b3O9eja12twyeA37Wmkr1JjaruteXU2VygxDI+MhVfiNgibHR7bdyXMjWjy3Wt/8i1u0eG61zl0aT/q8bLZxz8ZWNcy+UuMr1XEZu519MqKJ7KYZTmpv2NytxvZd+X1QAI7ipnlSt+pc36KOtiYtqa9RR1sT1YEBAAAwiWGapt1tcB3DMFok/e7yP3tN08ypqrthGC9Karz8zwbTNF9L89zVkp65/M9dpml+OJP3aGlpMfv6+nJpHoAknLYUT7plOD9+6wLHLzVb7GVEYR2WlwSKi8rXyAfXWwBAsdF3AVBsW7qOaEfvgCr8Po0FQ46Oh8HdptrXsr0Gcs10Pi+PqW979Fd6/a1L+vBN8/S2qyosn+/IdNvluo1T/Z3PkF756l0p/y4wNJKyejzHIZyCOZj8tXcdcfw8KQAAAOAFhmEcNE0zaUCBCuq5OR/z86w8XudozM9TRXxif3805bMAFFS6O8HtuBM/WdWeSHV3N1T/oOoQkJsXTpzTTf/4c73w5jm7m4IiofI18sH1FgBQbPRdABQblfdRLKn2tUhs+NGnXszqGsg10/m8OKZubN+lhs3dev2tS5KknUfe1Pb9r2nPS4OWvk+m2y6XbRwYGtGSeTX6wNK58hnhxyrKDDXMnq73Lq5N2666mirNqCzT6ERIlWW+glaPB1B8kXOcG+ZJAQAAAK8rs7sBLnVDzM+n8nidn0v62OWfPyjpiTTPvTPm56fyeE8ABRI7mVCsO/GTBVI/est8jYfMpNU/nCBSFeiLH1miL/70BS24ehqBYCBLD3/vsM6PTujhxw/rl5+/3e7moIASK0FFlh/2QpUuFA8TrwCAYqHvAsAusUUkOtqabGwJvC7Vvvbur+5W0JR6Xw3/e6prINdM9/DimLpnY2vKCuJTmarqf9zvM9x2uWzjR596UYdeP6u3z7lKpqQKv6GxCVO3Xne1vv6J5ik/R+Rmk9jVcgF4Qz7nOABwGlZcAgC4HRXUc/M3MT//nzxe58eSxi7//BeGYdQle5JhGEsl3XH5nycl/TqP9wSQg3TV0e2+Ez+xas/w6ISjA+aRRP6Hv3dYvzt2Rr979QwVroAMNWzuVsPmbvUHhiVJ/YHh6GNuZscKFG7hxSpdsAcVJQEAxUDfBQBQaiKx4aA5+XfproFcM93Fa2PqfJLup6r6H/v7wNCIdh55Ux+9ZcGU2y7Tbbx4y041bO7WE88elyS9euqCTFMav3wQ9h47k8kmSLtaLgB38+KNRQBKFysuJcfcMtyOfRilhArqlxmG8ZeSTkj6pWmaSUKJkmEYFZK+Kumeyw+NSfofKZ77RUn/ePmf/9s0zb9MfI5pmoOGYfwXSf9eUrWkfzUM46OmaY7EvM7VkrZJurxAnTpM0wxm89kA5C9VdfTA0IjeOa9Gc2sq9euXB/O+Ez+XO2CTVe3ZsK3PcdU/EqsCRRJsX3/rkrbvf00/7Hud6kDAFHY+tEqf/e5BHT97KfrYglnT9O1P32pjq/JnxwoUbkEwHVahoiQAoBjouwDuRVU2IDeJVVolyWdIppT2Gsg10128OKbOtoL4VFX/U/1ekqaV+6KJ4Kl0rm9Jey2K/G482d0gCh9zUni+oWFzd1FXI+AaCjgPqyQAcDtWXEqPuWW4HfswSgkJ6lc0S/pfkt4wDOMXkn4vaVDhJPS3SfozSfdJqo/5m/9omuZLeb7vf5J0p6QbJX1I0rOGYfwPSccl3SBpg6RrLz93j6Rv5/l+ALIwVcd/6+5+PffGWd1QW23JZIJVnRAnBswjkzU/P3oybptWlhm6s2keS+sBGVhSP1PTK/xxj02r8GvJvJk2tSg/BFcyQzAdAAC4CX0XwJ2YGANyE5to7jOkkCl9aOk1urq6csprINdM2CnbOYTEmzEqy3yqrizTN/6iWW3f+q0W1VWr/upp+s3lQj6xMo35pSsUtOwru1P+3fQKv4IhU6MT+RUQyhXXUMB5nDhPCgDZSOx72dHHcSLmluF27MMoRSSoT7ZA0l9N8ZyApIdN0/xevm9mmuZZwzA+JOlHkm6R9E5JX0/y1Kclfdw0zfF83xNA5iId/+7fv6lgyJTfkGZNr9DQyLgaNndHnxepBh4yzfDyk1lOJljRCXF6lY7IZM1YMCS/IQXNcDWhsaAZTeh3+mcAnODcpXEtnluth+5YpK2/6tfZi+7tGhBcyQzBdAAA4Cb0XQB3YWIMyF+yRPNMroFcM+Emyar+j06M6T/95IXo/Ej4sZAq/IbGgqb8PkPBkDllzC/VtajC79N4KKTk616Hl542L/9/LFj81Qi4hgIAgEJhxaXkmFuG27EPoxSRoH7F30v6maTVkt4tab6kOkkzJF2Q9Kakw5J2SXrCNM0LVr2xaZrHDMNYLukvJX1S0lJJV0s6JemQpG2SfmCaqUIwAArltq89ExdgDJrS6QtjMiTd01wft3Rrw+zp+sHn3p3ToMCKTogbqnREJmv+OHhep4fHNKe6UtfXVkcT+t3wGQC79W55X/Tnu2+uT/NM5yO4AgAAAKAYuCE+NStiUmxflDoSzVEqTg2PSqbi5kwiyemxP5uSFtVVqz8wnFHML9W16KfPnUiZnC5JH7ppnt52VYV+8fxJ3feuBUVfjYDkEgAAUEisuDQZc8twO/ZhlCIS1C8zTfOiwlXKn7bo9b4o6YtZPH9c0n+//B8Ah+jZ2Kp7vvVbnTwX39k3Jf3k8Im4x46dvqhlX96dU3WMfDohbqrSETtZE6uxfVdcRXonfwYA1iK4Yg0SQgAAAIDUuCE+NSsmxti+QP4Y18MNOte36P/+wWE98exx+SSFEn7vN6T3L5mrf2pr0j/8+KiWXz87o5hf4rVoZDykJxPmX2KtubFO82ZNi65WEHtjSDFvEiG5BAAAFBI3wibH3DLcjn0YpYYEdQBIo66mSmturNNjBwbkM6TQ5WodVeU+1VSVq7LMp8D5UY1OhOQzpI/cXJ9zdYxcOyFeqNLhhc8AIDcPr1mkT3Tu16eWX0twJQ8khAAAAACTuemmfjvlGpNi+wLWYVwPp1u8ZafGglfKmScmp0vhFWjnVFeqbkZV1glVsdei7+x9Rb/942mdvTgWXcFWkgxJN9RVq8xvOCaOSHIJAABAcZG4D6sV+4Zx9mGUGhLUAWAKp4ZHdf+KhTozPKqdR0/KZ4SXsPzAkrkyJe3oDU+8jQVD2vfH0ylfZ6pOTa6dEC9U6fDCZwCQm4e/d1jnRyf08OOH9cvP3253c1yHhBAAAAAgNW6Iz0yuMSm2L5A/K8b1VF9HMXzk5no98exx+Y1wIrrfZ+jq6eW6OBbUjKoytSx8m37/xlkNDo9O+VrJ9tkv3dukBx8/pDkzKvT1tc3a0nVEO3qvFA66q+kaXV1dqcHzIylXarUDySUAAACAu3HDOFBYJKgDwBQiAcYN2/p0/4orFTy6j7ypm6+dFa2O8e+/d0gvB4ZTdlqs7tTEBnG9UKXDC58BQOYaNnfH/bs/MBx97Ngjd9nRJFciIQQAAABIjRviC4vtC+TPinE9k+kopMSbKCJF1IMhU3cuvSanfS7ZPpv4WLL5AhLAAbgJN5ABAOBsFIIDioMEdQDIUGwljGnlfp29NK4Fs6bph32va/v+16K/i3RaDEkHtqzRbY8+U5BOTWzA1gtVOrzwGQBkbudDq/TZ7x7U8bOXoo8tmDVN3/70rTa2yn1ICAEAAADS44b4wmL7AvnJZ1zv1Ml0EvK8JXITRffv31QwZMqQdHtjrWZfVZlRtfRYqfbZWMn2Y+YLALgRN5ABAOBsFIIDioMEdQDIQrIAakRlmaHRCVNV5T5dU1Ol185c1Nan+y3v1Dh14gEAsrGkfqamV/jjHptW4deSeTNtapF7kRACuAeJGu7G9wcA7sQN8YXF9gXyl+u43qmT6STkuU+6sc5tX4svwGNK2vPSYE7zEcn22dWLaxWStPuFPyloSn5Duvvmetv3YwDIFfO4AAC4A4XggOLw2d0AAHCTno2tuqe5XlXl4dNnVblPDbOnS5JGJ8JrW46Mh3Ts9EWZZjjosOwru/Wz505Y1qlJ1oZ7m+vVs6nVgk8IqwWGRrS2c58CBUgYfeHEOd30jz/XC2+es/y1gWI4d2lci+dW65t/cYsWz63WuUvjdjfJlTrXt6ijrUlL6mvU0dYUlyACwFliEzXgPnx/AFAchRxHewnbCfCOXMf1TptMb2zfpYbN3dp+YCAaG2/Y3K3G9l22tCeC8+XU0o11eja26pqZ8fvUvJlVOc1HxO6zFWU+jYyH9IsX/qRfPB9OTpekoCk9efiEbnv0mZw+CwDYjXlcAADcI3LDeNcDK7Vu+cKsV4kCMDUqqANAFmIDqNKVZPRYhiTDkEKmolVrzl0c04K3XZW2Ck6mFRmdNvGA9ApZMejh7x3W+dEJPfz4Yf3y87db+tpAMfRueV/057tvrrexJQBQWFROcjervz8qsQNwghdOnNMnOvfr+59b4bhVjKi8m5lHn3pRva+e0aO7XtTX1zbb3RwANnHSqmpUdHefVGOdCr9PzdfN0jc/dcukCuqS9Oa5Ed326DNZj4cCQyPaeeRNfajpGu3/42mdmQjpmpoqhWRq8PyYgiFTfp+huhmVevLBlZZ8RgAoNuZxAQBwD1YGBAqPBHUAyFIk6H/n0mvU/uMjGjhzMS4Z3W8Y6jp8PC7o8I1P3hL9+1SdmmwC5U6aeEByhUxEa9jcHffv/sBw9LFjj9yV12sDAADr9Wxs1drOfdEbG52SqIHMRBJtfn70TY1OmKosM3Rn07ycvz8SZEoPNyXAiZx4wzM3dGUmcTs98exxPfHscbYTUKKcNJnutIQ8rivpBYZG9M55NZpbU6lfvzwYd1NBmWHoR4ePa+vT/eFKwN/6rQaHRhQ0Jb8R/q5zSSDfurtfb10c184jJ6OPnTh3ZW6jssynsWBIa26so98MwNWYxwUAAADCSFAHgCzFBv1X3jBHr/UOxAXcB7MMOuQSKHfSxEMqpZ6EUciKQTsfWqXPfvegjp+9FH1swaxp+vanb837tZGdUt/PAQBTS+zrSeFVeH763Im4mxjhXFcSbcJrzo9OmDkl2pAgU7q4KQFO4uQbnp1aeddpTNPM6nEAKCYnJeRxXUlv6+5+PffGWd1QW63RiZAqynwaGQ/pycMnos+JjFl8hmRq6gTyVLHSZOPiRB+7db7+euX1tu83ViN+DJQmN8zjAgAAAMXgs7sBAOBmkYB71wMrtW75Qg0Oj6pzfYs62pq0pL5GHW1NcUGIZHo2tuqe5npVlYdPyVXlPt3bXK+eTa1xzwsMjWht5z4FXBKcjU3CKEWFrBi0pH6mplf44x6bVuF33LLspaDU93MAwNQifT2fEf53RZmhhtnT9d7FtfY2DBlrbN+lxw4MxD22/cCAGtt3ZfU6mfb74XyZjs0a23epYXO3th8YkGmG95uGzd1Z7zuAlXY+tErzZ02Le2zBrGna+fAqm1p0hdMq7zpN5Nzz479dqYWzp8f9rmH2dO3dfIdNLQOAK7KNjRcS15XkEvuo/YFhmaY0cTmBfFq5b9KY5b2LayfNgySTKlbas7FVH1w6V4aRvE0fu2W+vv7xZi2pr9FDd9ygty6Ou2YeZCrEj4HknDTn6aS2AAAAAF5DBXUAyIMVd8BnGih3S9U9KkNeUciKQecujWvx3Go9dMcibf1Vv85eHLfstTE19nO4DdWa4DZe2mcjfb3YanOrbpjj6P4c4kUqL3b//k0FQ6b8PkN3/9m8rCsvkiDjHZmOzajaCSdy+g3PTqq86zSRc8+OAwMKhsLV0sv9hsaDpoIhk+sJACTBdWWySB/1Z8+dUChm8Y1IpPPS+JWYZ2TMErv6V7J5kKlipXU1VXpl8IJMUzIUrsYuhX9umHOVfvVSQIHzI6qbUeWaeZCpED8G0nPSse6ktgAAAABeY7D0p7e1tLSYfX19djcDwBQ2bOtT7YyquEB5JPk91fKXmQYyi53gFRgaSZmEwWSpd+zZs0erV6+2uxm2YT+H27R3HdFjvQNat+y6ogXZvZRgjOKzY58tpHR9PThfvv3xWOwL7pbLvrCl64h29A6owh++QcUr5zW427IvP61Z08vjbnju3fI+u5uFFFKde3yG9LO/u43rCQAgrcT4TKrrSoTPkK5723R13Nekp47+KaNrTGKstMJvKGRK//pX/05//a99Sd/PkLRuxUL9+qWA3jh7SYYUlzAf4daEbuLHyJdX52CsjLF4qS0AAACAmxmGcdA0zaTBAyqoA4ADpKvEnm/VvWLf+U9lSJQC9nO4hZ3Vmqg8g1x4tcKYFavuwD49G1t1z7d+q8GhEQVNyW+E+wJPPrgy69cq5r7AjULWy2VsRtVOZyvV4yQ2Gf3um+ttbAkyke7cUzejir4FAHiQlX2UxPhMKJQ6OT2SJL7qhjladUOtVt1Qm9F7JIuVStI//Pj5lNexXUfe1Pb9r0VfIzE33e2rDxE/BpJz0kpjVq2YBwAAACA1EtQBwOFyDWTameBFEgZKAfs53MCOgL9XE4xRHE6apAIi6mqqtObGOu3oDZ/LxoIhrbmxzvGJBY8+9aJ6Xz2jR3e9qK+vbba7OZ6Qy9iMG1ScjRvq4AYkuMGrSvUmISATVvRRUsVnfEmeO73Cr7kzKnXs9EUtqqvW4PDopOdMdcyeGh6VaSruPV89dUHLvrJbkmQYiruO7d10x6Tx/zU1VTp2+qJnrnfEj4HJYvu2hiFbj/XbvvZM3DkrGDL15OETeuroSeLYAAAAgEVIUAcAF8glkGlnghdJGCgF7OdwAzuSWUgwRj5IwIJTuSmxIDER5Ylnj+uJZ49zo5BF3LQvIDVuqIPbcO6BF7nxJqFsk+pJws9fqW1DK/soifGZiGT10y+OBfXq6YuSpP7AsPoDw2ps3xX3nlMds53rW7To77s1nqJAe+J1LNn4Pxgydf8K71zviB8DyZ0aHtWi2mq9HBjW4hQ3xRSDlSvmAQCA7JTaWA/ZYx/xDhLUAcAFsglkxl6kvZzgRWcEADJT7GQWEoyRLxKw4ERuSiwwTTOrx5EdN+0LSI0b6uA2nHvgJYW+SaiQMcNsk+rdmITvNKW2Dafqo2SzfyeLzzTMnq6TQyNxCevXXj1N4yFTZy+OJX3PTI/ZwNCIls6fpf4/ndeFsWD08epKv371H1dH2xt7HUs2/o/8nusd4E2J55SXA8N6OclNMcXg1hXzAADwglIb6yF77CPeQYI6AFjAScnSsRdpLyd40RmxjpP2XwDWsyOZxcvXHxQeCVhAfvZuukMf79yn1y5XQJSkhtnT9YPPvdvGVsHpSm1MYMcNdaW2jQEglULfJFSImGG2SfWs1JG/Ut2GU/VRst2/E+Mz2/e/Nuk5r791Kfpz4nsGhka0ZF6Namsq9ZuXB9Mes4/selGHXz876fWHR4O67dFnkn5vjP+B0uO0m4WJY8MriDkAcItSHeshc+wj3kOCOgBYwAnJ0sku0lI4qNzR1mR5gNeugS6dEes5Yf+1GoEYwF5MMMJruK7ATepqqhQMhaull/sNjQdNBUMm+y7S8uKYYCrFTkQoxW0MAMkU6iahQsYMs02mc1rynRuV8jZM1kfJZv+OHb8mxmfeOHNRfxwc1vG3Linyaj5DmlNdqdsWz9Ffr7w+rl+0dXe/Dr9xVjfUVk86ZmVK933rtzqUJCk9wu8zVDejUk8+uNKy7QPA3Zy2+iZx7OT29g/q0/+zV//7r5dp1Q21djcHGSDmAMAtSnmsh8ywj3gPCeoAkId8Jj6sTnTK9SKdazvsGujSGbGOl5P9CcQAAKzEdQVus7S+Rqsb66gAhil5eUwwlWIlIpTyNgaAVApxk1AhY4bZJtM5LfnOjUp5GybrowSGRjLev9ONX//1r5ZpS9cRPXa5uI0khUzpA0vmRp/b0dakxvZdatjcHX1Of2D48nNNrVu+UIPnR7R1d3/a5PTI89fcWFcS3xuAzFG13PkeeOxZBU3pge3P6vdf/KDdzUEaxByQiGI7cLpSHushM+wj3kOCOgDkIdXEx4b3Xq+1nfv0zU/dIplKOgiwOtEp14t0tu2we6BLZ8Q6kf23+7kTCpqS35Duvrne1cn+du+fAABv4boCt6ICGDLFDcCFxzYGgMkK0VcpdMwwXTJdsiQQku/yxza8IpP9e6rxa2Q/nV7u07VXT9OfLZglSfr9G2c1ODwa937p+i+3PfpM3PskU13p139bf6ueOvqnkv7eACRHzMK5Ym9OkqShkYnoY8ceucuOJmEKxByQiGI7cAPGepgK+4i3kKAOAHlIFRj+Hz2vqvfVM3p054uaVuGPGwQUMtEpm4t0ru1wwkCXzog1bvta/GRC0JSePHxCTx096dqkOyfsnwAA7+C6AsDruAG48NjGAFA8hYwZpkumS5YEQvJd/tiG8WL37+/sfUXdR97UQ+9bpLoZVQoMjeid82o0a1q5ftM/qJCpSePXyH66btl1+te/Wp72vdL1X7oeeI/W/Y8DOndxXIlp6uU+aTwkXT29QqtuqNWqG2oLtDUAAIWw/a+X6bPfPahL48HoY9PK/frvn77VxlYhHWIOiKDYjvuVUvV7xnqYCvuIt5CgDgB5ig0M3/0vPdoeszzmE4eOR3+ODAIq/D7d01yfMtEpn45nNhfpXBOush3oFqIj7dTOiNsGDT0bW3XPt/Zq8PyYgiFTfp+huhmVevLBlXY3LWcEYgAAVuK6AqAUcANw4Vm5jd027gQAKyWeAxP/XeyYIUkgKKbY/XtauV9nL41Hb4rYurtfz71xVjMqyxS6vFJmZPyaWPE82X6azSoAOw4M6K2L45Pat6iuWt/45C30JwHAxVYtqlW539ClmNN8ud/ghiOHI64DiWI7XkD1ewBeRYI6AOQpNjBc5vNpLJh8ecvYQcA3nu5PmegU6XjevXWvfvbQqoJNOOeTcJXNQLeUOtJu+6x1NVVac+Nc7egNT0iMBUNac2Od65McCMQAAKzEdQWAm2WSzOzUG4C9xMpt7LZxJwBYKfEcaPc5kSQQFFuqmyIihkYmJIVXypSkHb0D2v+FNVPup5msAtDYvksNm7tTtq0/MKz7/stvuTkDAFxuZCKkmdPK9H/d/g7911//UZfGk897wzmI60Ci2I6bceMzAK8zTNO0uw0ooJaWFrOvr8/uZgAlIzA0omVf2Z3y9/cvv04d992kDdv6VDujKi7Rac9Lg3Edz4hsO57ZVFNL1o7YQWw+EjvSEV7sSLv5s+a6D+zZs0erV68ufAMBlCQqgwIoJZzzUEif//5h/ejQcX3slvn6+iea7W4O8uDmcScA5CvVOTCRHefELV1HtKM3vGrmWDCkdcuuc+wNRPQ73S8wNBKXbF5ZZmhOdZUGz49oLHhlvreyzKfVjbUKnB9V5/pb9Y2n+5Pup6mOrYoyn17u+FDcPiNT6tj5B/3k8ImkbfMZ0v6/X8O+BVikkHMwXA8AwJsKmfuBwkns48feUMp1GoBbGIZx0DTNpBcdX7EbAwBeVldTpXkzKyc9vrqxVh971wINDo9KCt/J3NHWpCX1Nepoa1Ln+hb1bGyVz5j8mqMTITW278q4DbHVTqaSrB1W6dnYqnua61VVHr7UVJX7dG9zvXo2tVr2Hk7h5s9ayH0AAHKVzbUMANyOcx4KIVLh8keHjkuSnjh0XA2bu7MaW8JZ3DzuBIB8JZ4DK8sMzZ81TZVl9p8TIysudT2wUuuWL4zGf52Ifqf7BIZGtLZznwKXV/JKrIw5FjQ1vcKv8ZAZnVvwG9JYMKRXBi/o8OtntfXp/pT7aeKx5b/8Ih+5aZ4CQyO6+1/2qvfV8D4TeW/DUNJ5jPtumU8CDeASXA8AwJuY93cnqt8D8LoyuxsAAF6SquLIb14e1CtfvSvt39bVVKmteX40gSDig0vn6ksZLMfltKV/SqkjXUqfFQAKyWnXMiBTVJ5CLjjnoZBSLZjIOoruxbgThUI/ZmpsI/tNTsoNaXqFX2NB+8+JsUkfHRnEcO1Av9Mdkp1rYpNII5X5j791UbXVlfrntc166vmTeurom6qtrtQ1NVXqD5zXpfHwd90fGJYU/r6lcFX1jramuP00cmyNXP6bYCjcW3zi0HE9ETNPEdlnfIa0bvlC/ealgAbeuhT9/eK6ag2PThRq0wCwCNcDAACcKXJDaWz1ewDwCiqoA4CFzBRZAKmSA2IFhkb0zEsBvX329LjHXxm8kNHkihOrqbmpglC+SumzAkChOPFaBmSCylPIBec8FNLeTa1qSBhbNsyerr3sX67GuBOFQD9mamwjZ4icA7/z6RbVVlfqrYtjnBMzRL/THWLPNZHVcLYfGJBphpNII6vhLLh6ugaHR/XU0TfV0dakO5deo8HhUV0aD2pkIqSPvWt+Vt/3qeFRfexd83V7Y638SSqjR/gMqczv0/b9r8Ulp0vSvw0OU6ETcAGuBwAAOBPV7wF4GRXUAcBCezfdoY937tNrpy9GH6ss86nrb98z5d9u3d2vs5fG9dbF8bjH+wPDatjcPWUFAydWU8u2glAmFamcWrXKDdWSAMDpnHgtA9Kh8hTywTkPhVRXU6WJyxUwK/yGxoKmgiGT/cvlGHfCSvRjpsY2cpbIObC964gGh0e1btl10XMh58T06Hc6W7JzjRROCK8o82lkPKSqcp/GJkIanQhFfx85J0VEKqY/8eyVyuex37dMaW3nvklx9cixtaXriEK60nc0FL/6zn3N87XpQzeqY+cf9IvnT0bb9cGl12jLXe+0eKsAKASuBwAAAACKjQrqAGChupqq6DKY5ZfLjYxOhLRj/0DKv0mshpIomwoGbq+mlklFKqpWAYC3uf1ahtJC5Snki3MeCmlpfY3uX7FQP/7bVbp/xUItqa+xu0kAHIR+zNTYRs6SrqJ0rMDQiNZ27lMghyXR8/lbp6Pf6VyJ5xrDkD64dK7abpkfl0Ta1jw/boUcw5DmzaxShT/+9SrLfJo3s0ofe9eCuO97qrh6ZB/58d+u0qK6apmS/IZkSFpUV63hsQmSWwEP4HoAAAAAoJgMM1k2JDyjpaXF7Ovrs7sZQEnZsK1Pv3zhTwolOb0mq7AUGBqZVHXkmpoqHTt9UZVlPo0FQ+GKQPfdVKRPUHyJVWIiYrdXJs9B8ezZs0erV6+2uxkAANhuS9cR7egdUIW/NPptAAAgNaeu+pYK/ZipsY2cIzGGahjSB5bM1ZfamuKOt/auI3qsdyCn7yqfv8VkTjwnOrFN0pVzjSEpZIZviFlx/WwtuHq6PrXsOt39Lz1J5xukcKJ65O/8hhSS4vbhxVt2aiw4+Y/TxdU3bOtT7YwqfWrZddrRO6DB8yPRSuvpfgfAOszBAAAAAHALwzAOmqaZNDhQVuzGAIDXda5v0Qsnzmn9d3o1PDqu0Qkz7VKXyaqOBEOm7l+xMC7I62U9G1unXBo0k+cAAAAUW6TyVKn02wAAQGqx1WmdltyaLCmTfszU2EbOERtD9RnhZNxXBi9E9+fE4hbbDwxo+4GBjIpb5PO3SM2J58Rs2lTMZPbHe8MrA0TSyEfGQ9rz0qAqy3zqaGvSz/5uldZ/p1enL4xN+ttIHbLFc6s1u7pC76idEXeu+sjN9Xri2ePyG1LwcvL7VHH1zvUtKT9/bDJ6R1tTfh8cAAAAAAB4GgnqAFAAOw4MRIPFhsIB5XRLXSab7IoEd7MJ8loZNC9mAD6TpUFZPhQAADgRk/MAAMANya3JkjLpx0yt2NvIqdWdnSIxibc/MKyGzd2qLPPlVdyCwhjWcuI5MZc2FTPBfv8X1mjFV3dPqpI+OhFSY/suffzWBdH5hsgNGlJ8snniOSPxM0eKqE81VxHhxBsMAAAAAACAu/jsbgAAeElj+y41bO7W9gMD0cciMeXB4dGUf9e5vkUdbU1aUl+jjramnJfEjA0a58vK18pEJEm/64GVWrd8YdLtlclzAAAAgEIIDI1obec+BaicCgBI0LOxVfc016uqPBxuryr36d7mevVsarW5ZfGxKtMMJ2U2bO5WY/suu5uGJIodj3Ob/V9Yk/JYy6e4BYUxrOXEc2I2bSrGeTNxbFFXU6W25vlxz4lM4I5OhOLmGyLJ6T5DaffVxM/s9xl6zztma/ZVFXrj7KWUbeO6AQAAAAAArEIFdQCwUKTazk8On5j0u58//yc1tu8qSJUYK6vS2FXhJpOKVFT2AgAAgF2oIAgASMXJya1UhnYHJ1acdqKpjrXEVSrfOHNBazv3ZVSRPtkKl8iNE8+J2bSpGOfNZGOLC2MTWlRXrf7AcFyV9IbZ03VyaCTalqunV+g975ijv1719rT7auJnHguGNHh+VGcujmnBrGkp28Z1I4wVLQAAAAAAyB8J6gBgoUjQV0q91GYhWBk0JgANAAByxQQuvIiEMXfhPATALk5NbnVioigmIx6XuXTHWmJxi/auI3qsdyCjGwydVhjD7X0aJ54TM21TIc+bU40tNmzr0yuDFxQ0zehzjp2+GP15dCKkNTfWRffnqfbVyGf+/u/C1dD7A8NJ37dYn99NuEEZAAAAAID8kaAOABY7NTyq+1cs1JnhUe08enLKpTatkC5onO1kBgFoAACKw+0JB8kwgQsvImHMXTgPAbCL05JbYzkxURTxSiEeZ9X4J5NjzQs3GDqtT5Pt9+fEc2I2bbLivJlsm001tuhc36LA0Ejcc3yGdN3bpqvjviY9dfRPWbUl8pkfuuOGrMY0pXzdcNv5w4uxJQAAAACAd5CgDgAWiwR9N2zr0/0rihfETRU0fmTXi+p99Ywe3fmivv6J5rxeCwAAWMdpCQf5cNsELpCNUkgY8wLOQwCQmhMTRTGZ1+NxxRz/uPkGQ6f2abw0fs2EFefNxG32wolz+kTnft22eE7asUXi+GMsGNKqG+Zo1Q21WnVDbU5tSTam8RuGHtyRPLG5lK8bbjt/lNqxCQBALrihCwAA+xhmzDJx8J6Wlhazr6/P7mYAsEHiZEaE3ZMZ8IY9e/Zo9erVdjcDAFzJi9foxApvsRO4BHzhBRu29al2RlVcwlhs0gbsx3kIAABnsmv8s6XriHb0DqjCH07wXbfsupyTN4uZ0FKMPk02n8eL49dCS7XNIq6q8Ou+dy1IO7YoxPgj8TV//VJAb5y9lNex4VVWnj8KhWPT+5iDAQDrtHcd0WO9A468pgMA4AWGYRw0TTNp4IIK6gDgUanuP+K2JAAA7OWkalxWJVpQYRpel0sFQSrzFBfnIQAAnCGxD2TX+MfKivTFrFBcjD5NNp/HSeNXt0jcZokujAW1ff9r2r7/NR175K6kr1GICuaR13RqlX4nccOKFhybAABMjX4PAAD289ndAABAoaTKULcnRT0wNKK1nfsUcGAwFwCAYnJSEmVsYkK+IhO4XQ+s1LrlCzU4PGpBCwH3svL4QmY4DwFA7ojbwCqJfSC7xj+d61vU0dakJfU16mhryqn6dGP7LjVs7tb2AwMyzXBCS8PmbjW27ypAi68oVJ8ml8+T6vuTKc4ZKcRuM8MIPza9wh/3nAWzpmnnw6ssfd/A0Iju+9ZvddfWHt33X36b8rvp2diqe5rrVVUeniKuKvfp3uZ69WxqtbQ9VrHj+mTF+aPQ0p1bnXhNd2KbAADe57Z+DwAAXkQFdQDwqL2b7tDt/589ujQWjD42vcKvPf+v1ba0p5iVhgAAcDq7q3EVonJIISq8AW5EZR77OOk8RAV9AG5D3Ab5StcHWt1Y66hqxJlep+2qUFyoPk2unyfZ+JVzRnqnhke1qLZaLweGtbiuWsfPXor7/bQKv5bMm2npe27d3a9Dr5+98u8U342TbprPBPtaaqliS07cZk5sEwDA+9zW7wEAwIsM06ZKuiiOlpYWs6+vz+5mALDJqkd/pTfeuqRyv6HxoKlrr56mnk13FLUNiZNTEcVI0CEppHD27Nmj1atX290MAECOAkMjKRMTuGYCyWXat+T4giS1dx3RY70DWrfsOhIwADianXEbeIub+kDZXKe3dB3Rjt4BVfh9GguGXH9tz/fzcM6YWqptJEnf/ItbtPVX/Tp7cVy9W95X8PeTkn83G7b1qXZGVVxis9OqhLOvZc+J28yJbXIL5mAAwBpu6PcAAOB2hmEcNE0z6QXWV+zGAACKZ2l9je5fsVBP/u0q3b9ioZbU1xS9DXYunbV1d796Xz2ju7fuZelIAIBjOGFZYyqHANmLrfiWDsdXaWts36WGzd3afmBAphmuHtuwuVuN7bvsbhoAJBWJ21SWheM2lWUseW6nQowVijX+cEMfKJfrdKRCcdcDK7Vu+UINDo8WscXWy/fz2BnrdYtU26h3yxrdfXO9fvEfbs84OT2T47dnY6s+uHTupMcNSXcunZv0u+lc36KOtiYtqa9RR1uTI5O02Ney58Rt5sQ2AQBKixv6PQAAeFmZ3Q0AABROtsvBZlMVMpvK5Pv/eFoj4/lNTmXznolVOQLnR7Xsy7upygEAcASnLGucailoAPES+5bbDwxo+4GBtH1Ljq/S1bOxNWX1WABwotikYkmOTCq2g12r8hVirFDM8YfT+0C5XKezja86Xb6fxw03ItjNym2UyfF729eeSVqh2pQ0p7rStd8N+1r2nLjNnNgmAAAAAEDxkKAOAEVm9QSXla+X6YRVNhNbW3f3K3B+VIvqqvWNT96S8+RUNu/Zs7FVK766WyEz/vHRiZAa23eRpA4AsEUuSa5WSdZf8FqiBVAokUSm7udOKGhKfkO6++b6kkpkQuZIwADgNol9VCncT/3hwTdKOn5S7JtKCzFWsGP84fQ+ENdpazj9RgQniGyjO5fO1ed/8JxeOXVBazv3ZRzDz+b47dnYqnu+tVcnz02uhu/28zn7WvacuM2c2CYAAAAAQHEYpmlO/Sy4VktLi9nX12d3MwDEaO86osd6B7Ru2XWWTHBZ8XrJJiMlTQp4Z/q8bJ9rRdsSff77h/WjQ8ej//b7DN39Z/O05a53MulkgT179mj16tV2NwMAXCUwNJKyWl+hr01W9z+AUmJVvxalY8O2PtXOqIpLwGD5YABOZWcf1Ynsuu4X4ntI9Zob3nu9vvjTF4peHd4puE6jmCJj8Rtqq/Vvg8MZj8mzPSds6TqiHb0DMqRo0ZZSP58DbsccDAAAAAC3MAzjoGmaSQNsVFAHgCKxumqRla+X6fK2ic+rLDNUXVmubZ9ZlvNrWtW2RBfGJrSorlr/FhiWz5CCIZOKSAAAW9lRrc/Oqu2AV0QqEv7p3KhMSYaka2ZW6ckHV9rdNDiU06vHAkCsUqoonckqhFbFs7JViO8h1WvuODBQ1OrwsRK/A6tXmswE12kUQ+JYvD8wLCnzMXm254RIheozw6PaefSkfIY8fT4HAAAAAADu4LO7AQBQKno2tuqe5npVlYdPvVXlPt3bXK+eTa22v16mAe/JzzN1+sKYduwfyPk1rWpbos71Lbq+9iqtW7FQP/2723T/ioUaHJ68zCkAAMUUmTTuemCl1i0v/LXJ6v4HUIpu+9ozOnk5OV2STElvnhvRbY8+Y2ezAADISmBoRGs79ylwfmTS74rdR7XL1t390cTsVOxM2C/E9xD7moauJMeaZvjnhs3damzflX/jM5T4HWTynQBuFBmLV5bFT8NWlhkZj8mzOSd0rm9RR1uTgqap+1cs1M/+7jZPn88BAAAAAIA7UEEdAIrE6gkuq18vEvCOXd421fN8MjKqxprpa1rVtkRUREI+7KjiBcD7in1tKqWKmF7xwolz+kTnfn3/cyu0ZN5Mu5sDRSqo/1Ynz13pg86jgjoAwGViE4ETq2Z7PX6S7apCVsWzslWI7yH2Nfd/YY0t1eGl1N9B4r9Z6QlOlipWmOzxyFh8LBiS35CCpuQzpLFg5qt8funeJj34+CHNmVGR8TnB6+dzAAAAAADgLiSoA0ARWT3BZeXrZRq87lzfosDQSEYTWlYFxAmsww6PPvWiel89o0d3vaivr222uzkAkLNs+wvcoGOvh793WOdHJ/Tw44f1y8/fnva5fFfFcdvXnolLqJKuVFAngQoA4HTZJmd7Uc/G1qwSs70ah5rq5tVC9i0Tv4PKMp/mVFfq1PCIRifMoibLA7mK3OjzyM4X9cbZS9FjJdUNQJGx+B8Hz+v08JjmVFfq+trqjGP46W4sAgAAAAAAcAMS1AGgiKye4LJrwqwQ1VhJsIJTJE7eP/HscT3x7PGSmrwH4C3Z9heYBLdHw+buuH/3B4ajjx175K6kf8N3VRyRCuqDQyMKmpLfCPeH01VQp28LIFecP2C1bJOzvYhVha5Id/NqIfuWid/BWDCk6RV+jQXNkv9O4HyJscIfHTouSVr25d1xz0u8ASh2LJ7P+0Vet6LMp5eJTQIAAAAAABchQR0AishLE81WV4MnwQpOYZpmVo8DgFdQXdNeOx9apc9+96COn70UfWzBrGn69qdvnfRcvqviqqup0pob67SjdyCaULXmxrq0/Xn6tgByxUpOsBrJ2WFWx7HcKtnNq8XqWyZ+B794/iTfCVwhcqPPTw6fSPs8q24ASryxyO8zFAyZ+shN8/J6XQAAAAAAgGIzSLbytpaWFrOvr8/uZgC4rL3riB7rHdC6ZdflnKiSKsndrcnviZNgESRYOduePXu0evVqu5tREIGhEX28c59eO30x+ljD7On6wefeXfBjy63HMQBvCAyNpKyuyTmpON7/z79Wf2A4+u9FddX65edvn/Q8vqvi27CtT7UzquISqJJVRKRvCyBXnD+QiVzHjJlex1Ca6FsC6S3eslNjweRzqQuunqY33roUvZF13bLr9NCaRXnH97Z0HdFjBwaS/o6+AVAavDwHAwAAAMBbDMM4aJpm0oCzr9iNAYBS1Ni+Sw2bu7X9wIBMM1yJqGFztxrbd2X9WrHVGDN53Ol6NrbqnuZ6VZWHL0lV5T7d21yvnk2tNrcMpaqupkrBUHjSqdxvSJKCIbMok7JuPY4BeAPVNe137tK4Fs+t1jf/4hYtnlutc5fGkz6P76r4Ote3qKOtSUvqa9TR1pQyqY++LYBcsZITMpHrmDHT6xhKUyZ9y8DQiNZ27lOAKucoQR+5uT7l7966MKb7VyxU1wMrtW75Qg0Oj1oS3zs1PKqPvWu+bm+s1eXwJGMLl/Lq+dOrn8uN+C4AAAAAOFmZ3Q0AgFIQWZbz50dPRid7WhtrdXJoVIHzIxklE6VabjdRoZbhLRQSrOBES+trtLqxrmjLTBdrOW2gFLEyQXZODY9q3fKFRTv/IV7vlvdFf747TRKExHflVPRtAeRq76Y7Uq7kBDBmLF3FGs+cGh7VR2+Zr5dOnlfjvBkaHB6N+31swm2uq0LCHoyJc5dqdZNYF8aC2r7/Nf2w73VJSnqurijz6eU05+pk31HkRqItXUcUkhhbuJhXz59e/VxuxHcBAAAAwMmooA4ARRCbqCKFA9V/HLyg5944m3EllVTVGHc+tMr1VRojCVaxlWYSUQUCxVTs6nJUWwUms+q8z8oE2aG6pnvwXTlXJn1bAEhk50pOcL5MxozETbwp2XimEN915/oWTSv36/k3hzStzB/tW1q5KiTswZg4d4nnXklqWXi1rr16mnxJqponPt9/+UkfuWle2vdJd5y/Mjis2upKfefT/46xhct49fxpxeeiz2INr+5jAAB7cH0G4Hacx5yLCuoAUATJqq30B4YlZV71KlU1xiX1M/Oq0mhnFZ1k793R1pT0ucmqQFABCF5BtVVgsnyr/6SrMtmzsZXrB4CCib1ZIFXfFgCSKfZKTnCPTMaMVM/0lnTjmY/fusDS73qqsVPHzj/oF8+f1Mh4SFXlPn1w6TXactc7835fFBYrL+Qv9tzrN6SgKZ27NK73Lq7Vjt6BpOfjGZVlGhkPb/fIjWdPHDquJw4dn7TtMznOb6it1uDwqJ46+ibndpfx6vnTis9Fn8UaXt3HAK9jbhtOxfUZgNtxHnMuEtQBoAgSA0V+QzIlhUylDBolG6BGqjEmTlafGh7VfbfM18snz6vxmpqsKqnkc5HOdxCdyXsXc0IOsFOq4xsoNVZNoqebpNn6NANUAADgPNzggnRSjRlJQvWmZOOZsYmQRidC2n5gQJJ133Wy91q9uFYnh0YlQ9xQ71IkLlrj8d5wZeLg5X/3B4bVHxiWz5C6Hlg5KYZ3anhUH3vXfJ26MKa9Lw8qmCb+n8lxnm2RGziHVwuS5PO56LNYy6v7GOB1JM/Babg+A3A7zmPOR4I6ABRBskCRpLRBo2QD1FST1Z3rW9TedUTPvzmk5mtn6etrWzQVKy7SuQ6is3nvYk7IAXYiGQUIi5z3u587oaAp+Q3p7pvrM7qRK1aya+/PnjuhJw+fiD6H6wcAAADcItWYsVhJqFT6K65k45mP3jJf4yHT8u862Xv9cfCC/m1wWFuf7ueGepcicTE7qc5x+7+wJuU5tm5G1aQYXuRcvaXriEKSDEMpt3264/znR9/U6IQZfW5lmU93NnGDgdt49fyZ6+fixhnreXUfQ2ny+niD5Dk4FddnAG4XOY9FxtGVZYbubJrHecxBSFAHgCKJDRRt2NYnKRywTgwaZTtAzXVAmzjYMAzpA0vm6ksZJMbmO4jOZqBTzAm5fHg9cAIAxXLb156Ju8YETenJwyf01NGTcdeYTG6SSpykeePMBdVMr3DU9QMAUJoYPzjDCyfO6ROd+/X9z63Qknkz7W4OkJNiJaFS6a/4kiWdzamuTPtd53p9ibzX938XrhYdW7VZCifHdrQ1cUO9y5C4mLlU57hcz7Gnhke1qLZaLweGtbiuOuWKp5Hv6M6lc/X5Hzyn0xfGNH/WNI0FTfmM8AqsfkMaC079vvQvc1eobefVgiS5fi5unLGeV/cxlCavjzdIAoZTcX0G4HZXzmPhm7xHJ0zOYw5DgjoAFElsoKhn0x3RnxODRtkOUHMd0MYONiLB7lcGL2R0kc53EJ3tQCeXCbli83rgBO7F5BTcpmdjq+751l4Nnh9TMGTK7zNUN6NSTz64UlJ2N0klm6TZ0nXEUdcPFF4xzoNOPtc6pW1OaYfbsR29g/GDMzz8vcM6Pzqhhx8/rF9+/na7mwPkrJBJqFT6s0+y8cyGbX1pv+t015d0/YjIez10xw0kzngIiYtTy+Qcl+05NvE1Xw4M6+XAsBrbd6WMW7R3HdHg8KgWzJqmwcvv98rgsE4Nj2p2dYXeUTtjyvelf5k7tl3xcOMMgESlMt4gCRhOxvUZgJsl9iWkcH/ihwff8FRfws0M0zSnfhZcq6Wlxezr67O7GQCytKXriHb0DqjC79NYMKR1y65LGxjN5PnJJqGu/0K3QkkuA5kM+rNtY6IN2/pUO6MqbqATO2lS6L+3SrLOjpTZNnSzPXv2aPXq1XY3Axlo7zqix3oHsj5GATulu8YEhkbUsfMP6n7uhIKXK4ndfXN9dHntqTjl+pELElNzU4zzoJPPtU5pm1Pa4XZsR/cr1fGD0zRs7k75u2OP3FXElgDOF+l/J0tYpk/qHJlcXzLtR+Qb84N7lOIYM/EzB4ZG9A9PHtUvX/iTQqbib8owldP2yea8aUXfkP5l7th2cDLmYFAqItfNnx89GU3evrPJm+MNN89NAADgVMQuncEwjIOmaSbt2FBBHQAcKNu7VDN5frIqIPu/sCbnqkinhkd13y3z9fLJ82q8piblMqWp5FvBxykVgFiSDU5VKlUn4E3prmu3fe2ZuH07aEpPHj6hp46ezGjfLub1w+rJfip6ZacY50Enn2ud0jantMPt2I7ewfjBGXY+tEqf/e5BHT97KfrYglnT9O1P32pjqwBnotKfO6S7vmTbj6B6XukoxTHmI7teVO+rZ/Tozhf19U80q66mSq8MXlDo8g3wsee49q4jOW2fbM6bVvQN6V/mjm0HtyrFG4zgXbHXTUmeHm84ZW4bAAAvIXbpfCSoA0ARvXDinD7RuV/f/9wKLZk3M+Xzsh2gpnv+VJNQuV6oO9e3qL3riJ5/c0jN187S19eW5h3edHbgVIkTLJVlPlVXlmnbZ5bZ3TRgSumuaz0bW3XPt/Zq8PyYgiFTfp+huhmVevLBlcVu5pSsmuwnMTU3xZhodvJktlPa5pR2uB3b0TsYPzjDkvqZml7hj3tsWoU/7TgdKGUkLDtfuutLtv0IEme8rxTHmImf+YlDx/XEoeNxzwleXmk0sj0iUm2fdAmimZ43regb0r/MHdsObk30LsUbjOBdyVaz2H5gQD88+IZn+yUAAMBaxC6dzWd3AwCglDz8vcM6Pzqhhx8/bNlrBoZGtLZznwIpLrA9G1t1T3O9qsrDp/yqcp/uba5Xz6ZWSVcu1F0PrNS65QujldDTvW5j+y41bO7W9gMDMs1woKBhc7ca23dZ9rncJNU2jJjqO4J12NZXJJtgOX1hTDv2D0z9x4CD1dVUac2NcxUyTVWW+RQyTa25sc5Rk0hWXyenupZ7WT7n9WJMNDt5MtspbXNKO9yO7egtU40fUBznLo1r8dxqffMvbtHiudU6d2nc7iYBjtW5vkUdbU1aUl+jjrYmlqEvglz6wamuL/QjkKiUxpiRYykUMpP+3mdo0nbY+dCqjLZPbIJoomzOm1b0Delf5o5tV9rSHcdOxNwcvKiU+iUAAKAwiF06GxXUAaAIGjZ3x/27PzAcfezYI3fF/S5SseGLH1miL/70hSkrN0xVKWGqSahUVZHSvW7Pxlb9w5NH9csX/qSQqbwrOLq1SkXEVJWlqGZRPGzreKeGR2VIJVcVyy5uP5e5idPvgra60rEbEkoKtf/ne14vxr7i5P3RKW1zSjvcju3oHVSmdYbeLe+L/nz3zfU2tgQAJsulH5zu+pLYj3jjzEWt7dzH+LVEuWGMaYUXTpzTvd/6rcaDpj580zXa/YdAXIysYfZ0veu6q9V1+HjcdlhSP3PS9vEbhh7cER7z3vboM5bG2qzoG9K/zB3brjS5dSUJVleDF5VKvwQAAKBUGaaZvGoAvKGlpcXs6+uzuxlAyXvhxDl99rsHdfzspehjC2ZN0yMfu0lbf/VvcZNB7V1H9FjvgG6orda/DQ5r3bLrkk5EJVvyTFLSANqGbX2qnVEVl8yS6o6xTF/3/f/8a/UHhuU3pJCUsp2ZiHzmfF7DibL5jtxmz549Wr16td3NiPLyts5XYGgkZdCaAJ+1vHouQ262dB3Rjt4BVfh9GguG8t4vsrmWJ1PoGyis3v85rwPIFTeMAQDcrFj9YMavyHeM6XSpjiVJqvAbGguauvbqaVpSXzNpO3zp3iZ98D//RnfcOFd/vert2tE7oF+/FNAbZy9p3bLr9NCaRcTaAJdzQ8w81RyM1TFHwAm83i8BAADwOsMwDpqmmbQDR4K6x5GgDjhHJKE7YlFdtZa//W3RyaAfHnwjZdBcmjwRVagA2lSvmyq47zOkV756V5JXTM3ryWduCHLmymkJ6l7e1lYgaF1YXj+XITdOC6oXKgGlUPs/53UAuSLhDgDgZoXuBzN+RSlIXM00GZ8hvXdRrS6OByfd2Bjbn0wVs/cZkikRawNczOkx81RzME6LOQIAAABAugT1smI3BgBK1blL41o8t1oP3bFIDz5+SP2B4WjC+vYDA5LCgW2Z4YrkEZVlPt3ZNHmJvkIteTbV61q5hKDXlyNkWbriYVunl7iU9+D5Ebub5ClOPJdRPdZ+TlkiutBLFifu/5Vlhqory7XtM8vyel3O6wCy5dYl2gEAiFXofrATx6+AVSKxkO1/vUybnjgSt5ppROw+v/Xpfj3WO6CtT/er476bkvYnpXDM3jAMBUOm/D5D739nnfa9clrvWzJXf73yemJtgEu5NWbulJgjAGSK+SoAAEobCeoAUCS9W94X/XnZ2982aTJobCKkUJJFLdJNRBUqgJbuda2cKCuF5DO3BjndiG2dGkHrwnLiuWzr7n797tiZ6CSrnawKPhLEzE2hE1CS7f+jE2PasX8g733PDed19kvAOUi4AwB4RSH7wU4cvwJWicRCnjp6UtMr/EmfMzIe0s+eO6EnD5+IPha5sbHC79M9zfXJY/aXV6MOhkw99fyfJEnTyvxaUl9DrA1wKWLmAFAcTpqvAgB4F3O2zkWCOgDYINlk0Edvma/f/vGUBs+PKXg5U31OdYVub6zV4PBo0tcpVABtqte1cqLMDcln+SDIWTxsa9gpm3NZIQdHTqwea1Xw0StBzGIPjouRgHJqeFQ+GZbve244r3tlvwS8gIQ7AIBXFLof7PVYHEpD7Nj6tkefSVr5XJJue8ds9fzxtIzL/76hrlrzZ1WpZnpF0hsbv/F0f1x/8r7m+fo/r5zW4NCIggnFZSLjXsOQDvz9GvqdAAAAMZw4XwUA8C7mbJ3LMM0k5XrhGS0tLWZfX5/dzQCQxIZtfaqdURU3GTSnulI7esPVWsaCIa1bdh0XTjjSnj17tHr1arubAbhSe9cRPdY7UJBzfGBoJGX12GJPlCYGHyOyDT5a9TpOUcjvP5VkfY7YpBcrOGnfKwav7ZeAVxTjfAcAcD4qJgHeFzu2fmjNooxXK43wGZIpTYrDJ+tPXlVRph8dOq4Kv6GxmCx1v8/QtVdP07HTF3X/cuL4XvPCiXP6ROd+ff9zK7Rk3ky7m4MSxBwMALeLzBl0P3dCQVPyG9LdN9d7ds4AAGAP5mydwTCMg6ZpJp2QI0Hd40hQB9zF6oQKOyfkmAz0NoKjQPaKNTja0nXEETc7WZWw7JXE51IYHDtl3ysGr+yXAAAAXmTHTaGwHrFFJJNqbJ2YcP7RW+ZrPGTq50ff1OjElXnQyjKf7my6RucujmnB267KKA5/26O/0utvXZJP0uR3jlfhN/Tylz+c+weEY7z/n3+t/sCwFtVV65efv93u5qAEMQcDFB/9T2uVwpwIAMB+zNk6Q7oE9bJiNwYAkJrVS/jauYQJy6cAQLyeja0pB0dWcspy7XU1VZpRWRa3NPaMyrKsB4JWvY7divX928kp+14xeGW/BAAA8BKWkPcWYotIJtXYOlnC+ZzqSo0FTfkMKXS5audYMDx2+8Ynb4m+ZiQOn5iUlnhOSZec7jekoCl95Ob6Qn10FEnD5u64f/cHhqOPHXvkLjuaBAAoEvqf1urZ2Kp7vrVXg+fHFAyZ8vsM1c2o1JMPrrS7aQDgONwklTvmbJ2PBHUA8CA7J+SYDASA5Io1OLL6Zqd8WJWw7NbE58TloJ06OLYq6OGkfa8YgZxi75eF/kwEv9yD7wqAV3F+Q74iiavJlpCHexBbRDqpYivJEs43bOvTuuUL9crgsE4Nj2p2dYXeUTsj5dgtMSktWTL8NTVVeu3MRVX4fXH7afBykfYnnj2uJ549bvn+yjWyeHY+tEqf/e5BHT97KfrYglnT9O1P32pjq9yPfRiAk9H/LIy6miqtuXGudvSGt+VYMKQ1N9ZxHQCAJLhJKj9uzSUoFYZpmlM/C67V0tJi9vX12d0MAEWWzRImVgcGWT6lNLC8JIrFa5MXG7b1qXZGVUZLSFvJa9vRLRKXg7br+59Ke9cRPdY7oHXLrosGPdy6z0Tafe3V0/SjQ8fjPpPbJfue3PT6sA7fFQCv4vyGfLGEvDcQW0Q6gaERffA//0Z3vLNOf73yekvG1unOHX9+6wLt6B1QhT+cVLVg1jTd3linTy27Thu29SkYMrV47gz1/NspBUNmwfbXz3//sH506Lg+dst8bfrQja4cr7tJJJ4TEYnrIHf087LHHAxQPPQ/C8epcyIA4BTEsuAVhmEcNE0z6UWeCuoA4ED5JoVlU6XX6jvxWD4FgJW8drewXRWmvbYdnS6T5aDtrjAupa8M8/FbF+S1z9iV4P7ur+5W0JR6Xw3/2wvVbgpdwYcKQZmz+8YNvisAXsX5DVZhCXlvILZYGHb3Za3yyK4X9dbFcSkkLamvsWRsnaxSeiQp7R9+fHRSFbbIe/ZsukOStKXriEKmWZD9NfEa+cSh43ri0HFJIsZTQOcujWvx3Go9dMcibf1Vv85eHLe7Sa5FPw+AG9D/LBwnrboKAE6UbjwKeAUJ6gDgQFYkEk61hEkhA4MsnwIgX0xeWIPtaM8kvFuWg04W9BibCGl0IqTtBwYk5b7PFPumiFQVBiTp3uZ6VwdyrA5OJR4TBL8yZ/fNPnxX3uSVZDEgH5zfYBWWkPcOYovWs7svm066/lDkd4cH3tJY8MqK0JFEbSviG+mS0jJJqirk/ppuEexSjPEUS++W90V/vvvmehtb4n6Rft7Pj76p0QlTlWWG7myaRz8PgOPQ/wQA2IGbpFAKSFAHAAexMpFwquB5ISeAuRsaQL5IUrEG29GeSfgl9TM1vcIf99i0Cr+WzJtZlPfPVLKgx0dvma/xkJnzPmPXTRGJ+7ok+QzJlFwfyLE6OJV4TBD8mloh9+tskpP5rrzp0adeVO+rZ/Torhf19bXNdjcHsAXnN1iJxBJvILZoHTfcuJ5s3B7pJ187a5p+d+yMjBSJ2mnyt6cU2xfP59xRyP1176ZWre3cp2OnL076XaFjPNxICStc6eeFj9bRCZN+HgBHov8JoBDoUyMTxLLgdSSoA4CDFLOaBBPAAJyMc5Q1Snk72j0J75bloJMFPeZUV+a8z9h1U0Tsvu4zpJApfWjpNbq6utITgRwrglPpjonVjbUEv9Io5H6dbXIygUrvSDwmn3j2uJ541poqoIAbcX6DVQqRWMKEMtzMyTeupxqjGIYkM5x83nv5d8kS0RtmT9cPPvfunN8/ti/u1KS0upoqTYTCn77Cb0SryBcjxuPkqvtwj2Qr3m0/MKAfHnyDcQ8AAPA8+tTIhFPHo4BVSFAHAAcpdjUJJoABOBnnKGu4dTvmmwRi9yS8W5aDThb02LCtL+k+k8l3YudNEcn2da8EcqwITnU98B6t/06vhkfHNTphxh0Tsd+PV7aZlQqxX+eanEyg0jtMM3m9z1SPA17H+Q1OxoQy3MzJN64nG7ePjoeUqjvkN6SgeSVROxgyk36O2LGrTE0ax7rtRsGl9TVa3VinTy27Thu29UkKXzcLFeOx+4Z/eIvd8TkAAAA70KcGgCtIUAcAByl2NQkmgAE4Gecoa+SyHZ1QITDfJBAnT8I7Xap9JtPvxK6bIpx8znDCMbXjwIBOXxiTVJxqe15j9X5NcjL2brpDH+/cp9dOX4w+lm8VUACAtZhQhlc49cb12HG7JI2Mh9I+/3LxcJmS7l+xMOXniB27Spo0jnVbXzx2rNuz6Y7oz4Ua95JQDCsRnwMAAKWIPjUAXEGCOgA4CB1VAIAT2Fkh0MokEKdOwmfCCQnNEdl+J05OFLeLk44p/f/Zu//4qOo7X/yvz0x+EwIICRIQovLDhliD5gIq1gC6datVtFu0Rdbd7XZxXQvf671foCV7t9tSK/u99rHSdrfpbrtdQfy1mNoa0FoUG7xIGiA2yFVSBSMJOOFnCGTyY+bz/WMyk5nJnPl5zpzPOef1fDyUZDJzzmfOj8/P9/l8APQP+eEWAt29/VlNSzwqXfOx6H1dMziZykoK4PMHgqBy3QKDcWYBJSIic7CfjuxClTZarDp/sN1+4lwfdr3vift5lwC+eF35qFWggmK1XcN/DrZjWRePjwHFpDcr988RERERpYN1aiKiES6zE0BERCOsWlH19HixvH4vPOxYJJvgNU1ONaduJyrWN2Lrvg5IGRjArVjfiDl1O7OWhqa1i3F3dTkKcgNNlYJcF+6pLkfTusUpb6t+ZQ02LqtCZXkJNi6rihiUV130jG9m0vOcxGPHvFfle2rvt5YodU+odM1nQ3RwMgAGJzvQ3PISPLhwBl7+u0V4cOEMVJaXmJ0kIiIKY9V+OiuxYxuAtMWq8+/+oBtb3/k4YXB6fo4LEoh7D0a3fcKFt2NZF08sGFDc8MjNWLFghlIPN5P1RPfPffeeKub9REREZHusUxMRBXAGdSIixVhxNgkzZwUlMgKvaXIqFWYIVCEIxMyZnPWcQV4v2Tondsx7eU8lpuI1ny1zy0tQO6fMUvV+0pcqs5kSEZE2vfrpVF8txix2bAPQaPHq/NFtpiABQAIYk+fGZWPyUL+yJql78J0PT0dsJ8g76Mcr73bhqQfmAWBdPBHWU8lIzPuJiIjICVinJiIKEFJKs9NABqqpqZEtLS1mJ4OIbCp6cCHICQFFTrd7927U1taanQzdOfWa5kB5dql+vDc0tGFbcwfy3C4M+PxYMX961geLVm1pQenYgoiB4mzO9FzX0IZnmjtM+e6eHq9mQLOZ14uR58TueS/vqfhUveaJiIjI2lRrd5nZxlCR3dsA2aba9R4tUZ3/qm82wh9jqNIlgNsrJyfddqlraMPWfR24cmIRZkwcg7eOdEMicF1NGVeIiomF+MVfLdD3yxFR0pj3p8auYzBERKQf1dsBRETkHEKI/VLKmB04o9e5IyIiUxzuOo9r/+E1HD5x3uykJC162dTwpVKJrMip13SsJZbTwaW5k/PEzvfRfPQMNu143+ykxKTCknPRS/9mK5B2Tt1OVKxvxNZ9HZAyMKtbxfpGzKnbmZX9A+rOdm3kOTE67zU7b3LyPZUMVa95IiIiVZhdl7Eqvdq5mVKhjaEip/a/GEWV611LWUkBcoSAd9CPPHfg3xyXCNX5PzdrEiomFiE/J3A9uARwT3U53vnW0qTaLuH3GQAcPX0Ju8OC0wd8fiyaOZHB6UQmY95PRGRfbLeaQ/V2ABEREQDkmJ0AIiIKWPNcKy70D2HNs6145q8XWOJpVwYUkd047ZqOt8RyOrPWcHnW+KKP9/aDndh+sFO5WYKcvORc9NLi4bO6ZVMwoNkpS40bnfeanTc5+Z5KltOueSIiolQYUZex8yxrerdzM6VKG0M1Tut/MYpq1zugnb/8/tgZAMDlJQXoONuH5qNnQn/7xV8tCK08FQwoT3Q9hO8n1n02oSgPN82ciHurp+KxF97F8XN9xn1pIkoK834iIvsyuw/eaVRsBxAREWlhgDoRkckq1jdG/N7u6cX8x3cBgCUacQwoIrsx65o2I0BAr4FydoQkR8ZYrhoANF4mE6gyUObEgGYj8l7mTdbhxGueiKzLzoG9dmGXc2RkXcbOwQOqBYSr0sZQEfsUM6fa9Q6Mzl+i87KOs4FA8U/O9qFifWMoT9O6HrTy9Oj9RN9nS68pw8Z7r0VdQxu6e/sxbXxhdg8EEcXEvJ+IyF7YB28OFdsBREREWoTUipQhW6ipqZEtLS1mJ4OI4jjcdR5ff3o/OuPM4sJGHKlm9+7dqK2tNTsZtlLX0IZnmjuwYv70rAYIBGeoynMHZqhKZ/+eHq9mRwgH3UfM3rATAz7/qNfzclw4wjxeGau2tKB0bEHEQFkyS4qTepg3ERGREcyqt1Py7HKOjKjLRAcPBNmt30mPdq6e7NTGsMsDIHaiyvWulb8AwOfnTsbuD7oj/p6fI3BH1ZSEeVp0nq61HwFgxcKRoNdt+z6GP8bwp93yO7tg3kI0GsdgiMgK2AdvHlXaAURERAAghNgvpYzZ4ckZ1ImITFZZPg5Fee6Yf+PTrkT2Z/bsAnrMWsMZ4ZKzZ91i3Pr/7UbfoC/0WlGuG7vX1pqXKBol1kzOh7vO4/76d/D8wwtROWWcWUmjFDFvIiIiPZldb6fE7HaOjKjLOGWWNSNnZ00niNJOq8XYefZ9q1JlNuJY+cvlJQU4dvoSPuq+iAGfH24B+CTgEsCAT8bN07Ty9Dy3wN3V5aH9BN13/dTQ/bVxWRVWL5npiPzOLpi3EBERWRP74M2jSjuAiIgoEQaoExEp4HzfIGZPLsbqJbOwoaEN571DbMRZEGd6oXSYHSCg10A5O0ISKyspwMTiPBw/24c8t8CAT2JicR7zCwtY81wrLvQPYc2zrXj9sVvNTg6lgHkTqYb1RSLrMrveTonZ8RzpXZdxSvCAkQHhTg2itMsDIHasi6nyAER4/gIA3kE/jp2+BABo9/QCAPwAZk8uxqTifFxVWhw3T4vO0/NzBIrzc7Hlr+fjrs17Rs2Ovv1AJ7Yf6Axdk07J76zOLnmL6uyY9xERkTrYB28OVdoBREREiTBAnYhIAc0bbgv9/Os/dI1a9jcb2EmZOacOUlJm7DJgxo6Q5MwtL0HtnDJ21FlExfrGiN/bPb2h1449cacZSXIUPeomzJvsxQ71VdYXiazLLvV2O7PjOTKiLsPggfQ4PYjSLg+AsC5mrGD+csfcyaj75SF0nLkEv4xcJTSVPPmdD08PB6cH8vT+oQFse6cDn5s1CX/svoiuc32hQHWXAG6vnIzvhuWVzO/UZ5e8RXXM+4jIruzQV2gH7IMnIiKieBigTkSkGLMaceykTJ/TBymdwsiOLg6YOQc76qxlx+pF+PrT+9F5ri/02rTxhfjpQzeYmCrn0LNuovJghcppU42V66usL5JVME+Kj/V29fEcJcY2SXpUD6I0Ov+2+gMgrItlR3j+cvPMSfi4uSPt62XzrnZ4LvQDwKhzBwQC0sNnUfdLoDhqH8zvRlOtrmf1vEV1zPuIyO6s3FdIRERE5BQMUCcicjh2UmZO9UFK0oeRHV0cMCNSU2X5OBTluSNeK8xzo3LKOJNS5AxG1E1UHqxQOW2qsEN9lfVFsgrmSfGx3q4+K54j1YIFKTbVgyizkX9b+QEQ1sWyL93rJbruHy147s73DeJDTy8+O208DnWew8dn+tB89IxeybctFet6Vs5bVMe8j4jsyg59hUREREROwQB1IiKHa1q7GMvr9+LY6UsAwE7KNKg+SEmZYUdX8g53ncf99e/g+YcX6hbAy2ANMtv5vkHMnlyM1Utm4QevH8GxUxfhueDl9WggPQdQVc7DVU6bauwwqM76IqmOeRKReVQMFoymcrssOm1OW/0s2fxbj+NixQdAgspKCpAjBLyDfuSxLpYV6V4vser+l5cU4NjpSxH16KcemIc5dTvR2HYi9NlPzvahYn0j6y8xqFzXs3Leojq2Q4nIruzQV0hERETkFC6zE0BERKN5erxYXr8XHoMHuubU7cT8x3eFgtMBwDvoxyvvdrGTMkXBQcqGR27GigUz0N3bb3aSSCdNaxfj7upyFOQGqk0FuS7cU12OpnWLk95Gtu5ps615rhUX+oew5tlW3bYZHqxBZIbmDbfhN//9Vtx1XTluunoihqTEEzved8Q9nQwj8jc9B1D1yMONonLaVGOXQXXWF0llzJNIBanWK6zezppTtxMV6xuxdV8HpAwEC1asb8Scup1mJ20Uldtl0WkzMq31K2uwcVkVKstLsHFZVURQpVmSzb9VPofZ8vtjgdm1b7+mjHUxnWSaD4d/PvgzBEbV/X1+iQcXjq5Hs/6SPB4r52I7lIjsILrOYZe+QiIiIlKX1fueVcIZ1ImIFLTp1ffRfPQMNu18H08urzZsP8EnzF95twt+CeTnuDBlXCEqJhYatk+7UnWmF5VnObMKPTq6rDAjXiYq1jdG/N7u6Q29duyJO9PapsozO5HzRF+PLx3sBAAsfHwXPvp+ete4XRiVv+k1O6XKgxUqp01FKs5YmipV64tEAPMkUkOq9Qqrt7OsMOufyu0yrbRF/65CWo2UKP9W+RxmS/QxaDx0EkCgH9RJjOgjDObDm3a+j0/O9qW87egHJ4I/x6r7B+vP4fVo1l+Sx2PlXGyHUrZwLIqMFKvtZ4e+QiIiIlKX1fueVSKklNp/FKJGStmSxfSQzmpqamRLC08hkVVED5gEGTlo9NjzrXjpYCfy3AIDPokvXT8146B4dkSpo66hDc80d2DF/Om6Vpp2796N2tpa3banulVbWlA6tiCioyuZmdLMuKfNcLjrPL7+9H50nusLvTZtfCF++tANqJwyLq1tenq8msEazFco24LX469au2L+3W73dDKslL+lm4dng8ppI/tjnZ2iMU8is6Rar7BSPSSRDQ1t2NbcgTy3CwM+v+5t90yp3C6LTlt+jguTivNxqteL/iGpVFqNFi//VvkcZguPQYCefYRa+bBbAB9+/86E9Uytz4dLNk9n/SV5PFZE1mK1MRijxqLI2ezU9iMiIiJrYP0jPUKI/VLKmJ0MiWZQbxZCHALwHwCekVJ6dE8dERGFaD00FO9hokwFl7e9vKQAHWf70Hz0TMbb5JNkiRkdEMQZsvSV7kwzVpgRTw+V5eNQlOeOeK0wz512cDrAmZ1ILcHrEQBcAvAPF8t2vaeTYaX8TeXZwlROG9kf6+wUjXkSmSXVeoWV6iGJqD7rn8rtsui0Dfj8KMpzY8AnlUur0eLl3yqfw2xx+jHQq4/wcNd53F//Dp5/eGEoH45+iNsnA6vsuQQgAc2Z1aPzcbcIfBYIBLnfdV150nk66y/J47EiIiNwLIqMZKe2HxEREVkD6x/6S2YNw7kA/jeAT4QQvxRC3COEcCf6EBERpW7PuiWYMbEo4rWKiUXYs36J7vuaU7cTFesb8cnZwIzHHcP/fnK2DxXrGzGnbmfa29y6rwNSBjqi0t2W3UUvYau3prWLcXd1OQpyA0V9Qa4L91SXo2ndYkP2R7E5aRD0fN8gZk8uxo++Mg+zJxfjfN9gxtsMBms0PHIzViyYge7efh1SSpSeU739eHDhDNwx93IAgUB1O9/TiTgpfyOyG9bZiUg1qdYr7FQPqV9Zg43LqlBZXoKNy6p0ncnW0+PF8vq98GQY9K5yuyw6bef7BpVNq5lUPofZ4tRj4OnxonJKCf5k7uSM+gg9PV7c96//Bxf6h7Dm2dZQPixEoG0czS8BKYHtBzrRfPQMbnx8Fzw9Xiz78du491/eBgRC+TgwEpwe/Pnl1i7csunNjL47kR3pVbYT6YljUWQkO7X9iIiIyBpY/9BfohnUPwRw9fDPuQC+OPzfKSHEFgC/kFIeMjB9RESOUlZSAN/wtKy5boFBn4TPLw0p6IJPfb126AT6h0ZGAfJzXLijKr2nv/gkWWLZmk2ClSZ1qD4jnl6aN9wW+vmu68p12SZndiKVBK/HVVta8OBC+9/TyYiXvxm9UggRpY91diI1Wbns1CPtqbabkn2/lY9rpvRaKUPldll02sLTp1pazaTyOcwWpx6Dzbva0Xr8HGaWFqfdR1ixvjHi93ZPb+i1BxfOwJnefuw4dDK02ljFxCIcO30p4jM+Ccx/fNdIun7bHsrH75h7Of7m6Rb0DfogAbhdAmVj8/Hyozdn9uWJbIirYJGKOBZFRnPKGBsRERGpg/UPfcUNUJdSzhJCLALwlwD+DMDY4T9NAvDfAfx3IcQBAD8H8KyU8pyBaSUicoS55SWonVNmeEEX7DQa8MnQAIJbAAO+9DuP2BGVWDYDglhpUkOyg6BmBk44OWiDKFVODWyIJd6x4KApZQvLsNSxzk6kJiuXnXqkPdU6VrLvt/JxTVe2HownInVF5wPtnl4AgF/KwAzySfYRxlthZ8eaRaicMg5/8fN9KBubjx8sr8ar753E7g88EAIQCPQ3x7J1XweAwEQpG5dV4d7rp2Jbcwfy3S4M+PxYek0Z66ZEYVi2k+o4FkVGYn88ERERZRvrH/pKNIM6pJR7AOwRQjyKQJD6QwAWI9C/BADXD//3pBDilwB+AeB1KaVG1xMREcUTLOg8PV4c+fQCfvTVeYbtK9hp9FF3L0719mNicR6uLh2bUecRO6Liy2ZAECtNiakU1GZm4IQTgzYokkr3AlkbB03Noeo9nI10sQxLD+vsROpItexUKc9XudxXOW1G40oZRMlTKU/VU7x8IJXvGdzOr1q7Il6/ctIYVE4ZBwCYNqEIb7WfwquHTmDjvddi1ZYW1M4pC82sHotbALdXTsZ3hvsrWTclio9lO6mOY1FERERERKRFpBNHLoS4AsBfAPhzAFeH/Sm4sU4A/wngP6WUf8wwjZSBmpoa2dLSYnYyiCgNdQ1teKa5AyvmT2ewjc2s2tKC0rEFEYMu4R14VrB7927U1taanYyMqXCfRQdOBGUjcMLMfZMa9rR346GfN6N2Thne+MDDMocy5unx6hIIQalRoTyLxch0sQwjIrtItexUKc9XudxXOW3ZsKGhDduaO5A3PBuxCtcLkYpUylP1pkc+oFXnBhCaeCPW6wA0Pxf04AL7HXMiI7Fsdx67jMEQERHpxWoPGFstvWQ8XhNkZ0KI/VLKmIFvCWdQj0VK+QmA7wL4rhDiFgB/CeBLAMYOv2UqgG8B+JYQ4m0APwfwopTyYjr7IyJyEifP8uUUnE3CfCrdZ2bOgMPZd+jBnzUDAHa97wHAMscKVO+8yOZKIQTM3rATAz41yrNw2ShnWYYRkV0kW3aq1IYJUrncVzlt2cDZiIniUylPNaqNp0c+0LR2Me7+8dvo7vHCJwMzn5eVFODlR28GJLTr4xL4+5cP4fXDn8IvAZcA8nPcuOnqiSjIdeMPx8+hu7dft+9K5AQs24mIKBOqjysQJcNqq6laLb1kPF4T5FRpBaiHk1I2AWgSQvwdgC8DeAhALQAx/Jabh//7oRDiRQC/kFL+LtP9EhHZlQrBNk5opDrhO5I2Fe6zIDMDJ5wetOFkFesbNf92T3U5AzwVZoXOC7MHTZ1Uxt/12Sl46WAn3C4Bn18qE6SdjXKWZRgR2UkyZadKbZhwZpf78WQ7bSrVQfhgPFF8KuWpRrXx9MgHykoKsPSaMmxrDgTvD/j8WHpNWSiPi1cf/6j7IvzDQe1+AGMLcvD9L11rev5IZFWqle0q1XvsJnhsv1oRfyUKq7PaNWS19BJFs8K4ApEWlR4wTobV0kvG4zVBTpdxgHqQlLIPwNMAnhZCTEdgVvWVAK4afssYAH8B4M/13C8Rkd2oEGzjhEaqE74jaVPhPgtnZlCHygElZJytX5uPrz+9H32DvojXBcAAT0VZqfPC7EFTJ5Tx0deDzy8BAN7BzMozvQbbslXOsgwjIrtIpuxUrQ0TZHa5H0+20+aEOgiRXaiQp1qljRevzh3rb6PaKoGmCjwX+rFpx/t48v7qLH8DIjIC6z3GCR7bMUM5WPZ5s1NjHKtdQ1ZLL1GQVeqcRPGo9IBxMqyWXjIerwlyOiGlNHYHQvwpgH8HcDkCMS9SSuk2dKcUUlNTI1taWsxOBhGlaNWWFpSOLYjo3A8fWE1WqkFG0Y3UIDs1Up3wHbNh9+7dqK2tNTsZGdHrPiOyqs9++zX0eIdCv4/Jc+Pe66fxXlCUp8er2XlhdmBasoyeachJZXz09eAWwC2zSzGxOA+93qG07+G6hjY809yBFfOnZzzYxnKWiEh/zFvV5KQ6CJGdmJ2n2qGNF0v094qF+aN5OAMwZYr1HuM45dha7XtaLb1E0exa5yTn2dDQhm3NHchzB1Z20mMMw0hWSy8Zj9cE2Z0QYr+UMmbHmmEzmQshbgHwEIAvAyg2aj9ERHak1yxfqT7Rn86Te1br1ObTiRSk8kx/RNngHfJjXGEO/vbWq/Gvb32IvkE/7wWFqTDDX6aMnmnISWV89PUw4PNj2vjCtI+rETPpsJwlIkpNMm1r5q1qclIdhMhOzM5TzWzjJSpzMunvDf9eWoydNovi4QzAlKlgvafx3S74JOAWwF3XlbPeo4PoOmWeC/jTz9rv2Fqt7my19BJFs8O4AhFgvdVUrZZeMh6vCXIyXQPUhRAzAPz58H9XBV8Oe8tHAH6h5z6JiGi0dIOM0mmkWq1Tmw1xY+j9oILVHnwgsqIjYeXBw7UzI/7GezA+s45POp0XKpzLbC0j6rQyXs/OLA62ERGZz2ptaxrhtDoIEenHrAHqYJmzaef7+ORs36j2YrwyKbyNCYmY7c1Tvf1wQcCnEYq+Z91iY74YacpWu5zs75Z/ejPiWvJJ4OXWLrx66CSvpQyNmozApnVKq9WdrZZeolgYFEl2YPYDxqmyWnrJeLwmyMkyDlAXQhQB+DMAfwHgcxgJSA/+exHAfwH4Dynl7zLdHxERJZZJkFGyjVQrd2qzIa4/vYMpGJxBZC7eg/GZdXzS6bxQ4VxmM/jZSWW8np1ZHGwjIjKPldvWNEKrDqLCw4JEeuI1ra9sDlAf7jqPL2zeE/Ha9gOdAIAbH9+FD79/p2aZlOcWOPK9LwCIbGMCiNnerF9ZA0+PFxt3/F/8qrUrYp9TxhXw2jFBsF3+2qGToXbfHVV8KJlS17R2Me7+8R50XxiAzy/hdgmUjc3Hy4/ebHbSbCG8Tvm/G/aiu7ff7CQZwmr9d1ZLL1E0BkUSERGRmYSU6S2mJ4S4FYGg9C8BGBN8OewtewD8B4AXpJQXM0gjZaCmpka2tLSYnQwiMsGGhjZsa+5AntuFAZ8fK+ZP1zUwLTjIECvYjIMM9rd7927U1taOGrgKSjeYQu/tEVFqeA/GZ6Xjo0pagwEs0yYUouFgp2H1EitQPZhn1ZYWlI4tiBhsCx+8sAPVzwEROZMd2tbMX7XVNbThmeYOR9Z9yJ70uqaZb2Tf7T94C+2eXozJc+PigC/me3JdAiWFuejtH0T/kIRbBGZH/tL1U/HKH07EbGOGi25vbmhowzP7OuASgF8Cs8uKcWXpGNu1M6wieD6CHlzAsonSk87YE/P91AXHYIiIiIiIiFQnhNgvpYzZ4eNKcUNXCiG+LYT4CMAbAP4cQDECgekCwHEAjwOYLaX8nJTyPxicTkRkjuAT/Q2P3IwVC2akNNOCp8eL5fV74YkzCwBn2rSPZM63lqa1i3F3dTkKcgNVioJcF+6pLkdTmkv16r09IkoN78H4rHR8VElrcHa93x89k3a9xC6iZxpUTf3KGmxcVoXK8hJsXFZlm6CR8HqO6ueAiJzJDm1rlfLXTNq3eppTtxMV6xuxdV8HpAzMQlyxvhFz6naamq50qHJMyVx6X9Mq5Rt2V7G+ERXrG9Hu6QWAmMHpwfbi7XMn4/TFAfQPBSa28g3Pb7X9QCf6h/xwCYTamC4BuEXk56Pbm6d6+/Hgwhl45Ru34MGFMxicbqI5dTsjgtOBwH1sxXKJzJfO2BPzfSIi52KbkoiIyNlyEr1BCDEGwHIADwG4JfxPw//2A3gZgdnSfyPTnZKdiIh0lclyXeGdhfFmvuCydulJZraQbM4okuz5jkXvYAo7BGcQWRnvwfhSPT5mzg5l9rmMnsH9k7N92PrOx3ix5RNlZpvP1vmJPhZb93Vg674OJWfet6PNu9rRfPQM5n9vV+g1ngMi67H7jItWbVurWMZl0r7VU9PaxZoz41vNEzvfR/PRM9i04308eX+12ckhk+h1TauYb9jdjtWL8PWn96PzXJ/me7yDfrzc2qX59+D5dguBhtbOUBsTQNz2Zib906QvO5VLKrJ7XTVaKvc2830iIlKlnU5ERETmiBugLoT4TwD3ASgKvhT25/0IBKVvk1KeMyR1RESUVal2Fn73nio8+uxBTBqbx0GGFCTTEM9GY12vzmG9gymsGpxBZBe8B+NL5fiY3fFq5rm0wuB3ts6PFY6FHUXXc8LxHKjLaYEdlDyzy1SjWTWAT6UyTrXgJ7MfFtRD9DHdfrAT2w92MqDMofS6plXKN5yisnwcivLco153CWD6ZUXYeG8V/vxnzfBrTD0Vfr67w9qYq7a0AAiUYVbsO3BavdMO5ZLK7F5XzQTzfSIi51KtnU5ERETmSDSD+koAEiOB6d0AtgL4DynlISMTRkRE2ZdqZyE7XlOTTEM8m411vTqH9Q6msGpwBhnPaYOHZuE9GF8yx0eVjlczz6XKg9/ZPj8qHws7i67nuF0CPr9EnlvwHCiM7QuKpkqZSrGpVMapGPxk9Qc/tdZJ5fKpzqXHNa1SvuEk5/sGMXtyMcqK87Hnw9MAAvfyopmTsGhmKd755lIsr9+LY6cvhT5TlOvGn147BV9bdGXofIe3MZvWLbF0P40T651WL5dUxLpqYsz3iYicS8V2OhEREWVfogB1APAB2IHAbOmNUsohY5NERERmSbazMNmO1/BBCkhYdsBCL8k0xLPZWGfnMOnN6IFJJw4ekjWx4zVA1cHvdM9PJnmcqsfCzmLVc2aVFeOpB+bxHCiIgR2khWWq+lQp41Rs31r9wc896xaPClitmFiEFx6+UZftWzmw1an0uqZVyTecpHnDbQCAVVta8ODC0ce+rKQAQ8NTqOe5BQZ8EhOL8/Dk8usAaJ/vYD/Nt3/1HpqOnMLzDy9E5ZRxKacvm/mBk+udVi+XVKRCXdUK5SnzfSIiZ1KxnU5ERETZlyhA/f8FsEVK6clGYoiIyHzJdBYm2/EaHkwKYFRgqRU6T/UUryEefiyy2Vhn5zDpKfyeX710lm73t5MHD8ma2PEaoOrgd7rnJ5OHZFQ9FnYXq55TWV7CcxCHWfVzFQI7SE0sU9WnRxmn18PtbN/qK1bAqs8vdbv/+ACyc7FuHJve9bBY24t37OeWl6B2TllSeWh0P82OtpMAgC88tQfHnrgz5bRmMz9gvZP0pEJd1QrlKfN9IiLnYjudiIiIhNRaq5NsoaamRra0tJidDCKyoQ0NbdjW3IE8twsDPj9WzJ8e6gCNHqSIJT/HhS/fMA3PNHdEfNbuVm1pQenYgoiGeP3KGtQ1tIWORXdvf8z3qGT37t2ora01OxmkiHj3/IMLMr+/PT1ezcFDBieRqrTye1JDKudHK4/jQzJkR+F10mzXz+O1L8jZWKbaX3jeA8Bx/QQq0/P+O9x1HvfXvwPvkA+DvtFjEqxbkdNlUg+LFYwe3F5pcT5eWb1I1/4TT48Xf//yIbz23qea70kmUN2sthbrnaQns+qq7KuwP47BEBERERGRVQgh9kspYzaGMw5QF0LkAVgI4DMAJgDIk1J+J6ONkm4YoE5EwQGKb3+xEt/+9WHdZuGJ1/EaHUzqEoAA4JNAQa4LA0N++GMUP07sPLVqRzI7Rylc9D0fS6bXdCqDh05bnYGyj9eYs/AhGXICFeqkDEImp2A9YkSyD7er3Dam5N3+g7fQ7unFlRPH4NorxrFuRTQsXj2sae3ipMqM8OD2F/cf16Vel6i8Ct7T0aaNL8RPH7oBlVPGJbUPvdtayZSzrHdSNCvWz4L3T+MfTsDnl3C7BO767BSWpzbCMRgiIiIiIrKKeAHqrgw2WiCEeBzApwDeBPAvAL4H4B9ivHeTEOKIEGJXuvsjIqL0BJd4XPNca2ipRz3Ur6zBxmVVqCwvwcZlVRGd+NFLW/plIDg9uMzlvfOm4u7qchTkBoqhglwX7qkuR9O6xbqkzUqa1i7msSDLC7/n83IC17JbBP6m1zUdXAaw4ZGbsWLBDHT39mu+N3xpWyIj8BpzFhWW7CYymgp10njtCyI7YT1iRHTe4xaAS+d2RDZ5erxYXr8XHoWXLDcjjRXrG1GxvjEUyHr09EX8qrUL3kHWrYiA+PWwRGXGnLqdqFjfiK37OiAlsHVfh+aDP/1Dfsyp2znqda18QWvfszfsiLinoxXmuZMKTgeMaWslU86y3hmbFcoxo1ixfnbLP72JX7V2wTc8E5DPL/Fyaxdu2fSmySkjIiIiIiIiGpGTzoeEEJMB/BZAJQKT4oaLNSX7fwH4fwFcLYSYL6VsTme/RESUvOjZd4KDBlv3dWDrvg7DZyELBpN+df50rNoSWMmhfmVNaFaaScX5DPQCg97MZsXZcVQVfs+vee4g2j29ul7T4YOFG5dVxXxPdL6XrfyOnIPX2GhOyUfD87hgXUYV2TwHTjnfqsnGcWedlMh4rEeMFivvAWDZfCg8uE1rtSezmZHGHasX4etP70fnub7QawW5Liz9TBn+rnaWcnUrsg+r1F1j5YW/frcLL7d2hd6jVWY0rV0ccwbywSE/dhw6GXqfWwB3XVeODXd+ZtT+o/MFrfJKCGDft5bii9eVY/uBTrhFYEISABiT50bp2Hy4hMD5vsGUvr9ebS07l7PZupatUI7pzcrXTdPaxbj7x2+ju8cLnwzc52UlBXj50ZvNThoRERERERFRiJAyVjx5nA8IIQDsBTB/+KUmAFsBTAXwvwBIKaU7xufaAVwF4LtSym9nkGZKQU1NjWxpaTE7GURkguASj68dOoH+oZG8Pj/HhTuqzF86OdZSqt+9p8oSA0d6s+KysnZZXjJ8CWSnDLxkg1nXtBFLQxOF4zU2GvNR82XzHPB8myNbx92KdVJSg1UCAM3GekRs4XlPrIfbrZAPRQe3BakU3GZ2Gm//wVsRsy3PKivG64/davh+ydmsVHeNrocdP3MJJUW5SZUZGxrasK25A3nuQHB72dh8VJaXoPNsH9o9vXAJwC+BBxdEHgetfCHP7cId114e2nf+8Ep5WjOzA4F7+o/dvaYeazuXs0Zfy2aXEWay+nUTfv8P+PyWyO8oeXYZgyEiIiIiIvsTQuyXUsbszE9nBvWvIBCcLgE8LqX8++Gd3JPgc7sAXA3gxjT2SUREKQrOvjPgk6GBCLcABnxqzEIWazbkuoY2x83SAiQ3MzTpy8qz41iBWdc0Z38lo/EaG8F81HzZPAc83+bI9nFnnZTS5cTZNtPBekRs4XlP07oloZ+tlA9pzWAca6ZisySbxuADJ9/+YiW+/evDuj14cr5vELMnF2P1klnY/EY7zl1KbYZlu+ODPvqyYt01Vj1sQ0NbUmVGrBXt/mR8IfJzXFhw1UTNmcnj5QtP/bY9dAy1AtPdLgG/X0Ii+yt3xmLHcjZb17IVyjGjWP26UXm1NyIiIqdhu454DRARxeZK4zP3D//bEgxOT1Lb8L/XpLFPIiKK4unxYnn9XnjidDoGOygXXjURsycXY/5Vl2HFghno7u3PYkoTm1O3ExXrG7F1XwekDHS2V6xvxJy6nWYnjWyqae1i3F1djoLcQFWoINeFe6rL0bRusckpo0wF872GR25WMr8j6+M1FsB81HzZPAc83+bgcSfVsR2XOtYjUpNMv4cKrBDclmwagw+crHmuNfTgiR6aN9yG3/z3W3HXdeX4zX+/Fc0bbtNlu3ax6dX30Xz0DDbtfN/spNiCXepQ0WXG8bN9MfPE+pU1eLHlE3xhc1NEoPhr732KF1s+QWV5CTYuq0L9ypqIfDVevnCqtx8iTtoCk6FI3Hf9VKWOtd3K2Wxdy1Yox4xk5eumfmUNNi6rirjPiYiIyBzhEziQM/EaICKKLZ0Z1G9AYPb051P83KnhfyelsU8iIooSPnj15PLqmO+xSoekk2dpIXM4feDFzjj7KxmN11hAtvJRzjihLZtlGctNc/C4k+rYjksd6xGpsdLs/FaYwTReGqNn6VVhNmQniD7u2w90YvuBTh7vDKVSh1K5vRFdZtQ1tOGZ5o6IPDGY/oZHbsJPfvdRwjI5Ol/VyheCwewbd/xfNP7hBHx+GbGd4K8NBzvxlfnTlamv2q2czWZ7wArlmFHsdt0QERFRdllxBSfSF68BIqL40glQDwaYf5zi54I9WOnM2k5ERMPsOHil1dkOCSyv36vkIBFZn5MHXoiI9JCNfNRKgWlmSPccxAvE0foby01j8biTFfEhCjKKFQf2rBDcFi+NwQdOXjt0Av1DI4Go+Tku3FHFB0+MIqVM6XVKXrJ1KJXbG8H6YWvHWQz4Rq6J8DzxyzdMw++PncHP9hzF3g9PaZbJyeSr0flCsJz3+eXwjOkjfwsPgP/7Xx7CffOm4oOTFzBnylhLzT5tBdlqD1ihHCMiIiJSESdwIF4DRETxpROgfhHAeABjUvzctOF/z6SxTyIiGmbXwatYne0qDxKRWtKZ8YoDL0REmTEyH7ViYJoZ0j0H8epYWn8zo9xUeUZLval03IlSwYcoyAgc2Mu+YCDqgG8kENUtgAEfHzwx0p51S/Dl+r34+PSl0GsVE4vwwsM3mpgqe9CqQyUT9K1KeyNYP7xv3lQM+iUa3+2Cb/jelAD6h/zYuq8DQGACk6BZZcWYc3lJRKB4uvnqqd5+PLgwUM6vee4g2j29owLg61fWoK6hDe+d6EH1FePx5MpqIw6HY7E9QKS2Pe3deOjnzfjPr83HopmlZieHiIhMwAkciNcAEVF86QSodyAQoD4PwNMpfG7p8L8fpLFPIiIaZtfBq/DO9hdbPmFQGqWEDzMQEdkLA9OMES/wH4By9a90y3crBbbzYQyyOisGTVkpj3AqDuyZI/jAyUfdvTjV24+JxXm4unQsHzzRWUQeVFIA3/C01LlugUGfhM8vea0bKDroO1vtjVTKnlirZ4YLxtVHz2oedKirB4dP9OCj798Zei3dfDW8nL+qdAwWXDUx4qE01mVHYz2DyFkeeeYAfBJ4ZOsB/OHbnzc7OUREZBJO4EC8BoiItKUToP4GgOsAfEUI8fdSyt5EHxBC3ADgDgQmdtiVxj6JiGhY+OBVkN0GrxiURslKZiCMA0NERNbDwDRjxK1jSShT/8o00MVKD66x3kuUfVbKI5yMA3vZFx6ISsaJzoPmlpegdk4Zr3WDxQv6zkZ7I5WyJ7p+GCQQGGADgKI8N+6ouhwvRQWvB/klULG+MaL+nGm+GuuhNE+Pl3XZKKxnEDlDxfrGiN97vEOh1449cWesjxARkY1ZcQIH0hevASIibekEqP8MwBoApQB+IYR4QEo5pPVmIcRnAPwXAv1nXgD/nk5CiYgoILrjCwA+OduHivWNSnV8ZRIUzKA0SlYyQV2bXn0fzUfPYNPO9/Hk8mrzEktERClhYJr+EtWxVKl/pRu0bcUZHFnvJcoeK+YRThYc2PP0eHHk0wv40VfnRfydDyKT1SSTB3EQ2zix6pcTivJw09WT8LVFVxrW3kin7CkrKcAr73aNmh09/NdLAz7N4HQAcLsE7vrslIj6sxEBE6zLjmA9g8hZtn5tPr7+9H70DfpCrxXmuvFvD91gYqqIiIiIiIjU40r1A1LKwwB+jEDA+b0A3hVCrAIwM/geIcQ0IcQdQoh6AAcAzECg/2yjlPJTXVJORORQbpHa60bx9HixvH4vPBqDN+GzxaQjGJTW8MjNWLFgBrp7+zNJLtlUvIGwOXU7UbG+MTQr1vYDnahY34g5dTtNTjURESWjfmUNNi6rQmV5CTYuq+KsnjqJV8dSpf6VbqBL09rFuLu6HAW5ga6OglwX7qkuR9O6xdlIdtpUOe5EdmfVPMLpwh84DpdpnwNRtmUzD0rUZ+dEseqXS68pw5PLrzO0vZHuef/crFJk0tXr80u83NqFWza9afj1wLpsAOsZRM6yaFYpcqMG5XLdAotmlpqUIiIiIiIiIjWlM4M6ADwG4AoAywBcA+Bfhl8PTuLwcdh7g62zp6WUj6e5PyIiGuaTqb1uFK3lSvWaLcbMZZA4E5u1aM2wK2Xsm0LrdSIiIieIV8dSaRnKdGbQt+oMjioddyI7s0oewfZoQHTfwvYDnaGHj8NxhlrSi9H3XjbzIK0+O6czY4WmROdd67r7xV/Nx2PPt+KlgyP5nkBgAC7PLTDgk6iYWISTPV54BwPbFgIYGPTDD8AlArOoN/zdTYZfD6zLBlilnkFE+vEO+TGuMAd/e+vV+Ne3PkTfoD/xh4iIiIiIiBxGZBKkJYRYA+CbAMrivO0UgH+UUv447R1R2mpqamRLS4vZySAiHVWsb9T827En7jR8/9GDxEHBwWBPj3fUkrmfn3s5Ntz5Gct0yNc1tOGZ5g6smD+dA3kadu/ejdraWrOTEZenx4sv1+/Fx6cvhV6rmFiEFx6+0TLXIhERxcbgPdKyaksLSscWRAQecfZ9IgpKJ4/IRpkTvo/Nv21nexTA7A07MBDjSfxcF/Cnny23dJ8DqSkbfUFG11MS9dlRdgXz9qI8N6ZNKBp13j09Xtz1wz3ovtCP0rH5eGX1ooh8bNWWFnzUfRF/9PTCJQKTk8wqK8ZTD8zDtuYO7P7Ag85zfchzuzDg82NmaTH+2N2LPLcr5nUQJASw71tLmWcagG0RZ2G/BBnNCmMwREREREREACCE2C+ljNkJklGA+vDG8wF8HsAtACoAjAPQC6ATwFsAdkgpL2lugAzFAHUi+/n1u534xrOto17/0Vercddnpxq+f60A9FWfuwrf/vVh/Oir8/DUb9uxrbkjNEBilYF1MwbyVOjITicNVukcXbTpDRw/24dct8CgT+KKCYVoWrfE7GQR2YIK+Rc5Fx8mIyKrYzlqHdkoc+oa2tLcDowAAQAASURBVLB1X0fMv6kcWGrkdRzvgWMj+xx4bzqPnYK67TBphJ3EKz+0rrvo4PF4Ac/Rf/vNeydxqrcffo0hv4JcFy4vKcCx05fw4AK2o6yG5ZN62C9BRrPKGAwREREREVG8APWcTDcupewH8Kvh/4iIyGBfvG5qzAB1PYPTE3V4v/Ph6dDyscHlSrft6wgtF2vGkrmZCH7fhkduwk9+91HMgTyjqLDssgppMMrc8hLUzimzzLVIZCWbXn0fzUfPYNPO9/Hk8uqY7+EAKunJ0+PFgu/vQvgz1lv3dWDrvg5LBhARkbPZuQ5uF9HBg0aUOVoBigAMaY/qXTcz8jouKymAbzjKMvjAsc8vUTa2wNA+B96bztO0drFmULfVlJUUYGx+DvqHIvvs2BZLTM/8Uav8yHMLVE+fgNaOszFXiAAAKYEbH9+FD78fWCUzfPbtjcuqIt4b/beNy6rirrzpHfTj2PBDP2xHWQ/LJ3Vko45IRERE+uJYFRERkXkyDlAnIqLsEwLIdQmsWDAdz+zrwKDW1DhpitfhvXlXOzwX+kNLyn7xh3siZnoL/pyf4woNjujJiAZk8Ptu29eRtYE8FTqyVUiDUWJdJ3pfi0ROFZ13bD/Qie0HOmPmHRxAJT1t3tUOKQOzp57s8Vo+gIiInMnOdXA9qDRgmI2g1eh9uAXgk0CeQe1Rvepm2bqOtR44jhewmS7em85lt6Buq00aoQo9265a5UeOS+Clg524b95U7P/4bChYPJpPAhXrG9PKf6ZfVoiOM30Rr+W4gO/cPRc/bTqKjjOX4JfGPARlZ2bWT1g+qcdODzYRERE5BceqiIiIzMMAdSIiCzo6PIsOAPzD3foF3cbr8AYQ8bd2Ty++sLkJeW4X7rx2StY6ZPVsQMb6vgDgFgINj9yc9kBeMoMWZndke3q8+MyUEkwuycdbR7pt15nOjgYi40ipNdPbyOscQCU9RV9P4YEcVg8gIiLnMbsdoDqV6vHZCFqNtY/ZZcX45wfm6RpYqnfdLFvXsRGB6FqsdG+q9CCHXdgpqDub940d6JU/Hu46j/vr38HzDy/EpDH5odUn83Jc8A768XJrV+i92w90xt1WOvlPvJnT83Pc+OrCCrx34gI+bu4wpEyze75kZv3ESuWTU9jtwSYiIiI741gVERGR+VxmJ4CIiIzn6fFi2Y/fxr3/8jY8cQbZmtYuxt3V5SjIDRQPBbku3FNdjqZ1izX/tmf94qx0yM6p24mK9Y3Yuq8DUgYakBXrGzGnbmfa29T6Tnu/tQSV5SXYuKwqYmAvWeGDFlrM7sjevKsd7x4/h4+6L9qqMz3RdXK46zyu/YfXcPjEeZNTSmRde9YtwYyJRRGvVUwswp71S0K/xytPiFIVfT25ROCa2/rX87FiwQx09/abnEIiouSZ3Q5QlRHtPT0Eg1YbHrnZsDInfB8PLpyBK0vHZNQejUXvupkdr2Mrfadk+hwoNfUra7BxWZXu9x6pT6/8cc1zrbjQP4Q1z7ZGrD55+zVlAICiXHdoAhCXGPmcSwBjC3IwcUxe6Pd08p8dqxdh6vjCiNfGF+Yizy1QmOcGYGyZZtd8SYX6iZXKJyfJRh2RssPT48Xy+r1xx82IiMi6nDhWxbKNiMzGfIiicQZ1IiIH2LyrHa2fnAv8HGeml0Qd3lp/y8ZMU0bMFqN3B3+qT2GbMUNXdBrbPb0AAL+Ugc50kyuJmc64lOg6CR8wfP2xW/VOPpEjlJUUwOcPzJae6xYY9En4/DLinuUAKukp+noa8PmxaOYkLJpZikUzS81OXojdZw0kIv3YaaZevag6O2g2ZiLWcx9aZZERdTM7XseqfyfO/Eakv1Tzx+h8Nnrm8nZPb6ivLfznS4O+0HuGm9NwC8AP4J7rytHd24/SsQVp5z+V5eNQNByIPrIfiUG/xB1zLwdgTJlm93xJlfqJ6uWTE3G1CvtQaQUnIiLSnxPHqli2EZHZmA9RNAaoExHZWPQgAZBZ0LTW37LRIRurAZnjEnh0W2aBYHp28Kc6aJHpcUsnEC5eGlVojGdaWdXqaJj/vV0R72v39IYGEY89cacuaTcKAx5JRXPLS1A7pyxu3skBVNKTFa4ndrgQUbIY0DKaEwcMjRCvLNK7LLXjdaz6d1IlUJLIblLJH6Pz2R2rF+HrT+9H57m+Ue91C0BiJCA9mm/49W3NHfjo+yN9U8H8J9X+oPN9g5g9uRgfdfdiyA/0eIcAGBs0bvd8SZX6ierlE5EV2f0BGyIiGmGFsQU9sGwjIrMxHyItQkqN3jGyhZqaGtnS0mJ2MojIJJ4eL+pePoTfHv40Ynae2ysn4zvLqnTtTM9GEO2qLS0Rswm99YEHx8/1YcX86coEgm1oaMO25g7kuQMzvBqZtrqGNjzT3JHyPoJpzBHAoB+4s+py/PjBG1La9+7du1FbW5tiirXFepgCQFqV1ejrpPuCF2uWzho1YDhtfCF++tANqJwyLuP0Gynd80xERNmhZxlGsfFhLSJniFWPDw/IcoJ08zuWRc6RzT4HIhoRL5+dfllRaKb08NeD789zCwz4JNxiJCg98B6BO6qmaE4akW5/kKfHm9XJKeyeL7F+Ym9sazpXtvPKdOg9BkMUxLyPyJ6sULYRkb0xH3I2IcR+KWXMDhPOoE5EZGNlJQUoLc6PmKnHJ4FJxfm6VwCyMWtosPPfiCfv9OqQycZT2Jl+/2Aaf3ekGx1nLmH3kW7d05gqPWdc0ppVKHqp48I8t9LB6XzClIjIGuw+a6AKODs9kTNwdtD08zuWRc7hlJnfiFQTL5+9a/MezJ5cjNVLZmH9S3/AkF/ipb+9Gau2BCYOql9ZgzXPHUS7pzcUpO4SwIBPxpyNe/aGHRgIi2RPtT8o27N+2z1fYv3E3tjWdC5VVkggMgPzPiJ7CpZt3kE/BADvIMs2Isou1rFJCwPUiYhs7lRvP66YUIjPThsPAPjD8XPo7u3XbftmBNEaMfiuV4dMNgYtMv3+r733acTvFwd8qFjfCAA49sSdsT6SsUQPAGSjshpc6nj1klnY/EY7zl0a1G3bRmCQCRGRNbDDxTh8WIuInCLT/I5lkXMwUJLIHPHy2eYNt4Xed9d15aGfm9YtCf18VekYLLhqIj7svoDTvQOYVJyPq0qLQ8Hc4f1mX7yuHNsPdIY+m05/UDaDxpkvkRWxrUmA/R+wIYrGvI/I/k719mNWWTH+6OnFrLJiXWNCiIiSwTo2xcIAdSIimzN6ydFkg2j1XDJOz8F3K3bIZPr9d6xehK8/vR+d5/pCr00bX4ifPnSDUUlO6gEAoyurWgOGqmKQCRE5kQpLzKaTBna4GIMPa6VOhXuIiFKnR37HsoiIrMDKdZVE+Wy875aof3bzrnY0Hz2D+d/bNepv3kE/fv1uF556YF7SaWXQuPXocW9Y+f7KNrY1CWBeSc7DvI/I3qJjHto9vWj39GJO3U5lYx6IyH5Yx6ZYXGYngIiIrC3ZINrwAGU9BAeFGh65GSsWzNB8AtjT48Xy+r3waAzON61djLury1GQGygSC3JduKe6HE3rFuuSTqMk+/1jqSwfh6I8d8RrhXluVE4Zp3cyMaduJyrWN2Lrvg5IGXgAoGJ9I+bU7Rz13vqVNdi4rAqV5SXYuKzK8IcrrCCT80xEZEVP7HwfzUfPYNOO901LQzp1FpZhxuDDWqnTu85NZEWJ2oAq0iO/Y1lEerHiPUTZdbjrPK79h9dw+MT5lD9r5bpKonw2ne8W3m8Wz+UlrP/anR73hpXvr2xjW5OInIh5H5G9WTXmgYiI7E9IKc1OAxmopqZGtrS0mJ0MIrK5VVtaUDq2IGIGoeAgTfTTukHZmqG8rqENzzR3YMX86Zozd29oaMO25g7kuV0Y8Pnjvtcu5n/vtxhflIvVS2Zh8xvtOHdpMGKG8UR2796N2trahO/z9Hg1Z2RIptOLM/+QGQ53ncf99e/g+YcXGvLgBhGNZnZ9QZU00Gjx6pk0gtcv0Yhk2oAqUiG/Y/uLAOveQ5Q9t//gLbQPLxn/+mO3JvUZs+sqRrbzM/lu0f1mbgH44gzZBbfJ/DpzqhxDPe4Ns+8vq1Kh7kUUT7JjMESpYN5HZG9OjHkgIiI1CCH2SyljViwZoG5zDFAnIrNlGqCcrlQ65lXqkFFlcCSRVDpHM2kMc2CczJDOYDsRxZZsuTZ7w04M+EaX23k5LhzJ0oC6WXUWIj3w+iVicJYe2P6yh3T7FXgPUSIV6xs1/3bsiTvjftbsuoqR7fxE3y3RPRneb9Y/5EdRrgtjC3Lx6YWRVfTcAri9cjK+s6wKZWMLmF/rQJVjqMe9Yfb9RUTGYIA6ERGlSqWYByIicpZ4Aeo5GW74cgBLAVQCmAAgmZ4OKaX8Wib7JSIi6zBiybhkBlub1i7W7JiPFt4w27isKu106SF8KVa7DDCd6u3HigUzIhrDiUQPjG/d14Gt+zo4ME6Gih5sb/f0hl5LNNhORLElW67tWbcYy+v34tjpS6HXKiYW4YWHb8xGMgFwmVuyNl6/RKm1ASkS21/2km6/Au8hSmTH6kX4+tP70XmuL/TatPGF+OlDNyT8rFl1lXTb+ak86BH+3YTAqO8Wfk+uXjpr1HZj9ZuNycvBSwc7Q/vwSWBScT5u2fQm8+sMqVbm6XFvsC1ARERERIBaMQ9ERERBaQWoCyHGA/hnAF8F4E5jEwxQJyJykHQClONJZrDVah3zqg2O6CmdxjAHxpNjlRn3rSKTwfZk8ZyRU6RarpWVFGDIH1jdK88tMOCT8Pll1u8Tvess6WJeQelQ5folSpbeeZ3V2oAqYfvLHjLtV+A9RIlUlo9DUV7kcFBhnhuVU8Yl9Xkz6irptvNTedDD0+PFjrYTuPKyMfjo9EXMLitGd2+/5j0JIGK7sfrNbtn0BgCgOM+N3gEfivLcaGw7gYZHbsJPfvcR8+sMqFjmJbo3kqkz6XF/sR1KRERERERERHpLOUBdCFEI4A0A1wEQaexTpvEZIiJKgWqdyXo9rZvqYKuVgnSCgyONfzgBn1/C7RK467NTHDvAxIHx5Nhxxn0zZTrYngyeM3KKdAb955aXoHZOmanltiozjDCvoHSocv1SYqq117Ip/LsbkdcZ2Qa083lj+2uElc9zovpXtgIcyd7O9w1i9uRirF4yC5vfaMe5S4NJf9aMukqq7fx0HvRY+P1d8Evg7PCxOOLpxRFPL/LcAndXl4fuyXBa243ef++ADwBwacCHSwM+3PXDPfjK/OnMrzOgYpmX6N5Ips6kx/3FdigRERERERER6U1ImVq8uBBiPYDHEQg0Pw/gxwgErHcC6E9mG1LKj1NLJqWrpqZGtrS0mJ0MIsqyuoY2PNPcgRXzpyfVmWyVAVhPj1dzsFXldCcjegAqSNUZ1Hfv3o3a2lpD97FqSwtKxxZEDIyHD7Y4Tfh9Gr2kc5Cq14uVzP/ebzG+KDdisL15w20Zb9dq9ziRHjY0tGFbcwfy3C4M+PxJ10ucjHkFkTOk2l6zk7qGttDssdFUz+vsft7Y/gqw+nmOV/+y+ncjSlcq7XxPjxd///IhvH74U/gl4BLAn1ROxneWVY3qe9SquwPAPdXl2HDnZ/DUb9uxrbkDuW4XBob8cAvAJ6HZpxns+3zt0An0D2mP3bkE8Mo3bnF0fp2JTMu8bPWlZ6t9yHYokZqyMQZDRERERESkByHEfillzM6VdALU9wOYB+AUgPlSymMZp5AMwwB1ImdJtzNZ5UHK6A7/x55vxUsHO5GX48KgjYLdPD1e3P3jt9Hd44VPAm4RmNHn5UdvVjL4np2j2Rd+n65eOsu2D2vYlZ0fsCHSwkC31KmeV1jloUYiVTk5+CdeEJ9qeV00J583J7HLeY5V/9r9QbctvhtRttz+g7fQ7umFQGCWplllxXj9sVtHvc/T48Xy+r04dvpS6DWXAPwSeHBBoL8y/J5c89xBtHt6kZ8T/wHe4IMmAoFthVO9zHSKbPWlZ6t9qHo7lMipOAZjfexHIyIiIiKniBegnpPG9mYh0C/3YwanExGpJdFyztHSWbY226KXFv39sTMAgNuvKcOE4nzbLDddVlKApdeUYVtzR2igauk1Zey0Is371CUCFTJVliOm+FRcQprIaHosMe4kwUGraeMLlc0ruOQ7UWai22vhs7LaXfR3D84gmxeW10ECy+v3Kjd4n2o7m6zJLuc5Vv0rXuAhkRYnBlTN3rATA76R/pdgbHi7pxcV6xuRn+NC09rFePTZg2j95BwGNB68enDhjFB/Zfg9eVXpGCy4amLEAySxnOrtx4oFM/BRdy9O9fbj/KUBfHphAC4B5doHTpPtvvRs9SWxz4qIyBjsRyMiIiIiSi9APeiwbqkgIiJdpNqZrPIArFaHf1DjoZMAAsG5gD0GzoIDUIkGqpzADudTL1r36fm+QUybUMTrxUJ4jxNRPMFBqxPjC5XLK6zwUKMqWIdJzMnHKLy9FgzQ/rD7oiOOQ6y26uyyYvzzA/NCeZ2qg/cM2nIGO59nO383Mo6qeXKm4tVD7vrsFLx0sDNURgfl5wjcUTUFG+78DDb/NnBc7q2eiiEp8cq7XfDLQP/klHGFqJhYqPlwbjBY3dPjxZFPL+BHX50X833fvacqIo2xVkYgc5jRl56tviT2WRER6Yf9aEREREREI9IJUD8GYC6AYn2TQkREegjvTP73PR+hse0EVt82K+bAo8qDlNEd/kEuAH5g1ACAHQbOONPsCDucT71o3adPPTAykOn068Uq6lfWODooj4hiix60+uRsH7a+8zFebPlEmUErlR9qVA3rMIk5/Rg929wBKQHf8O/hs7Kqcs8bJVbgU2V5CV5s+UT5wXsGbaXGqnVeq57nZI63Vb8bZZ+dA6o8PV7c9cM96O7tj6iHRH/n8OB0lwAGfIFA9Jdbu0Kvv3SwM/RzcDWQG2aMx5PLqxOmI15d6HDXedzzo7cx5Jehv7O/UB1m9KVn6/zzOiMi0k+wH63xDyfg80u4XQJ3fXYK+9FSYNU2JRERERGNJqSUid8V/gEhvg3gfwHYIqV8yIhEkX5qampkS0uL2ckgIpP8jxdasf1AJ750/VTNAZJYs/CEd0ib6apvNsIfp5h6cMF0vLj/eMQgUpAdBs5Utnv3btTW1uq+3ehBwSCnn0+V71NKTTL5MhE5i6fHqxn8rdIAzIaGNmxr7kCe24UBnx8r5k83PbhYpcEq1mES4zEKsMo9n008JvZT19CGZ5o7lCgrnIDHm/RklTw51XpgvHpIMIjstUMn0D8k4RLAZWPyUFKQi8vHFeCq0mIcP3MRJUV5EcdlQlEebpo5Ed5+HxoPncQVEwrRtG5JWmn4YOOfsq5kEeyjI6JsMWoMhozHMj1zbOMQERERWYsQYr+UMmYHSTozqP8QwF8DeEAI8UMpJaOfiYgUE935sf1AJ7Yf6IzZ+aHy7Cifm1WKP3b3ovNsH4Jx6gLAjVdPxJRxheju7bfMjJ4qBVCpzCrnM9tUvk8pOanky0TkLCqvaBNOxZlXVZqJm3WYxHiMAsy+51Vsl5h9TEg/dp55WUVmHm8V8xLSh1Xy5FTqgVpBYi4BNK1bjLKxwe8c6H30S+COuZeP2u6GhraI4/Jpjxfb94/MpP7J2b64q6LEqwtVrG/UTH/TusVxvx9lF/voiIgokaa1i3H3j99Gd48XPgm4RaCO9fKjN5udNOWxTUlERERkP65UPyClPA3gHgBnAbwmhPiqEELonjIiIkqb1uoYqa6aYbZf/NV83Dq7FOGplgCumjQGTy6/DvUrayw5cEba0j2fnh4vltfvhUeBYDmiWOySLxORMYLB3w2P3IwVC2agu7ff7CSNUr+yBhuXVaGyvAQbl1WZOkvgnLqdqFjfiK37OiBlYLCqYn0j5tTtNC1NVqmTmonHaISZ97yq7RIr5IOUWNPaxbi7uhwFuYEu54JcF+6pLmdwpUHMPN6q5iWkD5Xz5HTqgcF7xR01inXvvKkoG1uAOXU78cy+joi/bd3XMWqb0cflc7NKI+5BAMh3C8wsK47ZPxWvLpTrij3EJgBH1pWIsoV9ykRkhLKSAiy9pgx+BGZN9wNYek0Zy/QksE1JREREZD8pz6AuhPj58I+HACwBsAXAD4QQLQBOARg9FUUkKaX8Wqr7JSKi5O1ZtwRfrt+Lj09fCr1WMbEILzx8o4mpGpHKTFunevtxxYRCfHbaeADAH46fGzUwpuKMnkF82j916ZxPlWZQTRdnoLO3RPkyzz+Rs3EWvtSoOhO3ynVSVfAYBZhxz6veLmE+aA98ECW7zDjequclpA+V8+ToemB+jgs+v8TP/kL74cngveKTgVnT/RKYXVaM3v6h0Db//uVDeP3wp/BLaNYtYx2Xq77ZCH/Yc+f9Pon3unqw8PFdqKm4bFQbX6su9Pb6JVjy5G709vtC781xAYtmlaZ/sIgoITv0KRORmtj/kR6z25QcpyEiIiLSX8oB6gD+AghNZhv8txRAKj3QDFAnIjJQWUkBfMOjI7lugUGfhM8v4zams9no3vTq+2g+egabdr6PJ5dXx31vMrNzWmngTJUAKpWlcj7tNDjOARF7S5Qv8/wTESXP7MEqLSrXSVXBYzQi24OebJdQtjAQI7uyfbyZl5DZYtUDAeAff3UYrz92q+bnTvX248GFkfdKsF5SVlKAj7ovwi8Bt0BKdcvPzZqEt46cQvTaaH4JNB89g4WP78JH378z9LpWXeiWf3ozon8LAIb8wN4PTydMAxGlzk59ykSkJvZ/pM/MNiXHaYjITHxIhigzvIfUJaSM7jpL8AEhEs2QnoiUUroz3AYlqaamRra0tJidDCIywaotLSgdWxBz4CWWuoY2PNPcgRXzpxvW6I7u+A2ye8fvhoY2bGvuQJ7bhQGfP61jrFplavfu3aitrTU7GfD0eLFxx//Fa4dOoH9IIj9H4I6qKdhw52eUOE7JcOp94USx8uXdH3Tz/BMRpSHVui6RarLR/oqmR7vESlRrQxHZhdPyElLPqi0teO29TzX/fuyJkYBwrbIg+Hprx1kM+EaPkbkEIgLL43ns+Va8dLAz7nsStfE9PV7c/eO30d3jhW84UL6spAAvP3qzJcowlcpcldJC6gr2Kcd64MqO1w3vC2tSZQyGyAk4TkdEKvgfL7Ri+4FOfOn6qQkneSSi0cwYc6ERQoj9UsqYA7XpzKB+ZYbpISKiLEj26fxszhai9VBUqg9LhbNC56oeT/vzqf3YRmbOClxD/UNSiRlUU8EZ6JwjVr4cb0CMiEazQrlP2cGZqMiqkm1/pZvfxfuc02a2tmsbimUhmc1peQmpp35lDQ53ncfXn96PznN9odenjS/ETx+6IeK9WmVB8PX75k3FoF9m1Ca/ODCEKycV4eipS6P+lp/jwh1VibdXVlKApdeUYVtzoE4w4PNj6TVllsnnVSpzVUoLqUvVVbmMwvuCiCg+jtMRkZmi+4u3H+jE9gOdfEiGKElcIUt9KQeoSyk/NiIhRESUPeED2tlsdO9ZtwRfrt+Lj0+PDNhUTCzCCw/fmPY2rdC5mkkAFStT8cWa1WDrvg68uP+4ZY6P0wZEKBLPP1FqrFDuG4HBiET2kWz7K938Lt7nnPJgh93bUE4tC0kdRuclrPdQMirLx6EoL3Kh3sI8NyqnjAOgXRZE235gZObzdNvk9StrsGpLCzw9/bg44Iv424Av+e1Z8eEPlcpcldJC1mDFey5VvC/si/UlIn1xnIaIzGTEJI9ETsIHzdTnMjsBRESUHYe7zuPaf3gNh0+cjxjQLispQI4Q8A76kecWhja6y0oK4PMHKtK5bgEA8PllWvuaU7cTFesbsXVfB6QMdK5WrG/EnLqduqY5FZ4eL5bX74VHx87sprWLcXd1OQpyA0V2Qa4L91SXo2ndYt32YWV2OT7BAZGGR27GigUz0N3bb3aSKIt4/okSS1TuG1EGqyS87kZE1hY+6CkERrW/0m3nGNU+smL+apc2QjQV28BERmC9h5J1vm8QsycX40dfmYfZk4tx5uJAqMyKLgvyc1yYOCYPW/96/qgyYsq4Anzp+mlx2+SJysP6lTVYNGsSHlw4AzddPRGzJxfjxqsvS6mNX7+yBhuXVaGyvAQbl1VFPAyiKpXKXJXSQtZgxXsuVbwv7Iv1JSL9cZyGiMyyZ90SzJhYFPFaxcQi7Fm/xKQUEVkLHzRTX8ozqBMRkTWtea4VF/qH8IWn9oRei5496LbKy3HZmLyYs4Uc7jqP++vfwfMPLwzNRpSOueUlqJ1TlvHMJCo+BWfETHasTMVnl+PjlNksKTaef6LEEpX7dp1NlrOdEdnTqd5+zCotxhFPL2aXFUcMeqbbzjGqfWTF/FWVNoLesxqq2AYm0hPrPZSq5g23hX6+67py1DW04ZnmjlCZFV0W9A8N4NW2k6NeX3pNWaiM02qTB8vDuzbvwSurF8XM11MNbrXD7LeqlLmqpYVIFbwv7If1JSLjcJyGiMwSPcnjoE+mPckjkVM5YYUsK2OAOhGRzVWsb0z6vTvaTgAIzCoULRjgvubZVrz+2K1pp0evBr5KnatGdwqyMhUfjw8Rkf1plfu3bHrT1gNzDEa0L7MDkszev5NFtx2OeHpxxNOLOXU78cHGP027naN3+yheG6dp7WLlrx8V2gh6B/dnc/UzchZVygTWeyhdWmWWSwACGPU3AHAJoOGRmxOWEdHb9lzox/zv7dKlvWHFh8BiUaHMVTEtRKrgfWEvwfpS47td8EnALQIPabG+REREZG16TfJI5FR80ExtQkoZ+w9CfC74s5Tyd7FeT1f49shYNTU1sqWlxexkEJGJDnedx9ef3o/Oc30Rr+e6gEF/YHmgkz3eUYN/wUHJeAHux56409C0J7JqSwtKxxZEVNTNWIrT0+PVHES1a7DA7t27UVtba3YyiIjIQWKV+9+9p8r2ZfCGhjZsa+5AntuFAZ8fK+ZPt3QACwUEZ/g063yavX8nS6btkG47R8/2Ubx0bv5te8bXjyoBsUaIDmYM0iOY8ZZNb+CTs334wrVTQqufhZ9jOx9XMo5KZUJ0vee+eVPxydk+XtMUV7wyCxIZtRc8PV4s/P4u+GMMo4Xn69H5b7z82MhygoiI7CPWGAzLECIiIiIiUpEQYr+UMuaAVLwZ1HcDkMP/5cR4PV3R2yMiIgNVlo9DUZ474rWSghw89zc3YltzB3Z/4Ik7y96O1YtGBbhPG1+Inz50Q1rp0XPAXJWn4FSazZ2IiJzDaUFoWuW+3ctgznamrnTuQbOX4zZ7/5Rc2yHddo7W59K5VmOl85V3u/Bya1foPZlcP3aZNTYWI2aBjr53tVY/s/NxJf2pWCZE13ve+sCD4+f6eE1TXFplKyTw6LMHMW18YdrthbKSAiyrnoqXDnaGXos1W20w/9208318crYPV0wo1MyPuVoAERGlq2ntYtz94z3ovjAAn1/C7RIoG5uPlx+92eykERERERERxZQoUFyk+DoRESnofN8gZk8uxuols7D5jXacuzSIyvISbFxWhVVbWuIuFxQrwL0wz43KKePSSks6A+ZWCMAzK3jMCseGiIiMwSC0ALsHcKvyQB6Nls49aHZAktn7p4Bs51vplhfR6Tx+5iJKivIyun5UDIjVmxEPMCe6d51wXEl/KpYJwXoPr2lKVayyNVj+HS8pQGlxPn6wvBqvvncy5XL3zMV+FOS64B30wyUAn0QoX4++VrcfCASyNx8N/B7r2uVEF0RElK6ykgIsvWYytjUHypYBnx9LryljGUJERERERMqKF6D+jym+TkREimrecFvo57uuK4/4W7ygp2Dw85mLA6MC3FOVyeCiUQF4dpjNncGJRETOw4CdSAzgpmzL5B40OyDJ7P3bRabtiEzyrVT2nWl5ESudGxraMrp+VAyINYLeDyEkunedclxJXyqXCbymKVXhZdaLLZ9ElH9d5wN58J//fB/e+eZSPPrsQXgueJO+1qdNKIL3yCnMKivGUw/Mi8jXg9fqr8JWGIl2T3X5qGtXz3LCypNXBNO+eslM/O3WA3j+4YVpT4pCROQUdp+ogYiIiIiI7EUzQF1KGTMQXet1IiKyn2Dw84r500PBz9EB7tG0BkViDS7Wzi7FyZ5+zUEhrYAKAWDfhqUZD7pYObibwYlEROYxOwCAATtE5sr0HjR7MNns/duBme2IVPZtRHmR6fWjYkCsEeW6EQ9PxTv2Kh5XsgZVywRe0xQUnUcnk2drBY37JTD/8V0AoFmOhm//lk1vRvS9tXt68YXNTaP63t758DQAwCUC+whyCUACMa9dPcsJK/dvBtP+yDMHcKF/CGuebcXrj91qdrIyYnZ/ARHZHydqICIiIiIiK4k3gzoRETmQp8eLBY/vQth4ii6znccaXPyw+yL+2N2rOYASK6Di8pICfHzmUkaDLnYI7mZwIhGReTa9+j6aj57Bpp3v48nl1VnfPwN2iMyV6T1o9mCy2fu3MjPbEens24jyQo/rR7WAWKsE9iU69omOKwPmKBaVywTV8goyR3QenUyeHSz/gNFB40Fa5Wj49pPpe9u8qx2eC/2YVVaMWWXF2HHoZOhvfzr3ckwozjfs2rVy/2Z02nu8QwACDwFUrG8EABx74k5T0pYpq9QrsoF1DyIiIiKi5LH+TER2JaSM0TtHtlFTUyNbWlrMTgYRKSy6olvX0Iat+zoAAG6XgM8vIwZgtCrD0QMLQXlugSPf+wIAYNWWFpSOLcDzv+/AoG90+RNrAGVDQxu2NXdAq7hKddDF0+PFqi37UVqSj98d6R41wJSosp9MwyBbjYfgsclzuzDg80fMdG+03bt3o7a2Niv7IrIbdjBYl1ZZZ0YAQLBMDQ/YCQ8wIiJj8R50Jk+PVzNQzegyPd1981rVplK5ng11DW14prkjq+1GIr2xLeUcWnl0NK08O1j+nentx45DJ0OB6m4B+CRGlaNa+wvOgh7d96b1frcQ+PU3FmWlzDWzXhIrLancm8G0v3bo5KjjOG18IX760A2onDLOqOQawmn1imSw7kGUGY7BEBEROQvrz0RkZUKI/VLKmB1hnEGdiMjhgrO6LHx816gZhXzDL3gHE8+0Fz2rUHDA54vXlYeCwiWA7y6rwuolM5Oe/Ts4Y9Ydcy9H3S/b0HHmEvxRA0mpft/W4+cws7Q4rZkEk5kFJ1sz5XA2MSJr4mxa1qX1cK8ZD/2qPNslkRPwHnQmPWckTzWQK919q36tmhls6pRVqaw8wy5RNLalnCM6j87PcWHS8GzkAz6J/BwX7qjSzrOD5d+qLS14cGGg7+zvnjmAo6cvQmB0X6dWmXC+bxDTJhSN6nsLvr/xDyfg80u4XQJ3fXZKKDg8G2WuSitrpXpvBtM+4PNDABEreRbmuS0XnA44p16RDNY9iIiIiIiSx/ozEdkdA9SJiBwquqKrFVp309WXYcr4QnT39sfdXnBgwTsY2GZwgvTtBzqx/UBn6H3BgYpkB1DCAypunjkJHzd3pDXoEv192z29AAC/lFixYEbC4O5kGgbpNh7SDcpQPdiEiCKxg8H69qxbgi/X78XHpy+FXquYWIQXHr7RxFSRnXBWUCL16fWQaDpBlnZ8QPWJne+j+egZbNrxPp68vzqr+zYzsC+b+T0D5shKDnedx/317+D5hxdGBKiyLeU80Xn0gM+Pojw3BoY7HNN5UGvIH7iGJIBZZcURfZ2xygS3ELg04MPqpTNHBZ3f8k9vRlyTPr/Ey61dePXQyYTXpJ5lgNl1g0zuzWDaG//QBb+UqJg4Bn2DPpy7NGh0sg2h0gMDZmPdg8je2HdFRESkL9aficjuGKBORORQsWb6uWJCIY6FBd0BwFWTikMBE4k6nk719uO+66fiTO8Amv54KjQDe7jgQIUAUDo2Hz+4/zq8eujTpAZQMhl0STSzUbKfj9cwSLfxwBnAiJyBHQzWV1ZSECrbct0Cgz4Jn19yMIZ0wzoBkfoyfUg0k0Cu795ThUefPYhJY/Ms/4Bq9HHYfrAT2w92Zj3Y1KzAvmzm9wyYo0xlMwhpzXOtuNA/hDXPtuL1x24Nvc62lDOF59F3/bApNNlE0NZ9HXhx//GE5UZ0mQMEJq5o9/RiTt3O0Oejy4S3PvDg+Lm+mHl109rFuPvHb6O7xwufBNwikN++/OjNCb+XnmWA2ZNXZHJvBtNu9TpNOLMfGFAF6x5E9sa+KyIiIn2x/kw0gg9D2hMD1ImIHCrWTD/B4PQ7r50CAPjD8XMRswltenV4drud7+PJ5dWjthkcWNjQ0Aa/lMhzCwz4ZMRSrS4B3F45GcX5OXjpYCdebTuJjfdeC0+PF8vr98ataGQy6JLJzEZAcg2DVBsPnAGMyFnYwWAPc8tLUDunzPEDzqQv1gmInCOTQC47BQJIjSW8tFb2Mkq2A/vMyu8ZMEeZyEbeU7G+MeL3dk9v6LVjT9zJtpRDhefR73xzKZbX7w31XaZSfjatXYy6lw/hN+99GnrNJYA/qZyM1Utnhfojg/tLJq8uKynA0mvKsG14pccBnx9LrymLe03asc7PezOS2Q8MqIR1DyL7sWM5RkREpArWn4kC7DQGQiOE1BoRIluoqamRLS0tZieDiBTk6fFqzvQTPYgQa6YhAJodT3/x82YcPtGDH9x/Hf7xV4dHzXAUi0sEghFWzJ9uSEUj+H1Pnh+pzE8ZF/v7alm1pQWlYwsiGgbhAw+J3hP9tJ+nxxuY1f3drtA5uOu68qRndTfT7t27UVtba3YyiCwnmXyEiJwnWCeIFbCqep2AiFK3oaEN25o7kOcOBHKVjc3HK6sXJf1ga5CVAwGCDyiHr+BVMbEILzx8o63zPZXy+z3t3Xjo5834z6/Nx6KZpVndN1lDNvOew13n8fWn96PzXF/otWnjC/HTh25A5ZRxANiWsqtkZsbSuhbdAvjw+3cm3IfW510C+Or86XimuSOiPzLZvDrVazK43dcOnQwFdN9RZf06P+9NIiJjqDYGo1JbhoiIiIjsxY5jIE4jhNgvpYzZIcQZ1ImIHCqVmX60HmbSen3ahEK81d6NV9tO4qrSMeg614eLAz7kuwXGj8mDEMC5S4PwDo5UMPzDmwrOupDnFqiePkG3pVuiZ1AHgBPnvbhl05tJV2iSmQUn3nuin/YbNau7REqzuhOR9XA2Lf1xqS+yA848SOQs4TPirHnuINo9vXFnBMlk1nVVlZUUYGi4ERhcecvnl7bP91TK7x955gB8Enhk6wH84dufz/r+SX3ZzHsqy8ehKM8d8VphnjsUnA6wLWVHnh4v7vrhHnT39scsB4NtvYZHbsJPfvcRXnm3C34ZGJycMq4QFRMLE24/+PkvbN4z6u9+GeiHBML7I12onj4e08YXJsyrU70mw8sAALap8/PeJCJyBpXaMk7Cvm8iIrI7lnUE2HMMhEa4zE4AERGZJxgY0fDIzVixYAa6e/tjvm/PuiWYMbEo4rWKiUXYs35JxGtz6naiYn0jtu7rgBwe5HntvU9xccAHAOj3SXza0w9PT3+oEyu4rYLcwM8FuS7cU12OL15XHgrm1kPT2sW4fFwB3CLwu1sEZlBvWrdYl+3HE+u4VKxvhJQSl4/Lh9sVSJTbJbKWJqJUHO46j2v/4TUcPnHe7KQQjRL+8A9RtgRn/vXouMxisvUyIkqOEfepXupX1uDFlk/whc1NodWmgm2EOXU7R73froEAc8tL8ODCGfjl3y3CgwtnoLK8xOwkZUW28nute6BifSMq1jeixzsEAOjxDoVeszuV8wUVZTvvOd83iNmTi/Gjr8zD7MnFON83aMh+SA1z6nZi/uO74LnQH9FXNnvDztB9GmzrbdvXgbH5OZBAaJKNRTMn4hd/tSDuPsI/f9+8qRF/cwGYOr4w1DeZnzPcH/nZKfj9sTP4/bEzuufVc+p24pnhgPigrfs6Ypb9REREKmLfVWJ6tznY901ERHbHso4A+46BUIDQmv2W7KGmpka2tLSYnQwiUtjhrvO4v/4dPP/wwoiZqaIt2vQGjp/tQ65bYNAnccWEQjStiwxQj17iLz9HoH8odjnjEsAr37gF25o7sPsDDzrP9YWWuI8lnaVbop+23NDQhm3NgdmQBnz+iOV7jRRv6cOnfttuSpoypdrykmSs23/wFto9vZhVVozXH7vV7OQQAeBSX2SuuoY2PNPcYZlym8iJVL9PU10efdWWFpSOLcBX50/HtuYOdF/wRsxYmmhfdp6Fxu7fL11a98Ce9m58/en96Bv0hV4rzHXj3x66AYtmlpqR1KxRPV9QUSZ5D9lTJnlu8LOtHWcx4BvdX+gSwL3VU7H9YGfMz7uFwK+/sSjhtajVVhQA5PB+/BKYVVYcelBMi57ty1TLfiLKHtYnSUUcg7Emvdoc7PsmIiK7U6msY3tADeyHtDYhxH4pZcwTlpPtxBARkVrWPNeKC/1DWPNsa9zA07nlJaidUxZRGYgW/VTbgM+PKycV4eipS6H3uAVw13XlocGXjcuqsGpLS2jb/77nI/yfD0/h3KXBjJduCX/acuO914Zmd4j3HYwQ72k/s9JElIzoWRTbPb2h1449cacZSSIK4VJfZIboDrOt+zqwdV8HB4eIFKLnfWpkx3SqM4KEd8RuXFaV0r6i20WpsELnfCbfz44S3QOLZpUi1y0QPjl1rlvYOjid5Xf6Msl7yJ4yyXODn71v3lQM+iUa3+1CeJy6XyJmcHpEW08CRz69gB99dZ7mfrTaiucvDWDaZWPw1fnTcdcPm+IGpxvRvuRsYGQ0K9TbVMX6JBFlSu82B/u+iYjI7lQq69geUAP7Ie0r5QB1IcQ4KeV5IxJDRETZk0rgqafHi7OXBvHdZVWhoHIt0QHXv3nvZGhGIpcAfBKjBl/CKxo/WF49MtN5jgveQT9yXCKlTvVkOoKyXaHRCkRnJYtUtmP1Inz96f3oPNcXem3a+EL89KEbTEwVUQAH98kMKnWYEVFset6nRndM6/mwaqyApETtomSCmFTunGfQ8Yjwc5nMPeAd8mNcYQ7+9tar8a9vfYi+wdgrmdkFy2+izGWS50Z/dvuBkSD04GzmV04cg74hH85dGoB30A+3S8Dnl8hzi4i2Xl1DW8JySaut+NQDI0Ht73xzKepePoTXD38KKQMB6ZeXFODjM5dCKzzGal8muxKlFk5UQUba9Or7aD56Bpt2vo8nl1ebnRxLYH2SiPSid5uDfd9ERGR3KpR1bA8QZUc6M6h3CSFeBPDvUso9eieIiIiyI5XA01SCEsIDrlcvmYkjn15AUa4LC66amPTgS3Cw5mxvPxoPnUTz0TMpfTe9OoL0nHWGgehkRZXl41CU5454rTDPndYgLJEROLhP2aZCh1k6OJMeOYke92m2Oqb1bCPEarMlahfFa+dZoXOeQccjos9l8B4QAjHvgSNh5/Dh2plmJDmrrFp+E6kkmTxXq84Z67MTivJw09WT8LVFV4bacpOK87GtuSN0n84qK8ZTD8zDtuYObNv3Mbbu6whtM1G51Hm2D6XF+fjB/dfh1UOfjmorlpUUoP3kBUgJCATySp9fJmxfJrsSpRb2D5IRYj0Esv1Ap1L1NlWxPklEejGizcG+byIisjuzyzq2B4iyI50A9UIAKwGsFEIcAfBTAE9LKU/rmjIiIjJUMoGnmQYlBAfJV8yfHhp0SWbwZfcH3RH7/eRsHyrWNya9X706glSeLZAoW873DWL25GKsXjILm99ox7lLg2YniSiEg/uUinSDtKM/l06HmdkB4qzTkNNk2rFtpY7pRG22WO2iWza9mbCdl+gYmJ2vAQw6BrTPv0sAs0qLccTTi9llxeju7TcxlWowe8ALUOO+odTxvAUkk+dq1TljfXbpNWWh9wTbcqu2tIy6TyvLS7BxWRVWL5mZUtl82Zg8eC70o2F/J568vzrib9F5pxz+X+e5Ps3+y1RWolQJr19nkFKm9DqNYH2SyN6yXQ7q3eZg3zcREdmd2WUd2wNE2ZFOgPohAMFcYTaA/w3gcSFEAwKzqr+hV+KIiMhYiQJP0w3MyDSwXY+AkEw6gqwwWyBRtjRvuC30813XlZuYEiJKBgMQtKUbpB39uXQ6zMwKEGedJjW8f+wj045tK3VMJ2o7xWoXJdPeSnQMVHnwRYWgYzPFOpcDQ374JXDE0wsg8O8RTy/m1O10dN5v9oAXoM59YyYrlrU8byO08lytOqcAsG/D0oiHPO+Yezkee6EVx89eGrX9ePdprHLJLQQe3Ra4niCBR589iNZPzmEgfCbpg53YfjByJmmtmN0ct0vzu6eyEqVKeP06w551S/Dl+r34+PTIfVUxsQgvPHyjiamyDqfXJ4nsLNvloAptDiIiIkoN2wNExhPpPEEvhJgP4G8ALAdQPPxycENHAfwbgF9IKT/VI5GUvpqaGtnS0mJ2MojIgoKDhtPGF6KhtRN5bhcGfP7AbOgJOnI8PV7NgIdkByA3NLRhW3NHSvvVix7pt7vdu3ejtrbW7GSQw1gxmIEo2+oa2vBMc0dWy03VRQfMBCUK0k73c3pvIxOq1mlUzc95/1C4VVtaUDq2IKJjOnywWSXptJ2S+UysYxC92lUQH3wxT/S5vG/eVAz6pXJ5v5OZXR9QiZXKWrPOm6r1pHhi1TkvLynAx2cujTrXmVwD0eXSWx94cPxcH+6tnoo9fzwFz4V+uATgjzHklZfjwpHh8+bp8WJ5/V4cixHMG++Y3/6Dt9A+/PAPAMwqK8brj92a0nfIFuY7zrNo0xs4frYPuW6BQZ/EFRMK0bRuidnJIqIMcAwmfSwHiYiIiIiySwixX0oZcxAtnRnUIaVsBtAshFgD4KsA/hrAfxv+85UAHgfwHSHErxGYVf3VdPZDRETmCc4scGJ8YcpPDOox46CZTypaacZEIifhzF9E2jhTtrZ0V2bRY0UXPbaRCVXrNE/sfB/NR89g04738eT91aamBeD9Q7FZaeazZNtO4UGPyXwm1jGI9+ALmSPWuZxUnK9c3u9kZtcHVGDFstas82bFdm94nRMAvIP+UPB38FxHS+caCJZL0dfTSwc7Qz/HCk4vzs/BG/9zJJC8rKQAQ8NvzHMLDPgkfH6ZMJ9MtBKlSpjvOM/c8hLUzinjrH9EDmTFh9uMxnKQiIiIiEgdaQWoB0kpLyIwW/q/CSGuRWBW9RUAxgPIBXAvgHuFEJ8A+HcA/yGl7NTYHBERKSB6kOeTs33Y+s7HeLHlk4QDRqkGPMSjZ0BIOh10XMqHKDuSuT+tGMxAlG0ceNGWbpC2HsHdKgSIq1Snic7Ptx/sxPaDnabn57x/yOqSbTuFBz2m295SIV+jSLHO5aotLcrk/eTM+ya6nWfFsjbb583sdm+mwW3BOucdcy9H3S/b8PHpS5AA3C6Buz47Bas+dxV+8ruPdLkGgtfTr1q7knp/b/8Q5n9vV8SxTCeYt3nDbaHjtPWvFyh9Dzsx33E6Kz1cSUT6suLDbUZjOUhEREREpI6MAtTDSSnbAHxDCPE/ASwH8DUAnxv+83QA/wjgH4QQOxEIam+UUo5eW4mIiEwVa9CwdnYpTvb0w3PBG7cDR4+AByOk00GnUvqJ7CyZ+9OKwQxERtEKHOHAS3zpBmnrEdxtdoC4SnUaGWNGSwDQeDltqQZY8f4hu0sU9JjqPWN2vkaJqZT3U4DT7pvodp5Vy9psnje9272p5u2ZBrdpzW7u80u83NqFVw+dxJ/dME23a+CdD0/H/bsAkJsjMDAk4RLAF68rjziW6eaTVgoCdFq+Q0TkNGY/3KY6loNERERE5HSqrLYkpNYIsR4bF2IWgHUA/irs5eAOOwH8C4AfSSl7DUuEw9XU1MiWlhazk0FEFrOhoQ3bmkeW351ZWow/dvdixfzpMQdfojvCgszuCDM6XaoU5mbYvXs3amtrzU4GWZjW/SkA7NuwdNQ9FcyX8twuDPj8mvkRkd3VNbThmeaOmPfAqi0tKB1bEDHwEh54QWQ2T48Xy+v34tjpS6HXKiYW4YWHb9S1LhXvPtHC+4fszNPj1Qx6LBtbkNY9Q0QUS7x+mNo5pSxrE9Cz3Zts3p5u35lWn5inx4u7f/w2PD1e+CXgEsDkkgK8/OjN+PtfHtLlGqhraMPWfR0Q0H7Q8b55U9HQ2qlbH4KqfZ+As/snnfzdicj+Eo3BJGrnERERERGRs2Vz7EcIsV9KGbOjz7AAdSHE5wB8HcCXAOQHX456mwRwGsDfSCl/aUhCHI4B6kSUjlVbWnC0+yKOeGI/PxQ9+JJKR1g6AwfxBr3ibcvoDjqzAznMHIRhgDplKtb9eXlJAT4+c4mBt0QxqBwQQZSKRZvewPGzfchzCwz4JK6YUIimdUt02TbvEyJtsYIeX9x/nPcMEemKgVKZ0aPdm2p9KN1z9tjzrXjpYCe+NG8qnry/OuJvGxra8My+kYkvHlygT7+Z1neL5gJw+9zJMY9lun1pel7bevfnmd0/aSYnf3cisr9kxmA4qQsREREREUUzY7w0XoB6js47KgXwFwD+GsDM4MvD/34I4KcAfotA0PpfApgCYBKA/xJC1Eop9+iZHiIiSl28wR6t5YVTWao5naVwtT6TaFtGLSGttXRinlvgyPe+kNG2U2GlZYWJooXfnwDgHfSHZtSNtRxpustvE9lF09rFmgERRFYyt7wEtXPKDFlimfcJkbZYy5vzniEivRnVD+MUerR7U83bUz1n0X1i2w92YvvBzlD7PVa/4tZ9HXih5Tiqp4/PKCg7+rvl5wi4XS5cGvCF3lOc70ZNxWWaxzLdvjQ9r229+vO0+ied8KCZk787EVG4WO08IiIiIiJyNtXGfnQJUBdCfB6B2dK/OLzNYFD6EIBfAfiJlPK3YR85KIT4RwB/C2ATAjOs/z2Az+uRHiIiSl90QeV2Cfj8EnluEXfwJVFHWDoDB1qfiRZvW8l00KU6c9GoYyQAnwS+eF15ws/qgYMwZBfB+/OOuZej7pdt6DhzCX6p/TAMkZMx2IfswsgHjnifEGnTuvdUv2fMXDWKiNJzqrcf982big9OXsCcKWPR3dtvdpIcJZ36UCrBbVoL8koE8uzKKSUoLcnH7450RwyA5QiBl1o7kwrK1sr7o7/bgM+PIlfkZycU5eEXfzl/1Db16EvLNAhQ7/481QYbs8mO3511HiJKh5UndWG+R0REqWLZQUSUHNXGS12J3xKbEGKaEOJ/CSGOAtgB4F4AuQgEp3cgEHA+XUr5Z1HB6QAAKeWglHIzgH8efqk63bQQEZF+ogsqn19iVlkxfvl3i7BiwQzNgcX6lTXYuKwKleUl2LisatQSxE1rF+Pu6nIU5AaKnoJcF+6pLkfTusWaadH6zI7Vi5LeVqJ0AZEzF6VyjLyDgUEl3/Dg3PYDnahY34g5dTuT2k660jmWFJ+nx4vl9Xvh4QwjWRW8PxfNmoSbZ06CBJSoIBOpKhgQ0fDIzXHLZCIn432iNta51KP6PZNqWy1TvEbJLHa69upX1qAw1433TvSgMMcdsx/GDHY6xomkmrcn03c2QitCXWLzrna0Hj+Ho90XQ/2K3kE/Xm7twvaDnZAyEJSdqO8sXt4f/d3G5OdgdlkxAGB2WTEqy0tiblOPvrTUjpMxaQin2mBjNtnxu2969X00Hz2DTTvfNzspRERZke22nhmcVP8kIsoGJ5QdRER6UWnsJ+UZ1IUQ9yAwW/rnEQhwD86W7gOwE0A9gB1Sas2lMcre4X8npZoWIiIyRqwZgYKDL8mI9fRqOgMHWp+pLB+nyyBEJjMXnertx33XT8XHpy5if8c5ANmb9dmOgzBm02t5ZUoflyMlSszKsyIRZYtT7xOrzB7zxM7hwJsd7+PJ+6sN249VjocKVL1nzFo1iu0CMotdrj2VV3yzyzFOhpF5+551S3Dr/34TfQP+iNcHfDK06mG7pxcA4JcSX7p+Kt7+8DTOXRqIO9O1p8eLBY/vigh/D79+mtYuHlW2v9jyCfqH/PBcCAywHfH04oinF3Pqdsa83t758DS8g+b1pRnRn+fkvhRVv3uq9dDofHP7gU5sP9CpRL6ZCdbHiUiLyvVFvTmp/klEZCQnlR1ERHpRaewn5QB1AA0ITJMRDEzvAvAzAP8mpTyexvbUmpqJiIgyLqi0Ol2SHTgI78DW+owegxCZLAcbPEaf/fZrodeyObil6iCM1bBBqw6VKshERERWo/qg56jAm4Od2H7QuMAb1Y+HHekdhJRJWy0dbBeQWex27WX73k2G3Y5xOvTMo8tKCjBxTD6OD/Qh1y0w6JMoH1eAmisvi3ney8YWYENDG7Y1d8QNyt68qx0QQMVlRTjZ4w0FkhfluVE+vhCbXn0/omz39HjxmSklmFySj7eOdCe83jbvaofnQj9mlRXjqQfmmdaXpnd/npP7UlT97qnWQ7Xm+kp+DjA1sT5ORFpUrC/qjfVPIiJ9OaHsICKys3QC1IN+g8Bs6b+SUvoy2E4zgPTWMCQiIqUk6nSJN3AQPlgW3oGt9Rk9BiEymbmoYn3jqNeCSxVno9Nd1UEYq2GDloiIiJKl4iyAVhn01Iqv0TvsxirHw470DkLK9qpRbBeQWex27am44pvdjnE69M6j55aXoHZOWUSQdbzzHi8oO7rsPnb6Uujn/iE/+of8OHtpEO919QAYKduDZpUVx73eorff7unFFzY3mVY3YH+efaVbD92zbgm+XL8XH4dd+xUTi/DCwzcaml6jsD5uLBXbpESpUrG+qDfWP4mI9OWEsoOIrIlttOS40vjMPwGYKaW8Q0rZkGFwOqSUZ6WUb0kp38pkO0REZL6mtYtxd3U5CnIDxUtBrgv3VJejaV3i55A272pH89EzmP+9Xdi6ryMU7F2xvhFz6nbC0+PF8vq98Og0u1Fwe51nL2HFghloeORmrFgwA929sRf2iN7/jtWLMHV8YcR7po0vxI41i3RJH2UHG7RERESUrPDgLlVkUv/Opj3rFqNiYlHEaxUTi7BH53TqeTz0bn/Y1Zy6nahY3xizDZepYEBjoraaHtguMJeT7zc7XnvZvHeTYcdjnCyj8uj6lTXYuKwKleUl2LisCvUra+Ke91jvD4ouu11i1O7iavf0QkrAL2XM680qdSWyvnSvtbKSAvj8gcc2c92BG8Dnl5bNo3jPGUvFNilROlSrL+rNyfVPIiKj2L3sICJrYhstOSnPoC6lXG9EQoiIyPrS6XSJnlUlXPisApt/q+9sT8GKwor500MzFsWbuSh6tqnK8nEoynNHvKcwz43KKeMyThtll97LKxMREZG9qDwLoFUGPctKCjA0HHiT5xYY8ElDAm/0PB56zzZrV0bODJftWWbt1i6w0uwtdrjfMjnedrv2VJwh2m7HOFnZnL0z3fMeXXYP+EbK8GS5BPD2+iUx7z2r1JXI+jK51mKtSmBVvOeMoXKblCgdKtYX9ebU+icRkVGcUHYQkXWwjZYaIbXWWSZbqKmpkS0tLWYng4gc4nDXedz9o7fx+arJ+LvaWaFOl/AGQzRPjzdisMwtAJ8E8nJcGPT5IQD4YxRV6RbsWgHxWtuL9/5xhbkYX5SL1UtmYfMb7Th3aRDNG25LOU1WtHv3btTW1ma8HSsFTRARETkJy+gR0fXV8OAuFY7Nqi0tKB1bEDHoGa/+bZZspTPT/aTaXiBgQ0MbtjV3IM8dCCxcMX+6ZYOM7aSuoQ3PNHcofT7sdL899nwrXjrYiS/Nm4on7682OzmkA1XqQpmmI14ercp3DJbdz/++A4O+1MerXAA+euLOhNtXva5E1sdrLYDHQX+qt0nJGHqNwRARERERkb7YRhtNCLFfShmz8Z/yDOpERERa1jzXiiG/xJGTvaFlexOJNavK7LJi/PMD87CtuQPHz1xCSVGubrM9pTp7VLz3h1cs7rquPK30OJ0dZsojIlKdKoEnZC0so0eoPgugVWaPyVY6M91PNmebtQvODKcWK83eEut+u3V2KTwX+uG54FUmn40n+nhvP9iJ7Qc7lTzelBpV6kKZpiNeHh1v21ptCD3bFuHbumXTm5rB6UuvKcORTy/gk7N9Mf+eKKS9fmUNDnedx/31e/H8wwu5+iEZxir1cqPxOOhP9TYpERERERGRk7CNlpqUA9SFED9Pc19+ABcAnAHwBwBvSylPpbktIiJSSMX6xojf2z29odeOxZnBKCjWYFl4gPuGhjbdCvZUKwqsWBjDSkETRERWp0pwDVnD7A07MeBjGR2NAbjOwfp/6hiEpJZg0Pdrh06GruM7qtR8yCLW/fZR90X8sbvXMvUWrcVJuWapdanSX6FXOmLl0clsW6sNkU7bQiuoPXxbwbyr8d0uhMepf+n6qXjlDydirrYAAIW5Lry1dnHCNKx5rhUX+oew5tlWvP7YrUmlm4hIJWyTEhERERERqYNttOQJqdWLrvUBIfzQp499EMBLAP6nlLJLh+1RDDU1NbKlpcXsZBCRzR3uOo+vP70fnedGZjKaNr4QP33oBl1mJdJ7WdBktxccQCvKdWHaZWO4LGmYTJeX5JI3RETGiw48CXJ6oDHF99jzrXjpYCfcLgGfX7KMJkfSu/1B2cWVQwIPeT+zryP0+4MLpisb7B28357/fUfM2ZNVr7d4erxYXr8Xx05fCr1WMbEILzx8o2OvP6tTpb/CyHQEt/3aoRPoH5LIzxG4o2oKNtz5Gdyy6U3NYPBYkrlH6xrasHVfB8rG5uOV1Ys09+ESgF+O/Du7rBhXlo7Bd++pijgWACAQGKS6YkIhmtYt0dx39KQa4ZKZVIOSw7KXiEh/mY7BEBERGY3tACKi1Nk17xRC7JdSxhxIc6W7zbD/on+P/k/r73kA7gfwrhCC0ysREVlYZfk4FOW5I14rzHPrtmRu/coabFxWFZpVPTo4JDgg7EnyibRE2wsKzuQ0bUJRUu+n5HFmSiIi4zWtXYy7q8tRkBto9hXkunBPdTma1iWeYZCcZ07dTlSsb8RLBzsBAD5/IEjQO8gy2upSrStT8u0FLTzm5gqfkdeJ5tTtjAhOBwKzI8+p22lSiuIL3m9vr1tiSr0l0/u1rKQAQ8NlZp470BXu80uWmxamSn+FkekY2Xbg2u0fkqFta7UhdqxepHmPat1Hwfrl1uE8yXOhH/O/twtSypjburwk8N3+dO7leHDhDFxZOgb1K2sijoVreMTpT6+dggcXzkBleUnc77pj9SJMHV8Y8dq08YXYsWZRBkeQojm97CUiImtjG55UxuuTVMZ2ABFR6pyYd6YToH4lgNkAXhz+/RyAzQDuA1ANYNbwv/cNv34WgcksXgDwGQALAawG8B4CgeoTAfxKCJGX3lcgIiIVnO8bxOzJxfjRV+Zh9uRinO8bzNq+9S7AwwfQpAwM5lesb1R2QN+qgkveNDxyM1YsmIHu3n6zk0REZCuqBNeQNUQHI7kFUDunFF+6YSrLaB2ZMajkxM4us/GYB2T7emc7LsCqD6iZVW/R436dW16CBxfOwC//blFSAbOUnmzmKar0V8RLR7rHw9PjxZXrGzUfZNG6FyvLx2neo1r3UdPaxaGA8nADPolX3u0Kbcs76MfLrV3oOh/4Lo2HTmLrOx9j9wfdo47FK9+4BQ8unAGf35/UQ2RGT6rhdCx7iYjIDtiGJ5Xx+iQVsR1ARJQ6J+edQsrRS6cm/JAQzwP4MwCvAnhQSnk2znsnANgG4E8AvCilfGD49RwA/wFgBQIB7A9LKf8t5cRQXDU1NbKlpcXsZBAR6SJ6qZM5dTtjLgmc6RLgqiznrDIuL0lEZA2rtrSgdGwBvjp/OrY1d6D7gpcrgZCmDQ1t2NbcgTy3CwM+P1bMn46N915r6D7tupSdlrqGNjzT3JGVY2tUXZm08ZhHyub1DrAdF86M/FwP2ay38H61Hr3zlMNd53F//Tt4/uGFlgxWDh6P0uJ8vLJ6UdL5XF1DW2hGc7dLwOeXo/JLrXsx+vVt+z6GP8bwUvA+8vR4ccdTv8OZiyOTWLhdArd/pgx7PzqN2yon42s3X4Wf7fkIb394GucuDRiSf8//3m8xvigXq5fMwuY32nHu0iCaN9yW8XaJZS8RJc9pbX89cAzGeGwTkMqsdn0yn3cWtgOIiFJn97xTCLFfShmzMz8njY0tB/BlAB8BuE9KGXf6ECnlWSHEvQjMmP5lIcR/SSn/S0o5JIT4GoBaAOUA7gbAAHUiIgdJtbEa/pT4xnuvRdPaxREFuEsAf1I5Gd9ZVpXRvjnjLBER2UV4UNfGJMpHcrbgzJThwUh60ap7Rdfv7Cp6UGnrvg5s3ddh6KBSdF05vLOLjKH3Mbfq4J4Z1zvAdlw4I/NzIxlVb4l1LzGPtA6j8pQ1z7XiQv8Q1jzbitcfu1WPpGZF9PHwXOjH/O/tQp7bherp42OWGZ4eLxY8vgvRseS+4ehy72Bkfql1L0a/vnrJzLj30cLv7xoVwO7zS7z63qcQAijMcWNScR4+OduHm66aiIbWTkPy7/Bg9LuuK9dlmxTAspeIkuWUtn8mrNr+szK2CUhlVrs+mc87C9sBRESpc3LemXKAOoC/QmDG858nCk4PklJ6hRA/B/BdAH8N4L+GXx8Yno39MQDXpZEWIiKysGQbq/EGI//shmnoH/LDLQCfBD7svhhRgKcbDGXVAX09sUOUiMhemK9TIkY+0BBd9zIrgNUsZgwqObmzyyx6H/NsD+7pVU6YOYjKdlwAH1CLFOteYh5pHXrnKRXrGyN+b/f0hl479sSdGafXaE1rF8cM/B7w+dF8NHaZsXlXOyCAaeML0XWuL+KzN119GaaML0R3b1JDPRG07qNbNr0Zc7bHcMGljIOzuZ+YUGi7/Nsp7S+WvUQUj9Pa/plgcGf2sU1AKrPK9cl83rnYDiAiSp1T804hZYw1GON9QIguAJMBPCClfDGFzy0H8ByAk1LK8rDX/xzALwD0SSnHpJQYSqimpka2tLSYnQwicohkB15SXZYs3lInCx8fPSgXvq3oJaD1XhLNzoNN8ZbP5vKSRETWEy9fJzKKVt0rz+3CHddebtul7GLZ0NCGbc0dyHO7MODzZ+VeXLWlBaVjCyI6u8IDV0l/ehxzs5Zx1rOcMON6J4qW6F5iHpmcdPo99O4r0TNPOdx1Hl9/ej86z/WFXps2vhA/fegGVE4Zl3Fas+Gx51vx0sHOuO/Jz3EBQMJA8QcXZJY/R99Hx89cwrm+QUwuycdbR7rhHQzs3yUAvwQqJhbhZI839HqsdNslkIXtLyIi+y9jrwetOmuuC2h/XP2H56yObQJSmRWuT+bzREREBABCiP1SypgVlXRmUJ8w/G+qvbXB90+Ier13+N/UIuWJiEg5yc7wkOrsV/GeEn/nm0tjbmvnoZMRs2IFn9jOcwvcXV2u28xbqsxqoefgrxFPu9s5kJ9IRbznKBxnMSEzxav3PfXbduVnAdKTGTMjcBbl7NPjmGd7BnIjygmnzgRCakl0LzGPTE46/R5695XomadUlo9DUZ474rXCPLdlgtMB4OLAEGaVFaPd0wsXAD8QWlkwP8eFO6qGr3OJiHvAJYCCHDduvHoiCnLd+MPxc2nNnB7uu/dU4dFnD2LS2DxsXFaFuoY2vNXejZmlxegf8ocC08cV5mLJNZOx7+hp9A/5kecWGPBJuF0CPr/M6mobRmP7i4iySfU+QKvMAGwmrTrr4glnzU6aI7BNQCqzwvXJfJ6IiIgSSSdA/VMAVwC4E8C/p/C54CO+nqjXgz2/p9JICxERKSDVgZd0Gqtag5Fa29pjcDCUaoNNeg7+GhEQo0ogP5FT8J6jcNkOdCQKF6/eZ0QAqx6D80YN8FthUInUkO3BPSPKCV7vpAIOlGcmnX4Po/pK9M5TzvcNYvbkYqxeMgub32jHuUuDGW8zm+pX1mDVlhYsuGoivjp/OtY8dxDtnsA8QP1Dfuz98DSA0ffAgM+P+66fqmsbMdj2nP+9XRGvB9OT4xa4euIYtHt6UZjrwtzyEtTOKYtIt93uT7a/iCibrNAHyIdX49Oqs47Pd5mdNCKipDCfJyJKneoPmhLpKZ0A9TcBPATgbiHE/VLK5xN9QAjxFQB3IzBL+ptRf64c/jc6cJ2IiCwinYGXVBur8QYjY20rVqdecIBOj4ayKoNNRgz+6jmIr1ogP9kXG3EBKtxzPBfqYXAWmU2r7mVEAKseg/NWGOAn60q2nMzm4B7LCbIzDpSnLphPNTxyE37yu49S6vdQpa8kkeYNt4V+vuu6chNTkr5gPSq6DQgAngv9uPHxXfjw+3cadg/E2m80AWDQJ0PB6lv3dQAIzPK+cVkVriodEwqyt9P9yXLVfg53ncf99e/g+YcXWmq1BbI3FfoAk8WHVxOLWV5Hr0lPRKQo5vNERKnjOBQ5iZBSpvYBIaoB/B4IrR5ZD2CzlPJIjPfOBrAGwN8AcAMYAjBfStka9p5WANcCeEpK+Vg6X4K01dTUyJaWFrOTQUQOsKGhDduaO5DnDszItGL+dNMrUqu2tKB0bAG+On86/p/nDuKIpxcPLtAvXSp8Z0+PV3PwN5OBr/BjF+wQDe9g2L17N2pra01LH1G0//FCK7Yf6MSXrp+KJ5dXm50c06hwz9U1tOGZ5g4lygEakShfJ7I6rSCpVAbn9dgGUSKplpOeHi9WbdkPCeCnf36DYeU5ywkiCgrPpySQcr+HCn0lTuHp8eJvtuzH5JJ8vPbepzHfY1Q9xtPjxcLv74I/heEllwD+pHIyvrOsyvZ9QixX7eX2H7yFdk8vZpUV4/XHbjU7OZo4YYCzqNAHSMZKdgyGiIiIiKyD41BkV0KI/VLKmJ1fKc+gLqVsFUKsB/D/IRCk/rcA/lYIcRLARwAuASgCcBWAy4NpGP53fVRw+vUAPjv866uppoWIiNRxqrcf986biiMnL2DO5SXo7u03O0moX1mDOXU7sfWdj0OvBWcSyXMLHPneF1LaXnQnvwozsRk1K5NeT7tz1igyWnQjbvuBTmw/0OnYRpyZ95yVZm5yokT5OmeEI6vTY8ZWq8z6StaUbjm5eVc7Dn5yLvCzgbOpcLYrIoqVTwGBoOKGR25Out/jVG8/7ps3FR+cvIA5U8Yq0T9kV5t3tePd4+cws7QYQgQGYYIB46nWY1INbC0rKcCy6ql46WBnxOuFuS74/BIDPgmXAKZfVoSPz1yCC4BPAh92X3REnxDLVXuoWN8Y8Xu7pzf02rEn7jQjSXFxBj5nYb87EREREZH1BMehXjt0MlSXv6OK41Bkb650PiSlfBLAXwI4j0C/pwAwBcBNAG4b/vfysL+dA/CXUsofRG3qAwBXDP/323TSQkREaqhfWYOiXDfeO9GDwlyXErMCeXq8qJxSgj+ZOxkFuYEizz38yNQX01jCObyTHwh8543LqlBZXoKNy6pM+87BQPmGR27GigUzlBv8VT19ZG1aqwGlukqQnZh1zzWtXYy7q8tD+W1Brgv3VJejad3irOyfMrPmuVZc6B/CmmdbzU4K2ZSnx4vl9XvhMeiBPj0G5znAby9GX3OpSrWcnFO3ExXrG0MBokAgWLRifSPm1O3MSpqJyFm08ql3vrU0pX6P+pU1KAz2D+W4legfspvwMkLKQNCslECwGewSSLkeE93nlYyLA0OYVVYc8Vqu24VBv0SeW8AvgWOnL0HKQHA6MBLgy7KMrGDH6kWYOr4w4rVp4wuxY80ik1IUW3SewDqjc7DfnYiIiIjIWsLHoYDU+2+IrEhkErwjhLgMgUD1ewBcj8DM6UGXABwA8DKAX0gpT2eQTkpTTU2NbGlpMTsZRGRzqi5D89jzrXjpYCeumFCIT872xXxPMmlU9fuZictLJodL6xrP0+PFl+v34uPTl0KvVUwswgsP38hjboINDW3Y1tyBPLcLAz4/Vsyfzlm7FBc9I1w4FWeEI+uqa2jDM80dhuYLq7a0oHRsQcTqNqkExXl6vPj8P/8OSz5Thq/dfFVa24i1TdYFzJGNay5VqZSTnh4v/v7lQ/jt4U9DQX0uAdxeORnfXVbF64l0wTyKomVan2f/SXZ4erwxV33xXPDiQ89F/GB5NV597+Soekysez6Zcxb+OUhEbOOqbzaGZm0PJwBIAFPGFeC/XXlZzBVqnJrvMO+1ltt/8BbaPb2h32eVFeP1x241MUWjaeUJTr7PiOyAYzBERERE9sO+M7IrIcR+KWXMAdW0ZlAPklKekVI+KaX8HICxAC5DYDb0ywCMlVJ+bvjvDE4nIrIx1WbNDc4aE1xmODw43e0SKadRte+XbarNPmklT+x8H81Hz2DTjvfNToptlZUUwDc8Gp47vESCzy85AGcSztxkPVaZEY6sK5uz+WW6us3mXe041zeIwhy3bivkpDMbKWVG5RkkUykny0oKMKk4PxScDgB+CZQW57OeQ7phHkXRMq3PO73/JFu0Vn25elIxunv78eqhEzHrMbHu+WTOWfjngj9v2vk+ltfvxSvfWBTx+aBg8XXivBe/au2Cd5Ar1ATZva/Ibv2I5/sGMXtyMX70lXmYPbkY5/sGzU7SKFwJioiIiIiIyBrYd0ZOlJPqB4QQPx/+sVVKuTn4ugxMxX5u+D8iInIQ1TrB4y0OEgxkTSWNqn2/bAsfiFRl9knVRT/5uv1gJ7Yf7OSTrwaZW16C2jllETPmkjnCAyA2LqsyMSX2p9ese5Xl41CU5454rTDPjcop4zJNIhGAQGeb1mx+qogut7fu68DWfR0ZldupbpMzaeon0TVn5rFOtZw81duPKyYU4rPTxgMA/nD8HB/+Il0Yke+RPWRan3d6/0ksRpU7wYcJvjp/Or74wz3Yuq8j9LfoezrRPa91zmJ9Lmj7gcCkEF/YvAf3XT814vMVE4twsscbKocnFOXhpqsn4WuLrnR0m90pfUV260ds3nBb6Oe7ris3MSXxhecJTr7PiIiIiIiIVMa+M3KilAPUAfwFAhNgvKtvUoiIyMqiO8GPn7mI5fV7TQn82LNuMZbX78Wx05ciXhcAZkwswsZ7q/DqoU9T6qh3Yid/vAHM+tsK43yStB6SiPPsBGWAQdFkR4kCWfQc9A/OCLd6ySxsfqMd5y6pNyMcWZcVOtuMCKJPdZtWDuRRLbg+0TVnpWOd6Qz+RFqs8PAQWVe8/hPVyoxsCJ8t+8n7q3XbbngZ8etv3IwHf9aMi/1DofLvjqqRezrRPa91zqI/5xKB1TyivTQcrH7lpDGYWz4O+46ejiiHl15TFipzVW6zG3192r2viA8/mYt9Y0RERERERNbgxNgjcrZ0AtRPA7gMQKfOaSEiIgurX1kTMZCz+bfteKa5w5TAj7KSAgwNj5iFD55JAJcGfJg9eSwWzSxNaZtGd/KrOEgbbwDz8P53zE6e0mI9JFExsQgvPHyjiakiIivRCqA0YtDfKjPCkXWp3tlmRBB9stu0ciBPsP46aUxeWoF3RtZ/Y11zVj7WRHqzwsNDZF3x+k+s9JBQpvSYLTvZsnLbvg6cuTgQ+j36nk50z2uds1ifi+f9kxdQM2OCZVc5M/r6tHtfER9+IiIiIiIiIkqMDxiT06QToH4UgQD1STqnhYiILG7zrnY0Hz2D+d/bFXrNrMCPueUl6DrXN2pmJ8+Fftz4+C7s/ebStANijAimUXGQNt4A5mGzE6e48Ick8twCAz4Jn18y4IOIEkoUQMlBf7IiK3S2GRFEn8w2rXxPL/z+roi6dqqBd0bWf2Ndc54er2WPNZERVH94KFkqPuxNoznxISE9ZstOVFZGH9dwW/d14MX9x0PHN917Pvxzq7a0AABmlRXjjQ+6NfcLAPk5LmxcVpWw7qfCPZyt69PufUV8+ImIiIiIiIiIiKKlE6DeAKAGwBcA/ETf5BARkRXFGxDTI/AjncGq4IzuG3f8X/yqtSvibz4JzH88EESfTkCMnsE0qg/S2iVowQxWnTHMaCoMPpvFyd+dkpcoWJWD/kTGMCKIPpltWvGejlf3BxIH3plV/7XisSZKRrp1TCs8PJQMFR/2ptGs/EBWujKZLTvZsjJ4XKP7vYJkWJR8uvd8+Oea1i0BAKza0oKSghz0eIdGvd8tgNsrJ+M7Se5DhXs4m9en3fuK2I9IRMlgHykREREREZFzpBOg/q8A/hbAnUKI+6SUL+mcJiIispjogRy3CASB5yUI/Ei2IzLdwapgEIqAdqBMKgExRgTTqD5Ia5egBTPw2MWmwuCzWZz83Sl5yQRQctCfyF6sdk83PHITVv6sGRe8AxjwRf4tmcA7M+u/VjvWRMlwah1T9Ye9KVKiOq7dAtWC3yd4jSY7W3bwcw2P3ISf/O6jiLLy1tml8Fzoh+eCN7SNUL+XGD1j+xUTCrH9kZt0/26JHlTzSWBScT7KxhbEPa9m3cOx0pTNh9js3ldk9+9HRPpwav2ViIiIiIjIiVIOUJdSnhNC3APgZQDPCSGeAvAjKeXHuqeOiIgsIdZAzuyyYvzzA/PiBn6kulRxOoNVp3r7MausGEc8vQAQGrQLBtGnEhBjRDANZ3Ikp3ByAImTvzulJ1EAJQf9iezFavf0z/YcxemLAzH/duz0pYT1WDPrv1Y71kTxOL2OqfrD3jRavDqu3QLVgt9n2vhCPLgwuQejPD1e/OlTTTh9cQA/azo6qqz8qPsi/tjdO+oYBY/r6++dxKcX+kOvn7k4YEjZ2rR2Mdb+17vYfeQUAMAlgPwcF26aOQkFOW784fg5dPf2RxyHWOfVrHtYK018iI2IyHhOr78S2YndHjCl2GKdZ557IiIiSpWQ0VNrJPqAEG8M/zgJQBVGJqXtHP6vL8EmpJRyaUo7pbTV1NTIlpYWs5NBRA6waksLSscWRAzkhAeAhNOabSm6I9LT49UcrEqm0au1n+CM6vk5Lgz4/Fgxf3rSA6AbGtqwrbkDee7UP6sllWOnit27d6O2ttbsZJCFZHo/W5mTvzsR6Yed/2S2eDOmugQw/bIxqJhYiF/81YKE27Ji/deqmHfYV6I6phPOvRHtc8quZPuHUmHmtZ/u99H6nFsIuFzAoG/0GE70Nq/6ZiP8MYZ6tPadyXGq+odX0dsfWEZFCIy695I9Dtm8h4241ihzTiiriGhEsP762qGToYew7qhiH6kWjsGQyuoa2vBMcwfbYDYX6zzz3BMREVEsQoj9UsqYA30pz6AOoBYjQenBfwWAqcP/xU1L2GeIiMhG6lfWJD2okOwsSZnOrqi1n/OXBjDtsjFpzYpkxIxKnMmRnMDJqwU4+bsTUcDhrvO4v/4dPP/wQlROGZfWNuw2syhZT7wJDiSARTMnJn1tsv6bPU/sfB/NR89g04738eT91bpum0Fl5kpUx3RCucEZj63PiFm0zbz20/k+8R4Ac7sF9iS5zXe+uTSlfW/e1Y7mo2dw1+Y9eGX1oqTy8Yr1jaNekzIwA274sU72OGTzHuaqC2pyQllFRCPC668A2EdKZEFcCcEZtM5zOJ57ouxhHywRWV06AepAINA8mdeIiMhBNr06HPyw8308ubxa832pBGtmMliltZ+nHpgXek+qATEMpiFKn5MDSJz83YkIWPNcKy70D2HNs614/bFbU/osB35IL5l2ZO9ZtwRfrt+Lj09fCr1WnO/GT1begFcPfcqyTTHRecf2g53YfrBT17zDyUFleg0MZbqdWHVMJ5UbdmqfO3WwUc+HeVO59o063ul8n6a1i1H38iH85r1PI16/YkIhtj9yE8rGjt6mWwg8ui0y/cnuO/o4eS70Y/73diWVR+S6RczZ3HPdkUNDyaYl/B5evWQmHn32IDwXvIbcA3xwXC1OKquIaESsh7K27uvAi/uP894nsgg+9OcMsc7zrbNLAQBvHenmuSfKMif3wRKRPaQcoC6ldBmRECIisq5RwQ8HOrH9QPzgh2SDNTMdcGZQaGKqDISrkg4yjp0CSFLl5O9O5GTRs0y2e3pDrx174s6ktsGBH9JLph3ZZSUF8PkDQWnBALUJRXlYNLMUi2aW6p1cypDWhPd6LGvIoDL9BoYy3U6sOqanx8tyw4KcPNioV79NKnUmI493+Pf52Z6P0Nh2Aqtvm6XZz1FWUoDS4vzYfxtbAE+PFzvaTuC+66fiazdfhW3NHXjrAw+On+sblf5kjmXT2sVY+P1d8EcVCP1Dflz5zUbs+9bSUFqj+2liBacDiPl6quc1G/eAFfoIndI3xjYOBe1p78ZDP2/Gf35tPtsUDsB7n8j6+NCfM8Q6z6XF+ZAAzz1RFrEPlojsIt0Z1ImIiEKkRvSD1utA9oI1GRSamCoD4aqkg4iIMueUwIpEdqxehK8/vR+d5/pCr00bX4ifPnRD0tvgwA9lSs+O7LnlJaidU6Z0YBcF7Fm3GMvr9+JY2Iz3FROL8MLDN2a8bScHluh1Pxk5wMRyw1o42Khfv00y1342jnf49ynMdeNc32DCfo5Tvf24YkIhPjttPADgD8fPobK8BECgr+Rc3yAKc9y491/ejpv+ZI5lWUkBllVPxUsHO0OvuV0CV0woxLHTlyLSGt1Ps2P1Inxh855R29yxZlHc4xDvvGbzHrBCH6FT+sZYVlHQI88cgE8Cj2w9gD98+/NmJ4cMxnufyB6s8NAfZU7rPPPck12pOKbl5D5YIrIXES94kKyvpqZGtrS0mJ0MIrI5T48XCx7fFXM2PicNqlpNrCU1geTO2e7du1FbW2t6OoiISE11DW14prkDK+ZPt3VgRTJu/8FbaPf0hn6fVVaM1x+7NaVtrNrSgtKxBRGd/+EBNmRPenWKx5tNWZXOdjLGok1v4PjZPuS5BQZ8EldMKETTuiW6bHtDQxu2NXcgz+3CgM/vmPxer/vJ6PuS5YZ1MI/WV6JrP1vHW49+Dq1tuASQl+OKm/54dQit7WYik/6buKs+SCgXIGAUJ/aNsaxytujVxsIlu9oYWRPv/eTpOQZDRERE8ak6puXUPlgish4hxH4pZczGHWdQJyKijJWVFODycQU4cX7kSWkB4O7qcj7BqbB4T90mExB1uOs87q9/B88/vBCVU8YZkg4iIrIWzgI62vm+QcyeXIzVS2Zh8xvtOHdpMOVtGDnbo4ozg1CAXjNocpY6NWXj3jNyxnunzpim1/1k9H1phVmCKYB5dPKSyTcTXfvZOt6x+jlqZ5fiZE8/PBe8Se1Pq69kcMiPHYdOIi9O+uPVIYLbfeXdLvglkOsWyHO70Dfog18C+TkCUgIDPgm3AHwSoX2v+txVuPdf/k9EfT8/x4WmdYvTPlbxzkldQ5sjZhMHnNk3xrLK2bZ+bT6+/vR+9A36Qq8V5rrxbymsNkbWxHufiIiIVKL6mJZT+2CJyF4yDlAXQkwFsBTAZwBMAJArpfxaptslIiJr+ey0cbjUP4Tz3iEIABLgoKriMh0EXPNcKy70D2HNs60pzwSbbDqIiMhanBhYkUjzhttCP991XbmJKYlNryBo0o8RneLsyFZPNu49I4M/nBxYotf9xPuSgrJ5LVj5wTS98s1sHO9gP4d30A8BwDvox4fdF/HH7t6k06/VV/LWx90AgNuvKcOE4nx0X/CGzmtrx1kM+EbWNwzWIQSAfRuWomxsQWi7EoHg8gGfHxUTC/HH7sCKP/1DI58Pbso7GNh3Zfk4/NkN0yJmb/vyDdMyvpaiz8m2fR9j676OUd9DlQABI7BvjJxm0axS5LoF+sKe3851CyyaWWpeooiiWLneRERERMlRfUzLyX2wRGQfQkqZ+F2xPihEGYB/BvBnANzBlwFIKaU76r3/AuCvAXwipbw67dRSympqamRLS4vZySAim4u37PBH3+eSnCqLXlJz276P4Y9RNQgfBDRiCVYu7UlEZB9cctAatOpvdg78sQpPj1ezU5yD4tbHe4+IzPQ/XmjF9gOd+NL1U/Hk8mqzk5MUq+abq7a04KPui2j39Mb8ezLpD/aV3DH3cjz4s32a2/nyDdPwTHMH7ps3FYN+GVGHuLykAB+fuRRRJ4/ug/nNeydxqrc/Zn+QAHDf9dPQ2z+I+pU1WLWlBcX5Ofjg5AXMmTIWvd4h3ftvnFoXYt8YOc3sup0ozHXhb2+9Gv/61ofoG/TjiML5OjlPXUMbnmnuMK1fa/fu3aitrc36fomIiJyGY1pERJkTQuyXUsbsyEorQF0IMQvAWwAmI9BHGS5WgPpnALyHwIS6S6WUu1PeKaWFAepElA0qDBzpOZtFvG0lux+rzq6RzLk83HUeK3+6B6fDJhmbNr4QP33oBlROGWdSysmqrHqv2BnPCWWKgRXWoEL9jbSxU9y+eO8RkRmsGuQNqJtvxms3aR1vAGmlv66hDVv3daBiYhFO9nhDx2FgyB8zqDwerXP+2POteOlg56jXYz3MkI2APdaFiIjILKrUmxigTkRElB0c0yIVcHyerC5egLorjY3lAngFwOUIBKdvAfB5AI9qfUZK+X8BtA3/ekeq+yQiIrXpvQytp8eL5fV74UlhmeXwpZ4z3Ue8bSW7n1TTo4pkzmVl+TjkuyOfTyvMczM4ndJi1XvFznhOKFP1K2uwcVkVKstLsHFZFTvyFKV3/Y30daq3HysWzEDDIzdjxYIZ6O7tN3R/6dS/KT2894hSw/xJH1qT1KS7umo2qZpvarWbPD1efGZKCT4/dzIKcgPDL25XoA8lzy2SSn/wup9dtxMV6xuxdV8HAODY6UvwDgYC5vqH/FhWPRV3V5eH9lOQ68KUcQX40vXT8MOvVCM/x4XhXaMg14V7qsvRtG5xxH01Z3gfsYLTZ5cVo7d/KPT7nLD0SIlA0Pz6Rsyp25nmUdSW7boQqYV5v/PwnJNKmtYuHlW+BstQIiIish+OaZEKOD5PdpaTxme+BmAWArOhPyyl/DcAEEIUJfjcWwCuBbAgjX0SEZHiggNH4U+Wpiu88pVodqTo2Sy27uvA1n0dCWeziLWPeNsCkNR+0k2PSpI5lxcHJWZPLsbqJbOw+Y12nLs0aEJKycrscK+oKJOnq3lOiJzF0+PFjrYTuG/eNHxt0ZUZ199IX+Gd4BuXVRm+v1Tq35Q5PdtORHbH/Ekfe9YtwZfr9+Lj05dCr1VMLMILD99oYqqSp1K+majdtHlXO949fg4zS4sjgupnlRXjqQfmJZX+4HV/b/VUDEkZmj3eJYDplxVh471VePXQp+i+4MWk4vyI/Sy9pgwb770WdQ1tEen0Do4Extc1tOH3x87grs170PDITfjJ7z4K7cMtgFtml2JicR56vUMRdZKmtYs1Z7PXmx51Ic4+Zl3M+52H55xUourDcURERERkPxyfJycQqc6SIoT4DYDbAOySUt4e9vo9ABoASCmlO8bnVgH4VwAnpJRTM0o1Ja2mpka2tLSYnQwioqSks3Riqks9a+1DCKDxG4siBuUiBtokktqPqktP643LS1KmnHKvZFsmS63znBA5Syb5BdmHKkuXExFFY/6kv0Wb3sDxs33IdQsM+iSumFCIpnVLzE6W5Wi1m3a2ncCAb/RYS65b4P7/Nj1iiXCtwGmt6x4IXPsDPv+oulv0UuTb9n0Mv8aQj0sg5t9cIjAbUZ479j7CbWhow7bmjqTem23Rx5X1Xeth3u88POekqujyNbwczxaOwRARERHZH8fnyS6EEPullDEbTa40tnctAv2Vv0zxc2eG/52Qxj6JiMhmYi3bqbV0YsMjN2ku8ZnqbBax9lExsQhSAtv2dWhuK9n9cHYNtXG5WHXwXtGXHkut85wQOYMe+YVdsF4QqBtXTBxZEI9Ll2cPrz+i+LT6B5g/pW9ueQkeXDgDL//dIjy4cAYqy0vMTpJpMsmDtdpNe9YtiXnNvr1+yaglwrWWbY513U8ZV4Av3TAVDY/cjBULZqC7tz/iM9+9pwpHPr0AQOLIpxfwyjcW4e7q8php1wpc90vABaG5j3DB2eyTeW+2BY/rjY/vcmx91+r1C+b9zsNzTqqqX1mDjcuqUFleMqocJyIiIiLSC8fnyQly0vjMZcP/nszCvoiIyOK0ZoWKtWynVuVr276OuEt8prLUc/g+gMASx8eGl7jeuq8DAOAWgUG56G0lux+Vlp6mSFwuVi28V/Sj11LrPCdE9qdXfmEHTq8XxJqt0DvoxyvvduGpB+aZlCrncPr1R5QIB2f0Fx5YtXFZlYkpMV8qeXCsfq1Y7abwa1aIQJm698PTEdtKtGxzrOt+6TVloTTGOm/B77LmuVb8sbs3NPlCLGPy3Lg44It4zS2Au64rD83MlejaUPE6ij6uvqi/61nf1ernVIXV6xfM+50n0TlX/Z4jIrIi5q1ERERqOdXbj3vnTcWRkxcw5/ISpSYDINKDkFJj2gytDwjhATARwNellD8Pe/0eAA0ApJTSHeNz6wE8DqBTSnlFRqmmpNXU1MiWlhazk0FEDha9nG6iZTvDl06864dNMWd3ynSJz+A+7pg7GXW/PISOM5fgl+ByOSmw2vKSXC6WnEDlpdaJSC1Ozy9YLwgILh35yrtd8MvA958yrhAVEwvxi79aYHbybIvXH1HywvsHgkHAKs9eyUAP9aWTB0f3a8WzaksLjnZfxBFPL8YV5OC8dwgPLhj5nKfHi7qXD+H1w59CavRDJXvda32XIJcApo0vRMfZvrhpBhCRRisK1mka3+2CTwaC7q+4rAgfn7mke31X63ow+/63U/3Cank/ZW7VlhaMyc8JBWP09g+GznkqeTCR3VhtDIasg3krERGRelg+k9UJIfZLKWN24KQToL4PQA2Af5NSPhz2eqIA9bcALALwGymltXrELIwB6kRkFq2BkTy3wB3XTok5a2f0AE5wgCmZ96bL6QFa6bJa52g2riUis3EQ1xxmByIQpcPp+QXrBSNYF86+WEF04TPXEpF1cSBJfanUAVIN+E0UMB783O0/eAvtnl64BCCBtK+X4Hd57dAJ9A+NjPG4BeBLMOTjEsD0y8Zg47IqvPreScvXBbWOvVsI/Pobi3Sp7ya6Hsy+/1m/JatLdZIbIiew2hgMqY95KxERkXrsWD5z7NyZ4gWou9LY3usABIAHhBClSSbgTwDcMvzra2nsk4iILKZp7WLcXV2OgtxAUVOQ68I91eXYs35J0ku1ZmNZ1+CyzA2P3IwVC2akvFyOp8eL5fV74bngjfsamYtLBJPdeXq8OHtpEKuXzkRleQk2LquydICBlYQvoU6kRbW6Qf3KGmxcVuXY/IL1ghGZ1oUpdbf805v4VWtXKHjQJ4GXW7twy6Y3zU0YEaVtTt1OVKxvxNZ9HZAS2LqvAxXrGzGnbqfZSbOkw13nce0/vIbDJ87HfV869atU6gBa/VpN6xbH3Hbw/fk5IuL1/JzA5ySAivWNaPf0AgD8EpAS2Nbckdb3CX6XAZ+EK2yXiYLTc90CEsCimROxaNYkW9QFm9YuxuXj8uEePhBul8CUcQXY+60lutV3ta6H4Hk1+/5n/ZZUlEy+plWGSomU8mAiIkos1fotERERGc+O5TPHzilaOgHq9QD6AYwFsF0IMS7em4UQSwFsG/61B8DP09gnERFZTLyBkVQCYYwOmsk0QCtW5SpRhUu1IDWnYAAW2RkbetnHQCRKBe9R9bBeEOD0hxXMoBVEZ+UOZyKns+NAkpnWPNeKC/1DWPNsa9z3pVu/SrYOkGrAb6yAcbcABnyBz+3RuE7e+dbShN8nuh8p+HvnuT6sWDADpcX5KR0Du9V9ykoKsPSayfBLifwcF/xSYuk1ZboGZ2tdD1rn1Yz7n/VbUk0y+bT2JDeL+dAFEZHO+EAbERGReuxUPnPsnLTkpPoBKeUnQojvAPgegJsBHBFC/Bxhwe5CiEUAqgDcC+A2BGZclwD+h5SyR4+EExGR+oIDI1+dPz20nC6AiMCXjcuq4m4jlfcmS48lZaKX2tm6rwNb93VEvCf4WvTyO+Gd89le9tfJy+kYcS0RmU0rL7Lysl9W0bR2seYS6pQZO5VVvEfVxXoBmSUYRLetOZAXDPj8ugfREVF2GTmQZPV6USrpr1jfGPF7u6c39NqxJ+4MvZ5p/SqVOoBWv5bW9wq+/6PuXpzq7cfE4jxcXToW3Re8EdeJEAhdJ7dsejPh94nuRwr+7kLiGdPD5ee40LRusSWvpUS0zpXR+1BpIFnF+q3V8zBKTyr5dDKT3Bh5XxMROQ3zViIiIvXYpXzm2Dn9/+z9e3xU9b0v/r8+M7kTAggJJiCklosF1KA5gBU1Adu6lSrqLrYFds/Zbb+4rRtP3fsLtKRnX4pW9u/Y35bWc0569t5nH7l4O5jaGqKtKDb0QNIgaJAiqYKBBJhwTYZkJsnM5/vHZA0zk7XmutastWZez8fDhzDMzPrMzFqf63u9P1qElAnMYIa+UIj/P4AnRv4a7U2UDSb/QUr5D0kdjJJWXV0t29razC4GEZEptBZB6hrasb21EysXTIs7QDzyvVy9nlGdq7tmlQIA3jvWM6rDVTa2YNTkvCI/x4HmdbVpWbBJ5rOr2bNnD2pqavQrGBElRa0uCq13yFgbG9qxo7UTec5AgGGqdSsF6NVWWQGvUSJSs2ZrG8bk5+DYmT7MvrYEbu8Qs9cT2dyarW0oHVsQtpCkx3Vt935RIuU/0n0Z333hALouDQQfmzq+EL/41q2YU351E1cr9K+S/V3WbG3D8Z4rOOZyY1ZZMT5XOgY/fmCe5ueJDF5PVl6OA0Mq4xUGD+vDqOs/E9i9DqPkJFpP8xoiUsc1GCIiIiKyG66dZy8hxAEppepgPuEM6gop5feFEHsA/AOAm6I89SMAP5BSvpHssYiIiJIRmWEqlSxbke+llt2ltDgfEtDMmtS8rhY/ev0wfnvkLPwSYZPzW942Nqs6M7hmDi4gUygrZWvLJsp1WJTryIg72q0iE9sqXqNEpKZ+dTXqGtrx0eleVF03Hs+uYAAOkd3pnbnY7v2iZMo/p2IcivKcYY8V5jnDgtMBc/tXqfwuka895nLjmMuNPR/34M9vnRr8PJ4hP/Z9ch7n+ryYU16C0pJ8/G4kEUJ+jsCk4kBWYe9wIOjz2pICnDjfP+p4ynczq6wY//z1+arjFTN3+MskVsxcbja712GUmkTraV5DREREREREmSFTssGTvpLOoB72JkLcBOAOAJUAxgFwA+gC8J6Ukum7TcQM6kSUCRINyNXKVJ7nFLjnxvKEsmxFy3peM7t0VHYXAFEzvnzpp++hw+WGUwB+BLYZ8as0xXov2OidYYzZO8zD7FMUiZmm0o/XoTGskA3TCLxGiShUtLHKsafuNaFERGRFdu8XJVv+BU+9jfFFuVi7ZCa2vNOBS/1DaN1496jnmdW/0vpca+68Hn//6yNR561cvR6sqN8XDCYP/U5+9MvDKB1bgHvmXovvvPAHeIb8mFlWjD/1uDGjNPB/JfNU5N+nji8EANw0dTwA4J2jZzGpOB/1q6s1v5toc10MHiY92L0Oo9RxHEyUOq7BEBERERGRXRiSQT2UlPJDAB/q8V5ERESREs3o1LyuVnMR5Lm3OxLKshXtvUJfp5bdJfSxyMU/X0hQ+v1VFarvrydmcLU/rexTAkDLxqX8LbMYM02lD7PAGStT2ypeo0QUKnJ84RSBscFXb64wu2hEZCF27xclW/7QYPRlUepFs/pXWp9rR0tn1HkrtYBwz5Afb3zQjee+Ph/1q6sxu64J2/Z/Fvz3Dpc77P9+KbFy4XT85qMzozJRaQV9blo+LxgYHxo8H22ui0gPdq/DKHUcBxMRERERERERADjMLgAREZGW2XVNqNzQiG0tnZAyEAhYuaERs+uaor4uchFE2R4ZuLqlTMNjt2PlwunocXuDr1MW7Vwh28yUlRQgRwh4hvzIS2FBpXldLe6vqkBBbqDpLch14IGqCrRsXBp1wUatTMmK9tnJ+tTOocqJRYAAtrzdYXLpiLKDVl3evL7W5JJlDrZVRJTplLGKZygQqKjcuLrz/a64xjpElD3s3i+ye/m1hH4ugas3rUabt1LGEQ4R+Ht+jgOVE8fgjpmTAGhnNFee+0BVBX6/YQk2LZ+H1o13Y9PyeZhTUYJNy+fFzEgcmvRBweBhSodMrQOIiIiIiIiIiCh+umRQJyIi0pOr14PHXzyIhse+iP/xu0+TyuikLIJ8c8E0PPHSQXS43NjydkfU7C1amdr/cOICAOBLN5RhQnE+epIIFo+2+BdaViX7VWSZNjcdxcmLA1G3i46FmWvsLfQcAgLZ1pStwZnFmSg9GMhhPLZVxlH6V6n0JYhIH+fcXjx0yxRccA+i+U/n4PNLZq8lolHs3i+yS/kT7SOFfq79P1iKTbv+iMYPT8Pnl3A6BJbdVD6qLlfGERKBgPNBnx+LZ0wMzj01r6vFj14/jLc+Ohv2OocABn2BMQckRmVCjybW7k/R5qKI9GCXOoCIiIiIiIiIiIyTcoC6EMIB4PMAJgCIa5VbSvm7VI9LRESZSwnK3tHSmXQgoNr2yFpBvFqLdpEaD58BEFhMTIbW4p/agk1kmXa+3wUAuO3p3fjkJ/cldXyyP+Ucumfutaj7ZTs6L/TDL8GAJqI0YiCH8RhIbYxnmo6i9fgFbN51FM8+UmV2cYiymtL/39jQDr+UvOmJiMhEW3Z3oPX4BSzbshdvrF2cUD18xz+9GzZ34/NLvH6oG28ePjPq5nG1cURov/fTnisAAAFAAhhXkIM5U0rw+dKx6OnzaCZV0NK8rhabdv1RM+kDg4eJiIiIiIiIiIjIaEJKmdwLhagB8LcAlgDIT+ClUkrJzO1pUl1dLdva2swuBhFRXLS2NHYKgV//9eLgAl607YtDF/cgobkYF7rg6Or1qD5vzZ3Xa2ZwNzpwRCnTrw51q/672Zmy9+zZg5qaGtOOT4GAph2tnchzBrKvrVwwLa5FaiIiq/ubVw5h5/tdePiWKXh2RZXZxbE9rf6V2X0JMt6R7st4pH4/Xn50EeaUjzO7OBRCGbMU5TkxdUJRWLBitLEOkZ54QxhlOz36SK5eD+5//vfo6fXAJwGnACYW56NifCF+8Re3xry26hraVRMkAIHs6Z/+5D7NcuY6gI6noycw4LwBERGRfXENhogyBecfiIiIMp8Q4oCUUnWBK6kUsEKIvwOwG8CfIZA1XST4HxER0SjN62pxf1UFCnIDzVNBrgMPVFVg3w+XYE5FCTYtnxczYCM0O6iyhXKsDOxaz5tTMS7pDO562P/JeQCBRUmF8p00r69NSxnIupTsaw2P3Y6VC6ejx+01u0hERCmZXdeEyg2NwV1Ddr7fhcoNjZhd15TS+7p6PVhRvw+uLM12r3VPenK3qpOdPPHSIfR5h/HEi4fMLgpFULLgTh1fiE3L58U91rGjbK+DzRTruw/NxmyUI92XcePfvYUjpy8bdgzKXqnWL83rasPmWxTeYX/c/c+ykgIsvaEMfgQC2/0AxhXm4oNTl6JeW0q/Vy04XZn32f/DpcFyhs6VKaZeM2bUayO/EzvNG7C9ICIiIiLKTOmYfyAiIiLrSjiTuRDiKwD+LuShTgDvAegCYN0ZTiIisrx4A8ojuXo9WPj07rBAq50Hu7DzYBccAqO2UFajttVytMdjSfVu8C27O+Dq82JmWTFmlhVj1+EzcAikPUierIvbcRNRptHa3Svarl/xtLehE+DZmDFy7/parKjfhxPn+4OPVU4swiuP3mZiqUhPkddB5YbGsH/vcLmDj514JnqmVTJWZBbcbS2d2NbSmdE7GmR7HWwmre8+nedh6I0yv33yLl3fmyjV+qWspADLq6bgtYNdYY/fM3cy/jGBMbYyb/TyHzohZaDdBaJfW83rasN28lOozfsoc2WhzwOA4+eujGrfI78TO80bxPt7MvsiEREREZE9ZOM8GBEREY0moi32q75AiF8DuA+AH8DfAnhOJvomlDbV1dWyra3N7GIQEalSW1Ras7UNpWMLEtrmPtqWyHk5DhwzYZBb19CO7a2dCW+frLV1s1MI/PqvF8f9nRiN20sSUbZjYIT+XL0efK1+Hz5TCaTW+o6jtbdabWo2ToAv3vwOTl0cQJ5TYNAncd2EQjSvX2J2sUgnkdfBke7L+O4LB9B1aSD4nKnjC/GLb92KOeXjTCwpuXo9YQGJBbkOfGXutdh43xcSakvs0AaxDjZPrO9er/MwmsgbZULxRhlKlZ71y5qtbfi05wr+5HIHkx7MLCtO6oaKyGsLiN6X3djQju0ac1kOAXz6k6vXypqtbXA4BA6cuAhX39UcQUr7/uDz/9e2dW6iv2ey8212YYc2noiI0oNrMERkd8oYqfGDbvgk4BTAspsrdJ1/ICIiImsQQhyQUqoGsiUToH4WwCQAL0kpV+pQPjIQA9SJyMpSXVTSWsRSxApqM0KqC6XpCBaIdux4F8E4OUpE2S7TAyPMogRS5zoFhqIEUsfT3prZplpNMjcAkvVFuw6mXVMUzOAKJB9sR/rb2NCOHa2dyHM6MOjzJ9WO2KENYh1snni+ez3Ow2h4owwZSe/65fofNMKvskSSTHB3Iu+1ZmsbivNzcO7KIN77uAcA4HQILLupXPOzfOmn76m273auc+Mte7bc+GSHNp6IiNKDazBEZHfZ0oen7MMbi4mIRosWoO5I4v2UVYQ3ky8SERFls9l1Tajc0IhtLYHtj7e1dKJyQyNm1zXF/R6uXg++UF6Cr8ydjILc8OYs1ykAAD6/TPugoHldLe6vqgiWqSDXgQeqKtC8vjau1ytbN3uH/cjPcYza2tlIodspExGROj3aMNI2t6IEqxZNx+vfW4xVi6ZjTkWJ6vPiaW/NbFOtpn51NTYtn4c5FSXYtHweg9MR6EuuqN8HV5/H7KIkLdp1cHlgCLMmF+Pn35iPWZOLcXlgyOTSkuKc24uVC6ej4bHbsXLhdPS4vbFfNCLRNsjM85x1sHni+e5TOQ/jMadiHIrynGGPFeY5GZxOuojnHI+3/ptd16QaUO4QiDmPo3aMO2dOQuXEIuTnOILvozUnVL+6Gm98eDoYnA4E5rFeP9SNOza/q3pMrfbdznVuvGVPdb7N6jjOJDJHJowLiYiIrKp5XS2uHZcPpyOwbu90CJSPK8iYPjxlL8ZUxI/9bSICgJwkXnMGwHUABnUuCxERZYnmdbWa2ZFiUe5IvW5CIT44dQkzSovDFrFmlRXjn78+P5gdNN30WBRUggVCs5waKfIO9m0tndjW0sk72ImIVChtWOOHp+Hzy7Ash5S60MDpTcvnaT4v3vY23W0q2UfoJLJds1NGuw5aN94dfN6ymytMLCVFireeU5PoOMrs85x1sHnOub14aP4UfHymD7PLx44KQE/lPIyXEki7dslMbHmnA5f6eaMM6SdW/aLUf8u27MUbaxePCl5XMp01PPZFrP7XVlzsHwwLVH+waorqPE7oa9Xq2H//y4XBHQrycwI7FGjNCbl6PZhTXoJTlwZwwe2FTwayCTmdAg3f+6Lq547Wvluxzo03q1w8ZbdzEH48UpkrJaLkbX7zKFqPX8DmpqN4dkWV2cUhIiLKKGUlBVh6w+Sw8dHSG8oypg9P2YcxFYkze36aiKxBSKmSIiTaC4TYDuDrAJ6SUv4XQ0pFuqmurpZtbW1mF4OIaBRlwS7X6cDgsB8P3zJFcxI4dEHrtqd3w6fSdOU6BR75D9PQ0+cxPSvomq1tKB1bELawplYmI7d/SuS9k9kKmttLElG24raU1hFve0sUyu7XcGQfj9dB9lHGUXnOwMLeygXTRk3u2/08J33UNbRje2un6jlCZFex5jriqf9Crw0gsKAMAE4B+CUwo6wY15eOUW1P6xrag8/XOka8bbNSjsprxuD4+SvIcwoMjkx4rVqYGdet3vVQpvd74mnjiUgf7C+THXANhogyQab34Sm7JBNTka3Y3ybKPkKIA1JK1UY+mQD1RQD2AugCcIOUciD1IpJRGKBORFalDEgvur1oPHwG100oRPP6JarPjbYACAS2S7Zjx9/IgIFE3zvRRbB4JkeNDMAnIjKLq9eD+5//PXp6PfDJQCBLWUkBXn/8dtZ1RDZg90lkBpxSPAt7dj/PKTVcACK7izaXoMwPlY3NH5UZHQCOdF/GvVv2Jn1spxC4e07ZqHpV67oCMKqOTTaIXk06r1s953BYDyWHwTtE6TNr467gTUGh8pwCx56614QSEY3GAHUiIiLr4Y3F8eH8NFH2iRagnpPom0kp9wsh/guATQBeE0J8XUp5OdVCEhFRdtnzcU/YYtXJiwOo3NAYtlgVa9HOIQAJ2G5LX6O2f3L1erDw6d0InVqP972N2AqaWzYRUSYKbEtZxm0pybJ4g1h0ZSUFGJufA++wH/k5DniH/bboS3L7UFKEBqptWj5P9Tl2Pc8pPrHq+eZ1tZoLQER2oDaXENkOuvq8WPDU7lHt4A6V5AZOASy7uQJr7rwe/+N3nwavDefInJJfjg4yjxR5XTkdAj6/RJ5TjKpjY82FKO/1q0Pdmt+BGdft5jePovX4BWxuOqq5w2G8WA8lJ542noj0sXf9Enytfh8+O98ffKxyYhFeefQ2E0uVPThvQURERHZlRExFJuL8NBGFSjhAXQhxJwIZ1F8E8A0AHUKIFwDsB3AOQMz0H1LK3yV6XCIiyizxLFZpLQAKBBYR/2zutZhQnG+7jr9RC3VbdncACGSkAiS8wzLu99ZzEYwBVESU6eKdgEplwY2LdZQs3iAWmx0nkRnoRYmy43luNVZti2PV81wAIrvSmkvIcwrsXb8Ei36yG/6IZLfeYT9m1zUF/6zGJwOJDeZUjBt1bQCI6zpRu65mlhXjua/PD9ax8c6FlJUU4I0PtIPTAcAzpN91m2hG953vd2Hn+10pzeGwHiIiqysrKYBvpFHJdQoM+SR8fsl6Kk2eaRq5KWrXUTz7SJXZxSEiIrItPeeurDoPZjW8sTh+nJ8mIkXCAeoA9gDB5KwSwCQA30/g9TLJ4xIRUQaJZ7EqngVAO3b89V6oi1xMjPxzuhcBGUBFRJku3gmoVAKFGWRMieINYvGz4yQyA73iw4WUq+x4nluNntmE9ZBIPc8FILKjUUkKRCC4/Ks3V6CspADLq6bgtYNdwec7HQLLbioPzDVI4EevH8Zvj5yFXwZ23Jt2zRj87Zdn4h/f+CNOXRoAEH5trNnaBiBQX8ZznahdV3MqSoJ1bLTtqyPdOXMSTpzvx4mQzL2hHAB63N5kvsZRYo0rpJQqr9J+PF6sh4jI6uZWlKBmdhnrqTQadVPUwS7sPJjaTVFERETZTM91JK5Jkd44P01ECpHoRKMQImaG9BiklNKZ4ntQnKqrq2VbW5vZxSAiUrVmaxtKxxaETQL/+IF5YUElas8J7czaldbnSiaoxtXrUc0kBgBOIXD3nDLdv7M9e/agpqZG8983NrRjR2sn8pwODPr8WLlgGgezRJQ1IhfcFPEsuKXyWspu0YKisj1QN1Nkar9YT3UN7dje2sm+J6XEqm0x63nKBhsb2rG9pVP13xwC+HxpMf7kcsMxEry+auHV+v5LP30PHS43nCKwxevKBdMAIK3tQuhciHfYj7Kx+Xhj7WLVa1Trs1ZOLMIrj96W8nUdb13m6vXga/X78FlIsLxeZSAiIgo1a2MTBn2j26a8HAeOcc5rlFhrMGbhjeFElCjWG/rTc+7KqvNgRERkL0KIA1JK1UXLZDKZ/0OK5SEiIgKgftdkXUN72N25mXpnpdbnSubuZNVMYgJYdnOFacEKzJRFRNlMyf741uHT8A5L5OcI3DOvPK6dJLgLBSWLGbYzX6b2i/XAHQRIT0ZlE04V6/nMlu0L9srnL8p14KFbpuCCexDNfzoHn1+G9Yd/9MvDWHj9xLC5hsg2wDdyqW4LCf7WaheSTRKg9hpXrwdvfNiNiWPy8M+PzMc//PojdLjcmvM759xerFo0Hb/56AxcfV4IBLae9fmlLudAvOOKspIC+EYyHuQ6BYZ8UrcyUPple11CRNa2d30tVtTvC9tBRLkpiuyDGXaJKFGsN/Sn5zoS16Ssg+M5IspUCQeoSykZoE5ERLqzc1CJHoOFVD//lcFhzCwrRkdIJjEzgxUYQEVE2exqAFkg0MM7LOOukxl8RqngDWLWx0nm5MT63riQQnrau36JZjZhs6VSz7P+sbbNbx5F6/EL2Nx0FM+uqDK7OGmnBCwomc43NrTDL+Wo/rDaXIPa7gJ3zSoFALx3rCfsMVefF64+T/AaSCZQQus1W3Z34PLAMABg1b+2BB/Xmt9RPktPn2fUDil6SGRcMbeiBDWzy9iHzAAM/jEf21sibWUlBRgeuSkqzykwyJuibMXOa3hEZA7WG8bRcx1JeS/PkB8CgGeIa1Jm4XiOiDJVMhnUiYiIdGfnoBI9Bgupfv761dVYs7VtVCaxUFwgISJKD7UtEbe1dOLVA6fimnhlkDElizeIJSedfSQzJpkzoQ8Y63vjzT2kJytnE06lno91HWVCXWFHkf3Gne93Yef7XVmzYK8VsOAQiNkfDj1nI9uA0uJ89A/64BnyI88p4B3249OeK/hTTyCj+asHTiUcKKFV1lhize8Y2X+Ld1yRTX3ITK3rGPxjHQwqoVgytR6KF2+Ksi87r+ERkTlYbxhLz3Wkc24vZpYV408uN2aWFaPH7dWxpBQLx3NElOkYoE5ERJYQK6gk3RO38RxPz8GCHkE1sRYUuUBCRJQeetx0pMj0ABEiKzCijxTZlzRzktnOfcBEvjfe3EN6yqTAmXivIzvXFXYmpUzo8UwTrd+szIdo9YdDz1m1NuBIdy8AYNgvISXQ4XIDQDCo3CGAvBzHqOOqzQe5ej2YWVaMUxcHMDDkG5m7ESjOz8Vz36jCC/s+w9tHzmLk3hYIABIIBsebddMUxxWjZWpdx+Af8xnd38/2oOZMkqn1ULzYNtkXbwwnokSx3jCWXm1qZD+2w+VGh8uN2XVNDI5OE47niCjT6RagLoTIBzABQJ6UMnbqECIioghaQSWuXg+W/WwvetzetE3cxjNRrPdgwaigGt51S0SUXpx4pUh6BhNEey8GLSTGyD5SZF/SjEnmTOgDJvK9MdCB9JRJ51Os6ygT6go727t+Cb5Wvw+fne8PPnbdhEJMGpsPV58n49vzZPrNaucsAOTnOLBp+Ty82nYy7N/9EbH+yjXgFAINh7pGHffJlw+h9fgFbN51FM8+UgUg0K4fHgl4B5TAcwnv8CDebD+D0uL8sONIAJ+bNAbPf/MWW93kksl9yUyv6zgGNZ/R/f1sD2o2SjrrvUyvhyg78MZwIkoU6w3rY3C0+TieI6JMl1KAuhDiCwCeAPBlANNHHpaR7yuEeATA5wGckVL+WyrHJCKizKUWBJDuidtEjqd31nejgiA4sCQiSj9OvFIoPYMJor0XgxYSY0QfKVpf8s9vnZrWSeZM6ANycp4odbGuo0yoK+ysrKQAvpHI5lynwJBP4sKVQZy6NJA17Xmi/eaGx76IVf/aiiveYXiHR5+zzetqsaJ+H06MBP3n5zhQPq4An13oR57z6jXQE3HcHS2fBYPdAWDnwS7sPNilWoZB39Vo9NDXAEBxnhPuQR+GfX7MqSix1U0umdyXVOq6xg+64ZOAUwDLbq7IqLqOY1BzGdVvZVCzsdJZ77HPRZkgk27kJaL0YL1hfZx/tQaO54gokyUdoC6E+C8AfgTAgcCuldHkA9gEYFgI0SilPJvscYmIKHtETsArHAJoXl9ryDETnSiONliwysJeIgPLTM6WRUSUTpx4JUDfYIJo7wWAQQtJMGLyPVpf8ke/PJzWSeZMWVzg5DxR6qJdR5lSV9jZ3IoS1Mwuw8t/CAQ6Xxn0Acie9jy037x2yQw8/uLBqNnjd7R04sKVQQAYdc7O2tiEQV/4PJJ32I8T5/uxalH4NRDZX3/lDydHvRYILHwIMToTuxb3yO938uIAKjc02uL3y4YA2Dv+6d2wz+iTwOuHuvHm4TMZ8xk5BjWfEf1WBjUbw4x6j30uIiIisirOv5qP4zkiymRJBagLIf4BQB0C87M+AK0j/1+s8ZKXAfwcwBgADwD4RTLHJSKi7BKZ3Ujx4PwpcU3cJhNsnehEsRWyvscj3oGlVYLqiYiIMoGewQRR30uCQQtJ0nvyPVpf0oxJ5kxYXODkPFHqYl1HmVBX2Jny+6xdMiOr2nO1OZtocxJqSQy8w344BNDj9gIAlt1Ujtc0sp6/2nYSm5bP02xL9q4Pz7wOAJUTi3DL9Al47f3w9xQIbCOrmDqhED193rDy5ecI3DOv3Ba/XzYEwDavq8X9z+9FT98gfH4Jp0OgbGw+Xn/8drOLRhnEiH4rg5qNYVa9xz4XERERWRHnX4mIyEgJB6gLIeYB2Djy10MAHpFSdgghHoBGgLqU0iuE+C2A5QBqwAB1IiKKgzIB75OBrOl+CcwqK4bbOxzX65MNtk51otiICe5UM5vHGlhaMaieiIjI7vQMJoj1XgxaSI4Rk+9WCjrg4kJiuJsQZSvWFdZgZhCiGfVf6JzNqwdOxZyTiDbXcsfmd1G5oVHzWJUTi/DKo7dFLU9ZSQGGR9Kk5zkFBn0SJ873hwWsK0KD02eWFWNgyIdBnx9OgeAc1qBP2qY/lg0BsGUlBVh6w2TsaA2cV4M+P5beUJZRn5Eyl5XGF5nCrHqPfS4iIiIiIiLKNslkUH8MgAPAeQBfllKei/N1BwA8CIDpWImIKG7n3N6o2zCrSTXYOtWJYiMmuI3ObJ6uoHqrBf1YrTxERMlgXWZtegYTRHsvBi1Yh1lBB6wLUsfdhIgoXkbVuWa15+ms/9TmbBT5OQLe4UD4d2RQebS5lsg5jUgnzvdjwVO7Y84Lza0oQc3ssuD3f+pCP0qKcjXfFwA6XG44BLBy4XR80tOH8+5BTCrOx/Wlxbbqj2VDXzIbPiNlJgY1G4N1AhEREREREZHxhJQy9rNCXyDEHwHMAvBTKeX/G/L4AwAaAEgppVPldasB/G8Al6WUE1IqNcWturpatrW1mV0MIqKUJLrw6+r1aAZbpytYZ83WNpSOLUgosF6N2hbWAAzJbL6xoR07WjuR5wxkklq5YJrmwvSePXtQU1MT9f3qGtqxvbUz7H3UHjOT1cpDRJklXcGirMuICGBdkIp09rmJKDNkSp1rZP2n1Rd29Xqwon5fWGby4vwczd3yQssSba4ldE7DO+xHcX4OBod9GPRJCAD3V1UkNS8U+b6VE4tw8kI/fBJwCmDZzcm9LxFRvHgjKlF2imcNhoiIiIiIyAqEEAeklKpBcckEqPcCGANglZTyxZDHYwWoPwzgVQDDUsq8hA5KSWOAOhFlgmQWfhMJtjaKHosHRgTba5UrkaD6aJOjWgvcaswK+mEQEhGlg9GBS6zLiAhgXaAHK9zgSkT2kGl1rpH1n1pfOJH5AocAvppA8HfknMaej104dXEg+O+rFibXJw9936/+bC98KuspZv3+DFolyg6ZclMUESWGAepERERERGQX0QLUHUm8nxJ87kvwdeNH/t+XxDGJiCgLza5rQuWGRmxr6YSUgW2fKzc0YnZdU8zXKlt0Njx2Ox6cPwWN7afhSvM2naFbZCcr2hbWeperfnU1Ni2fhzkVJdi0fF5SGd8BoHldLe6vqkBBbqCbUZDrwD1zJ+PLcyeHPfZAVQWa19cm/TlSoVZGM8tDRJkllfYrEazLiAhgXaAHI/rcRJSZMq3ONaL+i9YXVr4/h4j9Pn4J/PqD7rjLEjqn8WrbybDgdCBQjmT646Hv++u/vh25TgHnSPmdDoHycQWm/f56zDtlMiVbfzrmA9N5LMoe6ZpbICIiIiIiIiIySjIB6mdH/v+5BF9368j/u5I4JhERZaFUFn5DFxCLcp24NDCUtgW7eBYPElm4Cg22X7lwOnrc3pivUXv/dC1qqC1wTyrOR2lxvmWCfhiERERGSlfgEusyygYM9omNdYE+kulzE+nFiLqO9acxMrHOTaX+UzvPovWFle9PIvbCROXEItw5qzSJT6RdhobHvhgsbzLXyKbGIxjySfhkIGu6X0osvaEs7b8/g1bjk84A/s1vHkXr8QvY3HTU8GNR9lDqsvycwF0x+TnC1jdFEREREREREVH2yUniNa0AKgE8AGBzPC8QQhQDeASABLA3iWMSEVEWSnXhN3Lr6G0tndjW0mn41svN62o1t8hWhC6SxdqaNTST+abl84KLqNG2cFZ7/3jKpRdlgVvZWrtnZMFX7TGzaJWRiCgWV68Hj794ULMeTmfgEusyynSJ9JmyGeuC1Lh6PbjYP4QfL5+HsrEF2LR8ntlFIhuL1U9QY0Rdx/rTOJlW50bOOcRDOc+vG1846jzT6gtDAivq96Eo14GVC6fjt0fO4GyvdjD8yQv92PP/JheEqVWGf917PBhEXJjrHFV2res3cn4JALzDfjgETLmhKZ3zO3aUzvnAyGPtfL8LO9/vMnzukbLD1bpMAgC8w9L2N0URERERERERUXYRUsrEXiDE1wC8jECw+X+SUr4w8vgDABoASCmlM+T5AsB2AF8feU2NlLJZn+JTLNXV1bKtrc3sYhARJW3N1jaUji0IW/gNXTyNxtXr0VywM3oif2NDO3a0diLP6cCgz4+VC6Zh04M3qi5qAkho4aquoR3bWzuD7xkq1vtrlSsRrl4PVv33d7HtsVouiBBRVopWDytSab+IKHafhpILgqWrQr+/LW93xKzXrYC/uXVE+y3i6ScojKjrWH9SOlz/g0b4VZYVlPNMrS9cWpyP7a2dEIDqaxUOAUy7ZgwqJxbi3/9yYdJlDC3Dsp81Rz2mUvav3TpV9fqt3NCo+boTz9wXsyxG1N/xzu9kY9uRzvnAWRt3YdA3+uTKcwoce+peXY9F2YdtOlF227NnD2pqaswuBhERERERUUxCiANSStVgiGQC1AWA9wHcDGAYwN8D+DmAWkQEqAshbgPwNIA7R16+W0r55SQ+AyWJAepElO30CMhOhlZgYiqLZPEsSsR6fz0CJusa2rG9pRMrF1o7gIeISG9cHKZMYvVgJTNvNLSLRIJgabS6hnZsa+lU/Ter1uv8za1D7bdIpp9gRF3H+pOMpHWeA8ADVRWq51m01wCBgPSivBxc8Q7DIQCfBFbpPN+gFUQMAAW5DgwO+6MG3KcaoG5E/R3v/E62th3pmg909Xrwtfp9+Ox8f/CxyolFeOXR21jnUsrYphNlNwaoExERERGRXUQLUM9J9M2klFII8ecA9gOYCODHAH4EwBVywN0A5gAoUx4CcArA6kSPR0REpEYtqErtMbO23tbaIltrm+l4FhXi2cI51vsns3W3Ip1bJBMRWVE89TCRXWzZ3YE/nLiALW93WDJYKZU+U6Zjnyw10QIl9azX9bwJhL+5dUT7LZLpJxhR17H+JCNFnudAIMDcL6F5nqldG9eWFODE+X7k5wSChycU5WL5/Cm6zN2o1b971y8ZFUQMAHkj18hD86dgyC81r9+ffaMKf/3ioVHH+vk3q6KWxcj6O9b8Tra3HemaDywrKYBv5O6GXKfAkE/C55esc0kXbNOJspPSl/lmpfYNfkRERERERHbhSOZFUspPACwCcBCB4PN8AFMBKHlGagBMHvk3AeAPAL4opTybYnmJiChLuXo9WFG/D66RBaXQoCqF2mP1q6uxafk8zKkowabl8xLOFm4EZZGs4bHbsXLhdPS4vXG9Lt5FiWTfP5bmdbW4v6oCBbmB7kNBrgMPVFWgeX2tLu9PRGR1XBymTDC7rgmVGxqxraUTUgaClSo3NGJ2XZPZRRvFqD6N3bFPlprI78/pEACAPKfQtV5XG5ski7+5dUT7LZLtJxhR17H+JKOEnucj1SfumVeOVYu0zzO1a8Pnl1i16Oo5qszZJDN3Ezlf9EzTUbQev4DNu46GlSE0iBgAxuQ58W/fqkZpcT7OXxmMev1+9eYpqsdedpP64woz6+9sbzvSOR84t6IEqxZNx+vfW4xViwLnM5Fe2KYTJSeyf2Anyljy9T8NmV0UIiJKkZ3bIyIiIr0knEFdIaX8RAhRDWA5ApnR70Ago7rCDeB3AP43gP8jpVTfQ5OIiCgOyqTcoqd3h227rGSACpVoVig9sxvGI5Us5tEyQKl9jkTfP5rQRWUBMDCTiLKSWTtzEOnFTjsBpNJnymS8WSY1at/fzLJiPPf1+brU60ZkrOVvbh2xfotk+glG1HWsP8lIaud5rPMs2mtSPUeV+aLbnt4NX8h80c6DXdh5sCtY/86tKEHN7LKwMrx5+Ax63F5MHV+InhjXrxBArkNg5cJp2N7SiSF/7OUOM+tvth3pwzqXjMTziyg5Vt81Tk3kWPLdk8Oo3NCYNbufEBFlIju2R0RERHoTesaNCyHGABgHwC2l7NXtjSlp1dXVsq2tzexiEBElLXJSLlJBrgN3zSoFALx3rGdUoFU8C291De3Y3tqJlQum2XpwmI7PsWZrG473XMExlxuzyorxudIxlshKT0T2lO4bhIgoYGNDO3a0diLP6cCgz2/7PlA2WrO1DaVjC8KC6Ngni5+R35+r16N5E0gqbR1/c+vgb0FkDbHmixR5OQ4cGwnqUsYfh05ewqDKa0MDwI50X8Yj9fvx8qOLMKd8XNLlNLPOYH1FRETZRqt/YIcg78ixZJ4D+LObKlIeSxIRUfrZuT0iIiJKhhDigJRSdeJR1wB1sh4GqBOR3bl6Pah7/TB+e+QslCarOD8Hbu8w8nOuBlVJQDPQSisAMlMGh+n6HJnyfRGRdWTKDUJEdsNgJaLYUrmJijeBEJHVpVLHmfVatfcKC+JyAoO+8OdUTizCK4/eFjyWMv54sGoKhqWMejPRl376HjpcbswsK8Zvn7wrpbISkTretE5EejPqhuF0UcaSAAAJrFzIsSQRkR3ZvT0iIiJKVLQAdUe6C0NERJSIspIC/Oajq8HpAOD2DgMA/FJi5cLp6HF7g9tFNzx2e/AxRej2WaGa19Xi/qoKFOQGmsOCXAceqKpA8/pa4z+YjtL1OTLl+yLS4ur1YEX9PrgitnIn/c2ua0LlhkZsa+mElMC2lk5UbmjE7Loms4tGlBXqV1dj0/J5mFNRgk3L5zE4nSzJ7HZZawwRj2hjEyKieBlZD6ZSx6Xy2meajqL1+AVs3nU04ddGKispwNj8nOCN9JHB6QBw4nw/ysYWjBp/vHawC7861A3PkB/5OQ54h/0Ym5+DsrEFqNzQiMoNjehwuQEAHS538DEi0lcq9QkRkZrQ/kFkG28H59xezCwthpRA+RjBsSQRkU3ZvT0iIiLSU47ZBSAiItISbbvmB6q0tzbctHye6uu3tXRiW0tnMOO32YNDvbIE6fE54ilL6HFyHeBgmjJO6MIoM9MYq3ldrWb2CCIiIsC8djnWGCIeoTd9KGMTIkpNNmbZNaIeTKWO0/O1Ow92YefBLggALRuXJvWbuno9eOPDbkTbILZm1iQAo8cfToeAzy9x/cQx+PnKW4I7ygDArrWL8d0XDqDr0kDwfaaOL8QvvnVrwmUkInV69LeIiLQoNwyH7hpnB5F1Y/cVie6PzmJ2XRPrRiIiG7Jre0RERKQ3ZlAnIiLLUjJ25+eI4GOOkT+GBkZrZRWLJ+O3mdkN9cwSlOrniLcsynF+tKiA2SApYzCbd3RHui/jxr97C0dOX9btPUNveBGCN7wQEdFVZrfL3DWIyJqyKcuukfVgKnVcKq/VCiKXQNK/6ZbdHbg8ENhhr3JiEZwi/N8fvmUK/v0vFwb/vv+T8/AMBYK+fP5AgT49fwX3bmnGq20ngzcXzakYh6I8Z9h7FeY5Mad8XFLlJKLR2N8iIiPZdde4yLoxzwHWjURENmbX9oiIiEhvzKBORESWdTWA8epK5j3zynHNmLywu4y37O5A6/EL+LN/bsZ11xThF39xK8rGFsSVWdyM7IZGZAlK9nMkWhblOHv2nMNf1Oj/fWVjVjwyH7N5R/e9HQfR5x3G97YfxLt/W6Pb+ypb1h5zuTGrrJg3vJhgb0cPvvVvrfjf316AxTNKzS4OEREA89tls3dZIqJwVsyya/S41ch6UK2O2/fJ+aRfG2/9uHd9LVbU78OJ8/2j/i3R31Rtt73I9x1XkAO3dzj492eajsLV58V11xTi+tJi7D3WA9/IVFPlxCK88uhtYa+/PDCEWZOLsXbJTGx5pwOX+odilouI4sf+FhHRaJF14yDrRiIiIiIiygDMoE5ERJY1u64J21s6wx7b1X46mNkqNKsYAJy/MohDJy9h0dO7g883M0O6FitlCbJSWYDsyopH1sGFUXWVGxpRuaERx89dAQAcP3cl+FiqZtc14a2PzuKYyw0AOOZy462RLWspfR7b/j58Enhs2/tmF4WIKMgK7bIVxxBE2cpqY1bA+HGr0fVgaB03s7QYrj7vqM+itVNdsvVjWUkBhkeylo/8lFASnof+plrHDdW8rhZfmTt5VMb0UJc9w3jro7PB8ctrB7sAACcvDOC9j68GpwOB4PYFT+0OG4u0brwbv/n+XVh2cwV+8/270Lrx7rg+JxHFj/0tIqLRQuvG2utyWDcSxRDP+IGIiIiIzMUM6kREZFlaWcPW3Hk9VtTvQ8NjX8Syn+2FP2KraL8MBFZGZt9KV4b0WKwQdJNIWdKR1dyKWfEoPaySNV+Z/P/mgmnY0doZtktDtsp1AEN+9cdTZXZ23GwXeZNBr2c4+NiJZ+4zo0hERGHMbpfN2GWJiNRZafycznGrkfWgcsP/tv2fBR+L/CyhQfibHrwx7LWKaPWj2jhvbkUJamaX4ZsLpuGJlw6iw+Ue9ZvWNbSrHjfs/UoKMKk4PyzIHAhkQj/T6wkbX+xqP42hyCeOUI7tEMBXb67gWCSDWGWegaJjf4uIaLTQuvEv5uajpqY6yrOJSGvcQkRERETWwQzqRERkWVoL0TtaOvGHExewo6UTy6umjHqdQwBfmTtZl4xqRt19b0aWoGQzoKUjq7kVs+JRelgla3796mpsWj4PcypKsGn5vLDFgGz1+w1LUZzvDHusON+J3/9gacrvbaVAo2y07dsLUJgb/tsW5jqx7TsLTCoREVE4tstExrNTpjmrZNlN57jV6HpQ67NIILhTnZSBwPXKDY0xdzpy9Xqw/Pnf48H/9nu4+jyq47zQz3R96RisWnT1N93R2hn1uJHvd87txXUTCnHfjeW478ZyXDehEMN+OWp88fv1S1A5sSisrDkOgYfmT8GgL/BcCXAskmGsMs9ARERERMYI3WE7kXELEREREaUfM6gTEZGlhWYNW/azZmxr6Qz+W+ifQ/klUFqcr8violF335uRJSjRDGjRssPV312oa9kYrJp9mDXf+spKCjA8skVFjgMY9gM+v9TtujQ7O242WzyzFLlOgYGhq4/lOgUWzyg1r1BERESUVlbLNBct47FVsuxm0rhV67P88rEvYtW/tuKKdxje4dg7HSm/23XjC3Ho5CUAwIKndgf/XWucF/mbrl0yQ3WHpabDZ8J2/1HeTwig5YdLg9+9q9eDr/zz7/DQ/Kn49uLPBccXZSUFOHG+P6zMw36J1w52AQAaHrudY5EMwnkGIiIiouyg7ND61uHT8A5L5OcI3DOvnLsiEREREVkQA9SJiMjSQhct9/9gqeqC5eWBIXzicuOmqeMBAB+eupRSRjVXrwcLn96N0E2g7byolewCnTLBE/l9b7zvCzhyYL/u5WSwanaJdn6Rddw1qxSlYwsMuS6tEmiUrTzDfowrzMFf3fV5/Pf3PsHAkD/2i4iISDfRgnGJjGTVAM5kA+aPdF/GI/X78fKjizCnfJyBJQzIpHGr2mfZ0dKJC1cGASCuIPxFP9kNvwRaNY4R7zhPK2B+r8q48dqRoPPQc2XL7g5cGhhCYa4jmHVe8cXPT8QHJy/hyqAv+NjU8YX4xbduxZzyEo5FMgjnGYiIiIiyw9XxQ2Al1zssbXvzMBEREVGmY4A6ERHZhtqC5b5PzuONtYtVJx2SDfrYsrsDEEDlNUU40+ux/aJWsgt00bLDHTGgnEqwqqvXg2Nn+/Dzb8434ChkFZmUfTCT1a+uZgBdhjoWEoD2aM0ME0tiPJ7DRGRFVsteTdnDagGcqQbMP/HSIfR5h/HEi4fw2yfvMrKoADLrJsvQz/Jq28mw3wEAvMN+OARUEwBE/m6hBAAJIM8pEhrnqQXMh44bAcAz5A9mRFfOlVDKY7kOgYJcJ15+dBF2fHcRvvTT99DhcgefV5jnTMsNDZRenGcgIiIiyg5q45FtLZ149cAp2yUZIyIiIsp0DrMLQERElAhlwbLhsdsxs7QYrj4vtrzdASAQgLaifh9cIxnMQoM+4jG7rgmVGxqxraUTUgInzvfDM5JR1s6LWqks0IV+3ysXTk8pM328Ev3dEhF5jpC5zDi/KHFa1ySvJ7ILI9sVItLGdkJd5JhjW0snKjc0YnZdk9lFoyxhtQDO5nW1uL+qAgW5gWnqglwHHqiqQPP62qivq9zQiMoNjcGg4w6XO/gYJV4Ha/0O+3+4NCyQXev5oSSAz00ag1mTx+Kh+VPjHufVr67GpuXzghnQleMq48Zt316AyolFcAgEy/iVuZPxlbmTR5V76oSi4I0LAHB5YAizJhfj59+Yj1mTi3F5YCiuMlHizG7/Oc9ARERElPmSHUcSERERUfolnEFdCDEdwDsjf10rpYw56y+EuBfAzwH4ANwhpTyT6HGJiIiAwILl7LombNv/WfAxJUOWQwQWQm97ejd8EqP+PVYGtshMcg4BTLtmDDYtn4c3PzqTcVt3xyNadji9M9KmY6t5Zqq0lkzKPmg1elyfsa5JXk9kdeloV4hIG9sJdVbLXk3ZKdnxoRGSDZjftXYxvvvCAXRdGgg+NnV8IX7xrVuDf8/mXVQSrYMT/R1Cn+8QgF8C064pwsyyYjR39MA75MOJ81dQdd14PLtidIB7IkLHjbfPmITPWjshRCCRQGlxPiQQLLdnyI/XD3UHn6/cuAAArRvvBgAsu7kipfJQdHq2/0e6L+OR+v14+dFFcWe85zwDERFRZsvmPj5dZcaN1zz3iCjbsN4jM/C8y0zJZFD/JoDPASgG8Gacr3kLQCGA6wGsSuKYREREQVqZuvwSkBJhwelA/HfOR05oSACLZ0zE4pmTwrJ32ZFWJjIg/uxWsTLUx3qfWP+eaMaDRLJyMVMlZRs9MkZrXZMS4PVEtsBMOkTmYL8rOqtlr6bsFG18aCStMVwyGY/nVIxDUZ4z7LHCPGdYEGs27qISqw6ONo5O9HdQnv/GX9+BVYum4wvlY7HnYxcGfRLdlz0x24BkMm2fc3sxs7QYUgIzS4vR4/ai6+IASovz8a//sRr33njtqLmiqeMLseuJxXEfwwhmZxVPByPa/ydeOhSWCZ+IiKwjG9o2siar9/F5baRPunfOMevc4zlFRGaxeptLmemZpqNoPX4Bm3cdNbsopKOEM6gDWIJAgto3pJS+eF4gpfQJIX4N4DsA7gbwX5M4LhEREQD1oI7KiUU40+sJZiG8tqQAn13oR54zsaAPK2WSS5d4s1spz1v09G74JQBcATA6g73W+2gdJ/QuyESCdRLJyqVkqnzr8Jng+98zj5kqSR9WupNXz4zRWgF0e5n5lWyCQaBE+ki0nWOG8NiyccxBBGiP4ZLNeHx5YAizJhdj7ZKZ2PJOBy71DwHI7l1UYtXB0cbRif4Ooc9/te1k2Hce6oGqCtU2IFpZ1NqeyN/1mMuNYy53cC7izfYz+G8rb8WXfvoeOlzu4PMib1wwQzbsKqJn+69kvVeEZsI/8cx9upSXiChTmDUvmQ1tG1mLXfr4vDbSJ10755h97vGcIqJ0M7veo+wUed7tPNiFnQe7eN5lCCGljP2s0BcI0Q1gMoDHpZT/PYHXPQrgvwHoklJel9BBKWnV1dWyra3N7GIQEeluzdY2lI4tCAZ17PnYha5LA8hzOjDo82Pq+ELcNbssLOjDzhnQ45HoZHRkJ08R2cnTel4syvvEOk5dQzu2t3Zi5YJp6HF7w35Xtd8t3nJH2tjQju0tncG/r1o4jZM5pIvQc9jsc8rV69EMCkhmkSqyrlWuyY0N7djR2hmsc5P97GYtolnppgIjZcvnjEbrHCai+CXTzunVThBlqmxro5MdwyVL7z6x3ajVwa8eOGXobxD5nYdSxt7KeX/o5CUMxiiLWtsT7RiRIm9caN14d8qfMRnpPvfNplf7f6T7Mr77wgF0XRoIPjZ1fCF+8a1bTb/ZwC6yrZ3JZvytKd3zktnWtplpz549qKmpMbsYlmH1Pj6vjcxl1rnHc4qIzGL1Npcy06yNTRj0jW738nIcOMZ2zxaEEAeklKqL8A61B2OYOPJ/V4KvOzfy/0lJHJOIiChM5JbkcytKwrZyUx6fVJyHY2f78GMD7563ikS3WWpeV4v7qyqC218X5DrwQFUFmtfXxnxeWZEAEJgIAYDKiUWa76N1HAmM2v75rY/O4tW2k1G3mo+33KFm1zWFBacDgeOlstU0GedI92Xc+Hdv4cjpy2YXJSojtjBPld4ZoyPrWuWa1Gv7TLO2h9v85sj2YE3JbQ9ml201uf2e9jlMRLGl0s6le5tlIrtJRxttpf5KMmO4VGT7LipqdbCRv4ESHJkjBLzDfjjE1X+bWVYcbAOU837ZjeWjynLP3Mn4QnkJZkVpeyJ/V0B9LqJ141L85vt3YdnNFfjN9+8yLTgdSP+5bza92v85FeNQlOcMe8wKmfDthGPB7MHfOnuZNS+ZbW0bWYfV+/i8NjKXWecezykiMovV21zKTHvX16JyYlHYY5UTi7CX7V5GyEniNR4AxQDGJPg65SzyJXFMIiKiqLS2csuGrc+S3WYp3sGF2vP8TmDVoulhGey13kfrOHuT3P45mUGRnltNk/GeeOkQ+rzDeOLFQ/jtk3eZXRxNVj2vzrm9eHD+FBw704fZ15YYEhSY6vaZZm0PN2p7sPe7sPP9xLcHs3rbwu33iEgPDY99Eav+tRVXvMPwDifWzumxzTKzQVImSmcbbaX+ihkLW0qgbOguKtmifnW1ah1q1G+gnGunxxfCAQFfyI6tHS43OlxuVG5oDD722sGu4J+VsnzScwV/6nHjwaopGJZSc4wV+btGm4uwgmxb1NWj/VdcHhgalQmfYuNY0BhW7Jfytyaz5iWzrW0ja7FyH5/XRmYz49zjOUVEZrJym0uZqaykAMP+wJxinlNg0Cfh80u2exkimQD1swgEqN+c4OuU5/ckcUwiIqKEGDFJn87FiESOlcpkdLyDi8jnHfn0VHCxcdPyeViztQ01s8s030ftOKlMriQ6KOJEjj2EBi0ACAtkOPHMfWYUKSqrnlf1q6tR19COj073ouq68Xh2hfUyRpu1iCZDgmXieTySXRaAk/l+rbjgTkTpo1YH7GjpxIUrgwBgSjtnpeBaMk+mtU/p6ANZtb8Sawyn12+t9j6pBsrakVodqvYbuHo9WLP1ACSAX/zFrQl995Hn2smLAwAAhwhsv6uc4zWzSuEH8LtjPcHHJhTl4YszJuJXh7ohZWDsB6gHr4e2PZEB0LHmIqyAi7rJCc18v+zmChNLYi9WvZHe7qzYL+VvTWbOS7JtI7PoeTOcEXhtZC6zzj2eU0RkFqu3uZSZ5laUWH6ej5Ij4g3GCL5AiBcArALQDWCGlDLm2SCEKATwJwDXAvg/UspHkigrJaG6ulq2tbWZXQwiorRz9Xo0J+mTmaR19Xqw7Gd70eP2YuWCaYYvRtQ1tGN7a2fUY4UuvD/3dgd2tHYiz+nAoM+PlQumYe3SmYYFc+zZswc1NTUpv8+arW0oHVsQ1skMHfDoKZ3HouQc6b6M775wAF2XBoKPTR1fiF9861bLbuVttfMqMkhEYXZAkpqNDe2j6q1E69ZEA5lcvR58rX4fPjvfH3yscmIRXnn0trhfr2fbYqREv9942h0iylyhdcCrB06ptiUOAXxpzmTD2zkz2rJMC4LOJJnYPunRB4rGTv2VUHr91pl0ziRTN83a2IRBX/x1aF1DO7a1dAIAVi1M7DvTOtecDoGGg11h57gEsKO1E7lOBwaH/Xj4lil4dkXVqPcAgMJcB+69qRzfvv36sDHWrz/owl+/eAg//2YVlt00Je5yEoXKhjbf6HYmm1h9joW/NVltXpL0pdcaDBERacuG8QEREVE6CCEOSClVB6TJZFDfiUCAejmAegDfiuM19SPPlwD+TxLHJCIiSoieGUTSmYEukWOFZu9Ru4veitl9IqXz7lve6Wt9cyrGoSjPGfZYYZ7TssHpgPp5ZeaElp0yaOmR/SPReq6spAC+ke3Bcp0CQwluD2bVrPlq4v1+rZpllYjSQ60OAEZnv01ncKsZbdnmN4+i9fgFbG46imdXVBl2HIpfJrdPRmdAs1N/BdDvt87EcyaZMf2ym8rx2sEuOB0CPr9EQa4Dd80qhavPC1efB5DA4y8exMHPLmLIH564JtHvTOtc69E4x1cunI6Lbi8aD59B6/ELwfd444NuhBZlYMiPnQe68MYHp8PK8eQrHwAAvv/yBwxQp6TZYa4sVcy0qR+rz7HwtybOdxMREaUmG8YHREREZks4gzoQiHgHUDXy12YAdVLKvSrPuwPAJgCLRx5ql1JWRT6PjMMM6kSUbUIDQ3/0y8MpZxDRypTjEMD+Hy7VfZE/nmx3sbL3pCO7D7N3kFEWPPU2xhflYu2SmdjyTgcu9Q+Fbe1tB2ZnbcyGDFqp1HOpZpfKtOxUds2ySkT60Mx+KwQaDnWZ1pYobVlkpl29WT0rZjZj+5SadPZXUr05U6/fOpPOmWTqJq3XAMDMsmL8qceNlQumAQC2t3ai8poxOH7+CgQCGWWAqztl/Hj5vLi/s3jPtWif6bbrJ+LE+SvovjyAwWEJhwAmFOVh63cWYE75OFRuaNQ8/oln7ournERs8ylZ2TDHQkTWxDUYIiLjcHxARESkL70zqAPACgCtAMYDuAPAe0KIywCOAnADKAYwe+TfAUAAOA/g4SSPR0REFBflTudndh3F2V4vui4O4HDXZfziL25NalFayZTT+EE3fCH3dD04f4oui9yRi/nxZLuLlb0n1r9zuzKystBg9GU3V5hYksRZJWtjNmTQSiWLWarZpTItO5XdsqwSkb4SzX6bLkpbFplpV29aSRuSSeZA+mL7FFu0cV06+yupZhvT67fOpHMm3r5u6DkQ+RqnCASe+yXQ4XIDuLpLBgAcP38FwNXgdIw8t7Q4P6HvLPJcc/V68ODzv4cEwuZhmtfVYkX9Ppw43w8Ao24gUAJAld/u/JVB7NjfiU0P3oiffaMK//mlQ2FzMk4BPPeNqrjLSRSc3/vwNHx+CadDYNlN5ZbJhE3WlQ1zLERERETZxuo75RAREWWSpALUpZSfCCFuA/B/ACirHOMBLAx5mgj584cAvial/CSZ4xEREcUSGRj62sGusH9ftmUv3li7OOpCq9oCv7LI7ZOBbGJ+CcwqK4bbO6xLudUW82MtfMRaeI/179yujMgYVpnQyrQAajWZFIBkBVxwD8cbuSjbqNUBZrclez7uCevbn7w4gMoNjbrf9LV3/RJ8rX4fPhsJmASAyolFeOXR23Q7BiWP7VN0zzQdRevxC9i86yiefaQq7cfX8+ZMvX7rTDln4u3rRo7tldfkOQUGfRL3zrsWOTmO4PjEMTJb74+4B6diXAG+UFGCY2f60OP2xlVGrf7Slt0dOHjyUuDPI+VSy0znGfLj1x9047mvzwcQ+O0cEJrnlMMh4AuJUHc4BJbdNCWushIBwB3/9G7Y+eXzS7x+qBtvHj6jS9+CY4jMZXa/mIiIiIj0xzUmIiKi9BGpZIUSQjgAfB3ANwEsBlAS8s+XAewFsA3Aq1JK9T1GyVDV1dWyra3N7GIQERlO2c77V4e6oz4v2mJ5XUM7trd2jtqq1Yjt0VPdOixWmdT+PTLQJ9FjhuL2kkTqlMx/Cits/Xyk+zIeqd+Plx9dhDnl40wti56MqJuJAODJlw/htYNdeHj+FFMC/ojoat9e7aYvvReKFm9+B6cuDiDXKTDkk7huQiGa1y/R9RhEerLKNtTpvE4zmVZQa7S+7qyNTRj0jT4HHAL45sLpuHBlELvaT+O6CYW4c1YpdrR2Is/pCJ43ToHgTfgSyY1ZIudPtM5LAMhzOnDPjdfi14e6IQHkOICpE4pQOWkM/v0/LQj7Ln70+mG89dHZQDlDMlwvfHo3ch0CKxdOw/aWTgz5JY7/5L6EypytGDgd4Or14P7nf4+eXg98MnAdlJUU4PXHb9fle9GaUyQiIkoW12CIiIzFNSYiIiL9CCEOSClVG9KUAtRVDlSMQJB6r5TSrdsbU9IYoE5E2WRjQzu2h2xZrSVy4d6MBX61xfy7ZpXC1efFU8vn4e9/fUT3xUM9Awg4OUqkbs3WNhzvuYJjLjdmlRXjc6VjTJ/Q+tJP30OHy42ZZcX47ZN3mVqWbMEgEHuySsAfZZ9MqzP0+jzKTV95TgcGfX7DAr64GEV2oxWcnJfjwLE0t1fpuk4zkVJXXje+EK8d6or53bl6PViz9QAkAhnPdx0+A6dDwOeXwbF9U/tpDPpGz/U7hcCv/3ox1mwNzBFPvaYQ592DmFScj+tLi9HT58GPH5gXV909a+Mu1WPkOQUmlxTg5MWB4GMOAXxpzmT8ePk8PPd2R9h8zaqFoz8v+2LG0Dtw2s79FiPqLJ63lA52vu6IKHlcgyGiVLEPQUREROkSLUDdoeeBpJRuKWU3g9OJiMgM59xerFo0HUtuKFP9d4cAHqiqQPP62rDHm9fV4v6qChTkBprFglyH6vP0pLZ12Kc9V3Do5CU88dKh4DbdRh8z1nZlrl4PVtTvg8umW6NnO/5+6TW7rglvfXQWx1yBrvAxlxtvfXQWs+uaTClP5YZGVG5oRMdIeTpc7uBjZKwtuzsMqcfJWFr3but3SzdZldntpRF1hpmfSa/Pc87txcqF09Hw2O1YuXA6etxenUoYrn51NTYtn4c5FSXYtHweg9PJ8vaur0XlxKKwxyonFmGvgeNXLem6TjPRop/sRuvxC9h5sAtSAttaOlG5oVFz7LBldwcOnryEQycvYdfhMwAAnz/QS/EMBcb2e9cvUZ3b2PfDJZhTUYLm9UvQvH4JXvzubdj27YUY9kusXToD9aur4667v3pzBYBA9mnlGA4BDPpkWHA6APglUFqcjwVP7R6VTED5vIpoGdiNnJvJZLPrmlC5oRHbWjrjOsfiZeexjhF1lhlzipR97HzdERERkXnYhyAiIiIr0DWDOlkPM6gTUTZas7UNzcfOoX/IN+rf1LJ0AeZkflOyNb78h04MqWQgU+iZdSnRDJFambaYvcMeuMV0eum5S4EejnRfxndfOICuS1cDRaaOL8QvvnUr5pSPS3t5soFWYE2eU+DYU/eaUCJKhBLQe+J8f/CxyolFeOXR25hhJsOZ1V4amXHTjM/EDKJE6bN48zs4dXEAeU6BQZ/EdRMK0bx+idnFylqJZKWLFoj9QFXFqLFDtOcDQM3sUkwszsP5Pi/6h/yYOr4QDYe6Ys5tKO2EA4DadES8O88BwEPzp2BYSrzxQTf8MpAc4NpxBYAEbpw6Dk8snRlzXKKMpRo/PB0MvAeAh+dPwbOPVGl+ftKm9/iU7bw27iZBRuF1R5TduAaTfsw2TZmCfQgiIiJKt7RlUCciIrKC+tXVmFicBwCYXJKPWZOLUT19PMrG5uPUpQHV15iR+U3J1vj7kSxn+TnhzXJ+jkg561Jk9sx4M0QalWmL0oO/nzmS2aXASHMqxqEozxn2WGGek8HpBorMnqdQMk2StZWVFGB4JCAqbyQtqM8vuSCVwcxuL43IuGnmZ2IGUWsye4cAMsbcihKsWjQdv/zeYqxaNB1zKkrMLlJWSyQrnVp/0TGSjVxt7NC8rhZfmTs5mLFcofx16vhCrP/KDThyug+txy/gDycuRJ3biGwn1ILTKycWxdx5zukQqJldiodvmYorg8MYm58DiUDAgwQw7JP45eO3o351ddRxyZHuy7jx797CuStevPFBd1hwOgDsPNjFcWyS9B6fsp3Xxt0kyCh2v+7YD6VswPM8szDbNGUKu/chiIiIKLPkaP2DEOIvlD9LKV9QezxZoe9HRESkp8i7ws/2enG21wsHAD+AO4ryVF8XGqi9afk8g0sZTlk0HPT54RSBBWJli+xUg1tDJ9QiszdFywbRvK5WM9MWWT+TRrb8flb8HZSF6dBdCsx0eWAIsyYXY+2SmdjyTgcu9Q+ZWp5MV1ZSEMwcGWrn+13Y+X4XM5TYwNyKEtTMLrPMNUzGMru9NOLGJjM/k9Vu1KKAaOMBsi8zx6/Z6Ej3ZTxSvx8vP7oo7GbPyPmHbS2d2NbSGezzqY1XQutKhwD8ErhnXjmuGZOn2u8oKynApOL8UYHkf3Zj4DU7Wj7DtpbO4OMnLw5g2/7P8GrbSdV+p1o74RkKz6x34nw/Fjy1O6zvGlnHD/oC2dqVeuU//lsrSovz8dNHbsY//uoIjrncwXpHLXtfh8uN2XVNmHZNEfq8w3jixUO4c+YknDjfj9OXPcHv56s3V6R1HGvFMWYq9Byfsp3XxjqZjGL36479UMoGPM8zQ6x+PZHd2L0PQURERJlFM0AdwL8DkCP/vaDyeLIi34+IiEg3kYutCuVPOw92YedB6wUJKouGn/T04bx7EJOK83F9aXHSi4fxTKhFmzzl5EV0Vp94zpbfz4q/g9UWpls33h388zILZ/HOpECQO2dOwp96rqD70kBYoPo9cyfjHy1wTlB0VruGyVhWaC/Pub14aP4UfHymD7PLx6accdPsz2S1G7WyGRfYifTzxEuHgkHUv33yruDjsW4K0hqvqNWVkf2O0P7xObcX100oxE1TxwMAPjx1Cf3eITQdPg2pMkvvENDMjKfWTlSMK0BejgPdlwcwOCw1A8Oj1fFTJxRiz7EerPqX1uBjSr2T6xDBYwEIBsV7h/3ocLkBBALWlT8LgWAQfDrasNDvevObR9F6/AI2Nx3FsyuqDD2ukdTGV3r0bdnOE6WfHa879kMpG/A8t4d455zNTmBAZAQ79iGIiIgoMwmpNosNQAihjKqklNKp8niywt6PjFVdXS3b2trMLgYRUVptbGjHjtZO5Dkdo7J0KfJyHDiWwROFrl6P5oTaHZvfVf1eIidP12xtQ+nYgrDJCyVwb8+ePaipqUnXx7EMtcxvwOjvzgqi/X5Wk2hwsp1+B4rP37xyCDvf78LDt0yxdSCI4vofNI7Kog7wHCWyIiu0l3UN7dje2omVC6Zp3nCVSFsZ6zNl0k1BpC3aeIC/O1F8Kjc0av7biWfuAwA8+fIhvHawC3k5Dgz5/Fi5YBpePXBKdbwiBNDyw6VxXYOx2oa6hnZsa+lE5cQinLw4AF9I5/Ph+VPw7CNVmu+t1k5MKs4PzqMMjnyOWDcBu3o9WPiT3apB8kAgEH1w2K/aL3YIoHxcIbouDQQfmzq+ENMmFuH60uK0tsvKd6kmkd/MSuLpWxARGYX9UMoG6TjPs3UNRk+J9IlC1xXj7Q8TEREREVGAEOKAlFJ1IjdaBvX/lODjRERElhB6V/i/7P0UTe1nMDDkC/575cQivPLobSaW0HhlJQXIEQKeIT/yIrJnxpsN4scPzMPjLx7EpLF5zCI7wk6ZNOyUBTjRTOh2+h0ousibDXa+34Wd71tvl4tE3TlzElqPX4Rn2Ae/BASAa8cV4PXHbze7aEQUwcz2MpGMa4m0lbE+kxV3ICH9pSub/pHuy3ikfj9efnQR5pSP0/W9icy2a+1ifPeFA6OCqH/xrVuDf//DiQsAgC/dUIYJxfno6fMExyuNH3TDJwGnAK67pggnzvdHrXtdvR4sfHp32NalkW1DZNtx4nx/8M8CwIyyYpy/MogV9fs0b0RSayfWbG1LOLvelt0dkDIwx3Km1wPPkB8Cge1TBRC2q10ogUB/uetS+DEK85zY8d1Fo8pmFK0bn0NJCVu1l8zmSqH2dvTgW//Wiv/97QVYPKPU7OJQFjF7VyeidOB5bm3J9ImYbZqIiIiIyBiaAepSyv+dyONERERWEbrY+tMVVWg9/g5OXRxAnlNg0Cfh88usmChUWygH4p88ZfDSaOmeeM70DKfJLp4n+ztk+vdpR1q7OWk9bhf//pcLg1l38nMCWXeW3lDG846IwgQDGD88DZ9fwukQWHZTedgNV3oGmjFoLfukY4H9iZcOoc87jCdePITfPnmX7u+vB/YBKVlzKsahKC98I9DCPCfmlI8bVac2Hj4DILBjzh3/FL5rmU9eDSSPdTOSHHkPQMI7LEfdjNu8rhYr6vcF388hgGnXFGHTg/Pw5uGz6OnzoLQ4H9tbO2OO5UOvjURu2IoWJC8j/q/l3/9yIRY89TZmTS7G2iUzseWdDlzqH4rxKn1F3visxU7tZao3c7O+zCyPbX8fPgk8tu19fPj3XzG7OJRlGOhJ2YDnuXUl0yeyU8IfIiIiIiI7iZZBnYiIKCPMrShBzeyyrJkojLZQrog2ecrgpejSOfGc6TcJpLJ4nszvkOnfpx3tXb8EX6vfh89CgloyZZcLLlIRWYdVg61GBTD6JV4/1I03D58J9rn03DWEO5BkHyMX2Cs3NIb9vcPlDj524pn7dD1WqtgHpFRcHhhSDaKOWqdK4P7n96KnbxA+vwxmFQegWvdGjsEj/6zcjKuW8dsvgZMX+rF4Rin+8n+1YdAX/1g+2Wsj8rM7BDBlfCGmXlOI1k8vwBcjOl0iUIeE1hXLbq6I+/h6UbvxGQBynALDIR/CTu1lqjfVs77MDJFtdK9n2LJtNGUuBnqS3qw4rud5bl3McE9EREREZB0MUCciooyXbROF8QQfRftOGLwUXTrOp2y5SSCVieJUMvxl6vdpR2UlBfD5A8EfuU6BoQza5SLb2h4iK7NqsFXzulrc//zv0dPrgU8CThGoF19//Pbgc/RcVOUCLelp19rF+O4LB9B1aSD42NTxhfjFt241sVTh2AckPbRuvDv459Ag6lh16tIbJgd301HOQ626t3ldLRY+vVs167gDAj1ub/B5m3b9EW980A2/DLxf+bhCVE4sDJTvpnK8drALToeAzz86+7oinmsjWhBY5Gcf9Plx16xSSAD7P70QfKww14H+wdGZya1UV4TeVLpmaxuAQD/+iZcOosPltmV7mcyNsqwvM8u2by/Ad184gIEhX/Cxwlwn/qdFrjsiomRYdVxP1sXkIURERERE1sAAdSIiIoOYldUj1eAjBi+ZL5tuEkjHRHE2fZ92lMm7XFgxuxNRNrF6sFVZSQGW3lAWDGAc9Pmx9IayUfWFnm0lF2jtz+y2JfT4RXnOsH8rzHNiTvm4tJdJC/uAZLRodapW4POO1k6cunAFK+r3Ba/jspICFOc70ee9GkzqdAgsu6kcG+/7QvBaV8bqEgi2G4tnTMSrB06FZUxWbgD1DKmP5eO5NmIFgWl99tDHXmz5TPV7s1JdEXpTafP6JcE/X186Bguvn2jL9jKZG2VZX2aWxTNLkesUGBi6+liuU2DxjFLzCkVElCSrj+vJupg8hEib2XNLRERElF1SDlAXQjgAfB7ABABx9V6klL9L9bhERERWpyzoPrPrKE5dGkjrQD/V4CMGL5kjdFIoW24SSGWiON5JNN50YW2ZvFjA7E5E5oo32OpI92U8Ur8fLz+6KO0Bc/H0ufSsJzO5zs0WZrctoce/PDCEWZOLsXbJTGx5pwOX+odiv0EasQ9IRotWp0YGPrt6Pfh/th6AEMD1k8bgvYNd2PJ2B7a1dKq+t88vVc9XtXYjsr1zCuCOWaWYWJwXzL4eKtq1EW8QWLTPHvkeoT43aQxOnLsCV5/H0tei2ufL5CAO1peZxzPsx7jCHPzVXZ/Hf3/vEwwMqV+TRERWx5uoiIj0Z/bcEhEREWWXpAPUhRBLAXwfwFIAeQm8VKZyXCIiIquLXIx97WAXAGDR07vx6U/u0+040RZHQxdT1y6ZgcdfPBi2AKz1WrXHGbyUPqGTQrxJILZEJtH4fWa3dAeTMLsTUfqpXefxBls98dIh9HmH8cSLh/DbJ+9Ka7kZME7xMrttUTs+AFweGMKymyuw7OYKw8uQDLP7gHYKaLVTWe1oy+4OHDp5CQBwsDPwf63g9LKx+fgPn5ugGlyu1W6EtneDPj+uKcrDyQuBG+XVaF0b8QSBxTpXor3Hlrc7sP38FVsGQmR6EIfZ9SXp61hI3+DRmhkmloSIKDW8iYqISD9mzy0RERFRdhJSysRfJMQ/Afgb5a8JvlxKKZ2xn0Z6qK6ulm1tbWYXg4jIkoxagHf1erBp1x/xq0Pdqv+u10C/rqEd21s7sXLBtKiLo2rP03ptvO+5Z88e1NTUpPwZFNkeDKGVYY6TQur4fVGi4q3b9KK0A2pBOdlYxxGlg9Z1vmZrG0rHFoQFWynBfZUbGjXf78Qz+t1USPZi1X5pZNviEMCX50zGPy6fl5Zysm1LTrr7IKmwU1ntwtXrwcKf7Ea06fcHqirw4clLOH6+P/jYzLLihG+Yimzv3vvYhVOXBpL6PTc2tGNHayfynIFg92TmDSLfQwDwq3wPdhjDcfxJRERkrmjj+kym9xoMERHndoiIiMgoQogDUkrVgVrCmcyFECsA/G3IQx0A9gI4C2B0WhciIiKLMir7lZLVAwAc4uoirF7bT8Z7h7vW80KpPRbtPY2i/Babm47i5MUBywUEGS1TtipNV0BXpnxfZDyzMoIwuxOlg1WDaNMt1nUeLUP5rrWL8d0XDqDr0kDwsanjC/GLb91qfMHJsqyaITe0bXEKwCeBT3qupO36Z9uWGDtlJbNTWe3mmaajkBKoGFeAM72esABthwhsMzo2PwdXBn2YNbkYa5fMxJZ3OnCpfyjhYyntXTy/Z6w+hFYm7UTOlcj3OHWhHyVFuWj8oBs+CTgFsOzmCkPHcHr1lTj+JCIiMhd3HiMi0gfndoiIiMgMCQeoA/jeyP+HAHxbSrlNx/IQEREZLh0L8OfcXqxaNB0X3F7sOnwGDgHdBvrxLo6qPa9mVin8AH53rCfstWvuvB7/43efpmXBNXSR+I7N74b9Fjvf7wIA3Pb0bnzyk+zJXJopk0LpCujKlO8rFANNjWFmMIlWYA+RXqwaRJtuqVzncyrGoSgvfIO3wjwn5pSPM6q4ZGF2CNJ9sbUTUgK+kb93uNyo3NCYtjKybYufnQJajSrrke7LeKR+P15+dFHW1auR9Un35dHXyp/NvRYTivPR0+dB68a7g+OBbd9ZaHgwdaw+hFYQWCLnSuR7RH4nPgm8fqgbbx4+k1T9Fc/4Sa++UiaOP7VwXEpERERElNk4t0NERETplkyA+s0IJHj5nwxOJyIiu3H1ejCnvASlJfmjgrT1DBZQFmPXbG3Dw7dMwcdn+jC7fCx63KlvNhLv4qja8yYV50MCo147p2Jc2hZcQxeJlQXuXx3qDnuOTyKtwTZWYOdJITMCuuz8falhoKkxzAwmYXYnMoodgmjTKdXr/PLAUMpZaykz2CGgeP8PlppaRrZt8bNTQKtRZX3ipUPo8w7jiRcP4bdP3gUge4JfpVR/XAC498ZyfHjqEoalDLuO0hFMnWofIvS9RYI34Tevq8X9z+9FT98gfH4Jp0OgbGw+Xn/89qQ+Z7Tvy4i+UqaNP7VwXEpkfdnSlhIRUXZje2cczu0QERFRuiUToC5G/t+sZ0GIiIjSYcvuDhw6dQkzSovTEixQv7oadQ3t+Oh0L6quG49nV1fp8r7xLo5qPU/tMaMXXLUWiR0CECLQwVC2PLdiQJDRtCaF7DARZ0ZAV6ZMojHQ1HjZEkxC2cMOQbTplsp13rrx7uCfl91cYUTxyCbsEFAcWUbPkB/7PjlvdrFIg536IHqWtXJDY9jflUz/ALBq4TTLBr+mOu4Kff3e9bVYUb8PJ873B/+9cmIRXnn0tlHvbXQw9b/s/RSN7aex9u6ZSfchQj/bObcXM0uLcczlRkGuA6cuDcR8TdnYApSVFGDpDZOxozXw2QZ9fiy9oSzh7zqe78uIvlKmjD+1cFxKZB+8kYSIiLIB2zsiIiKizCGkVkoXrRcI8QGAeQD+o5RyqyGlIt1UV1fLtrY2s4tBRGS6yMU2Ra5T4JH/MA09fZ6wBUcjj5kJC3x79uxBTU1NQq9x9XpUF4kvDwxh6oQiXHB7sevwGThEYKuWlQumceIJwN+8cgg73+/Cw7dMwbMrqswujqaNDe3Y0dqJPGcg2IC/X3y0rouN933BUgFxRGQtrHOJjLFmaxtKxxaEBenqPUZIVWgZn3jpIDpcbqxayDqArONI92V894UD6NIIXA5lpbFxXUM7trd24sGqKTh1aSBmoHpkALbyeqVNXrz5HZy6OIA8p8CgT+K6CYVoXr9E9X2MHA9ElivRPoSr14NlP9sLV5/2bnBqv2PkcQF96th4vy/2lRLDcSmR9WXyPDMRqUtmDYaykx2SHMWL7R0RERGRPQkhDkgpVSd7k8mg/isANwK4HQAD1ImIyBaUDFqNH3TDJwGnCGTJNHKxjRlOw2llpXzu6/MBBBarVy2yR4bBdIiciNv5fhd2vt+l20Sc3pOWdsoQaSV2yNZKo2XSpD/ZE+tcImPYIUNu/epqzK5rwrb9nwUfY6ZbspI5FeNQlOcMe+xzE4tw43XjLTk2jhx3vXawCwCw6Ond+PQn92m+Tsnot+jp3cGdwIDwncLiGd+mOh7Q6pdG28Es3j6EVnBIJO+wH7PrmvDxpj+LOxN3snVsvN8X+0qJ4biUyPo4z0xERFoyKds42zsiIiKizJNMgPrPAawB8BdCiJ9JKT/SuUxERES6u+Of3g1bJPVJ4PVD3Xjz8BnDgjjiWeDLtiDHaIvE0QKC9Pye7PKda+1yk+juN1r0nrSsX12d1Hdrl9/DSAyesJ9MmvQne7JDEC1RqthH0MYFW7K6ywNDmDW5GGuXzMSWdzpwqX/IssGvyvX0q0PdYY/7JVC5oXFUYHVkAHbk6Ewt83SstjqV8YBWvzRaPRFPueINTnc6BJbdVB6sf9JRP8XzfbGvlDiOS4msjTeSEBFRpHhvDrUTtndEREREmSfhAHUp5VkhxAMA3gKwWwjxPSnlTv2LRkREpJ/mdbW4//m96OkbhM8v4XQIlI3Nx+uP3w7AuACYWAt82RbkmOwicSrfU+Rva5fvfO/6Jfha/T58dr4/+FjlxCK88uhtKb2vkZOWyXy3dvk9jMTgCfvIxEl/IiKrYh9BGxdsyepaN94d/POymysABHbMsmLwq3I9AYBDIJgNXSuwWi0A+9qSApw435/09ZjIeEAZ3x7qvIhB39Xw+Mh+aSL1hNp8SPO6Wix4erdmOQQC35fPL8PeNx31E8dPxuD3SmR9vJGEKL140zRZXabevM72joiIiCizJJNBHVLKfUKIGwH8EsArQoizAA4AOA8gVmoVKaX8djLHJSIiSlZZSQGW3jAZO1oDC7aDPj+W3lAWnFg0KgBGa4GPQY7x0eN7Un7b257eDZ/K1utW/c7LSgrgG4mOyHUKDPkkfH6Z8mS4EZOWyfxOybyGiwKZx26/aaZO+hMRWQn7yfHhgi3ZjZWDX8+5vVi1aDouuL3YdfgMHAKagdVqAdg+v8SqRem5HpXx7UPzp2DIL6P2S7XqiXhu4i4rid43Xxnl87J+IiIyhpXbUqJMxJumKVVGz31n6s3rbO+IiIiI9GGVWIykAtSFEOMA/D2AuQgkTLkWwL0JvAUD1ImIKO3UFknNCoBhkGN8UvmeIn9bX8S/2+E7n1tRgprZZbou7BsxaZnM75TMa55pOorW4xeweddRPPtIVdLlJeuw20JPpk76ExFZCfvJ8alfXW2ZyUUiu1MCINZsbYsr0FxtbmHtkhmGXo+R49ud73cF/6zVL9UK7FD64Iue2h2WaSaR+RDl/dQCRhINKGFdRkRERFbCm6ZJL+mY++bNoURE+uDcBBFlIqvEYiQcoC6EKAbwDoCqyH+K8y1k7KcQERHpT22R1NXriRoAY9RgxI5BjqHfRbqk8j1pbb3+2YV+5Dnt8Z0blSlC70nLZH6nRF4zKhjjYBd2HuzKiEWBbJ3wsPNCDyf9iYiMZcd+slmsMLmYrX2ZbJbJv3m84y+159U1tBt6PaqNbycU5eGLn5+Eby/+HP5l76dobD+NtXfP1PxdIvvgkZP0kfMhrT9cigVP7x71Pq0bl+r2uQD967JMPkeJYrHC+W+FMhARpYI3TVOq0jn3zWzjRET6sMI8KxGRXqwWi+FI4jVrAcxHICD9NIAfArgLwA0APhfHf9enXGoiIiKdxAqACR2M6E0Jcmx47HasXDgdPW6v7sfQk5HfRTTJfk9aW6/b6Ts3Sv3qamxaPg9zKkqwafm8sEnMZCXzO8X7Gqlxe2Mm3PVo1nVltuZ1tbi/qgIFuYHhSEGuAw9UVaB5fa3JJYvNiOuHiIjC2a2fnG6z65pQuaER21o6IWVgcrFyQyNm1zWlvSzZ2pfJZkb95q5eD1bU74PLIjf/xVuedF2PyvjWM+SHAOAZ8mPpDWV4dsXNmFNRgqJcJy4NDEX9XZrX1aJyYpHmv3uG/Pj1B93B+ZCykquBpaGZafQKODXqu2O9RNFYra7RmxXOfyuUgShVmV5XUHS8aZpSpcx9Ox2BXrTTIWwz901ElG2sNM9KRKSXYH90ZFLXKWBqf1RIrYgfrRcI8SGAeQBOAFggpTxnQLlIJ9XV1bKtrc3sYhARWcaR7st4pH4/Xn50EeaUjwMQ2Ma7dGxBWDbcPR/3hN1RpsjLceCYxbP76i3y7jqFVTIdR8vMpPbb2j2YNBszUSmLQifO9wcfq5xYhFcevc2234HVr6t02NjQjh2tnchzOjDo82PlgmnMSkBERBSHaLtApatvxL6MPuzUtzf6N69raMf21k7L9AnjLU/k9egQwJfnTMY/Lp+ny28aOofx3Nsd+LTnCv7kcmNGWTGuLx2jOXcR+bto/X4KB4ApEwrx+bJi/Pt/WhB83Mgxtd51GesliofV6hq9WOH8t0IZiPSSqXUFxc8K6wp79uxBTU1NWo9J+mCbSERkH1aYZyUi0psZ/VEhxAEppeqgKZkM6tcjkLDyeQanExGR3Tzx0iH0eYfxxIuHAAQGHRf7h7B26YywbLiR2X2VTAdfvbE8peObkX0l1WOqZTpeVO60TLaHaJmZMjHTcTZmoiorKcCwP3BTZd7IbZ4+v7TsxEA815ydM4jrhdlxidKDmd+IMo8VMvqxL6MPO/XtjfrNrZapKt7yKO0rBILXo1MAfgl80nMlrusxnjZamcO497m9eOujs+hwuSEBdLjceOujs5BSxvW7KL+fFj+Au2aVhgWnA8aOqfWuy1gvUTRWq2v0ZoXz3wplIEpVptcVFL9MXFeg9GleV4trxxWEZawsH1fANpGIyIKsMM9KRKS3QH80P2xHHzP7ozlJvOYKgEIAn+lcFiIiIsNUbmgM+3uHyx18TAhgy9sdYdlQQrfPBgLBsACw82AXdh7sSvrOMiUAYXPTUZy8OKBLpjxXrwf/z9YDEAKoX33rqPcLDXpIJuOL2sCsMEefgVkqGQMj7/rb1tKJbS2dGZuFIts+b6S5FSWomV0WlrXGquK55jjhgbCFnU3L55lYEqLMlmo/gIisSbnRy6y+EfsyqbFj396o37x5Xa1mpqp0UcbUwz4/ZpYVo2JCIX53rCdqeULb1xdbA0FsvpF/U+YbYv2e0droyDmMSKHleu7tjpi/i/L7hRqT50TN7DIAwIenLplyw6iedRnrJYrGCnWNkaxw/quVIcch8PgOe+wUQgRkfl1BROlRVlKApTeUYUdrYIw36PNj6Q1lbAuJiCzK7HlWIiK9Bfqjky3TH00mQP0IgDsBXKtzWYiIiAyza+1ifPeFA+i6NDDq35RsKJEBAefcXjx8yxScuzKIvcd64JNIelI6MgBh5/tdAIDbnt6NT35yH4Dkg7W37O7AoZOXAn8OWdjWM+ghcmB25NNTCb0+WtmTDZrLtgWDTP288Z73ocHMa5fMwOMvHoSrz2OpSd1ErzlOeBCRkewY/EgUr1RucswUVrjRi32Z5Nm1b2/Ebx5vUKWR133omBoAvMN+zfKota8A4BBAXo4j6u+pfIZDJy9hMEYbrTaHMSbPiSuDvlHliud3UQt4vzLoQ2P7aZx45r4kvjV96F2XsV4iLVYI4DaaFc7/yDK897ELpy4N8GZZso1sqCuIKD2s0C4TEVF8rDDPSkSkNyv1R4WUMrEXCPGXAP4FQLOU8i5DSkW6qa6ulm1tbWYXg4jIEr700/fQ4XIH/16c78SwX45aQI6ccN7Y0I4drZ3IcwbuLFu5YFrCiyquXg827fojfnWoW/Xf83Mc+NqtU7G9tTPu949cGI98v2hBD6lOqu/Zswc1NTVJv16r7IkGzenx29hJJn7euob2hM77ZF+TDsp1bsQ1R2QVDAq1D9ZJlMms2hcgSkQm9u2TtWZrG0rHFoRNlocuDgLGXPfRxtQAkOsUeOQ/TAsrj1b76hQCDYe6ov6eymd4sGoKhqWM2UZHzmGMyXPiwVumRv2etETLyG5mgDpROsVT15A+9Jr3IzID6wqyilTXYIiIiIiIiNJFCHFASqk6eE4mg/r/AvBNALVCiPVSys0plY6IiChNLg8MYdbkYqxdMhNb3ulA54X+uLKh6HFnmZJ9RQhAAPCP3B9WkOvA4Eh2NiXzWrwZTpvX1aLu9cN4+8jZ4Ps5BfClOZPxj8vnoWysdTO+6JUx0Ep3/aVDJn3eZDL7Wj0bMLMsUTZIZecLSi/WSZSJrN4XIEpEJvXtUxUtU5WR173amDrU/TdVjNq9Sat97Ynye0Z+htcOdgX/HK2NjpzDuNQ/FPx+omX04g2FROqYFS99lHm/xg+64ZOB+cplN1dYfqcQIoB1BREREREREZGeEg5Ql1JKIcQDCASqPy2EuBPA8wBapJTn9S4gERGRXlo33h3887KbK1SzoajRa1JaCUC44PZi1+EzcIjA1uHRsqdFU1ZSgNLi/LCFdJ8EJhXnBxehrRr0oFfQXLYtGGTS51UWK986fBreYYn8HIF75pVHPe/1urHBSFa95ohSxaBQe2KdpI6Be/Zlh74AUbwyqW9vJCOve7UxdaidB7uwcySYPPTmPLX2NTTD+rGzffj5N+dH/QwTivLwxRkT8e3br9dsoyPnMOIVeUPhke7LKMgV8AyN/qDbvrMg7vclIorXHf/0btj40SeB1w91483DZzh+JCIiIiIiIiLKIgkHqAshfKF/BXDPyH8QQsTzFlJKmUzmdiIiIl2lOyBAOd6arW1YtSh8MXtScX5Swdrn3F5cN6EQN00dDwD48NQl9Li9o44JWC/ogUFz2e3qTQqBIAnvsIx53uuZDdio4EQrX3NEqWBQqD2xTlLHnQDsizsDEGUfva57rf6/MqYe9PmR4xA45x4MC6pUaN2cF9m+qrUxap9h6Q1lwX/Xq42etXEXBn1Xg9CVMkezeEapLscmIgrVvK4W9z+/Fz19g/D5JZwOgbKx+Xj98dvNLhoREREREREREaVRMoHikVHocUWlExERUYBasNiarW1JBWuHvleyUg3UTfb1DJrLbpHZmIFAAMWrB05Fzaal140NDE6kTJDOLNCZFhTKDNrZiTsBZAbe5Eh6YDtgL3pc91r9/yeWzsQj9fvx8qOLMKd8HDY2tGNHaydyHQKDPgkBQAJwOgSW3aS945NWGyME0PLDpQl9hiPdl8PKFK+750zGrvbAbm1aWeHVys02kIj0VlZSgKU3TMaO1kBfe9AXuDGHbS4REWUTjjuJiIiIiAAhZZyz1coLhNiDwLx80qSUtam8nuJXXV0t29razC4GEREZRI8JrrqGdmxv7cTKBdPCFuqjvfeePXtQU1MT9fV6lY8yk6vXo5mN2chzRS0wHgCDE8mWotW/RliztQ2lYwvCAqv0uFHKDOn+7sgazGp7iMh62A5kPmUseujkJQxG6f9/6afvocPlxsyyYvz2ybuC/Z2X/9CJId/oKXCtcYNaG3NtSQFOnO/HqoWJnWe1/3UPjp+7gs9NGoN3/7Ym5vO1xjgAUJTnRP+gb9TjBbkO3DWrFK4+L+pX35p0O8gxPxFpyaTxIxGRGULXYMieOO4kIiIiomwhhDggpVSd+Ek4QJ3shQHqRESp03vBVa/3c/V6sOxne+Hq8ya84A3EDtSNNnm2Z88erHl7IGagLyfg9JeuAIB0HEfJTpjnDGTTSsd5wuBEygS80SJ5/O7sS692yYy2h4isg+1A9lDGotcU5aG6cgLeO9YT1v9//VC35mtPPHMfXL0e3P/87+Hq9cAvAYcAJpcU4PXHb9dsh5Q2Rmu6PdZ5VrmhMWqZ1Lh6PVj49G7VbDIOAIV5TlyJCFBXshnPKC3Gn3rcKbWFHPMTERERGYMB6vbFcScRERERZZtoAeqOdBeGiIjIbja/eRStxy9gc9NRXd4vdGvxZM2ua8KCp3fD1ecFENg+vHJDI2bXNcX9Hs3ranF/VQUKcgPdgYJcBx6oqoBEYGF8W0tgYV3rvbVe37y+FrPrmuJ6D0qcHuePVY6jbHPf8NjtWLlwOnrcXsOOpSgrKcDY/Bx4h/3Iz3HAO+zH2PwcBqeTrUSrfyk6fnf2pVe7ZEbbQ0TWwXYg80WORc9fGcRbH52FZyi8/79r7WJMGV8Y9tqp4wux64nFAALjhqU3lME/Evntl8DSG8qijhuUNmbbtxegcmIRHCLweLznWY5Qfzw3ygz+lt0dgACK851hj1dOLML+jUsxJj8HsyYX4+ffmI8xeU4U5jrglxJSAh0ud9LjdY75iYiIiIjUcdxJRERERHRVjtkFICIisqrILAc73+/Czve7ks5yEPl+21o6sa2lM+H308q+4BBIaIJLK1B377pazQzT8by+bGwBmkfe463DZ4L/fs+80e9hB1bZslyv88cqxwEQtrXzpuXzdH3vaJTAkdBtponshDdaJI/fnf3o3S6Z1fYQkTWY3Q5YZWyRKdS+z4bHvoh7t+xVfb5fysDNSX0ezKkYh6K88KDuwjwn5pSPA6A+7t7W0olXD5zSbH9+/MA8PP7iQaxdOgO3z5iEz1o7EzrP/BqZ14W4GrmufOZDnRcx6Lv6Arc3PEu6zy9RNrYArRvvDj627OaK4HvEM+bX4ur1YE55CUpL8vG7iMz0dhzzG4nXPFF68ZojIiIrMHvcSURERERkJcygTkREpEFq7Mut9XgsemVNUN7H6QhPr/Zg1ZSEJ7jUsogmMnmmlYU09D0A2HoCLl0Zy2NJV9aNbMjuUb+6GpuWz8OcihJsWj4vLFiRyC6YBTp5/O7sJRvaJSJKLzPbAauMLTLFM00ju53turrb2b80Hx/1PKcAHqiqwO83LAnr/18eGApmF581uRiXB4aCr0mm/Qn9fRM5z5Rs5KNvQx8REqCuHGNsQS6um1Co9QqcvDiAyg2Nqv+WasDMlt0dOHTqEo73XMmqoBtXrwcr6vfBlcANzrzmidKL1xwREVkF5x+JiIiIiAJSzqAuhJgBYDmAhQDKAYwF0AegG0ArgAYp5SepHoeIiCjd9q5fgq/V78Nn5/uDj1VOLMIrj96W1PvplTVBeR+fX8IpAlnWZpQVwz04nHCZtLKIxpthWuv1yWSbsxojM4knk9EpXVk3UjkOM1URpQ+zQCeP3529MOsUEenNjHYgnbsUZYNRu50d7MLOg12az/dJYN8n54N/V8Ytb6xdHGxPQrOLK2OaeNsftd8XAPJzHNi0fF7M8yxyB7JQhbkOvLeudtQxzl8ZxPkr2u85dXwhfvGtWzX/PZldpSLL0OFyAwjPTJ/JQgNfNz14Y9Tn8ponSi9ec0REZDWcfyQiIiIiCkg6QF0IMRHAfwPwMACh8bSHATwjhPg/AB6XUp5L9nhERETpVlZSAN/IHtu5ToEhnwxuk52sZBaBtd5n1aLw99EzC3Sqk2fKAnuyW4ZbgZGfIZGF7VB6nT9GHSfZz0VERBRNuto/IiKjZML4yEoS2dQs1ylQOXEMOlzu4Dgl2rhFLQt6rPYn1d9XuRlr0Dc6h/qk4nyUjS1Aw2NfxL1b9mq+R44DCI1tL8xzYk75OM3nJzPmj/Y5M/nGsWQCX3nNE6UXrzkiIiIiIiIiImtKKkBdCDEdQDOAKdAOTg8+HcDXANwmhFgspTyZzDGJiIiMdqT7Mh6p34+XH10UXMidW1GCmtllugVE6ZU1werZFzIh26kRnyHVjE7p+t0TPU4mZapiFnjKVjz3ycqs3u8hIoolE8ZHVrJ3fS1W1O/DiZDdzqZOKAQAnLo4EHxMABjyyWCmb2WcoggdtwBIOgt6qr+vq9eDXe2nIQBExt6fvDiAWXVNWHHrVM3XCwHkOh24vrQIa5fMxJZ3OnCpfyiuYyciW8/jZAJfs/W7IjILrzkiIiIiIiIiImtyJPoCIYQDwK8ATEVgnv80gB8BWAhgAoDckf8vGHm8e+R51wH4tRAiVkA7ERGRKZ546RD6vMN44sVDwcfqV1dj7ZIZ+Ptff4S1S2fomqU80ynZ5hoeuz2w3bfba3aRwrh6PVhRvw+uKDcd6P0ZmtfV4v6qChTkBrpgBbkOPFBVgeb1tSm9r9ky6XOFZkwkyiY894mIiIxl9fGRnZSVFGBY2e1sZHbb778a2p3nDEw/l48rCBun5Oc4MGV8IfJzAv8eOm5RxjROR+DfHAKYUJiLmZOLo44ZFan8vlt2d+DSwBCWV00JK69SlsFhf1hgfSQpA8H1v/n+XVh2cwV+8/270Lrx7riPn4hsPI+TDXzNxu+KyEy85oiIiIiIiIiIrEfIRPZEBSCE+BaA/4VAQpdGACullH1Rnl8MYDuAr4685j9KKbcmXWJKSHV1tWxrazO7GERElla5oVHz3048cx/qGtqxvbUTKxdMG7X9t9HizWib7sy3e/bsQU1NTdKvt0KmXrN+140N7djR2ok8pwODPr8p55UR7P65IrPAK+yYBT5RVrgeyTzZfO4T2Vk8dTfr98zH35j0ZLfzac3WNpSOLcCFK4PY1X4a100oxJyKEpSOLQjugHbqQj8+On0Z59yDwXHKjNJi/KnHDcjARPXDt0zBsyuqNPtEALBqoTFjm2jHTFSeU+DYU/fq8l40mnK+he6uxwQGREREZKRU12CIiIiIiIjSRQhxQEqpOmGacAZ1AA+P/P84gK9FC04HACmlG8AKAJ+OPLQiiWMSEREZZtfaxZgyvjDssanjC5HrCASvb2vphJSBLb4rNzRidl1T2soWb0bbeJ4XT8bwdDEjU6/y+Wf+cFfCv6ue312mZnSy++cKZkwc2evHKWDbLPCJYubs7JZJOyAQZZN46u5k6ncr9Rcpts1vHkXr8QvY3HTU7KJQBrDb+bTn4x5s2/8ZdrWfBgCcvDiAtz46i1fbTmJORQk2LZ+HqRMK0dM3iJmlxcFxyuWBIcwsLYaSsqX1+AUAgT7RtePUA/OVMePnftCoW/3o6vVgTnkJvjx3clg/rGxsPq4pykW0LUiL851hf6+cWIS9G5boUi5SV7+6GpuWzwueWwxOJyJSd6T7Mm78u7dw5PRls4tCRERERERERBaQTAb1UwDKAfwXKeVTCbzuhwA2AeiWUk5N6KCUNGZQJyKKz5d++h46XO7g32eWFWP7dxZi064/4jcfnYFnyI+CXAe+MvdabLzvC4ZnlIs3o20imW8jM4aHZsiDRELZ8pLN3mFmpl7l81deMwbHz1+B0yHg88u4ftdUsq3bLRNhtsrGLNLZ+Jmtyux6wu47IBBlk3jq7lTqdzN3DqL4sQ0nPdn1fHL1ejTH63dsfjfhzOT5OQ78+a1Tsb2lEwJA6Iy5UwAV4wtx8uJAwtnU1fp5rl4Plv1sL3r6vMjPdcAz5EdejgODw358btIYnDh/BdGm7JXy5ToFhnwS100oRPN6BqgTEZH5lDn2mWXF+O2Td5ldHEsyew6I7IMZ1IkoU7DtIyIiynx6Z1CfNPL/Ywm+TknZNTGJYxIRERnq8sAQZk0uxs+/MR+zJhfj8sAQykoKMDY/B95hP/JzHPAO+zE2Pyctg+d4M9rG87zZdU2qGcNv+8nuYFbNdGVQNiNTb+TnP37+CgDA5w+s+HuGtH9Xre9u1samuLOLMju1PQQyJubD6QjkKnQ6BMrHFWR0FmlmzrYOs+sJu++AQJRN4qm7k6nftfo86dw5iOKnlWwi0SQURED6zie9d2iINl6PrAeFAL4ydzJ2rV2ML8+dDEdIenKnAO6ZOxnN62txzu3FqkXT8Wfzrg07lk8GMrQDidePkf282XVNWPD0brj6vJAIjEcBYHAkoP74Oe3gdKcAlt5QCglgVlkxXv/eYqxaNB1zKkri/NaIiIiMUbmhEZUbGoMJYDpc7uBjFM7sOSAiIqJ0Y9tHRESU3XKSeM0VAONH/kuE8vz+JI5JRERkqNaNdwf/vOzmiuCflaC9by6Yhh2tnejRaTE9lniD4+N5XvO62rDMcgrfyKL3tpbO4GPbWjqxraXTsGx5ZgT9K5//rcNnwrLoOQDcObsUE4vzNIMxI787JSvf0LAfuw6fweZdR/HsI1Wqr43MRGj0d0upKSspwNIbJmNHa+A3GvT5sfSGsozO5mDmTTgUYJV6on711ZuZNy2fl7bjElHi4qm7k6nftfo8G+/7ArMcWdDe9Uvwtfp9+Oz81Sm2yolFeOXR20wsFdlVus6n0AVpPXZocPV6sKv9NB66ZQq+ffv1YeP10HrQIQC/BD7tuYI5FeNQWpwPf0gAuE8Ck4rzUTa2INgnWrO1DddNKMRNU8fDM+TD//30PAYGfQAC48gJY/Kw9TsLopZPq5+XCp8Edh/tAQAcc7lx75Zmji+JiMgSdq1djO++cABdlwaCj00dX4hffOtWE0tlLVaZAyIiIkoXtn1EREQEJBegfgJAFYB7AfzPBF53b8jriYiIbMHMoL14g+NjPS8ySGnQ58f0a4pwptcTFrAOICwYyezPpRfl8w/6/HCKwKK+QwS2RJ86vjBqcETkd+cZ8uP1Q93Bf995sAs7D3apTqZEC/QiazLrhhQzZeNnthLWE0SUjHjq7kTr92hB7XUN7boGlVLqykoKgrsB5ToFhnwSPr+MeQMBbzYgNcmeT/EyakF6y+4OXBoYQmGOE3MqSkaN13e0dEIiMO4DrmZydQhgTJ4TVwZ9mHZNEaSUo25YDp0HiCy/H8D5K4NYtmUvPv3JfZrlU+vn1cwqhR/A20fOhgXJAwgG0it/lgAEgLEFOfiruz6P59/9BFcGh5E3Mi5lv5FIG9s7ovSbUzEORXnOsMcK85yYUz7OpBJZD+eAiIgo27DtIyIiIiC5APXfAJgP4H4hxMNSyp2xXiCEeAjAAwjMrb+VxDGJiIjSygqLWfEGx9evro5Z3sggpT0fu8ICkBTpyKBsRtC/8vk/6enDefcgJhXn4/rS4riCcUO/u2VbmuFXeY7aDuzMTm0/mZhFOlbdkImf2U5YTxBRMuKpu5Op3yP7iztaPlPdaSfP6UDVtPEM+jLZ3IoS1MwuS+gmM70zWFPmSOZ8ilc8C9LR+qyR/xZvwPtDt0zBzve7gjcpF+Q6MDjsh18CV0ayoXdeCGSNd/Wp76illP/+5/fizOXw5/glULmhUTPQXq2fN6k4HxIYFZyuvJ8SpP5nc6/FhOJ89PR5gvX5ozUzsLGhPbjjE/uNsVlhXofMwfaOyByXB4Ywa3Ix1i6ZiS3vdOBS/5DZRbIUzgEREVG2YdtHREREACCkVAupivICIaYC+BhAAQAfgP8K4KdSynMqz50I4D8DWAcgF8AAgFlSyq7Uik3xqq6ulm1tbWYXg4jIdp58+RBeO9iFh+dPwbOPVJldnJjqGtqxvbUTKxdMi2vxbc3WNrz10VnNfz/xjHYmOADYs2cPampqEi2mZSS7UO3q9WBF/T6cON8ffKxyYhFeefQ21fdZs7UNpWMLwgI9QgPGiIyWaN1A6cd6goisytXrUQ0qHfb50dh+Bg/fMgXPrqgyu5gUh8iAXkUyGawZ8EnJUAKr85yBHb0i+6Z1De3Y1tKJsrH5eGPt4rBzK7I/q1U3bbzvC6oB7KEemj8Fw1Ki8cPT8PklnA6BZTeVB18brfzbWzrDspxHHlcReo386JeHg/28f9n7Kd496sLNU8fhmuJ8vH3kLCYV52HyuAKcujAAn1/imjF5mH1tCdzeIdX+IPuNieFYKPvo2d4RWQ37YJmBbTklwu5rMEREANs+IiKibCGEOCClVG3kEw5QH3nDNQD+O64mDB0G8AGAYwCuABgDYCaAKgSytIuR5/6VlPIXCR+QksYAdSKixNhtMSuV8h7pvozvvnAAXZcGgo9NHV+IX3zr1pjbrxo9OWr0oksqC9WLN7+DUxcHkOcUGPRJXDehEM3rl+heRqJU2K0uIyLKZlYONgkNKtUK+GTbYm2uXg/WbD2A0pJ8/O5Yj2pAbyIY8EnJ0FqQjtZnBaD5b39+61TNgPfIAHanQ+COmZMwcUw+Gg6eUs1eHqseU8p/we3FrsNn4BCBiW6160DrGlEef2j+FDR3nEOP2xv2HF5b+uFYKHvFuoGFyM7YThBlHwaoExERERGRXUQLUM9J5g2llPVCCAD4KYBCBLKj3zryX9ixR/4/AOD7DE4nIiKr07pvK/HbudIjnu3StcypGIeiPGfYY4V5zpjB6elg1HbM8W4HH83cihLUzC4LC64gsppU6gYi0p+VA5DJfEb1e/Rwzu3FyoXT8c0F07BsSzPUQtSTSXxA6bNldwcOnbqEGaXFKW2prEc/mtLLSm1PaHa0TcvnBf/cvK4Wi36ye1TQuHfYjzynA/dXVaj2Z3/0y8PBuilyTBa5hfigz4+p4wux6cEbsf6e2bj/+d+jp9cD38gxC3MdeG9dbVzlX7O1DasWqR9X6xqJtPP9rqjP4bWVOmUs1PhBN3wScApg2c0VHAtlgcjrP5n2jshq2AcjIiIiIiIiIjtLKkAdCAapvwngCQAPApiu8rTPAOwE8DMp5WfJHouIiChd9q6vxYr6fThxvj/4WOXEIrzy6G0mlipcWKBBiotvlweGMGtyMdYumYkt73TgUv+QwaWPzuhFFz2CdrWCK4ishAvzRNZi5QBkMo8dgk1C+z37f7gUX6vfh88s3E/OJKkGF0eeXx0uNwDALyVWLpye8E2WvPnNfoxse/QKfi8rKcDyqil47eDVoG2nQ2DZTeXYeN8X8NzbHar92VhjMuXmmnvmTsaTr3yAUyO7hpWVFMDV6wkLiB8Y8mPBU7vjqnujHVfrGunzDOGdoz2a7ykAfHnuZLynssMBJeeOf3o3rP7zSeD1Q9148/AZy7SvZJzQm+uYVIAyAftgRERERERERGRnSQeoA8BI0PmTAJ4UQpQCKAcwFkAfgNNSSu3ZdyIiIgsqKynA8MhqdZ5TYNAn0T2ymK0HPRbyIwMNUll8a914d/DPy26uSKo8eopcdMnPESjOz8VzX6/Civp9ugRAZHPQrpWyKJLxuDBPZD47BCCTeewWbFJWUgDfSD851ykw5JPw+SX7FAZ5pukoWo9fwOZdR/HsI1UJvz7a+ZXMb5bt/Wg7SUfbo2fw+5XBYcwsK8afXG44BODzS4zNzwEksKv9NP7sxmvRea4f0ycWobH9NNbePTPmeacEktc1tKPH7cXU8YXBf7tz5iScON+P05c98A774RDAV2+uwJo7r09pzBl5jXiG/Hj9UHfM10kAvz1yFhLgtaWT5nW1uP/5vejpG4TPL+F0CJSNzcfrj99udtEoDZhUgDIN+2BERMnhWggRERERkTWkFKAeaiQYnQHpRERke3MrSlAzuwzfXDAN//mlgzjmcuuWdS6Vhfx4Ag0yYfFt/yfnR4LTA4su3uFB/MOvj+BPPfr8DokG7WbSRCYz+GYXLswTmc9uAciUXnYMNgntJ/PmJ2NE9vl3HuzCzoNdCQcXG3F+8eY3ezCy7dEz+D10nPWjXx7Gwusnhp1bW3Z34NLAEDrOuPGnHje8w35c7B/Csi178cbaxVHP5Vjl3NjQjh2tgb8P+gLXxo6WzpTHSqHXyH1bmiFjvwQAcOesUkydUGSLa+tI92U8Ur8fLz+6CHPKx5ldHFVlJQVYesPksN946Q1llm5fiYiiOef24qH5U/DxmT7MLh+LHrfX7CIREVke10KIiIiIiKxBSBnvVPnIC4T4i5E/viOlPJXA6yoA3A0AUsoXEjooJa26ulq2tbWZXQwiItuJXNBWJJt1To/3c/V6dM2CmIo9e/agpqYmqddGC/iua2jHtpZOCCDqYn66Ms+6ej1Y9rO96HF7sXLBNNtOZOp9PhMRxZJJN/ekSgmCy3MGAqTs3J6Q/tZsbUPp2IKwoMTQG4wo+8za2IRB3+h+W16OA8cS7Lfx/MpeStuj0KvtUcakbx0+De+wRH6OwD3zypMak9Y1tGN7aydWLpiGtUtnBvsNd2x+V3XsEinaWCbW2Dn02lj2s2b4VQafqY6VXL0efK1+Hz473x/1eQ/fMgXPrqhK+jjp9qWfvocOlxszy4rx2yfvMrs4mlj/EVGmCW03OZ4kyg6prMFkM66FEBERERGlnxDigJRSdQI2mQzq/45AzNiDAOIOUAdw48hr/QAYoE5ERJamd9Y5Pd7Pjlk21ahlroicNNQKTg8NgDCantkBzcYMvkSUbpvfPIrW4xewuemorYKujMCMw+F480I47nZBkfaur8WK+n04ERLUWjmxCK88elvC78XzK3udc3sxs7QYx1xuzCor1i3T6tUxaWDE5h2WUcekanW+1jgLALa83REcuyhB8Fq8w37MrmtSHZvFGjuHXhv7f7DUkLFSWUkBfCOR77lOgSHf1c/iEIBfArPKiuH2Dqd0nHSp3NAY9vcOlzv42Iln7jOjSFGx/iOiTJFJ85NEROnAtRAiIiIiImtxmHBMYcIxiYiIEqJ3MLhe76cEuTU8djtWLpxuqy1dZ9c1oXJDI7a1dELKwIJK5YZGzK5rQvO6WtxfVYGC3EDXpCDXgcqJRRACcI70HBwCGPRFD4DQs6xqWTYcAmheX2vosY2QKTc3EJH1KXX9zve7AAA73+8K1vXZqn51NTYtn4c5FSXYtHyeadk7Xb0erKjfB5fJAfKhN6rZnVW+U8osZSUFGB4Jas0b6Qj7/DIr+228xpIzu64Jb310FsdcbgDAMZcbb310Vpe2eHZdE7a3dIY9tq2lU/O91er8hse+iIlj8lQnpbe1dGLB07vxxgfdGPRJODRmkZ0OgQeqKqKOzeIdO+s1VnL1evDg87/H8ud/Hzxn51aUwCEQFpwOBILTnULgc6VjbJPVe9faxZgyvjDssanjC7HricUmlYiIKHl26mOozZnGagOJiLIZ10KIiIiIiKwlnQHqyrFi79FKRERkAXoHg+vxflYJcotFbaEn2oKK2qShzy+xcuF0LLj+Glw/aQzG5OfgoVumRP3e9FpgUsrqjAiIeHD+FNtOZNr55gYisg8p1TOdaj1O6WN2YHi0G9XsyuzvlDLX3IoSrFo0Hb/83mKsWjQdcypKzC6SKZ5pGtmNY9dRs4tiK0YGssX73rM27tKs85f9bC/OXxlUnSDOcwIPVFXgzlnAFkpOAAEAAElEQVSlcEDAr9F98Plj37hcv7oaa5fMwN//+iOsXToj6thZa6ykNr480n0ZN/7dWzhy+nLwMVevB8t+thcHT17CoZOXgu1C/epq7P/BUtXvbN8Pl1h2PK9mTsU4FOU5wx4rzHNiTvk4k0pERJQ8O/XjGWhJRJQ4roUQERERUTrY6QZ4M+Wk8VjlI//vS+MxiYiIkqb3ltDZtMV06ELPpgdvBBB7QUWZNPzmgmnY0dqJnj5P8Huqa2jH9tZOFOY48ezqqoSOmwylrD5pz+3X1WTT+UdE5tm7fgm+Vr8Pn53vDz5WObEIrzx6m4mlym5W2RI+k7ZYtsp3Go2r14PHXzyIn39zPoNXRtjpO8n2flvkNbbzYBd2Huyy1DVmBVrntJGBbGrvve+T86Oe99WbK7Dz/S44BeCTgaDswWG/6i5VoQZ9wNj8HDz39flw9Xqw6Ce7NYPUT1282tfQ+i7iHR9qXXNqr3/ipUPo8w7jiRcPYft3FmLhT3Yj8j68yHYhUwILLw8MYdbkYqxdMhNb3unApf4hs4tERJQQO/Tj1ajNmRJR5rHTmNXqsn1MTURERETpoVd8UqZLS4C6EGIqgL8a+esn6TgmERERpV+shZ5oCypqk4bxLhwZscB0zu3FqkXhZbVThjsiu+OijD2VlRTANxJJlusUGPJJ+PySv6GJrBIYnkmZ/6zynUbDSbHR+J3Yh9amG9yLI1y0c7rrYj+uKcpD6dh8zK0Yp2vGwNAx3X9+6SCOudzBMkSOy3wjP5pnyI+H5k/BsJTBulOLMpY78cx9WF41Ba8d7Ar+m1MA111ThM8u9GPqhKLg45HfRarjQ63Xh+pwubHg6d2a7/GVuZPx45FxbaYEFrZuvDv452U3V+j2vuz3k1XwXMx8dujHq2GgJVF24JiViIiIiMge7HoDvFlEtK3WhRBPAHgi4uFKBNaEegD0R74m8i0AjAEwMeSxp6SU/yXhklJSqqurZVtbm9nFICKiDLNnzx7U1NSMevxI92Ws+tdWXPEOwzscvtCTzOKeq9eDTbv+iLcOn4Z3WCI/R+CeeeWj3k95ntoCExcViYxnxEK+snPCg1VTcOrSAIMEbGTN1jaUji3I+ht8rBTgsrGhHTtaO5HndGDQ58fKBdNMWezMpHPD7O9U6/yKnBRT6DkpZqVzOx7p+E5IX8q2mCdUduOwwzlntHjO6bqG9mBA9aqF+tdPWmXIcwrcc2N5cFzmdAjcMXMSJo7Jh9s7hEnF+djR2gmBwC5Vt8+YiIOdl9A/6Au+x5g8J179q9swp3wc1mxtw6c9V9DhcidUvjynAxXjC4LnUKLjQ2V82fjhafj8MvA5ZkzE0bN9OHM5vmB/pwA++cl9CZU7Wyn9frP6J0QKnovZwex+PBFRJK2+da4D6Hia/UkiIiIiIqthfNJoQogDUkrVRV9HjNeORyAgffrI/yuV9wRQFvKY1n/TAUwaeb4AcAzAswmWn4iIiAykBIC4dMjitqOlExeuDOqWHfVqttXADXXeYan6fpmUlZXIjkIz/KRqdl0TKjc0YltLJ6QEXjvYhdbjF7AoSoZKvelZL2aj+tXV2LR8HuZUlGDT8nm2DUBOlZ7XRaqUzK0Nj92OlQun65pJNxGpnBtWuy7N/k61zq/mdbW4v6oCBbmB6Z6CXAceqKpA8/paw49tVen4TkhfZSUFGB7ZjSPPKQCAu3GEiHZOh/ajFNtaOlG5oRGz65oML8PeDUvCxmV+KTF1fCGeXXEz6ldXB+vON/76DqxaNB3F+TlhwekAcGXQh3uf24vZdU2oX12N60vHYNWi6dj27YWonFgER+CUQEGuA/fMnYypEwqDry3IdUAAGPT5w25w8Az58esPuuM+h+74p3fxq0PdwV1hfH6JPcfOxRWcLgAU5Tpxx8xJcR0rm0S25ZH9fiPOVaJ48FzMLmb344mIImn1rf9/dxXGeCWpsdr8EVGm4TVGRETE+KRE5cT490sAPot4bDoCGdTPIXYGdT8AN4DjAHYD+Dcp5ZXEi0lERERG0WPrSLUsH95hPxwCKS30qL3vtpZOvHrg1KiMl5mybbrCbtlJKTsZsX2VsuX2rw51hz3ul0Dlhsa0ZLzllrqUCitu65YJW8Jb7bo06zuNdX4ZOSlmxXM7HpwotKe5FSWomV2WMX17Pamd004h8PiOg2h47Iv4590dePvIWYzEVsMpgC/NmYx/jKirUhlvRLuuoo3LIutOV68Hu//oQl6OwKDPj+GRWPXrJhRi0th8uCJ22rh9xiR81hqodzxDfrz50dmwcnmGVLK65whUjCtE5aQxcX++hse+iAee/z2GfFd3Hi0fV4Ahnx/XjMnD2iUzsbGhHZc9w3AIhH3XPgk8dMsUS7RVVhPZliv9frVMQ0TpxHMxu2TC2IiIMotW33p8fqw8g6TGavNHRJmG1xgREVFApsUnGUlIKWM/K/QFQvgRCFB/UEr5K0NKRbqprq6WbW1tZheDiIgsKJ6t4bXs2bMHNTU1wb8btYVNNm+Nw62lyQ6MukY3NrRje0tnWMBPOq7/VOpFIoVyXbx1+ExwcfGeefqfu9lyIxOvy3Dx1LtrtrahdGxB2KSYHjsZ2LlfZtR3QmSWyHP6vY9dOHVpACsXTIMEsD0kgzoArFo4ekyR6ngj1evK1evBsp/tRY/bC63paYcAqiuvCbZ1ocf8172f4vefnIer1xPsL2pR+/zRfP4HjfCpvGdo2xNaljVbA3Ov9aurdaljMq2Nj9aW//mtU7GjtRN5TgcGfX6Of8k0GxvaM+JczLT6g6yF5xeRcdT61t+4zh22BkPRcf7IWthmZB5eY0RERBSNEOKAlFJ1UjxWBnU1nQgEqMfKnk5EREQWpmeGKKMyU2Zjxku7Zic1Eiczrcuoa/Sc24tVi6bjgtuLXYfPwCGQluufmfNID6HXBWDcuZst2Wp4XYaLp941KiuknftlzJRpLPbV0k85p9XGDor7biwHAHx46lLYrlZ6jTdSua60FrYj+SXQevwCFjy1G60bl4Yd89kVVcGAUuWmxuJ8J4b9Ep4hP5wCuGNWKSYW58W9q1e0cpWPK8Drj98e/HtoWZrXLwn+WY86JtPa+Ght+Y9+eZiZhsgSMiXrVabVH2QtPL/sh/10+1DrW+/Zs8ek0kRn1fOK80fWwjYj89j1GrNqnUX2xvOKiCgxCQeoSykrDSgHERERpZmeQUauXg92tZ/GQ/On4tuLP6frYl6mLBLGy66TPEbiZKa1GXGNKosya7a2YdWi9F3/dg6+JOtQC27b1tKJVw+c0uVGo2y7kSn0uhRpulnF6szsG2Vbv4wCYi266N1X4yJP/KKNHbS+O63XrLnzeqyo3zfqe9f794gVnB66g06oBU/tHtXWvdjaCSkDmVQAwO31Bf/ND2Dq+MKEzsnI7ybU0hvKDD8fM7WNj9bH5g1EZBV2PBdD6+c7Nr+bkfVHNrFy/ydT26dswDlVMoJVzyvO61oD24zMZddrzKp1FtnbM01H0Xr8AjbvOopnH6kyuzhERJaXTAZ1IiIiGqHX4oFZixB6BRlt2d2BSwNDKMx1YE5FiW6Lea5eDy72D+HHy+ehbGwB1i6ZgcdfPAhXn8fykx7JsuskjxE4mWkPRi7kmxEkwOBLSpXRNxpl441M59xezCwtxjGXG7PKiuPOhBuNlQNAYjEzgMqOwVuUOq3FPKP6alw8jF8yYwet1+xo6Rz1vbt6PVj2s73ocXt1+z2Udqzxg274QgLRy8flY+kXrg3uoKPGO+zH7Lqm4Pm1/wdLw9pEhwCmXTMGm5bPw5sfnQnrx8VT7yvfTWRwOnD1/D7xzH0pfProMrmNZx/bHuzcP8pGoe1lJtcf2cLK/R+eX/Zj9TlVtjf2ZPXzCmCf0wrYZmQ2O11jdqizyH4iz6udB7uw82AXzysiohgYoE5ERJSCzW+O3CHbdBTPrqhK+n3MWoRINcjI6AF+5Pdi5cUaPdlpksdInMwkM9gh+JILedZm9I1GVrqR6Uj3ZTxSvx8vP7oIc8rHGXKMyL7GMZcbx1zusADFZGRLn4IoFbH6+nr31bh4mJxkxg6hr/nqz/ZiW0tn8N+U7z2SXr+H0o755NVs6bPKivG50kBg+ZqtbXjolinY/UcXLg8MBV/nFMCymyvCzq/INnHQ58fiGROxeOYkLJ45Key40er90L7VObcXX5xxDfb96QJCE7k7BfDcN6qS/tzxsFIbrzc79LGJ/aN4mT0e02ovHSKwo0Sm1R+Zzg79n0xunzKV1edU2d7Yk9XPK4B9Titgm5HZ7HSN2aHOIvuRKjv+AYDGw0RENCLlAHUhxBcBLAQwFUAJAGeMl0gp5bdTPS4REZGZRt0h+34Xdr6f+B2ydliEiCZygJ+fI1Ccn4ut31mQ0vtqfS+Rf7fL95QoO03yGImTmWRVZgckcCHP+oy+0cgqNzI98dIh9HmH8cSLh/DbJ+8y5BgMgCUyT6zrT+++GhcPk5PM2CH0Nft+sGTU9z447IdfZXXNIYDm9bUpl/mc24tVi662Y6cu9ONi/xBcfR7Ur67G37xyCJcHhjA2Pwd93mE4BOCTUD2/1NrE0L7aHZvfjVnvh/at6ldXY3Zd06jFRZ8E/uaVD7Hspikpf/5Y340V2niyB73GJewfJcbs8ZhWe3m5fxBTrxnD+sNm7NL/YftkL1adU2V7Y29WPa/IethmkBWwziIj7F1fixX1+3DifH/wscqJRXjl0dtMLBURkfUlHaAuhHgAwH8FcH0SL2eAOhER2ZrUuEVW63EtdlmE0KI2wPcOD2LH/s6UFulGB747MKk4H+fcHniHpe2+J0oeJzPJiswKSOBCnn0YfaOR2TcyVW5oDPt7h8sdfOzEM/fpeiwGwJJZzL4ZyQriuf707Ktx8dAcod+7AOAZ8uPeG69FjtOBxg+64QsZ4j44f4ouv0dkO1bX0I7trZ247endYcfr8w4DAJwOgW/+h2mq55dam/jky4cCO53tOhq13o91Y3QkPYLzYzG7jSd70Wtcwv5RfKwyHtNqL5/7+vzgc1h/2Idd+j9sn+zHinOqbG/sz4rnFVkP2wyyCtZZpLeykgIMj2R0yHMKDPokfH5pub47EZHVJBWgLoR4DMDPlL/GeLqMeA53tyAiItvbu34Jvla/D5+leIdsOhchjAqyOef2wgGh6yKd2lbtRXlODPpk8HtyCoHHd2R30FA24GQmWYnZAQnKQp4SLOYUwLKbK7iQl+XMCKLdtXYxvvvCAXRdGgg+NnV8IX7xrVsNOR4DYMkMZmdHtYpY15/efTUuHhpLq8045/ZiZmkxjrncAID2U5dx56xS+GQga7pfArPKiuEeCRjXS2TfyqfxPIHo55fyuQ51XsRgSIT7zoNd2HmwCw4RmJDOz3HAM+THvk/OA1APkrprVil+c+Ss6rbNd2x+lzcFkiXoPS6xav/IajeLWSmwku1lZuHvSUaw4pyqVdsbip8VzysiIi2ss8gIcytKUDO7jH13IqIEJBygLoS4HsA/I7A2cAbADwHsA/BHBOb61wD4vwCmA/gKgP8EoBjACwD+EYB/1JsSERHZTFlJAXwRe54ne4dsuhYhjAqyqV9dDVevR/dFusjv5TcfnQn7+3sfu3Dq0kDWBw0RUfqYHZBwxz+9Gx7EJYHXD3XjzcNnGCyVxcwIop1TMQ5Fec6wxwrznJhTPs6Q4zEAltLJ7JuRrCbdi3lcPDSW0mY8s+soTl0awM+/OR93bA7vXwDAyYsD2N7SCacQ+PVfL8aO1k6cutCPi/1DcPV5dAsiGr1zloDT4UD/4NVQ9XhuBFc+V7QsKkq9/8RLB9HhcmPL2x1Yu3Qm9n9yPrhrl3fYj9LifDxYNQWvHewKe335uAK8/vjtqXxcIt0YMS6xYv/IajeLWSmwku1lZuHvSdnEiu0NERERUbzYdyciSlwyGdQfG3mdD8CXpZSHAUCI4BKAS0p5BMARAE1CiP8K4HUAfwGgX0r5vZRLTUREZAFzK0pw6uLVzKFzKkqSeh+jBzLpCLIxYpEu8ntRvhsGDakzK7OY1TKaUfpk429vdkBC87pa3P/8XvT0DcLnl3A6BMrG5jNYKkuZ3R5eHhjCrMnFWLtkJra804FL/UOGH1MvnESmaMy+GYnICJFthhJ8vejp3dj/g6Woe/0w3j5yFqH3YN/2+YkYGPRh0tg8bFo+D3UN7dje2qlroKjqzlmOwL/lOgWGYmyVHPm51LbtVALc79j8Lrbt/yz4uNJuAsDMsmI89/X5YUFSM8uK0eFyBzPIL72hLGv6vGR96ZiDMZPZ/dxoGFhJRJQaK7U3REREREREZDxHEq+pRWC+/9dKcHo0UspTAO4FcBnAo0KIpUkck4iIyFIqNzTirY/Ohj321kdnUbmh0aQSaWteV4v7qypQkBto9gtyHXigqgLN62vjer2r14MV9fvgirHopizSNTx2O1YunI4etzflsqtJ9fMkIt7PbgWhmcWy4bhkvmz97dNV16kpKynA0hsmwy8l8nMc8EvJYKksls72UE3rxrvxm+/fhWU3V+A3378LrRvvTstxiYxm9s1IREZQ2oxIfgkseHr3qOB0APio6zI+OHUJi57ejcoNjdjW0gkpA4GilRsaMbuuSfVYiY6hIvtWY/JzsGrRdLz+vcVYtWh61BvB1dpCZYePPGcgmYoS4B753FAdLjfu3dKMV9tOon51NepXV+P60jFYtWg63vjrO7BqUXr7fETxMHNcYjSz+7nR1K+uxqbl8zCnogSbls8LC7QkIiIiIiIiIiKicMlkUK8c+f//1fj3vMgHpJRnhRD/C8D3AXwHwO4kjktERERJSDXIJt4tldOV/SSdQUNW205ajVmZxayc0YyMle2/vdmZnpixjxQMoiUyDutayjRKmwEgmBEcQHCHgMv9g9hz7FzYa3o9wwBGZyXPzxG4Z1655q4C0cZQajvwaO2cpfw9ns8V2hZOHV+Ih24pG3X9hj5XIUY+n9pOCWb3+YhiyeRzlP1cIqLUpbrzYTbunEhERERERET6SyZAfezI/09GPO4BkB/y75HeH/n/wiSOSURElPGMnPRNJsgmWhBq/d2FupYvUUYHDdkpALd5XS027fojfvPRGXiG/KrBFZl0XDIff3tzZXIgCiWOQbRExmBdS0YyK9jnnNuLVYum44Lbi12Hz8AhAM+QHzkOgX//y4Vw9Xqwadcf8dbhM2FjofwcgfJxhThxvh8A4B2WqoGi8YyhlOD1ZVv24o21i3X5/OfcXjw0fwo+PtOH2eVj4fYMB6/byOv3xdZAFniF8kfPEINfiayG/VyizMFAZ3OkmnjFDolbiIiIiIiIyPqSCVC/AqAEQOR+qJcATMbVDOuRckf+f20SxyQiIrKUbd9egFX/2jr68e8siPs9XL0e/D9bD0AIoH71rYZO+iYTZBMtCPXIgf26li9RRgcN2SkA16zMYsxolr342xNZR/3qai72ExHFYLV60qxgH2UMtWZrG1Ytmo6Lbi8aD59B6/ELAK728QZ9/rDXeYdlMDhdsa2lE68eOBV28260MVRk8Lqrz4sFT+3W5Qbg+tX/H3t/Hx9Ffe+N/6/ZTTabEAIIWSTcRUoIjahBcwKtqAloaxUV7Sn2Ejn2Op4erMcLv8fr9wB6SL+n1yne0O9lH5e0Xuek57TXaYFU64UprSFajcYmFhPDjQYpEgWMJMCG27CQ3U125/fHZpbdyczu7O7s7szu6/l4tJK9m8/MfO5m5j3vqUJdYzc+PjGIypkT8fzqSsXPldc1BzPHy1kADLg8CZWDjMdobZ9iw5vFiDIHA51TK9HEK2ZK3EJERERERETGJw8y1+Lo6H+nyl4/hMCTUW9T+d5fjf7XG8cyiYiIDGVJWbHy63OVX1eypaUH+784j32951H9dAu2dQSyuW3r6EXphiaU1zXrVdy4ZHMQqtnWXcos1vj4zVi1aHbKgivStVxKP+57MiPnoBsr63fDmWHZF0Mv9hNRamVqv5JpjNJPltc1o3RDU9qP+1o/GcC29z9H04GTAIAvzg0FyyHPMB7KnmsJ/ve+yhK0ra8Nez/SMVTbuloICr/pGfEntP6xbNO2dbUKvxDgR3gwbDbJ5H7MKG2fiChbGWXuE02mjYVt62pxb2VJ1Llbsr5PREREREREFCqeDOp7AVQCuF72eiuAGgC3CILwNVEU/yi9IQjCXwH4WwSenHognoISEREZjS3HgvxcC75325fwr+9+hqFhf/QvYWwWErlUZevWkk0smx+pbKZ1T1dmMWY0y17c92RGm18/hM6jZ7G5+RCeX1mZ7uIkjFnNyGwyKZOttC4zJ+YzG6SBGa2fNMpTmuTlEATgaxVT8aMVCwARimW0CgIa9/dFvXlX7RjKUWRH6eQCHA3JxG4VgOU3lCS0/rFsU0eRHYIAxQD8HItS+Hx2yMSstkZr+0RE2cooc59oMm0sTDTxitkSt1D2yaRzC0RERFpw7CMis4snQP1tBILNb5e9/isA3wdgA/AHQRB+B+AzAF8CcN/o6yKArfEWloiIyEgOh1zYfKxmrubvta2rRd3OA3jr4KngI8YFBAZJm1VI2UlfLSffszkINZvXnYgok8iDlHbs7cOOvX2mD1Iyy8V+IkkmBX4sfrYFfhHoHP2bwY/GZLR+Ui3YByKwsn53yi4yhZbDIgB+ETgycCm4bKUyDrg8uH/hdBw+eRHlVxepPj1H6RhK7QZtn4iEj3tjDqBSyQ6fjfHpmRzEnc62394zgEd+2YlfPVod0xP2iMjYGBASHz0CnZO57TN5LEw08YqZErdQ9smkcwtERERacOwjIrOzxPGdPwDwApghCMLXpBdFUfwcgQB1AUAugL8GsH70v7bRj70D4N8TKTAREZHZOYrsKC7MCwanA4Hr5GWOQvzuH5Zg1aLZqhf89WDkx6um6pGqqXx0a6Y9JpaIKBZG6ANFpVSpEV7XS7LXXeliv1UQ8ETDPo45FFGq22Uq557JXjdpXfwK3Qcfe288Rsz+KAX7ND5+c/C4L/QiU6r8pjPQHqW63ON0BdulUhnrV1ehINeKj08MAhBx7vKw5nbWtq4W91aWwJ4bOA1tFYCvfukqTB5nw/HzQwmth3PQjV3dJ/DAjdPDyqum45+WKb7evmFpQuUwI/l+sedaMqYfS2fbf3z7XvhE4PFte5O+LCJKnXSM1ZlCaV4Ri2Ru+0weC+tXV2HTigWoKCnCphULwm4iTMX3iZLByNe1iIiIkoFjHxFlipgD1EVRvAhgPIB8AG/J3vtfAFYDOIJAoLr0v0sAfgLgblEUx6bMISIiyjKnXR7MnJSPu6+bhruvm4aZk/Ixp3hcSk76Gvnke6ou+KTywpK0rOVb2k0VMGiEoFIiMj89+ttE+6P29Usxe3JB2GulkwuSHoyWirFGfrH/g2NnGThBUaU6wCaVc89kr5t8XYArmZfTHfisl2h9rtnmiIkGRcXjYP8FXPfPb+DgiQsAwrdZaLDPK11f4I2PT6Xl5o33v79MtV3KA5JaPxkIuxi2Y28fOo+exVeeadG0bHmwsB/AwEUvzl72YsbE/LjXAQi0+fNDw8jPsWo6lnYU2TFjUmCZudZA4505KT8j2m6sjHIDR7L6lFS3/dINTSjd0IRB9wgAYNA9EnwtlNn6UKJsx4CQxMUb6JyKbW+UsZCItDHydS0iIqJk4NhHRJkiJ54viaI4HOG97QC2C4JwDYCpAC4D+Euk7xAREWWbdGYdMeLJ91Q9UjWVj26VL8t50YPqp1tM85hYPi6MSBs+6luZnv1tov2Ro8gO32iK2FyrgGGfCJ9fTNr+SuVYI80nMvnR5KSfdNWTVMw9U7VuoetiEQLZp+9cMA1XjbNlzGPvo/W5zzUfQufRs9i86xCef7Ay9QWMUehx16YVC1KyzCdf2o+LnhE8+Zv9ePOp21S3adu6Wmza9Rf88eOTcA/7Yc+14OvXXo2Nd39Z9zLJy6DWLiECK+t3h81rpHL+fn9/2G/6xEBQrpZ2JgULv/xBIMisx+kCEFtb3fz6aN1rPoTXPjoRd5u/tqQINeUOPFQ9Cw2dvRHbbqbP86T9omVbJEuyjjtT3fa3PVqN7/56D4aGfcHX8nOt+PdHbgr7HI+zicwllWM1hUvVtjfCWEhE2hjxuhYREVEycewjokwhJPux5pReVVVVYldXV7qLQUREBrNmaxeKx9vDTr7HEjTf2tqKihsX63ax3jnoVr3ooOdBVqqWIy1r8bMt8CtMtYwcMCgP8JIYucyZwMzBL2Yuux7qGruxvbMXq6pnZUWQidb9rUd/q2d/lOi4F4tUjjXpXCaZTzrrSbLbYCrXLZX9SSpF63PV3rdZBRx++q5UFNHw5JmS1YSOYxsbu9HQ2Qub1QKvz6/7fCLSfq0pLx5Tl4sL8xTnNRsbu7G9ozfsN8ICxURonh/U7TyANw+egihe+Y01t87BD/9wMOz70pxjf+85eH3K56/zcgR4RsSktflsm+elUiYed17/wzeCGdQBoMieg49++HUAmbW+2X78R9kn2WM1qeO2p2zX2tqKmpqadBfDUDL1eJyIiEgNxz4iMgtBEPaIoqjYQcWVQZ2IiIjMTY9sYnpm/krVHcCpvNPYUWTHisrpeHVfX/A1qwAsv6HE0JmWmB0q+ZQu6Js5k56Zy56IbM1YrXV/69Hf6tkfpTKLZjqyWjCTBmmRznqS7DaYynVLR0buUMkKDIzW56rltxhRuhvTJKRt+cN7KoLB0VoDrZXsWrsE3/31HvSdHwq+lp9rhc/vh9cnKo5jyc7aGWm/hq7fK11fqM5rACgG1rqHr7SzusZuzfODowOXIIqARUCwrTZ09I75vjTnECJUMc+ICJtVgHvYjxxB0K1NZOs8L5Uy8bjTPeLHhPwcfO+2L+Ff3/0MQ8NX6lAmrW+2Hv9R9mKG7fThts9cvNmJ4pXu43EiIqJUM/vYx3kfEQEMUCciIkqqTJx0X7lYfwmAfhfrU3XRIZUXNy55R1DmKESP0wWLAPhEGD5gkEGOyRd6Qf+VPcdNG/yS7YE7mRRkokU8+zvR/tbM/VE6LqTz4j1pkcn1RL5ux89ewsr63Rk1DweSFxgYrc9tX1+LlfW7cezM5bDv+cVA5nAzjv///PuP0Xn0LB7btgdfnBvClrd6ACDu7VtRMgEFNmvYa1YL4B4RVccxo9y8EXFeIyLsPasA3DKvGJMLbWjoDMwHJJHmB/K5hHRvg9L3Q0W7BULKrt557KzWzRJVts3z0uX9z87APWy+eZ6awyF1/rGauWHvmXleK8n24z/KXmYPCDEzbvvMxZudiIiIiLID531EBACCqJYCiTJCVVWV2NXVle5iEBFlrVgeCW6WYHbnoBtr/08r9p8WI2bhowAzPnrLjGU2A7XHulsEwJZjMV17cg66NWXkzGSpfty0UqbXVG1raX+/ceBkMLDmzgXJ39/sj4goXrHMwxORqjm82jxCz8DAaH3uks1v4/i5IViEK8HFZhz/1balkli3b/XTb2FiQS4c4/PQ/ukZWATgIdlNIakex7SOpZHmNWrvxTIfVPpszbxi+AH86fBA8LXb5hUDAN76ixM+vwirRYDNasHQsA85FiDartOrTaR6npdt6hq7sa2jF2WOQrzw7YVZMc8z+7xWasNNH50Its3l108zVf9PRETplYpjmkzS2tqKmpqadBeDiIiIKGac9xFlH0EQ9oiiqHiykxnUiYiIkiCezFJmuYPUUWRHfo4Az4gvocxfZgnIT5QZs/2YscxmoJaJ0SoIaNzfZ7pMepmQBTBRqc5ELI0TT760H58OuFI6XoTubwAp29/sjygbZMucKFVSneE1VXP4VGR0jtbnXltShJpyB866PNh14CQsQurGAz1FCk6Xgu/j3b4XhobhvOjB4VMuAIHf2vb+53il64u465+8j4i1z9A6lkaa16i9F8t8UOmzUwrzIAJhr7158FTwBggA8PlFDPl9sAjA75+4BU++tA89ThcEhGdXtwrA8htKdGsTmfzEiXSS99E9Thfu2tKWFRcozT6vveXH74TtO59fxM79/Xj9wMmM33dERKQP6ZjmjQMn4BkRkZcj4M4F0/iUGiIiIqIMI837mj7sh0/U/7wdEZkLM6hnOGZQJyJKD3l2uLwcAYV5udj6d9WomDYh7LNmvIP0gZ+8joo5MxLK/JWqrJZERqKUiXHA5TFtJj2zZwE0i2iZXlMxXphxrCIyi9A50dplZQxWT1CqnvCRjn7RKBmdzT7+H+y/gL/+t9247PUpvp+XE//2jVT/ICKu9i0/btLrOEqvm2NiqQ9KnwUQ9trxs5dx6NRFDAy6gxewHEV27HziZjjG27FmaxcOn3Lh6OlLisvIlLmJ2v4x+01NfAqTeTkH3bj3xfdU2yYREZEWGxu7sb2jN/j3w4t4bUANM6gTERGRWfGaIlH2iZRBnQHqGY4B6kRE6RMaQCJNwJVOuCZygTbaxenQ97UGRGi54J3IyVEekKSW2QMYMo3ZA7ooPaRxQsowJcnLseDOBakJ6GEwEZH+It188s2F0/H8g5WpLVAGSUUgdzr6Rc4j9HPt//s6LoUEqNtzLCgenwcgkOU4ke2rVv9iDSyPdoOaRMtxlNIxgZFvGFbbhpG2iQDg6gmZEyyrtn+MvN+0MsrNNhQ77jsiIkoErwvEhgHqREREZFaBm9zbMXDRC59fhNUiwDE+L2PO2xHRWJEC1HNSXRgiIqJscdrlgQVC2EnXbR292NbRG3bSNZbHosttaenBB8fOYstbPYoXBUPfBxDxs1p/M1HSI50UswqagJEDvpXK9lzzIXQePYvNuw4x0M0AzP5Yd0oPaZzw+kRYBMA/mrHQ69M+XuhVhnjGKjKX9p4BPPLLTvzq0WosmVuc7uJkNPmcKNSOfX3Ysa+PF+rjdNrlwapFs8dkadZTOvpFziP0My4vB9Mn5WPt0jJsebsH5y8Po2390uD78WxfaS5eYLOG1b+Gjs+xLSRLpNIxoRJ5H5GXY8GUwjycdrnhGRFjOo4KPcZ7Zc/xqMeo6Rbahv+j/Qiauk9g7e1liJRoRQRw4oIbt2x+xzDrEQ954Ja0f+SMuN+0SkUfTcnBfUdERIkw+3UBIiIiItLGUWTHsvlT0dDZG3xa5bL5Dl5TJMpSDFAnIiJKkvrVVcHMik0fnQjeHbr8+mljTrrGepFP7aK1dHFa6X21z2r9Tb3EEswTSzB4qh6BnuwA/kRECjxhoBuRuUnjxJEBF067PJhcaMOXisenNCiEASnZ4fHte+ETgce37cVHP/x6uouT0ULnRGr4zLv4pCqQm/2ieXVuvD347+U3lOjym9JcfFX1rGC927RiAdYunRtXII78uMnr86PAZoVnRIQAwD3sx+7PzkT8DbXjQosACIIQ8Rg1nULbcEGuFeeHhrHlrR60r1+Kb9XvxudnLo/5jlUIbLOdT9ycyqIC0PeYs21dLep2HsCbB09BFBGsL2tunYN/+9ORjAjo4s02yZesG+u574iIKBFMfkBERESUPXjunIgkQqTMM2R+VVVVYldXV7qLQUSUtRJ9bGWkoGu1wHfHeHvwfenitVUIBDj5Qy5wS5+V/6bSBW/55x7+13ew7fFaQERcFz3XbO1C8Xh72AFJ6IVOSSyPL1f77FMv78er+/rwzYXTE8ogbuRHkEZ61L2cLceCwwxQJyLKOIkGIpVuaFJ979hzdydSNIpAmhPdee1UPLZtD1weX/C90skF+O1jX8mqi/VGflINkRotxwkbG7vR0NkLmzUQaP7Awun44txQ1LouP27648cnMSE/F586XRhvz8GgewQPL7py/CNvQ0rHeN4RP/wKp4MjHdeko21GO8bJtQoY9gVWRArg13LcmAyxHLdqccdP3kWP0wXL6HG89LvyepSu9SXj07tOEhER6UXrdQECWltbUVNTk+5iEBERERERRSUIwh5RFBUP7hignuEYoE5ElF7OQTfuffE9DAy64RPDs7pJAQORLvSrXVSMNQhC+qz8wr18+VoueNc1dmN7Ry9WLZoFAEm56BlLMHgswdlqv6GF1gD+dFAq223zivFx/yCOnxsKfi4bA90ofQ72X8CD9e/j5ccWo2LahHQXhwwg2wJPU72+iQYitfcM4Lu/3oOh4SsB0vm5Vvz7IzdhydxiPYtKKpZsfhvHzw3BZhXg9YmYOSkfbeuXprtYKcWAOjIjLccJ8kCcdz9x4vj5oZjqerTjnrwcC75104wxbUgpOP69z86oHqMq0aNtxjouBm/K/rA/WM7lN5TgwmUvZlw1Dg9Vz8KarYFznvWrqxQDnJI9Fut9E7Pa71kE4MizdzOgi6Iy8o31REREFBsGqBMRERERkVkwQD2LMUCdiCj95AEB91dOx/HzgWx5W97qiSsAPVrgOxAeBKF24b6usRvbOnqRaxWw84mb8cJbPaoXvLUEgut10TOWYHC1z+7qPhHMqBcqkQziRs5Yp1S21sMDWR/oRukjZX4scxTizaduS3dxSINkB3FlW+BpqtZXz0Ck63/4BgbdI8G/i+w5+OiHX0+4jKRNNgceMqCO0i3RMVBpLr52WdmY31Sr61qOUaTjnjcOnIBn5MpxTl6OBcM+9azoNeXFY/qWKYV5mo5rEmmb8m2qZVwM/c4tm99JuF9I9lis903MRr4pmsxB7cYO1iEiIiLzYYA6ERERERGZBQPUsxgD1ImI0k8ebPT2X06h/4Jb8bOhAejRLkzHGyztHHRj0TMtUJoBRHuse2iZLAIgAPCJSMqF81jWTy0gZGX9bhw7czn4Oa0ZxNUCVIwcOPadX3bg4ImL+MnKSrz+8UkMXAzUMaOWlzJX6YYm1feOPXd3CktCsUpWEFe2BZ7qtb5KY5Haa3oFs82ra0Z+rgXfu+1L+Nd3P8PQsD/um7pIm2x7soAaBmVSuiU6BiodJxQX5o35TeegGz/YeQBvHjwFvwhYLQJ8fhHfXDgdzz9YGXU50nGPAAS+LwB+AA8snI5hv6j5Bt+v/68/Yen8qXh0yTURjxMSaZv//bf7sWNvHywCVIPn5eNi6H5Yu6wM977YjoGLXvj8IqwWAY7xeREzvUtSOffQ+yZmI98UTcaXbfNuIiKiTMYAdSIiIiIiMotIAeo5qS4MERFRttGSgTz0Qj8QyIY+Pi8HnhE/8nIs8Iz4MT4vJ+xC/GmXB6sWzQ4LgtBiS0tPILJcIUjAM+JH6YYmxSDS0DLlWoDh0VVRK1+iYlk/pc86iuwYGY2EkDKI+/yipjJuaenBB8fOYstbPWHBAKFBG5tWLEhg7fQ3Y1IB3u05jdcPnFAMYDBaeWPFAD7z2LV2Cb776z3oOz8UfG3GxHz8/JGb0lgqimTexmZ4fVfGp20dvdjW0atbIEvbulrV4LZMpNf6Ptd8CJ1Hz2LzrkPBoEWl8UnLnEGr0GD0x2rmxvx9ip3anCPb6FmPiWIhP0aLdwwMPU54peuLiL95ZOBSMGDbN/qPHfv6sGNfX9TlSsc9RwZcOO3yYHKhDV8qHh/Miq6lDW1p6cH5oWG0fuLEkdMu1K++SbWtxdM25dtUHpyuNC6q7QeLEDhszcsJBGsvm+/Q1C+kcu4R73F5qn6PskvbulrVGzuIiIiMgud5iYiIiIiIsgcD1ImIiFIk0kNL1ALQ7184HYdPXkT51UUYcHkAKJ/A1RJ8HClAXmKzCvjlf/0r1feli+XzLKfw738RAASCMZJx4TyWYHC1z15bUoSacofmi/t6BaikkhnLHA8G8JlHRckEFNisYa/l26yomDYhTSWiaJZfPw2v7ruS4TQvR8CdC6bpFsSVbYGnia6vvF+XghZDyft6BrOZT7aM37FgPTYvvQJM0hGoojWQOZayta2rHfMkp/sqS7Dro37VJ81oDaD+0X0LVMuxZmtXxDYk73fOXPLizCUvFj/TgiPPht+gHLq+sbbNSE/rVBsX1fbDhctezLhqXMz9QirnHnrfxGzkm6LJ+BxFdiybPxUNnb0x39hBRESUKjzPS0RERERElD0YoE5ERJQi7evHBiqMz8vBvz58E17/+OSYi+31q6tQ19iNj08MonLmRDy/MnChWjqB+9yuQzh+fkhzAIf8or9FACyCEMwyDgBen4jXu09iydxixd+QLpa3tp5G2/qa4OtGvXAe68V9M2b5NWOZY8EAPnO6MDSMeVMLsXZpGba83YPzl4fTXSRSoJbh1DMipvWpGJkgkfVVi+uzCIAtx6LY1zOYzXyk8fuNAyeDAZR3Lsic8TserMfmpVeASToCVbQGMmstm9pNwTv39wf/bRUAnwhYLQJ8fhE2q6A5gFrp6RqSaG2obV0tFj/bMiajuV8ESjc0hc2vQ9c39rap/LguiwA0Pn6z4rioth9e+PbCqMtWu3kg2+YeRBLWfSIiMiqe5yUiIiIiIso+QqSsNmR+VVVVYldXV7qLQUREo5ZsfhvHzw3BZhXg9YmYOSkfbeuXjvmclmznEouAMRnv1Gxs7EZDZy9s1kAmLYhKoQMBkU4Mt7a2oqamRtMyzUa+jVZVzzJ8Jhczllkr56BbNQCfWeCIEiO1r9+HBM2F4gXC9HAOusfc0FY6uQA3zpqExv19mvr6g/0X8GD9+3j5scV8eoGBbWzsxvaO3uDfDy/Sd/zmY9Mp2dSOWWIdP/T6nXit2dqF4vH2sGBOKSg71rI5B91Y938/QuvhAU3LLnMU4oVvLxyzXOm3pDZ8y+Z3dNlGT728H6/KnsphFYA7KqbiX1Ys0GU5B/sv4O6ftofdcFWQa0XrupqIfVGk/RBJXWM3tnf2ZtQxEBERUSbg8QjJ8TxvbDL5GgwRpQbHYiIiIkoVQRD2iKKoeELfkurCEBERZbNrS4rw8OLZ+N0/LMHDi2ejoqQo7H0pKK3x8a/i3soS2HMDQ7U914Ka8mJMys8d85tSxrvyuuaoy5cyaTU+fjPKigshAvjmjdPHLOu+yhK0ra9NfIVN6LTLg/sXTkeZoxAPLJyBAZcn3UWKKnS/rlo02xRl1kprVkuiVJL6aqfJshHKyy21LzW8mTk9HEX24NNNbFYBAODzi7jkHdHc1z/50n5c9Izgyd/sT0WRKQ7ldc1hwelAIHuclvmcVqEZkIlioXWca1tXq8txhF6/E6/61VXYtGIBKkqKsGnFgrCg6FjL5iiyY/qk/DGvF+ZZg79htQioKS/GN2+cgTnF4xSXC4S3YbUhWURs85JL3hGUOQrDXvOJwJTCPDjG23XZFw0dvcHySuPY5EJb2Py9vWcAX/p+E9o/vRLIH2k/KCmva0bphiZsG13eto5ezcfFRKQfsx4bEVHy8XiE5Hiel4gotTgWExERkRGoRyMQERGR7qI9Hl06WdDQ0TvmZG3fuSGcGxoGEMiaLj2a3Z5rwW3ziuG86IHzojviCd361VUor2vGtvc/D762Y++VDHo8MRzYRnWN3fj4xCAqZ07E8yujZ+1LJaWMB9HqldnxEeVkNKEnds2UqVOp3KddHjxw43Ts/uwMTly40rZKJxfgt499JV1FzXrXlhShptyhmkVWra8v3dAU9neP0xV87dhz2p62QqnRtq5WNXNcovjYdPNLd4YrreOcXgEmRg5Uiadsp10e2HMtmDo+D7OuKsC+L85jxC8Gf8Pr82PGxHzVbavUhgFAQPjTr6Sxestb2ucl9aursGZrF9zDPgiCgN6zlzHOZg3e9CStr3vYDwGAe1j7vlDKNu/1ibAKwpgbs7+3bQ98IvC9rXvQ/T/ujPrbSpLZjxKRdmY9NiKi5OHxCEXC87xERMnHsZiIiIiMRGBWvMxWVVUldnV1pbsYREQUhdqj462CAIsFGPYpj9cWIRCkMLe4EJ8OuDQ91tw56EbdzgN48+ApiGIgwH1SgQ1f/dIUPLrkGk2PU8/Ux0uq7QcjnbThI+yJ0scMfYQSLeVesvltHD83hFyrgGGfiJmT8tG2fmmqi0oJOth/Ad/99R70nR8KvjZjYj5+/shNqJg2IY0lIyUbG7vR0NkLmzUQsKrX2M7HpptfuuZ78Yxza7Z2oXi8XfWGGq30+h09yG8QUCrbj+5bENNNBLGs38H+C1j9i064PMPwjIgQBOBrFVPx0fELOHHBDZtVgFfl+BAI7K+2dbWq5Zu3cZfi96X9vGZrF44MXMKnThfmOgoxp3icpn2hpe+R30gVKp4bqZLVjxJRdGY9NiKi5OPxCJE+MvUaDBElH8diIiIiSjVBEPaIoqh4IYEZ1ImIiAxAyv7W9GE/fCJgFYDlN5QEsr+JGHMiYVKBDV+dOxm/39+PYZ+IHqcLgLa74B1FdhwduARRDAS4e0b8WDbfEbyQn4kZuLUychY+ZjwgSj8j9xGRaCm3UsZuvSQrE3C6MwwbUUXJBBTYrGGv5dusDE43qGRljjNyNmqKLN3zvXjGOa1P8onWZxvpiUDybMBKZXvq5f3oPHoWm3cdwvMPVkb9zVjWr6GjF2cueQFceXLWkYFLuH7GBCz78tRgn3H87CUUFdgU99fm5kOB8jUfwvMrw8t3zw0l2LG3D1YB8I3esFwzrxgnBz2YV9cMb0gd7HG60ON0obyuOWod1NL35FgAhXhW5Fgi/rQqZuAko8vk+apZj42IKPl4PEJERJReHIuJiIjISBigTkREZAC3/PidsGAUnwjs3N+P1w+cxCebvjHmRIIUUL7+6/MjXhCUXwyVB734RxPnNXT2MtMcwk/a2HIscA/7kWMRDHHShhd/idLPrCd2tZQ7mYGB8kA/o/+u2V0YGsa8qYVYu7QMW97uwfnLw+kuEqlIZrsLDdr8RfsRNHWfwNrbywzfX2W7dM/3kjnOmaHP1nKDgPwzO/b1Yce+Pl1uIlDKRiwdr0mB4nk5FmxasSAsUN49HDh28Yz48dqH/di5v/9K+fb2YcfeQPkAjDnmBAD3sB+fDVzCpwMu3F85HSOiqPn4Uk4eMH787GWsrN8d/PyfNyzDV597GyP+KxnccywC/vz9+J7aokc/mskBxJR+Zuj74hVpzGC7IiLeREZERJReHIuJiIjIKBigTkREZABt62px74vtGLjohc8vwmoR4Bifh51P3Awg/ETCf4QGGUUJIpFfDE130IsZSNv6nMuDpgMn0Xn0bLqLBMC8gbFEmcasJ3bTUe5kZQJW+12bVcDhp+9KqMyZoHPj7cF/L7+hJI0loXQKDdrMz7Xi/NBwRgbHZRojzPf0Hi/SnRU+FlqOlURR+bsqLye0fIsACLiS5VwqS2jg5wfHAscqd8x3YFJhHra//7ly+UQR7euXBp7a9dEJ+PwihJCyS0/kenVfX/A7Wo4v5eQB43WN3dje2Rv8vKPIDv/oRpQyuPtFMa3HNJkcQEzpY6a+LxFqYwbbFREZ6ek42Yw3DBERZS+OxURERGQUgqh2ZYUyQlVVldjV1ZXuYhARkQYbG7uxvaM3+PfDi2YpXsiTLvKvqg68v2ZrF4rH28MuCLZ+MjAm+x4QCDL465tmoKGzFzarBV6fP/g7sWhtbUVNTU3M62gGSpkLARjiQrLSvg49yURElGqRLnY6B92qgX6JXBiV/64FgB/A3dddjRdX3ZTYChFlECPPaUhdps33kjUWJMvGxu6Ix0rOQTdW1u/GsTOXg6+VTi7Abx/7ii7rE7p8qf3m5YSXpa6xG9tCjhtD2awWTJtox+cK5btl8zuKfYJFQPDpUfZcCyYV2PDVuZPx6M1zNB1fKvUnkfqfmvLiMXX8R/ctSHnwFPtISiaz9X16YbsiIjIW+XUEMpdMvgZDRERERESZRRCEPaIoKl7MYgZ1IiIigzjt8mCCPQcX3COYYM/BgMsT9r6WDFzSXfDywInQi6E/+N0BU2b/TRUjZ5lnxoMrmAGISH/xtKtI2RGTlQlY+l33cGBMlEbGpu6TaNrQxAAYMgQjjFN6zWmMsC7ZJNPme0bICh+LaBnkHUV2jPgDyT5sVgFenwifP/EM4FI7K7BZg8tfszWQcKJ+dRUaOnvR0PG5amC6PdeC2+YVw3nRg1MXAmXOtQoYDilf4Kld7+HkhSvr5BifhyVzp6Bxf19w/yyb7wiO6VIdPNh/Aat/0QmXZxieEVG1P5HWo/Hxr+Lf/nQkanCu9Pt1jd0pz7Zs5OM+Ldg3G5vZ+j69mL1dERFlimx5kgcREREREREZnyXdBSAiIiKgdEMT3vj4FC64RwAAF9wjeOPjUyjd0BT8TNu6WtxbWQJ7bmD4tudacF9lCdrW14b9VnldM6qfaQnL6uce9uO1D/vhGG9H/eoqbFqxABUlRdi0YoHuGRml4HhnmgPf4y1Htl5INpvQoFgi0kcs7aq8rhmlG5qwraMXohi42Fm6oQnldc1hn5MC/RofvxmrFs0ec/NVvE67PLAIyu9lyjPCjDKeasXyhotnnNK7THrNaTjmUqKSNRYkg5ZjpbnF4+AYn4dffqcaDy+ejYqSItXfi9SuQ9+T2tmMifnB5betX4q29UuDZXn/+8vCjgetowNhriVwvHf4pAv7vzgPq0XAw4tnY+c/LAkr3y0/ficsOB0AnBc9+N3+vqj7p6GjF2cueeEZEWGzCvCM+GEVBDzRsC9s3Ta/fgidR8/iF+1HNfU/WucTyWD24z72zcZnpr5PL2ZvV0REmULrdQQiIiIiIiKiZBNEMVMu35OSqqoqsaurK93FICKiKA72X8B3f70HfeeHgq/NmJiPnz9yEyqmTQhmR5sxMR+N+/tUHzkPXHmU9Gsf9sMvBh6lPG1CPkon5+M//3aRLuWN9HjJRB4dqmcWuETKsWZr15jHzusdyE/x4SPDiQL07C/jaVfSWBMtM2oyyZ8WAgClkwvw28e+khFBMGZ7FLfZyvvff7sfO/b24Zs3TsfzKyt1+91ExqlkbMNE5jQcc4mUxdJW6xq7sa2jF47xeXht7ZKw8Ul6T4laO9vY2I2Gzl7YrIHAzzJHIT4bcMGvcHo39Decg278/dY92P/F+ZiWp9YPWAUBJRPtOH5+CKuqZ+GVPcdVP/eH/7ZEsf+RyjS1KA/vHh5Iy3zCjMd97JvTi5nrozNjuyIiykSh80a16whkbJGuwRARERERERmJIAh7RFFUPAnIAPUMxwB1IiLzuOMn76LH6Qr+XeYoxJtP3QbgShDEjIn5qL7mKnxy8iLKp42Hyz2ieKEv2SeglU6O6nGhXI/ALF6wz2xGCIolMgI9A1njbVdGuNi5ZPPbOH5uCDarAK9PxMxJ+WhbvzSlZdCb2cYxI5dXKYgs2eWN1J4gQjGozajbkGMu6SVTAjpjaauRPgtA8T0AsAjA1yqm4l9WLFDcVqGBn/f8tB0+lfO691WWhLVVad5QOrkAR09fubHLIgD33FCi2q6dg25UP9OiuAwtbFYBh5++S/E9qUxziwvx6YCLwVMasW9OL7PdkEdERNmLNwyZHwPUiYiIiIjILCIFqOekujBERESk7MLQMOZNLcTapWXY8nYPzl8eHhPY8MW5IXxxrg8AUDlzIp5fXan4W9KjpENPQCdb27pa9YCsKOTrua2jF9s6euMKzFIrx5pb52Bl/W7TB8ZkOz4ynLKdnv2lJN52layxJlIgo/y9a0uKUFPuSOl4l2yJjKfpYOTybmnpwQfHzmLLWz3BIDK1m/T1unk/Unuqa+weUx7AuNuQYy7pRaktmlEsbbVtXS0WP9syJrO5Z8QPm9WCeytLgr9jFQCfGAgW94vAZwOXVNtZaFDR7u8vDSsPEPgNEQi2Vfm8ITQ4HQgsb/dnZ8YsRxpv1TKuh7LnWlAzrxgH+gdx/NyVJ4JJTzWRk5dJuknbL4pYtWh2RozlycS+OT2SMQcnIiJKptB546YVC9JYEiIiIiIiIspmDFAnIiIyiM6Ntwf/vfyGEgBXsqM1fXQCPll0Q6QLouk4AZ3IhXI9A7PUytHQ0ZsRgTHZTAqUKbBZU34DBpFRJCuQNZ5g82SNNZECGeXvZeIFV7MFnhmxvJGCyNrXL8W36nfj8zNXgjTVgiijUbuZQt6eGjo+x7aOXsXyfLLpG4bchpJ03PRImSNSW2xbV2uYrOpaM7zH0lYdRXasqJyOV/f1BV+zWgQsv34aNt79ZbzwVk/Y7wAIBrP3OF0o3dAUNfA1tDxScPs3rr0akwrzgm1VPm9QXP+LHix+pgVHnr07+NpzzYfQefQs7lpwNT74/CwGLnrDviMF1dtGyz+lMC/4Xq5VwLBPhM8vKm6bSHOZdNcFs2DfnHpGvZmMiIiIiIiIiIiIyMgYoE5ERGRgt/z4HdXHv6fjgqgUvPFQqXKZ4r1QrndgVmg57vlpe8SgMDIPKTB1VfWsYCBqpgSkZhOtQWCkLFmBrEYI9I4UyAggq7JWmi3wzGjllQeR5eVYUJiXg61/Vw1HkT1401+0IMpo1G6mkLentUvnRg1qM9o2lBihbyDzihTQueWtQPtZvqUdr61dktA4Fs/cwjnoxpqteyAC+NKUcZpvZI2lrV7yjqDMUYhPnS5YBMDnF4Njdujv/Ef7Efz5s9M4f3k45sBXpfKEtlX5vMHr82P2VQU4dmZsJvXSDU1jfn/XgZOKy/WNBtPfMncKpk3Mx8BFt+anmhj5phyzYN+ceqy3RERERERERERERLET9HqMNRlTVVWV2NXVle5iEBFRnJyDbtz74nsYGHQHgwAAwGYVMOwXA4G6KcwGXtfYje2dvaiZkYP/8w9f1/W312ztQvF4e1hAQ+iF93hJWeiZoc+85EGrkkwNTM10Uj+S6v4rkySrv0y2aAGEkfpriGBfHodsviFkY2M3Gjp7YbNeyU788KJAv5NoG4pnXAotj9fnZx+oIpvrbDqkYnvL676AK5nCQyUyr4tnblHX2B12E6teZQnlHHTj6//rT1j6ZQcevXmOan/jHHTj7p+24bTLm5Q+Qt7ntX7ixPFzQ8Gs68CVm593fXQCw0o7CMCy+Q60HHIqvhfrNjPrXIayG+stERERpVJraytqamrSXQwiIiIiIqKoBEHYI4qi4slSZlAnIiIyMEeRHcvmO9DQ2RvM0lXmKMQL316Y0uya8kCsd74Y0fTY+UjkATHJygLHTGfmx8epZ4ZI2bHNdqNBugMozZo1Uy3btCRaf82+PHabXz+EzqNnsbn5EJ5fWZnu4qTUaZcHAqJn3o+nDcUzLhk1Q7rRGKnOpruvT4Vo/bIe5HX/+NnL+FPPwJggdc+IH+V1zTHNCeKZW8zb2AyvT/lpUABwX2WJbnPMLS09OD80jPwcKypKilT7my0tPRi46MWcyQUoyMtB+dVFGHB5dCkDMHbesGZrF2rKHTjr8mDXgZOwCAiOq+9tWIqV9bvDMqyXTi7Abx/7Cra81aO6jFgToMjL5Bx0Y2X97oxub2R+Zp2DExEREREREREREaULA9SJiIgMTimgKVKAg+Rg/wU8WP8+Xn5sMSqmTUioDPJALJsF+Mb1iQVvaAmI0SswKNlBYdkQwJROvMkgM2TSjQapCOjLJLEEEEbqr80S4GuEMUG+zXfs7cOOvX1pvyEkldumfnVV5Kz8CYhnXJLKk+66YVRGrLPPNY8Gy+86hOcfrExLGZIllTeNKQV0PvXyfry6ry/4ulUAlt8Q+7FFPHOL5ddPw6v7+iAAUAqp1mOOqbZ9bVYLKmdNDPYB8s8dGQ0KP3hiEEeevTuhMkQi7ZM1W7vw8OLwcdVRZMfI6N0DNqsAr0/EsTOXUf10i+rvSQHsieDcioiIiIiIiIiIiIgo8zBAnYiIyODizdL15Ev7cdEzgid/sx9vPnWbpu+oBU7JA7G8CQQIaw2IcQ66sfyn7XBe9CQcqJDsTGcMqEg+swSmkrpMuNEgk7LAp1IsAYSR+muzZK00QgZotUy2sWa41VuqA34j9TuJ3sgXz7gUWjfW3zmfweohjFRnxwTL7+vDjn3pv8FDT+m+aeySdwRljkL0OF2wCIBP1BYYLj9WiWVuId+vSjWrzFE4JnN56DIhQlO7lW/fvBwLCvNysPiaq7Dr45PBYwbpc7/f3x/2fb+IsKdVJevmFrVx9dqSItSUO0Ky3l9CUYEtuD6SHAsw4gd8fjHucnFuRURERERa8IZvIiIiIiIicxLSfYGakquqqkrs6upKdzGIiCiFSjc0qb537LnImfjqGruxvbMXq6pnjQm0XrO1C8Xj7Xioehb+Z+Nu5BZNDgtq0CpSNlPp5LI8UEFitEAFs5STyChC+xEpoDOefiRdtPRfpGxjYzcaOgPZY70+v+I4Y0ahF0hv2fyOYcYE56Ab36rfjc9Hs/ECVzLcpqOuxjJe6n3RWa3fueMn76LH6UKZo1DzjXzxUlt/AHh4UWa0hUQZqc7O29gMr2/s/rLlWHA4g+Z36e6X45kTKB2rhP7Of7QfwTuHnHjjH2+FY7x9THB56BgeSWjfFLpMAKrHSnKh21et/eflWDDs88OvcGrWIgDv/9MyOMbbIx6jJUprnytfnzJHIV749sKE53PS3KrpoxPw+UVYLQKWXz+Nc6sMwCAyIiIi0lMy58RG1draipqamnQXg4iIiIiIKCpBEPaIoqh4oYAZ1ImIiDLMrrVL8N1f70Hf+aHgazMm5uPnj9yk+h0tmeukoAPnoBvHXX5s+5v4stcqZTrMsQh4oiFygJ9FANrW18a1TCV6XDBPd/ZJIrMxSwZsNZmQBV5NsoOIMvUpCKFP0DBSBmhHkR2+0YjHXKuAYZ+YUIbbRKltAqWX9X4qibzfKd3QFHYzX4/TFfw72o188YpUB4ycLTiVwYVGqrPt62uxsn43jikEy2eSdPfLscwJtGbZLsi14vzQcLD/kPcnYU+E8vlxf+V0jIii4lxeaZnRlh/qtMsDAVANTr+vsgQb7/4y1r3yIY6duYzes5fDAtXvXzh9zHFRMvoLrX2uUn2pKClKeD53y4/D19HnF7Fzfz9eP3BSl3VkkHT68CljREREpAc+cYeIiIiIiMjcmEE9wzGDOhFRdpKygkqiZQeNJStwXWM3tnf0YlUCGT/lGRPf/cSJ4+eHsKp6FtYuKwvLoif55sLpeP7ByriWp0SvrCvpzj6ZDRhYQkZi9izwarIxE1UiImXEDiUA6Ni4LC19l1RXF18zCf/48oe4YeZEWCxCyvtStW0l3zapeirJwf4LqjfyVUyboNtyQillB5cY+UkMqe4X9OxfE507LNn8No6fG4LNKsDrEzFzUj7a1i+NqyyUuGhZtrX2yRYBeEgWZD2lME9xLi8/PrIIgX7LJ2pvt85BNxY/26KYId0qAJ89G7gpZuPo8ZVFAPwiMM9RiGuKx+FH9y1I2pNbjPIkKOegG/e++B4GBt3wiYHt4iiyY+cTN+vSJ3J+k3pGqVtERESUGbL5aYbMoE5ERERERGbBDOpERERZ5sLQMOZNLcTapWXY8nYPzl8ejvh5LVmB9cxWIgUbqf2mFJxhHf3vXEchXN6RmJahRo/1CA16Snf2yWzA7HsUi4P9F/Bg/ft4+bHFSQk2NXsWeDlmooqP/AkaeTkWTCnMCwt6BoBpE+xpu2Aq1dU7fvIuhv0iDp+6iIuekZT3pdK2+v3+/rDX5dsmVU8lqSiZgAKbNey1fJs1acHpgHJ2cACGfRJDuvoFPfvXROcO15YUoabckRXzOzPcCBgty7Zan3za5YZnRFQMYpHq2JqtXcG5/H+0H0FT9wmsvb1M8fgIiK3dOorsWFE5Ha/u6wu+ZhGAWVeNQ+nk/OBrp10ePLx4tuLNGcl4cotz0I2KaUU4OTiEExc8AJC2J0E5iuxYNt+Bhs7eYGb7ZfMdugfgc36TOnzKGBEREelJmpe7h/0QALiHjXcMTUREREREROoYoE5ERJSBOjfeHvz38htKNH0nWqB1Mi40q/3mhaFhzJhUkJQMxXqsR2jQkx7BVGYIDEoHBpZQPJ58aT8uekbw5G/2R3xyRDzibatGbuMMIoqPPHDR6/MHg55Db66aUzwubWUs3dAU9vegO3CjV6r7UmlbAZG3jZab5fSglNm1x+lCeV1zUrdHaMDzmq2Bp5zVr64yZPCzmfsFveYOmXYzUiR63QioNtbpMQa2ratVzbINqPfJXp8YtT8J3dcFuVacHxoObovQ46N42+0l7wjKHIX41OmCRQhkYF8yd3LYto5U35JxM+xXnm2BT5bV3T3sx2sf9uOFby9M+PdjlYx1NHM/Znah7VEQYMgbsYiIlBj5uJ0o2512eYJz6jJHIQZcnnQXiYiIiIiIiDRigDoREVGGivXCSrRAnNALzbkWfS40qwWjhQZG6B0UlEgAXLICpo2YIdwIF+YYWJI99Khv8mDcHqcr+Nqx5+5OuIxA/G3ViG1ckqqg4EwkD6j748cnVTPgpsOutUvw3V/vGZPV3WYFvnFdSUr70kjZgeWfS/ZTSdI1toSub9v6pcF/GzH42cz9AucO2uk9r1Ub6xIZA0PnB8vmO7C9oxcCAkHe8izbSn2y1v5Ey7YIbbdrl87FE7/ZB+dFd9R2Ub+6Cmu2dmHRnMlx9W163iwxb2MzvD6/6vt+UfWtpErGDSFm7scywWmXB2XFhTjsdGEeg8iIyCSMfNxOlM3kc/UepyslN5kTERERERGRPgRRTNPVB0qJqqoqsaurK93FICKiNKhr7Mb2zl6sqp6l24WVNVu7UDzejnmWUzjsn6pL8J30m4kE9MUa3BrvMp2DbtWgp3iCHZSyuAIwRIbwSPUnlcHrGxu70dDZC5s1kA1Tz/pMxqFHf3Ww/8KYYNwZE/Px80duQsW0CQmVT62t2qwCDj99V8zfM0IbD6VHP0zGdMdP3kWP0xX2miAg6/tSji3Rmblf4P7VRq95rdpYpyaWMTB0fjDg8uDIwCV86nQFn8KgV52MdVsk4zhLD9Hm6E+9vB+v7utT/b4tx4LDBpqfJMrM/ZiZmWX+S0QkYb9FZGx6n483k9bWVtTU1KS7GJQAIyQBIiIiIiJKBUEQ9oiiqHgCnhnUiYiIMkyysnwDV7Lbtbaext/U6JPdTo+MebFmOQpdZiwZECNl4ovnZKMRs3xqqT+pzCqVimy6lD569lcVJRNQYLOGvZZvsyYcnA6MbatWIZC99Z4bSmL6nhHauJJkZC4lY7gwNIx5Uwthz7Xg6OlLGPL6cV/l9KzPZHra5cH9C6fj8MmLKL+6SNP2yLaLimbuFzh30CaRDNOh7UFtrFtz6xz825+OxDUGKs0PQklZE6/5fhM6/mmZLm1y92eno26LeRt3weu7kugj3nmL3v2J9HszJ+aHzdGl1/f3ngsrt6oMS2Ji5n7MzMwy/yWizJQp5+aI6Ao+GYfMjE/nICIiIiICLOkuABEREemrbV0t7q0sgT03MMzbcy24r7IEbetr01wy/ZXXNaN0QxO2dfRCFANBIqUbmlBe16z5N0JPEmohBT01Pn4zVi2aHQxqi/V3AGOeYI9Uf/TY3rGqX12FTSsWoKKkCJtWLGDWQx05B91YWb8bzjQG7undX0nBuD/7Lwsxb2ohLgwN61JOqa26hwPBclKM1469fRHbgBHbOGWXzo2344//eBt+/8QtuO+G6fCJIvJzLVnfl9avrkJBrhUfnxjUvD3iGeczkRHGjmg4d9BObV4bTWh7UBvrKkomxD0GyucHeTkCpk/MR17OldOYhXk5EEXo0ia3tPRg4KIXZcWFEbeFdGOaVQj8HW3eotZe9OpPpN9f/GwLOo+exY59fWFz9MXPtuCDY2dxzw0lYdtTjaYgdqIoOP8lonTKlHNzRBQu3uMWonRJx3UUIoqPGc51EhERmR0zqBMREWWY0EBKAYB7OHMvrCSS5SjezM3yTHzSycZYf0ditCyfkS7MMatUZjFCBhe9LwR3brw9+O/lUbKbx+q0y4MHbpyOsy4v2j49DZ9f1NQGjNbGKfsk88kqZhTr9uD2C2eEsYPUxZo1NNYM02rtwSJAcayLdwyUH894RkT0nR8K+4zLMxJWhnjapHx9DjtduGtL25jfkn9OiuOOdpz1XPMhdB49i827DuH5Byt1708WP9sCf4SYcn/IDXUSab6VKbLt6RZmwfkvkf7Y30WW6BibSL+Vin3D/U/Zjk/GIbNJ5XUUjhEUD9abK3iuk4iIKPkYoE5ERJSBTrs8KHMU4lOnC2WOwozNKqIluFXtRIteJwkT/R0jnmBXuzDHrFKZwWjBlmYJYJHa6sbGbvhFUXMbMGIbp+zCm4vCxbo9uP0CjDZ2qMmUC2zxrkeyL6pFag9SOUPHukTGQOl4psfpAgBYBGDWVQXoO38Zw74rn8vLseDOBfG1Sa3tW/45q0XAomuuwicnL+K4LHAeGNteduzrw459fbBZLbi3siTh/kT++0pKJxfg5KA7uJxJBTZ89UtT8OiSa/A//3gIbx8aGPOdbX9XHVM5jIAXko1Jre1nSh9NlA7s7yJL9rm5SP1XKvYN9785cdwjyl6pvI7CMYLiwXpjnnOdREREmYAB6kRERBlGflDd43Shx+lCeV2zaQ+qI53QjxbcqnaiRa+ThEYN2k7kIkikC3NmCSaW40WhK4wWbGm2AG6ztgHKXkYdp9Il1u3B7RdgtLFDTaZcYJNn3o4mVRfVUtUelAKw/SJw7MxlAIFgdb8IWAXA64u/DLHc7DpjYn7Y5/b2noN72I8ZE/PH/K6oltVcgC7bT0sG9GNnLkMQrmRMXzbfEWwTv/xOddgToCRL5haPec2oc2heSDY+pbqTKX00mZtR+zU17O+0SfYcRan/SsW+4f43N457RNkt2eeQOUZQPFhvrjDLuU4iIqJMwAB1IiKiDJPIQbVRL9RFOqGvFtyq5USLXicJjRiwmqyLIGYLJpbwotAVDLZMjFnbAGU3I45T6RTr9uD2M/7YkSkX2NQyb0dbj1ReVFNrD9JxxNqlc/G9bXvx8mOLUTFtQlzLaFtXi3X/9yO0Hg7P8p2XI+D2L1+Nc5e9OO3yYHKhDV8qHp9Qm9R6s+uJiflYtWg2Xv6gFwDgHg7sp9C61rauFk/8Zh9+9w9fxePb9wYD6gFgxqR8vPr4V/GD3x1ISX8iCIi4HFuOBfm5Fnzvti/hX9/9DEPDykHvRp1D80Ky8YXWnVf2HM+IPpoyg1H7NTXs77RLxpw90hwzFftGWsYbB04G5+E15cVwXvTAedFtmLk4hcuUYxMiSkyyzyFzjkDxkOpN00cn4POLsFoELL9+WlbWm9BznYIAw53rJCIiyiSCqJrWhzJBVVWV2NXVle5iEBFRim1s7EZDZy9sVgu8Pj9WVc/SdOGtrrEb2zt7o36+tbUVNTU1OpZYmdrj67Wc0HcOulVP0EU7wWDUQH0tEtlmmYjbQ9marV0oHm8Pu3AbetKciIgIAA72X8CD9e/j5ccW44W3euIeO5I9t0pk3mck8zY2w+sbO2+x5VhwOMq8Jd75v16k44jxeTkYdI+gzFGIN5+6Le7f29jYje0dvWGvJfqbgPa6qDaHVLPrySVoeL83eCzVengAx88NwQLAD2CczYqP/+XOhMouUcp+Hvb+5AL89rGvJFT3zTCHTnedJ2VqdcciBPoyPftoMx+3U+qZoV9Tw/4ufaLNMVOxb+RzojJHIT4dcLEeGFimHJtQ+qXqGgyZF+cIFCszz4mTYc3WLhwduITDThfmOQpxTfE4XicjIiKKkyAIe0RRVBxILakuDBERESXfaZcHDyycjjJHIR64cToGXJ6w952Dbqys3w3naDah8rpmlG5owraOXohiILNL6YYmlNc1p6P4QW3ranFvZQnsuYEpiz3XgvsqS9C2vjbqdxPJ9BmaUctspG1mtQgAAKtF0LzNMlEidSiT1a+uwqYVC1BRUoRNKxbwpFsKyPtdo/0eEZGSJ1/aj4ueETz5m/0JjR3JnltlStaj9vW1KJ1cEPZa6eQCtGuYt0hZQxsfvxmrFs0eM/9PFvlxxKB7BADQ43ShdENT1GBqNaddHthzLZh9VT5umTsZhXlWXBgaTnj8U6qLSr+pNIesmTcFEwtyYRXG/u5dL7SHHUsdPzcEIBCcDgCXvD7djq9yLQoFCOHziwnXfTPModNV5ykytbqzYuF03Z/CYebjdko9M/RratjfpU+0c4vJ3jfldc1jbtjrcboMde6WxjL606eIKHNwjkCxaltXi6sn2IPnNawCMG2C3RRzYr2V1zXjjY9P4bDTBQA47HThjY9PcW5FRESUBDnpLgARERHpr351Feoau/HxiUFUzpyI51dXhr0vf6RxLI8DdA668UzHECpuiu1Rss5BN9Zs3QMRwM//5iZN3030hH6sj/fNhEew3vLjd8LWwecXsXN/P14/cNI066CndF0UYjY/ktP7UfJmezQ9EZmLPKhYCjYGgGPP3a35d1I5tzrt8qCsuDCY9ciMF2YdRXaM+ANPOrRZBXh9ouZg42Q/PlyNdBzxevfJMdnfZ0zMx88fuWnMd7TMk9RugKhr7I5r/ItUF79104wxv6k0h+w778b5y8NRl2XPteC2ecU42D+IL0YD1fV83Pp7G5ai+pkWxffKHIWYUzwu4WWYIbAqWp1v7xnAI7/sxK8ercaSucWpLFpWU6s7AzEem0eSCcftlHpm6NfUpGuMp4BI5xaTvW/k52stAiAA8In6zi1If7GekyYiigfnCBQrR5Edy+Y70NAZOH7y+vxYNt9hijmx3mK5Lk5ERESJYYA6ERFRhol0sRaA6nt/fdMMTRfqtrT0oOecP+agkC0tPdj3xfnAv2P4bjwn9JWCXrScoIt0QsIsAcdt62px74vvYWDQDZ8YyIDgKLJj5xM3p7toaZOOi0IMHiaJ3gE0DMgholTYtXYJvvvrPeg7PxR8TS3YOJJUXeyR942HnS4cdrpQXtdsur7x2pIi1JQ7TBPMIgX8yYPTASDfZkXFtAljXo9nnpTI+OccdKNiWhGKi/Lwp8MDwbroHfHDM+LHttHMpPLflOaQL38QyIzeM5pVK5RFAPxi4KlFPr8Im1WAe9iPNz4+FfY597Aff/iwHy98e6Gm9Y3EUWSHPdcC9/DYbd7jdKFHp7pv9sCqx7fvhU8EHt+2Fx/98OvpLo5pjif1oFR39AyeYSABxcvs/RqlRzqD/5RurABgupssshGDRomIyKg4Jw4w8w2sREREZiOIopjuMlASVVVViV1dXekuBhERpZBz0K1+sVaE6ns/+N0BFI+3q15ElgeFSKIFhah9T8t341XX2I3tnb1YVT0r5uDgjY3daOjshc0ayB4g/UYivxmrRIMX1NaBki/edmJk2RRMkwyR+uR4tqfev0dEpOaOn7wbFpBb5ijEm0/dFvPvpGJekoq+keOhskhzfcf4PHRuvD3497yNzYqB7FqDzOPdx9I8fm5xIT4dcAXr4v2V0zEiiqq/Ke3zH95TgX/705Exn7NaBDTu6wMAiGKgjbzw7YX4RfsRvPfZGZy8ELjIawEwa3IBSqeMw3/+1+qIZZWvs7T8H/7hYFjdW7O1C1aLgHcODWBiQS5ODbrhl2VTzdZ6Kn8CRKhYngCht1QeTyaTUfpCHvMSUbZYs7UreL52zdbAtb761VWK526JKLO0traipqYm3cUgIspYofMszq2IiIgSIwjCHlEUFQdSZlAnIiLKMKF3fQsCxtz1rXZHeLTMLvFmKWtbV4sf7DyAtw6egm/0vjiLANxRMRU/0pBBJpYL4HpkFpayB9x57VQ89dsPsb2zN5hVMd7fjFWi2bfTlQHBKMEK6SS1k6YP+4MZ7JffUGLqbH7MBp8YvTNxMLMHEaXKhaFhzJtaiLVLy7Dl7R6cvzwc1++kYl6Sir6R46GySMcI8u2//PppeHU0oBtATFmP49nH8mMD6YYLvyhi1aLZGLjoxpTCPNXflPZ5Q0ev4rIHXB6UFRfisNOFeY5CXFM8DhUlRXjtoxNhy/UDOHbmMk5cUK/7SvNoaflPvrQfnw64wupe/eoq3PGTdzE07EOuR4AIZlOVbHu0Gt/99R4MDfuCr+XnWvHvMT4BQi+Z9vQbo/SFzPpHRNki9Hxt2/qlwX8zKzcRERFRYvjEEyIiotRggDoREVEGOi0LlhhwecLei/dC7u7PTsMz4keuZWzguxpHkR1TCvOCwekA4BeB4sI8TYETsVwA1+NR39IJibrGbgy4PBEzK+pNr+AFtZMqyQ4gN0qwQjrd8uN3wvahTwR27u/H6wdOmi4AJV3BNEa+0SHesukdQMOAHCLzMnIfJxea+Xr5DSVx/06qLvYkq2/MtOBSvWkJHFfLsu4eji2Y+rTLg/sXTsfhkxdRfnVR2DGOkrZ1tajbeQBvHjwFUSW7+JqtXWH15vjZS7jm+00IfeCkdLOqVRDQ+PjNaOjsRUPH5/CHfOaw04XDThfK65rRtq4Wd/+0DQMXvQACN+dOLbJj5xM3q5ZVmkdvbj6EV/f2IfR5l1JgvVT35AbdIwACx2cPL56d9fOCJWXFyLUKGAq5pybXKmDJ3OK0lEc6Rn3jwAl4RkTk5Qi4c8E0093AarS+kIEERERERERERERERMbHAHUiIqIMI79wLAVLzNu4C4efvivuC7lbWnowcNGLeY5CPDx3BIf9UzUHP5x2eTBzUj6unzERAPDR8fNRA0riuQCuR/ZM+XJDszwmOyuhHgH2kSQrgNxowQrp1LauFve+2I6Bi174/CKsFgGO8XkRA5KMKtn1UY2Rb3SIt2x6B9AwIIfMwEyB2Klk5D7O7JLVN6ZrPDSTaDcHtK2rxeJnW8ICuiUNnb2a20L96irUNXbj4xODqJw5Ec+vjPzYZUeRHUcHLkEUA0HiSvN4eb2pa+yGKAKlkwtwctCtmBV+04oFWLt0rnq9EIGLo0HjQODm3GXzHYp94byNzfD6rsyjd+wNHHsIAAQBYdtMAPC1a6di9eLZWL+jG33nh4LvzZiYj58/chMqpk3QtC0znXvEjwn5OfjebV/Cv777GYaGx94gkSpXjlEDO9MzIpoyyz37QiKi9OGxFRERERERERGZFQPUiYiIMox04bjpw/6wrOX3xJn5Uing/f91Ank5X2gOPg4N/JA4B91YWb9b9eJKvBfAE82eqbTcSQU2fHXuZDx685ykZivWI8BeSbIDyBmscIWjyI5l86eioTOwfb0+v2pAktElqz6qMfKNDkYuG5He9Ap+YCB2uGT2IwxYSa5Uj4dmFO3mAEeRHV+/9mo0HzgZfM1qEbD8eu1ZpOWB3NHakLzNSYHeagHx8s8fO3M5+G+lTO9q9eKWze8oZovf1tGLV/YcH1PW5ddPC7shViICYVncpdcOn3RhSVkxCmzWsPfybVYGp4c4HLKdH6uZm8aSKD9BQK0+JFOiYwX7QiKi9OGxFRERERERERGZlSXdBSAiIiJ93fLjd/D7/eHB6UAgG1/phiaU1zXH9Htt62pxb2UJ7LmBaUNejoDxuUDjP3w1oXKGXlxREu8F8PrVVdi0YgEqSoqwacUCxeD4SJSWu2y+A89/qzLu34yFFGDf+PjNWLVodtRM81rI96E914L7KkvQtr424d8GGKwgl4x9mC7xrIt084kzjptD7q0sgdUiAAgErulZTxOR7DZEZCTRxudoyuuaUbqhCds6eiGKgSC8eOYfmSaZ/Uii+4yiy6SxPV0O9F0I/tsqAD5/5CzS8vnE8uunBb47Ok+I1obU2tz7/7RM9fM184qDf1sEIGf0rOkEe47iPpfXi4bOXsXgdAD4+rVTw8oq9ZVKwemRHD1zCaUbmtDjdGHe1EL87L8sxLyphbgwNBzT7xhFvPNGMzHKPFKPsYJ9IRFRavHYioiIiIiIiIjMjhnUiYiIMkzbulrc+2I7nIOesEfC5+UIuHOB9iyFEqXgYw+AhveVsw9GE0sG0USzocdLz+XGmqkuWgbKeKQigDxd+8qIkrEP0yWedXmu+RA6j57F5l2H8PyDlZqXdcuPwzOO+vwidu7vx+sHTqY9SzlvwqBsoFeGbz5VQ1ky+hE+3SF1MmlsTxa1Oa9S9mifGAgAjxTcKgXTLn6mJeyYxjf6h1JW81ChbU4QELXNOYrs6Pr8bPBvv3gl6/oF9wje+PgUSjc04dhzdwc/I68Xa5fOVXySFQAUF+aFLVveVwJAgc2Ky16f6jYJZbMK+OM/3gYAWB7nk7KMQNrPm5sP4YtzQxn5JIh0zyP1HCvYFxIRpRaPrYiIiIiIiIjI7BigTkRElGEcRXYsmz8V2zt6g69ZBMDri56lUC2Q+rTLAwuElAeupesCuJ7LNcpjeJMdQM5gBZIHv+zY14cd+/o09xGBm2vew8CgGz4xkF3VUWTHziduTmaxNeNNGJTp9Ap+SHcgnpHp3Y8wYIUSFeuNlJGozXkj1VOlZcrnE7I4b1gF4JZ5xZhcaIuavfm0y4Oy4kIcdrowz1Go+HnnoBvVz7REXb8ZE/Px80duGvPdv9+6B4IA1K8OvPf+Z2fCgtNnX5UPvzg2GN9RZMdrH/aHBd9rDU4vnVyA3z72FU2fTaZE6s+YeePeQCb5rzzTgs+evVvta6aVznkkxwoiIvPisRURERERERERmR0D1ImIiDKMUpZCvwhYBUFTlkKlQOr61VVwDroZuBYDo2U1ZQA5JZsojyCTXh/9r1IQU9hrRXYsm+9AQ2egnXh9fiyb7zBM38A2dIWeAY1kHHqOz7yhQ5ne/Ui2zKkoMfIg6tD6ETr/X7usLK6+PdqcN9Z6qpRZPJRPBNoOD0QNYpaX67DThcNOF8rrmsPm4ltaejStZ77NioppE8Je29LSg/1fnA/8+63A7zgvelDmKMQL314Y7P9C237oGHp1kR39F9ywCIHjNYsATJuQj9MuNzwjYvB4q/PoWZy44EauVcCwT4TPLxqinSdyI660n3+/vz/sdZ8IlG5oyrgnQaRqHqk0R+NYQURkbjy2IiIiIiIiIiIzY4A6ERFRhkk0S6FaIHXohe1cCxi4FkWsmeoY8Jle3P6Ja19fi5X1u3HszOXga6EZPpWCmDa/fgidR89ic/MhPL+y0vB9A+tJgFGeDEH606sN8oaO1DF6v0npFxpELY23avN/ADH37VrmvLHU09BjDptVgNcnQkDghre8HAumTchH6eT8iGVyDrpRMa0IxUV5+NPhAcVyzdu4C16fyt11o8bZrPinu7+MX/35GM5fHg6+rnRD8LaQp1f1OF24a0ubYpD1lpYedB49i+qnr2Rtl7Ko+0WgwGaF1yeGBRJfP2MCln15qmHauR434kr7WRAAAVe2AbN7J0ZtjsaxgugKsxzTmaWclHw8tiLKHOzbKVlYt4iIiIjIyARRLdUhZYSqqiqxq6sr3cUgIqIU29jYjYbOXtisgSzEq6pnBS9Qy09WRcqMLj+ZtWZrF4rH2zHPcgqH/VPHZARU+v1sFmk/yNU1dmN7Z2/Ez2SzZNerVGz/bGgbSza/jePnhoIBZTMn5cN50TMmiEuN0bNlZns7VQrIA4y/34iIspFanw0ANqsFd153tWqWciC2vj2WOa+c0vxIOuZ4qHoWnnxpH3qcruDTVbT8tjRezy0uxKcDLsVy/fff7seOvX2wCoGs3UoeXqS8LOegG3U7D+Ctg6eCgdUAgpnQ5cdTzkE3Fj3bovq0GQCoKS/G5EIb2g6fxteuvToskFh+vJVusRw/RiLt57MuD3YdOAmLELgRIVvnWYngHI1Iu6de3o9X9/Xhmwun4/kHK9NdHFXZfuxJRJSJYu3bW1tbUVNTk/yCkemZZX5DRERERJlLEIQ9oigqXsxgBnUiIqIMFClDmjyrWiyP/JaCI1pbT+NvapSz9jCz7hVaMtXpkYEwGySrXqVy+2dD27i2pAg15Y6wOr/jvgVjgpg8w34oxWgZ9eZZttMAKUtu04f98ImAVQCW31DCLKdERAbUtq4Wi55pURxvAXFMlnKrRYDPL8aVwTqR7MxK86PQgOw5xeOwaM5kxd+WB7fLx+sepwsA4BdFrFo0GwMX3WM+ExqcPs5mRU25AwDw0fHzGHB5FMvsKLKjuDAvLDg9sByEHU9BBFbW78bMifkQxcCTZU4OuhVvCmj9ZGDMvMKoWVJjOX6MRNrPa7Z24eHFzO6diFif3kWUjeT9/459fdixr89wx3Q89iQiyjzs2ylZzDK/ISIiIqLsxgzqGY4Z1ImISBIpq1pNeXEwS6GWTH1K2TuYtS0+emUgzFTJrlep2P7Z1jaUMqHKM6s+sHA6uj4/h8/PXA5+r3RyAX772FcMWe/ZTgOyrS4TUWTtPQN45Jed+NWj1VgytzjdxSEFUha1UNJ4+4PfHYgpS7neT4KJZUxRW7Y8A6GW8Vr6zBsHTsIz4odVAG6ZV4zJ4/Lg8gxrzlY+5/tNYwLUASDXKuDBv5qFgYtuvCnLsK7Fsefuju0LaRKa5d6omd4zlVp7SORJBkTZYN7GZnh9Y8cdW44Fhw10LMNjTyKizBNv384M6hSNWeY3RERERJT5ImVQt6S6MERERJQebetqcW9lCey5geHfnmvBfZUlaFtfi/rVVdi0YgEqSoqwacWCuIILIv0+qdMrA2GmSna9SsX2z7a2EZoJVSJlVm18/GasWjQbLs8IfKMRW7lWAQDg84uGrfdspwFt62px9YQ8WC2BfWa1CJg2wZ6xdTlRzkE3VtbvhpOZYClDPb59L3wi8Pi2vekuSloZua1f8o5gnM0K4MoJQGm8DZ3/zykeh4cXXxmnlTKHK43viYhlfiRfdnldM0o3NGFbRy9EMZCBsHRDE2758TtRx+vQMR0IZFCfMTEfz6+8QfEYSL5/pb9f+29Lwsqfl2PB5HE27HziZrzS9QXe+Fg5OL10cgFGpz5j5Kq9YUB6HD9SfNTaony+rfYEAKJs1b6+FqWTC8JeK51cgHaDHcvw2JOIKPOwb6dkMcv8hoiIiIiyW066C0BERESpkewToTzRGj8pmICPtR8rFfUq2ds/W9qG1sfVblqxAEAg82ZNucM09Z7tNFCXl82fiobO3mCW3WXzHRlXl/USGkBmhgymemdHjtfB/gt4sP59vPzYYlRMm5C2cpC60g1NYX8PukeCr5kl+7OepLa+fEs7Xlu7xFB9Yv3qKsVM10qfk0jjtCRZj6PXMj9SW7bNKqB0cgGOjT6JxWoRsPz6adh495fxg98diDheK2Vu39bRi1f2HFdcH3lfLv3d0NE7pvyeES8a3u9F27pabNr1F/x+f/+Y3zt25jJsVgsg+hGa6M5qAd7bsDSubUnZIVpbjNSOiSgw7oyM3jlkswrw+kTD3iTNY08ioszDvp2SwUzzGyIiIiLKXoIoxvisWTKVqqoqsaurK93FICIig0jkUeyhgWsH97yv+HhJPuqdkiET6lUmrEM0fBR5dlCqyz+6b4EhApuNQin4EUDCwZzJVtfYje2dvVhVPWtMQH0qg9fv+Mm76HG6UOYoxJtP3ZbUZVF82nsG8N1f78HQsC/4Wn6uFf/+yE1YMrc4jSVLLSO09XjaZqzf0Wt8V1putPmR0rK9I37FzOSAtm2vdX3U9m+ipk2wY+cTN+PWH78D97AfORZgxA/k51rwlx8Zd4yg9ONcmyhx2XBcTkREmaO1tVXxGgxRKM5viIiIiMgIBEHYI4qi4kSUGdSJiIiySCJZ1UKzB94+Sf/fzxRGyUCbSTKhXmXCOkSTLZnis51SXa5r7DZVpvBkkzLnKgWQGZGW7MipyAYvz8rd43RldVZuI1tSVoxcq4Ch4Suv5VqFrApOBwJtffGzLWOCpT0jfpTXNWsOUk9k7hhP24z1O3qN70rLjTY/Ulr2/ZXTcck7gjc+PhX+2fF5eG3tkoTWJ/QJDvK+PC/HgimFeTjtcsMzIsKea0HNvGJ8cW4IxYV5+FPPAPwiYM+1YPE1V+G9z87A7xfhk9UP6ckjt80rjprZnigU59rJw2P49EvVPsiG43IiIiLKLpzfEBEREZHRMUCdiIiIIlIMXANge6sZhw2cCTZdUhHER+aQjYEOfFxtdJlUL7QENmejZAeQ6V2HIgXUp3If71q7BN/99R70nR8KvjZjYj5+/shNui6H9OEe8WNCfg6+d9uX8K/vfoahYf0zTespNPC4YtoEXX7TUWTHisrpeHVfX/A1qwAsv6EkphtS4pk7xtM21b5jswqonDUpYp+SyPieaD+itOxxtrGnM79WMVWx/Ep9ptr6PPnSflz0jODJ3+zHm0/dFtaXe31+FNis8PrEYN/+2cAlfDrgggWAXwzsf8+IH5+fHcLwaGS6RQi8d9d103DVOFtwWQwioHhwrp0cPIZPv1Tug0w6HiMiIiIiIiIiIjI6QRRVnotLGaGqqkrs6upKdzGIiMjE5I8St1oE+PwivrlwOp5/sDLdxTMMefCNJNsDNbP54m9dYze2d/ZiVfUsUwY6ZPO+Syaz14tQ8vEhNLA52+tMMh+vm4w6tLGxGw2dvbBZA0GY0m+neh/f8ZN30eN0Bf8ucxTizadu0305lH2kuqV3nVqztQtHBi6hx+kKBiI/vEhb20xk7hhP25R/Jy9HQGFeLhbNuQrNB04mbVxyDrqxsn43jp25DAAQhEAw+Y9WLIirH5E/bSFU5z8tGzN3Ce0z1y4rU5zbRPrNhxdfCQb+48cn8bVrr8bLH/QGA9C1sAjAHRVT+Zh1IoPhMXz6pWMfZNLxGBERZbbW1lbU1NSkuxhERERERERRCYKwRxRFxYsgDFDPcAxQJyIiPWxs7Mb2jl7F93jxNoCBmsqy8eJvpgQ6mGHfmSmIPlPqhZxaYLPekpH92GySWYfUAuoP9l/AfS++h+HRjMHJ3McAUP30W5hYkIu1S8uw5e0enL88jM6NtydlWZQdIgUeH3vubl2WEe8NKYnOHePpf0O/o9SfANH7lFjGXrV+C4i+/eXLcQ66seiZFqidxcy1CniwamZw7vLKnuOqy/7mjdPx/MrK4N8H+y+MeYJDjgX4/X9bojjmOAfdWPxsC/waT6narAIOP32Xtg8TUcrwGD79UrkPMvV4jIiIMhcD1ImIiIiIyCwiBahbUl0YIiIiMiYpu6FT4THhp10efPPG6bitvBhWIfCaPdeC+ypL0La+NsUlNSZHkR3j83LgGfEjLycQ9DM+LydrL2yX1zWjdEMTtnX0QhSBbR29KN3QhPK65nQXLena1tXi3soS2HMDU22ztRUz7bvQR8EbndnrhZrTLg9WLZqNxsdvxqpFszHg8iRlOU++tB8XPSN48jf7k/L7ZqBWhxof/6rq+K1V/eoqbFqxABUlRdi0YkEwuPbJl/Zj2CeiyJ6j2z6ONN/o3Hg7/viPt2H5DSX44z/exuB0StiutUswfWJ+2GszJuZj15NLdFuGWvuJJtG5Yzz972mXBxYIqoHbWsYlaexdvqU9ar8j9VtKos0t5GP8c82HIAKYNkF5+wz7xLC5i2fED4uAYJ8ZasfevuDynYNu/PAPB8OC0wFgxA/c9UK74k0Ot/z4Hc3B6aWTC9C+YSmAyP0fEaUej+HTL5X7IFOPx4iIiIiIiIiIiIwsJ90FICIiImMIDTZ5be2SsAuCUqDNxsZu+AHkWhDXhcNEsx0bOVuyc9CNXd0n8MDCGXh0yTXBDJrJWI5Rt0GotnW1qpnQMp3ZAx3MsO/k2e+2dfRiW0evobPfmb1eqAkNxNy0YoHuvy8PDOxxuoKv6ZX92CzU6lBDR28wiFOvzOby7T7oHsFdW9oAJL7dQ4NOjfp0BsocFSUTUGCzhr2Wb7Ma5kkMUpB5aPZ1reLpf+tXV43JVgsAFgEQgYjjknzsdV70oPrplohjr9RvyanNLZSypEtjvOTEhbHbKC/Hgq8vuDps7nLbvGJ0fX4OZ1xetc0BURSDfVJejgUjfj98IbH7Mybm4+eP3DTme23ranHvi+04eSH8pgABgCAAfjGQ0X3YJ8LnF4PblP0fkfEk0g+TPlK1DzL1eIyIiIiIiIiIiMjIGKBORESU5WIJNpEuHM6znMJh/9SYLxwmGpRh5KCOLS09OD80jPxcSzCDZijnoBt/v3UPBAGoX31T3BdBjbwNQmX7xV8zBzqYYd+ZIYheiZnrRbrsWrsE3/31nrDMtmoBg9kgtA4t/2lbWNBmtBs1YrnBKRnb3Yw3llBmuDA0jHlTC7F2aRm2vN2D85eH012kIClgPJU3H4aO85bRYOpvXHs1JhXmRRyX2tbVYvGzLWMyh3tG/Civa0bbulrF9Tjt8qDMUYgepwtAIBhebW6xpaUHEIDSqwpwctAdDKBXYhGAbyyYho+On0dFSdGYucuRgUs44/KizFGIY2cuYdg3NuW5dzTrurQecoIFePDf3sfLjy0Ou6nBUWTHsvlTsT2kDxYQCPKfMTEft5U7wsZ69n9ExpXsmy0pulTuAx6PkcQsyR+IiIiIiIiIiMxOEEWNz6QlU6qqqhK7urrSXQwiIjIw56BbMdgEAGxWAYefvmvM662traipqdG8DHlQhkRrUEai34+H1otVWstW19gdDIB5eNGsmIPL9doGqbwIt2ZrF4rH2/FQ9Sz8R/sRvHPIiTf+8VZe/DOB0H0nXbgPDRwwgo2N3Wjo7IXNaoHX58eq6tjbFZnDHT95NxjYCABljkK8+dRtaSyRMcizIIfeqKHUz9Y1dmN7Z6/mtqL3do+1vETZIrRtrl1WlpJ52nd+2YGDJy7iJysr8frHJzWP80+9vB+v7usL/m0VgOU3lGDj3V/Glrd6xvQxavNXiwDcUTEV9aur0N4zgId/0RlxuYV5OXB5RoJ/l04uwG8f+0rYNpLmLi9/0KsYjC6Xn2vBLfOK8e4nTnhGROTlCAAETJ+Yj6fumIctb/fgM6cLPlG5/5OWd2TAhdMuDyYX2vCl4vGK21Le/wkC8LWKqfjRigWG6v8YrEdERNki1mMjIqJ0iPUaDBERERERUboIgrBHFEXFC03MoE5ERJTlHEV2rKicHhZsIrnnhpIxrzkH3XimYwgVN7k1By4kmu04HdmStWYqVyvbmlvnYGX9buzvPQevLEgmnqyJ8W4DeaBJKjOwhwbnFORacX5o2PCZ3ynADJkEmf0uexg5+3E6aX3aQbyZe/Xe7ql6OgMDLMks1NomAF3mS5HawoxJBXi35zReP3AibDnR2s8l70gwG7pFAHwi8IcP+7Fzf/+Y9cjLsUScv0q///j2vQCAHIsAEYDPL0IAMHvyOGxasQB/88uOsOB0ADh25jKWbH4Hh0P6MGnusnbpXMVldh49gxMXPLBZBXh9IqYU5qG4MA+ekcA83TMi4uFFM7Hp/utQuqEpbHk9TlfwtWPP3R22PC2UstYfGbik2kelqx8zy5OazIxjFJH5sN1mFj7VhIiIiIiIiIgotRigTkRERGHBJqF27O3Djr19YRdqtrT0oOecP6bABaWgtByLgCcatF3kS1VQGxD7xSq1sjV09OKDY2fxwMLpuOgZwVsHTwWz1FtHs0b+SwyBv/FuAynQ5CvPtCA0Tj5VF+F48Y+SxQxB9KSPzo23B/+9XOHGqWym5UaNeG9wSsZ2T8WNJQyw1BeDspJH3jZD6TFfUmoL0eZl0dpP/eoqrNnahUVzJgfb8fGzl1FUkKsahK42f5UHgY+EPM5JBHDszCU8+qsP8Np/W4L7XnwPPr8Y9sSne66bprjeanPm62dMxLIvX3k6TEPH59g+ekNA6PZ4Zc9xbHu0Gn/7nx+Mucn07gVXa9r2Sn7T2QtRDKwbcCXoXWkfx9KP6dFGOV9PHY5RRLExwjyE7TazSPOvpg/74RPDnwZDlImM0I9S9mB9IyIiIiIiJYIoRn/sLZlXVVWV2NXVle5iEBGRCXznlx3o7hvEvKnj0XnsLHx+MSwb+N0/bYfStEFr4MKarV0oHn8lKOTdT5w4fn5I8+N05d8fuOiOKXOhVs5Bd9RMj5HKtvynbWHBM2oeXhT7Y4Rj2QbyQBM5Leulh3i2J2UvXsggSo6Njd1o6OyFzWqB1+dXHHvN3v7Uxj0GWGqnVAfqGruxvbNX83yNYiO1zVxLIKu31SKEzcGjzZeU9lmktqB2w0pz94kxwdjSd7S0n42N3dje0QsBgQDs0Hmu2vy1vWcA3/31HgwN+8b8nlUIBJrvfOJmbHmrJ5hZXolSGbXMmaU56h/290MEIAC4tzIQoBbPMqPRMieOpx/To41yvp58HKOI4pPOeQjbbWbifqVsw+M5c2ttbUVNTU26i6EZ6xsRERERUfYSBGGPKIqKwUvMoE5EREQAgKvG5eHMJS9OXhiCXxTHZAMXRaB0cgFODrpjysAqkYJC4s3Ql6psyfFkKg8t2/vfXzYmwGNSgQ0CgIWzJgEAPjp+HgMuT8xli2UbKAUgXV1kx+dnL8NmTW4W+lCpzH5P+kpHsCqz0xElh5bM5WZvf/FmiqcrQuvAK3uOM6NyCoS2zSdf2ocepyuuJ+WEtttIbUEto3n7+qUJtZ/TLg/KHIX41OlCmaMwbJ6rNn999FddqjdT+gGcGnSj+ukW1WVGKmO0ObNz0I3qZ8J/WwSwc38/du7vj2uZ0WiZE8fSj+mZ9ZzzdXV6zYc5RhHFxghPdmC7zUxt62px74vtGLjohc8fuDnQMT4PO5+4Od1FI9KVEfpRyh5Gq29mT8BARERERJRpGKBORESU5eQnEI+euQwA8IsiBCAse+Cx0fcAxB24YIaLfFoC+dQoBXgsm+9IebCfUjl8fjHu9UpEItuT1Gk92R7vSflUBqsa7UIGUaaJFKyZKe2PAZbxU6oDAGARAFuOJWy+tubWOVhZv5sXenUS2jbnFI/DojmTo86XnINuLHq2JezJRvJ2G6ktKM3L4m0/zkE3Fj3TgtDc6z1OF3qcLpTXNYf1IfL5SNu6Wix+tmXMk4e2/V01Xj9wCsfPXkbr4QHVZSfSxre09EBAoI6HJo7Py7Fg8Zyr8O7h04rfcw8n1q9EmxPHsh/0PqbifF2ZXvNhjlFEsTHCeSMztFsG4MXOUWTHsvlT0dAZmDd5fYFzdtx+lGmM0I9S9jBafTN7AgYiIiIiokzDAHUiIqIsJ4rKrwuCgPe/H55N0SIA0yfmQxwewqLy6XFlATfDRb5Es7UbJcBDqRzS+iQzC71cqrLfZxutJ9tjPSmfjmBVo13IiIaBAJRJpPbX9GE/fCJgFYDlN5Sotj8j13+9x18jr6ue1Ppgq0VA476+MU/V4YXe5NA6X9rS0hP1yUaR2oLacuJpP1taegABKL2qACcuuIPz+zsXjB3D5fMRR5Ed/2V0WTZrIEBsVfUsLJlbjEf/Uz27ukQUgYbO3pjqoXyO45MdB826qgAzJhUACASvS8HzVouAW8qmYPK4vLiOfyRa9rHW/aD3MRXn6+GSMR82yjEikRkY5byR0dstA/DiY/T9SqQHo/SjlB2MUt8yJQEDEREREVGmEUS1qDTKCFVVVWJXV1e6i0FERAbmHHRjZf3usOzopZML8NvHvgLHeDs2NnaHBY7MLS7Ep04XVi2aFXYBLJYgrjVbu1A83h52MSg0KCJbpCLwLVuC67KJ/GS7RH6yXevn5JyDbtVg8WTWIXlfs6p6lmEvstc1dmN7Z6+hy0ikVax9RTbVf73XNV1jspblKvXBAy5PcL62/KdtYzJdA9HHlGyTzH2s1lYBQBCQ0jYZqSwA8HDIcUKkPqamvFjxmECai7z2Yb9qvZOC4LVsZ2m//PCeCvzbn44E5zhKLALw0KLZOOvyYNeBk7AIgIjUbl+teEyVPOmaDxPRFezj1MV7rE9E2YX9qPm1traipqYm3cXQxAj1jXN4IiIiIqL0EQRhjyiKigcBDFDPcAxQJyIiLZZsfhvHzw3BZhXg9YmYOSkfbeuXArhycvHlD3oxLE8ziCsXwORBXAyMji4VQX7ZFEiYLbSebE/kpHw6gsWNcCEjGgYCUCZyDrpx74vtGLjohc8vwmoR4Bifh51P3BzWV2RT/U/WuiZ7TFabe2lZbrQ+mBd6tdG6jyPNk5Xecw66sWbrHhQX5eFPhweCTzaadVUBNt2/AK/u7cM7h5x44x9vjbo/9Jijy+uDEqm9xFN3nINuLP9pO5wXPcFM5rOuKkDv2Ss31H7zxul4fmWlpnUK3S8iApnX1U6H2nIsOLzpG6aYl1BymenmSSLKLpyXERFlBzMFqBsF5/BEREREROkRKUA9J9WFISIiIuO5tqQIi665Cp+cvIjyaePhco8E35MCMdYunat4Aaz5wEmUbmgKfl56dKJVAPwAHzWsIBWPm+QjLTOX1semJvJ41XQ88jo06GvTigVJX1482tbVqgYCEJmVo8iOZfOnoqEzMEZ4fX4sm+8Y01dkU/3Xe11TNSZvaenBB8fOBudesSw3Wh8cz5iSTTcrxrqP5fsq2ntbWnqw//h5zC0uDO4Dr8+PJXOnYMncYrzefRLnh4Y1zbsjLVur0Ppgy7HAO+KHVQB8IpCXI6AwLxdb/656zGej1R2pzsycmA/nRQ/KHIV44dsLcc9P28OC0wFgx94+vPbRCXyy6Ruq66S0X4BAlvStj1bjsW174PL4gu9LT5ECzDEvIX2o9VXpmA8TEWmRyLE+ERFRJuMcnoiIiIjIeJhBPcMxgzoREWmlJeOjlIEiRwBGxMCj7tcuK4uaQRHIzAyr8UpFtitm1MpsWrN6Mvun/piJhzKR1r4im+q/nuua7DFZLeO7zWrBndddrdtyYx1TsukpLlr3caTs/AAU31OSaxXw4F/NQkPH5/ArnNZTmnfr8WSA0EDeH/zuQLA+PPnSPvQ4XcEgOQB4eNGVpyp9/X/9CUvnT8WjS66JWHfmfL9JcX1sVgtG/H7F95SoZW+3WgT4/CImj7PhonsY3ghPh6LskU19FRFljmw41s+mmx2JKDGZ2l8wg3piMrVeEBEREREZETOoExERkapYMj5KGSjmWU7hsH8qBi66x2Ru8vr8mH1VAU4Ouk2fYTVZJzFTke2KGbUym9asnsz+qb94MvHwgggZnda+IpsyUem5rskekyNlfH/hrR7dlqu1npjpKS6h/TNExNxXh35fyz6OmJ1fxJj3auYVww/gT4cHFAPf1Z5wpDTvbltXix/sPIA3D56CX0Rcc/TQTOWh9WFO8TgcGbikuN8tAiACyM+1oKKkSLHuqAXPA8B9lSXYePeX8dyuQ3h1X9+Y92dOyseAy6O4/lLbk26i9Y1GuJ+55FVdRybyyB5m6qsyCefFpIT1InbZcKyvx1NfiCg7sL8gJawXRERERETGwAB1IiKiLBcxUEZGugDW2noaf1Nz5QKYPIir9RNnSgOjk3UxM5knMVMR5Ke2DF78JYpfPIEAvCBCmSIbAmEkeq9rMsf9SAHw6bipIJa5ZbqF9s8AYu6rt7T04IOjZ3Hzs2/jr665Kuq2jnazgvy9KYV5uOz1wT3sh80qjPl8LDc/OIrsODJwCX4RsAqIaY4eLZC3fnXVmGzlEinreaTgX3mdAQCLEPiuVMZL3hFcM7kAR89cDvvuF+eGgv+W1gkisLJ+N3720EKcdnnwzRun49W9fdAUei4IWj5FGcBMfVUm4byYlLBeUCjeQEREWrG/ICWsF0RERERExsIAdSIioiynR1bP0CCutUvnoumjfjxw43Q8evOclARD6X0xMxUnMVMR5Ke2DF78jZ8ewf28QSB78IIIEUmSPe6rBaKn46aCeOeWqRwflfrn0H9H66vl3x/2i/jzZ2ew5/Nz2LRiQdxPIlB672D/IADg9oqrcdU425h5tZabEOTl9YUEja+9vSzq9tYSyKu030sna3uqUuh3pcD0OxdMC1vf+tVVuGXz2wCAaRPscA664RMBAYAtx4LnV16P94+cw8BFt2Kmd1FEWAZ2ixD4ri8kar0g14rWdTURtwVlDj5xKrU4LyYlRqsXPFY3Bt5ARERasb8gJVK9aProBHx+EVaLgOXXT2O9ICIiIiJKEwaoExERka7ZNbe09OD80DDyc6yoKClKajBUsi5mqp3cXnPrnGA2RqNerIx0QdVoF3/NSI/g/s2vH0Ln0bPY3HwIz6+s1LeAZCi8UEZEqWK07PbxzC1TeQOdvH8ODVbW0le3ratF9TMtY173jPhRuqEJx567W/W7kfZV6HuvdH0RNm/b1X0CAJCXY9H8e6HllY9HVxfZcezMZU3bW2sgb+h+/0X7Efzhw34M+0QIGjK2K9UZaX3kc9gTF67UJxGB337/s7N4Zc9x1bluTXkxyhyF6HG6gkHw42xWXPL6YLMK8PpETC60GXaOT8mRjqdMZCvOi0mJ0eoFb+Y3Bt5ARERasb8gJbf8+J3wG7T9Inbu78frB07yGggRERERURowQJ2IiIh0CWpSC362WQUcfvquhMuoJFkXM9VObjd09Br+YmWkC6pGu/ibbrFkR9MjuF/+Gzv29mHH3j7eIJAB1OpStlwoY6ZBIpKLZW6Z7BvolPoopf4ZQEx99aSCXJy7PBz22oyJ+fj5IzclXGZA33lb6PoCgHvYj2NnLgPQvr21BPLWr64Kbu+ZE/Ph9YmYYM/BBfcI5jkKMeDyqP5+pDqjdEOBKAaC0yWhWfBtVsDrA/JyBNy5IJApzzHejjVbu7BozuTgOvzx45O4/8YZSQtO5vho/G1gtJt7Mlm2zIspNkapF7yZ33h4AxERacX+guTa1tXi3hffw8DoU7esQmDOsfOJm9NdNCIiIiKirGSJ/hEiIiIiZc5BN1bW74bzojtw4q+yBPbcwPTCKgQ+c88NJUlbfjIvZkontxsfvxkCrlygFMXAv0s3NKG8rjnxldBJeV0zSjc0RSyjUS7+GkVoMH808vptz7XgvsoStK2v1bw8URRjel0PoW00nYxSDr3I1ydSXQrtS1Ytmh0xOM+sYmlLRERyeoyxkaj1UaH988xJ+Zg5KV9zX72lpQfnLg/DJk14R+XbrKiYNkGXcus9b5PWd9uj1SidXADLaNG1bu/61VXYtGJB8AlJoYG9oRY/24LOo2exY18fAOCCewQAcNjpwhsfn8K8jbtiLrt8W4gA7l84fUy9mVqUByAQnA4AnhExbJvJ16Fz4+2a1ileHB+5DShcNsyLKXZGqBfJnotQ7LTOO4iI2F+QnKPIjmXzHfAjcBO6H8Cy+Y6svQZCRERERJRuQjIDYij9qqqqxK6urnQXg4iIMkxraytqampQ19iN7Z29eGDhdHxxbggzJuXj1b19it+JlHkqkcx6a7Z2oXi8PSxLit4nop2DbtUMlqHlTWeGQK1lTMX2Sict+0CeHU0SLTvaxsZuNHT2wma1wOvzY1X1rJgy6TsH3fhW/W58PpqxFABKJxfgt499JWn1RWqjsZY1U8uhl6de3o9X9/VBQHj2Vkm2ZNqLty2lk9EzuWqRCetAJJfoGKskGX2U2m/mWATMKR6H85eH0bnx9rh+W0my5m2p3N4SiwD4ReCbN07H8ysrY/59pW0xpTAPDZ2BmzMjSfW4ZMbxUW/cBkRkNskYG4mIiBIhXYOh2GX6NRAiIiIiIqMRBGGPKIqKk24GqGc4BqgTEZHeDvZfwF1b2lXff+DG6Tjr8qLt09Pw+UVYBOBrFVPxLysWqAbSmSF4VcvFynSvBy+oKu8DeTDnwf4LWP2LTrg8w/CMiKrB/HJ6nNhesvltHD83hFyrgGGfiJmT8tG2fmlC66zEKEFBRimHXqIF32mtS5lC640xRpLKfjpZgeTpHmuIkiEZF4+T0UeZsd8DxvZHqdje0egxF5DWY9v7n6t+5r7KkpTvH7PWEz1xGxCR2TCQjYiIjIYB6kREREREZBaRAtRzUl0YIiIiMrcnX9oPACjMs8Ll8Y15/9W9fbAIgazCVgHwiUDr4QHF35IHe27r6MW2jt6EA1aSERQoPXY69GKlJFnroWcZM12kffCtm2bgg2NnseWtHmy6/zo0dPTizCUvgEBwlGfEj/F5OVHrSujF6U0rFsRVzmtLilBT7kj6PmpbV6saFJRKRimHXiLd2xtLXcoUjiI7xuflwDPiN/z6p6Of3tLSE9b3JMooYw1RMsQzxkab7yWjj0pmv5fMpyPI+6No21upLLFsbylben6uBUPDgW014hfh84u6zgWk9YgUoJ6OcckI42O6n7ZhhG1ARBQLPY73iYiIiIiIiIiIKJwl3QUgIiIicyjd0ITSDU3ocboAQDE43Z5rwX2VJRARCOT0jQZzuof9qH66BeV1zWGfb1tXi3srS2DPtYR9v219bUJlDQ3C0Uv96ipsWrEAFSVF2LRiQdjFy2Sth55lzHRK+8AiAJ4RP7Z19EIUA8GcpRuasK2jN/g9z4gfFggYcHlSUs5U7SOjBAUZpRx6aV9fi9LJBWGvFeRa8c0bZ6Dx8ZuxatHslNUlo5BujDH6+qeyny6vaw72NaF9j3wMjFWy18E56MbK+t1wZtHNTaSdEeuHlvleMvqoZPV7yZi/xtofSft58+uHxpQlUvmk7/Wdu4xVi2bDahEAAEOjmdQ9I374/GLw39JcwDnoxv0vvocVL76XUN3atXaJ4ut3XzctbeNSusfHZNSnWKV7GxARERERERERERERUXoJYqQ0gGR6VVVVYldXV7qLQUREGeBg/wV899d70Hd+KPjaOJsVC2dORPtnZ4JZ01dVz8LaZWVY/GwL/ArTDHmm142N3Wjo7IXNaoHX58eq6llxZ5qdt3EXvL6xC01Fdlk914PiI98HDyycjmG/GMzenZcjYEqhHaddHnhGwrN5mzVgOhKjPKLcKOXQy5LNb+P4uSHYrAK8PhEzJ+Wjbf3SdBeLNEhVP+0cdKs+OSDRviaZ61DX2I3tnb0cv0iRkeqH/GkCErM+TUCP9VHLlq3UH902rxjOix7Ur74pGCT+91v3QBCAD784rzh/VxJaPnn9kC/XIgCzrirApvsX4PUDp4JzgbrG7uCNgw8vir9ulW5oUn3v2HN3x/WbZpVp7YOIkiPdT1kgotRim89O3O/m19raipqamnQXg4iIiIiIKCpBEPaIoqgYBJKT6sIQERGROVWUTECBzRr2WsnEfIyz5+DhxbPxUPUs/Ef7ETR1n8Da28uwonI6Xt3XF/ys1SJg+fXTsPHuLwO4cpK8wGbFqkWzw4JX43XPDSXYsbcPViGQvT00KDDZpAyBeqwHRaZ2gUVpH4yz5cA97IctJxDMWWCzwuvLjGze0RjlEeVGKYderi0pQk25g23dhFLVTyfzyQHJWAd5MOO2jl5s6+hlMCMBAOZtbIbXZ6z60bauVvUmEDPSY31Cs2WHBnkr9UdHBi7h0wFX8LNbWnqw/4vzqr9957VT4Qfwp8MDY8oXqf/465tmBJfr9fmxZO4ULJlbjCVzi4OZ3UNJ37VZBVTOmhRTIM22R6vx8C86x77+d9Wavp9JMq19UPIxeC07qY0bRJSZ2OazE/c7ERERERERGQED1ImIiEizC0PDmDe1ELdf7cVbJ204f3k4LPi0INeK80PD2PJWDy55R1DmKMSnThcsAuDzi2EBetJJ8lXVs4JBq/EGr8qDY6Qk6u7h1AUgZ1oQbirEGwyhdoFFaR/csvltAMAd8x0QBWBX90ncff3V+IeaMgYXU1zY1s0rlfsuWcHwyVgHBjNSJMu+7EDzgZNpuflPjd43gaQ7ODOR9dFyg4nUH738QS9EEehxusI+q0Z6OtKUwjyIgGL55P2HRQC+VjEV/7JiAX7wuwOq/WDbulr8YOcBvPnxKfhDlndHxVQU5uXg1X19MQXSLCkrRpE9B4PukeBrRfYcLJlbrOn7mSSR+pTutkDpweC17MIbE4myC9t8duJ+N4+D/RfwYP37ePmxxaiYNiHdxSEiIiIiIkoKQRQ1Prs3CwiCcCOARQD+CsB1AIoBTEEgkP8cgIMA3gTwn6IontRpmccAzNb48XdFUayJ5ferqqrErq6uWItFREQUkfzxkmqPkrcIwEOywJTWTwZ0f+y8c9AdFhxjtQi4pWwKJo/Lg8sTHkRvBAz+CKhr7Mb2zt7ATQoagiHU6plS3VH7LACUOQrx5lO3xVdoIqIMtLGxGw2dvbBZA5mOtfbLlLkijaN3XXc12g6fTutF9DVbu1A83o47r70aT/12Pyqmjcd//u2iuH5LbT6idb6mx7xOWp+HqmfhF+1H8PYhJ974x1uj/p58Dhx6A4H8u/LP5uUIKLLbMODyKP723QuuxqTCvGBguVQ+aU4vza+l/sOCwE0MWudZGxu7sT1CgLxE6zHCvLpm5Oda8L3bvoR/ffczDA37cThLA3BC65N8f0US69yczC2WYyvKHLGMG0Rkfmzz2Yn73Tzu+Mm76HG6VI+h5NdgiIiIiIiIjEoQhD2iKCpeiGAG9XC7AExVee/q0f8tBbBREIT/Loriz1NWMiIiIgOTZ0/MyxFQmJeLrX9XjYppE+AcdOPwqYv42UMLcfqiB6t/0QmXZxieEVGXTJzyTIFenx8zJuYbNrAi27PUxZvJJ5Ysv/LPhupxulC6oQkAcOy5u3VaKzKaZN4IwptMKNMkK+M7mZdaLgOLALz7yQAueX148jf703bDlxRsW9fYjQGXBzMmqZ3KURdtPqJ1vpbIvE5pPMkPeSJRtN9zFNmRIwhwD/thswoRs2UrzZc9I74xn7vrumm4apwNAxfdik9qeKh6Jh6sfx8HT1xAxbQJ+E1nIDO79EvSPCvSvC7SDRD2XEtw7jZjUj6Kx+fBedEddbwNDUZ/rGZuxM9muliftsEsm9mJT1DJTno/hYSIjI1tPjtxvxufdF5awnPVRERERESUySzpLoABnQbwGoDNAP4fAN8GsArAPwPYN/qZQgD1giD8rY7LHQBwf5T/1em4PCIiIt2MPfEt4swlLxreD2RFDA3caejoxZlLXnhGRF1PkkvBdY2P34xVi2arZoNMp/K6ZpRuaMK2jkAgz7aOXpRuaEJ5XbPi552Dbqys3w1nhgUKtq2rxb2VJbDnBqai9lwL7qssQdv62ojfi+UCS+hnc63CmPdnTMzHrieXRC1rpu6DSDJlnUP7HTP9NlE61K+uwqYVC1BRUoRNKxYY7skjZBx+EbjkDYQiSxfR5RfXE6VlHIp1TqVEbT4iApp+W48yhI4nkX4v0jb54NhZAMAtZcUoLszD8fNDqsuT5st+UYQoAoPukTGf8fn9eKh6Jv786RkcPHFhzPv/0LAPFz0j+IftgVNk739/Ge6tLEFeTmA75uVEn9e1rauFZez0DADCbiw8fm4I+3rPY/EzLaq/RYmLd25O5maU4LVMOfYwEzOcOyEi/bDNZ6fTLg8eWDgdZY5CPHDjdO53g9m1dgmmT8wPe03ruWoiIiIiIiKzYQb1cMsAHBRFtVxh+BdBEL4P4JnRv58XBGG7KIp6HNlfFkXxdzr8DhERUVqcdnlggaCYfS/071CeET+sgqDLSfJYMwXGK5HMybFmqcvUTOuJBEPEkuU39LPf/vnusCCsfJsVFdMmRF1epu6DSMy+zsnMAsoMo0QUDzM+daF9fS1u+/9aMTR8JcO2PUfAxHE2nLxwZd42Y2I+fv7ITbouO9o45Bx048vTijC1KA/vHh6IO/Ov2nykXeN8LZHsw0rjCRDIUG/LsYz5vS1vjd0m8t9oOeQEAJw5PKC6XGm+fOe1U/Gd//MBRvxjT3+98fEpvPHxKQAIy5IvvxHh6OlLwddWLZoVLIvSvE7eBhxFdqyonI5X9/WNWX6BzYLL3vDs6n4xsHxbjiUsUzrpwyiBypR6RniCitmPPcwoFedOzDj3IcpUqTpfSsZSv7oKdY3d+PjEICpnTsTzqyvTXSQKUVEyAQU2a9hrWs9VExERERERmQ0D1EOIovixhs88KwjCtwFcD2AigJsBvJ3kohERERle/eoqOAfdYYE6eTkWTCnMw2mXG54RERYBEAD4xEBmvpp5xTg56MGPTHSBJJEL6FqDP7IhCDbeYIhYLqz96L4FeOI3+zBlvA32XCuunmDH2qVl2PJ2D85fHo743WzYB3KZss6JBAym87cpszFIJ7uZMfjOUWTH5EIbjp8bgs0qwOsTUTzeDnuuFSdxJUBdz4voWsehLS09+PD4ecwtLkw4oFZpPqJ1vpZIUK/aeGK1CGjc1xf8vT982I+d+/sVt4n0G78PeR8IzLNLNzRFHL//xx8OBoPTLUIgAFxJ6KPmcy3AsF/5c9tlN6Fu6+jFK3uOB5ev1AYueUdQ5ihEj9MV9l15cDoAWC0CfH4R91w3TbkAlDAjBCpT6qUzaDFTjj1ImRnnPkREmYJjrDlcGBrGvKmFms9VExERERERmRUD1ONzEIEAdQC4Op0FISIiMhJ5oI7X50eBzQqvTwwGNwEIBt18NnAJnw64DHPRMlIAoV4n97UEf2RDEGwqgiFCL4p3brw9+PryG0qiflevfWCmoNRMqXfJzALKDKMULwbpZCezBwZcW1KEmnJH2JxlX+/5pF1EjzYOybenFNjsF0WsWjQ7roDa0JvZQucjWoN14w3qVRtPBmS/d/zsZRQV5CpuE8f4wG8IozeASkHmkcZveRZ0YGxweoHNisveK5nzpSz5K372ZwBjg8dzrQK+cd00xTJGawNrtnbh+hkTcPqSF+2HB+ALKcvVRXk4ORi4GcI3Wsgd+/qwYzSA3wxtyEyYXZVSLVOOPSic2ec+RESZwAxjrJnOlyZLrOeqiYiIiIiIzIoB6vH5Usi/T6atFERERAYkD9T548cnsWrRbJy95MWu7hMYZ7PC6/NDFK8EFhnlomWkAEK9Tu5rCf5gEGxi9Lgortc+MFNQaibVu2RmAWWGUYoFg3SymxkCAyKJNmfR+yK60jiUYxHwREMgcEG+PQGgdHIBfvvYV+Ieq9TGaa3BuokE9Z52eXD/wuk4fPIiyq8uwoDLo/h7Gxu7VcdmaUw66/Jg14GTsAiIOH7vWrsE3/31HvSdH1ItV2hwOnAlS377+losfrYlLKDdIgDvbViKF97qUSxjtDYgre/Gxu6w4HQAweB0YXQ50hOYzNSGiEhdJh17ZLvQIEOzz32IiDKBGcZYM50vJSIiIiIiosQwQD1GgiA8BuCvRv88BeA9nX56siAIbyGQmX0igAsAjgJ4B8DPRVH8TKflEBERJZU8sOaVri+w7f3Pg69dGg16sQiACECMMdgkGRlWtAQQpvrkPoNg4xcpgC0WiewDswalZkq9S2YWUGYYpVgwSCe7mSEwwGjk49C7nzhx/PxQMHDhtQ/7wwKkj525jOqnW2IeX40wTtevrkJdYzc+PjGIypkT8fzKKsXPRRqbpTHpO7/shGN8Hn7y4A14/cAp1fG7omQCCmzWsNcK86wY8YtwD/shCECu1YIZE/Px1B3zwrLkO4rsKJmYj+PnhoJPRpo+MR+O8XbVMmptA6ddHliglJ8dEITA62xDRJknU449sp08yJBzHyKi9DPqGGuE4zAiIiIiIiJKLUEUxeifykKCINwK4KrRP/MAlAJYDmDJ6GtDAL4pimJzgss5BmB2lI/5APx/AOpEUfRF+WyYqqoqsaurK87SERERKWttbUVNTY2mzzoH3di06y9448AJeEZE5OUIuHPBNHxw9Cz6L7ghAIAArKqepSljSl1jN7Z39mr+fCxlVAogDL2QumZrF4rH28NO7ocGqyYTH30amznfbwoLYJOk6oKH1jpFRMamR9+7sbEbDZ29sFkt8Pr8uo5fZHzpnDskKp1zD3nggsQiALOuKsCJC254RvywCMA9N5Sojq9q65DOcdo56Eb1My2K78U7T4llflz99FuYWJCLtUvLsOXtHvSevQzPiB8CAL8IlDkK8eZTtyl+N576HO070j764T0VeHz7Xhw7czn4XunkApROGYcZkwpM2YaIiDJZpLH6IVlQJPttIiICeL40VrFcgyEiIiIiIkonQRD2iKKoeBKQGdTV/RjAIoXXfQDeAvB9URT36bSsfgCvA9iPQFZ2G4C5AB4AcB0AK4ANAKYB+I5OyyQiIkqJK5kTA9HCnhERO/f3B98XR/+vobM3YkBNsjOsvP/ZGbiH/bDlWOAe9iPHIow5MZ7OzMl89Glsbi0rxrEzl9B/YQjeETEsgC0VmDWXKDPo0fcmmrks025QyrT1icbMT11I59wj0tMHXnirBw2dgTmg1xd5fN38+iF0Hj2Lzc2H8PzKyuDrqRqnler7lpae4PtWAfApPE1IazuJZ37cufH24L+X31CCOd9vgiiOzskB9DhdKN3QpPgb8dTnaN95rjmwj37RdhQjo3cXShnafX4R//lfq2NeJukn2/psItIu0lgt9Rfst4mIKBTPlxIREREREWUfZlBXIQjC+1AOUD8C4EUAvxJF8YwOy1kC4M+iKCo9yRiCIHwPwE8RCFIHgIdFUdwe5Tf/HsDfA8DUqVNveumllxItJhERURiXy4XCwkJNn/3uHy9hWHGUG+s/7xyn+t55tx8vfeLF3lM+eP2AzQLcONWKb8+3YWKeRdsCVPzqYw/e+WIEJeMETC+04INTPkzJF/A/bytI6Hf1oLb9ci3Av39NfXtlk/NuP/73hx48XpkXVhd+9bEHrV+MIMcCjPiBmpk5eOTavJSVa8teNybmCaiZmYPWL0Zw3iNi7Y3aL7iorRcRJZ+R+l6pL0t1H5YsmbY+mcgo9V9tHNcyvmpZh0TH6VjWoWZmDtr7RiLOiWtH1++8249//vMQBr3R5y56zI+TOcdWW97//tCDI+f9GFE4JSkA+B9ftSdtn1Bs2GcTUSTpPuYmIiLzScVxWKaI5RoMERERERFROtXW1qpmUDdVgLogCH8HYIYevyWK4g9jWO44AOUAvgXg/wFgB3AcwApRFPfoUZ4oy/8nAE+P/nlIFEXNqT+rqqrErq6u5BSMiIiyViyPl5Qe3fnGgRPwjIiwWQX4/CJ8IVMQiwD8+tFqLJlbHPG3NjZ2o6GzFzZrIGPmqupZCWX0VHskdSgBQMfGZVEzuSQruyAffRpdXWM3tnf2jqkPa7Z2oXi83bSPFldbL7NiBk4ykytj18lgZq87F6S271Ubo/R6ckiqZdr6GEUy+lajzD0SGcfnbdwFr2/s+S6bVcDhp+/Su6hjqNV3AYAgAKOJwiEA+MqXJmPahHy4PMNo/WQg5nYS6/w4tM5ABJ74zT5MGWfDrgMnYcuxYDjG35DXiWh1UprfCLiyHULZciw4zD4h7dhnE5EWZj/mJiIiMrJYrsEQERERERGlkyAIqgHqZkvF+HcA/lmn/2kmiuIlURT3iqL4fQBfBXARgUD5twRBKEl8taL6CYALo/+eLwjCnBQsk4iISBdXHt0ZiEDx+kQIQvhn/CLQuLcv6m+ddnmwatFsND5+M1Ytmo0BlyehsrWtq8W9lSWw5wamRFYhECwPAPZcC0onFwACsOWtnqi/taWlBx8cO6vps3LOQTdW1u+G86J7zHupevRppDIYVXldM0o3NGFbRy9EEdjW0YvSDU0or2sGANSvrsKmFQtQUVKETSsWmOZCebT1MqtE2gilhhn7gWQJ7XsBpOWx0/Ixyp5rwX2VJWhbX5uyMugp09YnFmptS482l4y+1SiPXf/RfQtw+NRFTBlvi3kcb1+/FLMnhz8Jp3RyAdo3LFX8fKz7Itrn1er7/TdODwvKFgHMmTIOz6+8QTU4XQBQUVKkuixpfvyLR/4KxYV5OH7ucsTyhtYZ6d/vHh4AANwx36Fpjh2p3qm9J5/fKAWnl04uQHsW9AlmkM19NhFpZ9ZjbiIiIiIiIiIiIkoNswWop50oivsA/Hj0z4kAnkzBMt0A3g95qTzZyyQiItJLeV0ztnf0hr2mlLR8x96+qEG4el/8lAdg+UKCZdzDfhw7czlqgLCWYOJoQUzRgsv0DsyPpwx60TMANp2BM8kM5JXWyzp6t4TVIkRdLyMHFmdqwH0m0toPpLK+patuK41d2zp6U1pvjRIkrJdMW59YqLWtRMbeZPetes894mnLiWwfR5Edw6MTTuvozYfeEb9qfYt1WdE+r1bfL3lGMHNSPu6+bhruvm4aZk7KD27b4Pgvu5GzdMo47P/ivOqypPnx6wdOYMDlwYxJBWM+s6WlB51Hz6L66ZawOiP9+5LXBwBoOnAS297/HK2fDCguK1K9i1YnleZtBTYrgEBmewDw+cWs6BPMIJv7bCIiIiIiIiIiIiIi0ocgigopiygiQRCqAHww+menKIqLUrDM7QAeGv1zlSiKDVq+V1VVJXZ1dSWvYERElJViebykc9CNTbv+gj9+fBLuYT/suRZ8/dqrseujfgwrBKrbrAIOP32XvgWOIPSR1Gu2BsbMZx+4HnW/60bv2cvwiwiWeePdXx4TlKG2fqGfrWvsxvbOXqyqnoVN918X/G55XbNipsy8HAs+2fSNJK71Fakug9q20MI56MYTv9mHnz20MLhtNzZ2o6GzFzarBV6fP67f1bosvdYjmnj2STLLkygtbYTSK9Y6l8r6lq66bZR6GzpGNXT2YuCi29SZKTNtfaJRa1tqYhl7jVJHtYqlLScyNwkdv7/5v/+ML84NYdZVBeg9exkzJ+WjbX14BvVYlxXL5+Op7xsbu7G9oxcWQTnDuNKyIpVJFEV4fco/JD01KHQ5eTkC7lwwTbUeRap3EBG1TsrnbTMm5uO2ckfW9Almk219NhERERGRkcRyDYaIiIiIiCidBEHYI4qi4gWEnFQXJkNcDPn3xBQtc3LIv8+naJlEREQJU8u+996GZfhW/W58fuZy8LOlkwvw28e+ktLyhQZZhAYt3Tx3Cj7v7I2aMTBSdkF5wJCUqVIKLGpbVxsWyAPosw2iBVeHkpchLNBIR9G2hRah2Uql4DYpw2to4IwelJal13pE07auFve++B4GBt3wiYHMr44iO3Y+cfOYz2opTyz1IRnMnIEz3dsuVbT2A6mo/+lYlhKj1NvQMWrTigUpXXYypHN90tGe1drWmlvn4N/+dCShsTeeOhrPNkh0u8XTlhOZm4RmCpf0ng3MNb84N4TSDU2wWQVUzpqEnz20MOZlxfL5eOr7aZcHDy8OzGv+o/0I/vzZaZy/PBxxWZHKtLn5EHbs7YNVQGBOYRHg84uwWYVg4Lr0nkUAvD4xYj2KVu+i1UmleZu0bTKhj8s0mTYGERERERERERERERFRalnSXQCTmhvy79PJXpggCHkAFoe8dDjZyyQiItKTFIzS+PjNWLVoNgZcHjiK7PCNpmzMtQZSOPr8omGCQJXKHOtn29bV4t7KEthzA1Mue64F91WWoG19LYBAkM9rH/YHg9MB4NiZy6h+ugXldc1xlz00uDqaVAVhRtsWkZTXNaN0QxO2dfRCFAPBbaUbmlBe14z61VXYtGIBKkqKsGnFgoSzOkZaVqLroZWjyI5l8x3wI5D91A9g2XyH4j7RUp5Y6kMkzkE3VtbvhjOOmwBiaU/JWH68nms+hM6jZ7F516GULTMdtPYDUn0b7bJhFaB7/ZcvK5ltLRo96q2ZpaPNJdPm10fbc3Pq2rNa26oomaDL2BtrHY1nPIj2HeegGytefA/3/+/3FOtKPG1Zabvt/uxMcHlK9TJ0/FaTlxNY9j03lATXKdZ5ULLnTaHzmp+srMSy+VOjLkupTK992I/qp1uwY28fgEAAOhCYa5c5CvG7f1iCmZPyMXNSPqrnXIV5UwuxeM7kiPVI2vZ954dU611onXxg4XQ0dZ8I21d6z9uIiIiIiIiIiIiIiIjIuJhBPT5/H/LvP6dgeU8BmDD67x5RFD9NwTKJiIh0o5Z979qSItSUO3TPfq2HWDIGqn1WSxDTrWVTcOzMZZy44A5mGI03i3q8GYeTlYU8VCIBXanK8q5lWakK6Ne6TxLJ4B8rtazyWuiRgTM0uPT5lZVx/YZW8m23Y18fduzrS1n27nTQUudu+fE7YdvFJwI79/fj9QMndd8uRshgnu2ZYxNp80Yypj3v7cOOvbG150SyiKu1LT3GXq11VG08EAB0bFymuE5ax5AtLT3Y/8X5wL8V6kq8bTl0+/w/L+3DYacLd73QBlEEzl72jlmWfPyWMoULAEQEbqjxjPixc3//mHWyCIhpX4SW7RftR9DUfQJrby8DRCScpV9e17TWE/nnjp+9hKICW9j2uKVsCiaPy4PLM4yKkqKwJwdpIfUJq6pnqWY9D62TZy95ce7yML7/fz/CL/5rdYxbgoiIiIiIiIiIiIiIiMxOEEUx3WUwBEEQvgOgH8CbospGEQTBBuBZBALGAcAL4HpRFD9R+OwPAfzz6J+/EkXxOwqf2QjgVVEU/xKhXI8B+BkA6+hL3xFF8VcaVgkAUFVVJXZ1dWn9OBERkSatra2oqalJdzFMYc3WLhSPt4cFFsmzRc75fhP8CrOPWINhnYNu1eDqZAR1xhqwp2VbqNnY2I2Gzl7YrBZ4ff5AcFSSAiajLSuR9UgGtfLoVR/kQYqSVAVrp2P58zY2w+sbu0xbjgWHMzRAXQvnoBv3vtiOgYte+PwirBYBjvF52PnEzUnpY4zW1rJFutu83uZt3AWvb+wga7MKOPz0XZp+o66xG9s7e5M69iST0nhwdZEdn5+9PGadpLH9h/dU4N/+dCT4nbwcCwrzcrD176pRMW2Caj0BxtaVeNuy2r5TW1bo+O0Z8aPMUYji8Xk47fJgcqEN0ybk48+fncb5y8NxjYtK857QugEg4XqiVNecg26s2boHIoCf/81NmvvbWOdOavO6WPuETOtDiIiIiIiI0oHXYIiIiIiIyCwEQdgjiqLixT9mUL+iEsD/AXBcEIQ/AvgIwAACQehXAbgewP0ASkK+8/9TCk6PwbcAbBIEYR+AdwH8BcA5ADYAcwE8MLpcyTYAv05geURERIaUSGZSo5dHS3bTW8uKcezMJfRfGIJ3RIRFAO65oSTmDOGpzjisll1Xbfslko04FVnetS7LaFmVE8ngr0UqM9grUbuhNpk32ravr8XK+t04duZy8LV4n2yQSRxFdiybPxUNnYEsyl6fH8vmO5LWxxitrSWbUcbCdLd5vbWvX4pv1e/G53G0Z72fRJFKYfUpZDwAAPewP9i/yddJGtsbOnrHjCGeES8a3u/FpvuvQ9u6WtTtPIC3Dp4K3mRnFYA7KqbiXyJk1Q5ty9Hq/D03lGDH3j7VdbQIQNv62uDfSuO3PBBeCtqOZ1wMnfe8suf4mLoR+m95PYm2rpHq2rdumoF9EbLUS+LNvq60fpGy00frE9RuXFB7nYiIiIiIiIiIiIiIiDITA9THmgHgb6N8xgngSVEUX9JpmQtH/6dmBMBzAP6HWnZ3IiIiM5MHxKQ7SE8tQCdZ/vNvq8MCpry++APLUxHIHS1gT9p+y7e047W1S3TZh6kMVM2koFg96kOqb3yQSyS4NF6OIjtGRiMubVYBXp8In180xA006ZbKm0WyTarHHjXpbvN6cxTZ4Rttz7lWAcMh7TnafMPMwfry+iS13TuvvRp1v+tG79nL8IsIrlNz9wmUbmgKfj804FptzP/rm2aEPQHGJwJTCvM0ZyNf/tN2OC96sOWtHqxdVhbcF7dsfkdTMPP9C6druhEudD/H04cpzXskUhuxCICAwDaQtumaW+dgZf1u/OyhhVHbt1Jd84744RnxRw1+l8iXoXU+E21eF61PkLejbY9W45FfdiI0+b1VAH71aHXUbU1ERERERPpJ9zl2IiIiIiIiIgaoX/FPAF4DUAPgKwCmA3AAGA/gEoATAPYDaAawQxTFSzosczWAW0eXdy2AKQAmA7AAOAvgIAKZ1X8piqJ62jAiIiKTUguIsQiAiMhZIrWK5UR8OjOlxhowlYws5VqpBezJg9ucFz2ofrrFFJlmM5Ve9SGdQcmRgkuT6dqSItSUOxiILZNJN3Akm9bxx4hZujPtRgS19hwtaNiMwfpa6tPNc6fgc1kW8fb1SxXH9jW3zsG//emIYpD+D353ADMn5eP6GRMBAPt6z6Gp+wTW3l4WV50HAnM/+TxDQGBeGGqeoxAuz0jwb6X2Jr02c2J+cD/H04cpzXuuLrLj2JnLYXUDQNg2bejoRefRs6h+uiXi/gCU69r9ldNxyTuCP358Krj+FgGYYM/F9r9fFHV7au1DtNyIEalPkLejJWXFEGQ7TRCAJXOLNW1vIiIjY6AfERGZiVFuhKfswHkSEREREREpEZiQO7NVVVWJXV1d6S4GERFlmNbWVtTU1CT8O85BNzbt+guaPuwPy7Iol0iQXl1jN7Z39mJV9awxJ+LlJ02l8igF6KTipGqkk7jy9yKtl5bfS5SU8d1mDWR8X1U9C2uXlWHxsy1h2VQlDFI3F6NdUFiztQvF4+1hgXGhQYZERqSlnwaQ9rEnG8kDeiVKY1Uy+59ofW08fXG0+uQcdOPr/+tPWDp/Kh5dck3YOqmN7VKmc+kpL2p1Wsuca/8X5+HVkB1dulnRZg0Ea4+zWVFT7gAAfHT8PCpKisL2g9Ky53y/Sbc5ibRtIp1CmzkpH/Wrq7D8p22KywUQsX3L61pDx+eqv/PwoivrebD/Ah7+RScueUbgGYm9D3EOunH3T9tw2uUN2/fRAlgitSMRQH6uBd+77Uv413c/w9CwH4c5DySiDKB1fkdERJROsRzzknHpdQ0mVThPIiIiIiLKXoIg7BFFUfECKjOoExERUdrc8uN3FE+WS5QyOIaKFLilJZukPItMujOlRspqI723+JnwAPBIWTKTmSVHKZOmo8iOFZXT8eq+Kw9+sQrA8htKVPchGZPRMiwxa7ex6HEDg9FugtBTrNmM0z32xCoT9p2WjNGSZPY/Ul/73K5DOH5+aMw2jacvjlaftrT04PzQMPJzLagoKQpbJ6WxfUtLD5wXPShzFOKFby9UzKgfy5zr/srpGBFFNH10Ivh0DCAQkO4Xr8z9LgwNY8akgrCyvLjqxjHrGykbu5L7KuObk0jb5s5rp6LudwfQe/ZyWHk33v1lQASe+M0+vPbfloRlnbdaBPj8ImxWIWL7lte1tUvn4t4X38PJC2OfYBC6jb910wycveQFAM19SGg73tLSg4GLXthzLfiPR6rw+oFTEZ+aIH238fGvqmbXD132YzVzNW1jIsosmTBfCGXEJ94QERGpieWYlyhRnCcREREREVEkDFAnIiKitGlbV4t7X2zHwEUvfH4RVouAvBwLhoZ9wYyZkQJsIgV2RToRH+mkaU158ZjgrGSLVB4AYe/JE2kqXWBIxUlhtYC9S94RlDkK0eN0wSIAPhGGDrSkcLygQFrocQOD0W6C0FM8F4KVAoNTLVog2cH+C3iw/n3cOm+K6fddum8KkPe10o1di59pwZFn7064L1aqT1p+M3Rsf6Xri7DP9zhduGtLm2IZYplzyW9i84vAeHsOBt0jYfvihW8vBBCol4dPXcTPHlqouK5Ky66ZVww/gD8dHoB7OLBsKQA+3v1cv7oq2EZunDUJn5+9PKbu1DV244NjZ9HQ0TumfkUK8FfjKLJj2XwHGjp7kWu1wDvih3V0bmXPDfztGfGHBeR7RvywCMCAyxPxt7e09KDz6FlUP90SfM097MfD/9EZtZ5tfv0QOo+exS/aj5rq5hoiSq1Mm+sx0I+IiMwk3ce8lF04TyIiIiIiokgYoE5ERERpEwi8mYqGzkCAlNfnx+RxNtxW7ggLqpIHzUUL7JJ+W+1EfKSTpqEn6lOVqTniSVwRYe9JWTgB9SyZasFaJwc9cF50J/ViRP3qKqzZ2oVFcyanNdBSL5mW+S8aXlCgSPS4gSEbboKI50KwEZ4SEC2Q7K4t7QCApu6TAMy/72K9KUDP8UDqa3+/vz/sdb8IlG5ogs1qwb2VJXjjwAl4RkTk5Qi4c8E0zX2xUn1yDrpj6t9jGQ8i1fnGx7+K1b/oxLlLXvgRCEp3FNnx1bmT8ejNc/CL9iP4/f5+fPPGGXh0yTVj9oW8Xsr3g9KypxTmQQSCwekAUFvuwLSJ+QnNSaSynJiYH1Z3Gjo+DwsSl/5tEYDGx28OrlNoxnqt9Sm0nj750j70OF3B9ZSy0Uv7SBCAr1VMxY9WLFD9TXkfrMQz4se8umYclrVr+Xd37O1TXE8iym6ZNNcL66sZ6EdElHLZdk5Ob0a4EZ6yA+dJREREREQUCQPUiYiIKK2UTpZLwTvSf6WMlFJwUrTALunit9qJeKOdNI1WnvF5OcEgKyk4HVDPkqn0e58NXMKnA66UZLAzQqClXjIt8180RmsbZCzx3sAgZd5++bHFWXMThJkuBEcLJCvd0KT63fsqS0y772Idq2IZD6IFUkh9LXAlszcQ/lSUF97qgWck8IZnREy4L461f4/181Kdv/Paq/HUb/fj+LnLAIDlP21HyNQFPhE4ccGN1z48gee/VYn8XCtGRBH5uZawAG61emkVAD8Qth/U2pv0RBcAOHzqIn7xnb+Ka9vJy/LFuSFse/9zbO/4HB3/tAxrl86NeOOjUv3SWp9C6+mc4nFYNGdycBufveTB9EkFwfmgXwSODFyKWE/kfbAar0IQuyjKn+MTkGMRwvZdqjBgiciYMmmuJ++rzTS/IyLKBNl2Tk5vmXR+loyP8yQiIiIiIlIjqF1gosxQVVUldnV1pbsYRESUYVpbW1FTU6Pb74UGL1ZMmxB8XS3LY16OBX990wxs7+hVDeyKFqiyZmsXisfbw06ahp64j1e8wTKRyrNmaxcK83Jw+pIX7YcH4BOjr6v0ey9/0Ith39j5nhR4yOAeZZHqntky/8UqWW2DMsPGxm40dPbCZg089WJV9ayoF4rv+Mm76HG6UOYoxJtP3RbXb1DyRMqs7Rhvx8H+C/jur/eg7/zQmO8+vCj6vjP7OBPPeFDX2I3tnb0R67bU1551ebDrwElYBEAEsKp6Fl7ZczwpY1Cs/Xusn3cOurH8p+0YuOhBpDNN0ybYceaSVzEIOnR+oiWQWmmbRMoSHs82VGojVxfZcezM5WAb0Nqv6TG/CK1fDZ29YTcAaPm90LJGy6Ye+jvOQTe+Vb8bn5+5HHy/dHIBfvvYV9LStrW0MyJKD7PP9bL5WJCIyAjYDxMF6H0NhoiIiIiIKFkEQdgjiqLiRUQGqGc4BqgTEVEy6H1yVB68KIkUNPeD3x1QDexK58XvZAbLxHOhP1rgIYN7lDkH3fjBzgN48+Ap+DXcEECULWIJWI2UefvhxbNNeROE2YOt1UQbX6RxWjLrqnzcOs+had+ZfZyJNo6GiieQQqlN/ei+BZqXGancetRVrb8TKShcIt1U+PCiWVi7rAwr63fj2Giws9I6yuvl7KsKcHLQHXWbSGP4WwdPQbpHzyIAd1RMxY9WLIhre0hlUTuFZhGAhxZF79ecg27Ujc4vxBjnF1q2sZbfC61z/9F+BK/u7RvzmbwcAXcumIZv3TQD39u2N3gT6ZLNb+P4uSHkWgUM+0TMnJSPtvVLI5ZJb2YOWMrUMYRIzuw3vMYy9hMRkf7YDxMFMECdiIiIiIjMIlKAek6qC0NEREQkkQcv9jhdwdeqr7kKP3toIcbn5cAz4kdeTiDL4/i8HDjG28Oyi8sDHdNBHiyzraMX2zp6dQ2WiedRmY4iu+I2vGXzO0kvr55SHdDjKLLjyMAl+EXAKiCs7hFls1geEb1r7ZIxmbdnTMzHzx+5Kfi0DLM9ZjpTHzEebXy5MDSMeVMLsXZpGba83YPzl4ej7rtUjIupoDaOKo0HbetqVQMp1Ki1Ka3LVKNXXdXyO1oCpwHgzgXTcNU4Gxo6Pse2jt6w99zDfrz2YT9e+PbC4Gvyetn6iVPTNnEU2TGlMA+hD5Dxi0BxYV7c47hUljuvnYq63x1A79nLqjewRWobjiI7jg5cgigGgtrdw37s/uyMpjLI65cS97Aff5BtR7nQOveTlZX43b4++EVAAIKZ770+EePzcvA//nAQFz0jePI3+/HmU7fh2pIi/P/Z+//wJs47b/R/jyRLtpENxLYAm4BDMKTgJCZxgSSk4UfSpglJINmSboHTfba7S775Zsk52esAWdzr6dmQJtnrpNeGtPuUPe1z9ll+pEm+xE0bQ9Lilta0xK4JpCZpghMgBhsjm1+2sCXZ0nz/EDOMRjOjGWkk2eb9uq7dBiPN3HPf99wjrPd8ZvFsX04/d6dyno0UY/UaQqRm5fPiSGTl2k9ERPbjOkxEREREREQ0djCgTkRERDmjF1685frx2Hu0G1v3tScNzY2UL7+zEZZJ9Vi1+nC0hXuyGehRB+2kgNuulg6GiYgsmFM+HoVuZ9zPCtxOOZw+moyksHUmbthJdn1p2Xyv/N/Lby03tc3Rdp0xYvYGMTuDFKnclAbYN1etbKf+yTux9qctOH85DHWB8cqScdiyohrvftSNnv4gtqyoxvqlM7Flz1/wzoddiIqxytdTxhegsqQg7r3qeblue6vpcPRrLR0JP9vR3IE3D51O6ZxVtuWumaX4oqUjbowhAqu2HTQ8L9V9Gr3SWf7+kKnPN1rzq7KkUA7Lu10CyscXoLJ0nKVju2/OJJQV5ePznn6cC4RRnJ+H1i8uxN1EoLyJ9OSLDwLI3efu0RhYGknXECIyJ9XrMBER2YPrMBEREREREdHYIIh6zyemMaG2tlZsbW3NdTOIiGiMsfPxkvf94Hdo9wcMXzNawhub69uwq6UDbqcD4UgUq+dPy3qg2UpwUd3eR+dV4POeyxAEYNva27Ma9NFrt15VVjvmhN4++Sjh1GW70j2NfPOf34cJhXlxlbeVYefRYiStC3X1bdjZ0pGTa4xVI+G6mG3rtreirCg/LkihDDdnWjpzVbmGQ0TcdjwuB7weF7b/3fyEm0zq6tsSKqJL1ixIHHN/XxAPvtqE3kA4Y3Mjk+es1hiXeT1Jz0t1m7Qk+3yj3vf+T/3ovDhoaz/W1bdhZ3MHCt1OXA5H5J+rn4CRS7k+z6waSdcQIiIiIiIaHez8DoaIiIiIiCiTBEE4JIqi5hc1rKBOREREOXVpcAizJnmxfmkVfvDrT9F5MQhBwKistjoSqvtYqTSubu/vPvXj1IVYNftsVCpX0mt3Jivw6u1zNFbmHCmyWel+NGBgX7/y9mjrm5GwLozGCrwj4bqYbbl+sks6c1W9hqu3ExoOY9f7V58moncTmQBg4Y3X4cayIs0x39rYjp7+MGb5vPi3b87LyNzI5DmrHOM3W09pnpdupwM10ybErXHKNrmdAsIREU6HgEhU1Px8o7VOWqkqb3WdVY+nMpwOjKwnYOT6PLNqJFxDxqrR9nmCiIhGLl5TiIiIiIiIiIjsxwrqYxwrqBMRUSZksnrHWKy2mo0vudKpNK73XrPvT4eZdts9J8zsc7RV5kwm03Mwk5XuR7PRVOk621LtG7vmcirbyfW6wAq8uTPawipW56reGu4QAFEEtH5r5HE5UP/knVjz0xZcDg0jNJx8Tmb7WpHJc1aaE997aA5+/PvjcVXRPS4H7r3Jhz0fdSescco2Pf2zw2j3B+BxaX++eeb1I3jrcCcem1eBlx+vsdxGq+usVoX3onwXnr3/JvznwZOj9gkYI0WuryFjFT9rERGRXXhNIaKRhhXUiYiIiIhotDCqoM6A+hjHgDoREWVCJn85ajW88XHXJTy+7X28/sTCEVPVUS0bX3KlE1z09wVR9/ZR7Pv4LKJXPho6BeC+OZPwLyuqMxrGM9NuuwM912LIM9Nz8FrsUyMM7OtLt2/smsvSdsq8HryzftGomadj8Sau0WCsh1WM1vCX9n6C3R90wikAERFxf7d1Xzt2NHcAgByyfnReBU5dGNQM86v3IwjAV+dMwnMZ/qyRCco5saulQ/78pEdrjdP7fJPqOimF5o90XEA4ktggM+ss1xgaLfhZi4iI7MJrChGNVAyoExERERHRaGEUUHdluzFERERERpTB4y0rqpO+/umfHUF/aBhPv3YEv37mnkw2zTL1l1w7mjuwo7kjI19y+YrzUeRxITQchcflQGg4iiKPy1Tgy1ecjzKvJy5cFRGBUq9H8/12VpI1026rc8KOfWZSNivxZmsO5rpP9eSq6nHThiW6Yc+xIJ1+TbVv7JrL6u34+0OY/3zjqAkf9AZCWL1gelyglRLZde5n8zqeS9IaHhyKQgAQHIrinQ+78PaRLvk1Ut5Z6+8AIDQchUMAWk6cx+mLg9i6rz0h2Ky8VjgEICoCx3su5/xaoZRs7mjNiWQeqSnXXOP0Pt/o1ZFIVl5ia2M7/nTyPB6dV4GhqCivs3kOYCgKvLzqlqRt5RpDo8VY/6xFRETZw2sKEREREREREVHmOHLdACIiIqJUVG5qQOWmBrT7AwCAdn9A/tlI0bRhCR6uKUd+XuwjV36eA4/UlKNp45KM7E8KFf3027Uo83pw+uKgpfdeP7EAD948BQ/ePAXXTyxATyCk+VopALV1X7ut7a5/8i6sXjBdd792ysU+JXb3n5FszkGjPvX3BbFq20H4sxx0y2ZfK43UwL5d1P1qZXxT7Ru75nLThiVwCIk/Dw1HMbtur6Vt5cK2tbXYsqIac8qLsWVFdVpPkxjL7Dr3s30dzxQz52hvIIQqnxcAUOXz4u6q0rhjB4A7byzBY7dNxfwbrkPJODc8rtjJJAiAgFjg/NSFQYhiLLhduakh4bx6raUDogj5pjjp89tIOf9e3PsJWk6cx9f/rUmzv6Q5IR27xyXgkZpyfP3mybrbfPtIF+5+6bcWWqGXUNf++ey6vajc1IAdzbG+3f1BJ35xpAvBodg6O3QlT//Pbx1NumeuMTRajPXPWkRElD28phARERERERERZQ4rqBMREdGotGf9Ivz9fx1CpyKEPXVCAf7j27fnsFXxsv0llxQiqqtvQ08ghKkTCiy/10imKsnaXSF9pO4zF5V4szkHjfpUGRZVV9TNhJFQ9XgsVqHV61enAEQB0+ObSt/YNZd9xflYUVOBtw53yj9zCsDyW7UrHNPoYve5b3Xe5eqpDckkW4PV/dbuD6DdH4BDiEWlnUKsgnpPfwi7/n4h6urbcPD4eQCQK6HfUDoON08dn7Ty5Dv/uAhrf9qCQGgIoWEx7nW57D91H5y7HNZ8usLVORELi4eGRRR5XOi5EvD/zB9IiJdPGZ+Pt5+6y3RbDmxcinv+799iMHy1PYVuJ/b/n4s1+0ir6ufEQjfOXArGHVNfcFi+kfPkiw+abg/RSDUWP2sREVFu8JpCRERERERERJQZrKBOREREI5ZRxc855eNR6HbG/azA7cScKeOz1TxTslmpW11BU696aarGSiXZbFHP31z1Xy6rxWd6TuoZCXP1uUeqcexsP0qL3GOmCq26XyUREZbGN9UKvXbN5cvhYblStONK8JYV8saGTJz7VuZdrp7aoMfsGqzXbyJi53ZEVe18R3OH/F6pEvqJ3stxVbv1wvy7mjtw7nIYoWEx4XWp9J/eZ0WrT+7QKU6e8HSF2XV7sVNx/ECsX/d/2oMZZeMgaDyh4cylIO5+6bem2+QrzkfJOA+AWGV6ACgZ59btI60bKZbd5MOO78xHQZ7qs3KeEzv+br7h/olGC1b8JyIiu/CaQkRERERERESUGQyoExER0YiVLKh0aXAIN5SOw41l4zCjdBwuDQ5luYXJZfNLLruCeXoBqrH02GOrwbVUqOdvrvovl1+05ioonum+NjN/RlpQ1Q7qfhUEoLKkMOXxtXoe2jWXt62txYyycVizcDre+ce7sWZhdm/coMzJxLlvZt7l6macZMyuwXr91vzssrj3e1wOVEwogMcVi007hFh1dWnbU8bn47HbpqL+ybvw6LwKNLSdkc9vZR9JQsNROCBgV0tHyv2nt9ZaXYMPbFyCqRMTnzzztbmT4vpL1Emyi6KIbWtr8f6zyzB5fL7cL04hVkG9aeMSS22aW14s30hT5fOi8+KgYR9p3Ujxnf/VisGhSNx2B4ci+M5/tprqEyIiIiIiIiIiIiIiIqJ0uHLdACIiIiK12XV7ERqOyn/e0dyBHc0d8Lgc+HTL1+Wft2y+F3X1bdjZ0oHV86dhy8qbc9HcnPP3BfHUa4fxw2/NsyWYpwxQqft0rDz22OgY02U0fxfPLhsT/WdWLm9qyORcNZo/Ztev0Urdr/s/9ac8vpk8D5NRhoy3rKjO6r6zTXmNGAk3FGW6Pbm4TjVtWIIte/6CX33UjeBQFPl5Dnxt7mRsfvBLGd+3EStrsFa/qd8fjkRR6HYiHBEhCFerpyurdkvnckGeExcHh+Tz27CPRMT9nSAAX50zCc+tqNadL7M270E4cjUsLq21ambXYF+x9lws83ri9ntg41J8Y9tBfHFuQP5ZZUkh3njiDnk7y27yYVdLh9xn/r4g5j/faLpN6utIuz8AIFZNXep39RzTWtMqNzVoHpNy20Rj0Ui77o017F8iuhZx7SMiIiIiIiIiSg0D6kRERDTiSCGm9452y6Go+6vjg15jPQRqhTLkmU4wz0yfjvZQZzbmjVEIT/lF5vqlM/HUa4fh7w+O6S84c3VTQybmqpn5M1KDqnZR9+u67a1YPNtnaXy5fmdXLm8EyEV7snmdsvsGsUwwuwbr9Zv6/b/6qBtVZV4c8wfgEIDJxR785Nvz5W0bnd9/dftUzT7y9wVx8PNehIajEACIInCsux++onzU1bdpzpeHbi3H7g864RSAiCKwve4rM/Dj3x83XIP1AkZzy4shALhl6gQAwJ9PX0x4uoKvOB+RaHwV9UhUjNuOus9On7+M4kK36euCdB1p+LALigw+vB4n+kMROAWMqDlGNNKMtOveWMP+JaJrEdc+IiIiIiIiIqLUCHqPJ6axoba2Vmxt5eObiYjIXvv378fixYszuo/N9W3YqaiEuWZBfIV0f1/QVAh4tDOq0qQOgUlSDXleC32arWPcXN+GXS0dcDtj1VO1Kvyz+v/oY3b+mBn/a9m1sNaMBHZfI8Zae+zwT28cwe4POvHYbRUIhIZRVpQfFwRXhr5zxc5qj2bGUH1+e1wCvJ48bP+7+XhlX7tmH9XVt2lWP7dK+qyYbA1O9/q7bnsrjvdcxmf+AGb6vJhRNi7pWKvbVOb14J31izTHRK+f1RwCcPyFB3X//pcfduIfXzuS8PMffqsGy2+pSLp9otFmLF5nRhL2LxFdi7j2EVEuZeM7GCIiIiIiIjsIgnBIFEXNL8sc2W4MERERUTKz6/bGhdOBWAXO2XV75T/7ivNHbLVSOymrNKk1bViCh2vKkZ8X+0iXn+fAIzXlaNq4JKV9me1Tf18Qq7YdhF+nCmuyv08m3fcbyda8kaqn1j95F1YvmB5XgXV23V5UbmrAjuYOiGJsblduaoib3zQyKeePYFDB1mj86dpZv3PN7muEVeq1XGqPxxVrj8eV3fbYSVrHd3/QCQDY/UEn3vvoLN5sPYU55cXYsqI6a+F0f18QK3/0B6z40R80r5tGnyOsatqwBA4h8eeh4ah8DUs8v0WcuxzGrvc78Nwj1Th2th+lRW5sWVGN/Z/2yNfDZKT5u2f9orh57XQIWDy7DI/dNhU9gRD8fUHsaTuDR2+rSFiD7bj+zq7bi/c+Oot2fwAigHZ/AO99dDbpNpTXhaoyL/z9Id0xSVZIwuMS8EhNOd7/52WGr3voVu0Q+rUWTs/k50oaWXJ93Rvr2L9EdC3i2kdERERERERElB4G1ImIiGjE0fsC6KffrsXN//09fHzmEoDMhUBHQpDFTIgqEyFPM32aLOym9/dm+9XOMJ2WbISHt62txZYV1ZpBxdH2BedIOB9Gkt5ACFVlXogiUFXm1Zw/RuNPMaMlxD+a538mrhFW+uPFvZ+g5cR5vLTnk4T2APo3eIwGegHiXDyhbmtjOw6fuogjpy7GXTf1PkfM2rxXHkOr89tXnI8VNfHhZqeAhGtYbyAEB4S4apM7mjsw//uNaDlx9fquvh6qeT0uAIibv3PKx8fN66goYuqEAry86lZsW1uLrY3tuDg4hAKXM2ENtuP6m+qNFtvW1uLN1lN4YGsTjvkDcp9oB+Q17gK4wiEA4Yho+twRBMDtFPDf7pwOt1OAoL/pMSvTnytp5OANcJnF/iWia9FIWftG879LiYiIiIiIiOja5sp1A4iIiIjU9L4A+r9++TH6Q8N4+rUj+PUz98SFPresqLZt/8ogy5aVN9u2XbP8fUHMmVKMsmIPfn+sB8GhKPLzHPja3MnY/OCX4l4rhTy/NX8adrV0oCfNL6uM+lT9aOMdzR3Y0dwhP9o42d8n69dk77fLtrW18PcF8dRrh/HDb83L+heLI+ULTrNyfT6MJOo5eswfwDF/ALPr9vLx3hZlav22Wy7mv53rU7JrhNV9mekP9Xmy+3Andh/u1HztjuYOvHno9Kg7fw5sXIpvbDuIL84NyD+rLCnEG0/ckbU2qPsZiL9uNm1Ygi17/oJffdQd9znCJQh460inHNa1Mr/9fUH89lM/bigpxIkrxx4RkXANk66zyv3rtfPBm6cgOBSF2ykgHIkF/KX/Ho5GsWZh4vzVmtdGnyGaNizBU68dxvcemoODn/emdf3VutHi4OfnTL1Xb0yUn+1m1+1FOBLVfL8DwMIZJZhR5jX9ee/ECw/K//3fHx65a20mZOtzJY0sdv/baLTJ9L9xrvX+JaJr00hY+/h7GSIiIiIiIiIarYRcVPii7KmtrRVbW1tz3QwiIhpj9u/fj8WLF2d0H+u2t6KsKB/fmj8ND2xt0n3dyRcf1P07q7TCXgCyHmSpq2/DzpYOzCzz4rOeANxOB8KRKFbPn5bTL6LUYTNlsMpXlJ/w9x6XAK8nD32DYQxpZK3U/Sq9v+HDLkTEWFXW5beWy9u3k9THuepT5fyWvuDMVZVtvSDLSDkfRpJk58BIYDaYlMubNEaDXM7/bK5PZvdlpT9mbdYO2OY5BXz95ikj+vyxYtFLv8HpC4Pyn6+fWICmjUtNvTed80967/cemoN/2H4org0OAbhvziQ8t6IavqJ8bK5vw66WDridDs3xU0s2v+vq27CjucP0e6X95zligXOnQ0AkKsaN/WP//kecujCIiYV5KMhzwukQsG1treVro9H6vHVfu/y5qt0fQH6eAz/5di3ePXrW8vVX71xwCsDnLyT/TKock3AkivvnTsaB9l68/sRCzJkyXj6OXxzpinvflPEeHHz2XvlYuX4nNxqu2UR2y/W/cYiIyF78vQzRtS0b38EQERERERHZQRCEQ6Ioan7hpv0cZSIiIqIc27a2FltWVGNOeTH2rF+EigkFcX8/dUIB9jy9yNZ9Nm1YgodrypGfF/uIlJ/nwCM15WjauMTW/eiZXbcXlZsasKO5A6IItPsDEEUgKopYvWA6egKhrLRDT7LK34l/L+Lc5TAerqnQ7Nf6J++Me0Tx3f/6W/ziSCycDsSqsr59pAt3v/Rb245B3cc7mjtQuakBs+v22rYPM5Tze8uK6pyF04H4SlxKuT4f0pWJR2CPhur3euOZ6uvsNloeTZ6L+Z/N9cnqvqz0x4GNS1BZUhj3s8qSQvxh09IRf/7oUc/b2XV744LhAHDqwqDpsUrn/Nva2I6WE+fxwNYDCW2IikCZ1yP3qVTtsf7Ju/DYbRWYPD5fHkOHEAtVA8nnt3K+qBm9V9r/z/+/i1Dl8yISFeWx/+WHXZj/fCNOXTmGCwND6LoUhL8/lHBtNLNuaK3P71zZh/JzFQAEh6JY85MWvNl6Svf6q7fPpg2J8xuIfWYxc74qx2T1gun4/bEe+elAyuMAYmMEALN8XtwydYK8jVyt36PNaLhmE9llpPwbh4iI7DXafy9DREREREREROTKdQOIiIiIkplTPh6FbmfczwrcTsyZMh6AfZUkcx1kqX/yTqz5aQsuh4YRGk6/0mMmKmwme7RxbyAEB4S4Ck+7P+iU/1vZr7uaO+IeUdy0YQke/tEB9PSHEYnGKq36ijx4+6m7bGk7EPtyT6+aphVjoXqpuhLXjuYO7GjukCtxSedDcCgKAbFA32gJdvn7glj+6gH4+0O2PwJ7JDzeW0uy8bT6ukwZLY8mt/t6YGbNsGt9MsPqvqz0h684H8PR2J1GbmescnYkKsJXlD9iz59k1PM21bFK9fzz9wWx4IVG6D0AzwFg8vh8QEDczWzK8PXLq2rk6t3SGAIwNb/VxytVQnc7BcP3Kvc/o2wcFswokcf+9PkB/L69B1HVMYWGo5hdtzeuP7TWDa1zSj2/Tp+/jOJCN9472q1ZeVJrX0b71KtgCcD0HNi2thb+viDmf78x7uft/gAqNzUAAL42dxLWLIw/T55eViX/vSTb6/doNFrXHCKrsvkZgoiIsifXv6ckIiIiIiIiIkoXA+pEREQ0KlwaHMKsSV6sX1qFH/z6GE72Xoa/PwhfUb6tgcdcBll2NXfg/OUwAHOBsWRe3PsJWk6cx0t7PsHLj9fIP7carla+Xhk227KiOuG1UvBKHZCYWOjGnTeW4juLbsBDrx6Iq8KqDFj91e1T5fBcOBLFspt8tn7xZteXe6MlZGvETJClNxBClc+Lz/wBVPm8Oa/ib8aszXsRjmQugJ3sHMgVs8GkXAWY7AzGZ+sGETuvB2bWjGyGD1LZl5X+mFtejMWzfQmvtXL+jIQbgYzm7V/dPtXyWKV6/r249xOIInD9xAL0BEIJIfGhqIilN/mSXo+UY7hueyuA2JgkG0+t+VLl8+KVb84zfW5ojf0zrx/BW4ev3sTmdAhYfssUuT+M+v8bt09NOKe09rG5vg3hSBQOAXFhePW+JHr7dDsFzC0fj7JiD/Z9fBZREfI2pZu4XIJgaq5ubYxVPi90OzEQjsT93YPVk/GjNbcnHMd9P/gdAMDrcWI4Klpev0fC+ZQLI/WaTWQ3BhiJiMYu3nBHRERERERERKMZA+pEREQ0KrRsvlf+7/ePn8POc5dxx/cbEVGEjewIouYiyKJVkTM0HAtTKQPBZsNF6u3tPtyJ3Yc75X6xGq62+nqtgMQyRXDu4LNLdQN63/350Yx/8ZbOl3uZrD6d7fBYsiCL+ljb/QG0+wO61WZHgtl18eF0iUPAmH8EttlgUq4q4ycL5lqZ/9m6QcTs9cCo7VbXjGyGD6zuy8r10Y5r6Ui4Echo3qZyvbIaIFTPn1MXBuX/jkTFtELiTRuXyv9tZoy05suc8uK0PitdDg/jhtJCnOgdgEOIHZPUH/6+IKp8Xpy+MIjBoYj8ZJnwcBSh4ah8o5vZc+rznn583NmHS8FhOFX7UtIbc5dDwO4POpGf50BURFxQv2pSEfa0nUHLyfOGx6seT3U4HQAajnajYVMDBADNm5dh/vPxldYDoavvsRJAHQnnE5l3rd5QQOlhgJGIaGziDXdERERERERENJoxoE5ERESjhjrYo471jNZHmRsF4JShFLPhIlHU/nloOIrKTQ3yn5OFutIJYxsFJIwCetn44i2dfWSy+nQq4bF0A0xG45SrStup0rrRQ7KypmJMBrzU4282mJSLyvjJgrlm5n8mbxBJh1Hb1eeRx+WA1+PC9r+br7kt6SkU2QgmjtSgw0gaZ7uvV/6+IPa0ncGjt1XgO3fNSBog1LueOwXgrxdMtyUkblYm5su2tbW4+6XfAAC+PncyJno9cn9sbWzH0a4++bVS/6+sqcCwKCa92eV7D83B9375cdx5tG57K8qK8nXXSOm9UycUyGMeHIri7SNd8muCQ7G5GRVFOAVBvnkLiN1AULmpQXOuagXuAWCc24lpJYX4y5l+ALHPsqVeD05fGMRLez7BnvWL8Pf/dQidF6/enDDO7cRLj92C90+cTxpAHUnnE5nHGwooFSP1uk5ERERERERERERE1y5B1PvGk8aE2tpasbW1NdfNICKiMWb//v1YvHhx1vfr7wsmBGZdDgGBUAROAYgCWD1/2qgMcmyub8Oulg64nQ6EI9G449AL3uqFi/x9QazadhAnzw3IP7t+YgG2rb0dP/798aRBeOV2zATnU6EVElOGKrSMlGqSRmOVCqPxbdqwxPCY6+rbsLOlI2Pz3u5jzSRpvjZ82BX3ZIUbSsdh1iRv0vk1GqUy/lbXEztpnff7P+0x3Z5MrkmpMNuXyvNIev2aBfpjlunzOlXprMFW3jvSxjmV65Ueq2OrdT0HgBtKxuG3/+filNqgtY9cXFuNbirS4xCA++ZMQqnXo3ttkvp4ZpkXn/UELJ1H0nunTijAPbN9+Nb8afjJgeN464NOzde7nQ7cf/NkU3O1rr5NrvoOxNYJqe3NJ87LIXczqnxe/PqZe0y9dqSdT2Qsl9doIiIiIiIaWXL1HQwRjTwj5bsxIiIiIj2CIBwSRVHzC1RWUCciIqJRQ1nJFLhaxRKAHEjd1dJhW6BP75c+mfhlkJ2VrH3F+RiOxjrEIQBRETh/OYw55ePhEgQEh6JwO4WECsZa2zGqeGwkWR+lUuEv09UkzY6r2SrVZhmN79Z92secrYqodh9rJknzNSJenfezfF7cUDZuzIXT0xn/XFbG1zrvjcKTaumsSZlgti97AyEIQNIxG+mVjtNZg628d6SNsx0VaVMZW+maFBpWPy8GOHHusvxElJMvPphSmyR2XFtT+Vykd/6s+8oMvNLYjvc+Oiu/VgqmP7eiGr6ifKzb3ppwbVL3sRT4NtPX6veeujCIHe9/gTdbT6FpwxL87tMenLsclv/e6RCw/JYp2Pzgl/DKvnbDuaoXOJZ+pgytG5k1yYv1S6uw9TftuDgwZOo9wMg7n8jYaHt6DRERERERERFlHp+0RkRERKMZA+pEREQ0qkiB2fvnTkbdz9vQcX4AUREZCXDo/dInE78MMgrApRIu6ro4CCAW0gWAy+GIHGYDgHvnTMZ149xJA8epBpSVfbR+WVVagf5shTbNjqsdYUUlrfH95YddePtIl/wa9TGrA0wAUFlSiDeeuCPt9ijZfayZ1hsIYc3C6YaVjsdCtZF0AmwjLaxotT0j6aYJs23ftrbWVBB/pAYT01mDU31vrsY5U+uDNLbvHT2D0HDswpxszZauSVMnFOCBmyej9eQF+PtD8t9PnVCA//j27Sm3yc5rayqfi/TOn5X//seEQHdUBPZ9fFZez41udnnvaHfc+91O4Os3lxueR8luFDt3OYzifBf6g8NwCEAkKsrnerK5Wv/knVj9k2ZcGhiC1CopcP/0sqq4J9t4XAKcDgcGwldvSpDmiTQfl99abqp/lUbSuknGRto1mohoLBoL/x4kIiIiomvDSC9oQkRERGQGA+pEREQ0qihDSXfNLMXJ5g4IiFVTlwIc6X7hqPdLH7Vs/jJIL1ykd6zvP7sMq7YdxMlzA5rb29N2BgDgcTkM92s1oGzUd6kG+jMd2hwJv+RTj+/p8wMoLszTPWZfcT7e+bBLvgEBAE6eG8D85xuv6V9OmpmvY6HaSLoBNuWNPs+8cQSnL2ivE9liJTw50m6aMNt2M2OWrWCi1WukUaXrVdsOGm4n1fU7V+Oczvpg1K9m1mzp/Uc6LiAcufrCUxcGcerCYML+Tl8cxIOvHEDz5mUpzRGzY2N0XOleP7XOn6YNS/Dwjw7g7KUQRMTC3PkuJ+bfMNFwW9L5E45E4RSuPlknHEHCeaQ+JuW5Jwix6ubvqG4U6wsOAwAcDgF//eVpOH3+csL8V4blpe3vau7ABVXF86gIlHk9mFM+Pu6cD0eiKLzyscztFBCOiIhExbTXgJG2bl7rkq3BvKGAiCizxsK/B4mIiIjo2jBSC5oQERERWcGAOhEREY1avYEQqnxefOYPoMrnRU8gVln0xb2foOXEeby05xO8/HiN5e0ahfGUlS4z9csgreCKXrhI68tVdWBMj0MAmjYusbXtWpW9JakGvzMd2rQjpGfm741eozW+m+vbDI/5K1WlOHluAGcuBREajsIhAA/dalwl9lo2Em5EsFM6ATZpvtXVt6EnEMLUiZMy1UxL7QH0w5MjtdKhleCnmTHLRjDRaihHbw3e1dyRdDujpRqwHeuDUb/OrtsbF06XKK/D0vsfnVeBoagYd01aPKsMv/m0B2FFGx0CICL1m7/Mjo3RcaX7JZne+bPspknY1dIBjzMW2n70tgpTx9gbCMEBARExvrN3NHfgzUOn5RsBlr96AP7+UNxTXgrdTlSVeXHMH8AsnxflE/JRXOjWfFKJrygfdfVt2NnSEdcv0jpVOs6NlhPnMf/5Rs12uhyQP7Oqz/lffdSNlbdNZTh5DEu2BvOGAiKizBhr/x4kIiIiorFvtPxulYiIiMiIIIoa35LSmFFbWyu2trbmuhlERDTG7N+/H4sXL85pG8yGsAGk9IXj5vo27GrpgPtKOGr1/GnYsvJm3Z9bkSxoKYWejLatd/wel0MOjEnVWt1OB/KcAi6HI3Gvfey2Cry8qialNhqR+ijP6UB4+GolU2Vwzeo2121vRVlRflxgSxngSZeZcU02LmbGTXrNo/MqcOrCoGH/mjlmO+bjtcLfF9QNUl5rv9A1Wj9GajjDzPlFxtIZd+V6tPzVJs2wtd52Mr1+2yGd9cFMv0rbb/jzGUQUnffYvAq803ZG9/OMVFV79fxpEAHsaumA3q9wUjl/jcbG7HzJxHUonTljNJZ3v/Rb058drfK4HBiKRDXPDSMnX3wwI+2hkWc0XnuJiMYS/nuQiIhGm5HwHQwR5d5o+N0qERERkSAIh0RR1PyQwgrqRERENCppVe0MD2sHg1K5HU+viq0d1W31KidaqehlVLXUVxSrqiDiarhteokX7f4AHAIQFYFZPi8CoWHLbTQTXFf20dM/O4x2fyDt6g6ZrrBsNK7JxsXMuKlfs/uDTgDAHd9vxOcvaIfTzBxzNqotZ5tdlbLV22G1katG06NBWenQPumMu3I9ev/ZZZa2o17L/H1BrNp2cERVw09nfTDTr9L2I1ERzivX4Zk+LwLhYc33Tyx0484bS/GdRTfEre2rF0zH/XMno+7nbeg4P4Co6uYvq4yuM2aOy98XxJ62M3j0tgp8564Ztl2H0qkgrTeWVsLp0rH29IfQdXEQXZcGER4W4RCA8QV5uGXqeDSfOB/3+dNq8H3qhAL8x7dvt/QeGt1G07WXiGgs4r8HiYiIiGg04pPWiIiIaLRjQJ2IiIhGJa0vF1fWVOCDjgs4eW5Afl1lSSHeeOIOy9vX+6VPOr8MSha0tBJcSfblqjq4/KuPurFm4fSkVRaStVEvuC7x9wVxYWAIz62ohq8oHzPKxmHBjJKsBKiTtc1IOiE9M+MmveYXR7rith0RgcpNDSmHba3MR7uC35mWzjgm245dgf7R0pd6RlM4g4E++9g17ulux65z3G6prg9m+6M3ENK9Dqvfv+wmn9w3Wmv7XTNL8UVLR0bPXzPHtbWxHRcHh1DgcmJOefGI+ZJMayyltURdxV6LdKyvfHMeNte3YWdzBwTEbiy4MDCE5hPnEz5/Dosi3jvanRBUL/K40K9xQ+Dpi4N44JUDrKB+DRlN114iorFqLN7gTUREREREREREo//7+7GMAXUiIiIatbS+XBxWhY4iUdHWKszpSBa0NBNcUbbH6MtVdXBZGRozCpDptXHv0W5UbmqQX6dXxVgdPMxGdYdMV1hONi5mxk16jSBADrkB6VW+tWqkhkIldo2j2e2kMx9Hel+aMRrCGdJ6N3VCAQN9NrFr3FPZzkivhp/O9cqoP7Q+R6i3b7U/la//yYHjaGg7g/X3VgEibP3lm167RutYSlXsBcSeriP9r/Lv/8ea2/HuR91xT86B6nXBodixR0URqxdMR09/EKVeD8KRq33iABAFMKEwD6+vW4jlrx6Ie8qPQwDeWb/IluOl0WM0XHuJiMYyVp8kIiIiIiIiIhqbxsL392OVIIrGlaNodKutrRVbW1tz3QwiIhpj9u/fj8WLF+e6GZrWbW/Fvo/PIiICTgG4d84kzUrhZvj7glj+6gH0BEJYPX9aWh9klUHL+iOdcDsdCEeiCdtdt70VZUX5mhVWpfb4+0NYsyC99hjZXN+GXS0dcW1cv6xKN1zvK8pPCKtJshFW8/cFDdtmB6NxMfP3ytecD4Sw52g3HEIs8Jbu3Eoml2NjhV3jmMn5MFr6cqyoq2/DzpYOTJ1QgHtm+5I+AYKsyXYlgVTOzbFQ7UCax5la65XbB5DRfUmycd21m78viPnfbzR8zfUTC9C0can8Z701X8njcqD+yTvx8A//gK9VT8L5y2GcC4RR6vVgRplXXq/u+8Hv0O4PyO+r8nnx62fuSe+giIiIiIiIaMwayd/BEBERERGNFPz+fmQQBOGQKIqaX+CzgjoRERGNGcoK3wAQEYH3PjqLyk0NOPnig5a2ZXd1UOmOzTMTCgwrJypDl+uXzsRTrx2Gvz+Iu1/6rW57mjYsyXjF1GRVwpNVh88kMxXM05Ws0pqZSmzSa9Ztb8WahdmrnpnLsbHCrnHM5HxIpy8/7rqEx7e9j9efWIg5U8YbvnYshHLToV5/T10YxI73v8Cbraey+ouEsTYO6uOxs5KAmb5K5dwczdUOMl1lXGv7mdiX1thm47prt62N7RAEYPp1hejuC8pV0Me5nRgIRzDT58WMsnFx71Gv+WqP1JRj84Nfwur/pxnDURHHugO6ofNLg0OYNcmL9UursPU37bg4MGT/QRIREREREREREREREV1DRksW4lrGgDoRERGRit5dlg4BaNq4JK1tWQlaSsG8O77fiIjGQ2+k9mzdZ2+ATy9srRVclyjDam6ngOBQFC5ByHhYTQrOFbqdhsH/kSRZmN3uUOxoChIazbFcbEc9Fun05dM/O4L+0DCefu1I0qq5ozmUawc7fpFgx3k0msdB6/hf3PsJWk6cx4LnG6G8pNgRZjbbV2bPzUyHu7Mh078QU2/fIQACYjfn2bkvvbG1a53NNPVcOnluIO7vL4cjAIB2fwDt/gCqNu9B+/MPALh6/dQKpwPA20e68PaRLvnP7f6AfLOk+sbIls33yv+9/NbyNI6IiICxdxMZEVGmcd0kIiIiIiIiorFoNGUhrlUMqBMRERGpiBphcInVD7JSgKzhwy5ERMApxIJJRqGxWZv3IKxIpEd0XhcVgfnPN8p/znSAL1mwWgqrnb8cxp62M2g5ed72NqhJwbnV86fJbdKrYG5Vpr/A1dt+JkKxoyVIaKYSfTa3ozUWVvtS/WQHowDjWAjl2sGOXySkcx6NhXFQHv+bh07HHY/6EpdOmNlqX5k9N8dCtYO4G7dcjtiNWw77btzSOk8A2PbLt2Rja9c6m2nJqqCrTZ1QEPfn11o6dF4JTCzIg8ftQPelUNz7/+Pbt6feYCIyZTTfREZElAtcN4mIiIiIiIhorBotWYhrlSAaJbBo1KutrRVbW1tz3QwiIhpj9u/fj8WLF+e6GQl++WEn/vG1Iwk//+G3arD8lgrT2/H3BbFq28G4KptejxO1ldfhP//bfEtt0qvGbhR0/Kc3jmD3B51wAIgC8LgElBXl4/SFQfk1AoCyIg/mTZuA3x3rSQjwpRpKSyeUbeVYre5H/fpU+tWquvo27GzpiIXfFV/g2hVcV28/G8dE2tKdX0Zz4uOuS/j7/zqEzotXz18pwDhnyviE7eiFcq+1u7zXbW9FWVF+3C8SlIFYPXacR6N5HPSOX4/H5UA4Ek1Y58zKZF898/oRvHW4E26ngKGomHIbMynZ9UCaxxcCITQc7cb1EwvQtHGpbftXnifrtsf+3b9tba2lc0aP1bEdyVU5N9e3YVdLh+ENiFpOvvig3A/SjYZKaxZMQ/OJ82j3B+SfVfm8SZ+SQUSp4+dlIiJruG4SEY1eI/U7GCIiIiIiIjVBEA6Joqj5xaQj240hIiIiypSHbtUOoVsJpwOxqqTD0VgKye0UAAATC92Ww+lArHLn5PEeOB2x7TgdAqaMz0fTxiUJr521eQ8qNzVg9wedAGLhdAAIDYsQEAs9CYhVYRcBfHXOJJR6PSlVGZZC+H7V3aPKqlqpHOvDNeXIz4t9xMzPc+CRmnLNY1XvR689eq+3sq9kx6w2u24vKjc1YEdzLMy2o7kDlZsaMLtur2ZbrNLbvijC8jGleowUL935ZTQn5pSPR6HbGfezArczIZwO8BFkStvW1mLLimrMKS/GlhXVpoO2TRuWoLKkUP5zKufRaB4Hrbn7tbmTMHVifFXowjwnHrttKuqfvAurF0xHTyCktbmkMtlXf7ryFI5750y23MZsrYXKc19rn/s/7cGO979Aw9FuAMCpC4Nx15N0Kc+Tpo1L0bRxadJzRt1Ovb7SG1uISPvzg7TPj7sumRqndMdTqpyx4zvzIZh4/dQJBdjz9CIAV/tBGU6fdl0hrp9YgJ5ACJcGhzBrkhc//Ot5mDXJi0uDQym1kYjMSeXfAERE1zKum0RERERERERElEuuXDeAiIiIyE6CAOQ5BKxeMA07mzswFE3taTFzy4uxeLYv7ccA+YrzseymSdjV0iFXql12k08zvPfQreVyOF3t1IVBOARg9cLERxOl8rgi9eOd1VW1djR3YEdzh6WqWmaCinr7cQqxQL76cdNG7fqr26fG7cspCHhql371VrOPtG7asESzauyeP3ehclNDWn1ktP3ND34Jr+xrT/mGg6deO4zrJxbwsd0WWJlfWmNh9ryRAozrl1Zh62/acXFAP8DIR5ClTqs6YHAoil9+2IVXvjnP8L3q6s+jeRze//wcgkNX526Z1yP/ndspIBwRUeJ14+VVtwIAtqyoTmt/dvWVNAZHTl1EWDGOe9rOAIhVeTTL7Hpvtk3q64reuQ/EX8eM1vtU9msHdd+o/6zct9bY2vH5QdrG0z87gs96AknHKZ3x9PcFcWFgCM+tqIavKB8r51XgrcNXP2sJiN30p9R7OYRSxXnTGwhhjerzl3QDgNRf82dch1/dysrpRJk2mm8iIyLKBa6bRERERERERESUS4Jo9RnHNKrU1taKra2tuW4GERGNMXy8pDXrtreirChfM9gE6D9yWaIMtKX7JaLevtxOB+6/ebIcogOAypJCvPHEHZb2mexY/X3BuLCeHinYpn69si+++/Ojcfv63ad+nL44iNXzpxmG3NX70LK5vg27WjrgdsZuKlg9fxoGhyLY/UEnnAIQEdMbF63tb1l5c9L+03Pjsw1x1V31jjGTocfRQH38VuaX1lgYvT9Z/17rY5EJ0ni882EXoiLgdgkoH1+AytJxSZ+AUVffhp0tHQnrh9X953JM/X1BLH/1APz9IVT5vHjlm/PiAuOprC3ZJI3BypoKDItiSudVKuu9FuVNP28d7kyYF2auZdI+9dZ7I3bMR7VknzUkjitPaTF7LXU7Bdx/8xRT45WsDepxsjqeWuegsi/fPHRad//j8114fuXN2FzfhkvBYaxZYK7vMzFWRGQs1c/LRETXKq6bRESjE7+DISIiIiLKjlx/xzsWCIJwSBRFzV84MaA+xjGgTkREmcBfjsZL9wOrOujmdAiYVORB16WgblAsnbbqBWoXfr8RWgXnrQTBzFCH9aZfV4juvqBusE0v3CdX2+24gLBGOttMyF2v3covcB969QAiOp+ZzQbYjLafzhfERmG/R2rKE47RTJBuLP8DTOv4UwmPKqX6foYaMyPZeKjnt12BZgD4pzeOYPcHnXjstgq8vKom3UOxxI7jyNW5b7SOSU8eMXuemF3vkx2rmZt+pLmW54hVpXc6BESiYsI+raz3ds5HNXXfeFwCSr2xpwWYCY1rhfIrSwrx76tvw7f/3xb0BsJJ10FpG+8dPYPQsBi3j/urJ2PdV2bge7/82NRNRFrjZiaM7hAAUUysmp7s+NUyOVZERERERERE/A6GiIiIiCg7+L19+owC6q5sN4aIiIhorNna2I4/nTyPrfvaTQfolME49SOXw5FYSH3Nwun41vxp+OmB42hoO4P191alHRo0erzzV6pKcfLcAM5cCiI0HIVDAB66tRzrvjIDq7YdTAjyWT1uSW8ghNULpsthvf2f+g0fN61+vVQNWNr/o/MqMBTVrrYrOfh5r6VHWivDgwefXZpwA8HdVaUoGedBTyBk+rj1tr9lRXVK2wCApg1LEgKD0k0NymNUB+l2NHdgR3OHZpAu1XEdyYyOf/HsMs35ZZbe/EylLVZDjWP5ZoJUJRsP9fxWn0Na60cy6jHd/UEndn/QmbWgql5Q1iEATRuXmN5Ors59rTGYWOjGnTNLsLKmAs+88SFOXxw0tS2ja5yS3rGauelHopxrT//sMNr9Ac19Wlnv7ZiPerQ+axS6nQhHrvZVZYn2DWPS+6WnE0hOnhvAA1sPAABm+bz4N1XVfr02hCMiHAIQFQGnAIQjsT7b1dwRNy5mx1NrXQVi54Db5ZCPJzwc1bwRTzLO7cRwNIrQsJi07zM5VkRERERERERERERERJRZdn5vT/oYUCciIqJrkhTs/N5Dc+KqdVqR6gdWrWCcVqhSCrIV5DlxcXDIttCgXoDzP/92gVwRVgqvaQXG0v2grg7rrdveisWzfbqBUvXrZ9ftReWmBvlnuz/olP9bK8C2tbEdPf1hU+E5LcqAnNsVC7iVjHPj5VW3mt5GpijbJoX9vj53MiZ6PXHHKAXpGj7sQuRKIHD5rfFhy7H8DzCjIKHyvE/lZgGrNxvYGWq0O1A8FgLveuNhNL//6vaplm5gUdN7Klm2nlamPr8lK+dVmDqOXJ/7WiHkZTf5sGXlzXjm9SPw94dwd6Hb9PaMblJIdqxmbvrROk9mlI3DghklKd3oErc9k4HsVKn7Zm/bGZR5PfjBqhq8+1F30hvGvlJVhpPnLqPr0iDCw/Hz+5g/gAe2NiWdN1IbjvcE0BsIocTrRvPx83KoHLB+E5HeuuoUBNQf6ZSPZ2VNBf54/Bz8fUHNoPrlcET+72R9n+mxIiIiIiIiIiIiIiIiosxhMaLsELL1pTnlRm1trdja2prrZhAR0RgzFh4vKT2mp7JkHE70XsZjt1Xg5VU1lrbh7wsmfGC9Z1YZ/P0hbFt7OyAiLsSmV5lVL8xl9fV2WLe9FWVF+fjW/GlY/mqTZoDL7XTg/psnJw37ZopWv08sdOPOG0vxnUU3yAG2/Z/22NZ/Ur9cCITQcLQb108sQNPGpbYFetPZjnLMpGNXhnQBc3NJq1+zMa6ZDEUrt/3KvnbsaumA2xm7+SKdR3Sp22z1GKQbQbTaYmZbmVobRvrjy9KZK0bz+7s/P5r0HEq27W9sO4gvzg3IP6ssKcQbT9xh65w2Ov7N9W3Y2dwh36gyy+fFDWXjTB1Hrs59JfU6tvP9L6D1m4p057iZY5XOTwAQRWDZTT5MmVAgzwu7z5NnXj+Ctw534rF5FXj58RpTa7resVk9P9THYmbfUv/kOQSEIyKcDgGRqJjWvEk2LmaOTepHt8uBoSvrak8glHA8pV4PdirC8F6PC0ORqLymVpaMw5YV1Xj3o+6kfZ/qWBER0dg1Fm74JCIiopFhLHwHQ0REREQ00hl9b0/mCYJwSBRFzS/JWEGdiIiIrinqYOeJ3ssAYlW4d3/QaSn8plU983jPZXzWE8DWfe0YHIqg5cR5vLT3E7y8qsbyHZi5uGNTGax6/9lluvt/ZV+7paqhVr6oT1bd3qjaLnC1arI68OZxOeD1uLD97+Zb7hd12P3UhUFUbmqAUwCiQNoVrNOphG2mgnfThiV4+EcH0NMfRuTKXQeFbif2/5+L5dfkohqsvy+I5a8eQE8gZPnYP+66hMe3vY/Xn1iIOVPGa75G2a9GVZWtUo+X1fEzaouZbdm9NuS6grZZ6ZwnRvPbahV8rW1L51WeU8BQREQkKtp+7hgdf28ghDULp6cUlB0JlaDVY7Cr+Qto3Uuf7u31Zo61NxDCynkV2P+JH+cHhnDsbD9++jdfTnh6R7rnifq82324E7sPx38OsTIfrZwfZs55ad/qtVa5fj39s8No9wfSnjfJxsXMsf3p5HkAwH03+eSniGg9gUV9c08gNAwA8pNjFs0swaKqUiyqKk3a7nTXjmsNQ5tEdC2w+wlHRERERESUHH/nQERERKmyM0NA2lhBfYxjBXUiIsqE0Vy9Qwot/+JIl+bfu50Cjj3/gOntSdUzX/9TB4Yixp+rPC4HHrx5SqzCp1PAUFRMegem3h2ber9ws/sXcXr7t1o11ErFWem1M8u8+KwnoPkes/tXtl8Kpa1ZYK1atfQ6ZSBYj9WgYjar5M94tkGzIr5yX9msBmv22PXG6L4f/A7t/gCqfF78+pl7Utq2XW22Yz9W22zn3dwjoYK2EbvGM5PzO5PbzsY6MVIqQRudY3ZVpU92rEZtmFiYh4HwMELD8RXD1U9MMWPW5r0IRxL343Y5cCzD1xGjc159LEZrrbovT58fwMBQxLangZh5EoqV49frc4cAvPOPd7MKeoaN9Kd0EBGlIxdPPyMiIqKxbTR/B0OUbf/0xhHs/qAzpSclExEREVH6jCqoM6A+xjGgTkREmTDafzkqBTvVH4Oun1iA0iIPtq293VTYTBmchQh89+2j+NXHZzWrvgKx8Puk4nycujCIB26eguvGuZMGofSCdHohH7vDP+mGFq18UZ8s/JvKl/vrtrfi1x+f1Q1mf+P2qab7Sx0Inn5dIbr7gmkFerMZDP6b/9mMk+cGcOZSEKHhKBwC8NCt5TkJIeuNtUMA3v/nZXHtUc9pZQVjtZMvPgggc/2qVZW/1OtBbyCYEFi1uh+rbV63vRXjPC4c6+7H7MnFCISG8Nwj1SnfoDKSH1820gP0meTvC2Ld9kMoK/bg98d6snr8dt7wlM7NQA4BiIqxa3TTxqVptSMZvbVJQHz1dunPj82rwMuP16R07fX3BbFq20GcPDcg/yyVEH6q54feOS8di9GviqS1Vs3uzyBmjs3K8dvV52QNQ5tEdC24lj+vEhERUWaM9u9giLKBv3MgIiIiGhmMAuqObDeGiIiIKNekx/RMKvIAiAXNAODc5TAOd1zES3s/iXs0tx7la3zF+Tjec1k30CUACEdEnLowCADY03YGO97/Ar/66Cz8Bo8J2ra2FltWVGNOeTG2rKjG/k97ULmpATuaY+GxHc0dqNzUIP+f+uez6/bK25KCWUb7S7Z/q1VFmzYswcM15cjPi33szM9z4JGacjRtXKL7Wo8r/iOqxyXovsdM+99/dllCGxwCEBqOGvaXmjRv6p+8C6sXTMdwVERoOBZSDg1HUeRxWQ4f+IrzUeRxpb0dNeVYS//9r9+4FXfNLEU4EtuXCCTdl9acSWUeqUlj7RTif75yXoXcntl1ezXnNABMHu+Je9/UCQXY8/Qi+c+Z6lfldgUBCEeiKHQ7EY6Iae/Hapu3ra1FYZ4TH53pQ0GeA9vW1ppat/So53dPIGR5G5mSqfEcSfTOq62N7Thy+iJO9FzO+vGbmU9m1wPltozeoxxrx5X14etzJ2PNwumYU16c1vGYIa9NjvjFSX1pl/68+3Bn0muvHl9xPoav3D3lvrIYRqJiWtcRt1NAcCgKlyAk3Y76nN/V0hF3LFrUa600lrN01msz/WD22PTmvtFr1HNN2eeSVPqcrLHyWZCIaLS6Fj6vEhERERGNNHrFOFmkk4jsZMf3okRWcM7RWMOAOhEREV1zpNB1zbQJWLNwOlxXgmED4QgAYPcHnQkhq1mb98j/ENALzrb7A7r7nDI+PyGcU1lSCAiwFCbVC/nsWb8oafgnnfBqqqx8US+9NhyJysFlhxAL9qfz5b5WG1bUVFgOS6nD+nPLi1MK9Kr/UZmJYLByrJX/bXVf6jnj7wti+asH0p5H0phERMgh1Fk+LwKhYfk1WnP9+okFAIDLwUjc9grcTsyZMj7uZ5kKXPcGQqgq80IUgaoyLy4NDsXt5/SFgZR/aSC1+affrkWZ14PTFwc1X6e3BqUTDt22thbrl87E9375EdYvm2n5ZpRMG8kBeiD9XxapzzX1GLf7AxBFICqKGT9+vfmlNZ+SXVdmbd6TsK35329Eywn990hj/c4/3o01C6djWBQ1b5DKxA008toUFeEUYjeXFbrN/9pE61pi1KaZZV74ijz4n//ty2mF8KU+u3fOZABAy8nzSd+jvqZp3czl9Tjj3qNea6XxX37zlIwFkPXOfX9fECt/9Aes+NEf0HlxUPM1WufV6Qvx6+qpC4NpB+nJGEObRHStGOmfV0cyfvFKRERERKk4sHEpppcUxv2ssqQQBzZl9imMRHRtycX363Rt45yjsUbg3YNjW21trdja2prrZhAR0Rgz1h4vOWvzHoQj2p+JpEdzD0Wi2NPWjcduq8DG+2+Ke3y3x+XAxHFunL0UjKuyWj4+H//6V7fi3Y+60dMfRKnXg10t+pVJzT52cHN9G3a1dMDtdCAciWL1/GnYsvJm3Z+n+phDf18QT712GD/81ry0QkTrtreirCgf35o/DbtaOtDTH9QNv0qv/bynH+cCYZR6PZhR5jV8T6ptkMZD3V9K6j5IpU/U76mrb8POlg7N/aVLb6yVzMwzM9uxsj0tZuaFNKf1zhmXA5hR5sXFgSG0bL7XchusMnMupTO+0ly5fkIB3jrSqbsNf18wYQ0q9XrQGwgiNCzC4xLg9eRh+9/NTwjuG8nk3BzrUu07vTnldjpw/82T5TGWrkXrvjID3/vlxymty2bXL2l+NXzYhYgIOAVg+a3l2Pzgl+KecKDdbgE10ybK+/inN45g9wedcAqAzmU25TVEq8/tmMPKtemhVw8gYvA7E4cAlE8owOkLg/C4tK8lRm0y014z42bX44zVnyPyXQ64XQ70DQ6juMAFj8uJls33Gl4j9PrBbnX1bdjR3AEAePDmyfjR6tvlv7NyDQMAt8uBY3zsc0ZZ+SxI9rDrczwRUTbw3yFERESJxtp3MESZsuil3+D0hUHkOQUMRURcP7EATRsZUCei9Nn1e3ciszjnaDQTBOGQKIqaX/wwoD7GMaBORESZMNZ+OervC+Ib2w7ii3MDcT93uxwI6wScHAIgAnKIa2aZN6GCepXPi18/c4/8Zymcc//cyaj7eRs6zg8gKl4NwSvDf1K7tIIlWiGf5x6pxtf+7fdYetMkfGfRDXHhH3WYVWt/Wvuy40tif18Q/7D9EAQB2Lb29pwEZKz0ozospe4DKWz52G0VeHlVjan9S9sQAEQ1Pnrb+Y9K9Vg7r8xTo3lmZjt6HALw/j8vy9i4SmP0s5YvoHUqup0Cjj3/gOntpRvWMjqX7n7pt2nfCLLw+42m54g6SDqzzIvPegJwOx1yO9YsMHfuZvoXHmM5JJdu3xnNqVf2tSfcRAMg5XXZ7Jpu5pj02u1yCHjrcKfueqf2SE25qTXJTPu0pDuHpadG+Pv1K6BeP7EA98z2JVyTF7zQqHlzjccVqzJudt6YDbFv2fMXvHe0W65SfX+1ufVeuQ3l5wi9cL7H5UDThiUJ4z+x0I07Z5bgO3fNSLim6q0BVtYG6bVHOi7o3lQoXRP05ue6r8zAkzs/wEnF573KkkK88cQdY25tImLYk4hGA37xSkREpG+sfQdDlCm8KZ6IMsXM9+tEduKco9HMKKDuynZjiIiIiEYaX3E+IleSdFKVBa/biTeeuBMPbm2CVgxKFIHVC6fLv/T61UfdCa9p9wdQualB/nJV+Uuxu2aW4ouWDnhcsTBpkceV8A8L5eOblMGS5x6pxlOvHUZpkRtbVlQDiIVQLg4OoSDPgTnlxfLPpeMr8rjk0JrW/pT7evPQ6bgviXc0d2BHc0dKXxJvbWzHkVMXY/+tOo5skY7tpb2f4NSFQfzwW/MAEbgwMITnVlTDV5Qf119A4hflUh9Idn/Qid0fdBr2iXobzoItagAA5HxJREFU6nmk/EelXbTGGoDhPDOznXAkiunXFeLU+YG4KshLZvvw1C5zFZlTCShL58z6pTMTbiKRQoVW9qF3Tpkl9UtwKAoBQHDoap9qBTYXzypDd18I/v6gYZtaTpzH/OcbNf9eCvCq9QZCWL0gfg1yQEjp3NVqu51zM91+H6n8fUHMmVKMsmIPfn+sJ6W+M1qflWO8/NWmuDXIyrqst57pvbdpwxI8/KMD6OkPIxIV4XQI8BV58PZTd+m2OzgUxdtHuuS/N3sbvNk1Sd0+9XxdeMN1+PD0JVwODSEcATwuAUtm+5Kef8n4ivNx35xJ2KnoewCYPrEA1VMn4M+nL8Zdc5XXZFGMrVPdfcHEuSEi6TlnZdyU4wHA0nov2drYHvc54uCzSw1/Eaqet8tu8snnt/qaqrcGWFkbpNc+Oq8Cuz/o1HyNFFzXO6/mlI/H8JXPe26ngHBERCQq8he7NKZYXfOJiHIp0/8OISIiIqKxT/m9m/p3UkRE6TDz/TqRnTjnaKxiQJ2IiIgIwNzyYixWVUCdU16M5n9ephuMlf4xsGVFNbasqDa8q1VNHS7t6Q/Kf5csWJJKmFxvf1r7AmKVsd1XQoepfEmsVQkt2wEZdRukQNsd32/EX8+fZhiKU39RrsfoaURaX7ZPLs7HyXMDuv+otKPKrHKs122PPUln29rauHE3sz31nNn/qR8RMTY3pMrI7x8/h4GhSNJw4UvvfoKWE7GbBMxWnlfSuolEHSo0CjraGdbqDYRQ5fPiM38AVT4vegIhuY3qXxp83nMZn/UETLVJTepnvV88qH/xbnUNUsrULzzGekhua2M7jpy+iJll3rT6Tm99Vo7x+88uw6ptB+XKz1bWZavBH19xPu6cUSpXQo9ERdwxoyThZhRlu39y4Dj++HkvLg4MJax3Wk8jmTI+H3feWCqfP1Zo3Sjy/onzcWt1aFg0PP+s6A2EcP3EAtwydQIA4M+nL+Km8mL894fm4KnXDuO5K198+fuCCVXTlZW61XMj2TlnZdz0rrlvHjqd1g0Mf3X7VN02Gn2OSbZtNfXaIF2jvvfQHDz46oG4PtULp0ukGwMXzy7TbJ/W5z2isYRhTyIaTfjFKxEREREREY1kZn4PTmSndObcx12X8Pi29/H6EwsxZ8r4DLaSyBrBKFRDo19tba3Y2tqa62YQEdEYc609XnLRS7/B6QuD8p+vn1iApo1L5T8rw76v7GvHrpar4avV86dZDsbphUz3tp2Rq4Mq6YXJzXypq7cvp0NA/eFOuJ2x6tlWj8PfF0Td20ex7+OzcpjZKQD3zZmEf7lStTzTpGP7haKqrx6twOzm+jbsaumQ+2Cc24lAKCL/vfpGBS3qbUydUIAv33AdjnX3Y/bkYgRCQ3Eh1Lr6Nuxs6Ujob72fpyqV7a3b3op9H/sRMfj3g7of7Xxku96jOs3sw65HoiXbl9TG1//UgSGNc9WoTU4BcTcAPHDzFFw3zm35kaTqOWd2jDPxKNSx+ig6vXmQ5xTw+Jen2f4YWb39OQTg+AsPmtqG1Xlx90u/wakr170bSgoxHBVx+uKg4fu01rt7rgSBv/HjP+JyOCLfYKK+jlq1bnsrjvdcRrs/YPo9dt8YoV5H6+rbsKO5A17P1WuFQwAqJhSg0O1C9dRiBILD8twwc86ZHbd0zjWj937350fTWhf0tr3uKzPw498f122v1Lczy7yxp9GoKtEb3TgmPXViNK8xROlK9bMAEVEuZOLfIURERGPBtfYdDBERERGl574f/A7tVwqs/fqZe3LdHLrGCIJwSBRFzV/qsYI6ERERURJzy4vRNziEvuAwivNdmFNeHPf3ysrNvYEQqsq8OOYPYJaiurIWvbtY9aqIHdi41DBMnkrFMb199aR5R7ivOB9lXo8cTgdi4dtSrydroTHp2AQBEHC16rfjyp8jonEVYvUdyv+/Q6cA6Ffw1qJ1l3NhnhMfnelDzfUT8PKq2Gd0q1Vm3U4BNdMmmqqorpRORetta2vlsOF7R88gNHx1cD0uB+6vvtqP0k0b0ah2iFB9k6yZiu56j+o0UynUrsp8yfYltXH90plJq11rtWmWz4t/++Y8ea6k8kjSVO+sz8SjUNPtdzueKJAJRvMgE+2U9vfOh12IioDbJaB8fAEqS8eZ3obZeaEVhj+hqAJutGZo7UOaS4uqShOCR6lK9vQBILbOA7F13+7qwcnWa+WNTFERsRvcBODLlRPx8toa+e+kc87fF8Sxs/344bfmJezL7Lilc64ZvTfddUFv23PKx8s/F4Sr1eXvfum3cX0r3YCgrERvFE4H9J86QXQtYWUnIhpNMvHvECIiIiIiIiKia0Xlpoa4P7f7A/LPTr5ortAVUSYxoE5ERERkQP2Bvi84jPc+OovKTQ1y2EqiDhQf8wdwzB/A7Lq9muHfp392BP2hYTz92pGEu1i1giWZCpNr7UsKI//D9kMQBGDb2tstbVPa7vUTC3DL1AkAgD+fvmgY2LeLMhQqHdv5QAh7jnbL1akBJA3xqb8o7+kPWg5YKrfxZusp3XC4XuBVr8qsyyHgrcOd2LqvPWlFTGV/mAlzG5HmYDgiyn3pFIBwJL4fpZs2Hp1XgdYvLuALRbhQqjyvpLzJw2qFT7PBTK15bjVAbGZfWuHZ4FAU73zYhVe+GR9A1WrTnPLitIIZIy3gkU5I7qV3P0HLifN4ae8neHlVjfzzdOaLHczOObvaKe1PRGzdCkeiWDSz1NI2lfPiW/Ovx+Pb3sfHZy4lPOKvacMSLHyhMe7mIiWjNcNo7qU6L7XOUWkde+9ot25lebPrvFX+viDmTClGWbEHvz/Wg+BQbA6Uej3o6R9EOJL4HvHK/9ML9xvNEyv9ls651hsIYeW8CvnpHnZeq3sDITw6rwKfdvdj9pQiedtaN/Tpja1DAKZdV4gtK6tR/0Endn/Qqbkvh4CsfM4gGulG2mcBGtlyfeMfERERERERWcd/yxERkWTP+kX4+/86hM6Lg/LPpk4owH9823q+gygTGFAnIiIiMmD0gb50nCcu7CuF1HoDQYSGRd0gX7K7WP19QVwYGMJzK6rhK8qPC5bohcklqYRQ9N6/tbEdR05djP13CgHLXD2We2tjO1pOnMfyrQfwzvpF8BXlY932VqxZGOu3ddtb5falWmF6/dKZeOq1w/D3B03/8i9Z1eVkVWY9LgeCQ1G8faRL3qaZCujq8GO6lcSlsOGvPj6LMq8Hk8Z7cGNZEXr6gwnhbGWIUKvyvJmK7mZ+0WommKk1z+vq2ywHiJPtS13t2uNyYMr4AlSWFJhq01iTyjFqzSOtQKqVJwDYzWgepPOkglT2Z5Z0LvX0hXRvjvIV52NFTQXeOpzY326nYGvYW03rqSJa4e2rN8pE4RRiT8OQjM93YU5FMb7ovYzey0P46be/jHc/6ratevDWxnYcOX0RM8u88joajkRR6HZiKIq4G3eiAKZfV4juvqDmDUF2zxOtc83sF1Xb1tairr4t4ekedkjY9tqahGOXbujb/2kPHrx5CkLDUbkvHUIs5L9oZikWzSzDopllEEUkzNGCPAd+t2HJmPlCjl8yElG25PrGPyIiIiIiIrKO/5YjIiLJnPLxKHQ7435W4HYmFKkiyhVBFHVKo9GYUFtbK7a2tua6GURENMbs378fixcvznUzsua+H/wO7f6A/Ocqn1cO9W2ub8PO5g4IiAWoqnxefNYTgNsZC62tnj8t4ZdDH3dd0g29z5kyHnX1bdjZ0qH53mTsCDRpVYCW5CIIapZeuzPR5lTHaHN9G3a1dGjOj3XbWxMqtG9bWxv3858cOI4/ft6LiwNDmiF3Jb3+cAjASkU120Bw2NLNBP6+IJa/eiBWuV91/P6+YEIIf2KhG3feWIrvLLoh4aYKrderjyed80FPpueK0ThTcrM270E4kvjv1DyHgK/fMsVwvowEZuZ1LqhvjlJSPuJv3fZWHGjvxeVwRA4Jj3M78eYTd2reGGUX6Vpb5fOi4/yA4TkqrYuf9/TjXCCMUq8HM8q8ctvsXjf01ow8p4DHvzwNv/qoG1+dOxnHewLoDYRQ4nXjxrIi7P/Uj86Lg5prQTrzxOy13kw/ZHI91Nu22+nA4pvK8OuPz0IU4yvzP/bvf8SpC4OYVOTB+MK8hLEFzM/l0SwT1z4iIqVs/tuJiIiIiKy71r6DISJz+G85IiLSMv/5fZhQmIf1S6uw9TftuDgwhJbN9+a6WXQNEQThkCiKml8gM6A+xjGgTkREmXCt/XLU6AP9uu2tON5zGZ/5A5jp8+LS4BC+OneyboVziVboXS+Q53YKOPb8A6baakegyd8XRN3bR7Hv47OIXvmo6BSA++ZMwr9cqepuFzsrhPr7glj4QqPcZiW7fjmXyi//lMf43Z8f1QyhW2E2/GwUfty6rz2leWLm+K2Gs/VerxtsdDlwLM2xzHSAWO9mAzLH3xfEN7YdxBfnBuSfVZYU4o0n7sAr+9pHRfh/JN2kYHTTkfLmKKVszmGjsHF+nsPSOWpmjUrluuPvC+K7bx/Fr69cF822R32D0W8/8eO9/+Mr8ntSnSfJrvVWrlXSevje0W65Kvz91fash0Zr7er/pxnt/oBcId2B+Gr4Rm3+uOsSHv0ff0Rw6Oox5uc58NaTd476iiD8kpGIsmWk3lBHRERERDHX2ncwRGQO/y1HREREI5FRQN2V7cYQERERjTbKu0uX31ou/7c6RCQFzt9sPYUtK6qxZUW17jYvDQ5h1iRvXOi9acMSbNnzFzT8+QwiipT1Q4p96lG3ZUdzB3Y0d6QUaPIV56PM64kLekdEoNTrAURg1baDtgTKAXsfQ+grzseKmgq8dbhT/pnTIWD5LVOw+cEvpdtUAJDHSOuXf3qUx6gMeBrNDyO9gRBWL5geFxzV4ivOR5HHJQcOQ8NR/PLDLrx9pEt+jZV5YlSRvWnjEsvtS/Z6dV87HQIiUREP3TzFcHtmaPVNkcdl2y9w7Rjna5mvOF9eA/OcAoYiIiJREb6ifMvzK1dGUjulc+m9o2cQGo5PAOs94i/Tc1gZEt+zfpHmU0VuuX489h7ttnSOmlmjta47yULrvuJ8HO+5LF8XzbZH2Y+FeU5cHByK26/WPDFqi9lrvZVrlXI9tHJsZmitte+orkNSn4oC8HBNuak2zykfj+snFsbd6Hf9xMJRH04HUvucQUSUikx/HiYiIiIiIiL78d9yRERENNowoE5ERESUonRCRFqhd70A8O4POrH7g07DELHdgabeQAjXTyzALVMnAAD+fPoiegIh2wLldgbqlS6Hh1Hl8+KzK1VZI1HR1l/OWfnlX6aO0UpwVB1+PH1+AMWFefI8cQjAV69Uxk9GvoHiw664Krcr51XEHb/VYKve66W+lirkSoHl3Yc7sfuw8flgxkgKEFOiueXFWDzblzA+oyX8n2477Xy6xNV16+qJu2hmKfz9QVwcGMpKG9Ska8lLez/BqQuDcLuEuL8vcDsRiYryOfrTA8fR0HYG6++tMmyL0RpttCZ/4/aputc2rWuzKAI7mztwzB9I2j9mrwXSPKmrb9Nti9lrfTrXKqmNbx46bUvF7sTr0GWcPDeAk1eekJCf58A9s8rg7w/BJQimv1zTutFvLOCXjESUTfw8TERERERENPrw33JEREQ0mgiiqPEMZRozamtrxdbW1lw3g4iIxhg+XvKqzfVt2NXSAbfTgXAkitXzp5kObqvDf/6+IB7+0R/gvxSEMirmcTlwf3XyR/Sl05Zk7VzwQiO0PjaaDQlrHWumHkO4bnsryory40LZA0ORlEOW6rart9/TH4wLoyrfNxIftSjNEwdilfGrfF78+pl7TL93Z3MHHEKs6u0snxc3lI3TPH47rNveCq/Hhd7LYRw41oOIiBHTj9mSyZAwWZet8airb8POlg5b1nG9m5+Srd92tiFZWwAkhI2VN3JZaYveGq21JoeHo3FPC5Eo+8bfF8TCFxo1XwcAaxYYt8nstcDsOJm91mfiWpXu/DcafwCYMj4fy740KWmbxzqzY0dERERERERjF7+DISIiIiKi0UIQhEOiKGp+meXIdmOIiIiIxhKpUkH9k3dh9YLp6AmETL9XWY0ciFXNXHaTD6IAOK4Uk3UKQDhirnpmOm1J1k5RBCpLCpGfF/v4mJ/nwCM15WjauMT0NtTHmqkKodvW1mLLimrMKS/GlhXVmDqxIG7fVqnbrt6+FHxcte0g/IpKFUbHqPX6bHmtpQOiCLkKers/gMpNDZhdtzfpe3sDIaxZOB3v/OPdWLNwesrhdLPHv21tLV5eVYOpEwoQBdKaK+p92jkGmRxP9fyj3MrkePj7grhhUwMqNzVgR3PsPN3R3BF3fqYy15o2LMHDNeWm1+/ZdXsN25DsGIzaJ7VFy7GzAfzTmx/iV//HPXI4PZW2aK3RgPaavHJeRdK+8RXnY0VNhe7+krXJ7PXO7DiZvdbr9UOq7QPSn//SMToE7b8/cymIHe9/gZX//gfDNo91ZseOiIiIiIiIiIiIiIiIaCRz5boBRERERKOZMjS0ZUW1qfeoK4juaO7AjuYOeFwOLJ5dhtULpuN4TwC9gRBKvG7cWFYU94g+vQqmUlDaruq+6naePDcg/7fZkLCZY1VWCE2l/XrvMdq3marvVt6vDO0pK9nqPWpR7/WpHKdZ0vvf+cdF+PHvj2tWy022v1Tmuxarx2/HIyulfS7fegDvrF+U0hgk27Yd25KkO39Zed1e6Y6HkY+7LuHxbe/j7lmlgABUXleI7r6g5vmZylyzekNQ04YluhW1k0nWPqktggAIgFyVXG8fZttidr5rrSWlXk/SvrkcHkaVz4t2fwAOAFEAToeASFTUbJO6PWbWMLPjZNc6nKxflOya/77ifLgEAVERcDsFhCPaZen5pD8iIiIiIiIiIiIiIiKi0U/gF39jW21trdja2prrZhAR0RjDx0umx98XxJY9f8F7R88gNCzC4xJwf/UUbH7wS6aCpHX1bdjZ0oHV86clBACN/k65fzNBPqmdUjDQIQDTrivElpXVePfoWfT0B5NW9VRvQxnk09q3mfabfY/VfafSdnVoT6IX2rP6ejPHaZby/SKAXS0dcDsdCEeipudSuqHndI4/VXr7VBMEoPmfl5meG0+9dhhHOi5oBiztOJ5052+684XipTseRm7Y1AC9f5ULArB6/jS8eeh0WufOuu2tKCvKjwsgG63fm+vbkq4REn9fEAteaITWrxa02ie15XwghD1Hu+EQABHQ3YeZtqQz3832jfJ1T//sMNr9AXhc2m0yui4ZraFWxylb7Jz/d7/0G5y6MIgHbp6C/DwH9h49g8Hw1bldWVKIN564gzfWEBERERER0TWN38EQEREREdFoIQjCIVEUNb/UZAV1IiIioiy7WiU1luYLDYtpVyOPbSe9at/67YzKIbxFM0uxaGYZFs0sM2yrMoRnpiJsKtVZk71HqxqtyyHgqV3mAtZSpdfgUBRunbZbrTSsfr3HJcDrycP2v5uv2w6zfWOlkjwAOAUB9U/elVAt12h/37h9atzcsRpYT6cyc6qaNizBwhca5UrNak6HgOsnFuDkuQHTVamlc+jReRUYioqGx5NqqN9q1WtJJit9jySZrBCvte1Ux8NI5aYG/b8rGYctK6rx7kfd6OkPpn3uWK26LVXUvn/uJDzzxoc4fXFQ97VbG9shirFgsV7ld622rNveijULkz8Zwai6tx3z3WzfKF83o2wcFswowbfmT8NPDhxHQ9sZrL+3Cne/9FvD9iS7/maiOnqq4s6DNOe/1k0Me9rOxL0mzylgKCIiEhUZTiciIiIiIiIiIiIiIiIaAxhQJyIiIsoyrYrOO5o78Oah0wmBOmVAzDCgKAJb9vwFDX8+g0hUhNMhYPktU+LCgakE+YyCgVqk9l4/sUAO4ZnZRirhSzPvUe/7d5/6cfrioOkg8p9OngcA3HeTDxO9nri2S8c6dUKB6dCeVsgvNBzGrvc7dNtjtm/0go9G7/cV5SeEILVeHx6OIjQclcPt0txxCkAUMN2fZkOOdoePJxa6ce5yWPPvIlERJ88NxB2X2Qr4uz/olP9b73jM3hCixer5B+TmJoBcSKdfU9220XikMmf3rF+Ev/+vQ+hUhb8FAItmlmBRVSkWVZXKP7c7IG9ECkrX1behJxDC1AkFCa9Rnw/SeQQAwaEoXIJg2L5UguF661XDh12IiIBTAJbfWp6R+a4cY2WbCvOcuDg4hK372jXPv8WzyvDuR2fjbkgYDTeOqM+DVNYj5bakmxhOXRiM+5xyaSCMqdeNS2m7RERERERERERERERERDRyMaBORERElGVSgO29o2cQGhbhcQm4v3qKZqBOHRDTCyiqg4KRqIi3j3Th3aPdcvgtleCq1Wqud7zQiIgItJyI/VkKNHtcDmxZUa27jVSqnZsJO0vttxrOV7++4Wi3fBwSaWzOTCiwFNrrDYTggGC6PcmOM5VK8lZD9CtrKjAsXq0ULomI5vpTqfPCAMq8HvxgVY1cHVrNzvDx1sZ2nLscRnG+C33BYTgE6FZTt1oBPz/PgYmFbtx5Yym+s+iGuPHPZmVnJTsrfScLXWeyirmeTFaIT7Zto/GQ5uyLez7B6YuDpvpkTvl4FLqdcT+bNrEAX5nt0zwv0gkIW2Wmn9Xng0MApl1XiBvLvGj8xI+WKzf4ZNLd/xpfsTwiAm8f6cIvPuxC8z8vs3VeqtclvT5yCICIqzetfN5zGYD5CvNmZPLcMzP2Ztcjo5sYpM8pHpcDn/7tAkvbJSIiIiIiIiIiIiIaSXLxnRkR0WjAgDoRERFRll0NkMZSsqFhMSFAahR80wooNm1Ygod/9Af09AXlKrK+4ny8/dRdGvu1vwKvVlV4ySM15qrZplLt3Gxg02o43+j16mM9dWEQO97/Ajvf/wLNm5MHIretrYW/L2ipPUbHmUoleTMhevXrS70eee6EI1FMvy61sOXUiYX4XXsv3j16JmFc7Qwfq7fVFxwGADgdAm4sGYd2f0A+DwD9CuhKynNIEIDQcBTLbvLJx6EMV+aykrldQeZkNwpksoq5nkz2ayrbVs+ztw7Hquov/H4jjr/wYNJ9XhocwqxJXqxfWoWtv2nHxYEh3ZBuKjcspMpMX2hdU06eG5BDyKcuDKJyU0NGq4THrn0H0NMflqtye5wODAxFbJuXeuuS2+nAwzXlCX10aXAIUycW4vU/dUAUgXZ/AEB8ODvd628mzz07zzH1tpS0PqcQEREREREREREREY1GufjOjIhoNGBAnYiIiCjLtMLcO5o78Oah06aqnUuBNmVA0Vecj2U3+bCrpUMOEC+7yZcQftMLrqZ7V7dWCE2qIms2hJdKtXOzgU07qohLr9cam8nF+fji/IDpXzpYbY/RcVqpJG/UT8o5oPX6ddtb4+bO/k/9lm52SKUis53BSOW2vvvzo1gwowTfmj8N67a3yn1kNrxfVebFMX8As3xe9ARCmq/L5A0hyVgdb3Wbko2VHTcSpFqdPZP9msq2pXn2iyNdcT+PijAVzm7ZfK/838tvLU/7GOxiti+U15SfHDiOP37ei4sDQ3JF9a/OmYR/SSNMn2yexK59k7CrJfa0jkhUxEA0AsC+6vpGa8kr+9oT+uiVb84DAKxfOlOzwvyWldV49+jZlG4cyeQTBCR2nmNa2wJg+DmFiIiIiIiIiIiIiEa2j7su4fFt7+P1JxZizpTxuW5OTmXj9/ZERKOZI9cNICIiIrrWNG1YgodryuFxxT6KeVwOPFJTjqaNS+TXpBIQk4KC9U/ehdULpmsGZ7etrcWWFdWYU16MLSuq5SCr8q7uVCjb6xBiP/v63Mm67TAi9U9+Xqx/8vMS+ycVZvrHzOuVxwoAwaFY1WBRjP3SoXJTA2bX7bW9PWa39ei8CjS0nYHfYvgx2RxQz5255cWG7ff3BbFq20G5HWbGNdPBSGlbymNp2rgUTRuXJpwTWmbX7cV7H53FsSsVkY/5A3jvo7O6460e49MXBrBq20F83HUprm/spu57rb9f/uqBhPGW3lf/5J2GY6UeS0EAvjZ3kulzVNp/ywn9+fbi3k/QcuI8XtrzScLf2XnupLttaZ4BkNc+wL51K5e0+kI9t5Tn0g9W1WDZTZMQGo7CKcRC+p/3XE4rgCytSy/t/UR3Tkvt3PGd+agsKZTHIZUx0Dp3jNYSo/mifp8IYNHMUiyaWZZ0rdGTqeujWm8ghJXzKlDl8+LReVNtuz5dP7EA108syMi5S0RERERERERERETZ8fTPjqA/NIynXzuS66bkXLZ+b09ENFoJoijmug2UQbW1tWJra2uum0FERGPM/v37sXjx4lw3Y1TbXN+Gnc0d8p/XLJiWUHl73fZWlBXlx1U7TyXQZkSrmjuAlO7qtrO9m+vbsKulA3lOB8LDUTx2WwVeXlWT0rYyQTrW++dORt3P29BxfgBREZqV7rOtrr4NO1s6sHp+4pzSYuccULdjR3MHfEUevLN+EXxF+fK4up2x6rlabTQ7j8xU/bf7HPL3BbFlz1/w3tFuOXR6f7X58ZbGZmaZF5/1BEyPkZX2PfXaYVw/sQBvHe7U3L7ReH/j9qny3BEBw7F65vUjeOtwJxxXgshVPi9+/cw9SduYbL7p/b3bKaBm2sSUn/KQSdI8Ox8IYc/RbvnpEemMb7pPtciUZOvLjGcbENX4FYN6PZGO73sPzcH3fvlxwnHqzQOnAHz+woO67TOzxqRyfKmuJam8Tz326j+ne4xmWb2WaLWdiIiIiIiIiFLD72CIiGgkqtzUoPt3J1/U/939WJet39sTEY1UgiAcEkVR80tQBtTHOAbUiYgoE/jL0fToBjBdDhxLEgi2O/wlBW5/9VE3gkPRERGwBq6G+i4EQmg42o3rJxagaePSnLXHyEj5pUOqQXP1HPC4BBS6XaiYWID/+TdftjwPjNqxeHaZbYHxVMKTdjBzc4maXp9I9MK7Vs/zG59tQMQgHJysHWpOQcAv/3ERdrV04PT5yxgYispt0vslpACgefMyzXbr7d8hAO//c+w9szbvRTii/Zp0Q9+ZZucNEbma33rMri9mrynJbtaQtvOLI12a7dFb11Idg0zdqJMK9dir/5zpm9fS6Ysndx7CnrZuPHjzZPxo9e22tYmIiIiIiIjoWsPvYIiIaCT6uOsS/v6/DqHz4qD8s6kTCvAf374dc6aMz2HLcisbReeIiEYyBtSvYQyoExFRJvCXo+lRB/icDgGRqIjH5lXg5cdrDN+bidBiLgPWekHcdMLWRsHeTFR3TfWXDiPpZgPlHFD2u5nwtVY7Fr7QaKqKcipyGSRN9yaA946eQWhYjHufVgV2u6rgA8AjNeXy9qV2NHzYFRdkf+DmyXA5HYZzR2qTAGiOLQB4PU5cDkd02y3v/89nEFFsRLn2+fuCWLXtIE6eGzA85lwEh4Hklb/Tlan5ne56Y2V9MbqmWLlZQ9qOcs5l6iaqTN6sZbbvzd5AYtdc0JvDqfTFSAr4ExEREREREY0F/A6GiIhGqvt+8Du0+wPyn80+YZeIiMYuo4C6I9uNISIiIrrW+YrzUeRxITgUC3NJQc3dhztRuakBs+v2Jrxndt1eVG5qwI7mDogisKO5Q/O1UrjT3x803Z7eQAirF0xH/ZN3YfWC6egJhNI4Omu2NrbjTyfPY+u+9rifN21YgodryuFxxT6uelwOPFJTjqaNSzS3Ix33S3s/0dxesv2lQtrncyuqsWVFNeaUF2PLimrTd8Tb2Rbg6rwKDUfhccWC5kUel6lwZW8gBAeEhICh3jxL1o4VNRVxP3M6BMPxs0KaG/l5sbmRn2c8N1KldS7p3dub7JZfaWzCEREOIfYzpwCEI/FjZPY8V1P3CRCrOC4IiNu+rzgf76jC6QCwp60b73zYpTl31G3SC6cDQCAUMWy31A+RqAinEKu2XuXzIhAejnvN8JWduJ2xzipwOzI+3mZJ5+3TPzti6/krydT8tmO9Ofh5r6n1Re+a4u8LYs6UYnx17iR4XELce7TWeGk798+dLP8sOBSFSxBsf8KHmfUzlesrYL7v1WPvcTlQMaFA7qtU5oJWm5PN4VSuJXrBeitPbCAiIiIiIiIiIiKike/S4BBmTfLih389D7MmeXFpcCjXTSIiohHMlesGEBEREV2LegMhPHDzZPzhs3PoHxxCFPGVYdWaNizRrWiq9OLeT9By4jxe2vOJZjV2rUquykD1lhXVum22s+K3utrqjuYO7GjukKutKgNyQCzkdvDzc7rbkyp2t+hsL9n+zFL2gTJ0aKXKuF1t0SIFOpXV3M3YtrYW/r4gvvv2Uez7+KwcYHYIwH1zJuE5g3mh5XJ4GFU+Lz7zB+AQYjdhmA3LJ5NOEN8KrfE9sHFJQnXvypJCvPHEHUm31xsIYeW8Cvz647Mo83owabwHN5YVxY2R2fNcTdknDiEWIv/63MmY6PUkzIGvVJXi5LkBnLkUlF//0K3luDQQxtTrxiXMHa02TS7Ox8lzAxAQC+dL/ytRVobX6oc1C6cbPnFgbnkxFs/2ya/Z/6kfnRcHMzreyajPW6k6iJ3nL2D//LZrvdna2I6e/jBm+bz4t2/OM1xfpPVEfb3Y2tiOI6cvovK6cQgNi3AAiEL7Zg1pO0DsKRWzfF4cu9LnLSfPW+yF5Px9QexpO4NHb6vAd+6aoXl8Vtd8q32vvHlNQOy6V+h2IhwRU54Lyja/eei04RzOcwD5eS68/sTCpNcS9fjmOYAhjSx6HksiEBEREREREREREY0pLZvvlf97+a3lOWwJERGNBgyoExEREeXAtrW1eOb1I/Jd5cnCZ8lCi+og3O7Dndh9uDMhCJdqqDrd96olC+KqjwcA/P0hLPx+I46/8KD8M63XSR6pKZe3l2rwF0gMpbecOI/5zzfKf68VOjQK86fTlmTM3mygxVecj1KvJ666dlQEyrwey+HYbWtrsW57KxbMKLEcljfDShDf6o0VeqFSAUDz5mUIDUcAAHlOAUMREZGoaGq729bWoq6+DYHQMB65tVzzHEq3Cr66T7TmwH/+7QJsrm/DrpbYnJWCwa98c578GuX7tNoUiYpyyPzpnx1G+5UbEaKifthY2Q9a+zF6zbrtrXGBdTvnklnSefvOkS4oVxyjMH6qUr3RREu66436fDjmD+CBrU1JA+5GwegT5y4DiIXTZ03yosTrTrhZQ2//AHDqwiAqNzXYdlOA1N6Lg0MocDnlp2HotcFsyD+Vvu8NhOSbe6p8scozqcwFrTYDsZuO8pyOuL/zuATcXz0Ffz59CSd6L+Pp147EPY5V6zxVfx74w6ZluOOFxrjrh1MA/vDsMlPtJSIiIiIiIiIiIiIiInuLBhKNBAyoExEREWWZVuAuNByFUxDQEwjpvs8otCiK2u+RfpxOFd1Zm/cgrEid2VExWC+ICxFYte0g6p+8Ez/+/XH84khX3PuiIuKCieoAIAA5KKusuJ5O8FcrlK6kFTpMFuY/+HlvxiuAp6I3EML1Ewtwy9QJAIA/n75oOCeNpBOWt3PbVm+saNoQXyVdqhj+xfkBbN3XDpcjVhL4q1+ahIleD06fH8CqbQcNf0lg5fwzE05O50kIZveR7PXSPmaUjcOCGSU43hNAbyBkGDZOVSbnkll3/+tvNW+GycT5a+fxGq19Zn7BZTVkbRSMjmpcp46dDcBzzoHX/l77KQRNG5ag7u2j+NVHZ+WfOa882eFfbJgLZs5NO55sYGat16vS/2brKWxZUW1pLui12ekQUH+4M+61oWERbyuute3+ACo3NQAATr549YYwf18QC77fGPe0BGV/5bkciAxF4XIAw1HA7XKMiOsaERERERERERERERHRaGFn0UCikYABdSIiIqIs0wuTO50Ctq2t1Q0NGoUWD2yMD9UCQGVJId54Ihb6S6eK7kO3lmP3B51wCkBE1A5kp0Ir9Cr9g2tXc0cssI74YKN638oAoPS6+6unoP1sP9r9gbh/uHVeGESZ14MfPH4r3j16NmnVbXUQT0nqC7cqdGgm7Li1sR09/WHM8nnxb9+ch58cOI6GtjNYf29VRsN8ZsKoyjk22qVyU4bWzSPBoah8XklhWwBoONoNIDY/RcDwlwRWzr/nHqnGU68dRmmRWzeQmu4vJqwGoI1eP9LmTLpVBfTe37RhCR7+0QH09IcRubIglXrduGd2mXwTx0itaNB5YSC29q2qwbsfdeP0+ctYte0grp9YkHQeJQtZq49ZNxgtCKg/0gkBV9dzQQC+OmcSnjOYg1o3BkRE4Ncfn8WP05h7Urulm6HeO3oGoWFRriauPDet9oGSlZtBpL5772i3vK9Uq/PrtXlXS4fuZxClqRMK8B/fvj3uZ1sb2wEBqLyuEN19wYS17Ls/P4qyovycPumAiIiIiIiIiIiIiIhoNEqn4CDRSObIdQOIiIiIrjUHNi5BZUlh3M8qSwpxYOMSAPHhU7N8xfkYvpL6E678LBIV5bBcKhXEZ9ftReWmBuz+IFZtVSqiHhyyp2LwtrW12LKiGnPKi/Fm6ym899FZ7GiOhed2NHdgZ3MHnIKA++dOBhALAmu1WwoAvvOPd8MpCNjTdkauPLujuQOVmxowu24vpk4sQE8ghHfburFlRbV8M8CqbQfhVwXppCCe1+NMaHeeU0BEBGb5vPj5k3dh9YLpckC1acMSPFxTjvy82Mfs/DwHHqkpR9PGJXJ/SiHnY/4AHtjahJ8f7sTFwSFT463XXjOvT2VemWW1XdnYr9FY6JHe47hyEuU5gUK3U/4zcPX8kkRFyHNWmmtqVs4/o3FSziHlPmdp7PNalWyeJ5ureu/3Fedj2U2TEBVFeFwOCAJw/9zJePkbNXJIP5PnWKr8fUF8fKY/tvYdPYMtK6rR1N6LlhPnsfuDzqRzF7gacP/pt78ct94BicesN9cvh4exesF0eT0HYufN8Z7LhteSpg1LMHm8R/6zAKAwz4m7q0rT6hf1zVCh4dgFLjQswuUQ8NSuw3FzRLrO1KvWfK0+UFJe56Trjh5l38Xakt61VqvN0hMg1NTrWoHbiTlTxgNIXHdOnhuQn1iibKOVYyUiIiIiIiIiIiIiIqKrpO+pnVe+tHEKSPrdNtFoIIhmymfRqFVbWyu2trbmuhlERDTG7N+/H4sXL851M0a1RS/9BqcvDMLtFBCOiLh+YgH8/aGESrEATN8Vu257K473XMZn/gBm+ryYUTYuLiC2bntrQnVTowCZvy8YVwnX6RBwd1UpSsZ5EAgN2Ro+8/cF8d23j+K9j84CiP2Da/mt5bpVWfX2rW5zfp4D4eGoXLFXyeNy4Bu3T8XOlg6snj8NW1berFlBW00AsHrhdN12bK5vw66WDridDoQjUXnb6rbpMRrvuvq2uPYmU1ffFlf12+x+rLLaLj1WK1An26/eWBhRv2dmmRef9QTiKj9LwVuvx4lAKAIgvrq/VtuTnX96c085TlrnZCQq4rF5FXj58Zqk/TWWmek/QH/OmHm/3hia3Xe2mVnPJI/UlOvOXa0+09u22+XAktllunN9xrMNuuuxVl/Z3bdW+mTNAuP1Iltts3MeSTdoqJ+20h8cRonXjfVLq7D1N+24ODCEls33yu/ZsucvaPiwS75RrbJkHLasqMa7H3Un/SxBRERERERERNbxOxgiIiKia8tI/b6RyAxBEA6Joqj5hSED6mMcA+pERJQJ/OVo+rSCjs89Up0QrjYKvCql8g8WM2HgVAK+qbDrH1z+viCWv3oA/v4QPK5Ymx+dV4GhqGgqtO52OnD/zZPx3tEzckVdPXptMwoiK/szNBxFZUkhuvuCScfbav8YhTCtzKtkjEKqxxTtMhs81wrCar3XbH9YvSlDes84jwvHuvsxe3Ixdn9w2rgTFJwC8PkLD5p+vZLWzRVa47S5vg07bbzpwOpNAbmi107p5997aA5+/PvjeLetC+EI4HYCX7/5aug62Zwx2/96bUv1vZng7wtiwfcbobeCSTdYALEnU4iA5tpu1Gf1T96JNT9tweXQMELD5m+WsNpX/r4gHv7RH9DTF0REjJ1jvuJ8vP3UXab6Vj1v1Pv3uASUevPRG9C+QUw6Xq3zyu5xz8Y8Mrt2Kvvt7pd+y1+IEhEREREREWUZv4MhIiIiurbEvhM7gJ7+MCJREU6HAF+Rx/R3YkS5ZBRQ136+MxERERFl1La1tdiyohpzyouxZUU1tq2tha84H0UeF0LDUTlAWORxmfoHh/TIp/y82Me7/DxH0kc+bW1sx59OnsfWfe26r+kNhLB6wXTUP3kXVi+Yjp5AyPrBJmEUprb6yKqtje3w94dQ5fPKbQ6EhhP6dUVNBb46dxKEK4/IkvrrwKYlKPK4EI6IcAja+0jWt1pjK1H255qF0xEajiI4FIU7yXg3bViCypJC021QzwfnlYNxOwVL8yoZ9aPGJA/dPCXuz8nm2uy6vajc1IAdzR0QRWBHcwcqNzVgdt1ezfeane9GY6Fn29paFOY58dGZPhTkObBn/SJcN84Nj+vqvr42dxK+NneSPEc8LgcqS8bh7qrSpNvXY/b87w2E8NhtFbhndpnc72bOdz1m1oGRQK+d0s93NXdcOXdjPw9HENd/yeZMOutvOu/NhK2N7YAQq4ytPjdvKC1EOBKV5+7X507WXduN+mxXcwfOXw7La3fkyh0/uw93yueuFqt95SvOx7KbfIgidp5FASy7yWe6b9XzRr3/cEREoduJcCS2DislO6/sHvdszKOmDUsweXx+3OMhp4zPTzjGF/d+gpYT5/HSnk+uvMcjX0ecDkHzPURERERERERERERERJSa2HdikxAVxdh3YqJo6TsxopHKlesGEBEREdFVUoBZWfFZzd8XxD9sPwRBALatvR2+ovy4YJsgwDDYpg6E72juwI7mDs1qqMpA75YV1ZptTrcCc9OGJdiy5y9o+LALEUXJ38duqzBdIXfBC41QPhio3R/AA1ub4HY6UDNtAkLD0YR+PdFzGaIYqyCs7K/eQAgCoFlhHTDu22TU/fm7T/0AgPtu8mGi16M53loB/uBQFL/8sAuvfHOe5n60go5VPi9e+eY83XmVirv/Vbuy7u7Dndh9uDPh53pzTZoDUuVgSWg4ih1XqoWr35uJIKfeuSGRzq0yrwciYpWnpUr9i2aWpP10ATPnv7IavxTaTeX49Y5VOmdGSkX1ZGOi/LnWz3Y0d+Dkiw+aCv+a6X896bw3HUaVrk+eG4h77SyfFxcHhxLaqbe2a/XZLz/swttHunTbo6z6rac3EMLKeRXyUwqS3fiUSt8aXecWzy6L296vPuqW//zX/3EQl4LDCdcFO9tm97EqGV2Ppb+788YS1B/ulNcu6ZebWpX3pbVcqrSvfg8RERERERERERERERHZI1ffNxJlkiCKeg/+prGgtrZWbG1tzXUziIhojOHjJXOrrr5NDmOuWTBNDsX+zf9swfsnziE4FMUsnxc3lI3TrBjt7wvGhYGVgcJUAmfPvH4Ebx3uxGPzKvDy4zUpHdPm+jbsbO6AQ4gFw43aryb1R2VJIbr7gnHH5BIEvHWkE6vnX+0nvYrtDgE4/sKDABL7yCEA064rxJaV1Xj36Fn09AdNtU2PXhu0bhKQ2vLOh12IioDbJaB8fAGmTMhHJArdIPG67a0oK8qP+wdsOm3WIj9qrC8Ud3OB2wl8/eZyrPvKDPz498dNzbUZzzbo3hQAqIKvIvC1f/s9lt40Cd9ZdINtx6cedz1fmzsJABL697lHqtO6WUPZjmTbSXd89dYBrXMmm9THrtdO9dzyuBxwCAIGhyLytqZOKMB/fPt2zJkyHkB2zolsq6tvw86WDqyePw3rl1VprFvjsGVFNd79qNvU8ar7X91nx3sC+KS7H5dDwwgNx8aj1OvB6QuDcLscGIpETc0dqd0raypw+uKg7TdEWL3OmbkuZEs6N30p54N6DKS/mzqhAPfM9iWcB8rPFmqCgIRfiI72c4eIiIiIiIhoJON3MERERERENFoIgnBIFEXNLw9ZQZ2IiIholNAK0OlVEz7mD+CYP4DZdXsTAs9mKgmn0h6p0qpWyDqZ3kAIaxZaC7+p96+sFhwcisZV+VVWz1VX69aq+Kvuo1iF7FIsmlmGRTPLLB2bFjNtULclvlp3KQBgZ0sHtu5rl4OIymCjmer36ZIeNbarpQNOAXJIPRwBijwuzCkfb3qufaWqDCfPXUbXpUGEh0X5poAvzg/A7Yx/b119Gy4ODqEgz4E55cW2HZ9y3N0uB8IagVUAeO+jsxAANG9eBl9Rvrz/uvo2/OnkeXlMUg2abm1sj9uOlnTHVz3Hjc4Zq+dzOtTHrrdeqedWOBL7+eDQ1W0VuJ1yOB1Iv89GEr0K4epK14tmlmBRVSlmTfLiqdcOw98fNJyL6v5X91ldfRv++Pk5AFer91+4HAZg/CQIvXa/deVJCwu/32hrENzqdc7KmpxpZs5/ibTGHOm4gLDiLiHlExGGotG4J4ycujCIHe9/gTdbT+HTLV/H7Lq9qNzUoLuPypJCvPHEHXLfjfZzh4iIiIiIiIiIiIiIiIiygwF1IiIiolGiacMS1L19FPs+PitXmnYKQBSA1kNxHALQtHGJ5rZ6AyGsnFeBY939mD25GD2BkOX26D2IR4T1CrCpBEelQGHDh11yMNrrcSIQimBG6TgMDEVwcSCsWT3XTHAxk4/QshqeVLbloVcPxN2UoAwSf+P2qaaDjXbpDYTggICIakLsaO7AzuYO3DOr1FQ//uffzsfm+jbsaumQw7WRqBj33l3NX+geu10hamVfP/2zw2j3B+TK/kCsknuZ14NTFwbx0t5P8PKqmqRhYbPjobedVI8v2XmoPNafHjiOP3x+TvOcyQajY188u0xzDqnP0TdaT2HWJC/WL63C1t+04+LAkN7uRj29QPWlgTCmXjcuoa+ShZ6TzT2tG6SkP18Ox6rWNxztBhALridr9y8UN0MAsfOrclMD3C4HjmXgXE62hptZk7XOp3Sqnaulcv5L4/rovAoMRcWE+TA0HMWeo90oH5+P7r4goiISzm31XJLkOQUMRUREoqKt1e2JiIiIiIiIiIiIiIiI6NogiHrJIhoTamtrxdbW1lw3g4iIxhg+XjJ3Nte3YaeqYvpjt8WCacqgtvTzl1fV6G7rn944gt0fdCZ9nR5/XxALvt8IrU+TUnB+9fxpGQtKawUmtUhhZ2Vb1m1vRVlRvqWK7UZSCSmm2gZ/XzAhmBoejsoBaqVsVb/WapMU4n7stgpsvP8mU/2TrE+09qO88cBuUnvOB0LYcyV8q8XtdOD+mycnBDzVko2H3cdXV9+GnS0dps9D6QYBtzPxnMm0bIxtqmFiO0PIdjIzXnrrpHouJut/rb+/Z1bsaRK/O9Zjacyk65jyxg+nQ0AkKuKxeRV4+fGa9DsnBXrrjzT+108owFtHOuP62eo5ZsTKOWB0/ZMC9noEIfHarJxLoeEoZvm8+LdvzrPl+khERERERERE1vE7GCIiIqJr00j9XpLIiCAIh0RR1PxCkRXUiYiIiEaR3kAI108swC1TJwAA/nz6IgKhYZR6PYiIkAN/s3xeBELDmttQB9t2f9CJ3R90phRmdl2psKom/SgTFa4lTRuW4OEfHUBPfxiRqAgBkMPy+XkOTCx0484bS/GdRTckVM9NpWK7EamK7Ut7P8GpC4OG/2DU+kellTZoVfrVq56brerXyjYBQHAoilMXBgFcnV9A8kriycbFauX5dEntWbe9FWsWTsfPWr6Adu5TTGhXZUkhuvuClsbDruNLtRJ7Jp8aYMaB9ljQ2e0UDI891V/MJKsibvf7UmHl2MyMl1al9cWzytDdF4K/PyjvI9nc0/r7cW4Xmj7rsTxfewMhrFk4Pe7Gj8iVpPruw53YfTi161G69NafhS80IioCLVf+LJ1PSnZc65R9LAhAaCiKg5+fQ29/CE/tip8TWuOqvOYtf7VJ86YlIPb0k10tHXFzWWsuzSkvtuX6SEREREREREREREREROZk83tJomxgQJ2IiIhoFNGrYioFaM1U49Z7go7VJ+tsbWzHUEREcb4L/cFhOIRYMD2VYG4qfMX5WHbTpFjVV1esijhwtXrsspt88j/aMhWy0wr7A8Ad32/E5y88qPkeO/5RqRUmLPV6EBqOwu1yIDgUhcshWArJp8PfF8SetjN49LYKvH24UyfEbU+IU+vYM30nuXQurV86E9/YdhBfnBuQ/66ypBBvPHEHvvvzo3Ht2v+pP6WguR0hca3wqpnz0O4bN6zY2tiO85eHAAD3zpmM68a5dY/d6jmUamA/1felw8yxWbnJRStY/nnPZXzWE0jYh9Hc8/cF8c6fu3BdoRuvfHMe3v2oG7/71I+e/nBCte1klDd+PHZbBXovh/G7T3sAxCqpL79lStZurjFiVKX8/rmTEAXwe43q8enoDYRQVebFMX8A4/Nd8PeH8Oj/+CNCw9G48dIaV+U1z+UQENa4eQwAHqkpT2hnLs99IiIiIiIiIiIiIiKia10uvpckygbBahCJRpfa2lqxtbU1180gIqIxho+XHN38fUHdkK2ZAK1eaC/PKeDxL0/D/k/96Lw4CLfTgXAkitXzp2Xs7t5121tRVpSPC4EQGo52w+t24o0n7kwa0reLvy+ILXv+gl8c6dL8e+U/GPX6zco/Ko2C2Oq+uH5iAZo2LtXcTl19G3a2dNg2NsrtrV9WlTC/JMoQpx2VsaXXXz+hAG8d6czoXJMseuk3OH1hEHlXnh6g18/SeJi5aSQTNte3xW7eyOB5aMeNAUYhYPW5keo5JJ2nWoF9o3an+r5UWDk2q+evNBdf/1OH5hMvzKxBdfVtctVwp3D1KRlWt6Nmx7qYKR93XcLan7bg3OWw5t87hNhTO+w6x4zOBSWpb4zWGH9fEPf837/FYDhxe2sWZH6dJCIiIiIiIqL08DsYIiIiomtLNr+XJLKbIAiHRFHUDEOwgjoRERHRNebuf/1tQgju5LkBzH++EfOmTcC2tbcb/iPHqDqzrygf67a3YvFsX1oVoM3a/2lP3LEEwhE8sLUpa+FGqYqtIAACgOiV0KZWNV2zVa2NQr9G1ZXVfXHqwiAqNzUYhuTTvfNab3sSKcQNwFQlcSuVsf19Qcz/fiMAoMWm40m2v6deO4yZPq+p+Z3risR2VGJPxo6nATRtWIK6t49i38dn5fPHKQD3zZmEf1H1W6qV4bWqTZupaJ/q+1Jh5tjMnr/qNUT5BAC9feitO1X/3IAhVcZZHU5Pp3p404YlePhHf0BPXxARMTb2vuJ8vP3UXZa3ZRfljS9a4XSnQ4CvyIPZk7yYet04286x+ifvxJqftuDC5TD0ygg4BKBp4xIAxmuM1nUeAJyCgJ5AKK12EhERERERERERERERkb2y+b0kUTYxoE5ERER0jZBCd/VP3om//V+tcYFAt8uBwaEoDndcxNZ97Vi/rEo3JJ3sH0fZDOamGli1kxQEPh8IYc/RbjgEaP6D0ew/KrVCv2aCqWb6wu7+0tvepYGwHNxctz32NJ9ta2t1Q5xWg/NGlYYfqSnPyPhL47J6/jR5XucieG5WJs9DO2908BXno8zrkcPpQCwAXer1WF57jKQa2M9G0B8wd2xmz1+9GweM9lFX36b5nqnXjcOJ3stx23cIQPmEAvlJGXrjYKbCvq84H8tu8mFXS2z+hCNRLLvJl/Iv2+yo6r/whUZExas3vig5BCAqilh2ky+un+w4x5a/eiDuPNCycl6FqePSWx8jooj9n/ak0jwiIiIiIiIiIiIiIiLKoGx9L0mUTQyoExEREY0heuE8f18Qy189gJ5ACLuaO+RAIBALgw4OaVfB1quMPFL+cTQS7iSWgsDrtrdizULjPjHqN6PQr5lgqpm+sLu/9Lb3yjfnya9p2rhU/m+9EKf6+ACgsqQQbzxxR8JrjcLpAGwff7urzo8Fdt/o0BsI4fqJBbhl6gQAwJ9PX9St8pzq2pNqYF/9Pn9fEKu2HcQPvzUPEJF2GFpJOrb7507GM28cwekLA3F/n+z81ZurbqeAY88/ELcPqf92NX8R99QD9VMQtETF2BMjko2D2Qr7VsY0WQA9nar+RmvLlPH5uHNmCb5z1wxbrnnK47j7Je1q52qzfF4EQsNp7Re4WoGdiIiIiIiIiIiIiIiIRo5cP6GbKBMEUUxSootGtdraWrG1tTXXzSAiojFm//79WLx4ca6bQRrq6tuws6UjVuVZp/q2xCkI+F9/+2VseqsNpy8MGm53JIdx121vRVlRfly4UfmPt1TYUYU3lX3qhX59RfnYXN+GXS0dcDtjVYaVYywx0xd295dd25vxbINm9WD13JP6qeHDLkQUr192kw9TJhTYMv5KycZFek0250su5qeaej6WeT14Z/2iMf+YOeUaCwA7Wzrw6LwKnLowGDce6YyR1joubfNr//Z7LP2SLy4oLc139Vx1CrEbkB67rQIvr6qJ247UNojQnN/fuH0qNu5uQ+fFq9eGgjwHbp8+EV+cG8Cc8mLd80zvmmPHdUSvb+zYp9R/vzjSpfn3dl4Hn3n9CN463InH5lVg49dvwpY9f8F7R88gNJy4CKaytn3cdQkPbD2Q8PMHqyfjR2tuT7v9RERERERERJRZ/A6GiIiIiIhGC0EQDomiqPlFJiuoExEREY0BepVz9TgE4OA/L4WvKB/3zCrDTtVrpWCjFFZc95UZctXgVAOomQrVZuJO4nSq8KYqWXVkM1WGzfRFKv1lNHZ29f9Xqspw8txldF0aRHhYhEMAHrq1PKEqt9RPETE2j6NirLKwyylk5E5yM1Xnsz1fcjE/1ZTz8X//2WEc8wdy2p5Mm7V5L8KR+DVWsvuDTgDAHd9vxOcvPAggtTFKVq1/a2M7Lg4OocDlxJzy4oT5Ls1V6SkE0g0cuz/oxO4POuO2o2yb1vxeVFWGQrczbvtTJxZix98tTHocdlfYN9M30j6lkLfHJeD+6imWrl1S/6k5hdjf/fTbtWlfB9XzaPfhTuw+3AmHAGiVDhjndiasbWaupXPKx2v+fJgFCoiIiIiIiIiIiIiIiIgoSxhQJyIiIhoDrobzuuWg4f3VsWD5j39/PKHa9Mp5FXHB5+snFuCWqRMAAPs/9eNyOCKHFV0OAX/z//4J/v5QWgHUkRCqTSZZCDLTjELouXykVzbG7j//dr5cldvjilXlVgfBJb2BENYsnG5r1XwjeuOS7fmS6/mptG1tLWbX7cWO978YEe2xmzoEvPyWKXjrcCecDgGRqCjfHKEUEYHKTQ1xP5P6xO0UUDNtorw9rZCxXrB7b9uZuO0a9XNvIIRHb6vA+UAYTZ/1IhIVk27HIUBzfl8aHMKsSV6sX1qFrb9px8WBIVN9Z+amDrOkfqp/8k78+PfHdUPvV/cZG5TQsIgijwu7mjssrV3S2nI+EMKeo90AYuO67Caf5W0p2y+N83A0sco7EAunr14wHcd7AugNhFDidePGsiLNtc3seuwr8mBCYV7c+GVynSQiIiIiIiIiIiIiIiIiUhJEVtAa02pra8XW1tZcN4OIiMYYPl5yZNpc3xZXCX3NgmnYsvJm+efKatM3lI1LCKr5+4L4h+2HcKL3Mu790iR8Z9ENWP5qU0IIE4ClAKo6VJvKNrLF3xfUr/wrIiMV4EcyO8bOSuX8ddtbUVaUb3vwPFPV+43mSybmSLb3N9raY6e6+jbsbOmAgMQgupIyqJ6f58A9s8oAAL871hPXJy6HgLcOd2L1/Ni6LG1f+rPkmdeP4K3DnXC7HBiKRLF6/jSsX1ZluZ+lmz3cztjNHqluJ1V2ncvKfhKBhGOS+k5vrVJTr11aa0Oq2zJqf7J59Ni8Crz8eI3u33/cdQkPbD2QcjuIiIiIiIiIaHThdzBERERERDRaCIJwSBRFzS+DWUGdiIiIaAzQCtTtaO7Am4dOY/HssoRq0889Uo1V2w7GhfK2NrbjyKmLAICCPAdW/vsfNAN1DgFo2rjEdNv0qgJLlW/tYkcI2ajyb119W1pVxDMVks4kO8bOSvX1TFWJz1QFeDsrRY/E/VltT3AoioOfn0trm7k6T6T9Hjl1EWHFWqpeAp0CcPesMhw72w+nIODmivHYc7QbDgEIDUdR5vVABOL65O0jXfL7parl6j9LIeM/nTwPALjvJh8mej3o6Q+mNO5aVf8zMX/0xivdc1nraQFA7Prz029/Gc+8cQSnLwzIf69eqzwuB0q9HvQGgggNi7prl9bakLgtAaXefPQGQggNm1sHZ23ei3BEfx6p7T7cid2HO+FxOdC0YUlCnz79syMAAK/HieGomNFrKRERERERERERERERERGRHRhQJyIiIhoDjILEytCgFBSUwtYv7f0Ebx3uhPqhOsowoDqkvrKmwlKgMVuhWrtCyOpg567mLwwDpUaU4c1MhaSTSSfwa3XslPu6+6XfJgRMzfabXbRCrna3QSsInEnS/u6fOwnPvPEhTl8c1H2t2bFPZ44oj//pnx1Guz+Q1hzP1Xki7XdlTQWGRTFuLZ1cnI+T5wbgccUqd0+dUIB/fewWPPXaYQyEhxNuAAIg98lPDhzHHz/vxcWBIcOw8962M6jc1CC3p+FoN4BYdWzA+jxTB8T9fUGs2nYQhXkOS9uR5sb3HpqDzfVHIQL4j//t9rgbmzIxXkbXtK372tETCGHqxEny69VrVTgSRaHbiXBE1Fy7kq0N2tsyfw1bfssUvHW4E06HgEhUhCAAFRMKcPrCoHxdLR+fj7N9QUSuXGMrSwrxxhN3YOu+q32qvPYAQCAUkf871zeoEBEREREREREREREREREZEUR1GonGlNraWrG1tTXXzSAiojGGj5ccmTbXt2FXSwfczligbvX8aQmBQa1K6xJlGN0pQA7NaWnZvMxSKG7d9laUFeXHhSKVAcp06B2TXSFkf1/QVPhfS119W0LA0O72JVNX34adLR2a88GMv/mfLfj4TB9+8PitePfoWcOxU+5r/bKqlPvNLumMXbLt2lnlO5XtmRlXs2Of7hyx4xxMto1M9bm6Yrp631Ig/Z7Zvrj1q8zrMdVn/r4glr96AP7+kLy9mWVefNYTiFurM32+mB1jdT9L75tZ5kW7PwAAWLNgGt48dDqj6y5w9ZqW5xAQjohwANAaKWmf6uvMrz7qxlfnTta87iRbG9TbevfoGTgEIek6aHSNHed2YuVtU+Vt7nj/i5T6ZZzbiZceuwXvnzhv67WUiIiIiIiIiEYOfgdDREREdG0ajU9lJxIE4ZAoippfWjKgPsYxoE5ERJnAX46OTGZC4FIo7xdHupJu74GbJ+M3n/gRHLoatnNeCbGvXpBakDUTMhVCVjIT/lcyCilmKyRtV3DfTLBVb18OARCBhH6z4x/WWtvQ+pnVsTMj3UB3OtszM65mx96uOaI+Bz0uB7weF7b/3XzMmTI+pW0ozxOIwPJXD6AnELK9z7Uqpk8sdOPOmSX4zl0zEtZSq30m3aRS5fPilW/OMwxO2z1X/X1BLHihMeEJGer2xj3pYV87drZ0wAHjm5SubkdAaFjMyLorXdPOXw5jT9sZTBnvwZdvKLFtrd9c34adzR0QEFun1hhc19TnqN4a9nHXJaz9aQsCoSGEhvU7cM/Ti/Cvez/ByXMDOHMpiNBwFAKA8gkF6L40iIgIOB0Clt8yBX8+dREnzg3I763yefHrZ+6xfLxERERERERENHrwOxgiIiKia9Nf/Y8/oPWLi5g/fSLe+P/cmevmEJliFFB3ZbsxRERERJQZyjD6lhXVmq/xFeejyOOCIAACrlZMdwiA2+VAvsuJ26dPxLGz/YhERVw/sVCumgtcDSzuaO7AjuaOrFUBNyIdU2g4FowNDUdR5HHZekdxbyCE1QumxwVKAf2QeNOGJXFhW6dDQCQqwu0UbGvf1sZ2/OnkeWzd164ZqlS3IS7wa4I6iGs05nr7ujQQxtTrxiX0W7K2A8kD+Frb0PqZ3tilwkqfZGp7Wn29eFYZuvtC8PcH4SvK1x2PdV+ZgVXbDsp9mu4ckWidg6HhMHa932E6YK13Ht/90m+T9pGVGx5mbd6DsCJ5/dbhTvm/pf0uu8knt1u9lprtM/XYtvsDeGBrU8LYKrevnKs/PXAcDW1nsP7eqpTWCqlyuygClSWFOHV+IBZ6FoDlt5bHtXdrYztaTpzH/Ocb5Z9FDLbtEICKCQU4dWEQoWExY+vu/k974vrwzKWQfHOVHfvsDYRQ5fPiM38AN5QUava33jkq3XyjXsN2NXfg3OWw7j69HicCoQiefu0Ifv3MPfJNCdLxdF4clF8biYp4+8rxzprkxfqlVdj6m3ZcHBhK6XiJiIiIiIiIiIiIiIhoZFJ/J9XyxQVUbmoYEXkMonQwoE5ERER0jZFCkOcDIew52i0H7a6fWIjPegKYUJiHKRMK8NyKaizfegAzSschEo2iNxDG5XAstihVdrUaZM0UO0PIWvTC/3pBa62wrbKCcjZC0ukG962El/X29co358mv2bKiGrPr9qJyU0PStgP6fat3/Ep629W7cUMt2Y0H7x3tlo/1/mrrgW719qwExLX6+vOey/isJyD3ld547GruiOtTO2/u6A2EIACmA/dafaw+j3c1fyHfRKPkEICmjUvkbVw/sSDpDQ+Sh24tx+4POuEUYjfc6FVM12O2z1IZW+U6U5DnxMXBoaTHpNWP6nPkpKL6dkQE3j7ShXePdgOIHy+l/DwHXA4BgVBiVD0qAqcuXA1Sh4ajcAoCegIh3XamQqsPJxa6ceeNpfjOohvSWkvVfSRVKF/4/UYcf+FB3TZIoqqbtcyS+rPdH5DXwjULr96U8M6fz2A4EpVvJvAV5+Ptp+6Sx3b5reUpHS8RERERERERERERERGNXHrf2en9nGi0YECdiIiI6BojhSDXbW/FmoXT8fqfOjAUEeVK6bs/iFUUvuP7jfj8hQdRV9+WEMCTKru+e7Q7pTt2rVQ8NsNM9Xg722MmJK4Vmp9TXpxS+5SsBF/TCe6bDeJKfVeY50i6L62wZ2VJId544g75Ncn6Vuv475lVBgD43bGetCqBS4wqvL//+Tm5felWcE41IC6N6+t/6oAoQj53lX21eHaZPB4PvXog7hzWe106gd9ta2vh7wuanptafaw+j9cvnYkte/6Chg+7oCh6jpXzKuAryseNzzYgIgItJxKPS70uqeeVtL3gkHHFdC1mziur54+09szavBfhiPmq+up+VB+nmtMhwFfkwdtP3QWI0HzSg9QvWpbd5MPBz88hOBxB9ErAXxpjs+eBdMzfe2gOvvfLj3XXXa0+tDpWeqR1RKrILomKiKtGIbUhOBSFgNjNXJUlhTh1YRCRqCjfrDU0HMWeo91yH0r/K71n0cwSfNBxEQPhq4H/qRMK8B/fvh1zpowHALy8qgb5eU65ono4EjteO6vSExERERERERERERERERFlCwPqRERERNcoKQwqhUDVQb3IlaCeFmVlVyvkiscTzFc8zgajQLIWMyHxdEPzeqyEmtNtgzKI+5MDx9HQdgbr762K25fUd6vnT5P3obcvX3E+3vmwK64q9slzA5j/fKNhAF3Zt1rHX+b1QATSrgSeLBy/8IXGhIreO5o78Oah0yk/Wi2VmwjU565WXymP/eCzS69Ufj+D0LAIj0vA/dVTEl6X7jz1FefDJQgIDkXh1hkHs08AkLZX5HEhIsaqpkdFYJbPi/rDnfKNNGqP1JRrBuLV88rpEHB3VSlKxnksV/42e16ZGVv12rP8lil463CnHHDWC/nr9aPb6cDDNeVo+PMZOWwu0Qo9az3p4b8/NBdrftqseUwHPuvFX90+VQ5Rp3KuScf89M+OxFX+N9uHdtzgJM0tNSlwvu4rM7Bq20H88Fvz0BsIocrnxWdXbgSJq0h/5WYt5Z+l/1U+NUPraQCnLw5i5Y/+GDfvM/00ECIiIiIiIiIiIiIiIhp59qxfhAe2Hkj8+dOLctAaIvswoE5ERER0jZOCeoIACIAcovO4HCj1etAbCCI0fDVZ53Y5MJRiZVcp4Nty5c/JqgNnmpWwrFKqla+tMAphZivEqAziFuY5cXFwSLdSs9m++0pVGU6eu4yuS4MID4twCMBDt5YbBtDVfat3/Kn0ibKf9cLxe492696soReINiudmwjMzsOrr4udx6Fh0fb5KvnTyfMAgPtu8mGi15MwDlaeAADExnrNwvhx3fF3CxIq8TuEWKVqo+N6//NzCA5F5aD21AkFGb1Bxmhs9c4fibKSudYxafXj4lll6O4LwSVV8b4S6i90O3HdODe2ra1NODe0zqVFVaV4dF4F3jp89SYApwAsv3KefvfnR02fa8pq6Q9uPQBlRlur8r967dDqw7r6NltucOrVuDFBCpz/8sMuiIg9SSQiJr5X4hAAt9OBoGIsF88uQ4nXjUBwWH5qxht/6kBYY0OiGP+zTN3YRERERERERERERERERCPXnPLx2j+fov1zotGCAXUiIiIikkOK5wMh7DnaDYcAhCNRFLqdCEdEuXrx+HwXXvuHOyyHotVhTKV0A77pUIc8AaCypBBvPHFH0vfaFRLXC6IbVXW3O8RoFIbXr9Qs4OGactNBY+U+XtnXLldgDkfMB9DNHr+VPlH3s1bg++dP3ok1P23B5dCw3BfSOZGpoLdZZuah1vmXTuV3rfmi3kfD0W4AsRtd4l5v8eYOvbGWtiGNw9fnTtYMxEu2NrbD3x9Cfp4DP/nfvox3P+rOaXXqpg1LsGrbQbkat/qGIKcA3D0rFnTWqvCu1Y+f91zGZz0BnAuE8NhtFfi0ux+zpxQhEByW+1F9buj17+XwMKp8XrT7A3AIsSdqSONkZf1RVkuHAFReV4gzl4Jxc0VZ0d9IqjfFmNmWmnSjVkT18/w8ByYX5+PkuQG534Oq7ez/tAcAcPLFB+WfHdi4FN/YdhBfKKqvm73WEBERERERERERERER0djnK/JgQmEe1i+twtbftOPiwFCum0SUNkFdsYvGltraWrG1tTXXzSAiojFm//79WLx4ca6bQRmwbnsryory5bDrjve/0HydMhBoFG6W+PuCmhWPoyKwZsG0jFYxTmbGsw1yGFEpW1Xd6+rbsLOlA6vnT9OsTJ5Oe8yMjVYb1NvQq3gtBc3dzljQXOv9WvvoCYTi5llPfzAu9JoNev3sEIBvqQLfZV6PXN1amrcP3DwF141zm2q72XGwwmib6r8zGsNU2qM1X4z2sXVfO3a2dGBlTQVOXxxEYZ4DU68bl9b4q9cqvW2kcj5lYrzMtEm48v/MnE/A1T54/U8dGNIp853O+mq2j7UkC4BLpMr3yY4VMJ5jVsdJ2tZ7R8/ITxaQzu3KkkJ09wXla5UWqar/q79tx3tHu+OuIfl5Drz15J0JFS0WvfQbnL4wiDyngKGIiOsnFqBp41JL7SYiIiIiIiKiawO/gyEiIiIiotFCEIRDoihqfpHMCupEREREJFNXxl2/dCa27PkLGv58BpGoCKdDwPJb4ivdqitQa4U7ldV+pRDg/dVXA76ZYiZo+pWqUpw8NyBX9XUIwEO3pl7V3Wy4Vb8yucNSZXIjRlXYjdqgDO/6ivPhEgQEh6JwqypeG1XvlvrhSMcFhBXhWSno7XE5sGVFtS0V4FOhrp6vFXZ9s/VUQsg2KsaCrJFo1HTbk41DKrY2tqPlxHks33oA76xfZFh932rVcj3J5ou0D7czNl9++WEX3j7SJb/+rcOdAGL9d/yFBQBSfwKA2SreTRuWYOELjQk3oYSGo5hdt1czpJ6J8VK3acuev+CdD7sQFWPnwpTxBegPDuHrN0+JO5+01hP1z6R1WnkDkCSdKuPpPKlBOkZlAByIjf2068ahxJuH/uAwSr0ezCjzmroOaM3jg5+f03xtsnX46rautk26Ju3/1B+bxy4Hwor57nYJKB9fgMrScXJ//I/Vt+O+H/wO7f6A/LrrJxZqPm5xbnkxFs/2pf3UDSIiIiIiIiIiIiIiIiKi0YABdSIiIiLSdfe//jYukBqJinj7SBfePdoNAJphVacARIGEcKdWmDnT4WQzQdP//NsF2Fzfhl0tsRBnOJJaeNfKPgHjgPQr+9rTChObCZ4na4PSn06eBwDcd5MPE70eOTh7YWAIz62ohq8oP2EspX54dF4FhqKiLYF7O5kJbScLsScLwZodByvU2/T3hzD/+UZ4XA4A2uekx+XA4tllujcTyNtKcjxSfzR82IWICDgFYLniZg7pHD9/OYw9bWcwuTgftTdch18oQurAlSrVmxqy8pQCX3E+VtRUyOF4ILHdkkyMl16bijwuiIC85iyaWRK3XkjnU119W8J6YnQDgtspxN0QonesmSa1KRwR5ZuSpGuD+litUF5H/vefHcYxf0BzrbV6cw4A7Gk7AwHAPbNK5SD50z87jHZ/QDFOpQnbuzQ4hFmTvEkft5hO4J+IiIiIiIiIiIiIiIiIaLRhQJ2IiIiIdDVtWIKHf/QH9PQF5UCqrzgfbz91FyBCs2qvlI1UhzuzGc6zGjQ1qgSeqX1qBaRdDgFP7TqMwjxHWu0xGzxPFtJWH1PDlRsTPC6HbgBU/Z7dH1wNBqdTvduI2ar1asnGPVn/JAvBqsdBEICvzpmE59KY/0YVwY2q7yv7Re/8S3Y8CTesiJBvWPl0y9ex/9OeuL/vuhSUw+lSSBlAyjcppDrOl8PDqPJ50e4PxKrfi9Ccg2bPGzskm3t664mS1g0Ir/8p/jXqMcom6RiP9wTQGwihxOvGjWVFaVUO37a2FrPr9mLH+1/IP1P2A6B/k4by+EVRdQJJPwcwdWKhfI7MKBuHBTNKDNfils33yv+9/NbylI+NiIiIiIiIiIiIiIiIiGgsEfS+mKWxoba2Vmxtbc11M4iIaIzZv38/Fi9enOtmUJZI1cXdzlgF2dXzp8nhVfXfTb+uEN19QcNwbDb4+4KGla9Hyj7XbW9FWVG+HH783ad+nL44GNfHqTIaN6M29PQH5ZsJtI4pPBxNCEcDkAOgWu+ZWOjGnTeW4juLbkjYhx3q6tuws6XDln5T0+ofdRBbonUzgjQOAmIB7SqfF79+5p602vTM60fiK4I7BCy/ZYpcfd/MuCtpVZPWOh5/XxAP/+gAevrDiERFOB0CfEUevP3UXXJFeeXYe1wCoiLw1bmTIEaBPUe74RBiIWCzY6UMpW/d157yOBvNcyWz5426bXavK1rn0eJZZYgC+P2xHt01JtkYWW2DHcdndjtWXqd7I4Hqxim9ddjfF8Q3th3EF+cGdPeTjQr/RERERERERERa+B0MERERERGNFoIgHBJFUTMAwgrqRERERGSoNxDC16snY/+nPXhgzmT0BEJykFBd6Xv/p37datNm2BWITFb5OhPM7lN5jFJA1mr1dTPMVoU3qmyvdUwrayowLIq6Vaa13rPsJp8c8rWzen4m+k1Nq38MA7Iqr7V0QBRjoWwAaPcHULmpIa02ShXBP5MqgkdFea6l8jQAKxX3l900CbtaYn0cjsTGVprjWmMPABML3OgJhLBmofWnAmxtbEfLifOY/3yj/LNUxtnsExys9F+yivNqVtY3rb4s9XogAoZrTLIxssLq8aW7HbOvU/aN2ykgOBSFSxDkYzSzDqufBqD2SE15RirnExERERERERERERERERFdKxhQJyIiIiJD29bW4r4f/A4D4Qga/+LH7zcswUt7P0HLifMo9brxr9+4Fb6ifGxZUY1121uxeLbPMNxpFNK0KxAJJAZNT58fwKptBy2H362ESs2EW7WO0WxA2AplFfRjZ/vxw2/NS2k7WsdU6vUYBkBTCUmnIhP9ZoaVGyDef3ZZRsZ23fZWLJhRktDHZoPYZo9HOf8hAnvazuDReVPjquEr9QZCcEBIuHEAiFWk3rKi2lS79Kq6A8joOJvpv1RvjLC6vnVeGECZ14MfrKrBux914/T5y/jw9CXD/gfSP//suvHD7HZS2Z90jGcuDqLxEz/+eLw34e+Mjr9pwxIsf7UJ/v5w3M+lCv+ZvqGJiIiIiIiIiIiIiIiIiGisE0RRTP4qGrVqa2vF1tbWXDeDiIjGGD5e8tpRuanB1OusBBefef0I3jrcicfmVeDlx2sA6IdRrWw3WZD8/8/e34dZXd934v/rnLkFB9AAIwwqxAgYxAiGBRMxAW1qEhPvsjVd0au7tV1TN7Xfb/e3aAp7fXNtyI3ZK722tPm2bLd7dSuaNvkaahMgplJNMVUIRgyaRGiUjII4o4gwwNye8/tjOIdzzpxz5szMB1HzeFxXrzKf87l5330+Aef5eZ3VG3bFfdvbY8Xi80YUfh/tcaXmrNocvQOV+7hqw664f3t7NNYNVj0e6/Vykmp/xMkxHt9YF+ecNb4oAFoY7H0znapxq6bjcHdc/T/+Oa58b2vcdvn5w47B6WjjSN1+746YOqF5yJwWrp+IqGktVaswX2vot/QcdamIgWxEY306+k7zGI60f3NWbYregaH/7h7u+VZ67yZ5L1eTxPyN5Dyjud5Y/zej0vHpiLj5spmn9ZkGAAAA4HcwAADA20UqlXoym82W/eWqCuoAAFS06c6l8fG1jw27X09/Juau3lw1GFgaCHzgqX3xwFP7oqk+nUgl7ErViUuD4bVWA06qinDOJ943Pb791L580LapPh0fnX+yj0lXHS8NxY61/REnx3jF4vPy1aVrrdI9UrVWrn8zqrWXtmXtlj1x6HhfjKuvi3ltE4cdgzerovxYlFYOn7t6c9ELKrkq6Lk/V1tLI6kwX0m5c8xpbYn/8ZsLT/sYjrR/n7ykLR748cl7v7khHR+eMzU6jvREx5Hu/HG5dbaz/fWy927pz2O5l5Ps31jPU7hfKhXDXq/jcHfF6vrlXsAv9yzZunJ5XPv1x+KVN3oiG4OV05vr62Lxu886Zc80AAAAAAAAgF8lAuoAAFQ0r21SvHvy+HjhtWMV90lFxNUXnR3/bZhQX6Uv7snG2AKRwwXJ88HwdCoGMtmaw++lofl0KuLX55XvZ7UwdWn7crnT0j6WBoTHqlwodqSh/5wkw/q1Bs8rvXBQKulxq9aWy760JTIF67jWcXgz2jha5eaj43B3zJs+MaZObIp/3t2ZX/+pqH0tJRHKL3eO0hcCal1PScl/i0BDetj+Vbr3u/sy8Xzn0fjXzq5Y+/CeuPOq2fHZbzwV5541Ln6092DcuHBG9GWy+WdPU30qprQ0x6tdPdHTP7oXeEbq1a6euGHhjNh94EjMnTYxOrt6Rn2eWtbBq109MXtqS+zu6Io5rS1Vr7d2y56IiGhpqouunoH89lmTx8c3P/OBon07DnfHJ/70sejs6il6lrRObI6rLjw77j8R/M9mI268dMZb7psNAAAAAAAAAN6uBNQBAKjqaO9AjG+si2O9A2U/z0bElJamYcOhj921PG5a93jsLQi7FwYKRxtorVR9ffMzB4oqQA+cSBZ399UWfi8MzedC3r/oPFp0XC6seu6Z4yqGqXPt+4ed+4dcY/229vjmjhdjwXlnJRawrRaKHU0V5IjKYzyagGwu7P2VTT+Plw4dH9LvpCvXj0VpW0rfsUg6KPxmh60jyr8IsHbLntj50qG4YGpL0UsjEVHzCyRJhPJrOUetLzIkZSTfIlB639SlU5HNZiOTjdjT0RURxdXRt78weNwDP96XP0dTfTp6BzIxvrEuegfGVtF8JNbduihWb9gVz758OBace2Z87aay38hW03mGW9el99nujq7Y3dGV/1aOfGX5Fw9Fb8F+heH0iMFn/EieJa929cTE5vp4o7s/JjbXjzqEDwAAAAAAAMBQqXJfgc07x6JFi7I7duw43c0A4B3m0UcfjWXLlp3uZvAmuuCPNkV/pvrfG/d+5Zqqn5eGBXPGGjzOVcjtONKTD3OuWHxe3HnV7OJwaCriijlTY3JLY3R19xeFXys5/3Mbo1y3c20e7vOcVRt2xf3b2yMVkd8/F26uT6fi20/tGwy8JhCw7TjcPSQUe8XsKTH5jKbo6umrqd/l5PrQWHdyjEfS3krzn05FPP/lk2untP2FIfA3K7RdrS3TJjbH3teORSo1uE9S8xYRsXrDrrhve3ui56yk0nyU01CXiqktTfFqV0/87//wb+J7z7wSnUe6y66lNytkf6qeJyO9XmNdOhacd2bF/pbeNx+9aFpsf+FgdPX0RU9/5Wfq9EnN8cH3TInblr477t/eHt9/9kD8+kXTil7gGe29PJykx3a4dT3cPZ87/oYFM6I/e7KyfCV7v3JN1efNE390VSz+4paqxwMAAACcTn4HAwAAvF2kUqkns9ls2V9eq6AOAEBFhRXIK5k+qTkmtzRGx5HuqoHUrSuXx7Vf/2F0Hu6OgWxEXWqwSvmDn718TG1cu2VPdBzpidmtLfEnv7kwH94srICeC66fc+a4EQV/n/jcVbFm089i49P7823+xCVtQ6qzF7puQVvc/qHz46Z1j8fnPzkvPv+dn8b4xrpYsWRmHOzqiU3PHIh0arCi+YMFVdWTqhSeRL/LGW2F+5xKleQz2cF1lut3afvfjGrRlZRry0AmG3NaW2J3R1fMaW1JpOry6agaX64q/ofnTI2IiB/s7hwSFF778J64b3t7fG/Xgapr6c2qaD7Wqv4jDdJvXVn8DRC56/X1Z2LTMwfink0/j699esGQ40rvmx881xGvHe2NiIjG+nT0FnxDQ8RggDobEVdd2JofvzXXzy+q0j7aivS1SuobE2pd15Xu+SvueaTo+G8/dbKyfEM6olxG/aoLp+b7cNmXtwx5gSiTjbjinkdi051L43f/5snYd+h4/rNzzhwX//O33j+iPgIAAAAAAABQXvp0NwAAgLeu9bctjnENdUXbUiX7dHX3xzP7Dsc9m39e9VytE5vjqgtbIxODlXgzMRjCHG3weO7qzTHr7o2xflt7RETs6eiKj6/dGt/a8WK+snAuHLrhjstjxZKZ+TBxx+HuuGnd49ExTMj6iq8+Ev+wc38+PDqQjcFQeTYb1y5oi+aGk3+dTp8YmAlN9XH/tvb40d6D8Qd/uzN+tPfgYED8+vkxkM3GLZfNjO/+/hVx46Uzio5vbkjHdQvaYutdy0c1HoX92vf6sbL9HosvXDc/dr9yJKZMaIw1188fcfXmXAg14uRYRZTvd6V5Ox0K25KKiBdfPx67O7oiImJ3R1c89OwrMXf15jFdY+vK5UXrKYm1MJxyoeCpLU0xpaWpaNt3nt4fi7+4JdZva49sdjBkPOvujUP6XHg/VttvNMrdr2N5kSH3rQvbXxgM0g933TmrNsXiL23Jh9MjTr5gsumZAxER8cBT+8r2d92ti2LN9fPjhv/3h7H+iV/Gi6+fDET39mciFYPPldw98bGLpg275kvHo9bnWa3nS+olkZGs68L77MaFM2Ljrpdjwx0fHHL89EnN8an3z4gHP3tFNNaV/q9RxJafd8asuzfGFV99JCp9WVw2m415bZNifGPx/7aNa6yLedMnjaiPAAAAAAAAAJQnoA4AQEVLZ0+NhpIQYDYiJo07+UU8R3r6IyLigR+XD2gWSjJ4XEv4MRcOndc2sShUXVjlebhrTJvUFHUn0qN16VRMn9Qcj919ZT7AmQuWfnT+9KhLpfJVgrPZwdB8YVj30ec682HVb/94X3QXlADu7hsMAw8XAq0WRs3165yzxpft91jUOmbVvNrVE7dcNjM+etG0iBgM5ZYLv1aat9OhsC1PfO6qUxIkrxQIjmyMKXg8nFe7euKGhTNidmtL3LjwnOjs6hlyj35o9tSa+lx6P6ZTER+96OxEQvaV1t5onidzV2+OxV/aEh1HBvetFqTPXfeTl7TFtQva8vd6Y/3QYHROhUx0bF25PGZNHp//OTeOH54zJf/Syi2XzYz+bDa/5ivd66XjMdZ7s9zxSTyrRxJ0L7zPxjXUxaHjfXH/tvYhx191YWt87TcWxMfXbo3egfKjnVufqUrTdOKDN473xZyzW+LP/t3CmHN2S7xxvG/EfQQAAAAAAACgvFS2Ulkx3hEWLVqU3bFjx+luBgDvMI8++mgsW7bsdDeDN8mc1ZtjXEM6fu/D74mvfO+5YfevT0WMa6yPv/vMZae8Gu2qDbvi/u3t0ViXjt6BTKxYfF6sueHiivvPXb05evozQ7Y31afjuTUfG9E1br93R0yd0Bw3Lz4v7t/eHp1HuuML182PNZt+Fg89c6DoOk31qfjo/Omx6pr3RuuE5pizalPZcGUqIl74yjVV+7x6w664b3t73LhwRrz4+vH4s5sXxhX3PDLiftVqNGM2nHJjVxpC7zjcHZ/9xlPxZzcvLBtorfT5cMeN1UjXXK3KjcnUlqa4b3t7YtcoJ7eeql2jtM83LJgRLx06PmSMc/ulY7Aq+OzWlvjHP/xw2XOWm6fSbWNde7WeL52KeOKProrIRnz2G0/FzvbXK4afm+pPjsGP218vqqo+a/L4+OZnPjBk3VW77vNfrny/l85NpfOUa2Mt43Mq7u1SlZ6T5e7RauP03d+/ouhZ8dP9b8Tv/s2Tse/Q8SH737JkcLw6DnfHh//7o3G8byD/2fiGunh05bJT8mwAAAAASIrfwQAAAG8XqVTqyWw2W7bqoID6O5yAOgCngv84+qur43B3rNn0s/j+sweiuy8TqSiuGDxr8vhIpVLxwqtHq4ZTk1JL0Lla+5sb0nH1RdPywfGxXqPjcHd84k8fi44jPVGXGgzpplMRmWxE64Sm+O6dS6N1QnN0HO6O31j3ePyyhnBrTqXwZl0q4vHPXTXiftVqNGOWhOGC05U+ryVwPRa337sjWprq47kDR2Lu9AnR1d1fMXA7Wm9GcHgk1yi9B37wXEe8dOj4kDE+/3MbI1Pmn5flzllunkq3jXXtVTrfxp+8HAMFDf3UwhnxtU8vKHr5oy+TLbruWeMb44PvmRK3LX13/jnw7P7D8dLrx6OhLhV9A9mYPqkpHv/crw1pR+663316f2SygxXY2yaNi1lTzoi//g+Lh+w/Z9Xm6B0YOjeNdan46MXT8+1KR0QmIv8cHun4nI57O/eM7OzqGbJ+RtKeys/DVPzavNb8M3rpPf8UL71+PBrrUtE7kI1zzxoXW++68pT0DQAAACApfgcDAAC8XVQLqNe/2Y0BAODtq3Vic0xoqo+e/kw01afzAcFcQLOwmvCejq6YdffGiIjYO0xV8NEqDIqvuX7+sPuXa/+EpvqqYcyRXGPtlj3RcaQnZre2xJQJjfFaV29MaWmKziM9saejK9Y+vCfW3HBxtE5szgdkc2M3kMlWbcfWlctjzaafxT/s3F+0fSAbsfhLW/Ih1ca61JB+jaWq+GjGbCxKg6frt7XH+m3t0ViXit1f/HjFz0vlticZ6o4YXA83/+Xj8cz+w3HmuIZY/7uXxeoNu+JHew/m53escnNdLqiblK0rl8dN6x7P37OpVMSvzzs7vlBmjefugUpjn4qIbauuiidKXpRoqk9HS1N93Ps7J0PYtcxf4dz92/efM+K1V+kaufMNZLJRd+LFkVlTzogHntoXDzy1L7//Az8++efcda+6sDU/t7nnwO337ohlc1vj9a6e2PjMgUhFKm5a9/iQ+yx3D2XjZAX2pRdMqbhWPvG+6fHtp/ZFXToVA5ls0fz/ycN7ortvsG+5Huai9t19I7s33yr3duE9+sQvXsuvnWrt2bpyeVzx1UdKvqkiHVvvWl60/0VtE2PZ3NaiF4wAAAAAAAAAOPXSp7sBAAC8vbza1RMrlsyMDXdcHueeNS7OPWtcPPiflsbHLp4WzQ3Ff71srEvF+t8ZWiH4dCps/4olM6Ozq2fM55y7enPMuntjPmi7p6MrHv/Fwdj9Slf8yy9eiz0dXRExGMicdffGmLt6c1zUNjFuuWxmPPiflsYtl82MeW0Tq14jFyZNpQarsuc0N6TjugVtMW3SYCjz1+ZNG9KvtVv25APUo1HrmHUc7o6b1j0eHWMIgW5duTyuXdCWX0t1J/r6yUvayn6e6/+mO5eW3b71ruWjbkup3Dz/yy8ORkTEY794LT/v2Wzx/I7FqQ4Oz129ORZ/aUvRCyXZbMRDz74y7EsSpWM8a/L4iFTE2of3lG33a0d746/++YWq57j6orPj6ovOjqb6wcluqk/l524092ulNZI73y2XzYzv/P4VseKymdF/olL5rMnji/afPqk5PnXpOVWv++hznbH+iV/GxmcORETE/je6Y/sLB+OyL20Zsm8t/citr2+fCMvnXmIpDJ6/2tVTdP8XSqdixM+zcu1K4j4uVanieToV+Xu08AWf4ea7NJweEdHTn4kr7nmkaNu6WxfFmuvnx7y2ibHm+vlVv2EDAAAAAAAAgOSkstky38HOO8aiRYuyO3bsON3NAOAdxtdLUslH/vgH+TB2zi1LzkukqvRIjaVq+EjP03G4u2zF69s/dH78xT8/X7YS9mjadPu9O2LqhOY42NUTm545EOkTVaDLaaofDNuWC4UmXVU8Z/WGXXHf9vZYsXhsc75qw664r0xV9IjIV8G+f3t7NNYNVqPOXW/Vhl1ltycl940AVfeZPD6++ZkPjDlMnpvrwsrPuXBt6Zoc6VrPrdfSavw51dZHbowr/TMyF54uty5z5y03T9mIojkf63NjuLVQKTAdMVhNvpa1M5ZxrHa+3POiLhVxxZypMbmlMbq6+4vmv7D6fURy6y4iufu4UK5vG5/eHwMFa+NTl86I7/7k5RE/p+as2hy9A0OPaaxPx+5T8GwDAAAAeDP5HQwAAPB2kUqlnsxms2UrhamgDgBAYt443jdkW7Wq0klU6q10jrFWDR/JeSpVvJ7XNqliJezR9D1XDXggm41bLpsZ3/39K+LGS2fEtElNZatFV6sknaTCCvKllcRH089Xu3rixktnxLI5U6PuROK5tAp2uWrUp6I6fqH6SqWrC+x97Vgs/uKWMVdRr1b5uXRNjnSt59ZrRPlq/NXWR26M19+2JGZNHh+5w+vSg1XPn/ijq6I+Xf6fmdmSc+Tm6f7t7UNeSFi/rX1MYzjcWii9N9KpwZD3+t9ZXPPaqTSOhRXgR6L0OZKJiJ/uPxx3ffTCovlvndgc/SfeAGg88RUDA5nsmMPp1e7jscr1bSB7cqzmtLZEV09/fi5y35ZQl4phx++xu5YPVu8vMGvy+Hgs4WcbAAAAAAAAAKNTf7obAADAO8f2Vb9WsZr4qmveO2T/wmDtaCv1lp6jtDLy+m3tsX5b+4irGY/0PLlAbGHF62rbx9L3wrDqH9+0IF8tujQEHxEVA/JJ2rpyecU5X/vwyPuZ69+qDbsik81GY10quvsyUZ9KReuE5qL+r7l+/pDjSrcnpVo+vbE+Fb392UinIj55SVvZ9T5WldZk6c+1rPVXu3rilstmFlXjr2V95Ma4tC0DmWw8uHN/fO+ZA/HYXcsrVvjOnaOw6vudV15Q8zOjVsOthdIweO9AJpZeMCWWXjA1ll4wtebrlI5jRERPf3bU91nh8+L/+tunYndHV9l756K2ibFsbuuQ58pYVLuPk5Abq5sXnxf/67Hn45Gfd8T6310SV9zzSPFaykZ+LVVax6Uh/d6BbCIhfQAAAAAAAACSIaAOAECiKlUTLwwOJhEir3SOxrpUXH3R2fGPP30lMtkYdchypGHNWkPTuSrFpe0eaYC+UKUQfETEvtePx9SWpvjjT18S33vmlUSCrKXKzfl3n94fD+7cn99nNP3M9evg0d7YtOvl2L73YOJtH4nH7royFn9py5DtN146IzY8tS8fdD4VLwFEDF2TTfWpmNLSHK929URPf+U1WhgGz7Urty5vv3dHPjQ8kqDz1pXL49qv/zA6D3fHQHaw6nXrxOZ48LOXDwkcRwxWlr/inkfyc1/6gka1bxoobXtSqt03tVp366Ihz6KIwfX+rSdfiq0rl4+o/bnzrX/il0XnKr13TsXLGLU8u8fiC9fNj89+46mYMqExIhvx+rG+uGfTz0+spcei80hvDGSyUZdOReuEpnjws5dXPd+pCOkDAAAAAAAAkAwBdQAAEjdc8DMXtH3omZejpz8bTfWp+Oj86SMKkVcLkK/4y22RORGaHU3IMheKPefMcYmGNTsOd8e86RNj6sSm+OfdnW9KtehzzhoXP9jTGd/bdWDUVeprUTrnLx08GhPHN46pGvOjz3UWBX9ffP14zLp746jD/GMNO1/x1UfKbv/7p/aNOehcqlxby1X9Ht9YF70D1ddotWr9Iw06F7brqgtb4/7t7fkK1h88f3K0TmjOB44PvNGTP276pMHweqUXS1KpSPybBqq1vVol/pFK+hsEkqhkPtq1nruPP3rRtPjDb+6Ml14/NvxBNVq7ZU9sf+FgLP7iyZc8HnhqXzzw1L5IpyKyEfl1fdWFrcO2+1R/YwIAAAAAAAAAoyegDgBA4oYLDp4M2mYjIqKnPzvi8He5ar/fKanaPTB4+rh/e3vZcGilEGcuFPvymePyodn/9djzsXHXy3HzkvPi89/56ahCzmu37ImdLx2KC6a2nLIqxTlJVKkfidI57zjcHdf86dYx9TOJoG6hSmHnWsO8pVWyczLZk+s8qaBspbaWvgjw/WcPVAzHn4o1UNiuShXur/jq0ArqL7/RHVfc88iQOa1Lp2Igk40bF8woGsNK3zSQiohtq64adh2Vm9OxhN3Lna9w23DPopGMfRKVzGvpa7XK+qs37IrOrp4456yza75mJeUqzJfKRvkXFAAAAAAAAAB4e0pls9nT3QZOoUWLFmV37NhxupsBwDvMo48+GsuWLTvdzeBtrFJgcaTB2dvv3RFTJzQXVO0+FhPHN5QNNJcLd67esCvu294eKxafF2tuuDjmrNoUvQND/37cVJ+O33j/OXHf9va4YGpL/GtnV/6YsfS3oS4VZ41vjHltE+Ov/8Pimvtdi47D3RXD3UmH4ctZvWFXrN/WHnNaW+J//ObCfOi0MMhei1Ubdp2o0j1YWXkk454z3HorXQeV/HT/G/Fv/+LxONY7kN92RmNdfOv3PhDzpk8aUZtG29aRSHIN1BIyzmmsS8W7Whqj80hvDGSyUZdOReuEpnjws5dH64TmWLVhV9y3rb3ssbl+lmv7tInN8cuDx2paA4Vz+q0nXxrzmObOd8OCGfHSoePxZzcvjLUP78lfo7OrZ0zPolKlz7Za752RrJ9y6z6J9ffT/W/Ep9c9EX/3mcti3vRJQ+YyFYOB9JxZk8fHNz/zgTfluQQAAADwduB3MAAAwNtFKpV6MpvNlv1ltoD6O5yAOgCngv84yljlAov/UFBh+LoFbYmEp2sJNFcKYaYjIhMRdanB6uvNDeno7c9EpspfmWsJblYKCtenUvHtnfuGDdzWWuG7VBLh7pGqNeBaa59GG9QtVGn8N+96ueILCeXmNMnw+EjbOtp7I6k1UK5dl50/OXa2H4rjfQPR01/c1j95eE/F695+745oaaqPV4/2xmO7O/P3Wmk/c22v9E/WcuNeLUifq0Y+kjEdSTC/tD1jHfvR3Pe1rJ9q67i0wn3EyAPkH/njH8Sejq6Y3doS//iHH46I4rHIXbuxLhW9A9k496xxsfWuK2s6NwAAAMCvAr+DAQAA3i6qBdTTb3ZjAABg8Ze2FIXTIyIe3Lk/Fn9xy5jP/WpXT6xYMjM23HF5rFgyMzq7eobss3Xl8rh2QVs0NxT/dTgX2cxllrv7MnH9ghlx7YK2aKov3repPhXXLWiLrXctH7ZNrRObY0JTffT0Z6KpPh3dfZl4cOf+eOCpfZHNRqzf1h6z7t4Yc1dvLnv82i174kd7D8bah/dEx+HuuGnd49FxpDuRsUha6dg2N6TLjlNhn6pZd+uiWHP9/JjXNjHWXD9/xOH0iKHj39OfiQlN9fHYXVfW1NacSkHlnv5MzfMy3H6V2jraFzeSWgPl2rXv9eNx6Hhf2bZWu+66WxfF125aEOecOS4yERX7mTvH+tuWxKzJ4yOdGtxebZ423PHBmHxGYzTVp/L7zpo8PiJiVGOaW8/VVGrPWMe+1nukUC3rp9o92jqxOb779P58OD0iYu9rx2LxF7dUfD7lzLp7Y8y6e2Ps6eiKiIg9HV35bYVjce5Z4+Lcs8bF3/+npXHLZTNjXtvEkQwLAAAAAAAAAG8D9ae7AQAAkKTCAPOa6+eX3adciPOcs8bF/kPHI5ONqEun4orZU2LyGU3R1dMXU1qaoncgk6+snk5F9A5kRxQczgU0b158XvzVY8/HD3/xWrx+tDffho/OH6xyXKi00vH6be2xflt7RESsfXhP2WrMhVWXaxmLpA0XkK3UpySrkJdTOP65Suy1hsFzY1qfiugvU827oS5VFCauViW7lv3KtXW0klwDuXb93Y8Gq5rngsgRg+HvdCryIexarjtcPwvPcfkFU+KX29uL5imyETete7yowvj929rjtaO9+eO6+zKx97VjFdtZSW7Od754KHqHqaBead2MduzHeo8MN67DrfsPzZ4Se187Fu0Hj0UmG5GKiGtPfMNFNZvuXBq//X9+FAfeODm255w5Lv7nb70/5k2flN9WWC39zXouAQAAAAAAAPDmSmUrfV867wiLFi3K7tix43Q3A4B3GF8vyVi9++6NUe5voamIeOEr15ySaxYGt1snNMft9+6IqROa4+bF58X/euz5+Psf74tMRNSlBiupr1h8Xj5AnNv3F51H4rWu3pjS0hTnT22JziPdo6roHRGxasOuuO9E2Dwi4pYl5w0JLHcc7o41m34W33/2QFFF40KlodXVG3bFfdvbi9r/Zisc21xANjdOpX1qbkjH1RcNhvNHWyX8VLU1JzemqezJKvvDaaxLx4Lzzsyvt9LQcc6pDuYnpfD+iWy86XN4+7074oym+th94EjMnTYxunr6YmpLU36tf+vJlypWuM8ZSTtzc37DghnxL8+/Gh2HeyJT8tBqaaqPv7jl/fG9Zw+M6VlQqONwd9x+75MxdWJTbPnpKzGQHXwmfeKStkTH9/Z7d0RLU308d+BIzJ0+Ibq6+/PtH+1anXX3xoqf7T1Fz3UAAACAdyK/gwEAAN4uUqnUk9lstuwvy1VQBwDgTbftj66KxV/aMnT7qqsqHlMaMB+p0srVlcKYAydCqPdvb88HvAuDpz/d/0Z8et0TsfoT7y2qCjwS5QKg67e1x7eefKkoAFpY6bixLhW9A9moS6diIJMtCtuWO+ebVZm8nGqVo0datXy0851EW0vHtNKrveeeNS46jvQUVcOvT6Xi2zv35dfbhjs+GLf81fY42tMfPf2ZIfM3Em/W2BQqvX9qmcMkrbt1UazesCuefflw/PTlw0Vh8dy3CqRTEY316ejuy+TvkzMa6+Jo70CkU5UrnRcqnfNvP7VvyD7pGHxR4azxDbF09pRYOntKUt2MtVv2xFMvHiraNpCNeHDn/vjeMwcSuZc7DnfH68f6oqWxPp59+XAsOPfM+NqtC/Kfb125PK79+g+j83B3PiDfOrE5Hvzs5WXP9dlvPBU721+veL2GutSY2wwAAAAAAADA24uAOgAAb7rWieUDouWCo7kA5JSWxtj+wsG4Z/PP42s3LSi7T66683+898lIpSLW3fr+uOKeRyoGtyOibKXgdCriiT8qH5b/g7/dGUd6+uMPvrEz/vEPP1xrl4tsXbm8YgXqUq929cSKJTPj5sXnxR/87VOxp6OrbCh4JOc83Qr7lKtaXqo0EH06lI5pJS++fjz/557+TDy4c3/+59x6S6ciH6oea6j7zRybSi8+pFMx7ByeqjaUviiQW+t16VR8+8eDgfKBE4N9tHcgIk6OfeGLJ+VsXbk8Vj/4TPzjT1+J7Ilw9kA24t1Tzojpk5rj1a6emNzSGO+ZOiHRPleqWh4RUZdOReuEprIB8dG47MtbIpON2H7i59KXWVonNsdVF7bG/dsHt/UOZOKqC1ujdULzkJcj7vnez2P7Cwfj4xdPi027DpS9Xt+Ab20DAAAAAAAA+FUjoA4AwGlx9UVnx9QJzcMGXD/w5S1RmG984Mf74oEf74vGunQsOO/M+LObFxYFdiMidp6oQLz24T3Vg9vZiDWbfhbffXp/UUXmGxbOGBIcnnX3xqKf93R05bft/co1NfW5MNxZawXqwgrf5089I5acP7nsmNVamfytYCRVy09lJfjhKpGXG9PRKlxfPf2ZSKciOrt6RnSO01Elv9r9kwss737lyODLIaNQSzX4cm2YNrE59r52rGitd3b1xKcunRGvHu2NHzzXWfZc9enq1bxbJzbHC51HI3tivnLPnhdePRovvHo0murT8f3/+8P5tl//9R/mX4YZy71W2sdcML6xPh19BQHxWlQa02oh+OsWtBW9zFLpJZLcs/YDXyp+LlcKp0dEbPqDpTW1GwAAAAAAAIB3DgF1AABOi2oh5YjqYcqIiN6BTGx/4WAs/uKW/Lb129qL9ims9pyNk5Wr69Op+Oz9J4PiheHhOa0t0dXTP+R6m+5cGr/7N0/GvkMnq2Wfc+a4+J+/9f5auhsRxZWvSwOgLx08Gjete7xqUHe4MaulMnmtagkOnwpvZiX4WiqRF47px9durXiuXKC4XHh61uTxceBwd9mA90icjir5w734MNZq7rUcX64NA5ls3HJZ8VrP3R+rNuyKVCryIfOcWZPHxzc/84GKban2zCk31mu37Cl6GWYs1ezL9XFOa0v8j99cOOJ7udKYVvtGgNKXWUqfNXNXby56SWegxrac0VgX86ZPqrntAAAAAAAAALwzCKgDAPCWlAtTPvTMy9HTnx3+gIhIp4orVadisFJ7d99AnPOuM/Jh1h881xEvHToel31pS9H+ERG7O7rilwePDTn3vLZJMb6xrmjbuBrDl+UqX0cMBubXXD8/1lw/P1Zv2BX3bW8fU9B1uAD7SIw1eDxab0Yl+JFUIi8c0013Lo2Pr31syPnOfde4ePHg8Yrh6Uef60ikP6erSn65Fx/GWs19pMeXa0NujZeu9dy+33/2QHQc6YlUDL6gMpDJVh2ralXMC8e6XJA9iWr25fo4r23isPdy7mWSne2vR29BWfPSNrVObB7ybRE5929vr3qfn3weH8ivv7p0Ko71Vo+qHx3mcwAAAAAAAADemQTUAQB4S8qFcQsDl+mIqFxTPYYEL7MR8b1nXxkMaP72kiHB0tKc5nAVqd843hfvnnLGYEX27ODPw+k43B3zpk+MqROb4p93dw6pfD3WoG/S3grtSbISfDkb7vhg3PpX2+NId2/0DkQ01kVMaG6Me39ncdXjyoXTIyJePHg8PnXpOXHb0neXDU/ffu+OWDa3NZH+DK28f2zYyvtjVe7Fh47D3WOq5l6uGvyH50yNjiM90XGke0hfan35ouNwd7x+rC++cP386DzSHVMnNNc87rVWMd+6cnmsfvCZePinr+SfOXWpiI/MOzv+2xheDKk0zsN9k0HuZZIbF86Ivky26px8aPbU2Pva0Wg/eCzf9usWtFWct8Lr58YmIqKnPxNnlL6w05CObMSbVt0fAAAAAAAAgLcuAXUAAN6ycmHc5zu74tWunpjc0hjTJ42LzbsOxPG+k5V5W5rq4i9ufX+s/NbTceBwT1FQffqk5njws5dHxNCq7E31qZg+aVzsfe1YTRWpt6/6tXyl8xWLz6upsvjaLXti50uH4oKpLWUrX5cL6iYZ7Kwl4FporO0Z6fXKSbISfDn3b2uP14725n/uHYh47Whv3P9E9SrS1YxrSFesdp1kf0rPlUTl/dHM2ViruZc7/vnOo/GvnV1j6kth5f/RjHstVcxbJzbH1JamoufMQDZiSktToi8J/HT/G3Hd138YfQPZsmNS+jLJAz/el/9zuTnpONwdP9jTGdmSN3Me3Lk/vvfMgfwLKIXr4Subfx7bXzgYS764ZcgLPaXV0Y/3ZSpeGwAAAAAAAIBfLQLqAAC8ZRUGTAttf+Gf4qXXj0djXSp6B7LR1TMYlHztaN+QKuovv9EdV9zzSDy35mMFodjBnXr6szGQycYtlw1frXuklcVL99/T0RUREZlsNlYsmZm/zliDvsMpDOzWEvoda3tGer1ykgi5l1M6J6WGm9NNdy6Na//ssSh3itJjy/VhpP2qtn+Sle5HO2fDVbofrr+54//uR+2RzZ68R0bTl6TGY92ti2qap1e7euLcs8bF+845MyIifvLSoejs6qn5OqVKr1mpP411qdj9xY9HRPmXSc4a3xgffM+Uomr+Ofd87+eRzQ5+U0TfwOCzry6ditYJTfmXeCIG18P2Fw7G4i9uyW8rDac3pAe/saLgCy4inYpYPrc1/vOvzz0l33wAAAAAAAAAwNtHKltaPo13lEWLFmV37NhxupsBwDvMo48+GsuWLTvdzeBX2O337oipE5rj5sXnxfVffyx6B7Ixsbk+Dnf3Vzxm71euqRhQriXE2nG4+0T19QP58PZH5w9WFi8XYs3tX64SeWlgeXxDOs551xlFQd9K4fxajaWvheNba3vGcr1SI61SX6uTc/hy/iWFQk31qfjo/OkV53S4gPusyePjm5/5QLROaC7bh5H2q9r+tayv4SQ5ZyNtf6Ek+pLEOXL+8O92xref2hefWjgjvvbpBSM6drQKx2r9tvaK+33q0hnxtZtOtmnVhl1x//b2aKxLR+9ApuxYV1u3qVTkjxlufec01Q9eqz6dir6ChPrE5vr4yeevHvZ4AAAAAKrzOxgAAODtIpVKPZnNZssGSlRQBwDgbWfdrYti1t0bY/0Tv8xvqxROP6OxLr71ex+IiPIVh3Mh1uEUVhaPiGErixfu31ifju6+wUBn4f65ytUrFp8Xa66fHxGR///ljKQC91j6WhhGr9aepK6Xk2RV8HJyc9I7kI10arACdCoGq0OnUxG9A9mqczpceHfva8eKqk4X9qHctlqr75fbP4nK+0nMWU7h2rzinkcqtn/ryuVD1vBo+1J0PyQwHqXj/sBT++KBp/aVnaekqvzPWbU5egeKx6qaB368Lx748ck2DVfFPiKi0kvp9emI31x88tscStdDqfENdfGxi6fnq7Pft+2XMWlcffzeh98Tf/6DX8TxMscAAAAAAAAA8KspfbobAAAAo7H+tsUxrqGuaNu4hrpoqk8N2Xfe9EkRMbZQ79zVm+O+MkHjuas3VzwmFx79yIWtERGx/YWD+XPNuntjrN/WHtns4Hlm3b2x6rkiTgba1z68Z9j2JhHYHYmkAtPXLmiL5obBf6Y0N6TjugVtsfWu5UX7dRzujpvWPR4dZcK4w3m1qyduXDgjzmiqj/OnnBFnjm+IOWe3xGXnT44VS2ZGZ1dPxWP/9N8tGPb8V190dlx90dlFffjoRWfHr5dsK9evnFrHIbe+Ntxx+bBtLyfJNVK4Nqu1v9IarqUvpfNeeq6xjkelLxcrt3kk92K5tud84n3TIyKiLj343MqN1bsnjy97nrpUxHUL2mLDHR+Mm9Y9Hl+4fn6suX5+zGubGGuun1/2mw4eu+vKmFlyvlmTx8e/fO6qomNK10NOY91g2ya3NMbXbrokf60XvnxNPP3/XB2fWXZBPP3/XB27E3iJBAAAAAAAAIB3BhXUAQB4W1o6e2o01KXieN/JbQ11qWhuaIwzxzfEnVfOjrX/tCcOHesrOq6WisPl5KoLb3x6fwxkB4Oin7ikrWq16Uef6yyqyPzi68dj1t0bo7EuFdcuaIuHnnk5evqz0VSfiuVzW+PA4Z7oONI9JCA82sritfY1qWrQox3bnFoD04Xh4DU3XDyia6y7dVGs3rArunr647pL2kZ0/O9/Y+ew+zz07CuRTg2GmnN9mNLSFNmImoPgw41DufmqpdJ9ueNGM2e1VEsvHYPvPr0/Hty5f8h+uTVcS9X+3Lxf9qUtkSlIjZe7H2qt/F/osbuWx03rHo+9rx3Lb5s1eXx88zMfyP882ntx7ZY9sf2Fg/GJtY/Fd+9cOmTcBk50qLsvE995en9R/woNZCMe3Lk/vvP0/shG1HQPXPHV4mtFDFb7v+KeR4a0uXA93H7vjogYvGdGcz8DAAAAAAAA8KsrVenrvnlnWLRoUXbHjh2nuxkAvMM8+uijsWzZstPdDIg5qzfHuIZ0/N6H3xN//oNfxPG+zCmr4lsaTM2pFkztONwdazb9LL7/7IHo7stEc0M6rr5oWqy65r3xJw/vKarIPru1Jf61sytWLD5vSOA0V305F5wtPE8SFdFXb9gV921vL3vtN9vt9+6IqROaiwLTufDyaOagUKXjG+vTNa2bWXdvrPp5XToVrROaYu7ZLXHOu84YEvqu1K9yqo3DaOcrqXkuPM+dV80uu8bfONZbNAYvHTwaE8c3lr0XhlvDleYtJ8n7Yek9/xQvvX48//O5Z42LrXddmf+52j0d2RjyAkCltjfUpWJCc0O8caw3Bk78k3xSc30snTMlNv3kQNmq7dVUuwfmrNoUvQNDz9hYl4rdX/z4CK8EAAAAwKnmdzAAAMDbRSqVejKbzZYNPwiov8MJqANwKviPo/wq6jjcHdd+/bHoPNyTD5SOb6yLR//Lsqqh2FUbdsX929ujsS4dvQOZWLH4vPjWky9VDdxGnAycVgq4plMRz3/5mjH1aSyB76Sqro9EtXBwLW0oPb4unYqBTDY+tXBGfO3TC4Y9vlpAPVcx/MaFM+LF14/H5z85Lz7/nZ8mOj6jna+RHldpbqutxWxE0RovF4Avdy/UEpQvN+/TJjbH3teORVP9yM5VTbX53fuVk/dapX6UewGg43B3XPblLRUropdKpyKe+NxVQyq5Rwy+SNHbn4lZk8fHy2905yvsf3R+9Xug1n4BAAAA8NbgdzAAAMDbRbWAevrNbgwAALwdtU5sjo6CcHpExLHegVj8xS0xd/Xmise92tUTK5bMjA13XB4rlsyMzq6e2LpyeVy7oC2aGwb/Ol6XGgymRgxWg75uQVtsvWt5RERsXbk8rr7o7Pz5GutTMWvy+PjQnKlj7lNpO0qvXc3aLXviR3sPxtqH94y5HbVqndgcE5rq88Hcnv5MTGiqrzkAnju+u28wZD1wIjX8wFP7YtbdG6vOY7XPIiIy2YhsNuKBH++LH+09GH/wtzsTH5/RztdIj6s0t5XO86E5U4es8XLK3Qu1KDfvA5ls3HjpjJjd2hI3Ljyn5nNVs+nOpTHjzHFF2845c1xs+oOlQ/px48IT1750Rty/vT1m3b0x1m9rj2w2Yv229vx6ap3YHNcvmFFzGzLZiMVf2pIPpzfWDT4Yzmisi7+/4/K45bKZ0Z/J5l8UGOk9AAAAAAAAAABvhvrT3QAAAHg7mLt6c9kqyOlUVA0Ir7v15Iuia66fn/9zaeA2IsqGrlsnNsfznUfzx/X2Z2PpBVOKKjSPtpL5aALfpVW0129rj/Xb2muqup6EXMj55sXnxf3b26PzSHfFfcuNzatdPfGpS2fEq0d747HdnTGQjaJK7JVsXbk8Vv5/P4lHd3cO28ZsNmJPR1dEJDs+ow3o13rccHNb6Tx/8psL88cUrvFSle6FQpXWc7l5H99QF8++fDgWnHtmfO2msi9kj+j+mNc2KcY31hVte/VoT0xpaRrSj9UbduWv/cTnroo1m34WG5/eHwPZwRdOfm3e2dFxpCc6jnTHwaO90dyQzr8YETG4z0CZ50lzQzqWzZkajz//Wvzae6fFbUvfne/vvLaJ8a0dLw6pYr9+W3t888mXYneF9fWflp0fX3/0+SHbf//K86uOBwAAAAAAAACMlgrqAABQg1z16BMFjfNuWDgjWic0R8fh7rhp3ePRUSUwXaiwmnTbpOZorE/HX/37RUWVpeeu3hyz7t6YDzvnrN/Wnr9Wrtr1Vzb9vOr1K7WvWlXrcseMpep6EtbduijWXD8/5rVNjDXXzy8KPZcqVwl83a2L4ms3LYhzzhwXmSj/UkBOYf9bJzbHP++pHE5PpSJmTR4fTfXFC6SpPtnxGW0V8lqOq2VuR3v9WlWq3r7u1kVx55UXxOe/82x880ft8dCzr5StWF7r+Sp543hfTBpXH6kYrF7e3ZcpOjZ3TxZee/GXtsQ/7NyfD5wPZCMeevaVeKr9UKx9eE9s3dNZFE7P7ZOTWzHp1GBF9F90Ho3D3f0xriEd89omxp1XXhCvH+uLjiPdsXXl8jjnrJNV3utOfPXCJy+eXrFP/+Wj5V+8+M+/XvmFDAAAAAAAAAAYi1Q2W6ZsG+8YixYtyu7YseN0NwOAd5hHH300li1bdrqbAW+6VRt2xX3b2vM/z2ltiXdPPSNfUfm+7e2xYvF5+ermhcpVcs5tO/fMcfHtnfuGHNtxuDsu+/KWspXbK0mnIp7/8jVDtg/XvnIqHbNqw664f3t7NNalo3cgM6JzvhlKK4HnFFYxv/3eHTF1QnNRRe7SsHtp///9/95esYJ6OhXRdua42HfoeKQiInOiknYm4i03PtWc6rmtVNG8ljnLzceNC2dEXyYb33/2QHT3ZYoq4OfOWcv5Ss1ZtTl6B4YeU3jshjs+GLf+1fbo6umLnv5sNDek48NzpsZT7YfitaO9MVDjzTpr8hmx5vr5ccd9T8bh7v6Y1Fwfx/oGoq9MWfV0anA9pWNwPVVTqX+z7t4YERGLZp4ZO355KCIi9n5l6HMCAAAAgNPP72AAAIC3i1Qq9WQ2my1bWVBA/R1OQB2AU8F/HOVX1e337ognfvFavHEiUHrZeybHo8911hSELRf2Pv9zG8uGzwuP/cO/2xnffmrfiNuaO8dogrrDHVNLuPt06jjcHWs2/axqgLmaSv2vJJ2KeOKPror/+vfPxNQJzfF8Z1cceON4dHb1xq/PmxZdPX3xhevmx3+898lIpSLW3fr+mtpxqpULi5/qua300kO1ObvinkcqzkdT/WCQ/saFM+LF14/H5z85Lz7/nZ/G5z85L/7in58f0RrI3Wt1qeIK5031qfjo/Omx6pr3xtqH98T6Ey+p5K694sRY1ZJNT6cishFR7Z/hzQ3pIRXXhzPSNQ4AAADAW5ffwQAAAG8X1QLq9W92YwAA4O0oV4E4543u/njo2VciIuLaBW1lg7ARQ8PO67e15wOu5Vy3oC1/bETE0d7+OPescfHi68eH7JurrFyoqT4dH51/8vob7vhg3PJX2+NoT3/09A9tXzlbVy6Pm9Y9HntfOxYRMeSYdbcuqlgJ+62gdWJzTGiqj57+TDTVp6OnPxMTmuprbufWlctj9YPPxPdPzG9dKuITl7TFgzv3l90/k41ondBcFOTOBbHHNaTjazcNVtjf+eKhiIhY+/CeMVUlT2rs127ZEz/ae7CoPYV9uPPKC+Kz33gqOo50j3mOK90HuZceWic2R30qFd19mWgsmbOtK5cPCa+fNb4xPvieKXHb0nfH/dvb4wfPdcRLh47HH/ztzvjXzq64f1t7zWugtG2F4fR0KqJ3IBvffXr/kPnv6c9EXSoVnV098aHZU2Pva0dj/xvHo7e/cvr8YxdNi7NamuIXHUei/eDx2Hfo5H19zpnj4n3nTorNzxzIt7kWjXWpEa9xAAAAAAAAADiV0qe7AQAA8Haw6c6lMb6xrmjbOWeOi01/sLRqEHbryuVx7YK2aG4o/qv3OWeNK9qWTg3+/9KQaaXq1blw+qTm4ndOS69//7b2OHi0N3r6hwZ/y5m7enMs/tKWfDg9IqK7LxPffXp/0TGF4ea3ole7emLFkpmx4Y7LY8WSmdHZ1VPzsVd89ZF8OD1iMLD84M790VCXGrIG6lIRE5rro+NId0QMjt+suzfG+m3tkc0OBrFzP+fkts1dvXlUfRvr2Fdq49zVm6PjcHfctO7x6DjSnegcl94HzQ3puG5BW2y9a3l+nx/tPRgRER+5sLVozsq9cHDVha3xtZsuiRv+3x/G+id+GS++fjyy2Yg9HV35Pt23rT1SEcOugUr36ISm+rjs/MmxYsnMuGL2lLLtf/yProx1ty6Kv/7txXH5BVOib6ByOD0VEf3ZbKy5fn584z9+YMhaGtdYFwOZbH7dfurSGUPOUXeiiY11gw+MMxrr4u//09IRr3EAAAAAAAAAOJVUUAcAgGGUVljOeenQ8Zg3fVI+DH3z4vPi/u3t0XkirBxxMlzb3Vd8/EslFdE/On96vOuMxqJjK1034mTl9De6+4d8VqlKe29/JtKpqBpkzVWr/u7T+yOTHazIPn3SuJg1eVzZNpVWwk7CaCuEFx5XGOxfc/38ms9Rbcx/ePeVsfy/P1q8MRXR1dOfr0JeWu27qT4dZ53RGK+80R256HJdKuIj886O/zaCdpVrW61jXzqe5SqS5yrkr314T2x/4WAs/uKWEV+nmsKQeWN9Orr7MlGfTkXrhOYh/dr4zIGIGFx7Oa929cQNC2fE7gNHYu60ifk1nOvLQ8+8HD0Flcsb69LxsYsH+9Q6obnqGqh0jx7p6Y9/+cVr8eQvX4/n1nwsVm3YVbUie+458NGLzo7PrH8yunoG8p/Nmjw+vvmZD+T3L/1GhojBcP2ejq7Y+5Vryn4eETGQibjlsuJnzby2iSNa4wAAAAAAAABwqqmgDgAAw8hVWM5pqEtFS1N9TGlpjIjBKudrrp+fD4qWVj3/xvahYfGc9bctiVsumxkDmcyQY7euXB7nnDWuaP90KuLqi86OTXcujVmTx5c956zJ42PTnUvzVdkLZbIRj/y8o2J7cmHdbAwGhHsHMrH0gsnx17+9pGgsqlXCHqvRVu5OouJ3rn91JWP3qUtnxBX3PBJHeweKtg9koqgK+RVffaSo2nfvQCY/nvljshFTWppGFL4vbNtIx750XMpVJP/O0/tj8Re3lH2xIak5zgW4P3Jha0REbH/hYM39WnfrohjfUBfPvnw4xjWk4wvXzY8bvv7D+I/3Phn1qVT0DmSL1ntu3Gsd41e7euLGS2fEsjlTI3eaulQUtWO4qvy558DS2VPjzPGDz4aGEwtpIJMtasumO5fGjDOL7+3cNzJERKy/bXGMaxharf/9551Z9VkDAAAAAAAAAG8FKqgDAMAwcoHeVGqwMnPvQCY+vaAt1txwcU3HP/G5q2LNpp/Fxqf3x0BBUvnjF0+Ltf+0p2yl8EqVvDPZiH/86Svx0LOvVLze3teOxcfXPlY2oB4RMaG5ITqOdFcM79ZSEb5SJenRVj+PGH2F8ErHNdalY8F5Z46oLbn+Fc7TnNaW6Orpr1hZPee6BW2x6pr3xn/9+2eKxu/7zx6Ic88aF+8758yIiPjJS4eqVrEfrm3VqngXqjaey+ZOLWrjSwePxcTxDfmq6nXpVAxkstFYlxr2OrV69LnOova8+PrxmHX3xmiqT8e/ff85FftVqR85r3X1RDYbRS8BFO639yvXDNu2dbcuGnKdgWzEgzv3x/eeORDPrfnYiKryX9Q2MZbNbS17D0VEzGubFOMbiwPo4xrrYt70SRERsXT21GioS8XxvpOfn9FUHw/ccfmwfQEAAAAAAACA001AHQAAalAttD2ccqHnSc31seulN+KlQ8dj7cN7hoTdt65cHms2/Sy++/T+yGQHv/po2qTmGMhmo7tvIBace2b8YPer+f3r04OB2mx2sMr6Jy9pizeO9caP2w/F4e7+onO/drQ3Fn9xS8Xgd7Ugbsfh7ti06+W48dIZcdvl5w8Zi8Jq3bUG+Ev7nAtJNzek4+qLpsWqa947quPqU6n49s59I27Lq109Mae1JXZ3dMWc1pZ499QzYt2ti+Kn+9+IT/3Fv8Tx3uKgejo1GI7OhapLx2+4MPNIjGQdVhvPwrB5rn2rNuwqConPbm2JP/nNhSNe76NpT2mov/B6W1cuj5vWPR57XztW9rwvvn684jUbSkrhV3uBIpstjbgPymSqv5hQTi1h9jeO98Wcs1vizitnx9p/2hOHjvUVfd7dn4lJ4+rj9z78nvjzH/wijveNvB0AAAAAAAAAcDoIqAMAQA1GUj25nG9sby/6+Y3u/njjRHC8XKXwXKg9GxFN9YNV26+8sDUiIu7b3h5PtR+KiJPh6HdPaYl/7eyKxvp09PZn4jsngu3V9PRnYu7qzUNC6tVCvGu37IlDx/tiXH1dzGubmB+LkVY/L3eNkVYIzyk9rrsvEw/u3F9zWwqV9mN3R1fs7ujKj1M6hpalnzSuIa58b+uoqqKP1EjW4UjH89Wunrhh4YzYfeBIzJ02Mbp6+ormeKyqtadSvyp9k0A5ZzTWxdHegfzPLU118U//v2VF+1R7geKxu66MJV/aMqQSe18myt4nY7V91a/l//yJS9qGfL674HqfWXZBotcGAAAAAAAAgFMpfbobAAAA71SP7emM93xuYzz2r53xxOeuimsXtEVzw+BfwdOpwf+LGAygX7egLbbetbzo+Fy17A13XB6pOBm0zmYjXxU9c6Jq+p6OrlixZGZ85ESIfdrE5rj6orMjdeIa6ZJcdV0q8tfsONwdN617PDpOVK0uDPHmzF29OWbdvTF//fXb2mPW3Rtj7urNETFY5bqwf80N5fuUU+4apX1esWRmzaHvwuM+demMmDapuWpbOg53xw1f/2Fc//Uf5vtdSz/OaKqP+hP/imppqou6VMTrxwYD+7mQdel4nk4jGc91ty6K8Q118ezLh2NcQ7ooNB5Rvl8j7Wu59lQ7R24+cuu3oS4VdUPfEYhPLZwRAyUV0AvD6sOt34jBAP20SeXD+7mXOQq9leYZAAAAAAAAAN5KUpW+xpx3hkWLFmV37NhxupsBwDvMo48+GsuWLTvdzYC3vPd9/qE43N0fE5vr4yefvzpWbdgV929vj8a69JCq0LcsOW9IRedCHYe7Y82mn8VDz7wcPf3Ff4efNXl87D90PHoHqv/dfmJzfRzu7o90ajDYnrvm6g274r7t7ZGOiHKnaKpPx9aVy2PNpp/F9589EN19gxWwW5rq497fWRzzpk+KiCjqX+9AJlYsHtqnShWxa6luPhKlbZna0hTfvXNpvnr46g27Yv22war2pWNfqR+1VPNuqk/Hb7z/nLhve3vZ/r9VzVm1OXoHKs9Lx+Hu+MSfPhadXT1F/cqtndH0NVdF/9wzx8W3d+4re47cdTuO9OS/SSCyUVTl/IzGujjeN1D2GwPSqYjnv3xN/v7Jrd/mhnRcfdG0WHXNe4sqyt9+74546NlXyra3sS4Vu7/48fzPY+k7AAAAAFTidzAAAMDbRSqVejKbzS4q+5mA+jubgDoAp4L/OArVzbp7Y8XPbrlsZvzdj9qjr0wSfLiQ9vmf21g2hJuTTkU01qeju69yiLoulYrv/P7SuH97e9y/7ZdVz1ca4l21YVfct609UnEyIFwY7r793h0xdUJz3Lz4vLh/e3t0HukuW4W7lqDwWBW25f/626did0dX3LLkvPjWky9VDJnnxr9SP3Jt3/j0/iFB/uaGdPT2Z8qOZ9Lh+1PhD/9uZ3z7qX1Rl07FQCZbNC9X3PPIsMH8nJH0tdJ6LjxH7kWC2a0tsaejq+K5Fp57Zkyd2BTfrxAub6pPx799/zlVX6Co9gLCrMnj45uf+UC0Tmh+016yAAAAAOBXk9/BAAAAbxfVAur1b3ZjAADgnW79bYvjd//myTjeN5DfNq6hLv7yt94fSy+YGndeeUHFkHY1H5o9Nf61syteev140fZ0KuKTl7RFXSoVG3bui8b6wbB0obpUxEfmnR3/7fr50TqhOdZcP79sO6ZNbI5fHjyWr/I+oak+Hxx/tasnIoqrV6/f1h7rt7UPCeeuuX5+2T60TmyOCU310dM/WIW99BpJWXfropi7enOsf+KXRW2NiEjF4JjlQubpE2PzhRNtLgzVF/Zj6T2PlK0yHhHR3ZeJT106I/oy2RHP6+lUGrYeOJEY7+4bnJdK4fRURPz6RWfHD3Z3jriv1YLg1y1oi1XXvHfIPpXC6eecOS7ed+6k2PzMgbhgasuQzwvb9V///plYsWRm0YsHhaq9vD2QyebXaOm3Cbwd5hkAAAAAAAAA3kzp090AAAB4p1k6e2o01KWKtjXUpWLpBVMjYvQh7b/+7cUxrqGuaFtdajAwPqGpPo729seKJTPj7++4PGa3Fod1B7IRU1qaIrIRN617PDqOdJdtx0AmGyuWzIwNd1weK5bMjM4TofS5qzfHQxWqU1+3oC223rW85vF5taun7DUq6TjcnW/zcAr33bpyeVy7oC2aGwb/2dPckI7rFrTFDZfOKKqAnslGTG1pGnb8+yqE0yMirnnftOjq6a9pXkfSn1MtN0ZN9YPrNZ2KWDZ3anzq/TOis6sn/3nJco4bL50RU1qaoqc/E6lUjOhFg9J5iYhInTh/7hz566YHP6hLp+K6BW3x7snji8710qHjsWnXgchmy4fYc0H71gnNse7WRbHm+vkxr21irLl+/pDq/o/ddWXMLDn/9EnN8alLz4l5bRPz296slywAAAAAAAAA4O1KBXUAADgFuvszMWlcffzeh98Tf/6DX8TxvuJwcy6kXamac6lKVaczEYMh7yPdRYHb86eeEfsPHY+jvQNx3rvGRzabjc6unli7ZU/8aO/BWPvwnlhzw8Vl25GrGl5YPXzryuWx5EtbolyN6e8+vT/+5DcX1jw2625dFB2Hu+Oz33gq/uzmhVWDvR2Hu+MTf/pYdBzpybd5uH07u3riK5t+Hi8dOh7nnDluSJC4s6sn2iY1x/G+gbh05lmx+8CRqiH5ahW/c84a1xhrbrg4br93R9ywcEbsPnAk5k6bWPa8pXNQqS/DjU+tY1jNybD14MxmsoNVyQvbVZ9KxUB28O3mTETMaW2Jrp7+6Orpj9lTW2J3R1fMaW0Z9kWDodc8OabnnjUuPjSnNV46eDRuWvd47Gx/PXoL3iIYyGTjwZ37IyJiztktceeVs+OP//G52HeoO1KpwSB6OemIYdv12J7O+K3/vT3+z22L8xXkG+pS0TeQjfp0Kr520yVDjhnp/QsAAAAAAAAAv0pS1b7GnLe/RYsWZXfs2HG6mwHAO8yjjz4ay5YtO93NgF8pHYe7Y82mn8X3nz0Q3X2ZaG5Ix9UXTYtV17x3SDi5lkB1TlN9Op5b87H8NSoFnqudc9mcKfHXv71kRP1ZvWFX3Le9PVYsPq9iSLvSNQvbXEv7brmsOEi87tZF8Z+/uTMe+PG++NSlM+JrNy2o2tbc2P/DiYB0NU316fiN959Ttm+19Cc3B+eeNS6+/dS+suPz0/1vxKfXPREfmjMlNj1zoOoYFvah3NxWalNjfTp2n2jTFff8U7z4+vH4+MXT411nNEbnke74p593RN/A0H9Llpubcs7/3MbIlPmnaC4E//GLp8WP2w9F5+HuGMgOflNA68TmePCzlxe1/w//bmd8+6l9+UB5oVmTx8c3P/OBYcP77/v8Q3G4uz8mNtfHB94zOaZOaB6yXgAAAADgzeJ3MAAAwNtFKpV6MpvNlv2luoD6O5yAOgCngv84CqfHqg274v7t7dFYl47egUzFYHIuUL3xJy/HQCYbdelUfOS9rZGJiH/e3Vkx4F4pNF4t/H3NxdPi6yveX3Mfag2dV9ovnYp44o+uqilkXe78Iwm9j+T8zQ3p6O3PlA1d586dm5eHnnk5evqz0VSfio/On140B+/53MYok/suat+suzdW7WM5lea29MWHnE8tnBHf3fVyxbFqm9QcL7x2LFIRkT3R/0ovTJTTcbg7blr3eOx97diw+zbVV17vufB8rh3ljq00JpXGMSJi71euGbZdAAAAAHAq+B0MAADwdlEtoF7/ZjcGAAAYnVe7euLGhTPiuQNHYu70CdHZ1VN2vyu++khRsHggk43vPftKpFODId6m+nT09GdiQlN9tE5oHhLAXr+tPdZva8+He7euXF6xgvjGXQfi4dWba6qaHRH5c5WrBF9uv1zIPueGBTOGBKC3rlwe//XBZ+KhZ18Zcr3S81d6Qbfai7tbVy6PZf/90TjWN1Bxn57+TNy4cEb0ZbIV+9Y6sTkmNNVHT3/2xDHZmNBUH5GNePfnNkalJuQqgVcLVOf2yclVTN/Z/nr0FiTeS+c216bCcHpExANP7YuIwRcCGuvT+f5092Wipz8TL5wIlufO3N13cj0NZyQV/lMRseGOy/PVzCudo9LsVXsde/1ti+N3/+bJOF4wr+Ma6uIvf6v2Fy4AAAAAAAAAgKHSp7sBAABAbdbduijGNdTFsy8fjnH1dbHu1rIvocbWlctj2qTioPD0Sc3xoTlTY8WSmbHhjstjxZKZ8dLrx+OmdY/Hhjs+GNcuaIvmhsF/HjQ3pOO6BW2x9a7lEXEyWF1JT38m5q7eXFMfToa0M0OC8uX2G8hkoy41GFSe3doSrx3tiZvWPR4dBWHl1onN8Xzn0SHXSqdiyPkfu+vKmDl5fNF+syaPj8fuvrJse+eu3hyLv7Slaji9Pp2KFUtmRldPf9W+zV29Oe7b1l507Ppt7fGBL2+JbHawHbk5KLT3tWOx+ItboiEdMePMcWXbkNsnNw9rt+yJH+09GJ+8pK3q3EZEfGN7e9lzplMR1y+cUdSfj188LaZNLJmrCU1xzfumVXxhIidXNT233tKpwe2pGFyfpX2fNXl8bFt1Vcxrmxhrrp9ftN63rlxe1K+m+nSc0Vg35PjHCvpZaunsqdFQlyra1lCXiqUXTK3aDwAAAAAAAACgOhXUAQDgbWC4KueFSiuoR0S8/EZ3HDzaG8+tWRwREWuunx+rN+yK+7a3x/3b2vPB6lSZUHe1itd1qYhPXNI2pAJ6Na929cSKJTPj5sXnDamMXbrfLZed3O+lg8fipy8fjs6unlj78J5Yc8PFVdv23d+/Ysj5Wyc2F1VkjxisMF+p8neukvt3du6vWI27P5ONO6+6IFonNMe//9/bY2pLU/zxpy+J7z3zStG1S6vH569/4sR7T1QlL+e6BYNjvOIvt1Xc5+qLzo5HnussqrT+wI/35f9c6YWAJz53VcVq9V09/UPm6mhPX9F1J41riK/fPHzV8Xu+9/PY/sLB+KvHXogJTfWRjcEQfCYb0dJUH3XpVLz0+vFoqEtF30C26rwUvuiQSkX0DmSiPj0YUG+sS0XvMMfndPdnYtK4+vi9D78n/vwHv4jjfbVVdgcAAAAAAAAAKhNQBwCAt4HScHNzQzquvmha2WD41pXL49qvPxadR3oHK5CnU9E6oSke/OzlEVE+7F7o/Mnji6phVwpWRwyGq8tVQK+msBL2muvn17Tft3a8WDag31iXjmsXtJUdl9YJzUPOXy7Q/uLrx2Pu6s1Dgv4RJ4PQlcLpObnA/DlnjYsf7OmM7+06EGtuuLjsuXIVyXsHMjHzXePjwOHu6O7LRDoVMa6hLo72Dq3W/uDO/fHgzv1V2/B859F4rMw6OWt8Y3zwPVPitqXvLvtCQGG1+lREZCNiYnN9dPX2V52DnD0dXUO2dRzujs9+46n4s5sXxhX3FL8wURiaz41r7hx1qVQ8+J+WVn1xIefVrp6YPbUldnd0xZzWljh0vC9uuPScYV98KLS7YM4/s+yCYfcHAAAAAAAAAIY39PvjAQCAt5zScHO5StiF+1514dmRyWajqT4dmWw2rrqwNb/v1pXL49oFbVGXKn+t5187Fg89+0rMWb15yLXLWb+tPeae2PdUqFYl/e8/+8GY0FQf3X2ZSEVEd1/lcYk42fem+sF/CjXVp+O6BW2x9a7lFa99X0mAv5z129pj1t0bY/229shmT/5cOi656vF/9Vv/Jqa2NEVPfyY/p9mIaDtz3JBz16VTMX1Sc6y/bXHMKPN5zp6Orlj8pS3x3af3F62Tqy5sja/ddEnMa5sYa66fXxQ6z7n/RB9zgfHD3f3x0LOvFLU/my0f0288sZA6DnfHTesej44j3bF2y5740d6DsfbhPRWPS0VEc8PgPDQ3DM7D4390ZdV25sxdvTkeevaV2H0i2L67oys6jvTEt3a8WNPxAAAAAAAAAMCpI6AOAABvE7lw84Y7Lo8VS2YWVTkfyb5XfPWR+Ied+2NgmLLg/QMnQ+G5862/bUnMmjw+ctn2unSqasB7tArDzltXLo+rLzq77H73P9E+WEm7tSUiIma3tlQdl9KwfbWgf8TJQPtw6lIRM84cF031gyOTC1yXjssXrpsfu185Ehueeik6u3qiPp2Kj82fFnXpVHz84mnxxvG+uOWymfHx+dMiIiKdihjIZOOD75kcS2dPjX2HjldsQ+6aH5o9JT/3NyycERt3vRwdw1QTv2HhjMF+pCu3/7G7royZk8cXHTdr8vh47O4rIyJi7ZY9sf2Fg7H4i1uKgvq9FRZaKhU1vXBRTm5eSgPuSa9DAAAAAAAAAGDk6k93AwAAgNoUVoRec/38Ue+7deXyWPylLcNeL5ONmHX3xmiqT8dzaz4WEUOrmQ9ksvHgzv3xvWcO5PdJQmEF7m89+VLV6u2F9nR0xZ6Orpi7enPZ9sy6e2PZc6zf1h57v3LNkM9qGaeIiIFs5MPj1QLXH/jylhjIRmx/YfDnF18/Hi++Pnjclp91xD+vXB6tE5rj9nt3xC2XzYzXu3pi4zMH4js/eTnu+tiF8a7xDXHwWF/ZNuSqx//Jby7MbxvfUBeHjvfF2of3xJobLh5yTLn5LDxXYftbJzbnP2+oS0XfQDYGMtm44p5HKs5Pc0M6evszkSmTUc9GxIolM+PmxefF/dvbo3OYEH2hkXyjAAAAAAAAAADw5hJQBwCAXyHlAtqVNNWn4qPzp8eqa96b37Z15fK49us/jM7D3TGQHawc3jqxOR787OWjblPH4e747Deeij+7eeGQsHNpAL1yWwdDys0N6bj6omlFbS606c6l8bt/82RRJfLpk5rjr/79yUB/YXs23bk0bvzzf4nuvvIB7EKNdan45IK2uO3y84cErkuD4OV092Vi8Re3FPUnp7d/8LO6VKWjB78eK1c9vvR6uRB+4csGEYPzuWbTz2Lj0ycr6i+bOzUmtzSWrUR/UdvEWDa3NW5efF786SN74vvPvhL/57f/TXxzx0ux8Scvx0AmG6kYDJ831qWipz8TNyyYEd/9yb7oHTh5nvENdfHoymX5QPlwL1yUk6vqP5qAOwAAAAAAAABw6qRPdwMAAIA3z/rbFse4hrqibXWpiIYT/zJIFwSgeweyZatSZzLZfJh5IBtx1YWtw1au7jjcHTetezw6ToSIC38urJa+deXyuHZBW/4fKqmImHHmuKr/cHn35PHRO1BbJe15bZNifGNx/4/29Me86ZPyPxe2Z17bpDj3rPFV+5Yzc/IZ8bXfWBDz2ibGmuvnF1Wxz/WruaG2f4Jls8VzkTNQphJ5xOA4PbHqqvw1c9drqh+8XlN9Oq5b0BZb71pedNwVX30k/mHn/qLzPvpcZ3z36ZeL2p/zhevmx+5XjsSUCY3xr690xUAmG7f+r+2D5zhRJj13qlyF9KO9/dE3UHyeyS2NY652vu7WRbHm+vllxxsAAAAAAAAAOH1UUAcAgF8hS2dPjYa6VBzvO7ntjKb6+MB7JsfUCc3xi84j8VpXb0xpaYrzp7YMqUq9dsue6DhSXFm7XKXtnFw18ilnNMb2Fw7GPZt+Hl/79IK453s/j+0vHMxXDI84WeW7UDaiqNp5OS+8dizSqYgNd1w+bCXtcpXMD3f3l60sX6491ezp6IpZd28cUqU8YrDK/ISm+ujpz0Q6FZHJRrRNao79bxS3NRUR1y5oi1XXvDcu+9KWqFXrhKb47P2DVd9bJzQXXS8iKgb3ByviPxYH3jg5h9MnVa6Iv3bLniHzVpqZL6yqX7hfoRdfrz6nAAAAAAAAAMDbl4A6AAD8iunuz8SkcfXxex9+T/z5D34Rx/syw1afLhfsznno2Vdi1t0bY+9Xrhny2WVf3hKZggTzA0/tiwee2lf2PM0N6ejtzxTtX4vrTgS6Wyc0x5rr51fdd+vK5fFfH3wmvv/sK/lgdToV8ZF5Z8cfXDU7/uKfn4/vP3sguvsy0dyQjqsvmharrnlvRDZi8TCB8ca6iI9dPNiWcl7t6okVS2bGzYvPi/u3t8ejz3UM2ScbkQ+Sf2j2lNjxy0PR1dM/7Bg01qfzVd/X3HBxzFm1KXpLyq2v39Ye33rypaLw/BVffWTIvL78Rndccc8jRftVm/+IiDMa6+JY70A01qejdyCTr6q//rbF8bt/82QcLyihPq6hLv7yt94/bJ8AAAAAAAAAgLcnAXUAAPgVs7sgePyZZRfUdMzWlctjzaafxT/s3F/T/sMFmsvp6c/EDQtmxI/bX4+9rx3Lbz+jsS76Bgaid6D8ceUqg1dSLpCdyUY8/NNXYt2ti/JVx5vq00VVx+eu3jzsuXsHIr7z9P74k99cWPbzwpcA1lw/P26/d0csm9saz3d2xatdPTG5pTHeM3VCvgL8X//2klh6zz/VFFDPVSTPVX1Pp4o/r0tFfOKSoeH5bLb82wCl24eb/6O9A3HLZSfD97k+lKvY31CXiqUXTB22TwAAAAAAAADA25OAOgAAMKzWic0xoak+UhFRLtL8pRsuKvo5F2h+6JkDQwLh9emIwk0tTfXxF7e8P7737IG4f9svh1RQP1ohmX72xKb4yLxp+TB0LbauXB7Xfv2HceCNk8eMa6iLJe8+KyKGVjnPnXvryuXDVlCPGAy7z129uaj6eCXDVa2fdffGYc/x7snj4+Jzz4yNP3k5BgoGrnQMB7IRD+7cH9975kBR20qrrFfanp//VESq4PwNdaloqq+L5oZ0vnp9aRX7chX7AQAAAAAAAIB3LgF1AACgJq929cSKy2bG+id+OeSzm5fMKvo5F2juHTgZRk5HRCYisgXh5r6BbJw1viGWzp4SS2dPiTuvvCCWfGlLPgRfl05FfToVn3hfW7z8xvEhlcZLw9DDKVdB/XjfQDz+/MGIGFrlvLA/H3zPu+JffnGw6vmvvujs+MII21TJpjuXxu/+zZOx79Dx/LZ0KuLcd42L//LrF8baf9oTu1/pihcKqs1XM31Sczz42ctH3Z5ceP9gV09seuZApFMR/ZlsfHpBW6y54eKKx42mYj8AAAAAAAAA8PYloA4AANQkF95e/8QvIx0Rn7xkenzn6ZejUj3sXKD5F51H4rWu3pjS0hTnT22J7z97IH79omlDqpSXqxg+kMnGQCYbX7vpkkT6MFhB/bHoPNIbA5ls1KVT0Tqhqabg9nDh9IiIqS1N0TqhOYmmxry2STG+sa5o23umtsQ//uGHIyLiE5e0Rcfh7rj26z+MzsPdUaEYet5VF7YOadumO5fGx9c+NmTfTX+wdMi23Pzffu+OuOWyoVXmAQAAAAAAAAAiBNQBAIAR2vuVa/J//pN/V3m/wmrkhQorkxf+ef1ti+N3/+bJON43kN9Wl4pYeN5ZY2htsdaJzXHVhWfH/dvbo6k+Hb0DmbLB7XIa0qnoy5RPgV9z8fT4yUuHorOrJ7G2RkS8cbwv5pzdEndeOTvW/tOeOHSsr+jz1onNceCN6gHxsyc2xUfmTSsbJJ/XNqnsMfOml98eUbnKPAAAAAAAAABAhIA6AADwFrF09tRoqEvF8YIM9hlN9fH//d4HE71OrrL7SCuAp1LltzfWpeLrKy5NsIUnbV/1a/k/f+KStrL7vP+8M2Pni4eKKqjXpSK+cP1F8dOXu6LzSHfVIHnrhKY4c3xDxRA8AAAAAAAAAMBICKgDAABvGd39mZg0rj5+78PviT//wS/ieF8m8WuMpgL4rLs3Vvysd6B8VfU3ywN3XB7v+/xDcbi7P7/tjKb6uHnJrJqOryUEDwAAAAAAAABQKwF1AADgLWP3mo/l//yZZRecxpYUW3/b4vjtv94evQNlPvudxW9+g0q8GcF+AAAAAAAAAIBaCKgDAAAMY+nsqdHcUB+9A/1F2+vTEUsvmHqaWnXSWzXYDwAAAAAAAAD86kmf7gYAAAC8HXT3D1Ylb6pPR1N9KiIi0mn/pAIAAAAAAAAAKKSCOgAAQA0Kq5QDAAAAAAAAAFCecn8AAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAAAAAAACRCQB0AAAAAAAAAAAAAgEQIqAMAAAAAAAAAAAAAkAgBdQAAAAAAAAAAAAAAEiGgDgAAAAAAAAAAAABAIgTUAQAAAAAAAAAAAABIhIA6AAAAAAAAAAAAAACJEFAHAAAAAAAAAAAAACARAuoAAAAAAAAA/P/bu/do3cq6XuDfHyBogELe8HhDPWYqgpnhpTyipYIeNSVDjmSi52g6yjwerdQuakPLymFl5SFTKSgFpdTMSxcDLTWVSETzpKTgJTVuyXW7hd/54527PV1j3fZac13ezeczxjvWM+d8nmf+5jvfvf9Y8/s+CwAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJlHdvdU1sIGq6t+TXLTVdQCw17lVkku2uggAAAAAAIC9jGcwAADAvLhzd996sQMC6gDAHquqj3f3/be6DgAAAAAAgL2JZzAAAMDeYJ+tLgAAAAAAAAAAAAAAgL2DgDoAAAAAAAAAAAAAAJMQUAcA1uL3t7oAAAAAAACAvZBnMAAAwNyr7t7qGgAAAAAAAAAAAAAA2AtYQR0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQC4kaqqfavqiKp6WlW9tqo+XFXXVFUPr5euYc5jq+qMqrqoqq6rqq9X1d9X1f+uqgM34DIAAAAAAAC2jaq6RVX9aFW9rqr+oaouraqdVXV5VX2iqn6vqr5vD+f0/AUAAJgr1d1bXQMAsAWq6qwkT1ymy8u6+6WrnOuAJG9KcuIy3S5M8sTuPn/VRQIAAAAAAMyJqvqZJC9PcsAqup+e5Fndfc0y83n+AgAAzKX9troAAGDL7Ltg+7Iklya5+xrm+sMkJwztS5P8fpJPJrlVkpOSHJ3kbkneW1UP6O4vrqliAAAAAACA7eu7sjuc/q9J/jrJPyW5JMmhSX4wyfGZPaM5Kcltquq47r5hifk8fwEAAOaSFdQB4Eaqql6c5OAk5yY5t7s/X1VPy2wljmSVK6hX1eOTvH3YvDjJQ7r74tHxfZL8QZKTh11v6+4nTXENAAAAAAAA20VVvT7J7ZL8epIP9CKBjKp6SJJ3Jzlo2PX07n7TIv08fwEAAOaWgDoA8J/WGFA/L8l9h83HdPe7F+lzsySfSXKnYdd9uvuC9dYLAAAAAACwXVTVod19+Sr6/WSS1w6bH+juhy7Sx/MXAABgbu2z1QUAAPOrqu6e3b8c/exivxxNku6+NsnrR7t+dINLAwAAAAAA2FSrCacP3jpq32fhQc9fAACAeSegDgCsx6NG7fet0Pe9o/axG1ALAAAAAADAPLhy1L7ZIsc9fwEAAOaagDoAsB5HjNrnrtD3n5JcP7TvVVW1IRUBAAAAAABsb+PnKxetcNzzFwAAYO4IqAMA6/Fdo/YXluvY3d9K8uVh88Akt9+gmgAAAAAAALazZ47af7HIcc9fAACAuSagDgCsxyGj9iWr6H/pEmMBAAAAAAD2elX14CQnD5vXJfnNRbodMmp7/gIAAMwdAXUAYD0OGrWvW0X/a0ftgyeuBQAAAAAAYNuqqsOSnJndWY1f6O4vLtLV8xcAAGCuCagDAFPprS4AAAAAAABgO6qqA5O8I8nth11/keTVqxjq+QsAADB3BNQBgPW4atS+2Sr6j/tcOXEtAAAAAAAA205V3TTJO5McPez6+yQndPdS4XPPXwAAgLkmoA4ArMcVo/YtV9F/3OeKpToBAAAAAADsDapq/yR/muThw66PJnl0d1+9zLArRm3PXwAAgLkjoA4ArMe/jNqHL9exqvbL7j9beXWSL29QTQAAAAAAAFuuqm6S5K1Jjht2nZfk2O7+xgpDPX8BAADmmoA6ALAeF4za91+h732T7Du0P73Mn60EAAAAAACYa0Nw/M1JHjfs+mSSR3T35asY7vkLAAAw1wTUAYD1eN+o/agV+h47ar93A2oBAAAAAADYclW1b5LTkhw/7Pp0kh/q7ktXOYXnLwAAwFwTUAcA1qy7P5vZn6NMkrtX1XGL9auqmyb5X6NdZ250bQAAAAAAAJutqvZJ8sYkTx52/UuSH+zur692Ds9fAACAeSegDgCs18tG7ddV1Z3GB4dfxP5ukl3739bd4z9NCQAAAAAAMPeqqpKckuSpw67PJXlYd391DdN5/gIAAMyt6u6trgEA2AJVdZckz1iw+8gkjx3aH0zygQXHz+ru8xbsS1W9JckJw+Ylmf3y9YIkt8zsl7BHD8f+LckDuvuL674AAAAAAACAbaSqXpnkRcPmziT/J8lqnon8ZXdfs8h8nr8AAABzSUAdAG6kquqYJH+7h8NO7u5TF5nrgCSnZvefq1zMhUmO7+5P7OE5AQAAAAAAtr2qOjvJQ9cw9C7d/YVF5vP8BQAAmEv7bHUBAMD86+4d3X1ikuOSvDWz1UB2ZLaax4eTPD/JUX45CgAAAAAAsDqevwAAAPPKCuoAAAAAAAAAAAAAAEzCCuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACT2G+rCwAAAAAAAGB7qKo7JDkiyWVJzu3u67e4JAAAAABgzlhBHQAAAAAA4EauqvavqlOSXJzkPUn+Iclnqup7Vxj3oqp6R1V9rqq+UVU7quoLVXVqVd17M2oHAAAAALaX6u6trgEAAAAAAIAtVFW/l+TZixy6LMl9uvsrS4y7LskNSc5PsqvPEUnunuSbSZ7Q3e+evmIAAAAAYLuygjoAAAAAAMCNWFUdluRZSXYmeVqSg5McmeTcJN+Z5LnLDH9EkkO7+4Hd/cTufmKSeyT5qST7J3lDVe23geUDAAAAANuMgDoAAAAAAMCN2xGZPTM6rbv/sLuv6u5PJnnGcPyopQZ29we7e8eCfd3dv5PkwiSHJbnXBtUNAAAAAGxDAuoAAAAAAAA3blcusb+Hn/+xxnl3Dj93LNsLAAAAANirCKgDAAAAAHCjUVWHV1UPr1O3up7txHszrTl7P/8xyVeT/FhV/XhVHVRVRyT5g+H4O/Z0wqr6sST3SPLZJJ+brFIAAAAAYNvbb6sLAAAAAABga1XV4UmeNmye3d1nb1kxwKbr7p1VdXKSP0ty6vDa5S3Da1lV9QtJ7pbkwCT3THLvJF9JcmJ3Xz9xyQAAAADANiagDgAAAADA4Ul+abR99taUAWyhDyS5NMntR/s+3N0nrnL8Y5I8YLR9UZKndve5E9UHAAAAAMwJAXUAAAAAAG40uvsLSWqr62DvN4eftZ/Jt4fTk+SOqx3c3Q9Mkqo6NMmRSV6W5Jyq+vnufsVkVQIAAAAA294+W10AAAAAAAAAW6eq7pDkhcPmJ4ZXktyhqm65J3N19+XdfU6SRyU5P8kvV9X3TVYsAAAAALDtCagDAAAAAADcuP1Kku8Y2i/ILFi+y5FrmbC7dyQ5I7NV5B+7ruoAAAAAgLkioA4AAAAAMMeq6uZV9ZSqekNVnVdVV1TVzqq6rKr+sapeXVV3W2LsMVXVSf52tPuXqqoXvpY5/z2r6req6oKq+o+quraqLqqqM6vqCSvUfszoHC8d9n1XVf1uVX22qq6pqq9U1Z9X1YMXGf+YqnpXVX2xqq4bzvt7VXXYMuc8fHTOU5erb+j/HVX1nNF5rh1e/1pVf1pVz6yqm680z4I596uqrw01fK2q9lvFmPuM6j5riT5rvherrPuloxqOWU/frbj3C8YfVFXPq6q/Gs6zY/g387GqenlV3Xo186xwjhU/a0u8D3ca/t1+pqquHv5Nf2j4HK74WVlDnUcnecqw+e7u/uskF4y6HLWO6f99+Lnu9xMAAAAAmB+T/yITAAAAAIDNUVX7J/l6kgMWOXzo8PqeJM+tqud19+9OfP6XJXlJkn0XHLrT8HpSVZ2T5PjuvnQV8x2f5I+yeyXnJLlZkv+e5DFV9YzuflNV3STJKUlOXuS8z07yhKp6SHd/bi3XNarn2CSnJrntIofvMryekORBi9SypO7+VlW9Jclzk9wmySOSvGeFYT82ap+2SK2T3ovNtpn3vqqOy+y+3mbBof2T3H94Pa+qTurud67jsvbY8Jl7c5JDFhx60PD64ap67LA6+VRek9kq59cneeGwbxxQX9MK6oOHDj8vXMccAAAAAMCcEVAHAAAAAJhf+2QWTv9Kkr9Kcn6SryW5Ickdkzw4yWMz+13w71TVV7r7z0bjL8gsYH1Ekl8e9p2R5C0rnbiqfiXJzw2b1w9j3p/k2iT3SfL0zILdD03y/qp6YHdfu8yU9xvm+2aS30zy8eH6jk1yYmYB2tdX1QeT/HRmAeXzk5ye5KLhXM8cruWwzALIP7DSdSxzfT+a5E+yO/B9fpKzMgvajt/fRw217anTMguoJ8lJWSagXlX7ZPYeJMllSd694PjU92Kzbdq9H4LwZ2R2X69P8q4kf5Pkq0kOTvKwJCcM7T+rqkd09/snvt6l3DezgHhlFsL/cJIdmQXmfyLJgZl9meElSX5xihNW1ZMz+xwnyRu6+9NDe1UrqFfVI4e63tnd14/275/kOZndv2uyiv9TAAAAAIC9h4A6AAAAAMD82pnkuCTv6+5erENVHZnkfZkFd3+jqt7R3TckSXdfkuTtVXXFaMhnuvvty520qh6U5GeHzauTPLq7PzDq8uaq+o3hvPfPbAXml2f36syLeWxm4e+Hd/fFo/2nVdWnkrwis1DxGZmtCv+6JD+561qGut6Q5COZhbK/v6qO7u6PLnctS1zfXZK8cTjfDUmen+S3F3uPq+rQLBPgXUp3f7yqPpPkuzNbFfug7r5qie7HJLnD0D6zu785Ov9G3IvNtin3vqrumN339WtJHtvdH1tQyxur6rcz+8LHLZL8YVXdtbt3Tne5S3p8kouT/FB3f3a0/y1VdWaSv8/suc5PVtUr1ruKelXdNMmvDptXZRR67+6Lq+obSW6e5N5VtV93f2uRae6V2QrsX6+qc5NcnuTWmd2Hw5Jcl+Sp3f2l9dQKAAAAAMyXfba6AAAAAAAA1qa7r+/u9y4VTh/6nJ/kxcPmXbN7teT12LXKc5K8cEEgetd5L0vyI5mtnpwkz66qQ1aY96QFAeVdXp3kyqF9v8xWd37uOKA8nPOa7A7cJrPVzdfiRZmtCp0kr+ru31rqPe7uy7v77DWe5/Th53dktpL9Uk4atU9bcGyj7sVm24x7/8LMAtdJ8qRFwum75vpYZl9KSGZfDHjSqq5gGictCKfvqumjmQX0k+TQJEdPcK4XJLnz0H5Vd39twfFPDT8PSHKPJeZ4T5Jfy+wLBt+T2Xv1oCSXJPmtJEd091kT1AoAAAAAzBEBdQAAAACAvd+HRu0HrGeiqjogyaOHzUuTvGGpvt19UZI3D5sHJnnkMlOf290fWWKeHUk+Ptp1yhKrOSfJ343a91rmfIuqqn2TnDBsXpnkV/Z0jj1wepJdwfeTFuswrHJ9/LD5r939odGxjboXm23D731VVZKnDJsf7e4PrlDTGUl2nWez3qvzVqjr/aP2Hn+2x6rqdtm98v6XM/siwEIXjNpHLjZPd/+/7v7Z7n5wd9+uu/fv7oO7+z7d/bzuvnA9dQIAAAAA82m/rS4AAAAAAID1qarDk/x4kmOSfHeSQ5LcdInud1jn6Y7KbEXlJDm7u7+5Qv+/TPKMof2AJGcu0e8fVphnvLrzR1fZ79AV5lzMkdm9yvbfdveVy3Vej+6+qKr+LslDkvxgVR3W3V9d0O1xo3pOX3Bso+7FZtuMe3/vJN85tC+rqh9eRV1XZfZv6Z6r6DuFRUP6I18etdfy2R57ZZKDhvZLuvvaRfqMA+pHZfcXHAAAAAAAliWgDgAAAAAwx6rqeUl+NbuDyiu5+cpdlnW7UftfVtF/3Od2S/aarQC+nB2r6dvdO2aLZSdZOqS/nHGA/5/XMH5PnZZZQH3fJCcmec2C4+OV1RcG1DfqXmy2zbj3h4/axw6v1VpvGHy1Llnh+Ph9WMtnO0lSVfdL8tRh858y+wwuZmFAHQAAAABgVQTUAQAAAADmVFU9Jd8eaP5gknOSfCHJlUl2rah9mySnDO1913nag0ftq1fR/6olxi50wx7UsCd999Q4wH/Vkr2m89Ykr83sCwYnZXQ/q+qW2R2k/kh3f3bB2I26F5ttM+79LdY4Lkn2X8fYPbGRn+ux1yTZZ2i/oLuXOq+AOgAAAACwJgLqAAAAAADz6+XDz28leVx3v2exTlV17wnPeeWofeAq+h+0xNjt6huj9kFL9ppId19RVX+e5EeS3K+q7tndu1ZuPyHJTYb2Yqtcb+d7sc/KXTbVOJz/0u5+2ZZVsoWq6keS/LfRrr8erTq/nNtV1a26e6VV3gEAAAAAtt0viAEAAAAAWIWqumuSuw6bb18qnD6484Sn/rdR++6r6D/u85UJ69goXxq177lJ5zx91D5pkfbOJGcsMm6z78WOUXulVcVvtYb5N9KXR+0pv7AxN6rqgCSvWscUVlEHAAAAAFbFCuoAAAAAAPPptqP2hSv0fdQKx28YtVdaTvkTmQWVD0hyTFXdpLt3LtP/kaP2R1eYezs4P7NV1G+e5GFVdXB3b/Rq4+9OcmmSWyb5H1X180nukuRBw/H3dPeli4zb7Htxxaj9X1bo+4A1zL+Rzsvu+/rIqjqwu6/e4po22/Oy+0stf5Pk71Yx5pgkDx3aRw3jAAAAAACWJaAOAAAAADCfrhm177ZUp6q6Q5KTV5jrqlH7wOU6dveOqvqLJE/MbJXspyV5/RLnvmOSE4fNq5P85Qp1bLnuvr6q3pzkWUkOTvKiJC/e4HPurKozkjwnyeFJfiDJw0ZdTlti3Gbfi0+P2g9PcuoS5/r+JPdbw/wbZrivf5zk2Ulukdk9fcnWVrV5quo22f05virJSd391VWMOznfHlAHAAAAAFjRPltdAAAAAAAAa/LPmQWNk+TxVXX0wg5Vddsk78gsaL2cz4/aqwkW/3p2r7r+6iGQvPDchyZ5W3YH3l/X3VesYu7t4FXZHdr/2ar66apadGX5qjqkqh662LE9dPqofVKSpwzt/0jyrmXGbea9+Eh2r6L+5Kr63kXOdbd8+7VsJ6/M7vpfVFUvqKoln5NU1a2r6uer6shNqW5jvSKz1eOT5NdWE04ffGrU3hveBwAAAABgE1hBHQAAAABgDnX3N6vqlCTPT3KTJB+oqjcm+ViSnZkFzU9OckiSP0ry1GXmuryqzkvyPUkeVlX/N8nfJLly1Oe9o/ZHqupVma0ufnCSc4ZVx9+f5NokRyT5n0luOww5P8kvTnDZm6K7P19Vz0jy5swWevnNJE+vqrcl+VySTnL7JA9KclyStyY5Z53n/HBVfS7Jf81sJfT9h0Nv7e7rlhm3afdiWLH9tUl+IbPP3NnDZ+XjSQ7I7P14apJK8s4kj1vLeTZKd3+pqp6cWW37Zxbuf2ZVnZXZFz6uySzEffckD0zykCT7Jjl7SwqeyBCwf/qw+eUkr96D4Z/O7PNeSe5VVTfp7p0TlwgAAAAA7GUE1AEAAAAA5tdLMoTKMwsIP3t4jZ2S5NeyTEB9NNefZxbIfdbwGvu2FcS7+8VV9a0kLx7GnDS8FjonyfHdfe1KF7OddPeZVXVNkjcluVVmq0cvtYL0DUvs31OnJ3lpdofTk+S0lQZt8r14RWbh7UckOSjJCxYc/0Zmq7/fP9ssoJ4k3f2+YcX7P05y18zC6D+3zJCrMlvFfp69Jrv/ou6Lu/ua1Q7s7quq6uIkd87sc/ndST45fYkAAAAAwN5kyT9dCQAAAADA9jasrP3IJM9J8uHMVjzfkeSiJGcmeVR3/0RWEaDu7vck+f4kf5Lk85mtvr3SmF/MLLT92sxWWt51/i8lOSuzMPQx3X3pHl/cNtDd78osxPz8zFaU/1pmq9Nfm+TCJG/LbJX6n5rolKcv2L4oyQdXWeum3Ivu3pHk0Zl9EeJDmQXSr8tsZfnfTnLf4X3btrr7I0nukVmI/8zMPu9XJflWkssyWxH+9UlOSHJYd89tILuqHp/k4cPmP2YVX3hYxKdG7aPWXRQAAAAAsNer7t7qGgAAAAAAAAAAAAAA2AtYQR0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJATUAQAAAAAAAAAAAACYhIA6AAAAAAAAAAAAAACTEFAHAAAAAAAAAAAAAGASAuoAAAAAAAAAAAAAAExCQB0AAAAAAAAAAAAAgEkIqAMAAAAAAAAAAAAAMAkBdQAAAAAAAAAAAAAAJiGgDgAAAAAAAAAAAADAJP4/sbnRItLIkXoAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"As already mentioned, your data needs to be stored in the ``input.data`` file. This file is used for ``mode 1`` to generate all the needed files for the NN training in ``mode 2``. In this case the ``input.data`` stores all the information of the electronic structure code like the total energy and charge, the structure (lattice constants, atomic positions), atomic forces and may the atomic charges. If used in ``mode 3``, only the structural paramteres are necessary, since ``mode 3`` is the prediction mode and we may do not know the outcome of an electronic structure calculation.\n\nThe ``input.data`` follows a certain format with certain keywords. Each structure is embedded between the keywords ``begin`` and ``end``, to separate different structures from each other. For periodic structures the three lattice vectors are introduced by the keyword ``lattice``, for non-periodic structures this keyword is just missing. Information about the atoms is given line by line, thus each atom in one line, beginning with the ``atom`` keyword, followed by the Cartesian coordinates (x, y and z), the element, the atomic charge, an unused column and the atomic force components (fx, fy and fz). The ``energy`` keyword is followed by the total energy of the current structure, equivalent, the overall charge is marked by the ``charge`` keyword. Comments can also be added with the ``comment`` keyword. Important aspect: the data is given in special units. A length is given in ``bohr``, an energy in ``Hartree``, thus forces in ``Hartree/bohr`` and charges in the elementary charge ``e``. In general, periodic and non-periodic structures can be mixed, as well as different numbers of atoms per structure can be combined. Information can be given in a free format (number of digits), but it is recommended to use at least six digits and the order of the keywords is arbitrary in general."},{"metadata":{},"cell_type":"raw","source":"begin\nlattice 2.34735543 -4.06574009 0.00000000\nlattice 2.34735543 4.06574009 0.00000000\nlattice 0.00000000 0.00000000 13.45504276\ncomment x y z element atomic charge unused fx fy fz\natom 0.00000000 0.00000000 0.00000000 Cu 0.00000000 0.00000000 -0.00000000 -0.00000000 0.00000002\natom 2.34735543 1.35524733 10.09128112 Cu 0.00000000 0.00000000 -0.00000000 0.00000134 -0.00000002\natom 0.00000000 0.00000000 6.72752138 Cu 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000004\natom 2.34735543 -1.35524733 3.36375974 Cu 0.00000000 0.00000000 0.00000000 -0.00000134 0.00000003\nenergy -0.4746414926841609\ncharge 0.0\nend"},{"metadata":{},"cell_type":"markdown","source":"# The RuNNer Workflow\n\nWe discussed the ``input.data`` and will have a look at the next steps. Here, the ``input.nn`` is explained. Keywords can be given in an arbitrary order, but grouping keywords by the modes is useful for the general structure. The units are the same as for the ``input.data``, see above. If a keyword is not specified, **RuNNer** uses default values, if possible. A summary in the output files give more detailed information in the specific case. Most keywords can only be specified ones, to avoid contradictions, otherwise an error will be printed. Also comments can be added to the file, which are indicated by a hash ``#``. In principle, it is possible to change the ``input.nn`` for every mode, however it is highly recommended not to do that. Anyway here, you will not have the opportunity to explicitly change the ``input.nn``, since **RuNNer** is called via the pyiron environment. At the moment, the implementation of **RuNNer** to pyiron is on a very early stage, thus no changes are possible for the input.\n\nIn the following we will discuss a subset, but the most important keywords. Beginning with some general keywords of the ``input.nn``. I think the first keywords are self-explanatory together with the given comments. The data set splitting in ``mode 1`` and the initial weights in ``mode 2`` rely on random numbers. For the reproducibility, a random number seed (keyword ``random_seed``) has to be defined, which will give the same results, if the run is repeated later. Together with this, the generator for the random numbers can also be defined (keyword ``random_number_type``). The second group of keywords describe the architecture of the NN and the activation functions of the nodes via the keywords ``global_...``. Usually, we use 2-3 hidden layers with 10-40 nodes each."},{"metadata":{},"cell_type":"raw","source":"### general keywords\nnn_type_short 1 # 1=Behler-Parrinello energy is a sum of atomic energies\nrunner_mode 1 # 1=calculate symmetry functions, 2=fitting mode, 3=predicition mode\nnumber_of_elements 1 # number of elements\nelements Cu # specification of elements\nrandom_seed 20 # integer seed for random number generator\nrandom_number_type 6 # 6 recommended\n\n\n### NN structure of the short-range NN\nuse_short_nn # use NN for short range interactions\nglobal_hidden_layers_short 2 # number of hidden layers\nglobal_nodes_short 15 15 # number of nodes in hidden layers\nglobal_activation_short t t l # activation functions (t = hyperbolic tangent, l = linear)"},{"metadata":{},"cell_type":"markdown","source":"# Pyiron RuNNer Fit\n\nHere, you will not have the opportunity to explicitly change the ``input.nn``, since **RuNNer** is called via the pyiron environment. At the moment, the implementation of **RuNNer** to pyiron is on a very early stage, thus no changes are possible for the input."},{"metadata":{"trusted":true},"cell_type":"code","source":"pr = Project(\"runner_fit\")","execution_count":3,"outputs":[]},{"metadata":{"trusted":true,"scrolled":true},"cell_type":"code","source":"data_pr.job_table()","execution_count":4,"outputs":[{"output_type":"execute_result","execution_count":4,"data":{"text/plain":" id status chemicalformula job \\\n0 1 finished None df1_A1_A2_A3_EV_elast_phon \n1 2 finished None df3_10k \n2 3 finished None df2_1k \n3 4 finished None df4_2_5eV_25A3_8K \n\n subjob projectpath project \\\n0 /df1_A1_A2_A3_EV_elast_phon /home/jovyan/ datasets/Cu_database/ \n1 /df3_10k /home/jovyan/ datasets/Cu_database/ \n2 /df2_1k /home/jovyan/ datasets/Cu_database/ \n3 /df4_2_5eV_25A3_8K /home/jovyan/ datasets/Cu_database/ \n\n timestart timestop totalcputime computer \\\n0 2021-02-18 19:49:53.061360 None None zora@cmti001#1 \n1 2021-02-18 19:49:55.496691 None None zora@cmti001#1 \n2 2021-02-18 19:49:56.101883 None None zora@cmti001#1 \n3 2021-02-18 19:49:57.547918 None None zora@cmti001#1 \n\n hamilton hamversion parentid masterid \n0 TrainingContainer 0.4 None None \n1 TrainingContainer 0.4 None None \n2 TrainingContainer 0.4 None None \n3 TrainingContainer 0.4 None None ","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>status</th>\n <th>chemicalformula</th>\n <th>job</th>\n <th>subjob</th>\n <th>projectpath</th>\n <th>project</th>\n <th>timestart</th>\n <th>timestop</th>\n <th>totalcputime</th>\n <th>computer</th>\n <th>hamilton</th>\n <th>hamversion</th>\n <th>parentid</th>\n <th>masterid</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>1</td>\n <td>finished</td>\n <td>None</td>\n <td>df1_A1_A2_A3_EV_elast_phon</td>\n <td>/df1_A1_A2_A3_EV_elast_phon</td>\n <td>/home/jovyan/</td>\n <td>datasets/Cu_database/</td>\n <td>2021-02-18 19:49:53.061360</td>\n <td>None</td>\n <td>None</td>\n <td>zora@cmti001#1</td>\n <td>TrainingContainer</td>\n <td>0.4</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>1</th>\n <td>2</td>\n <td>finished</td>\n <td>None</td>\n <td>df3_10k</td>\n <td>/df3_10k</td>\n <td>/home/jovyan/</td>\n <td>datasets/Cu_database/</td>\n <td>2021-02-18 19:49:55.496691</td>\n <td>None</td>\n <td>None</td>\n <td>zora@cmti001#1</td>\n <td>TrainingContainer</td>\n <td>0.4</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>2</th>\n <td>3</td>\n <td>finished</td>\n <td>None</td>\n <td>df2_1k</td>\n <td>/df2_1k</td>\n <td>/home/jovyan/</td>\n <td>datasets/Cu_database/</td>\n <td>2021-02-18 19:49:56.101883</td>\n <td>None</td>\n <td>None</td>\n <td>zora@cmti001#1</td>\n <td>TrainingContainer</td>\n <td>0.4</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>3</th>\n <td>4</td>\n <td>finished</td>\n <td>None</td>\n <td>df4_2_5eV_25A3_8K</td>\n <td>/df4_2_5eV_25A3_8K</td>\n <td>/home/jovyan/</td>\n <td>datasets/Cu_database/</td>\n <td>2021-02-18 19:49:57.547918</td>\n <td>None</td>\n <td>None</td>\n <td>zora@cmti001#1</td>\n <td>TrainingContainer</td>\n <td>0.4</td>\n <td>None</td>\n <td>None</td>\n </tr>\n </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"j = pr.create.job.RunnerFit('fit', delete_existing_job=False)","execution_count":5,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"# Be aware of fitting a larger data set, since it will run some time, roughly six hours!\nj.add_job_to_fitting(data_pr.load('df1_A1_A2_A3_EV_elast_phon'))","execution_count":6,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"j.run()","execution_count":7,"outputs":[{"output_type":"stream","text":"The job fit was saved and received the ID: 82\n","name":"stdout"}]},{"metadata":{"trusted":true},"cell_type":"code","source":"j.lammps_potential","execution_count":8,"outputs":[{"output_type":"execute_result","execution_count":8,"data":{"text/plain":" Name \\\n0 RuNNer-Cu \n\n Filename \\\n0 [/home/jovyan/day_2/02-runner/runner_fit/fit_hdf5/fit/input.nn, /home/jovyan/day_2/02-runner/runner_fit/fit_hdf5/fit/weights.029.data, /home/jovyan/day_2/02-runner/runner_fit/fit_hdf5/fit/scaling.... \n\n Model Species \\\n0 RuNNer [Cu] \n\n Config \n0 [pair_style nnp dir \"./\" showew no showewsum 0 resetew no maxew 100 cflength 1.8897261328 cfenergy 0.0367493254 emap \"1:Cu\"\\n, pair_coeff * * 12\\n] ","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Name</th>\n <th>Filename</th>\n <th>Model</th>\n <th>Species</th>\n <th>Config</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>RuNNer-Cu</td>\n <td>[/home/jovyan/day_2/02-runner/runner_fit/fit_hdf5/fit/input.nn, /home/jovyan/day_2/02-runner/runner_fit/fit_hdf5/fit/weights.029.data, /home/jovyan/day_2/02-runner/runner_fit/fit_hdf5/fit/scaling....</td>\n <td>RuNNer</td>\n <td>[Cu]</td>\n <td>[pair_style nnp dir \"./\" showew no showewsum 0 resetew no maxew 100 cflength 1.8897261328 cfenergy 0.0367493254 emap \"1:Cu\"\\n, pair_coeff * * 12\\n]</td>\n </tr>\n </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"The data set, you will fit is a strongly reduced subset of the data shown above. For comparison, the same plot is shown here.\n\n**Be aware of fitting a larger data set, since it will run some time, roughly six hours!**"},{"metadata":{"trusted":true},"cell_type":"code","source":"df1_job = data_pr.load('df1_A1_A2_A3_EV_elast_phon')\ndf1 = df1_job.to_pandas()\nfig1 = fc.PlotData(df1)","execution_count":10,"outputs":[{"output_type":"stream","text":"Number of points in plot: 105\n","name":"stdout"},{"output_type":"display_data","data":{"text/plain":"<Figure size 3686.4x2073.6 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAC6gAAAaACAYAAADfRZCRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADO7ElEQVR4nOzdebhVdaH/8c9CBhGVZJI0rpbTTYw050QhKo20nBocqovicO3m1TJv13IAcs6hwcxfg4JZWGpmg5mGIYrmUGIplmmJmsmgkiIqAuv3B7A7CGeA84UD3dfrec7zrL3Xd6/vd529Fz513medqq7rAAAAAAAAAAAAAABAe3Xq6AUAAAAAAAAAAAAAAPCvQaAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgXoTVVV1r6rqA1VVXVxV1R1VVc2oqmpeVVUvVFX1cFVVV1RV9e7Ccz5eVVXdxq+JJecGAAAAAAAAAAAAACipc0cvYE1RVdXhSS5Lsv5ydndJ8u+Lv0ZUVXVTkk/UdT1zNS4RAAAAAAAAAAAAAGCNJlD/pzfnn3H635PckuTeJDOS9EiyZ5JDk6yb5H1JflVV1e51Xc8tNP/MJMe0MmZWobkAAAAAAAAAAAAAAIqr6rru6DWsEaqqOjWLwvNzk/yirusFyxmzbZJfJXnj4qfG1HV9RjvnfTzJZkmm1XW9eXuOBQAAAAAAAAAAAADQkQTqi1VVtVFd18+3Ydx+SX66+OETdV1v1s55H49AHQAAAAAAAAAAAAD4F9CpoxewpmhLnL7YL5K8tHj736qq2nAVLQkAAAAAAAAAAAAAYK0iUF9BdV0vSDK3yVPdO2otAAAAAAAAAAAAAABrEoH6Cqqqql+Svosfzk0ys9Che1dV9auqqmZUVTWvqqqZVVXdU1XVeVVVbVFoDgAAAAAAAAAAAACAVUagvuKOabJ9U13XCwsdd/0k786i+L1Lkj5Jdk7yP0n+VFXVOVVVrVNoLgAAAAAAAAAAAACA4qq6rjt6DWuNqqrekuQPSdZb/NQudV3f285jPp5FQfpNSaYkmZ6ka5ItkxyU5G1Nho+r63pEe+YDAAAAAAAAAAAAAFhVBOptVFVVjyR3Jhm0+Kmv13X9qQLHHZzkzubuxF5V1XFJvpZkyd3TP1bX9fdaOeYxWXyn9+7du+84YMCA9i4TAJaycOHCdOrkD7EAAAAAAACU5GcwAADA2uKRRx6ZVdd13+XtW6sC9aqqjkryphLHqut61ArMu06SHyX54OKnfpdkj7quXymxljbM//kkZy1++Me6rt/a1tfutNNO9X333bdqFgbA/1kTJ07M0KFDO3oZAAAAAAAA/1L8DAYAAFhbVFX127qud1revs6rezHtdFSSXQsda1RbBlVV1SnJ2PwzTv9TkuGrK05f7KIk/5OkZ5J/r6rqLXVd/2U1zg8AAAAAAAAAAAAA0Cp/F6oFVVVVSf5fko8tfuqxJO+u63rG6lzH4hj+N02e2mZ1zg8AAAAAAAAAAAAA0BZr1R3U67rebTVPeUkW3bU9SaYlGVbX9d9W8xqWeLbJ9kYdtAYAAAAAAAAAAAAAgGa5g3ozqqr6cpJPLn74VBbF6U903IrSu8n27I5aBAAAAAAAAAAAAABAcwTqy1FV1flJTlj88O9ZFKf/pQPX0y1J07vHP9JRawEAAAAAAAAAAAAAaI5A/XWqqjozycmLH07Pojj9zx24pCT5TJKei7f/XNf1ox25GAAAAAAAAAAAAACA5RGoN1FV1alJvrD44cwk767r+o8reaxRVVXVi7/GNjPmC1VVvbWV4/xnki82eeqslVkPAAAAAAAAAAAAAMCq1rmjF7CmqKrq6Cwdgl+SZKuqqrZq5aV31HU9ayWn/XCSM6uquj/JbUkeTvJ8kq5JtkxyUJJBTcZfleTKlZwLAAAAAAAAAAAAAGCVEqj/0x6vezy6ja97V5KJ7Zx7h8VfzZmf5Nwko+u6rts5FwAAAAAAAAAAAADAKiFQ71gfT7JXkt2TDEzSJ0nvJJ2SPJdkahbdWf3yuq7/1lGLBAAAAAAAAAAAAABoC4H6YnVdj0gyouDxRiUZ1cqYPyT5Q5Kvl5oXAAAAAAAAAAAAAKCjdOroBQAAAAAAAAAAAAAA8K9BoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAC00ahRo1JVVaqqysSJEzt6OWud5557Ll/4wheyww47ZIMNNkinTp1SVVXe8IY3dPTSihg6dGjj8/F/0dixYxvnP3bs2I5eTnETJ05snN+oUaM6ejkAAAAAayyBOgAAAAAAsIwlEeaSr7vvvrvV11x99dXiTZo1ffr07Ljjjjn77LMzZcqUzJkzJ3Vdd/Sy1lpTpkzJqFGjMmrUqEyZMqWjl0NhEydObLy/jz/++Gqfv67rPPLIIxk/fnxOOumkDB06NBtuuGHj3/gRI0as1HHvuuuuHHnkkdliiy2y3nrrpVevXtlxxx1z5plnZtasWa2+vukvQbTlyy8SAQAAQMfo3NELAAAAAAAA1nyf//znM2HChI5eBmuxs846qxHa7rHHHvnYxz6WjTfeOFVVpUuXLh27uLXQlClTMnr06CTJ5ptvnu23375jF0RREydObLy/Q4cOzeabb75a5//sZz+biy66qNjx6rrOSSedlC9/+ctL/WLKyy+/nOeffz6/+93vcskll+T73/9+hg0bVmxeAAAAoGMI1AEAAAAAgFbdeuut+dWvfpX3vOc9Hb0U1lI33nhjkmSjjTbKzTffnPXWW6+DV1Te//W7NY8YMWKl76zNmmXBggVLPd5ggw0yYMCATJ06daWOd8opp+Tiiy9OkvTo0SMjR47MLrvskjlz5uS6667LLbfckunTp2f//ffP7bff3qZfuDj++ONbjdm32267lVovAAAA0D4CdQAAAAAAoFnrrbde5s6dm2RRYChQZ2U9+eSTSZJtttnmXzJOh38l2267bT796U9nxx13zE477ZStt946t912W971rnet8LHuv//+nH/++UmSnj17ZtKkSRk0aFBj/7HHHptRo0Zl9OjRmTNnTo455pjcfffdqaqqxeO+4x3vyAEHHLDC6wEAAABWvU4dvQAAAAAAAGDNNWDAgBx44IFJkvvuuy8/+tGPOnhFrK3mzZuXJOnWrVsHrwRozTHHHJOLLroohx9+eLbZZptWY/GWjBkzJnVdJ0nOPvvspeL0Jc4444zssssuSZJ777238RcXAAAAgLWTQB0AAAAAAGjRmWeemU6dFv1I4dRTT82CBQtW+lhVVaWqqgwdOrTdY4cOHdoYkyQLFy7M5ZdfnqFDh6Zfv37p0aNH3va2t+Wss87Kiy++uNRrn3nmmZx22mkZNGhQNtxww/Ts2TN77bVXfvCDH6zwOd14443Zf//986Y3vSndunXLm970phx66KG566672nyMWbNm5ayzzsqee+6Z/v37p2vXrunbt2/23HPPnH/++cus//U233zzVFWVzTffPEnyyiuv5Ktf/WoGDx6cjTfeOJ06dWrT97w5c+fOzcUXX5x3vetd6d+/f7p165Z+/fpl8ODBOeecc/KPf/xjua8bNWrUUu9Rktx2222N55Z8TZw4cYXWM3bs2MZrx44dmySZPHlyDjvssGy++eZZd911079//+y///75xS9+0ebjPvzwwznhhBOy3XbbpWfPnunevXs222yzfOQjH8n111/f6utf/5lsy7qnTp2aY489NltssUW6d++e3r17593vfnfGjx/fiHqXd4wjjjii8dwRRxyxzPd0yWehqaeffjqnn356dt999/Tq1StdunTJRhttlK222ipDhgzJ6NGjc++997btm9XG83u911/Xc+fOzQUXXJCddtopG220UXr06JGBAwfmlFNOyfPPP7/Sa1mi6WdwyeesxDXbmvZeM6NHj2489653vWuZ97c91/Pq9OKLLzauwQ033DAjRoxY7riqqnL88cc3Hq/Mv8UAAADAmqNzRy8AAAAAAABYs2277bb5+Mc/nnHjxuXhhx/Od7/73WYjw44yZ86cHHDAAZkwYcJSzz/44IM59dRTc91112XChAnZaKONctddd2X//ffPzJkzlxp7++235/bbb8+9996bCy64oE3z/td//VcuvfTSpZ7729/+lquvvjo//OEPc/rpp+eMM85o8Rhjx47Nf//3fy8Toc+aNSt33HFH7rjjjlx00UW5/vrrs/vuu7e6pr/+9a/5wAc+kIceeqhN59Ca3/zmNzn44IPz9NNPL/X8zJkzM3PmzEyePDkXXnhhvv/972fvvfcuMueKOvfcc/OFL3whCxcubDw3ffr0/OQnP8lPfvKTHH300bnssssav2ixPGeccUbOOuusZX4B44knnsgTTzyRa665JkOGDMl1112X3r17F1n32LFj85//+Z959dVXG8+98sorufXWW3Prrbfml7/8ZbOh94r6+c9/nkMOOSRz5sxZ6vnZs2dn9uzZefTRRzNp0qRcfPHFmT17dpE5W/OXv/wlH/jABzJ16tSlnp86dWqmTp2a8ePHZ+LEicuN7VdWiWu2NR11zTT9xYi//vWvRb9vK+u2225rfL732muvrLfees2O3WeffRrbK/KLJQAAAMCaR6AOAAAAAAC0avTo0Rk/fnzmzZuXUaNG5bDDDkvXrl07elkNRxxxRCZMmJA99tgjH/nIR9K/f/9MmzYtX//61zNt2rTcf//9OfHEEzN69Ojss88+mTdvXo466qgMHjw4Xbt2ze23355vfetbmT9/fi688MLss88+ee9739vinF/5ylfy4x//OH369MlRRx2VQYMGZe7cubnpppty3XXXZeHChRk1alR69+6dT33qU80e48QTT0ySdOvWLQcffHD23HPP9O7dO88991xuuumm3HDDDZk+fXre85735N577822227b7JpeffXVHHTQQXnooYcyePDgHHzwwdlkk00yc+bMTJ8+fYW/r1OmTMmwYcPy8ssvJ0l22GGHHHbYYfm3f/u3PPPMM/nhD3+YyZMn59lnn81+++2Xm2++eak7Ox9yyCHZfvvtkyQHHnhgkmTgwIE588wzl5pnu+22W+G1LfHjH/84N9xwQ3r06JGRI0dm5513zoIFCzJp0qRceeWVmT9/fr71rW9lww03bPYXD0455ZSce+65SZJ11lknhxxySIYNG5bu3bvnD3/4Qy6//PJMnz49t912W4YNG5bf/OY36d69+0qvOUluuummXHPNNenZs2f+67/+KzvssEOqqsqkSZNyxRVX5LXXXsu4ceOy11575cgjj2y8btiwYbn++utz66235mtf+1qS5Pjjj8+wYcOWOn7TEPhvf/vbUnH6vvvum/e+973ZZJNNsnDhwsyYMSMPPPBAbrnllmbv7F3aCy+8kH333Td//OMf88EPfjDDhw9Pr1698pe//CXf+MY38sQTT2TatGn5xCc+kUmTJhWZs8Q125pS18zVV1/duIv4F7/4xWWukT59+qzcN2E1e/DBBxvbO+64Y4tj+/btm8022yzTpk3LrFmzMmPGjPTr16/Z8ZdeemnOPffcPPHEE6mqKn379s3OO++cAw44IB/96EfTubMfhQMAAECHqeva17/w14477lgDQGm//vWvO3oJAAAAwCqWpE5Sb7PNNo3njj/++MbzX/nKV5Z5zfjx4xv7zzjjjBaPO2TIkDavobmxQ4YMaYxJUp911lnLjJkxY0a9ySab1EnqddZZp377299e9+3bt37ggQeWGXvllVc2jjV8+PDlznnGGWcsNefAgQPr6dOnLzPu+uuvrzt37lwnqddbb7162rRpy4y57777GmO22Wab+pFHHlnunD/72c/qLl261EnqXXbZZbljNttss6XWddFFFy133IpYsGBBPXDgwMYxTzjhhHrBggXLjBszZkxjzIABA+qXX355ucdbkfe+NVdcccVS57vJJpss9/t311131RtssEGdpO7UqVN9zz33LDPmzjvvrKuqqpPUPXr0qG+77bZlxjz77LP1Tjvt1Jjvs5/97HLX1fQz2ZZ1b7/99sv9/PzoRz9qjHnrW9/a6rGuuOKK5Y5Z4ktf+lJj7HnnndfsuIULF9aTJk1q8Vgtacuamp5/165d65/+9KfLjJk1a1b95je/uTHu7rvvXuk1lbxmf/3rX7f4b1zJa6bputv6/8c2Pc+//vWvbXrNimh6/v/xH//RptccccQRbf6c1nVd77XXXo3xt99++zL7X38NNfe1zTbbLPffeVgb+BkMAACwtkhyX91Mv9z83zEEAAAAAABo4tRTT02PHj2SJGeddVbjbsxrgn322Sef//znl3m+b9++jTshL1iwIA888EAuueSSDBo0aJmxH//4x7PVVlslSSZMmJD58+e3OGfnzp3zgx/8YLl3+D3ggANy0kknJUnmzp2bb3zjG8uMGT16dObPn59u3brlZz/7WWPu19t3333zv//7v0mSe+65J3feeWeL6zrwwAPz6U9/usUxbfGzn/0sDz30UJJkt912y8UXX5xOnZb90dJpp52WfffdN0ny5JNP5qqrrmr33Cvq8ssvX+73b7fddsv555+fJFm4cGEuuuiiZcZ86UtfyqKfpy3a3muvvZYZ06tXr1x77bWNu5J/4xvfyOzZs9u15i5duuTaa69d7ufnwAMPzB577JEkefjhh/Pkk0+2a65HH320sX300Uc3O66qquy5557tmmtFnHrqqdlvv/2Web53795LXc+//OUvi8zX3mu2NWvTNbO6NL1O2nLX9969ey/3tU117tw5Q4YMyWmnnZZx48blmmuuyaWXXpqPfexjWXfddZMkf/rTnzJ48OD8/ve/b9f6AQAAgJUjUAcAAAAAANqkX79+OfHEE5MkM2bMyJe//OUOXU9TSyL05VkS+ibJxhtvnA996EPNjh08eHCSZN68eXnsscdanHOfffbJwIEDm91/4oknZp111kmSXH/99Uvte/755/Pzn/88SbL//vtnyy23bHGuj33sY43tm2++ucWxxx9/fIv72+pHP/pRY/vkk09OVVXNjl0S0L/+davDwIEDs88++zS7/8gjj8xGG22UJPnJT36SBQsWNPa9+uqrufHGG5MsCmNHjhzZ7HE222yzHHrooUmSl156qdX3oTX77bdftthii2b3Dxs2rLE9derUds21JKxP0gioO9o666zT4nVb8vyXaM812xYdfc00vUvZ5ptvXuSY7dX0F5mWxOMt6d69e2P7xRdfXGb/4MGDM23atEycODFjxozJJz7xiXzoQx/Kcccdl+9+97t55JFHsvPOOzde/9GPfnSpax4AAABYPQTqAAAAAABAm5188snp1atXkuSCCy7Ic88918ErWmTXXXdtdt/GG2/c2N5xxx2Xe0fj5Y19/vnnW5zz3e9+d4v7+/fvn7e+9a1JkkceeST/+Mc/GvsmT56chQsXJlkUbf74xz9u8euBBx5ovPbhhx9uds511lknu+++e4vraqt77rknyaK7ar/3ve9tcew73/nOrL/++kmSu+++u8j8bdXa+9C1a9fGLynMnTt3qdj5gQceyKuvvpokGTp0aLp27drisfbee+/GdnvPc7fddmtx/6abbtrYbu2z2Jqm799BBx2Uiy++OE899VS7jtleW2+9deMXB5an5Pkv0Z5rti3Wlmumo7QU7LfVlltumU022aTZ/QMGDMgvfvGL9O/fP0nyxz/+Mddee2275wUAAABWjEAdAAAAAABos549e+Zzn/tckuQf//hHzj333A5e0SK9e/dudl+3bt3aNO71Y1955ZUWx7Z21/OmY+q6zjPPPNN4/vHHH29sX3nllTnwwANb/PrIRz7SGN9SrNu7d+823aW4Lf7+978nWRTtbrDBBi2O7dSpU+Nu4M8991zmzZtXZA1tsSLvQ5I8/fTTje0l55gsCqZb03RM09eujD59+rS4f0U+i60ZPnx4DjvssCTJzJkz85nPfCYDBgzI1ltvnREjRuTyyy/PjBkz2jXHilqd579Ee67ZtlhbrpnVaUmEnyQvv/xyq+Objmnte9ic3r1754QTTmg8XvLXKgAAAIDVR6AOAAAAAACskOOPP75xB9tLLrlkqeC3o7R0V/SVGdcW6623XqtjevTo0dieM2dOY3tF78zcVEsha/fu3Vf6uK/34osvJln6HFrSNERd8trVoT3vQ9N1tuU8S55jyc9iW1x11VX59re/nYEDBzae+/Of/5xx48Zl5MiR2WSTTXLYYYe1O7xvq9V9/kn7PittsbZcM6vTG97whsb2s88+2+r4pmOavnZFDR06tLH9pz/9aaWPAwAAAKwcgToAAAAAALBCunfvntNOOy3JorvdjhkzpvgcCxcuLH7M0ubOndvqmJdeeqmx3TRGbbo9duzY1HXd5q+JEycWPY/mLLl7cdNzaEnTmHdl73y8MtrzPjRdZ1vOs6POsYSqqjJy5Mg8+OCDeeyxxzJu3Lgce+yx2WqrrZIkCxYsyPjx47Prrrtm+vTpHbzaVaM9n5W2WFuumdWp6V8daPqXI5ozbdq05b52RTX9axkt/dUJAAAAYNUQqAMAAAAAACts5MiR2WKLLZIk3/nOd/Loo4+26XVdu3ZN0vJdwJNk1qxZ7VvgatCWc14ypqqq9O/fv/H8pptu2th+6KGHyi+ugDe+8Y1JkmeeeabVuzvXdZ3HHnssyaIwdMn7vDqsyPuQpHH3/+Sf55gsupt4a5qOaXqctc1b3vKWfOITn8hll12WRx55JL/97W+zww47JEmefPLJfOlLX+rgFa4a7blm22JtuWZWp+22266xfd9997U4dubMmY1AvU+fPunXr99Kz1vqTuwAAADAyhGoAwAAAAAAK6xLly6NO6fPnz8/p59+eptetyQUfPrpp1scd/fdd7drfavDrbfe2uL+Z555Jg8//HCSRXcC7tmzZ2PfXnvtlaqqkiQ33HDDGnnH+F122SXJopB2woQJLY698847G3eDXvK61aW1tc2bNy+TJ09OkvTo0SPbbrttY9/b3/72dOvWLUkyceLEvPbaay0e6+abb25sr+7zfL1Onf75Y766rtt1rHe84x357ne/23h8xx13tOt4a6r2XLNtUfKaKfn+dqShQ4c2rrFJkybl5ZdfbnbsL3/5y8b28OHD2zXvbbfd1thuz53YAQAAgJUjUAcAAAAAAFbKoYcemkGDBiVJrr766jzwwAOtvmZJHDxt2rT85S9/aXbcV7/61TKLXIVuuummRsy6PF/96lezYMGCJMlBBx201L5+/frlfe97X5LkkUceyXe+851Vt9CVdPDBBze2L7jgghYj2fPOO2+5r1sdHnroodxyyy3N7h87dmyef/75JMkHP/jBrLPOOo193bp1y7777ptk0V37x44d2+xxnnzyyYwfPz7JotB97733LrD6lbf++us3tl966aV2H2/zzTdvbM+fP7/dx1sTteeabYuS10zp97ejrL/++nn/+9+fJHnhhReavcbqus4ll1zSePzRj350ped87rnn8pWvfKXxeMn8AAAAwOojUAcAAAAAAFZKVVU566yzkiyKC7/2ta+1+polUXaSfO5zn1tuwHn66afnV7/6VbmFriLz58/PRz/60cycOXOZfT/96U9zwQUXJEnWW2+9HHfcccuMOfPMM9OlS5ckyfHHH5+rrrqqxfmeeOKJnHzyyZkxY0aB1bdu3333zcCBA5MkkydPzsknn7zcO72fffbZ+elPf5okGTBgQA4//PDVsr6mjjzyyDz22GPLPH/PPffk5JNPTrLojtSf/vSnlxlz8sknN+5WfdJJJzXutt7U888/nw996EONUPi4445r/DWAjvLmN7+5sf273/2uxbFjxozJLbfc0uKd+i+99NLG9tvf/vb2L3AN1N5rtjUlr5kVeX+XqKqq8fX444+v8PpXldNOO63xFyNOOeWU/P73v19mzJgxYxp/OWPnnXdeblR+11135dvf/nZeffXVZud66qmnMnz48Pz9739Pkmy11Vb5yEc+UuI0AAAAgBXQuaMXAAAAAAAArL3222+/vPOd78ydd97Zprv8HnnkkTn//PPz3HPP5dprr82ee+6Zww8/PH369MkTTzyRq6++Ovfdd18OOeSQXH311avhDFbeAQcckB//+McZOHBgjj766LztbW/L3Llz88tf/jLXXHNNI74/77zzMmDAgGVe/453vCPf+MY3cvTRR+fVV1/Nxz/+8Vx44YXZf//9s+WWW6Zbt26ZPXt2/vjHP2by5Mm55557Utd1TjjhhNVyfp06dcp3v/vd7LHHHnn55Zdz4YUX5te//nUOP/zwvOlNb8r06dPzwx/+MHfccUeSpEuXLrnyyiuz7rrrrpb1LbHkfdh+++0zcuTI7LzzzlmwYEEmTZqUK6+8Mq+99lqS5NOf/nR23nnnZV6/22675XOf+1zOOeecvPjiixkyZEgOPfTQDBs2LN27d8+DDz6Yb3/725k+fXqSZNCgQRkzZsxqPcfledvb3pZ+/fplxowZueqqq9K3b9/stttu6d69e5Kke/fuGTJkSJLk1ltvzRlnnJH+/ftnn332yfbbb5/+/ftn4cKFefrpp/OTn/wkt99+e5JFd5X/zGc+02HntSq195ptTclrZs8990yXLl3y2muv5Utf+lKqqsqgQYPSrVu3JEmvXr2yyy67tOO70bLZs2c3gv0lpk2b1ti+//77c+qppy61f9iwYRk2bNgyx9phhx3yP//zPznvvPPyj3/8I+985ztz1FFHZZdddsmcOXNy3XXX5eabb06y6I7r3/zmNxtBe1PTp0/P0UcfnZNOOin77LNPdtxxx2y66aZZd9118+yzz2by5Mm59tpr8/LLLzeO9YMf/CCdO/uROAAAAKxu/tc4AAAAAADQLuecc04jhG1N3759c9VVV+Wggw7KK6+8ksmTJy9zx+r99tsv3/nOd9b4QP2EE07Ipptumq9//es5++yzl9lfVVVOP/30fOpTn2r2GCNHjky/fv1y9NFHZ/r06ZkyZUqmTJnS7PjevXuv1gB8hx12yIQJE3LwwQfn73//e373u98t927OvXr1yve///0MHTp0ta1tif333z+77bZbPv/5z+crX/nKcseMHDky559/frPHOPvss9O5c+ecffbZWbBgQa666qrl3tF+yJAhue666xoReEfq3LlzvvjFL+bYY4/Na6+9tsz5bbbZZo27aC+5Q/wzzzyTcePGZdy4ccs9Zp8+ffK9732vcRfwfzUlrtnWlLpm+vTpk89+9rM555xzMmfOnJx++ulL7R8yZEgmTpy40utszezZsxt/IWN5fv/73y9zJ/TOnTsvN1BPFv13Yt68efnyl7+cl156abnXar9+/TJ+/Phsv/32La7thRdeyDXXXJNrrrmm2THbbbddvve972XQoEEtHgsAAABYNQTqAAAAAABAu+y111553/vel5tuuqlN44cPH54pU6bkvPPOy4QJE/LMM8+kZ8+e2W677XLkkUfm8MMPX+7dc9dEl1xySd7//vfnsssuy29/+9vMmjUrffr0yZ577pkTTjghu+++e6vH+MAHPpC//vWvufLKK3PjjTfm/vvvz6xZs7JgwYL07NkzW265ZXbaaafsvffe2XvvvdO1a9fVcGb/tPvuu+fPf/5zvvnNb+aGG27I1KlTM3v27Gy44YbZeuuts99+++WTn/xk3vCGN6zWdTX1uc99LoMHD84ll1ySO++8s/GZ2nXXXfPJT34yw4cPb/UYY8aMySGHHJLLLrssEyZMyJNPPpl58+alb9++2XXXXXPYYYfloIMOWg1n03bHHHNMNttss1x22WW57777MnPmzLz66qvLjPvZz36W22+/PRMmTMhdd92VRx99NM8++2yqqkqvXr0ycODADB8+PCNHjuzQ93F1KHHNtqbUNXP22Wdn0KBBGTduXKZMmZLnnnsu8+bNa/f6OkJVVbnooovy4Q9/ON/85jczadKkPP3001l33XXzlre8JQcccECOO+649OnTp9ljvOc978kNN9yQu+66K/fcc0+eeuqpzJo1Ky+88ELWX3/9vPGNb8wuu+ySgw8+OPvuu2/jFzMAAACA1a9a8qfq+Ne000471ffdd19HLwOAfzETJ07skLthAQAAAECSjB07NkcccUSS5IorrsiIESM6dkGssUaNGpXRo0cnSX7961/7/zWBNZ6fwQAAAGuLqqp+W9f1Tsvb59fGAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAArFVGjBiRuq5T13VGjBjR0cthDTZq1KjGZ2Xo0KEdvRwAAACA/xME6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKAIgToAAAAAAAAAAAAAAEUI1AEAAAAAAAAAAAAAKEKgDgAAAAAAAAAAAABAEQJ1AAAAAAAAAAAAAACKEKgDAAAAAAAAAAAAAFCEQB0AAAAAAAAAAAAAgCIE6gAAAAAAAAAAAAAAFCFQBwAAAAAAAAAAAACgCIE6AAAAAAAAAAAAAABFCNQBAAAAAAAAAAAAAChCoA4AAAAAAAAAAAAAQBECdQAAAAAAAAAAAAAAihCoAwAAAAAAAAAAAABQhEAdAAAAAAAAAAAAAIAiBOoAAAAAAAAAAAAAABQhUAcAAAAAAAAAAAAAoAiBOgAAAAAAAAAAAAAARQjUAQAAAAAAAAAAAAAoQqAOAAAAAAAAAAAAAEARAnUAAAAAAAAAAAAAAIoQqAMAAAAAAAAAAAAAUIRAHQAAAAAAAAAAAACAIgTqAAAAAAAAAAAAAAAUIVAHAAAAAAAAAAAAAKCIzh29gDVJVVXvSLJrkp2TvC1J3yR9suj79HySqUluSTK2rutnCs/dJcmIJIck2TZJryQzk9yf5KokP6zrui45JwAAAAAAAAAAAABASQL1pd2YZONm9vVf/DUsyReqqjqprutvlpi0qqrNk/woyQ6v27Xp4q/9khxVVdWH67qeXWJOAAAAAAAAAAAAAIDSBOrLmpXkN0keSvL3JM8kWSfJlkkOyKKIfP0k/6+qqvl1XV/ensmqqnpDkl8k+ffFTz2c5PIkTy2e85gkA5K8J8mPqqrau67r+e2ZEwAAAAAAAAAAAABgVRCoL+3dSabWdV03s39MVVWnJDl78eMLq6r6Xl3Xr7ZjzjPyzzj9piQH1nX9ypKdVVVdmuRXWRTGvyvJsUm+3o75AAAAAAAAAAAAAABWiU4dvYA1SV3XD7UQpy8Zc06S3y9++IYke6zsfFVV9UvyycUPX0ryH03j9MXzPZfkE0mWrOu0qqrWWdk5AQAAAAAAAAAAAABWFYH6ypnaZLt/O45zQJKui7fH13U9Y3mD6rp+MMmtix9unGRIO+YEAAAAAAAAAAAAAFglBOorZ4sm28+04zh7N9m+qZWxTfe/rx1zAgAAAAAAAAAAAACsEgL1FVRV1X8m2Xnxw+lJJrfjcNs12f5tK2Pva+Z1AAAAAAAAAAAAAABrhM4dvYA1VVVVeyXptfhhtySbJ9kvyeDFz72c5Ii6rl9dyeN3yj/vxL4gyVOtvGRak+2tV2ZOAAAAAAAAAAAAAIBVSaDevPOT7Lqc5xck+VWSU+q6vr8dx18///z+z67ren4r459tsv2GdswLAAAAAAAAAAAAALBKCNRX3LQkNyd5op3HWb/J9ittGP9yk+0NWhpYVdUxSY5Jko033jgTJ05c4cUBQEvmzJnjvy8AAAAAAACF+RkMAADwr6Cq67qj19BmVVUdleRNJY5V1/WoFZi3R5Jtknw4yYlJ1k3yVJID6rr+7crMX1X/n517j9euruv8//5sNgcFBAIRFcMD5gExNBKb1FD6eZwRT3jKs45l04yjOVlNByy1fpWNWTZDFuIhS0fNQ6mZIqiVKYKnLCUUEFAUFeWgtwKf+WOvLbtb7sO19rrvfV33/Xw+HtdjrWtd67u+n+0/6uN+PVbdIsnFw9eLuvtW27h/Ocl3h6/f6e69t2efY489ts8666wxIwLAFp1xxhk5/vjjN3oMAAAAAACAXYp/gwEAABZFVX20u4+9od8W7Q3qz0hy3ETPOnl7b+zuq5KcneTsqnpDkjOzEsq/p6qO6u5LRux/5ZrzG23H/Tdec37FiP0AAAAAAAAAAAAAAHaopY0eYNF09zlJfmf4emCSZ4981JVJrll9TlXtsY37D15zfvnIPQEAAAAAAAAAAAAAdpiFCtS7+57dXVN81jnKu9acHz/yb7kuyXnD1z2y8kb2rTlizflnx+wJAAAAAAAAAAAAALAjLVSgPkeuWHN+4Dqe86k158du4961v39qi3cBAAAAAAAAAAAAAGwQgfo4R645v2wdz/nbNecP2Ma9D1xz/q4t3gUAAAAAAAAAAAAAsEEE6uM8c835P6zjOW9J8p3h/HFVdegN3VRVRyW53/D1S0nOXMeeAAAAAAAAAAAAAAA7hEB9UFVPqar7V1Vt5Z69quolSR46XPpOkj/dwr0nV1UPn9Nu6J7u/kqSPx6+7pfktKraZ7PnHJTkNUlW53phd1+7vX8XAAAAAAAAAAAAAMDOsrzRA8yRY5K8MslFVfXuJJ9I8pWsROg/kOSuSR6e5BZr1jyvuz+zzn1fkOSBSe6Y5EFJzq6qP01ycZIjk/x0klsN956R5E/WuR8AAAAAAAAAAAAAwA4hUP9+hyd52jbu+XKSZ3f3X653s+6+vKoelOTNSe6W5E5JXnIDt74nyUnd/d317gkAAAAAAAAAAAAAsCMI1K/3y0n+OsnxSX4syS2THJpk/yRXJfliko8leWeSN3X3VVNt3N3nV9VxSZ6S5LFJjkpyUJLLkpyT5DVJ3tDdPdWeAAAAAAAAAAAAAABTE6gPuvvqrLyl/D0TPe/kJCfPcP93k7xi+AAAAAAAAAAAAAAALJyljR4AAAAAAAAAAAAAAIBdg0AdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJiEQB0AAAAAAAAAAAAAgEkI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJbDVQr6pjd9YgAAAAAAAAAAAAAAAstm29Qf3DVfWJqnpOVR26UyYCAAAAAAAAAAAAAGAhbStQT5Kjkvxeki9U1Vuq6sSq2mMHzwUAAAAAAAAAAAAAwILZVqB+XpIaPnsm+U9J3pzkkqr6vaq6yw6eDwAAAAAAAAAAAACABbHVQL27b5/kPklemeSKXB+rH5LkOUk+XlUfqapnVdWBO3hWAAAAAAAAAAAAAADm2LbeoJ7u/mB3Pz3JYUmenOT04afVWP3uSf4oK29Vf11V3b+qakcNDAAAAAAAAAAAAADAfNpmoL6qu7/V3a/p7p9Mcuskv57kvFwfqu+T5DFJ3pnkgqr6zao6cvqRAQAAAAAAAAAAAACYR9sdqK/V3V/o7t/s7tsn+YkkpyW5ItfH6rdM8stJPlNV76+qp1TVvhPNDAAAAAAAAAAAAADAHBoVqK/V3R/o7qclOSzJU5K8b/hpNVb/8SR/luRLVXVqVd1nvXsCAAAAAAAAAAAAADB/1h2or+rub3X3q7v7hCS3SfKCJJ/L9aH6vlkJ2E+fak8AAAAAAAAAAAAAAObHZIH6Wt19YXe/oLuPTPKQJF9M0sPPtSP2BAAAAAAAAAAAAABgYy3vqAdX1b2TPDnJSUn221H7AAAAAAAAAAAAAAAwHyYN1KvqiCRPGj63Xb285pbPJTltyj0BAAAAAAAAAAAAAJgP6w7Uq+rGSR6V5ClJ7pPrg/TV41VJ3pjkld39/vXuBwAAAAAAAAAAAADAfBodqFfVT2QlSn9kkn1XL6+55YNJXpnkDd191dh9AAAAAAAAAAAAAABYDDMF6lV1myRPTvKkJEesXl5zy0VJXp3ktO7+t0kmBAAAAAAAAAAAAABgIWwzUK+qfZM8Oith+r3X/jQcNyV5a1belv7u7u6phwQAAAAAAAAAAAAAYP5tNVCvqlcleUSSG69eWvPzR7MSpb+uuy/fIdMBAAAAAAAAAAAAALAwtvUG9Scm6Vwfpn8lyWuTvLK7P7UjBwMAAAAAAAAAAAAAYLFsK1BPkmuTvCMrb0v/m+6+ZseOBAAAAAAAAAAAAADAItpWoP4/krymu7+8M4YBAAAAAAAAAAAAAGBxbTVQ7+6X7KxBAAAAAAAAAAAAAABYbNt6g/o2VdVeSe6Z5E5JDkqyV3f/xnqfCwAAAAAAAAAAAADAYhkdqFfVPkl+Lcmzktxks59/Y7N7//8kD0/yhe4+YeyeAAAAAAAAAAAAAADMr6Uxi6rqZkk+kuT5SQ5IUms+N+SNSY5McnxV3WPMngAAAAAAAAAAAAAAzLeZA/WqqiRvTXJUVoL0DyT56Wz21vS1uvsjSc4bvj549jEBAAAAAAAAAAAAAJh3Y96g/rgk90jSSV7U3T/R3a9Ics421r03K0H7j43YEwAAAAAAAAAAAACAOTcmUH/McDyru391hnWfHI53HLEnAAAAAAAAAAAAAABzbkyg/iNZeXv662dcd9lwPGTEngAAAAAAAAAAAAAAzLkxgfpqYH7BjOt6HXsCAAAAAAAAAAAAADDnxsTiVw3HfWdcd/hw/NqIPQEAAAAAAAAAAAAAmHNjAvULh+PdZlx3wnD8zIg9AQAAAAAAAAAAAACYc2MC9dOTVJLHVdV+27Ogqn4kyQOTdJL3jtgTAAAAAAAAAAAAAIA5NyZQ/7Mk1yW5aZLTqmp5azdX1Z2SvDErUfumJH86Yk8AAAAAAAAAAAAAAObczIF6d386ycuzEpw/PMnHq+qnkxy5ek9VHV5VD6yqU5KcneSIrLw9/YXdfekkkwMAAAAAAAAAAAAAMFe2+vbzrXhuklsleViSOyb54+F6D8cL1txbw/HV3f3ikfsBAAAAAAAAAAAAADDnZn6DepJ097Xd/Ygkz0nylaxE6Fv6XJbkv3b3UyeZGAAAAAAAAAAAAACAuTT2DepJku7+g6r6P0kekOTeSW6d5IAkVya5OMmZSd7R3Vevc04AAAAAAAAAAAAAAObcugL1JOnuTUneNnwAAAAAAAAAAAAAANhNLW30AAAAAAAAAAAAAAAA7BoE6gAAAAAAAAAAAAAATEKgDgAAAAAAAAAAAADAJATqAAAAAAAAAAAAAABMQqAOAAAAAAAAAAAAAMAkBOoAAAAAAAAAAAAAAExCoA4AAAAAAAAAAAAAwCQE6gAAAAAAAAAAAAAATEKgDgAAAAAAAAAAAADAJATqAAAAAAAAAAAAAABMQqAOAAAAAAAAAAAAAMAkBOoAAAAAAAAAAAAAAExieT2Lq+qwJCckuXOSg5Lssx3Lurufvp59AQAAAAAAAAAAAACYP6MC9ao6MMlLkzw+yR4jHiFQBwAAAAAAAAAAAADYxcwcqFfVjZKcnuSHk9SIPXvEGgAAAAAAAAAAAAAA5tyYN6g/O8kxWQnNL0/y8qwE6xcn2TTVYAAAAAAAAAAAAAAALJYxgfpJw/GrSe7R3edPNw4AAAAAAAAAAAAAAItqacSa22fl7ekvF6cDAAAAAAAAAAAAALBqTKC+6tOTTQEAAAAAAAAAAAAAwMIbE6ifPxz3m3AOAAAAAAAAAAAAAAAW3JhA/c1JKsnx044CAAAAAAAAAAAAAMAiGxOo/2GSS5I8tqqOnXgeAAAAAAAAAAAAAAAW1MyBend/NcmJSb6e5G+r6vFVVZNPBgAAAAAAAAAAAADAQlmedUFVnTqcfirJ/ZK8JsnvV9VZSS5Lct02HtHd/fRZ9wUAAAAAAAAAAAAAYL7NHKgneUqSHs5XjzdN8qAZniFQBwAAAAAAAAAAAADYxYwJ1JOk1rFnb/sWAAAAAAAAAAAAAAAWzZhA/TaTTwEAAAAAAAAAAAAAwMKbOVDv7gt2xCAAAAAAAAAAAAAAACy2pY0eAAAAAAAAAAAAAACAXYNAHQAAAAAAAAAAAACASQjUAQAAAAAAAAAAAACYxPKWfqiq+6yed/f7b+j6WGufBwAAAAAAAAAAAADArmGLgXqSM5L08Fm+getjbf48AAAAAAAAAAAAAAB2AdsKxWvG6wAAAAAAAAAAAAAA7Ka2Fqi/YMbrAAAAAAAAAAAAAADsxrYYqHf3DYboW7oOAAAAAAAAAAAAAMDubWmjBwAAAAAAAAAAAAAAYNcgUAcAAAAAAAAAAAAAYBICdQAAAAAAAAAAAAAAJiFQBwAAAAAAAAAAAABgEgJ1AAAAAAAAAAAAAAAmIVAHAAAAAAAAAAAAAGASAnUAAAAAAAAAAAAAACYhUAcAAAAAAAAAAAAAYBICdQAAAAAAAAAAAAAAJiFQBwAAAAAAAAAAAABgEgJ1AAAAAAAAAAAAAAAmMXOgXlUH7IhBAAAAAAAAAAAAAABYbGPeoH5JVZ1WVfeafBoAAAAAAAAAAAAAABbWmED9RkmemOTMqvqXqnpOVR088VwAAAAAAAAAAAAAACyYMYH6p5LU8PmhJL+X5KKqel1V3W/K4QAAAAAAAAAAAAAAWBwzB+rdfdck90xyapKrshKq753kMUn+rqr+raqeX1U3m3RSAAAAAAAAAAAAAADm2pg3qKe7P9zdz0hy8yQ/neQjuf6t6rdJ8uIkF1bVG6vqgVMNCwAAAAAAAAAAAADA/BoVqK/q7qu6+xXdfVySH07y8iTfyEqovmeShyf5m6o6v6p+papuue6JAQAAAAAAAAAAAACYS+sK1Nfq7k9293/NylvVn5zk/bn+reo/mOQFSc6vqrdV1X+qqsn2BgAAAAAAAAAAAABg400eiXf3pu5+TXcfn+QOSU4dfqokeyR5SJK3ZCVW/8Wq2m/qGQAAAAAAAAAAAAAA2Pl22FvMq+o+SX4tyeOT9PBJrn+r+uFJXpTkc1X1sB01BwAAAAAAAAAAAAAAO8ekgXpV3bSq/kdVfSbJ+7ISp++TlSD9c0men+RHkrw4yReH64ckeWNV3WvKWQAAAAAAAAAAAAAA2LkmCdSr6gFV9cYkFyX57SS3z0p8fm2SNye5f3ffvrt/t7vP6e5fSXLrJP89yaZhjl+dYhYAAAAAAAAAAAAAADbG8tiFVXV4kqcleWqSH1y9PBwvTPKKJH/W3V+6ofXd/d0kL6uqm2flzerHjJ0FAAAAAAAAAAAAAICNN3OgXlUnJvnPSR6QlTefr0bp1yZ5Z5JTkryju3s7H/mPw/GQWWcBAAAAAAAAAAAAAGB+jHmD+l8l6Vwfpl+S5M+SvKK7LxrxvE0j1gAAAAAAAAAAAAAAMGfGBOqr3p2Vt6W/rbuvXcdzPpzkvutYDwAAAAAAAAAAAADAHBgTqP9OklO6+/NTDNDdX09y5hTPAgAAAAAAAAAAAABg48wcqHf3L+6IQQAAAAAAAAAAAAAAWGxLGz0AAAAAAAAAAAAAAAC7BoE6AAAAAAAAAAAAAACTWJ51QVWdOnKv65JckeRrST6R5O+7+7KRzwIAAAAAAAAAAAAAYM7MHKgneUqSnmDv71bVm5M8r7svmeB5AAAAAAAAAAAAAABsoKWR62rNZ/Pvm3+29PteSR6T5ONVdZeRcwAAAAAAAAAAAAAAMCfGBOq3SfJDSf7v8P3yJC9L8ogkxyS5/XB8xHD961l54/obktwpyT2T/Lck/5yVUP3gJG+rqr3G/QkAAAAAAAAAAAAAAMyD5VkXdPcFVfX6JI9K8s4kT+jur9/ArZ9I8paqekGS1yU5aVj/2CQfrqr/k+SVSX4qyRFJnpzkFaP+CgAAAAAAAAAAAAAANtzMb1CvqkdnJTb/fJJHbCFO/57h94cnOT/JSVX1qOH6NUmenuTi4daHzjoLAAAAAAAAAAAAAADzY+ZAPcnTknSSU7t70/Ys6O5vJzk1SSV5xprr30ny+uH6D4+YBQAAAAAAAAAAAACAOTEmUL/rcDx3xnWr9991s+ufGI4Hj5gFAAAAAAAAAAAAAIA5MSZQP2g4HjDjutX7D9rs+pXDsUfMAgAAAAAAAAAAAADAnBgTqF86HB8y47rV+7+82fXVcP2yEbMAAAAAAAAAAAAAADAnxgTq70tSSR5aVY/ZngVV9bgkD83KW9Lft9nPdx6Om4frAAAAAAAAAAAAAAAskDGB+h8kuXY4f21V/VFV/dAN3VhVP1RVL0/y6uHStUleutlt/19WwvUPjpgFAAAAAAAAAAAAAIA5sTzrgu7+WFX9YpLfzUrg/qwkz6qqLyX5XJKrk9w4yW2THDYsq+H4i939sdVnVdXdk9x1+PquMX8AAAAAAAAAAAAAAADzYeZAPUm6+yVVdVmS/5XkwOHyzXN9kL5qNUy/PMlzuvtVm/3+mSS3Gs6/OGYWAAAAAAAAAAAAAADmw6hAPUm6+1VV9fYkT01yYpK7Z+XN6auuTnJ2krcmOa27v3oDz7gqyVVjZwAAAAAAAAAAAAAAYH6MDtSTpLu/luQlSV5SVZXkgCT7ZiU6/0Z39/pHBAAAAAAAAAAAAABgEcwcqFfVqcPpx7r7ZavXhxj98uEDAAAAAAAAAAAAAMBuZswb1J+SpJN8fNpRAAAAAAAAAAAAAABYZEsj1nx1OF485SAAAAAAAAAAAAAAACy2MYH654fjIVMOAgAAAAAAAAAAAADAYhsTqP9Vkkry4IlnAQAAAAAAAAAAAABggY0J1P93kouSPKSqHjHxPAAAAAAAAAAAAAAALKiZA/XuvjzJiUkuTvKXVfW7VXXE1IMBAAAAAAAAAAAAALBYlmddUFWnD6eXJzk8yXOTPLeqLs5KtP6tbTyiu/uEWfcFAAAAAAAAAAAAAGC+zRyoJzk+SQ/nq8dKcsvhszW1Zg0AAAAAAAAAAAAAALuQMYF6shKab881AAAAAAAAAAAAAAB2EzMH6t29tCMGAQAAAAAAAAAAAABgsYnNAQAAAAAAAAAAAACYhEAdAAAAAAAAAAAAAIBJCNQBAAAAAAAAAAAAAJjE8nofUFW3THJCkjslOSjJnt399PU+FwAAAAAAAAAAAACAxTI6UK+qQ5O8NMmjkuyxejlJJ3n6Zvf+cZJnJPlCd99u7J4AAAAAAAAAAAAAAMyvpTGLqur2ST6W5DFZidxr+GzJHw733bqqjh+zJwAAAAAAAAAAAAAA823mQL2q9kzy10kOy0qU/pokD0jyc1ta093/kuSTw9cHzj4mAAAAAAAAAAAAAADzbnnEmqcnuX2STvIz3f2KJKmqG29j3ZlJjk5y3Ig9AQAAAAAAAAAAAACYczO/QT3JI4bj6atx+nb65+H4QyP2BAAAAAAAAAAAAABgzo0J1I/OytvT3zLjuq8Nx4NG7AkAAAAAAAAAAAAAwJwbE6j/wHD80ozrlkfsBQAAAAAAAAAAAADAghgTqH9jOB4w47ojhuNXR+wJAAAAAAAAAAAAAMCcGxOof3443mPGdQ9K0kk+NWJPAAAAAAAAAAAAAADm3JhA/e+SVJLHVtVNt2dBVd0/yb2Hr387Yk8AAAAAAAAAAAAAAObcmED9lCSbkuyf5E1VdcDWbq6qE5K8bvj6zSSnjtgTAAAAAAAAAAAAAIA5tzzrgu7+QlX9RpIXJfnxJJ+tqlOzJnavqnsluUuShyf5yay8cb2T/Hx3f3OKwQEAAAAAAAAAAAAAmC8zB+pJ0t2/VVWHJnl2kpsm+YXVn4bjmWtur+H4G93t7ekAAAAAAAAAAAAAALuopW3fcsO6+zlZeUP6J7ISoW/p889JHtrdL1j3tAAAAAAAAAAAAAAAzK1Rb1Bf1d1vTfLWqrprknsnuXWSA5JcmeTiJGd291nrHRIAAAAAAAAAAAAAgPm3rkB9VXd/IitvUgcAAAAAAAAAAAAAYDe1tNEDAAAAAAAAAAAAAACwaxCoAwAAAAAAAAAAAAAwieX1PqCqlpLcLslBSfbZnjXd/f717gsAAAAAAAAAAAAAwHwZHahX1fFJnpfkfkn2nmFpr2dfAAAAAAAAAAAAAADm06hQvKp+PcmvrX6dbhwAAAAAAAAAAAAAABbVzIF6VT0gya+vuXRhkjOTXJxk00RzAQAAAAAAAAAAAACwYMa8Qf3nhuN1SZ6X5A+6u6cbCQAAAAAAAAAAAACARTQmUL9Hkk7y+u5+6bTjAAAAAAAAAAAAAACwqJZGrDlgOL5rykEAAAAAAAAAAAAAAFhsYwL1Lw3H70w5CAAAAAAAAAAAAAAAi21MoP73w/GoKQcBAAAAAAAAAAAAAGCxjQnU/zBJJ3lyVd1o4nkAAAAAAAAAAAAAAFhQMwfq3f2hJL+W5FZJ3lxVB0w+FQAAAAAAAAAAAAAAC2d51gVVdZ8kH0zyF0kel+Tcqnp1kg8luSzJddt6Rne/f9Z9AQAAAAAAAAAAAACYbzMH6knOSNLDeSc5JMlzZljfI/cFAAAAAAAAAAAAAGCOjQ3FaxvfAQAAAAAAAAAAAADYzYwJ1F8w+RQAAAAAAAAAAAAAACy8mQP17haoAwAAAAAAAAAAAADwfZY2egAAAAAAAAAAAAAAAHYNAnUAAAAAAAAAAAAAACaxPNWDqmrvJAcl2au7L5zquQAAAAAAAAAAAAAALIZ1BepVdackz05y/yRHDJd78+dW1WOS3C7Jl7r71PXsCQAAAAAAAAAAAADAfBodqFfVryX51SRLSWobt++d5IVJrqmqv+nuS8fuCwAAAAAAAAAAAADAfFoas6iqXpDk15PskeS6JP+Y5INbWfL6JFcO9584Zk8AAAAAAAAAAAAAAObbzIF6Vd0lyf8cvn4syZ27+8eTvGRLa7p7U5K/G74eP+ueAAAAAAAAAAAAAADMvzFvUP/ZYd3Xkty/u8/dznUfTVJJjh6xJwAAAAAAAAAAAAAAc25MoH7fJJ3ktO6+bIZ1XxiOh4/YEwAAAAAAAAAAAACAOTcmUL/lcDx7xnVXD8d9R+wJAAAAAAAAAAAAAMCcGxOo7zEcr51x3YHD8YoRewIAAAAAAAAAAAAAMOfGBOqXDsfbzLjuR4bjxSP2BAAAAAAAAAAAAABgzo0J1D+cpJKcuL0Lqmq/JI9J0kk+OGJPAAAAAAAAAAAAAADm3JhA/U3D8biqetK2bq6qSvInSQ4aLv3FiD0BAAAAAAAAAAAAAJhzYwL1Nyb5eFbeov6nVfXLVXWTG7qxqn4syem5/u3p7+3uD4wdFgAAAAAAAAAAAACA+bU864Lu7qp6VJIPJTk4yW8m+dUkX169p6rem+TOSQ5dvZTkoiRPXO/AAAAAAAAAAAAAAADMpzFvUE93n5fknknOyUp8vneSw7PylvQkOT7JzYbfKslHkvyH7r50nfMCAAAAAAAAAAAAADCnRgXqyfci9WOTPDLJW5J8LdcH6ZXkyiTvSPKYJPfs7ovWOywAAAAAAAAAAAAAAPNreT2Lu7uT/NXwSVXtm+SAJFd29zfXPx4AAAAAAAAAAAAAAItiXYH65rr7qiRXTflMAAAAAAAAAAAAAAAWw9JGDwAAAAAAAAAAAAAAwK5BoA4AAAAAAAAAAAAAwCQE6gAAAAAAAAAAAAAATEKgDgAAAAAAAAAAAADAJATqAAAAAAAAAAAAAABMQqAOAAAAAAAAAAAAAMAkBOoAAAAAAAAAAAAAAExCoA4AAAAAAAAAAAAAwCQE6gAAAAAAAAAAAAAATEKgDgAAAAAAAAAAAADAJATqAAAAAAAAAAAAAABMYuZAvaqOqKrzhs9DtnPNg6vqc1V1blUdNvuYAAAAAAAAAAAAAADMuzFvUH98ktsk2S/Ju7Zzzd8muVGS2yZ5wog9AQAAAAAAAAAAAACYc2MC9fsl6SR/3d3Xbs+C4b63J6kkPzliTwAAAAAAAAAAAAAA5tyYQP2o4XjWjOvO3mw9AAAAAAAAAAAAAAC7kDGB+sHD8cszrrtsOB4yYk8AAAAAAAAAAAAAAObcmED928Nx3xnX3Xg4XjtiTwAAAAAAAAAAAAAA5tyYQP3S4fjDM65bvf8rI/YEAAAAAAAAAAAAAGDOjQnUP5SkkjymqvbZngVVdaMkj03SST48Yk8AAAAAAAAAAAAAAObcmED9TcPx5klO2c41pwz3J8kbR+wJAAAAAAAAAAAAAMCcmzlQ7+63Jjln+PqEqjqjqu51Q/dW1b2r6swkP5WVt6d/srv/7+hpAQAAAAAAAAAAAACYW8sj1z06yYeTHJjk3knOrKpvJPnXJFcm2S/JHYbfk6SSfDXJI9cxKwAAAAAAAAAAAAAAc2xUoN7d51XVjyV5Y5K7DJcPTHLcmttqzfknkpzU3eeN2Q8AAAAAAAAAAAAAgPm3NHZhd382yTFJnpDkHUm+mZUoffXzjSR/k+RxSe7e3eeud1gAAAAAAAAAAAAAAObXqDeor+ru65K8bvikqvZLcpMk3+zuK9c/HgAAAAAAAAAAAAAAi2JdgfrmhihdmA4AAAAAAAAAAAAAsBta2ugBAAAAAAAAAAAAAADYNQjUAQAAAAAAAAAAAACYxPKWfqiqJ62ed/erb+j6WGufBwAAAAAAAAAAAADArmGLgXqS05L08Hn1DVwfa/PnAQAAAAAAAAAAAACwC9haoJ4kNeN1AAAAAAAAAAAAAAB2U1sL1J8643UAAAAAAAAAAAAAAHZjWwzUu/tVs1wHAAAAAAAAAAAAAGD3trTRAwAAAAAAAAAAAAAAsGsQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAk1he7wOqainJ7ZIclGSf7VnT3e9f774AAAAAAAAAAAAAAMyX0YF6VZ2Q5DlJTkiy1wxLez37AgAAAAAAAAAAAAAwn0aF4lX1O0l+fvXrdOMAAAAAAAAAAAAAALCoZg7Uq+rRSZ635tK5ST6Y5NIkmyaaCwAAAAAAAAAAAACABTPmDer/ZTh+N8nTu/u1E84DAAAAAAAAAAAAAMCCWhqx5oeTdJJXiNMBAAAAAAAAAAAAAFg1JlCv4fiBKQcBAAAAAAAAAAAAAGCxjQnUzx+Oe004BwAAAAAAAAAAAAAAC25MoP62rLxF/ccnngUAAAAAAAAAAAAAgAU2JlD/oySXJXlSVR018TwAAAAAAAAAAAAAACyomQP17r40yYlJrkny3qp65ORTAQAAAAAAAAAAAACwcJbHLOruf6yqo5O8JckbqurSJB9N8tUk1217eT99zL4AAAAAAAAAAAAAAMyvUYF6VR2Q5OQkRyWpJIclefAMjxCoAwAAAAAAAAAAAADsYmYO1KtqvySnJzlm85+28xE9654AAAAAAAAAAAAAAMy/MW9Q/29J7jacX5Lkj5L8fZJLk2yaaC4AAAAAAAAAAAAAABbMmED9scPx/CT36O7LphsHAAAAAAAAAAAAAIBFtTRizW2TdJKXi9MBAAAAAAAAAAAAAFg1JlC/ajheMOUgAAAAAAAAAAAAAAAstjGB+qeH42FTDgIAAAAAAAAAAAAAwGIbE6i/JkklOWniWQAAAAAAAAAAAAAAWGBjAvVXJjk9yb2q6vkTzwMAAAAAAAAAAAAAwIKaOVDv7k5yYpI3JXlxVf1NVT24qg6efDoAAAAAAAAAAAAAABbG8qwLquratV+TPHD4pKq25xHd3TPvCwAAAAAAAAAAAADAfBsTim9eoW9XlQ4AAAAAAAAAAAAAwK5tTKD+/iQ99SAAAAAAAAAAAAAAACy2mQP17j5+B8wBAAAAAAAAAAAAAMCCW9roAQAAAAAAAAAAAAAA2DUI1AEAAAAAAAAAAAAAmIRAHQAAAAAAAAAAAACASSyv9wFVdWSShyU5LsnNk+yf5IoklyT5cJK/6u7z1rsPAAAAAAAAAAAAAADzbXSgXlUHJ/njJI9MUlu47ZFJfruq3pjk57r7srH7AQAAAAAAAAAAAAAw35bGLKqqI5Kck+RRwzNqK5+lJCcl+WhV3WqCmQEAAAAAAAAAAAAAmEMzB+pVtZTkbUkOz0qA/sUkv5rkuCQHJdlzON5juH7JcN+tkry9qrb0tnUAAAAAAAAAAAAAABbYmDeoPzHJ0Uk6yV8nuWN3v6i7P9Ld3+jua4fjWd39oiR3TPL2Ye3RSZ4wyeQAAAAAAAAAAAAAAMyVMYH6I4fj55Oc1N1XbO3m7r4yyaOTfG649OgRewIAAAAAAAAAAAAAMOfGBOp3z8rb01/Z3Zu2Z8Fw36lJKsndRuwJAAAAAAAAAAAAAMCcGxOoHzIcPzvjunOH48Ej9gQAAAAAAAAAAAAAYM6NCdSvGo4Hzrhu9f6rR+wJAAAAAAAAAAAAAMCcGxOonz8cHzzjutX7z9/aTQAAAAAAAAAAAAAALKYxgfq7k1SSh1bVI7dnQVU9IsmJSTrJ347YEwAAAAAAAAAAAACAOTcmUH95km8N539RVS+uqkNu6MaqOriqfjPJXwyXvj2sBwAAAAAAAAAAAABgF7M864LuvqiqnpvkfyfZI8nzk/x8VX08yWeTXJVk3yS3T3LMsEdl5e3pz+nui6cZHQAAAAAAAAAAAACAeTJzoJ4k3X1KVSXJ7ye5UZI9k/zI8FmrhuO3shKn/8nIOQEAAAAAAAAAAAAAmHNLYxd29ylJ7pzkpUkuyEqMvvnngqxE7HcWpwMAAAAAAAAAAAAA7NpGvUF9VXdfkOS5SZ5bVTdNcvMk+ye5IskXu/sr6x8RAAAAAAAAAAAAAIBFsK5Afa0hRhekAwAAAAAAAAAAAADspmYO1KvqScPp6d190QzrbpHkJ5Oku189674AAAAAAAAAAAAAAMy3MW9QPy1JJ3l4ku0O1JMcPay9LolAHQAAAAAAAAAAAABgF7O0AXvWBuwJAAAAAAAAAAAAAMAOtjMD9dW9rtuJewIAAAAAAAAAAAAAsJPszED95sPxip24JwAAAAAAAAAAAAAAO8lOCdSr6vAkzxq+nrcz9gQAAAAAAAAAAAAAYOda3tqPVfXsJM/ews9/UlUv3cbzK8m+SQ4evneSd84yIAAAAAAAAAAAAAAAi2GrgXqSA5PcOithea25XkkOHbHfZ5K8ZMQ6AAAAAAAAAAAAAADm3LYC9cuTXLDZtSOyEqxfluTqbay/LsmVST6f5L1JTu3uq2YfEwAAAAAAAAAAAACAebfVQL27/yDJH6y9VlXXDaf/ubvftqMGAwAAAAAAAAAAAABgsWzrDeo35MKsvEF9W29PBwAAAAAAAAAAAABgNzJzoN7dt94BcwAAAAAAAAAAAAAAsOCWNnoAAAAAAAAAAAAAAAB2DQJ1AAAAAAAAAAAAAAAmsbzeB1TVf0hyXJLDk9wkyR7bWNLd/fT17gsAAAAAAAAAAAAAwHwZHahX1YlJfi/JbUcsF6gDAAAAAAAAAAAAAOxiRgXqVfWzSf5w9es2bu/N7ukxewIAAAAAAAAAAAAAMN+WZl1QVbdN8tKsROeXJnlakjsNP3eSZya5S5KHJHlZkiuH669KcruMe+M6AAAAAAAAAAAAAABzbswb1H92WHdtkvt396eSpOp7L0n/cnd/Osmnk7yzqn4vyVuTPCnJ1d39X9Y9NQAAAAAAAAAAAAAAc2fmN6gnuW9W3oj+9tU4fWu6+6IkD07yjSQ/U1UnjNgTAAAAAAAAAAAAAIA5NyZQv/Vw/Ict/L7X5he6+9Ikr0xSSZ4xYk8AAAAAAAAAAAAAAObcmEB9/+H4hc2uf3uz3zd39nA8bsSeAAAAAAAAAAAAAADMuTGB+lVbWHv5cLz1FtbtORwPG7EnAAAAAAAAAAAAAABzbkyg/vnheLPNrv9rkkryE1tY96PD8Tsj9gQAAAAAAAAAAAAAYM6NCdTPzkqIftfNrp8xHO9dVfdf+0NV/WiSpyXpJJ8asScAAAAAAAAAAAAAAHNuTKB++nD8yc2uvyrJpuH87VX1+qp6cVW9PskHkuw9/PaaEXsCAAAAAAAAAAAAADDnlkeseXuS7yQ5vKru393vTpLuvqCqfinJ7yfZM8mj1qyp4fi+JK9Yx7wAAAAAAAAAAAAAAMypmd+g3t1XJNk/yY2SvGez316a5IlJPpeVKH31c1VWwvWHdPd16xsZAAAAAAAAAAAAAIB5NOYN6unu727ltz9P8udVdZskN0tydZJ/2doaAAAAAAAAAAAAAAAW36hAfXt09+eTfH5HPR8AAAAAAAAAAAAAgPmytNEDAAAAAAAAAAAAAACwaxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwCYE6AAAAAAAAAAAAAACTEKgDAAAAAAAAAAAAADAJgToAAAAAAAAAAAAAAJMQqAMAAAAAAAAAAAAAMAmBOgAAAAAAAAAAAAAAkxCoAwAAAAAAAAAAAAAwieWNHmCeVNXdkxyX5EeTHJ3kpkkOycp/Tl9P8ukkf5fktO7+0kR7np/kiO28/czuPn6KfQEAAAAAAAAAAAAApuYN6v/eO5L8cZKnJjk2K+H4vkn2TnJYkvsl+a0k51bVMzdqSAAAYOu+/M1v59Gn/GO+fMW3N3oUAAAAAAAAAIDdijeof7/LknwoyT8n+WKSLyXZI8mRSR6W5G5J9ktySlVd092nTrTvV5JsK3q/bKK9AABgl/ay956bj5z/tbzsPefmhQ8/eqPHAQAAAAAAAADYbQjU/70Tkny6u3sLv/9GVf1SkhcP319SVX/e3Zsm2Pvq7n7LBM8BAIDd1h1+5Z3ZdM113/v+2n+6MK/9pwuz9/JSPvPCB23gZAAAAAAAAAAAu4eljR5gnnT3P28lTl+957eSfGL4emCSH9/RcwEAANvnA79w3zz0mFtknz1X/q/OPnsu5cRjbpEPPP++GzwZAAAAAAAAAMDuQaA+zqfXnB+2YVMAAAD/zqE32Sf7772cTddcl72Xl7Lpmuuy/97LOXT/fTZ6NAAAAAAAAACA3cLyRg+woG635vxLGzYFAADwfS67clN+6rgj8vh7/GBe9+EL85Urvr3RIwEAAAAAAAAA7DYE6jOqqp9J8qPD10uT/P1Ejz64qt6T5K5JDkzyjSSfT/K+JH/S3edNtA8AAOzSTnnisd87f+HD7rKBkwAAAAAAAAAA7H4E6ltQVfdJ8gPD172T3DrJf0xyr+Hat5I8tbs3TbTlfklOWPP9kOHzo0l+vqp+N8mvdPe1E+0HAAAAAAAAAAAAADApgfqW/U6S427g+rVJ3pPkl7r7nIn2uiTJu5J8LCtvZd8ryZFJHpHk6CR7JPnFJDdP8pSJ9gQAAAAAAAAAAAAAmJRAfXYXJHl3kgsnet4TkvxDd193A7+dXFXPSvKHWYnUn1xVf9fdf761B1bVM5M8M0ludrOb5YwzzphoVABYceWVV/rvFwAAAAAAgIn5NxgAAGBXUN290TNst6p6RpLDp3hWd588w777JrlDkpOS/Pck+yS5KMnDuvujU8yzjf1/OcmLhq//2t132t61xx57bJ911lk7ZjAAdltnnHFGjj/++I0eAwAAAAAAYJfi32AAAIBFUVUf7e5jb+i3RXuD+jOSHDfRs07e3hu7+6okZyc5u6rekOTMrITy76mqo7r7kolm2pLfT/ILSQ5Icsequm13f24H7wkAAAAAAAAAAAAAMJOljR5g0XT3OUl+Z/h6YJJn74Q9v53kQ2su3WFH7wkAAAAAAAAAAAAAMKuFCtS7+57dXVN81jnKu9acH7/OZ22vr645P2gn7QkAAAAAAAAAAAAAsN0WKlCfI1esOT9wJ+158Jrzy3fSngAAAAAAAAAAAAAA202gPs6Ra84v29GbVdXeSe655tJnd/SeAAAAAAAAAAAAAACzEqiP88w15/+wE/Z7bpIDhvNzu/vfdsKeAAAAAAAAAAAAAAAzEagPquopVXX/qqqt3LNXVb0kyUOHS99J8qdbuPfkqurhc9oW7vmfVXWnbcz1M0l+c82lF23tfgAAAAAAAAAAAACAjbK80QPMkWOSvDLJRVX17iSfSPKVrEToP5DkrkkenuQWa9Y8r7s/s449T0rywqo6J8mZSf4lydeT7JXkyCSPGPZd9dokr17HfgAAAAAAAAAAAAAAO4xA/fsdnuRp27jny0me3d1/OdGedxs+W3JNkt9O8oLu7on2BAAAAAAAAAAAAACYlED9er+c5K+THJ/kx5LcMsmhSfZPclWSLyb5WJJ3JnlTd181wZ5PTHKfYb+jkhyS5OAkS0m+luTTWXmz+qndffEE+wHAbufL3/x2fu4vzskfPf5uOXT/fTZ6HAAAAAAAAAAAgF2aQH3Q3Vcnec/wmeJ5Jyc5eRv3fDLJJ5O8fIo9AYDv97L3npuPnP+1vOw95+aFDz96o8cBAAAAAAAAAADYpQnUAYBd0h1+5Z3ZdM113/v+2n+6MK/9pwuz9/JSPvPCB23gZAAAAAAAAAAAALuupY0eAABgR/jAL9w3Dz3mFtlnz5X/ubPPnks58Zhb5APPv+8GTwYAAAAAAAAAALDrEqgDALukQ2+yT/bfezmbrrkuey8vZdM112X/vZdz6P77bPRoAAAAAAAAAAAAu6zljR4AAGBHuezKTfmp447I4+/xg3ndhy/MV6749kaPBAAAAAAAAAAAsEsTqAMAu6xTnnjs985f+LC7bOAkAAAAAAAAAAAAu4eljR4AAAAAAAAAAAAAAIBdg0AdAADg/7F3/8Fx3+eB35/vcqFdKQJtRxYsIQnJy9mGJVEJ1GNJN5LPhJ1UYZmQVDLHNGTY5selSVXVnqQzJFOi09wNrne+znU6iHw3yPV6vgtCOZe4qq9H0dGRFzWIhwFFRUpsWaaRnJlNrKgAxVggbO+K4H77BwgIpEkKBD7Adxd4vWY0s7/xcHcBEdz3PgsAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AaHvjk/XYO3Qqxi/Wix4FAAAAAAAAAABgTROoAwBtb/DkWDx/7kIMnhgrehQAAAAAAAAAAIA1rVz0AAAAi9XTfzwa082548OjtRgerUWlXIqzAzsKnAwAAAAAAAAAAGBtskEdAGhbIwf7Yldvd1Q7Zv5KU+0oxe7e7hg51FfwZAAAAAAAAAAAAGuTQB0AaFtd66vRWSlHY7oZlXIpGtPN6KyUo6uzWvRoAAAAAAAAAAAAa1K56AEAAJbi/FQj9m/bGPu2boijp2sxcbFe9EgAAAAAAAAAAABrlkAdAGhrQwe2zB0e2LO5wEkAAAAAAAAAAAAoFT0AAMBSjE/WY+/QqRi3OR0AAAAAAAAAAKBwAnUAoK0NnhyL589diMETY0WPAgAAAAAAAAAAsOaVix4AAGAxevqPR2O6OXd8eLQWw6O1qJRLcXZgR4GTAQAAAAAAAAAArF02qAMAbWnkYF/s6u2OasfMX2eqHaXY3dsdI4f6Cp4MAAAAAAAAAABg7RKoAwBtqWt9NTor5WhMN6NSLkVjuhmdlXJ0dVaLHg0AAAAAAAAAAGDNKhc9AADAYp2fasT+bRtj39YNcfR0LSYu1oseCQAAAAAAAAAAYE0TqAMAbWvowJa5wwN7Nhc4CQAAAAAAAAAAABERpaIHAAAAAAAAAAAAAABgdRCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAA1rDxyXrsHToV4xfrRY8CAAAAAAAArAICdQAAAIA1bPDkWDx/7kIMnhgrehQAAAAAAABgFSgXPQAAAAAAK6+n/3g0pptzx4dHazE8WotKuRRnB3YUOBkAAAAAAADQzmxQBwAAAFiDRg72xa7e7qh2zPzzULWjFLt7u2PkUF/BkwEAAAAAAADtTKAOAAAAsAZ1ra9GZ6UcjelmVMqlaEw3o7NSjq7OatGjAQAAAAAAAG2sXPQAAAAAABTj/FQj9m/bGPu2boijp2sxcbFe9EgAAAAAAABAmxOoAwAAAKxRQwe2zB0e2LO5wEkAAAAAAACA1aJU9AAAAADLbXyyHnuHTsW4zcAAAAAAAAAAAMtKoA4AAKx6gyfH4vlzF2LwxFjRowAAAAAAAAAArGrlogcAAABYLj39x6Mx3Zw7Pjxai+HRWlTKpTg7sKPAyQAAAAAAAAAAVicb1AEAgFVr5GBf7OrtjmrHzK8+1Y5S7O7tjpFDfQVPBgAAAAAAAACwOgnUAQCAVatrfTU6K+VoTDejUi5FY7oZnZVydHVWix4NAAAAAAAAAGBVKhc9AAAAwHI6P9WI/ds2xr6tG+Lo6VpMXKwXPRIAAAAAAAAAwKolUAcAAFa1oQNb5g4P7Nlc4CQAAAAAAAAAAKtfqegBAAAAAAAAAAAAAABYHQTqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAHAD45P12Dt0KsYv1oseBQAAAAAAAACgLQjUAQBYEgEvq9ngybF4/tyFGDwxVvQoAIvm/9UAAAAAAADAShKoAwCwJAJeVqOe/uOx6fCxGB6tRZ5HDI/WYtPhY9HTf7zo0QBumf9XAwAAAAAAACupXPQAAAC0p57+49GYbs4dHx6txfBoLSrlUpwd2FHgZLB0Iwf7YuCZV+LZl1+L+qVmVDtK8egD98SRnfcVPRrAgvl/NQAAAAAAAFAEG9QBAFiUkYN9sau3O6odb/2VctNdd8TIob4Yn6zH3qFTMX6xXuCEsHhd66vRWSlHY7oZlXIpGtPN6KyUo6uzWvRoAAt27f+rqx2l2N3bHSOH+gqeDAAAAAAAAFjNbFAHAGBRutZX49/98avRzN867dzr34yt/+BkrMsimhExeGIsBh57sLAZYSnOTzVi/7aNsW/rhjh6uhYT3nABtBlvtgEAAAAAAACKIFAHAGDR/vb77o5zr38jXn3jW/Hm9Ful+uUrB4dHazE8WotKuRRnB3YUNCUsztCBLXOHB/ZsLnASgMXzZhsAAAAAAABgpZWKHgAAgPb1qZ/dGg+/991x6XIelXIpsixi0113RLVj5q+Z1Y5S7O7tjpFDfQVPymo2PlmPvUOnYlx0CfBthg5siYE9m+P+7vUxsGfzVW++AQAAAAAAAFgOAnUAAJZkdjPr048/HPu3bYzpZh6N6WZUyqVoTDejs1KOrs5q0WOyig2eHIvnz12IwRNjRY8C0FK8gQcAAAAAAAAoQrnoAQAAaG/zN7EO7Nkcv/AbZ2J7T1fs27ohjp6uxYQojmUwPlmPbf/wZOT5W6cNj9ZieLQWlXIpzg7sKG44gBYx/w08A489WPQ4AAAAAAAAwBohUAcAIKlrg3VYDoMnxyLPIzbddUe8NlmP+qVmVDtK8egD98SRnfcVPR5AoXr6j0djujl33Bt4AAAAAAAAgJUkUAcAANrGtdHlude/OXe4Md2Mzko5ujqrRYwG0DJGDvbFwDOvxLMvv+YNPAAAAAAAAMCKKxU9AAAAwEKNHOyLXb3dUe2Y+VWmlM1sUR/+u1tj/7aNMTHVKHhCgOJ1ra9GZ6UcjelmVMolb+ABAAAAAAAAVpQN6gAAQNu4Nrp883IzHnnvu+OR994dj7z37qLHA2gZ56casX/bxti3dUMcPV2LiYv1okcCAAAAAAAA1giBOgAA0FZElwBvb+jAlrnDA3s2FzgJAAAAAAAAsNYI1AEAgLYiugQAAAAAAAAAaF2logcAAAAAAAAAAAAAAGB1EKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAACAFTE+WY+9Q6di/GK96FEAAAAAAAAAWCYCdQAAAGBFDJ4ci+fPXYjBE2NFjwIAAAAAAADAMikXPQAAAACw+oxP1uOJp16MX/3R+2Pnr/1B5Plb5w2P1mJ4tBaVcinODuwobkgAAAAAAAAAkrNBHQAA4CbGJ+uxd+hUjF+sFz0KtJXZbekf//RLkecRm+66I6odM/8MUe0oxe7e7hg51FfwlAAAAAAAAACkZoM6AADATcxGtoMnxmLgsQeLHgdaXk//8WhMN+eOj41PRUTEude/OXdaY7oZnZVydHVWV3w+AAAAAAAAAJaXDeoAAKxaNl+zFD39x2PT4WMxPFqLPI8YHq3FpsPHoqf/eNGjQUsbOdgXu3q7o1LOrjq9lM1sUR/+u1tj/7aNMTHVKGhCAAAAAAAAAJaTQB0AgFVr/uZruFWzkW21Y+bXpmpHKXb3dsfIob6CJ4PW1rW+Gp2Vcrx5OY/SlUZ9XRaRR8Qj7313PPLeu2Ngz+YYOrCl0DkBAAAAAAAAWB7logcAAIDUevqPR2O6OXd8eLQWw6O1qJRLcXZgR4GT0U5mI9vGdDMq5VI0ppvRWSlHV2e16NGg5Z2fasT+bRvjP05MxfmpRtx1523xN+/ujAmfaAEAAAAAAACw6gnUAQBYdUYO9sXAM6/Esy+/FvVLzah2lOLRB+6JIzvvK3o02sxsZLtv64Y4eromroUFsh0dAAAAAAAAYO0SqAMAsOrYfE0q8yPbgT2bC5wEAAAAAAAAAKA9lIoeAACA9jA+WY+9Q6di/GI9xifr8dgnPx97Pvn5GG/RjdKzm6+ffvzh2L9tY0xMNYoeCQAAAAAAAAAAVj0b1AEAWJDBk2Px/LkLMXhiLCIiXvyLr8+cfmIsBh57sMDJrs/mawAAAAAAAAAAWHkCdQAAbqqn/3g0pptzx4dHa1edPzxai+HRWlTKpTg7sGOlxwMAAAAAAAAAAFpIqegBAABobSMH+2JXb3dUO2b+6ljKrj6/lEU8+sB7YuRQXwHTAQAAAAAAAAAArUSgDgDATXWtr0Y5y6J+qRm3lUvRzK8+v5lH3H1nJbo6q8UM2ObGJ+uxd+hUjF+sFz0KAAAAAAAAAAAsmUAdAIC39fy5CxER8UMf6IrvedftUe0oxc4H742dD94b3/Ou22NiqlHwhO1r8ORYPH/uQgyeGCt6FAAAAAAAAAAAWLJy0QMAANC6evqPR2O6OXf82Bdfi4iISrkUn9z/nxQ11qpw7X07PFqL4dFaVMqlODuwo8DJAAAAAAAAAABg8WxQBwDghkYO9sWu3u6odsz8tbHaUYrdvd3x9OM/EHuHTsX4xXrBE7avG923I4f6Cp4MaCfjk3U/jwEAAAAAAABoKQJ1AABuqGt9NTor5WhMN6NSLkVjuhmdlXIcHa3F8+cuxOCJsaJHbFs3um+7OqtFjwa0kcGTY34eAwAAAAAAANBSykUPAABAazs/1Yj92zbGvq0b4kd+bSSGR2tz5w2P1mJ4tBaVcinODuwocMr2NP++PXq6FhM2IAML1NN/PBrTzbnjfh4DAAAAAAAA0CoE6gAA3NTQgS1zh//wVz4aA8+8Es++/FrULzWj2lGKRx+4J47svK/ACVvH+GQ9nnjqxXhy30ML2oQ+/74d2LN5OUcDVpmRg31+HgMAAAAAAADQkkpFDwAAQPvoWl+Nzko5GtPNqJRL0ZhuRmelvKAYey0YPDkWz5+7EIMnxooeBVjl/DwGAAAAAAAAoFXZoA4AwC05P9WI/ds2xr6tG+Lo6VpMXKwXPVLhevqPR2O6OXd8eLQWw6O1qJRLcXZgR4GTAauZn8cAAAAAAAAAtCKBOgAAt2TowJa5wwN7Nhc4SesYOdgXA8+8Es++/FrULzWj2lGKRx+4J47svK/o0YBVzM9jAAAAAAAAAFpRqegBAACg3XWtr0ZnpRyN6WZUyqVoTDejs1KOrs7qDa8zPlmPvUOnYtzGYwAAAAAAAAAAVhGBOgAAJHB+qhH7t22Mpx9/OPZv2xgTU42bXn7w5Fg8f+5CDJ4YW6EJAQAAAAAAAABg+ZWLHgAAAFaDoQNb5g4P7Nl8w8v19B+PxnRz7vjwaC2GR2tRKZfi7MCOZZ0RWFnjk/V44qkX48l9D930ExUAAAAAAAAAYDWxQR0AAFbQyMG+2NXbHdWOmb+KVztKsbu3O0YO9RU8GZCaT0oAAAAAAAAAYC2yQR0AAFZQ1/pqdFbK0ZhuRqVcisZ0MzorZduVYRXxSQkAAAAAAAAArGU2qAMAwAo7P9WI/ds2xtOPPxz7t22MialG0SMBCa3lT0r40qtvxIP/8+/Gl/7qjaJHAQAAAAAAAKAgNqgDAMAKGzqwZe7wwJ7NBU4CLMT4ZD2eeOrFeHLfQwv6tIO1/EkJH//0S3GxMR0ff+ql+Pe//OGixwEAAAAAAACgADaoAwAALNH4ZD32Dp2K8Yv1okdhGQyeHIvnz12IwRNjC77OWvukhE2Hj8Wmw8dibHwqIiLGxqfmTgMAAAAAAABgbbFBHQAAVpFb3fRMGvMD5oHHHix6HBLp6T8ejenm3PHh0VoMj9aiUi7F2YEdN73uWvukhGc+9kj8/L9+Ib729W/Nnfbd77w9fv2//lsFTgUAAAAAAABAEWxQBwCAVWQxm55ZvJ7+47Hp8LEYHq1Fns8EzJsOH4ue/uNFj0YCIwf7Yldvd1Q7Zn51rnaUYndvd4wc6it4stZzf/c74o7b1l112u23rYv7731HQRMBAAAAAAAAUBSBOgAArAJC6WLMBsyV8syvVpWygLmVjE/WY+/QqRi/WF/U9bvWV6OzUo7GdDMq5VI0ppvRWSn7dIIbeONbl+L977kznvzJh+L977kz3vjWpaJHAgAAAAAAAKAAAnUAAFaVpQap7cqm52LMD5gjQsDcYlJ8osD5qUbs37Yxnn784di/bWNMTDUSTtjerv15e/rID8azv/Th+JHv745nf+nDcfrIDxY8IQAAAAAAAABFKBc9AAAApDQ/SB147MGix1kxNj0Xo6f/+FycPmt4tBa//cJfxtmBHQVNxbWPy/BoLYZHa1Epl275cRk6sGXu8MCezclmXA2u/Xk7PlmPJ556MZ7c95CfPQAAAAAAAABrmEAdAIBVIWWQ2q5mNz3v27ohjp6uxcQStsgLTRdm5GBfDDzzSjz78mtRv9SMakcpHn3gnjiy876iR1vTPC7L60Y/b9dlEc2INfcGIQAAAAAAAACuVip6AAAASGHkYF/s6u2OasfMX3GrHaXY3dsdI4f6Cp5s5Qwd2BIDezbH/d3rY2DP5qs2P9+q+ZuRuTGb61uTx2V5zf68rZSv/ieFy3lEns8E65sOH4ue/uMFTQgAAAAAAABAkQTqAACsCoLUNHr6j8emw8dieLS26kPT8cl67B06FV969Y3YO3Qqxhe5cX52c/3Tjz8c+7dtjImpRuJJ14bZx2Oxj8O1PC7LZ/7P21mb7rpjTb9BCAAAAAAAAIC3lIseAAAAUpkNUvdt3RBHT9diIlHoupaMHOyLgWdeiWdffi3ql5pR7SjFow/cE0d23reg649P1uOJp16MJ/c91PJvDpjdEv/xT78UfzoxFYMnxmLgsQdv+Xbmb6of2LM55Yhryvyt/Yt5HK7lcVk+Pf3Hr4rTIyLOvf7NiAhvEAIAAAAAAABAoA4AQHubH0QLUpduqZvoU0fGy+HauHZsfCoiZrbFD4/WolIuxdmBHUv6Gu0U6i+Xhd4H1z4eKR8Hlsf13sjyrjtuix94713xcw9/rzcIAQAAAAAAAKxxpaIHAACApZgfRJPG7Cb6px9/OPZv2xgTU423vU5P//HYdPhYDI/WIs9nIuNNh49FT//xFZj41owc7Itdvd1RKWdXnV4pl2J3b3eMHOpb8tfwvFz4fTD7eFQ7Zn49rXakexxYHtd7I8tHP9AV/+Tv9Mb93etjYM/mq94wBAAAAAAAAMDaYoM6AABtydbl5bOYTfTX26j86AP3xJGd9y3XmIs2G9e+eTmPUhbRzCPWZRFvXr61bfHX43l56/fBUrf2U4zZN7Ls27rBxnQAAAAAAAAArmKDOgAAbcnW5daykpHx+GQ99g6divElBLGzce0Hv/eueP977oyt3/udC94WfzOel4u7DxaztX8tS/E9sFRDB7bEwJ7NNqYDAAAAAAAA8G1sUAcAoC2tta3L45P1eOKpF+PJfQ+17J9xpTYqD54ci+fPXYjBE2Mx8NiDi7qN5YppW/l5uVLPocXcB4vZ2r+WpfgeAAAAAAAAAIDlIlAHAKBtrVQQ3QraIUhd7si4p/94NKabc8eHR2sxPFqLSrkUZwd2JP96i9Wqz8uVfA616n3Q7trlewAAAAAAAACAtS3L87zoGVhGW7Zsyc+cOVP0GACsMs8991xs37696DFgTbg2SJ21FoPU8cl6DDzzSjz78mtRv9SMakcpHn3gnjiy876W2FAe8daW8l/90fvjV/+fL7XExnvPodWjHb4HAAAAAFgar8EAAADtIsuyF/I8v+5H2JdWehgAAGDhRg72xa7e7qh2zPzVvdpRit293TFyqK/gyVZe1/pqdFbK0ZhuRqVcisZ0Mzor5ZYKc2e3lH/80y/NbSsvmufQ6tEO3wMAAAAAAAAAUC56AAAA4MbmB6lZFms+SD0/1Yj92zbGvq0b4ujpWkxcrBc9UkR8+5bysfGpiIgYHq3F8Git0G3l7RQ1z26gb4XN862qVb8HAAAAAAAAAGCWQB0AAFrc+alGvO/uO+Mr41Px/q47Y2KqsSJftxVj4aEDb30y1MCezcv6tW7lzz9ysC8GnnklfveLr10VqlfKWfzw5nvjyM77lnXWt9MuUfPsBvrBE2Mx8NiDRY/TklbyewAAAAAAAAAAFkOgDgAALezazdxfGZ+Kr4xPRU//8WXfyL3WY+Fb+fPPbil/83Iz1mURl/OIUhbx5uW8JbaVt3rUfO3zvBU2zwMAAAAAAAAAiyNQBwCAFja7mfvZl1+L+qVmVDtK8egD9yzrRu61Hgsv9s8/u6X8zyYuxutTb8a776zE9959Z8tuK28lRTzPAQAAAAAAAIDlIVAHAIAFGp+sxxNPvRhP7ntoxTZiz27mbkw3o1IuRWO6uewbudd6LDz75z/2J38Vl5t5rCtl8SPfd+/b/vnnbynn1hTxPG8HRfzMAQAAAAAAAIClKhU9AAAAtIvBk2Px/LkLMXhibFHXH5+sx96hUzF+ixu1ZzdzP/34w7F/28aYmGos6usv1FqPhT/0j38v/u1Lr8blZh4REZebeXz2pVfjQ5/4vYInW91W+nneDpb6MwcAAAAAAAAAipDleV70DCyjLVu25GfOnCl6DABWmeeeey62b99e9BiwYnr6j0djuvltp1fKpTg7sGPBt9P/9BfiN0/XYv/WDTHw2IMpR0zuF37jTNzdWY19WzfE0dO1mLhYXzMbwscn67Hrk5+Picl6XM4j1mUz0f5nn3h4zUT6FCvVzxwAAAAA2o/XYAAAgHaRZdkLeZ5fNyYpr/QwAADQbkYO9sXAM6/Esy+/FvVLzah2lOLRB+6JIzvvW9D1r41Nh0drMTxaa+nYdH6MPrBnc4GTrLyu9dX46Ae64ujpmcfozcvN+OgHusTpLWR8sh5PPPViPLnvoVX5uCz1Zw4AAAAAAAAAFKlU9AAAANDqutZXo7NSjsZ0MyrlUjSmm9FZKS84jB052Be7eruj2jHz1+9qRyl293bHyKG+5RybJTg/1Yj92zbG048/HPu3bYyJqUbRIzHPJz735Tj91QvxieNfXpbbH5+sx96hUzF+sb4st/92lvozBwAAAAAAAACKZIM6AAAswGywvG/rhjh6uhYTtxCuik3bz1reIN/Krv00gs/80dfiM3/0teSfRjB4ciyeP3chBk+MxcBjDya73VuxlJ85AAAAAAAAAFAkgToAACzAUoNlsSksXZ7nt3T6rbo2gB8ercXwaC15AL8Q3iQBAAAAAAAAQLsqFT0AAACsVuOT9dg7dCrGL9Zj6MCWGNizOe7vXh8DezZfFZ8u5XZhLfmDQx+JjXfdcdVpm+66I/7g8EeS3P7Iwb7Y1dsd1Y6ZX5WrHaXY3dsdI4f6vu2yvg8BAAAAAAAA4PoE6gAAsEwGT47F8+cuxOCJsba4XbiRVomxu9ZX43JzZlt6x7osIiIuN/Po6qwmu/3OSjka082olEvRmG5GZ6V83dv3fQgAAAAAAAAA11cuegAAAFhtevqPR2O6OXd8eLQWw6O1qJRLcXZgR8vd7q0Yn6zHE0+9GE/ueyhZFEzrmx9jDzz2YKGzPNC9Prb3dMW+rRvi6Ola/OWFb8beoVPJnpPnpxqxf9vGudufuCbKb4XvQwAAAAAAAABoZVme50XPwDLasmVLfubMmaLHAGCVee6552L79u1FjwEta3yyHgPPvBLPvvxa1C81o9pRikcfuCeO7LxvSQHtct3ureh/+gvxm6drsX/rhsJD5ZW2FuP8a2PsWa0UY6/0c7IVvg8BAAAAWL28BgMAALSLLMteyPN8y/XOs0EdAAAS61pfjc5KORrTzaiUS9GYbkZnpbzkeHW5bnchbI1urS3iK2XkYN8NY+yiFfWcLPL7EAAAAAAAAADaQanoAQAAYDU6P9WI/ds2xtOPPxz7t22MialGS9/u2xk52Be7ertjXSmLiIh1pSx293bHyKG+Ffn6RerpPx6bDh+L4dFa5PlMCL3p8LHo6T9e9GjLrpVj7NnnZLVj5tfaakdpUc/J8cl67B06FeMX6wu+TlHfhwAAAAAAAADQDmxQBwCAZTB04K1PMBrYs7nlbzdiJtR94qkX48l9D31bgPyhf/x7V22rvtzM47MvvRqf++Jrq36D+uwW8WN/8ldxuZnHulIWP/J997bEFvGVMBtj79u6IY6ersXExXp86dU34ieG/jB+6xc/GPff+45F3e7Nnm8LkSqeX8xm/OX8PgQAAAAAAACAdidQBwAAIuLmoe7Iwb7Y9cnPx8RkPS7nEeuymUD4s088XNC0K2ctx/kR14+xf+h/+3/jYmM6Pv7US/Hvf/nDi7rdxYTh17pePL9QPf3Hr3pch0drMTxai0q5tCYeVwAAAAAAAABYLlme50XPwDLasmVLfubMmaLHAGCVee6552L79u1FjwFr0lK3Tl/PtaHurGtD3SNPfyGOnq7FbetK8eblZuzfumHRYXE7GZ+s3zDOT/UYtItNh4/d8Lxz/2jngm5joc+35TY+WY+BZ16JZ19+LeqXmlHtKMWjD9wTR3bet+YeVwAAAABah9dgAACAdpFl2Qt5nm+53nmllR4GAABYvPlbp1MZOdgXu3q7o9ox8+tBtaMUu3u7Y+RQ31WXm91W/fTjD8f+bRtjYqqRbIaFGp+sx96hUzF+C5uyl6prfTU++oGuaMZMRN2MiI9+oGtNRszPfOyR+K533n7Vad/9ztvjmY8/suDbWOjzbbl1ra9GZ6UcjelmVMqlaEw3o7NSXpOPKwAAAAAAAACkVC56AAAA4O1du3V6eLQWw6O1JFunFxrqDh14602vA3s2L+lrLtb8QH8lt7fPxvn7tm6Io6drMbGCgXwrub/7HXHHbeuuOu3229bF/fe+Y8G3kTIMX+onCnhcAQAAAAAAACA9gToAALSBkYN9MfDMK/Hsy69F/VIzqh2lePSBe+LIzvuS3H6rh7rLGegvRCvE+fMtNcxeije+dSne/54742MfeV8M/oex+Po3L93ybaR6vi31DQut9rgCAAAAAAAAwGqQ5Xle9Awsoy1btuRnzpwpegwAVpnnnnsutm/fXvQYsOYcefoLcfR0LW5bV4o3Lzdj/9YNK7pFvEjjk/WrAv1SFvGf3/+e+Pt7Nq9IoP2lV9+Inxj6w/itX/xgvPs7KoXF4bP6n/5C/ObpWtx9ZyX+3cceKWyOolz7hoVZK/WGBQAAAABYLl6DAQAA2kWWZS/keb7leueVVnoYAABgcWa3Tj/9+MOxf9vGmJhqLPq2xifrsXfoVIy32Kb0mzn1Z+ejMT0TpzfziLP/39SKhdkf//RLcbExHR9/6qX4xOe+HKe/eiE+cfzLK/K15+vpPx6bDh+L4dFa5HnE+MVGbP0HJ6On//h1L9+Oj/NCjBzsi1293VHtmPmVttpRit293TFyqK/gyQAAAAAAAACActEDAAAACzN04K03nQ7s2byk2xo8ORbPn7sQgyfG2mIL++DJsZi4+GZERMx+BtRXz38jNh0+tqxbszcdPnbV8bHxqRgbn4qIiM/80dfiM3/0tRXd2j1ysC8++A9PRvOaD8JqTDejp//4t83Rbo/zQnWtr0ZnpRyN6WZUyqVoTDejs1Jec5vkAQAAAAAAAKAVCdQBAGAN6ek/Ho3p5tzx4dFaDI/WVjSyvhXXzns9eZ7f9PyleOZjj8TP/+sX4mtf/9YNL9Ns5rF36FQ8ue+hZQ+ku9ZX3yr0rzH/fmi1x3l8sh5PPPVi0vto9hMF9m3dEEdP12JilW2JBwAAAAAAAIB2VSp6AAAAYOWMHOyLXb3dUe2Y+VWg2lGK3b3dMXKob0HXH5+sx96hUzG+QjHwtfNea9Ndd8QfHP7Isn39+7vfEXfctu6ml7nUzOP0V2e2lK+Ev/3+u+POytUzXXs/LPVxTm3+JvdUhg5siYE9m+P+7vUxsGfzVZ8wAAAAAAAAAAAUR6AOAABrSNf6anRWytGYbkalXIrGdDM6K+UFb7VejtD4Zq6dd1bHuiwiIi4382XfWv7Gty7F+99zZzz5kw/d9HLDo7XYdPhY9PQfX9Z5PvWzW+Odd9wWETe+H5b6OL+dhb5Roaf/eGw6fCyGR2uR5yt3HwEAAAAAAAAAxSkXPQAAALCyzk81Yv+2jbFv64Y4eroWEwvYht7Tfzwa082548OjtRgerUWlXIqzAzuWc9yr5v2F3zgTETPbsxc6+1KdPvKDc4d/54W/jDN/fiGmGpe/7XLVjlI8+sA9cWTnfcs+0wPd62N7T9dNH8PFPM4LNf+NCgOPPXjDy40c7IuBZ16JZ19+LeqXmit6HwEAAAAAAAAAxcjyPC96BpbRli1b8jNnzhQ9BgCrzHPPPRfbt28vegxgBY1P1m8YGi/3BvNW88gn/kP85V9/KzrWZXHp8szvU5VyKd683Iz9WzfcNNhud9e+UWHWzd6ocOTpL8TR07W4bd3auI8AAAAAYCm8BgMAALSLLMteyPN8y/XOK630MAAAQPvpWl+Nzko5GtPNqJRL0ZhuRmelvCxx+vhkPfYOnYrxFdiOvhgPdK+Pn/rgxvjsf/dIfM+7bo/vedft8fTjD8f+bRtjYqpR9HjLauRgX+zq7Y5qx8yvktWOUuzu7Y6RQ303vM7sJve1ch8BAAAAAAAAwFpXLnoAAACgPcyGxvu2boijp2sxsUwB+eDJsXj+3IUYPDHWkpu2hw689ebfkUMfmTs8sGdzEePMGZ+sxxNPvRhP7nto2bbaL+aNCvPvr6LvIwAAAAAAAABg+QnUAQCABVnu0Lin/3g0pptzx4dHazE8WotKuRRnB3Yk/3qrzUqF/Sv1RgUAAAAAAAAAoD0J1AEAgJYwcrAvBp55JZ59+bWoX2pGtaMUjz5wTxzZeV/Ro80Zn6zHz37q+fjq69+I3/7F/yzuv/cdRY+04mG/jegAAAAAAAAAwM2Uih4AAAAgIqJrfTU6K+VoTDejUi5FY7oZnZVydHVWix5tzuDJsfjiq5Pxjcbl+PhTLxU9TkTMhP27eruj2jHz6121oxS7e7tj5FBfwZMBAAAAAAAAAGuRDeoAAEDLOD/ViP3bNsa+rRvi6OlaTFysFz1SRHz7lvKIiLHxqdh0+FhERJz7RzuLGCsi2iPsBwAAAAAAAADWDoE6AADQMoYObJk7PLBnc4GTXG3kYF8c/J0/jue+cv6q0+99RzX+xU9vucG1Vk6rhv0AAAAAAAAAwNojUAcAAHgbXeur8V3vuuPbTr+zUo77731HARNdrVXDfgAAAAAAAABg7SkVPQAAAEA7OD/ViNs7SrHxO++ID7333fEdt62LN751qeixAAAAAAAAAABaig3qAAAACzB/SzkAAAAAAAAAANdngzoAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkIRAHQAAAAAAAAAAAACAJATqAAAAAAAAAAAAAAAkIVAHAAAAAAAAAAAAACAJgToAAAAAAAAAAAAAAEkI1AEAAAAAAAAAAAAASEKgDgAAAAAAAAAAAABAEgJ1AAAAAAAAAAAAAACSEKgDAAAAAAAAAAAAAJCEQB0AAAAAAAAAAAAAgCQE6gAAAAAAAAAAAAAAJCFQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIAmBOgAAAAAAAAAAAAAASQjUAQAAAAAAAAAAAABIQqAOAAAAAAAAAAAAAEASAnUAAAAAAAAAAAAAAJIQqAMAAAAAAAAAAAAAkESW53nRM7CMsiybiIg/L3oOAFadd0fE+aKHAAAAAAAAWGW8BgMAALSLjXme3329MwTqAMAty7LsTJ7nW4qeAwAAAAAAYDXxGgwAALAalIoeAAAAAAAAAAAAAACA1UGgDgAAAAAAAAAAAABAEgJ1AGAxfr3oAQAAAAAAAFYhr8EAAABtL8vzvOgZAAAAAAAAAAAAAABYBWxQBwAAAAAAAAAAAAAgCYE6AAAAAAAAAAAAAABJCNQBYI3KsmxdlmWbsyz76SzLfi3LslNZln0zy7L8yn+/uojb/OEsy34ry7I/z7KsnmXZeJZln8+y7JeyLPuOZfhjAAAAAAAAtIwsy96RZdneLMv+WZZlo1mWvZ5l2aUsy/46y7I/zrLsn2ZZ9p/e4m16/QUAAGgrWZ7nRc8AABQgy7LPRMSP3eQify/P819d4G1VIuJfRsRP3uRifxYRP5bn+Z8seEgAAAAAAIA2kWXZwYj4+xFRWcDFhyPiF/I8/+ZNbs/rLwAAQFsqFz0AAFCYddccvxARr0fE+xZxW/8qIn7iyuHXI+LXI+ILEfHuiPipiNgaEX8zIj6XZdm2PM//YlETAwAAAAAAtK73x1tx+n+MiBMR8VJEnI+Id0XERyPix2PmNZqfioiuLMt25HnevMHtef0FAABoSzaoA8AalWXZ/xgRnRHxQkS8kOf5V7Ms++mY2cQRscAN6lmW7Y6I//vK0VpEfCjP89q880sR8X9ExM9cOel38jz/Oyn+DAAAAAAAAK0iy7J/HhH3RsT/GhG/n18nyMiy7EMR8UxE3HnlpJ/N8/xfXudyXn8BAADalkAdAJizyED9xYjovXJ0Z57nz1znMrdHxJcjYsOVkx7M8/yLS50XAAAAAACgVWRZ9q48z/96AZd7IiJ+7crR38/z/MPXuYzXXwAAgLZVKnoAAKB9ZVn2vnjrH0fHrvePoxEReZ5/KyL++byT9i7zaAAAAAAAACtqIXH6Fb897/CD157p9RcAAKDdCdQBgKV4dN7h332by35u3uEfXoZZAAAAAAAA2sHFeYdvv875Xn8BAADamkAdAFiKzfMOv/A2l30pIi5fOXx/lmXZskwEAAAAAADQ2ua/vvLnb3O+118AAIC2I1AHAJbi/fMOn7vZBfM8n46Ir105+h0R8V3LNBMAAAAAAEAr+2/mHT52nfO9/gIAALQ1gToAsBTvnHf4/AIu//oNrgsAAAAAALDqZVn2AxHxM1eO1iPif7/Oxd4577DXXwAAgLYjUAcAluLOeYfrC7j8t+Yd7kw8CwAAAAAAQMvKsuyeiPg38Var8T/lef4X17mo118AAIC2JlAHAFLJix4AAAAAAACgFWVZ9h0R8dmI+K4rJx2LiH+ygKt6/QUAAGg7AnUAYCmm5h2+fQGXn3+Zi4lnAQAAAAAAaDlZllUj4t9GxNYrJ30+In4iz/MbxedefwEAANqaQB0AWIqvzzt81wIuP/8yX7/RhQAAAAAAAFaDLMtui4j/KyI+cuWk0xHxX+R5/o2bXO3r8w57/QUAAGg7AnUAYCm+Mu/wpptdMMuycrz1sZXfiIivLdNMAAAAAAAAhcuyrCMifjsidlw56cWI+OE8zyff5qpefwEAANqaQB0AWIovzju85W0u2xsR664c/tJNPrYSAAAAAACgrV0Jx5+KiF1XTvpCRPxQnud/vYCre/0FAABoawJ1AGApfnfe4Uff5rI/PO/w55ZhFgAAAAAAgMJlWbYuIn4jIn78yklfiogfzPP89QXehNdfAACAtiZQBwAWLc/zsZj5OMqIiPdlWbbjepfLsqwaET8/76R/s9yzAQAAAAAArLQsy0oR8X9GxH955aSvRMRH8zwfX+hteP0FAABodwJ1AGCp/t68w/8sy7IN88+88g+xn4yI2dN/J8/z+R9NCQAAAAAA0PayLMsiYigi/qsrJ/1pRPTlef7aIm7O6y8AAEDbyvI8L3oGAKAAWZb9jYj4uWtO/r6I+NErh0ci4vevOf8zeZ6/eM1pkWXZpyPiJ64cPR8z//j6xYi4K2b+EXbrlfP+KiK25Xn+F0v+AwAAAAAAALSQLMv+l4j4lStHL0XE/xARC3lN5Nk8z795ndvz+gsAANCWBOoAsEZlWbY9In7vFq/2M3mef+o6t1WJiE/FWx9XeT1/FhE/nuf5H9/i1wQAAAAAAGh5WZY9FxEfXsRV/0ae5+euc3tefwEAANpSqegBAID2l+d5I8/zn4yIHRHx2zGzDaQRM9s8TkXEL0fE9/vHUQAAAAAAgIXx+gsAANCubFAHAAAAAAAAAAAAACAJG9QBAAAAAAAAAAAAAEhCoA4AAAAAAAAAAAAAQBICdQAAAAAAAAAAAAAAkhCoAwAAAAAAAAAAAACQhEAdAAAAAAAAAAAAAIAkBOoAAAAAAAAAAAAAACQhUAcAAAAAAAAAAAAAIIly0QMAAAAAAADQGrIs++6I2BwRFyLihTzPLxc8EgAAAADQZmxQBwAAAAAAWOOyLLsty7KhiKhFxPGIGI2IL2dZ9rfe5nq/kmXZZ7Ms+9MsyyazLGtkWXYuy7JPZVn2wErMDgAAAAC0lizP86JnAAAAAAAAoEBZlv3TiPhvr3PWhYh4MM/zV29wvXpENCPiTyJi9jKbI+J9EfFmRDyW5/kz6ScGAAAAAFqVDeoAAAAAAABrWJZl90TEL0TEpYj46YjojIjvi4gXIuI7I+JjN7n6D0XEu/I8/2Ce5z+W5/mPRURPRPz3EXFbRPyLLMvKyzg+AAAAANBiBOoAAAAAAABr2+aYec3oN/I8/1d5nk/lef6FiPi5K+d//42umOf5SJ7njWtOy/M8fzIi/iwi7omI+5dpbgAAAADg/2/vzoMsK8s7jn9/w2ZkQIjKEiEixCiCoMSAuITBRHAJLkGDhBFFUyqUUcqCqOCCWqgYKVxiDGVQ4ozCoMSNiCsyYoAASpyAmgAqBAgYWZRhhmGAJ3+cM9WHrr59b3ffvt09fD9Vp/o997zLc857ev6Yee4z85AJ6pIkSZIkSZIkSQ9td/X4vNqfv5nmvOvbn+sm7SVJkiRJkiRpo2KCuiRJkiRJkiTpISPJLkmqPc6c63jmE5/NcC2w5/kj4BbglUlelWRxkj2Bf2qvf2WqEyZ5JfAE4Brg2qFFKkmSJEmSJGne23SuA5AkSZIkSZIkza0kuwCvbk8vrKoL5ywYSSNXVeuTHAV8CTizPTY4uz0mleSdwG7AlsDuwB7AzcDhVXX/kEOWJEmSJEmSNI+ZoC5JkiRJkiRJ2gV4d+f8wrkJQ9Ic+j5wG/CYzmeXVNXhA45/IbBf5/x64Miq+uGQ4pMkSZIkSZK0QJigLkmSJEmSJEl6yKiqXwKZ6zi08VuA79rf8uDkdICdBx1cVU8HSLItsBfwHmBlkndU1clDi1KSJEmSJEnSvLdorgOQJEmSJEmSJEnS3EmyE3B8e/rj9gDYKckjpzJXVd1RVSuBg4FVwPuS/PHQgpUkSZIkSZI075mgLkmSJEmSJEmS9ND2AeDhbfs4msTyDfaazoRVtQ5YQVNF/pAZRSdJkiRJkiRpQTFBXZIkSZIkSZIWsCRbJzkiyRlJrkxyZ5L1SW5P8qMkpybZrcfYJUkK+F7n43cnqfHHJOvvnuSjSa5K8pska5Ncn+ScJC/tE/uSzhontZ/9YZJPJLkmyZokNyf5WpJnTDD+hUnOS/I/Se5p1/2HJDtMsuYunTXPnCy+tv/DkxzTWWdte/w8yb8keV2SrfvNM27OTZPc2sZwa5JNBxjz5E7c5/boM+29GDDukzoxLJlJ37nY+3HjFyc5Nsm323XWtb8zlyd5b5JHDzJPnzX6vms9nsPvt7+3P0tyd/s7fXH7HvZ9V6YR577AEe3p16vqO8BVnS57z2D6/2t/zvh5SpIkSZIkSVo4hv4XmZIkSZIkSZKk0UiyOfArYIsJLm/bHk8F3pTk2Kr6xJDXfw9wIrDJuEu/3x4vT7ISOLSqbhtgvkOBzzJWyRngd4A/B16Y5LVV9ZkkmwGnA0dNsO7RwEuTPLuqrp3OfXXieR5wJrD9BJcf1x4vBfafIJaequq+JGcDbwK2A54LnN9n2Cs77WUTxDrUvRi1Ue59kufT7Ot24y5tDjytPY5NsrSqvjqD25qy9p07C9hm3KX92+MlSQ5pq5MPy2k0Vc7vB45vP+smqE+rgnrrgPbndTOYQ5IkSZIkSdICY4K6JEmSJEmSJC1ci2iS028Gvg2sAm4FHgB2Bp4BHELzd8F/n+TmqvpSZ/xVNAnWewLvaz9bAZzdb+EkHwDe1p7e3465AFgLPBl4DU1i9wHABUmeXlVrJ5lyn3a+e4GPAFe09/c84HCaBNpPJbkIeDNNgvIqYDlwfbvW69p72YEmAflZ/e5jkvv7S+DzjCV8rwLOpUm07T7fg9vYpmoZTYI6wFImSVBPsojmGQDcDnx93PVh78WojWzv20T4FTT7ej9wHvBd4BZgK+BA4LC2/aUkz62qC4Z8v708hSZBPDRJ+JcA62gS5t8AbEnzZYYTgXcNY8Ekr6B5jwHOqKqftO2BKqgnOaiN66tVdX/n882BY2j2bw0D/JkiSZIkSZIkaeNhgrokSZIkSZIkLVzrgecD36yqmqhDkr2Ab9Ik7n44yVeq6gGAqvo18OUkd3aG/KyqvjzZokn2B97ant4NvKCqvt/pclaSD7frPo2mAvN7GavOPJFDaJK/n1NVN3Q+X5bkauBkmqTiFTRV4T8JvHHDvbRxnQFcSpOU/cwk+1bVZZPdS4/7exzw6Xa9B4C3AB+b6Bkn2ZZJEnh7qaorkvwMeCJNVezFVbW6R/clwE5t+5yqurez/mzsxaiNZO+T7MzYvt4KHFJVl4+L5dNJPkbzhY9HAP+cZNeqWj+82+3pxcANwJ9V1TWdz89Ocg7wbzT/rvPGJCfPtIp6kocBH2xPV9NJeq+qG5L8Ftga2CPJplV13wTTPImmAvuvkvwQuAN4NM0+7ADcAxxZVTfOJFZJkiRJkiRJC8uiuQ5AkiRJkiRJkjQ9VXV/VX2jV3J622cVcEJ7uitj1ZJnYkOVZ4DjxyVEb1j3duBlNNWTAY5Osk2feZeOS1De4FTgrra9D0115zd1E5TbNdcwlnALTXXz6Xg7TVVogFOq6qO9nnFV3VFVF05zneXtz4fTVLLvZWmnvWzctdnai1Ebxd4fT5NwDfDyCZLTN8x1Oc2XEqD5YsDLB7qD4Vg6Ljl9Q0yX0SToA2wL7DuEtY4DHtu2T6mqW8ddv7r9uQXwhB5znA98iOYLBk+leVb7A78GPgrsWVXnDiFWSZIkSZIkSQuICeqSJEmSJEmStPG7uNPebyYTJdkCeEF7ehtwRq++VXU9cFZ7uiVw0CRT/7CqLu0xzzrgis5Hp/eo5gzwg077SZOsN6EkmwCHtad3AR+Y6hxTsBzYkPi+dKIObZXrQ9vTn1fVxZ1rs7UXozbre58kwBHt6WVVdVGfmFYAG9YZ1bO6sk9cF3TaU363u5LsyFjl/Ztovggw3lWd9l4TzVNV/1VVb62qZ1TVjlW1eVVtVVVPrqpjq+q6mcQpSZIkSZIkaWHadK4DkCRJkiRJkiTNTJJdgFcBS4AnAtsAD+vRfacZLrc3TUVlgAur6t4+/b8FvLZt7wec06Pfv/eZp1vd+bIB+23bZ86J7MVYle3vVdVdk3Weiaq6PskPgGcDf5pkh6q6ZVy3F3XiWT7u2mztxaiNYu/3AH63bd+e5CUDxLWa5ndp9wH6DsOESfodN3Xa03m3u94PLG7bJ1bV2gn6dBPU92bsCw6SJEmSJEmSNCkT1CVJkiRJkiRpAUtyLPBBxhKV+9m6f5dJ7dhp//cA/bt9duzZq6kAPpl1g/StqnVNsWygd5L+ZLoJ/D+dxvipWkaToL4JcDhw2rjr3crq4xPUZ2svRm0Ue79Lp/289hjUTJPBB/XrPte7z2E67zYASfYBjmxP/4PmHZzI+AR1SZIkSZIkSRqICeqSJEmSJEmStEAlOYIHJzRfBKwEfgncBWyoqL0dcHrb3mSGy27Vad89QP/VPcaO98AUYphK36nqJvCv7tlreL4AfJzmCwZL6exnkkcylkh9aVVdM27sbO3FqI1i7x8xzXEAm89g7FTM5nvddRqwqG0fV1W91jVBXZIkSZIkSdK0mKAuSZIkSZIkSQvXe9uf9wEvqqrzJ+qUZI8hrnlXp73lAP0X9xg7X/22017cs9eQVNWdSb4GvAzYJ8nuVbWhcvthwGZte6Iq1/N5Lxb17zJS3eT8k6rqPXMWyRxK8jLgTzoffadTdX4yOyZ5VFX1q/IuSZIkSZIkSfPuL4glSZIkSZIkSQNIsiuwa3v65V7J6a3HDnHp/+20Hz9A/26fm4cYx2y5sdPefURrLu+0l07QXg+smGDcqPdiXafdr6r4o6Yx/2y6qdMe5hc2FowkWwCnzGAKq6hLkiRJkiRJGogV1CVJkiRJkiRpYdq+076uT9+D+1x/oNPuV075xzSJylsAS5JsVlXrJ+l/UKd9WZ+554NVNFXUtwYOTLJVVc12tfGvA7cBjwT+Ksk7gMcB+7fXz6+q2yYYN+q9uLPT/r0+ffebxvyz6UrG9vWgJFtW1d1zHNOoHcvYl1q+C/xggDFLgAPa9t7tOEmSJEmSJEmalAnqkiRJkiRJkrQwrem0d+vVKclOwFF95lrdaW85WceqWpfkX4G/oKmS/WrgUz3W3hk4vD29G/hWnzjmXFXdn+Qs4PXAVsDbgRNmec31SVYAxwC7AM8CDux0WdZj3Kj34ied9nOAM3us9Uxgn2nMP2vaff0ccDTwCJo9PXFuoxqdJNsx9h6vBpZW1S0DjDuKByeoS5IkSZIkSVJfi+Y6AEmSJEmSJEnStPyUJtEY4MVJ9h3fIcn2wFdoEq0n84tOe5DE4r9jrOr6qW1C8vi1twW+yFjC+yer6s4B5p4PTmEsaf+tSd6cZMLK8km2SXLARNemaHmnvRQ4om3/BjhvknGj3ItLGaui/ookfzTBWrvx4HuZT97PWPxvT3Jckp7/TpLk0UnekWSvkUQ3u06mqR4P8KFBktNbV3faG8NzkCRJkiRJkjQCVlCXJEmSJEmSpAWoqu5NcjrwFmAz4PtJPg1cDqynSTQ/CtgG+Cxw5CRz3ZHkSuCpwIFJ/hH4LnBXp883Ou1Lk5xCU118K2BlW3X8AmAtsCfw18D27ZBVwLuGcNsjUVW/SPJa4CyaQi8fAV6T5IvAtUABjwH2B54PfAFYOcM1L0lyLfAHNJXQN28vfaGq7plk3Mj2oq3Y/nHgnTTv3IXtu3IFsAXN8zgSCPBV4EXTWWe2VNWNSV5BE9vmNMn9r0tyLs0XPtbQJHE/Hng68GxgE+DCOQl4SNoE+9e0pzcBp05h+E9o3vcAT0qyWVWtH3KIkiRJkiRJkjYyJqhLkiRJkiRJ0sJ1Im1SOU2C8NHt0XU68CEmSVDvzPU1moTc17dH14MqiFfVCUnuA05oxyxtj/FWAodW1dp+NzOfVNU5SdYAnwEeRVM9ulcF6Qd6fD5Vy4GTGEtOB1jWb9CI9+JkmuTt5wKLgePGXf8tTfX3pzHPEtQBquqbbcX7zwG70iSjv22SIatpqtgvZKcx9j/qnlBVawYdWFWrk9wAPJbmvXwi8J/DD1GSJEmSJEnSxqTnf10pSZIkSZIkSZrf2sraBwHHAJfQVDxfB1wPnAMcXFVvYIAE6qo6H3gm8HngFzTVt/uNeRdN0vbHaSotb1j/RuBcmmToJVV125Rvbh6oqvNokpjfQlNR/laa6vRrgeuAL9JUqf+bIS25fNz59cBFA8Y6kr2oqnXAC2i+CHExTUL6PTSV5T8GPKV9bvNWVV0KPIEmif8cmvd9NXAfcDtNRfhPAYcBO1TVgk3ITvJi4Dnt6Y8Y4AsPE7i60957xkFJkiRJkiRJ2uilquY6BkmSJEmSJEmSJEmSJEmSJEnSRsAK6pIkSZIkSZIkSZIkSZIkSZKkoTBBXZIkSZIkSZIkSZIkSZIkSZI0FCaoS5IkSZIkSZIkSZIkSZIkSZKGwgR1SZIkSZIkSZIkSZIkSZIkSdJQmKAuSZIkSZIkSZIkSZIkSZIkSRoKE9QlSZIkSZIkSZIkSZIkSZIkSUNhgrokSZIkSZIkSZIkSZIkSZIkaShMUJckSZIkSZIkSZIkSZIkSZIkDYUJ6pIkSZIkSZIkSZIkSZIkSZKkoTBBXZIkSZIkSZIkSZIkSZIkSZI0FCaoS5IkSZIkSZIkSZIkSZIkSZKGwgR1SZIkSZIkSZIkSZIkSZIkSdJQ/D/LeceWp9VEMgAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"## RuNNer Mode 1\n\nIn **RuNNer**'s mode 1 the following steps are performed:\n- calculation of SF values,\n- splitting of data set in train and test data set.\n\nThe amount of test structures is defined by the keyword ``test_fraction``. Here, ``test_fraction 0.10`` means 10% of the data set will be used for testing and is not part of the training data. ``use_short_forces`` keyword states to use also the atomic forces for the fitting process in ``mode 2``, but it is recommended to use it also in ``mode 1`` to create the necessary force files."},{"metadata":{},"cell_type":"raw","source":"### symmetry function generation ( mode 1):\ntest_fraction 0.10000 # threshold for splitting between fitting and test set\nuse_short_forces # use forces and prepare the files in mode 1 for fitting in mode 2"},{"metadata":{},"cell_type":"markdown","source":"In the next group of keywords, the SFs are defined. There are two different types of SFs: the radial SFs ``symfunction_short XX type XX ...`` to describe the atomic distances and angular SFs ``symfunction_short XX type XX XX ...`` to describe the spatial distribution of the neighboring atoms. ``cutoff_type`` keyword describes the cutoff function type. All mentioned SF types are shown in the next section."},{"metadata":{},"cell_type":"raw","source":"### symmetry function definitions (all modes):\ncutoff_type 1\nsymfunction_short Cu 2 Cu 0.000000 0.000000 12.000000\nsymfunction_short Cu 2 Cu 0.006000 0.000000 12.000000\nsymfunction_short Cu 2 Cu 0.016000 0.000000 12.000000\nsymfunction_short Cu 2 Cu 0.040000 0.000000 12.000000\nsymfunction_short Cu 2 Cu 0.109000 0.000000 12.000000\n\nsymfunction_short Cu 3 Cu Cu 0.00000 1.000000 1.000000 12.000000\nsymfunction_short Cu 3 Cu Cu 0.00000 1.000000 2.000000 12.000000\nsymfunction_short Cu 3 Cu Cu 0.00000 1.000000 4.000000 12.000000\nsymfunction_short Cu 3 Cu Cu 0.00000 1.000000 16.000000 12.000000\nsymfunction_short Cu 3 Cu Cu 0.00000 -1.000000 1.000000 12.000000\nsymfunction_short Cu 3 Cu Cu 0.00000 -1.000000 2.000000 12.000000\nsymfunction_short Cu 3 Cu Cu 0.00000 -1.000000 4.000000 12.000000\nsymfunction_short Cu 3 Cu Cu 0.00000 -1.000000 16.000000 12.000000"},{"metadata":{},"cell_type":"markdown","source":"### Definition of the Symmetry Functions (SFs)\n\nDifferent types of SFs for the radial and angular SFs are implemented in **RuNNer**, but only the most common types are shown here. SFs provide the input for the NN and describe the local atomic environment of each atom and are rotationally and translationally invariant. So, SFs describe the relative positions of the atoms to each other. In contrast, Cartesian coordinates describe the absolute positions to each other and change with a translation or a rotation. That means the numerical input will change with translation or rotation, but not the energy of the system. However, different numerical inputs belonging to the same energy leads to problems in fitting."},{"metadata":{},"cell_type":"markdown","source":"### The Cutoff Function\n\nAnother kind of symmetry function is the cutoff function, which is included in the radial and angular SFs. The cutoff radius $R_\\mathrm{c}$ (usually $12\\,\\mathrm{bohr}$) defines how much of the local atomic environment is considered. All SFs will decrease to zero, if the atomic distance is larger than $R_\\mathrm{c}$. A decrease to exact zero is necessary for numerical reasons. There are several cutoff funtions defined in **RuNNer** and we will use here\n\n\\begin{equation}\n f_{c}(R_{ij}) = \n \\begin{cases}\n 1& ~ \\text{for $R_{ij} \\leq R_{inner,c}$}\\\\\n 0.5 * [cos(\\pi x) + 1]& ~ \\text{for $R_{inner,c} \\leq R_{ij} \\leq R_\\mathrm{c}$},\\\\\n 0& ~ \\text{for $R_\\mathrm{c} < R_{ij}$}\n \\end{cases}\n\\end{equation}\n\nwith the atomic distance $R_{ij}$, the cutoff radius $R_\\mathrm{c}$, the inner cutoff $R_{inner,c}$ (here $=0$) and $x = \\frac{R_{ij} - R_{inner,c}}{R_\\mathrm{c} - R_{inner,c}}$."},{"metadata":{"trusted":true},"cell_type":"code","source":"distances = np.arange(0,15.1,0.1)\ncfct = np.array([fc.cutofffct(i) for i in distances])\nplt.plot(distances, cfct);","execution_count":11,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhJElEQVR4nO3deXhV1d328e8vc0JICCQESAIBCZNMgQOigtYZFEXrACigCCpWrNX6tPZta/s8tX1t+1jFOjBVQVCRWq041xlaRUiYlDmAQARCwhTmDKz3j8S+aQjkAIF9hvtzXVzk7L2Sc1+E3Gz2sJY55xARkeAX4XUAERFpGCp0EZEQoUIXEQkRKnQRkRChQhcRCRFRXr1xamqqy87O9urtRUSCUn5+folzLq2ufZ4VenZ2Nnl5eV69vYhIUDKzjcfap1MuIiIhQoUuIhIiVOgiIiFChS4iEiJU6CIiIaLeQjez58xsu5l9fYz9ZmZPmlmBmS0zs14NH1NEROrjzxH6NGDgcfYPAnKqf90JPHvqsURE5ETVex+6c26umWUfZ8gQ4AVXNQ/vfDNrYmYtnXNbGypkTWuK9vLW0i3ERkcSGxVBXHQk8dGRpDWOpXlSLOmN42iSEI2ZnY63FxEJWA3xYFEGsLnG68LqbUcVupndSdVRPK1btz6pN1tbtI8nPy447pjYqAjapjYiJ70xHZonkpPemNzWTUhPijup9xQRCQYNUeh1HQrXuWqGc24yMBnA5/Od1MoaV3VvyZXdruRwxZGqX+WV7C+rpGTfYYpKD7G99DBb9xxkXfF+Fm/axZtLt/z7c7OaxuNr0xRfdgoX5KSR1TThZCKIiASkhij0QiCrxutMYMsxxjYIMyMuOpK46EiIjwagbWqjOsfuP1zBmqK95G/cRf7GXcxbW8Lri78FoEN6Ihd3SueSzs3p1TqFyAidphGR4NUQhT4HGG9ms4BzgD2n6/z5yWgUG0Vu6xRyW6cwdgA459hQsp9PVhfz8aoips5bz8TP1pGeFMu1PTO4NjeDzi2TvI4tInLCrL41Rc3sZeB7QCpQBPwKiAZwzk20qquPT1F1J8wBYLRzrt5Zt3w+nwuEyblKD5Xz6epi5iz5lk9XF1NxxNGpRWOG9cni+t6ZNI6L9jqiiMi/mVm+c85X5z6vFokOlEKvace+w7z91Vb+ll/I0sI9NIqJ5IbemYw6L5uz0hK9jiciokI/GUs372b659/w1rKtlFUe4ZJOzRl/cXtyW6d4HU1EwpgK/RQU7z3MS19u4vnPN7D7QDkDclK59+Ic+rZt6nU0EQlDKvQGsO9wBTPnb2TqvPWU7Cujf/tUHhrUia4ZyV5HE5EwokJvQAfLKnnxy408/UkBuw+Wc13PDH58RUcymsR7HU1EwoAK/TTYc7CcZz9dx3P/2gDAHQPaMv6iHOJjIj1OJiKh7HiFrulzT1JyfDQPDerEJw9+j8HdWvL0J+u49E+f8cGKIq+jiUiYUqGfoowm8fxpaE9m33UuibFR3PFCHmOmLWTzzgNeRxORMKNCbyB92zblrR/25+dXduaL9Tu44om5vPDFNxw54s0pLREJPyr0BhQdGcEdF7TjwwcuxJfdlIffWM7NU+fraF1EzggV+mnQqkk800f34ffXd2P5t6Vc8cRcZszfiFcXoEUkPKjQTxMzY2if1rx//wX4spvyy79/zR0v5LNzf5nX0UQkRKnQT7PvjtYfHtyFuWuKGTRhLp8XlHgdS0RCkAr9DDAzbu/fltfvOY/E2Chu+cuX/P69VVRUHvE6moiEEBX6GXR2q2TevLc/w/pk8eyn6xj5lwUU7z3sdSwRCREq9DMsISaK//v97jx2Yw8WbdrF4D/PI3/jTq9jiUgIUKF75Prembz+g/OJi45k6KT5TPvXBt0FIyKnRIXuoS6tkpgzvj/f69icX7+5gp+99hVlFTqvLiInR4XuseT4aCaP7M29F7dn1sLNjJj6JTv26by6iJw4FXoAiIgwfnx5RyYM68nSwt0MefpfrNpW6nUsEQkyKvQAMqRnBrPvOpeyiiNc/8znzFtb7HUkEQkiKvQA0yOrCXPG9yeraQKjn1/Ia4sKvY4kIkFChR6AWiTHMXvcufRt25QHZi/l2U/X6Q4YEamXCj1AJcVFM210X67p0Yrfv7eKX89ZTqWm4hWR44jyOoAcW0xUBE8M7UnL5DgmzV3PttJDTBiWS1y0lrkTkaPpCD3ARUQYP7uyMw8P7sI/VhQxYuqX7DlY7nUsEQlAKvQgcXv/tjw1vBdLC3dzy9T5moZXRI6iQg8iV3VvyeRRPtYW7WPY5C/YvveQ15FEJICo0IPMRR2b8/zoPhTuOsjQSfPZsvug15FEJECo0IPQeWelMmNMX0r2HubGiV+wccd+ryOJSABQoQep3m2a8tId/dhfVsFNk76gYPs+ryOJiMdU6EGsW2Yyr9x5LpVHYOikL1hTtNfrSCLiIb8K3cwGmtlqMysws4fq2J9sZm+a2VIzW25moxs+qtSlY4vGzL6rH5ERxs1TvtSRukgYq7fQzSwSeBoYBHQBhptZl1rD7gFWOOd6AN8DHjOzmAbOKsfQLi2Rl+7oB8DNU+azoUTn1EXCkT9H6H2BAufceudcGTALGFJrjAMam5kBicBOoKJBk8pxtW+eyEt3nEPlEcfNU+azaccBryOJyBnmT6FnAJtrvC6s3lbTU0BnYAvwFXCfc+6opXfM7E4zyzOzvOJiTQ3b0DqkN2bm2HM4WF7J8Cnz2bxTpS4STvwpdKtjW+1Zoq4AlgCtgJ7AU2aWdNQnOTfZOedzzvnS0tJOMKr4o3PLJGaOOYe9h8q5earuUxcJJ/4UeiGQVeN1JlVH4jWNBl5zVQqADUCnhokoJ6prRjIzxpzD7v3lDJ8yn6JSPVEqEg78KfSFQI6Zta2+0DkMmFNrzCbgEgAzSwc6AusbMqicmB5ZTZg+pi/Few8z6i8L2H1Ac7+IhLp6C905VwGMB94HVgKznXPLzWycmY2rHvYb4Dwz+wr4CPipc67kdIUW//RqncKUUT42lOxn9LSFHCjTdWqRUGZerYTj8/lcXl6eJ+8dbt77ehs/eDGf89unMvVWH7FRmk9dJFiZWb5zzlfXPj0pGgYGdm3Bo9/vzry1JTzwylKtfCQSorRiUZi4qU8Wew6W89t3VpIUH8XvrutG1WMDIhIqVOhh5I4L2rH7YBlPf7KOJgkx/HSgbkQSCSUq9DDz4OUd2X2gnGc/XUezRjGMHdDO60gi0kBU6GHGzPifIV3Zub+MR95eSYvkOAZ3b+V1LBFpALooGoYiI4zHh/akT3YKD7yylC/X7/A6kog0ABV6mIqLjmTKKB+tmyVwxwt5mktdJASo0MNYk4QYpo3uQ1x0JLc9t4BtezRFgEgwU6GHucyUBJ4f3Yc9B8u57fkFlB4q9zqSiJwkFbpwdqtkJo7sTcH2fdw9M5+yiqNmPhaRIKBCFwAG5KTx++u786+CHfzsta/wakoIETl5um1R/u363pkU7jrI4x+uoV1aI+65qL3XkUTkBKjQ5T/88JL2bCjZxx/fX012s0Zc1b2l15FExE865SL/wcx49Pru+Nqk8MDsJSzZvNvrSCLiJxW6HCUuOpJJI3uTnhTH2Ol5FO7S2qQiwUCFLnVqlhjLc7f5OFxRydjpeezV7YwiAU+FLsfUvnljnr2lN2u37+PelxdTUanbGUUCmQpdjqt/Tiq/GdKVT1cX88jbK72OIyLHobtcpF43n9OaDSX7mDJvA21TG3HredleRxKROqjQxS8PDerMhpID/Peby2ndLIGLOjb3OpKI1KJTLuKXyAhjwrCedGqRxA9fWkzB9n1eRxKRWlTo4rdGsVFMudVHTFQEd76Qx56DuvNFJJCo0OWEZDSJZ+LI3mzedYB7X15M5RHN+SISKFTocsL6ZDflf4Z0Ze6aYh59V3e+iAQKXRSVkzK8b2tWbS1lyrwNdGqRxPW9M72OJBL2dIQuJ+0Xg7twbrtm/Oz1r1i8aZfXcUTCngpdTlp0ZATP3NKL9KRY7pqRryXsRDymQpdTktIohqmj+rD/cAV3zcjjUHml15FEwpYKXU5ZxxaNeXxoT5YW7tFqRyIeUqFLg7j87Bb8+LIOvL74W6bMW+91HJGw5Fehm9lAM1ttZgVm9tAxxnzPzJaY2XIz+6xhY0owGH9xe67s1oJH313FP9eWeB1HJOzUW+hmFgk8DQwCugDDzaxLrTFNgGeAa5xzZwM3NnxUCXRmxh9v6EH75omMf3kRm3dqYQyRM8mfI/S+QIFzbr1zrgyYBQypNeZm4DXn3CYA59z2ho0pwaJRbBSTRvqoPOIYNzNfF0lFziB/Cj0D2FzjdWH1tpo6AClm9qmZ5ZvZqLq+kJndaWZ5ZpZXXFx8cokl4LVNbcSEYT1ZsbVUF0lFziB/Ct3q2Fb7JzQK6A1cBVwB/NLMOhz1Sc5Nds75nHO+tLS0Ew4rwePiTuncf2nVRdJpn3/jdRyRsOBPoRcCWTVeZwJb6hjznnNuv3OuBJgL9GiYiBKsxl/Unks7p/PI2yuZv36H13FEQp4/hb4QyDGztmYWAwwD5tQa8wYwwMyizCwBOAfQrE1hLiLC+NPQHrRplsD4lxaxdc9BryOJhLR6C905VwGMB96nqqRnO+eWm9k4MxtXPWYl8B6wDFgATHXOfX36YkuwSIqLZvLI3hwsq2TczEW6SCpyGplXF6x8Pp/Ly8vz5L3lzHvv622Mm5nPUF8Wj17fDbO6Ls2ISH3MLN8556trn54UlTNiYNcWjL+oPa/kbealBZu8jiMSklTocsbcf1kHLuyQxq/nLCd/o6bbFWloKnQ5YyIjjCeH5dIyOZ67Z+azvVTT7Yo0JBW6nFHJCdFMHtWbvYcquPvFRZRVHPE6kkjIUKHLGdepRRJ/uKE7+Rt38Zu3VngdRyRkaE1R8cTVPVrx1bd7mDx3Pd0yk7nJl1X/J4nIcekIXTzzkys6cn77Zvzi71+zrHC313FEgp4KXTwTFRnBn4f3Ii0xlnEz8tmx77DXkUSCmgpdPNW0UQwTR/SmZH8Z9768mIpKXSQVOVkqdPFct8xkfnttVz5ft4M/vr/a6zgiQUuFLgHhRl8WI/q1ZtLc9by9bKvXcUSCkgpdAsbDg88mt3UT/uvVpawp2ut1HJGgo0KXgBETFcHEEb1JiInirhn5lB4q9zqSSFBRoUtASU+K45lberF55wEeeGUJR45o+ToRf6nQJeD0bduUX1zVmQ9XbuepTwq8jiMSNFToEpBuPS+b63IzePzDNXyyarvXcUSCggpdApKZ8bvrutG5RRL3zVrMxh37vY4kEvBU6BKw4mMimTSyN2bGXTPyOVBW4XUkkYCmQpeAltU0gSeH57K6aC8P/e0rvFoyUSQYqNAl4F3YIY0HL+/InKVbeO5f33gdRyRgqdAlKNx94Vlc3iWd372zkvnrd3gdRyQgqdAlKEREGI/d1IM2zRIY/9Iitu456HUkkYCjQpeg0Tgumskje3OwrJK7Zy7icEWl15FEAooKXYJK++aNeeymHizZvJtfz9HydSI1qdAl6Azs2pK7v3cWLy/YxKwFm7yOIxIwVOgSlB68vCMDclJ5+I3lLNm82+s4IgFBhS5BKTLCeHJYLmmNY7l7Zj4lWr5ORIUuwSulUQyTRvZm5/4yxr+0SMvXSdhToUtQ65qRzG+v68b89Tv5/XurvI4j4qkorwOInKobemeyrHA3U+ZtoHtmE67u0crrSCKe0BG6hIRfXNUFX5sUfvLqMlZv0/J1Ep78KnQzG2hmq82swMweOs64PmZWaWY3NFxEkfrFREXwzC29SIyL4q4Zeew5qOXrJPzUW+hmFgk8DQwCugDDzazLMcb9Hni/oUOK+KN5UhzP3tKLwl0HtXydhCV/jtD7AgXOufXOuTJgFjCkjnH3An8DtLyMeMaX3ZSHr+7CR6u28+THa72OI3JG+VPoGcDmGq8Lq7f9m5llANcBE4/3hczsTjPLM7O84uLiE80q4peR/drw/V4ZPPHhWj5aWeR1HJEzxp9Ctzq21f6/7BPAT51zx50tyTk32Tnnc8750tLS/IwocmK+W77u7FZJ/OiVJXxTouXrJDz4U+iFQFaN15nAllpjfMAsM/sGuAF4xsyubYiAIicjLjqSiSN6ExlRtXzd/sNavk5Cnz+FvhDIMbO2ZhYDDAPm1BzgnGvrnMt2zmUDrwI/cM79vaHDipyIrKYJ/Hl4Lmu37+XHs5fqIqmEvHoL3TlXAYyn6u6VlcBs59xyMxtnZuNOd0CRUzEgJ43/c2Vn3lu+TRdJJeT59aSoc+4d4J1a2+q8AOqcu+3UY4k0nDH927Jy616e+HAtHdMbM6hbS68jiZwWelJUQp6Z8dvrutIzqwkPzF7Kyq2lXkcSOS1U6BIW4qIjmTyyN0nxUYydnscOTbcrIUiFLmGjeVIck0f6KN53mB+8uIhyTbcrIUaFLmGlR1YT/nB9d77csJP/fnO513FEGpSmz5Wwc21uBiu3lTLps/V0apHEiH5tvI4k0iB0hC5h6SdXdOKijmn8es5y5q/f4XUckQahQpewFBlhTBieS5tmCfzgxUVs3nnA60gip0yFLmErKS6aKaN8VB5x3D5tIaWHNIe6BDcVuoS1dmmJPDuiFxtK9nPPi1poWoKbCl3C3nlnpfLb67oyb20Jv5qzHOc054sEJ93lIgIM7dOa9SX7mfTZetqlJTKmf1uvI4mcMBW6SLWfXtGJb0r288jbK2jTNIFLu6R7HUnkhOiUi0i1iAjj8aE96doqmR/OWszyLXu8jiRyQlToIjUkxEQx9VYfyfHRjJ2eR1HpIa8jifhNhS5SS3pSHFNv9bHnYDljp+dxoEyrHUlwUKGL1OHsVsk8OSyXr7fs4f5Xlmi1IwkKKnSRY7i0Szo/v7Iz7y8v4nfvrPQ6jki9dJeLyHGM6d+WTTsPMPWfG2jVJJ7bdTujBDAVushxmBm/uvpsikoP8Zu3V9AiOY4rtYSdBCidchGpR2SEMWFYLr1ap/CjV5awYMNOryOJ1EmFLuKHuOhIpo7ykZkSzx0v5FGwfa/XkUSOokIX8VNKoximj+5LdGQEtz63UPeoS8BRoYucgKymCUwb3YfdB8q47fmF7NWUuxJAVOgiJ6hrRjLPjOjN2qK93DUjn0PllV5HEgFU6CIn5cIOafzvjT34fN0OfvjyYs2jLgFBhS5ykq7NzeDXV3fhHyuKeOi1r/Q0qXhO96GLnILbzm/L7oPlPPHhWprER/PzqzpjZl7HkjClQhc5RfddksPuA+VM/ecGUhrFcM9F7b2OJGFKhS5yisyMhwd3Yc/Bcv74/mqS4qMZ2a+N17EkDKnQRRpARITxhxu6s/dQOQ+/8TVJcVEM6ZnhdSwJM35dFDWzgWa22swKzOyhOvbfYmbLqn99bmY9Gj6qSGCLjozgqZt70Te7KQ/MXsrby7Z6HUnCTL2FbmaRwNPAIKALMNzMutQatgG40DnXHfgNMLmhg4oEg7joSJ67rQ+5WU24b9Zi3l++zetIEkb8OULvCxQ459Y758qAWcCQmgOcc58753ZVv5wPZDZsTJHg0Sg2iudH96FrRjLjX1rERyuLvI4kYcKfQs8ANtd4XVi97VjGAO/WtcPM7jSzPDPLKy4u9j+lSJBpHBfN9Nv70rllEnfPXMSnq7d7HUnCgD+FXtdNtXU+QWFmF1FV6D+ta79zbrJzzuec86WlpfmfUiQIJcdH88LtfWnfPJE7Z+Tzz7UlXkeSEOdPoRcCWTVeZwJbag8ys+7AVGCIc25Hw8QTCW5NEmKYOfYc2qU2YuwLC/linX405PTxp9AXAjlm1tbMYoBhwJyaA8ysNfAaMNI5t6bhY4oEr6aNqko9KyWB0dMW8NkanW6U06PeQnfOVQDjgfeBlcBs59xyMxtnZuOqhz0MNAOeMbMlZpZ32hKLBKHUxFhm3dmPtqmJ3DE9j3/o7hc5Dcw5byYU8vl8Li9PvS/hZc+BckY9v4Cvv93DE0N7cnWPVl5HkiBjZvnOOV9d+zTbosgZlJwQzcwxfendOoX7Zi3mr3mb6/8kET+p0EXOsO9uaTy/fSr/9eoyZnzxjdeRJESo0EU8EB8TydRbfVzaOZ1fvrGciZ+tw6vTnxI6VOgiHomNiuTZEb24ukcrHn13Ff/z1gotkiGnRLMtingoOjKCCUN70rxxLH/55wa2lx7msZt6EBcd6XU0CUIqdBGPRUQYvxzchZbJcTzy9kqK9x1mykgfyQnRXkeTIKNTLiIBYuyAdjw5PJfFm3Zx46TP2bL7oNeRJMio0EUCyDU9WjH99r5s3X2I7z/zOau2lXodSYKICl0kwJx3Vip/vftcHI4bnv2Cj1dp+l3xjwpdJAB1apHE3+85n+zUBMZMz2PyXN3WKPVToYsEqJbJ8cy+61wGdW3B795ZxYN/XcbhikqvY0kAU6GLBLCEmCieGt6LH12aw98WFTJ88ny27TnkdSwJUCp0kQAXEWH86NIOPHNLL1Zt28vgP8/j83VaLEOOpkIXCRJXdmvJG/ecT3J8NCOmfqnpAuQoKnSRIJKT3pg3xvdnUNeWPPruKu6akc/uA2Vex5IAoUIXCTKJsVE8dXMuvxzchU9Wb2fQhHnMX6+l7USFLhKUzIwx/dvy2t3nExcdyc1T5vOnf6ymovKI19HEQyp0kSDWLTOZt+7tz/W9Mnny4wJumvQF64v3eR1LPKJCFwlyjWKj+OONPXhyeC7rivczaMI8ps5bT6Wm4g07KnSREHFNj1Z8cP8FDMhJ5ZG3V+poPQyp0EVCSPOkOKaM8vH40B4UbN/HwAnzePKjtRwq1xOm4UCFLhJizIzrcjP54P4LuLxLOn/6YA0Dn5jL3DXFXkeT00yFLhKimifF8dTNvZg55hwizBj13AJ+8GI+m3ce8DqanCYqdJEQ1z8nlXd/NIAHL+/Ax6u2c8ljn/HIWyv0QFIIUqGLhIHYqEjGX5zDpw9exHW5GTz3rw1c8IdPmPTZOg6W6fx6qDCv5oLw+XwuLy/Pk/cWCXertpXy6Lur+HR1MamJMYwd0I4R/dqQGKtlhgOdmeU753x17lOhi4Svhd/s5MmP1jJvbQlNEqK5/fy2jOjXhqaNYryOJsegQheR41q8aRdPfVzAR6u2ExsVwTU9WnHredl0zUj2OprUokIXEb+s3raX6V98w+uLvuVgeSW+Ninc5MtiULcWNI6L9jqeoEIXkRO050A5f83fzItfbmJDyX5ioyK4rEs61+Vm0D8nldioSK8jhi0VuoicFOccizfv5u+Lv+XNpVvYdaCcRjGRDMhJ4+LOzbmoY3PSGsd6HTOsnHKhm9lAYAIQCUx1zj1aa79V778SOADc5pxbdLyvqUIXCS5lFUf4Z0ExH67czscrt7OttGpt047pjemdnUKf7BR8bZqSmRJPVSXI6XBKhW5mkcAa4DKgEFgIDHfOragx5krgXqoK/RxggnPunON9XRW6SPByzrFiaymfri5mwYadLNq4i72HKwBIiosiJ70xHdITyWnemMyUeJonxZGeFEtqYizRkXr85VQcr9D9uem0L1DgnFtf/cVmAUOAFTXGDAFecFX/Osw3syZm1tI5t/UUs4tIADIzzm6VzNmtkrnnIqg84lhTtJe8jbtYva2UtUX7eH95ES8v2Fzr8yA+OpK46EjioiKIjY4kKiL8juaH9sli7IB2Df51/Sn0DKDmd6WQqqPw+sZkAP9R6GZ2J3AnQOvWrU80q4gEqMgIo3PLJDq3TPqP7Tv2HWbrnkMUlR6iqPQwRaWH2He4gsMVlRwqP8Kh8kqOhOFC16mJp+e6gz+FXtc/n7W/A/6MwTk3GZgMVadc/HhvEQlizRJjaZYYq/vZzxB/TmYVAlk1XmcCW05ijIiInEb+FPpCIMfM2ppZDDAMmFNrzBxglFXpB+zR+XMRkTOr3lMuzrkKMxsPvE/VbYvPOeeWm9m46v0TgXeousOlgKrbFkefvsgiIlIXv6ZWc869Q1Vp19w2scbHDrinYaOJiMiJ0A2hIiIhQoUuIhIiVOgiIiFChS4iEiI8m23RzIqBjSf56alASQPGOR2U8dQFej4I/IyBng8CP2Og5WvjnEura4dnhX4qzCzvWJPTBAplPHWBng8CP2Og54PAzxjo+WrSKRcRkRChQhcRCRHBWuiTvQ7gB2U8dYGeDwI/Y6Dng8DPGOj5/i0oz6GLiMjRgvUIXUREalGhi4iEiKArdDMbaGarzazAzB7yOk9tZpZlZp+Y2UozW25m93mdqS5mFmlmi83sLa+z1KV6GcNXzWxV9Z/luV5nqsnM7q/+/n5tZi+bWVwAZHrOzLab2dc1tjU1sw/MbG317ykBmPGP1d/nZWb2upk1CaR8NfY9aGbOzFK9yOaPoCr06gWrnwYGAV2A4WbWxdtUR6kAfuyc6wz0A+4JwIwA9wErvQ5xHBOA95xznYAeBFBWM8sAfgj4nHNdqZpWepi3qQCYBgyste0h4CPnXA7wUfVrL03j6IwfAF2dc92pWpD+Z2c6VA3TODofZpYFXAZsOtOBTkRQFTo1Fqx2zpUB3y1YHTCcc1udc4uqP95LVRFleJvqP5lZJnAVMNXrLHUxsyTgAuAvAM65Mufcbk9DHS0KiDezKCCBAFihyzk3F9hZa/MQYHr1x9OBa89kptrqyuic+4dzrqL65XyqVjzzxDH+DAEeB35CHUtrBpJgK/RjLUYdkMwsG8gFvvQ4Sm1PUPWX84jHOY6lHVAMPF99WmiqmTXyOtR3nHPfAv9L1dHaVqpW6PqHt6mOKf271cOqf2/ucZ763A6863WImszsGuBb59xSr7PUJ9gK3a/FqAOBmSUCfwN+5Jwr9TrPd8xsMLDdOZfvdZbjiAJ6Ac8653KB/Xh/quDfqs9DDwHaAq2ARmY2wttUwc/Mfk7VKcsXvc7yHTNLAH4OPOx1Fn8EW6EHxWLUZhZNVZm/6Jx7zes8tZwPXGNm31B1yupiM5vpbaSjFAKFzrnv/mfzKlUFHyguBTY454qdc+XAa8B5Hmc6liIzawlQ/ft2j/PUycxuBQYDt7jAejjmLKr+4V5a/TOTCSwysxaepjqGYCt0fxas9pSZGVXnflc65/7kdZ7anHM/c85lOueyqfrz+9g5F1BHl865bcBmM+tYvekSYIWHkWrbBPQzs4Tq7/clBNBF21rmALdWf3wr8IaHWepkZgOBnwLXOOcOeJ2nJufcV8655s657OqfmUKgV/Xf0YATVIVefeHkuwWrVwKznXPLvU11lPOBkVQd+S6p/nWl16GC0L3Ai2a2DOgJ/M7bOP9f9f8cXgUWAV9R9XPk+ePhZvYy8AXQ0cwKzWwM8ChwmZmtpeoujUcDMONTQGPgg+qfl4nH/SJnPl/Q0KP/IiIhIqiO0EVE5NhU6CIiIUKFLiISIlToIiIhQoUuIhIiVOgiIiFChS4iEiL+HwHArYTo7KZ6AAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"### The Radial Symmetry Functions\n\nTo define the parameters for the radial SFs, it is important to know which are the shortest bonds in your data set. Usually, 5-6 radial SF are used for each element pair, with different $\\eta$ values to increase the resolution for structure description. It is possible to shift the maximum of the radial SF $G^2$ by $R_{s}$\n\n\\begin{equation}\n G_{i}^{2} = \\sum_{j}^{}e^{\\eta (R_{ij} - R_{s})^2} \\cdot f_{c}(R_{ij}).\n\\end{equation}\n\nBelow, the defintion of a radial SF in ``input.nn``, again ``symfunction_short`` calls to define a SF, ``Cu`` defines the specific element, ``2`` the SF type, the second ``Cu`` defines the neighboring atom, and the last three parameters define $\\eta$, $R_{s}$ and $R_\\mathrm{c}$. The gaussian exponent $\\eta$ for the radial SF are chosen to equally distribute the radial SF turning points, whereas the turning point of radial SF with $\\eta = 0$ is set to the specific minimum bond in your data set. There is no need to define element specific SF, also global SF are possible, which are used for every element combination. It is also possible to define for each SF a different $R_\\mathrm{c}$, but it is recommended to use only one $R_\\mathrm{c}$ for all SFs. "},{"metadata":{},"cell_type":"raw","source":"symfunction_short Cu 2 Cu 0.000000 0.000000 12.000000"},{"metadata":{},"cell_type":"markdown","source":"Here, different radial parts of radial SFs with different $\\eta$ are plotted. Feel free and play around with the parameters."},{"metadata":{"trusted":true},"cell_type":"code","source":"rsf1 = np.array([fc.radialSF(i, 0.1) for i in distances])\nrsf2 = np.array([fc.radialSF(i, 0.05) for i in distances])\nrsf3 = np.array([fc.radialSF(i, 0.025) for i in distances])\nplt.plot(distances, rsf1[:,1], label='');\nplt.plot(distances, rsf2[:,1], label='');\nplt.plot(distances, rsf3[:,1], label='');","execution_count":12,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8OUlEQVR4nO3dd3iUVdrH8e+ZyaQ30iCkQIBQQhMIHekI2JBlURTBgq6uqChW7Igo64vYWEQWXV0FFREUFEWlKNJD7xJqElpIKCG9nPePSTCEQCbJTJ5Jcn+ua65pz5xz0355OHOec5TWGiGEENWfyegChBBC2IcEuhBC1BAS6EIIUUNIoAshRA0hgS6EEDWEi1EdBwUF6YYNGxrVvRBCVEubNm06rbUOLu09wwK9YcOGxMXFGdW9EEJUS0qpI1d6T4ZchBCihpBAF0KIGkICXQghaggJdCGEqCEk0IUQooYoM9CVUh8rpU4ppXZe4X2llHpPKRWvlNqulGpv/zKFEEKUxZYz9E+AQVd5fzAQXXj7B/BB5csSQghRXmXOQ9da/66UaniVQ4YA/9PWdXjXKaX8lVKhWuvj9iqyuFWbv2PJ1o/wcvXCx92XsHpRBAU1ISykDRG+kbi7uDuiWyGEcHr2uLAoDEgo9jyx8LXLAl0p9Q+sZ/FERkZWqLOdR9byvfkQ5APpwIE1cKCwfaCeqx8NA5rRJqQdHep2oG1wWzwtnhXqSwghqhNlywYXhWfo32utW5Xy3g/AG1rrPwqfLwOe1lpvulqbsbGxuqJXiubk5nA85SQHkg6x58+tJCVsx1Pvw8vtBCct+Rx0dWOfqwsFgItyISYwhj6RfbiuwXVE+lbsB4kQQjgDpdQmrXVsae/Z4ww9EYgo9jwcOGaHdq/I1eJKg3oRNKgXQd8OPcnLL2DRtmO8s3QP4ae28HzoFhqdXMZ2i2JTeBvW52Xx7uZ3eXfzu7QIaMHAhgO5ufHNBHuWuhyCEEJUS/Y4Q78BeBi4HugMvKe17lRWm5U5Q7+SC9l5vLFkD3PWH6V/pInpjdbhvmkW5GVzPHY0P4e3ZGniCnac3oGLyYXrGlzHyBYjaRPcxq51CCGEo1ztDL3MQFdKfQH0BoKAk8DLgAVAaz1TKaWA6VhnwmQA92ity0xqRwR6ke+2JvHU19sJq+PB5yOiCNsyDTZ9Ar5hcPP7HAlpwpd7v+Tb+G+5kHuB1kGtGdNqDH0j+2L95QghhHOqVKA7iiMDHSDucCr3frIRf09X5j3QlXrnt8OiRyB5L3R5CPq/QrrOY9GBRXy++3OOph2lZWBLHmn3CN3qd5NgF0I4pVoZ6ABbE85y5+z1hPi68fUDXQl0K4BfXoYNH0JYB7j1M/ALI68gj8UHFjNz20yOpR+jfUh7nox9ktbBrR1anxBClFetDXSADYdSGfXRetqE+zHnvi64uphgz2JY+CBYPOC2ORDZGYCc/Bzm/zmfWdtnkZqVyrCmw3is/WP4ufk5vE4hhLDF1QK9xq/l0ikqgKnD27Lx8Ble+m4nWmtocRPctwxcveF/N1sDHnA1u3JHizv4fuj33BlzJwv3L+SmhTexcP9CCnSBwb8SIYS4uhof6AA3ta3Pw32a8OXGBOZuOGp9MaQ53Pcr1G0FX42CuP9ePN7b1ZunOz7NVzd+RUO/hry05iXu+/k+jl1w6GxMIYSolFoR6ADjBzTl2uggXl28mz9Ppllf9AqCuxZD9AD4/jFYN/OSzzQLaMYngz7hla6vsOv0LoYtGsZ38d9h1DCVEEJcTa0JdJNJ8datbfFxd+HRL7aQlZtvfcPV0zqO3vxG+OkZWDvj0s8pE8OaDuObm7+haZ2mvLD6BR5f+TipWakG/CqEEOLKak2gA4T4uDN1eFv2nkjjrZ/3/fWGiysM/8Q6tr50Amz94rLPhvuE8/HAjxnfYTy/J/7O8MXD2Xpqa5XVLoQQZalVgQ7Qu1kIt3eK5KM/DrEt4exfb5gtMOwjiOoJ342FfT9d9lmzycw9re5h7g1zcTW5cs9P9/DZ7s9kCEYI4RRqXaADTLi+OSE+7jzzzXZy8orNXnFxgxFzoV5r+PouOLK21M83D2jOVzd9RY/wHry58U2e/O1JLuRcqKLqhRCidLUy0H3dLbx2Syv2nkjjP6sOXvqmmw/c+Q34hcPc2+BEqRs14evqy3t93uPxDo/z69FfuXPJnSSmJVZB9UIIUbpaGegA/WPqMqhlPaYvj+fY2cxL3/QKglHfgqsXfHE7pJ8utQ2lFPe2updZA2ZxKvMUI5eMlHF1IYRham2gA7xwYwsKtGbykj2Xv+kfASPmwIWT8PXdkJ97xXY6h3Zm7vVz8bZ4c+/Se/n+4PeOK1oIIa6gVgd6eB1PHurdhB+2H2ftgZTLDwhrDze/B4dXwdLnr9pWQ7+GzLl+Dm2D2zJh1QRmbJ0hX5YKIapUrQ50gAd6NSLM34PJS3ZTUFBKALcdAV3GWhf02vzZVdvyd/dn1oBZDGk8hA+2fcDk9ZPJL8h3UOVCCHGpWh/o7hYzTw1sxs6k8yzefoVL+we8Co16ww/jIWHjVduzmC1M6j6Je1vdy1f7vuLp358mJz/H/oULIUQJtT7QAW5uW5+W9X35v6X7yM4r5Yza7AJ//y/4hML8eyDzzFXbU0rxeIfHeTL2SX4+8jMPLXuI9Nx0B1UvhBBWEuhYlwWYMLgFiWcymbPuaOkHeQZYQz3tuHWjDBvGx+9qeReTe0wm7kQc9y29j3PZ5+xcuRBC/EUCvVCP6CC6NQ7kg98O/LXOS0nhHaDfS9bldjf9t/RjSri58c283ftt9p3Zx/0/38/ZrLP2K1oIIYqRQC/m0X7RJKdl88WGK5ylA3R9BBr3g58mwMndNrXbJ7IP7/Z5lwNnD3Dfz/fJwl5CCIeQQC+mS6NAOkcFMPNqZ+kmEwydab2idP69kJNhU9vXhl/L+33f5/D5w4xZOoaUzFKmSQohRCVIoJcwrl80J89nMy8u4coHeYfA0A8heQ/88qLNbXcL68b0ftNJTEtkzNIxcqYuhLArCfQSujYOpGPDOnyw8kDpM16KNOlnnZ++cTYcWGFz+11CuzCj/wwSLyTywC8PyBelQgi7kUAvQSnFo/2iOX4ui6/jylhsq9+LENjEOusl67zNfXSs1/HimPpDv8qURiGEfUigl6JHkyDaR/rzwcoDly6vW5LFA275AM4nlWvoBaB7WHem9prKrpRdjF02lsy8zLI/JIQQVyGBXoqis/Sks5l8s7mMs/SITtD1Ydj0CcQvK1c/fSP7MuXaKWw5tYXHVjxG7lUWABNCiLJIoF9Br6bBtA7z4z+/Hyx9jZfi+jwPQU0Lh17KNyY+KGoQr3R9hTXH1vD86ucp0Ff5H4EQQlyFBPoVKKW479ooDp5OZ8W+U1c/2OIOt8y0XkVaxqqMpRkaPZRx7cfx46EfmRo3VVZpFEJUiAT6VVzfOpRQP3dmrzpU9sHhHaxDL1s+g8N/lLuvMa3GMLLFSD7b/Rmf7Pqk/MUKIWo9CfSrsJhN3N2tIWsPprAzyYahlN7Pgn8kLH4M8rLL1ZdSiqc7Ps2ghoOYtmkaiw8srljRQohaSwK9DCM6ReLpaubjP2w4S3f1ghvehpT98Mc75e7LpExM7jGZzqGdeWn1S/yRVP4zfSFE7SWBXgY/Dwu3xkawaNsxTpzLKvsD0f2h1TBYNRVO7y93f65mV97p/Q7RdaIZv3I8O5J3VKBqIURtZFOgK6UGKaX2KaXilVLPlvK+n1JqsVJqm1Jql1LqHvuXapx7u0dRoDWfrj1s2wcGvmGdo/794zYts1uSt6s3M/rPINA9kLHLxpJw/irLEAghRKEyA10pZQb+DQwGYoDblVIxJQ4bC+zWWrcFegNvKaVc7VyrYSIDPRnYsh5z1h0hPTuv7A/41IX+E617kW6dW6E+gzyCmDlgJgUUMHb5WM7n2H4lqhCidrLlDL0TEK+1Pqi1zgG+BIaUOEYDPkopBXgDqYANyVd93HdtFOez8pi/qYwLjYq0vwsiulivIC1jh6MraeDbgHd6v0NCWgLjV44nt0AuPBJCXJktgR4GFP8/f2Lha8VNB1oAx4AdwDitL79CRin1D6VUnFIqLjk5uYIlG6NDgwDaRvjz6drDts0TN5nghresYb58coX7ja0Xy8RuE1l/fD2T102WOepCiCuyJdBVKa+VTJWBwFagPnANMF0p5XvZh7SepbWO1VrHBgcHl7NU443u0oCDyemsPWDjWub1WkHH+yHuIzi+vcL93tz4Zu5vfT/f7P+GT3d9WuF2hBA1my2BnghEFHsejvVMvLh7gAXaKh44BDS3T4nO44Y2ofh7Wvhs3RHbP9TnOfAIgCVPVegL0iIPt3uYgQ0HMm3TNJYdLd+aMUKI2sGWQN8IRCulogq/6BwBLCpxzFGgH4BSqi7QDDhoz0KdgbvFzG2xEfy8+6RtUxgBPPyh/yuQsA62z6tw3yZl4rXur9E6qDUTVk1gd4pt298JIWqPMgNda50HPAwsBfYA87TWu5RSDyqlHiw8bBLQTSm1A1gGPKO1Pu2ooo00snMDCrS++r6jJV0zEsI6WL8gLce66SW5u7jzbt93qeNWh0eWPcKpjDLWmBFC1Co2zUPXWi/RWjfVWjfWWk8ufG2m1npm4eNjWuvrtNattdattNafO7JoI0UGetK7aTBfbDhKbr6NKyOaTHD9/8GFU/DbvyrVf5BHEO/3e5+03DQeX/E42fnlW2JACFFzyZWiFTCqawNOpWXz866Ttn8orAO0HwXrZ8Lp+Er137ROU97o8QbbT2/n1bWvyswXIQQggV4hvZqGEF7Hg8/WHS7fB/u+CC4e5d7dqDT9GvTjobYPsejAIubsmVPp9oQQ1Z8EegWYTYqRnRuw7mAq+0+m2f5B7xC4djzsWwIHf6t0HQ+0fYC+EX2ZGjeVdcfXVbo9IUT1JoFeQbd1jMDVxcTn5ZnCCNDlIesSu0ufg4L8StVgUiZev/Z1ovyiePK3J0lIkzVfhKjNJNArKMDLletb1WPBliSycssRzBZ36zovJ3fClsp/d+xl8eK9Pu+htebR5Y+SkZtR6TaFENWTBHol3NYxkrSsPH7cebx8H2w51LrOy/LXILscQzZXEOEbwdReUzl47iDP/fGc7EsqRC0lgV4JXRoF0DDQky83lHOoQykY9Dqkn4JV0+xSS9f6XXmiwxMsO7qMj3d+bJc2hRDViwR6JSiluLVjBOsPpXIw+UL5PhzWAdrcBmv/DWfKOQ5/BaNiRjE4ajDvb3mfNcfW2KVNIUT1IYFeSX9vH47ZpPgqrgJfSPZ7GZQJfn3FLrUopXil6ys08mvEM78/w7ELJZfcEULUZBLolRTi606/5iF8synR9itHi/iFQfdHYdcCOLreLvV4Wjx5p8875BXkMX7leLmSVIhaRALdDkZ0iuD0hRyW7anA2irdx4FPKCydUKnVGItr4NuAyT0msytlF2+sf8MubQohnJ8Euh30jA6mnq87X20sx4JdRVy9rFeQJm2CXQvtVlPfyL4X11BfsH+B3doVQjgvCXQ7cDGbGB4bzm9/JnPsbGb5G2g7AkJawrJXIS/HbnWNvWYsXUK7MHmd9WxdCFGzSaDbya2xERRo+DrOxj1HizOZrWumnzkEmz6xW01mk5k3e75JoEcg41eM52zWWbu1LYRwPhLodhIR4EmPJkHMi0sgv6ACY+HRA6DhtdbldSuxZnpJddzrMK33NJIzk3lm1TPkV3K5ASGE85JAt6PbOkaQdDaT1fEV2NtDKRgwETJOw5r37VpXq6BWPNf5OdYcW8OMbTPs2rYQwnlIoNvRdS3rUsfTwlcbK7hIVlgH67IAa6dD2gm71jYsehhDmwxl1vZZ/JZQ+ZUehRDORwLdjtxczPytfTg/7z5ByoUKzv/u+yLk58DKKXatTSnFc52fo3lAc5774zmSLiTZtX0hhPEk0O3sto4R5OZrFm6pYGAGNobYMbD5f3B6v11rc3dxZ1qvaRToAp5c+SQ5+fabUSOEMJ4Eup01retD+0h/vtyYUPGt4Xo9DRZPuy0JUFyEbwSTuk9iZ8pO3op7y+7tCyGMI4HuALfGRhB/6gJbEs5WrAGvIOsVpHu/t9uSAMX1b9CfO1vcydy9c1l6eKnd2xdCGEMC3QFuaBOKh8XM1xVZsKtI14fAux788pLdlgQobnyH8bQJbsPLa17m8LnDdm9fCFH1JNAdwMfdwvWtQ1m87TiZORWc9+3qBb2fhYR11j1I7cxitvBWr7ewmCyM/208WXlZdu9DCFG1JNAd5NbYcC5kV2A3o+LajYKgptax9Pw8u9VWpJ5XPd649g32n9nP6+tft3v7QoiqJYHuIJ2irLsZzavMsIvZxbpm+uk/YWvl9x8tTY+wHtzf+n4Wxi/k2/hvHdKHEKJqSKA7iFKK4bERrDuYypGU9Io31PwGiOgMK96AnEq0cxVjrxlLp3qdmLxuMn+e+dMhfQghHE8C3YH+1j4Mk4L5myqwYFcRpWDAJLhwAtZ9YL/iijGbzPyr57/wdvXmiZVPkJ7rmB8cQgjHkkB3oFA/D66NDmb+psSKLdhVJLIzNL8RVr8L6Sn2K7CYII8g3uz5JkfTjjJxzcSKz6EXQhhGAt3Bbo2N4Pi5LP6oyIJdxfV7CXIuwCrHXQzUsV5HHmn3CD8e/pGv9n3lsH6EEI4hge5g/WNC8Pe0VO7LUYDgZtDuTtj4HzhzxD7FleLeVvdybdi1vLnxTXadlk0xhKhObAp0pdQgpdQ+pVS8UurZKxzTWym1VSm1Sykly/kVcnMxc8s1Yfyy6yRnMyq5dkrvCaBMsMJxUwxNysTrPV4nyCOIJ357gnPZ5xzWlxDCvsoMdKWUGfg3MBiIAW5XSsWUOMYfmAHcrLVuCQy3f6nV162xEeTkF/Dd1mOVa8i3PnT5J2z/Ck7ssE9xpfB392dqr6mczDjJC6tfkPF0IaoJW87QOwHxWuuDWusc4EtgSIlj7gAWaK2PAmitT9m3zOotpr4vrcJ8Kz/sAtD9MXD3g18nVr6tq2gT3IYnY59kZcJKPtn1iUP7EkLYhy2BHgYUT6LEwteKawrUUUqtVEptUkqNLq0hpdQ/lFJxSqm45OTkilVcTd0aG8GuY+fZmVTJIQwPf+j5JMT/Aod+t0ttV3JH8zsY0GAA725+l80nNzu0LyFE5dkS6KqU10r+H9wF6ADcAAwEXlRKNb3sQ1rP0lrHaq1jg4ODy11sdXZz2/q4mk2Vm5NepOP94BsOv7zskIW7iiilmNhtImHeYTz121OkZDpmyqQQwj5sCfREIKLY83Cg5GBwIvCT1jpda30a+B1oa58SawZ/T1eua1mXhVuSyMqt5EbNFnfo+zwc2wy7v7NPgVfg4+rDtN7TOJdzjmdXPSubTAvhxGwJ9I1AtFIqSinlCowAFpU45jvgWqWUi1LKE+gM7LFvqdXfrbERnMvM5dc9JyvfWJvbICQGlr0K+bmVb+8qmgU047nOz7Hu+Dpmbp/p0L6EEBVXZqBrrfOAh4GlWEN6ntZ6l1LqQaXUg4XH7AF+ArYDG4DZWuudjiu7eureJIj6fu7Mi7PDsIvJbF24K/WAdbs6BxvaZChDGg/hw20fsjpptcP7E0KUnzJqSlpsbKyOi4szpG8jTft5H++viGf1M32p7+9Ruca0hv9eDynx8OgWcPO2T5FXkJmXycglI0nOSObrm76mnlc9h/YnhLicUmqT1jq2tPfkStEq9vcOEWgNCzbb4SxdKRgwEdJPOWzhruI8XDyY1msauQW5PPHbE+Q6eKhHCFE+EuhVLDLQk66NApkXl0hBZRbsKhLRqdjCXZVcL8YGDf0a8mq3V9mevJ1pm6Y5vD8hhO0k0A1wa8dwjqZmsOFwqn0a7Pcy5KbD71Pt014Zrmt4HXe2uJPP93wum0wL4UQk0A0wqGUoPm4u9rlyFCC4qXW7uo2zIfWQfdosg2wyLYTzkUA3gIermRvb1mfJjuOkZdlpHLr3s2BygRWT7dNeGUpuMp2Zl1kl/QohrkwC3SC3xoaTlVvA99srsYl0cUULd+34Go5vs0+bZSjaZDr+TDyvrXtNFvESwmAS6Aa5JsKf6BBv+w27AHQfBx514NdX7NdmGXqE9eCBtg+w6MAiFsYvrLJ+hRCXk0A3iFKKW2Mj2HL0LPtPptmnUQ9/uPZJOLAcDqywT5s2eLDNg3QJ7cLr619nb+reKutXCHEpCXQD3dIuDBeT4mt7LNhVpON94BdhPUsvKLBfu1dhNpmZcu0U/Fz9GL9yPGk5dvoBJYQoFwl0AwX7uNG3eQgLNieRm2+n8LW4Q5/n4fhW2F11QyCBHoFM7T2VYxeO8eLqF2U8XQgDSKAbbHhsBKcvZLNynx3Xh29zK4S0hGWTIK+S296VQ7uQdjze4XGWHV3G/3Y7fn0ZIcSlJNAN1rtZMEHebvb9ctRkhv6vwJlDsPlT+7Vrg9Exo+kX2Y93Nr3DllNbqrRvIWo7CXSDWcwmhrUPY/neU5xKy7Jfw9EDoEEPWDkFsqtuTFspxaTukwj1DuWJlU9wOtPxyxEIIawk0J3A8Nhw8gs0325Jsl+jRQt3ZZy2rvNShXxcfXi799uk5aTxxMonyC2QRbyEqAoS6E6gSYgP7SP9mReXaN8vE8NjodUwWDMdztnxh4UNmgU045Vur7D51GamxckiXkJUBQl0J3FrbATxpy6wJeGsfRvu9zLoAlg+yb7t2uCGRjdcXMTr+4PfV3n/QtQ2EuhO4oY2oXhYzHxtzy9HAeo0gC4PwrYv4FjVf0k5PnY8Hep2YOKaiexL3Vfl/QtRm0igOwkfdwvXtw5l8bbjpGfn2bfxa58Az0BY+oJ1l6MqZDFZmNprKr6uvoxbMY5z2eeqtH8hahMJdCcyolMEF7LzWLztmH0bdveD3hPgyB+wb4l927ZBkEcQ0/pM42TGSZ5Z9Qz5BflVXoMQtYEEuhOJbVCH6BBv5m44av/GO9wDQU3h5xer9GKjIm2D2zKh0wRWJ63mg22O3y5PiNpIAt2JKKW4o3Mk2xPPsTPJzkMTZhcYMAlSD0Dcx/Zt20bDmw5naJOhfLj9Q1YmrDSkBiFqMgl0J/O3duG4uZgcc5bedCBE9YLfpkDmGfu3XwalFM93eZ6WgS2ZsGoCR84fqfIahKjJJNCdjJ+nhRvb1Oe7LUlcsPeXo0rBwMmQebbK9h8tyc3sxtu938ZisjBu+Tgu5FwwpA4haiIJdCd0R+dI0nPyWbTVzl+OAtRrDdeMhPUfQupB+7dvg1DvUKb2msrh84d5dtWz8iWpEHYige6E2kf606yuD3M3OGhIou8LYHa1TmM0SKfQTjzb6Vl+S/yN6VunG1aHEDWJBLoTKvpydGfSebYnnrV/B76h0PNJ2PcDxP9q//ZtdFuz2xjedDizd8xmycGqn04pRE0jge6kbmkXhrvFxNz1DvhyFKDrWKgTBT9NgHxjFs9SSjGh0wQ61O3AS2teYtfpXYbUIURNIYHupPw8LNzUpj6Lth3jfJYDAtfFDQZNgdN/woZZ9m/fRhazhWm9pxHoHsijKx4lOcOOG30IUctIoDuxUV0bkJGTzwJ77jlaXNOB0GSAdc30C6cc04cNAtwDeK/ve6TlpPHYisfIzs82rBYhqjMJdCfWJtyfayL8+d/aIxQUOGANFqVg0BuQmwnLJtq//XJoFtCMN3q8wfbT25m4ZqLsSSpEBUigO7m7ujXg4Ol0Vh9w0M4/QdHQ5Z+w5XNI3OSYPmzUr0E/xl4zlsUHF8uepEJUgE2BrpQapJTap5SKV0o9e5XjOiql8pVSf7dfibXb9a1DCfRy5X9rHXhVZc+nwLsu/Pg0FBQ4rh8bPNDmAa5rcB3TNk1jVeIqQ2sRoropM9CVUmbg38BgIAa4XSkVc4Xj/gUstXeRtZmbi5kRnSJYtuckCakZjunE3Rf6T4SkONj+pWP6sFHRnqRN6zTl6d+fZv+Z/YbWI0R1YssZeicgXmt9UGudA3wJDCnluEeAbwDjvl2roUZ2bgDAHEdNYQRocxuEd4RfX4Gs847rxwaeFk/e7/s+Hi4ejF02VjaaFsJGtgR6GFB8G53EwtcuUkqFAUOBmVdrSCn1D6VUnFIqLjlZpqfZqr6/B9fF1OOrjUfJynXQZfImEwz+l3W2y8opjumjHOp51WN6v+mczT7Lw8seJjMv0+iShHB6tgS6KuW1klMQ3gGe0VpfNW201rO01rFa69jg4GAbSxQAo7s14ExGLt9vP+64TsI6QIe7Yf1MOLHDcf3YKCYwhjd7vsnulN1MWDVB1nwRogy2BHoiEFHseThQctWoWOBLpdRh4O/ADKXULfYoUFh1bRRIdIg3n6457Ngpff1fBo868P14w78gBegd0ZtnOj3DsqPLeHvT20aXI4RTsyXQNwLRSqkopZQrMAJYVPwArXWU1rqh1rohMB94SGv9rb2Lrc2UUozu1pAdSefYdMSBa5l71IHrXoPEDbDFOaYOjmwxkjua38Gnuz9l3r55RpcjhNMqM9C11nnAw1hnr+wB5mmtdymlHlRKPejoAsVfhrUPw8/Dwkd/HHJsR21HQIMe8MvLcME5vut4uuPT9ArvxevrX+ePpD+MLkcIp2TTPHSt9RKtdVOtdWOt9eTC12ZqrS/7ElRrfbfWer69CxXg6erCyM6RLN11gqMpDprCCNYrSG+cBjnp8MtLjuunHMwmM2/2fJOmdZryxMon2J2y2+iShHA6cqVoNXNXt4aYTYqPVzv4LD24GXR7BLbNhcPOcUbsafFker/p+Ln58c9f/0nC+YSyPyRELSKBXs3U9XXnprb1mReXwLlMBy972/Mp8G8Ai8dBbpZj+7JRiGcIMwfMpEAX8MCvD5CSmWJ0SUI4DQn0aui+Ho3IyMnnC0dsJF2cqyfc9A6kxMPvbzq2r3Jo5NeI6f2mk5yRzEPLHiI9N93okoRwChLo1VBMfV+6Nwnkk9WHyc138NTCxn2h7R2w+l2nmJtepG1wW97q/Rb7Uvfx+IrHyTVokw4hnIkEejV1X49GnDifxQ+OvNCoyMDJ1umMix6B/DzH92ejnuE9ebnry6w9vpYXVr9AgTZ+3rwQRpJAr6Z6NQ2mSYg3s/846Pi1wz0DYPCbcGyL9SpSJzI0eijj2o9jyaElvBX3lqyjLmo1CfRqymRSjOkRxc6k86w5UAVfDLYcCk0Hw/LXINXBM2zKaUyrMdzR/A7+t/t//GfHf4wuRwjDSKBXY39rH0ZdXzemL493fGdKwQ1vgcnFOvTiBMsCFFFK8UynZ7ix0Y28v+V9Pt/9udElCWEICfRqzM3FzP3XNmLtwRTHLgdQxC8MBr0Oh1fBRuc6EzYpE5O6T6JfZD/+tfFfLNy/0OiShKhyEujV3B2dI6njaeHfK6rgLB2g3SiIvs66LEDKgarp00YuJhfe7Pkm3cO68/Kal/nx0I9GlyRElZJAr+Y8XV24t3sUy/eeYtexc47vUCm46T1wcYWFD4KTLWnranbl7d5v075ue55b9RwrE1YaXZIQVUYCvQYY3a0hPm4uzFhZRWfMvqFw/VTrioxrp1dNn+Xg4eLB9L7TaR7QnCdWPsG64+uMLkmIKiGBXgP4eVgY1bUBS3Yc50DyharptPVwaH6jddbLqT1V02c5eLt6M3PATBr4NeDR5Y8SdyLO6JKEcDgJ9Bri3h5RuLmY+KCqztKVghvfATcfWHA/5GVXTb/l4Ofmx6wBswj1CuWhZQ+x8cRGo0sSwqEk0GuIIG83RnSM5NstSSSkOnBp3eK8g+Hm6dYlAZa9WjV9llOQRxAfDfyI+l71eejXh1h/fL3RJQnhMBLoNciDvRpjMineXba/6jptfj10vM86lh6/rOr6LYcgjyBmD5xNuE84Dy97WMbURY0lgV6D1PNzZ3SXBizYnEj8qSoaSwfrlnXBzeHbf0L66arrtxyCPIKYfd1fob7m2BqjSxLC7iTQa5h/9m6Mh8XM27/+WXWdWjxg2EeQeQa+GwtOup5KoEcgHw38iAa+DXhk2SOsTlptdElC2JUEeg0T6O3GmB5R/LD9ODuTqmBeepF6rWDAq/DnT7BxdtX1W04B7gHMvm42UX5RPLr8UZmnLmoUCfQa6L6ejfDzsDDtlyo8Swfo/KD1KtKlz0HS5qrtuxzquNdh9nWzia4TzWMrHmPxgcVGlySEXUig10C+7hYe6NWI5XtPselIatV1rBQM/RC8QuDru6xDME7K392fjwZ+RIe6HXjuj+eYs2eO0SUJUWkS6DXU3d0aEuTtxps/7avaNcI9A2D4J3D+OHz7kNOOpwN4WbyY0X8GfSL6MGXDFGZsnSHrqYtqTQK9hvJ0deHhPo1ZfyiV3/5MrtrOIzpaZ77sWwJr3qvavsvJzezGtN7TGNJ4CB9s+4ApG6bIzkei2pJAr8Hu6NyAhoGevPbDHsfvPVpS5wcg5hb4dSIcdu7ZJC4mF17t/iqjY0Yzd+9cnvvjOXILZI9SUf1IoNdgri4mnr8hhvhTF5iz7kjVdq4U3Pw+1GkIX98N5xKrtv9yMikTT8Y+yaPtHuWHgz8w9texpOWkGV2WEOUigV7D9W8RQvcmgbz9637OZuRUbefuvnD7F5CbCV+OhJwqWpKggpRS3N/mfl7t9iobT2xk9I+jOX6hCjbhFsJOJNBrOKUUL94YQ1pWLu/8WoVLAhQJbgbDZsPxbbDoYaf+krTI0OihzOg/gxPpJ7hjyR3sStlldElC2EQCvRZoXs+X2ztF8tm6I8SfMmAYodkg6Pci7PwG/ni76vuvgK71u/LZ4M+wmCzc89M9rDi6wuiShCiTBHotMX5AUzxdzUz63qC1y3uMh1bDrKsy7vvJmBrKqUmdJsy9YS6N/BoxbsU4masunJ4Eei0R6O3GuH7R/PZnMr/uPln1BShlXWo3tA3MvxeOba36GiogyCOIjwd+TO+I3kzZMIVJayeRmy8zYIRzsinQlVKDlFL7lFLxSqlnS3l/pFJqe+FtjVKqrf1LFZU1umtDmtX14cXvdnIhO6/qC3D1hNu/sl58NPdWOFPFM28qyNPiydu93+aelvcw78953Lv0XpIzqnhuvxA2KDPQlVJm4N/AYCAGuF0pFVPisENAL611G2ASMMvehYrKc3Ux8frfWnPifBZTl+4zpgjfUBj5NeRmwZzhTr08QHFmk5nxseP5v57/x74z+7jt+9vYemqr0WUJcQlbztA7AfFa64Na6xzgS2BI8QO01mu01kX/MtcB4fYtU9hLhwZ1GNWlAZ+uPcyWowaFaUgLGDEHzhyyTmd0wu3rrmRQ1CA+G/wZbmY37ll6D1//+bXRJQlxkS2BHgYkFHueWPjalYwBfiztDaXUP5RScUqpuORk+S+rUZ4a2Iy6Pu5MWLCj6q8gLRJ1LdzyARxZDQsfgIJ8Y+qogGYBzfjyxi/pXK8zr659lVfWvEJOfhXP8ReiFLYEuirltVInEyul+mAN9GdKe19rPUtrHau1jg0ODra9SmFXPu4WJt3Sir0n0pj1+0HjCmn9dxgwCXYthMXjoKD6rKHi5+bHv/v9m/ta38c3+79h1I+jOHr+qNFliVrOlkBPBCKKPQ8HjpU8SCnVBpgNDNFap9inPOEoA2LqMrhVPd5dtp8DyVW4XV1J3R+Fnk/Dls9g6YRqceFREbPJzLj243i3z7skpiUyfPFwfjj4g9FliVrMlkDfCEQrpaKUUq7ACGBR8QOUUpHAAmCU1rqKd1UQFTXx5pZ4WMw8/tVW44ZeAPo8B10egvUzYflrxtVRQX0j+zL/pvk0D2jOs6ue5cXVL5KR69zLHIiaqcxA11rnAQ8DS4E9wDyt9S6l1INKqQcLD3sJCARmKKW2KqXiHFaxsJsQX3em/K012xPP8U5V7kFaklIw8HVoPxpWTYVVbxlXSwWFeofy0cCPeKDNA3wX/x23fX8b+1INmkkkai1l1IL+sbGxOi5Oct8ZPDN/O/M2JfDF/V3o0ijQuEIK8mHhg7BjHvR5AXo9ZVwtlbDh+AaeXfUs57LP8ViHxxjZYiQmJdfwCftQSm3SWseW9p78LRO8dFMMDQI8Gf/VVs5lGHgVpMkMQ2dC29thxWvWZQKq0Zh6kU6hnZh/83y61u/Kmxvf5N6l95JwPqHsDwpRSRLoAi83F94d0Y5Tadk89+0OY7dhM5lhyAxof5d16GXp89Uy1APcA3i/7/tM6j6JP1P/ZNjiYczZM0d2QxIOJYEuAGgb4c/jA5ryw/bjfLnR4LNJkwluehc6PQDr/g0/jK9W89SLKKW4pcktLBiygPZ12zNlwxTGLB1DQpqcrQvHkEAXFz3YqzHXRgfx0nc72XTE4EvylYLB/4Luj0HcxzBvtHWjjGqonlc9Puj3Aa92e5W9qXsZtsh6tp5fDX9ICecmgS4uMpsU79/ejlA/Dx78fBMnzmUZW5BSMGAiDHwD9v4A/xsCGanG1lRBSimGRg9l4ZCFtA+xnq3f/sPtbE/ebnRpogaRQBeX8Pd05T+jY0nPzuOBzzeRlesEZ5FdH4Lhn1iX3P1oAJw5bHBBFVfPqx4f9P+Aqb2mkpKZwp1L7mTi2omczTprdGmiBpBAF5dpVs+Habdew7aEs7zw7U5jvyQt0vIWGP0tpJ+G2f3hyBqjK6owpRQDGw5k0dBFjIoZxcL9C7np25tYuH+hfGkqKkUCXZRqUKt6PNovmvmbEo1d76W4Bt1gzC/g5guf3gQbP6qWM2CKeFm8eKrjU8y7aR5RflG8tOYlRi0ZxZZTW4wuTVRTEujiih7rF80NbUJ548e9zItzkpkZwU3h/uXQqI919sviR6vV8rulaVqnKZ8M+oTXur/GifQTjP5xNI+teIzD5w4bXZqoZuRKUXFVOXkFjPl0I6vjTzNjZAcGtapndElWBfmwYrJ1rnp4R/j7x+AfaXRVlZaRm8Fnuz/j450fk52fzd+b/p1/tv0ngR4GXsErnMrVrhSVQBdlysjJY+Ts9exKOs8n93akW+Mgo0v6y65v4buHrXPXb34fYoaU+ZHq4HTmaWZum8n8P+fj7uLO3S3vZmSLkfi4+hhdmjCYBLqotLMZOdz24ToSz2Qw5/4uXBPhb3RJf0k9CPPHwLHN0OEeGPQGWDyMrsouDp07xDub3mF5wnJ8XH0Y1WIUI2NG4uvqa3RpwiAS6MIuTp7PYvjMtaSm5/Cf0bF0bexEwwB5OdYhmNXvQHBz625IYe2NrspudqfsZua2maxIWIG3xZuRLUYyKmYUfm5+RpcmqpgEurCbE+eyGPXReo6kZjDjjvb0j6lrdEmXOrAcvh0LF05At0eh9wSwuBtdld3sTd3LrO2z+OXIL3hZvBjRbAR3tLiDEM8Qo0sTVUQCXdjVmfQc7v7vBnYeO8/U4W0Y2s7J9gTPPAs/v2DdBSkwGoZMh8guRldlV3+e+ZMPt33IL0d+wWwyM6jhIEbFjCImMMbo0oSDSaALu7uQncd9n25k3cFUXrihBWN6RKFUadvPGujAclg0Ds4lQLs7od/L4F2z9rJNOJ/A3L1zWbB/ARl5GXSo24FRMaPoHd4bs8lsdHnCASTQhUNk5eYz7sstLN11kqHtwnjjb61xtzhZiGSnwcop1u3tLF7QZwJ0vA/MFqMrs6u0nDQW7F/A3D1zOZZ+jHDvcIY1HcaQxkMI9qxZP8RqOwl04TAFBZr3l8fz9q9/0irMlw9HxRLm74QzTJL3wY/PwMEVENwC+r8CTQdaFwCrQfIK8lh+dDlf7vuSjSc2YlZmeob3ZFj0MLqHdcfF5GJ0iaKSJNCFwy3bc5LHvtyKxcXEeyPa0SPaieaqF9Haumrjzy/AmUMQ0Rn6vQQNexhdmUMcOX+EBfsX8F38d6RkpRDiGcKQxkO4sdGNNPJvZHR5ooIk0EWVOJh8gX98ton4Uxe4q2sDnhncHE9XJzwjzM+1fmH625uQdhwa94NeT9e4L06L5Bbk8nvC73yz/xtWH1tNgS6gWZ1mDIoaxOCowYR5hxldoigHCXRRZTJz8nlz6V7+u/owDQM9eevWtnRoEGB0WaXLzYQN/4E/3obMVIjoAj0eh+jrrFee1kDJGcn8fORnfjz0I9uStwHQNrgtg6MG0zeiL6HeoQZXKMoigS6q3NoDKTw1fxvHzmZyd7coxvWPxs/DSb+IzEmHLZ/DmvetM2JCYqDzA9B6OLh6GV2dwyRdSOLHQz/y06Gf2HdmHwDNA5rTO6I3vSN6ExMQ43wzl4QEujDGhew83liyh7kbjuLvYWH8dc24vWMELmYnPfvNz4WdC6zBfnKHdZnetrdDxzEQ3Mzo6hzq8LnDrExYyYqEFWxN3kqBLiDEM4Re4b3oXr87HUM7ynIDTkICXRhq17FzTPp+N+sOptK0rjfPDm5On2Yhznv2pzUkbICNs2H3t5CfY13Rsc1t0GoYeDrpEJKdnMk6w6qkVaxMWMnqpNVk5GVgUiZaBbaic2hnutbvStvgtriaXY0utVaSQBeG01rz8+6TvL5kD0dSMogJ9eWhPo0Z3CoUs8lJgx2sOyRtnQPbvoRTu8FksY6xtxwKTa8D95q9lkpufi7bT29n3fF1rD22lp2nd5Kv83E3u9MmuA3tQtrRLqQdbYLbyEqQVUQCXTiNnLwCvt2axMzfDnAwOZ2oIC/G9IhiyDX18XF30jF2sJ61n9xpDfYd861rxZgs0KgXNL8Rmg4C35r/hWJaThpxJ+JYf2I9m09uZt+ZfRToAhSK6DrRtAtpR+ug1rQMbEmUX5RcreoAEujC6eQXaJbuOsGMlfHsTDqPh8XMjW1CGdEpkvaR/s47HANQUACJG2HvYtiz+K9Nq0NioHFfaNIPIrvWmCV8ryY9N53tydvZemorW05tYVvyNjLyMgDwcPGgWZ1mxATG0DKoJc3qNKOhX0PczG4GV129SaALp6W1ZmvCWb7amMCibcfIyMmnUbAXg1vVY1DLUFqF+Tp3uGttHYrZ/wscWAZH11nH3E0WCG1rndse2cU6JbKGrSNTmvyCfA6fP8zulN3sTtnNrpRd7E3dS2ZeJgAmZSLSJ5LG/o1p7N+YJv5NaOzfmCjfKCw1bDkGR5FAF9XChew8vt92jMXbj7HuYCr5BZowfw8GxNSlW+NAOjcKdN6pj0Vy0uHwaji6xhruSZshv3DP04DGEB4LdVtBvdbWm5cTXlFrZ0Uhv//MfuLPxnPg7AHiz8ZzNO0oBboAALMyE+4TTrhPOBHeEUT4/HUL9wnH3aXmLIFcWRLooto5k57Dr3tO8tPOE6w+cJqs3AJMClqH+dGlUSDXRPjTJsKf+n7uzn0Gn5cNx7bC0bWQsN76OO3YX+/7hFoDPqQFBDYpvDUG77o1bp2ZkrLzszl87vDFkD98/jCJaYkkpiWSlpt2ybEhHiHU965PPa961PWsS12vupfcB3sE15rxegl0Ua1l5+Wz9ehZVh9IYe2B02xNOEtuvvXvbZC3K63D/Gha14cmId5EF957uznhkgNF0lOs89xP7IQTO6y3lP3WoZoirt4Q0AgCosAvAnzDwC8c/MKszz2DauzVrFprzmWfIyEt4ZLb8fTjnMw4ycn0k2TlZ13yGbMyE+geSIBHAAHuAdRxr0OAu/VxoHvgxcdFr3u4eDj3icBVVDrQlVKDgHcBMzBbaz2lxPuq8P3rgQzgbq315qu1KYEuKio7L5+9x9PYnniWbYnn2Jl0joPJ6eTkF1w8po6nhbA6HoT7e1rv63hQ39+DIG83grxdCfByxdvNxXn+URfkW69STTlgvaUegNP74ewROJcEhWPQF5lcwCvYOmTjFVzsVvjcM9B6YZS771/3rj5gduIfdDbSWnM+5zwn0k9wMuPkxfvkjGTOZJ0hNSuVlKwUUrNSL47dl+SiXPBx9bnk5uvqe8m9t6s3XhYvPFw88HTxtN5bPC957uHiUeX/M6hUoCulzMCfwAAgEdgI3K613l3smOuBR7AGemfgXa1156u1K4Eu7Ckvv4CEM5nsP5nGgeR0Es9kkHQ2k8QzmSSdySQzN/+yz7i6mAjyciXA2xUfNwtebi74uLvg5WbG281ifexqxsvNBXeLGVcXE24upov3bi7W11zNJtws1nsXkwmTCcwmhUkpzCaFWSlMlZlrrzVkpML5RGu4n0u0Dtukny68JRfeTkNu+tXbsnhdGvJuPuDiYd2m7+J94a3oNRc364wdF3frvcli/cFgcil8bAGTudjjwvdKPlZm6zCSMpW4Oe6HamZe5sWQT81KJSUzhTPZZ0jLSSMtJ43zOecvPi7+WnbR9x42cDO7XQx4Nxc33MxuuJpd/7o3Xf5a1/pd6Rnes0K/pqsFui0/rjsB8Vrrg4WNfQkMAXYXO2YI8D9t/emwTinlr5QK1Vofr1DFQpSTi9lEVJAXUUGXr72itSY1PYdjZ7M4nZ5NyoUcUgvvU9JzSE3P4UJWHklnM7mQnUt6dj5pWbkXh3Xs5a9w52LIF71mzTR1MduKIk4pUIXPrO+5oWiMUk0uaVspUBZwd8mijj6Pvz6Pt8rAS1tv3mTgRQbeOh2vzAy8MtPx0pl46QRcycWNHFx1Dm5kF97nYKLqhmMLUGgUBZjQFx8rdMnn6tJjit+uxIwiGAiGy4679Ff413s5Ci4oRZYJMpUi0wRZimLP1cXnWSqTTFMmWcr6uRylyFGQoeDcxdcgt/CWo+Ds3k30HF2xQL8aWwI9DEgo9jwR61l4WceEAZcEulLqH8A/ACIjI8tbqxAVopQi0NuNQO/yzX/OzssnPTufC1l5ZOflk51XQHZeATl5BeTkF5Cdm09OfuHzwvfyCjQFBZp8rckv9viv16Cg8L38Ak2BLrpZT8StrA90sdd08deKjir+ni7+yfporckHzgPnLnnP+gOuRFeX0xozeVgKrAHvonOw6GxcC7Ixk4dZ52PS+Zh1Hmbyij3+63UTha8Vvq50waURrIuiuQDQKK0xFYt2pbkY69bnusTjAhQUfr7wz7rkL6jY08veK/a85HvFY98VjSvgV/xYXfjx/Ct/7vIfF38910374gi2BHppP/pK/s7Ycgxa61nALLAOudjQtxCGcXMx4+ZiJsBL1iwR1YMtX5MnAhHFnocDxypwjBBCCAeyJdA3AtFKqSillCswAlhU4phFwGhl1QU4J+PnQghRtcocctFa5ymlHgaWYp22+LHWepdS6sHC92cCS7DOcInHOm3xHseVLIQQojQ2TUrVWi/BGtrFX5tZ7LEGxtq3NCGEEOVRMy81E0KIWkgCXQghaggJdCGEqCEk0IUQooYwbLVFpVQycKSCHw8CTtuxHEeQGivP2esD56/R2esD56/R2eproLUudbcUwwK9MpRScVdanMZZSI2V5+z1gfPX6Oz1gfPX6Oz1FSdDLkIIUUNIoAshRA1RXQN9ltEF2EBqrDxnrw+cv0Znrw+cv0Znr++iajmGLoQQ4nLV9QxdCCFECRLoQghRQ1S7QFdKDVJK7VNKxSulnjW6npKUUhFKqRVKqT1KqV1KqXFG11QapZRZKbVFKfW90bWUpnAbw/lKqb2Fv5ddja6pOKXU44V/vjuVUl8opdydoKaPlVKnlFI7i70WoJT6RSm1v/C+jhPW+H+Ff87blVILlVL+zlRfsfeeVEpppVSQEbXZoloFeuGG1f8GBgMxwO1KqRhjq7pMHvCE1roF0AUY64Q1AowD9hhdxFW8C/yktW4OtMWJalVKhQGPArFa61ZYl5UeYWxVAHwCDCrx2rPAMq11NLCs8LmRPuHyGn8BWmmt22DdkH5CVRdVzCdcXh9KqQhgAHC0qgsqj2oV6BTbsFprnQMUbVjtNLTWx7XWmwsfp2ENojBjq7qUUiocuAGYbXQtpVFK+QI9gY8AtNY5WuuzhhZ1ORfAQynlAnjiBDt0aa1/B1JLvDwE+LTw8afALVVZU0ml1ai1/llrnVf4dB3WHc8McYXfQ4C3gae58i6sTqG6BfqVNqN2SkqphkA7YL3BpZT0Dta/nAVlHGeURkAy8N/CYaHZSikvo4sqorVOAqZiPVs7jnWHrp+NreqK6hbtHlZ4H2JwPWW5F/jR6CKKU0rdDCRprbcZXUtZqlug27QZtTNQSnkD3wCPaa3PG11PEaXUjcAprfUmo2u5ChegPfCB1rodkI7xQwUXFY5DDwGigPqAl1LqTmOrqv6UUs9jHbKcY3QtRZRSnsDzwEtG12KL6hbo1WIzaqWUBWuYz9FaLzC6nhK6AzcrpQ5jHbLqq5T63NiSLpMIJGqti/5nMx9rwDuL/sAhrXWy1joXWAB0M7imKzmplAoFKLw/ZXA9pVJK3QXcCIzUznVxTGOsP7i3Ff6bCQc2K6XqGVrVFVS3QLdlw2pDKaUU1rHfPVrraUbXU5LWeoLWOlxr3RDr799yrbVTnV1qrU8ACUqpZoUv9QN2G1hSSUeBLkopz8I/73440Ze2JSwC7ip8fBfwnYG1lEopNQh4BrhZa51hdD3Faa13aK1DtNYNC//NJALtC/+OOp1qFeiFX5wUbVi9B5intd5lbFWX6Q6Mwnrmu7Xwdr3RRVVDjwBzlFLbgWuA140t5y+F/3OYD2wGdmD9d2T45eFKqS+AtUAzpVSiUmoMMAUYoJTaj3WWxhQnrHE64AP8UvjvZeZVG6n6+qoNufRfCCFqiGp1hi6EEOLKJNCFEKKGkEAXQogaQgJdCCFqCAl0IYSoISTQhRCihpBAF0KIGuL/AYF4fHg6DH0QAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"### The Angular Symmetry Functions\n\nFor the angular SF it is quite similar as for the radial SF. But here, three atomic positions are included.\n\n\\begin{equation}\n G_{i}^{3} = 2^{\\zeta - 1}\\sum_{j}^{} \\sum_{k}^{} \\left[( 1 + \\lambda \\cdot cos \\theta_{ijk})^{\\zeta} \\cdot e^{\\eta (R_{ij}^2 + R_{ik}^2 + R_{jk}^2)} \\cdot f_{c}(R_{ij}) \\cdot f_{c}(R_{ik}) \\cdot f_{c}(R_{jk}) \\right],\n\\end{equation}\n\nthe angle $\\theta_{ijk} = \\frac{\\mathbf{R}_{ij} \\cdot \\mathbf{R}_{ik}}{R_{ij} \\cdot R_{ik}}$ is centered at atom $i$ and the atomic distance vector is defined as $\\mathbf{R}_{ij} = \\mathbf{R}_{i} - \\mathbf{R}_{j}$. Mostly used for the angular exponent $\\zeta = 1, 2, 4 ,16$, gaussian exponent $\\eta = 0$ and for $\\lambda$ only $+1$ or $-1$ is possible. If many atoms of each element are present, angular SFs are usually not critical and a default set of SFs can be used.\n\nHere a definition of an angular SF is given, which is similar to the definition of a radial SF. ``3`` defines the used type of SF, which needs the following parameters: ``Cu Cu`` to describe the neighboring atoms included in the angle, followed by $\\eta$, $\\lambda$, $\\zeta$ and $R_\\mathrm{c}$."},{"metadata":{},"cell_type":"raw","source":"symfunction_short Cu 3 Cu Cu 0.00000 1.000000 1.000000 12.000000"},{"metadata":{},"cell_type":"markdown","source":"Below, you find different angular parts for angular SF with different $\\zeta$ and $\\lambda$ values. Fell free and play around."},{"metadata":{"trusted":true},"cell_type":"code","source":"angles = range(0,361)\nasf1 = np.array([fc.angularSF(i,1,1,1,0.0,1.0,1.0) for i in angles])\nasf2 = np.array([fc.angularSF(i,1,1,1,0.0,1.0,2.0) for i in angles])\nasf3 = np.array([fc.angularSF(i,1,1,1,0.0,1.0,4.0) for i in angles])\nasf4 = np.array([fc.angularSF(i,1,1,1,0.0,-1.0,1.0) for i in angles])\nasf5 = np.array([fc.angularSF(i,1,1,1,0.0,-1.0,2.0) for i in angles])\nasf6 = np.array([fc.angularSF(i,1,1,1,0.0,-1.0,4.0) for i in angles])\nplt.plot(angles, asf1[:,1]);\nplt.plot(angles, asf2[:,1]);\nplt.plot(angles, asf3[:,1]);\nplt.plot(angles, asf4[:,1]);\nplt.plot(angles, asf5[:,1]);\nplt.plot(angles, asf6[:,1]);","execution_count":13,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACXt0lEQVR4nOydd3iUVdbAf3eSSe+9N1IpSQid0EEBUbGLvSP2utZdu/utq+vaBRR17R0LiCAgNfQSCEkI6b33PuV+fwzBQNrMZAIhzO958gDve8sZMnPmvOeeIqSUmDFjxoyZoYviTAtgxowZM2YGFrOiN2PGjJkhjlnRmzFjxswQx6zozZgxY2aIY1b0ZsyYMTPEsTzTAnSHh4eHDAkJOdNimDFjxsxZw759+yqllJ7d3RuUij4kJIS9e/eeaTHMmDFj5qxBCJHX0z2z68aMGTNmhjhmRW/GjBkzQxyzojdjxoyZIY5Z0ZsxY8bMEMes6M2YMWNmiNOnohdCBAoh/hRCpAkhjgghHuhmjBBCvCWEyBRCHBJCJHS6N08IcfT4vSdM/QLMmDFjxkzv6GPRq4FHpJQxwETgHiHE8FPGzAcijv8sBt4HEEJYAO8evz8cuKabuWbMmDFjZgDpM45eSlkClBz/e4MQIg3wB1I7DVsIfCp1NY93CiFchBC+QAiQKaXMBhBCfH18bOe5JuPpjy/DUmFFgHUAod6z8R42nmE+zthZDcp0ATODHE1tLY1HjlKUVkJOZiYNjbUgFDjaOxEaHk5AbBB2EaFYurqeaVHNnIU0tqnJLqmmPGsPWRUbKG4rAuD5m74x+V4GaUAhRAgwGth1yi1/oKDTvwuPX+vu+oQe1l6M7mmAoKAgQ8QCQGq1/MFRWlBA2xHccn7jpv0tHKqJJcllId5RE5ka6cGUcA+UFuajCTNd0TQ00LRtG/Ub/yT/aAN5yhDK7OrRtKcCqpPGpudsw3JLPN6NNoRo8wiMdsVxxnQcpk9DYWt7Zl6AmUFNm1rD1oxKth6roProNhLrV1HpfoQfnGyptLQAwF2tHZC99Vb0QggH4AfgQSll/am3u5kie7ne9aKUy4HlAGPHjjW4G4pQKNh54yGq6kvYnbuZrzK+4L8WBYxwPMpbZY9yZE8sLyVdS61dKBfH+3Ht+CAivB0N3cbMEENKSfOePdR+/Q31f/xBlUM4WZGXU++pQdX8G7K9iYDweOLPm0fQ6Fi07SoKjqRxcO1vFGXvpdjagQr7SzhW3M6wZ9/Brf1JHGfNwvX667AbPfpMvzwzg4DU4nq+2p3PL8nF+LZm8Q+rLwhQpvG3IC/SrB0YaxfGo+FXMjFsNm6O3gMig9Cnw5QQQgmsAtZKKV/v5v4yYJOU8qvj/z4KzEDnunlOSjn3+PUnAaSU/9fbfmPHjpX9LYEgpWRt3lqe2f4MjlKwtLSMYc2NrHa5nsfK5tCiEZw/3Jt7ZoYTF+jSr73MnH1IKWncsIGKd96lLT0djasX2ZPuoaDZAxu7AupLV+Lk6cWC+x7FJzyy2zWKM9L49b+v0NLQgL3HQtpbAwi2LSV0x/soaiuxiYvF484lOMycgRDd2TxmhjJ7c6t5589MNh2twN5Sy3+91jCn5huOObqw2MsNjYUVz01+njnBc0yynxBin5RybLf3+lL0QvcO/R9QLaV8sIcxC4B7gQvQuWbeklKOF0JYAhnAbKAI2ANcK6U80tueplD0HRytPsrd6+8GqeFz/PBNW40qaCorvP/O+3vrqWtRsSDWlyfnRxPgameSPc0Mbpr37aPsn/9H65EjWAUHIxYtYdsxT5pq2wkZ1Uj61hV4hYRy+VMvYuPg0OtajTXVrHzleaoKC4ieuoTsg5Y4e9owOaAAzfcfocrPx27sWLwe+xu2sbGn6RWaOZPkVjbx0uo01qeV4WZvxf3j7Lm+4Fksi3aTNeoSbm7PwsrSmo/mfkSwU7DJ9u2vop8CbAUOAx0OpKeAIAAp5dLjXwbvAPOAZuAWKeXe4/MvAN4ALICPpJQv9yWwKRU9QEZNBjevuRlPO0++CLgYh9+fAgcvmq7+ng+OCJZuzkJKuGdmOHfNGGb24Q9R1DU1lL/6GnU//oilry+e991H7bBE1n6YirW9kkmXuLFu6TO4+Phx1TP/xNrOXq91m+vr+PqZv9FSX8+s259lx8pKNCot8xcPx/7QBirefgdNVRUu1yzC65FHsOjjy8PM2UmbWsNbG46xfEs2VhYK7p0VwS3hzdh8cyW01lO34N9cm/0VTaomPp3/KUFOhp9F9ka/FP2ZwNSKHmB3yW4W/7GYeaHz+FfYlfDFlbobN/xEsW0EL/+WxupDJYzyd+b1q+LM/vshRsOmTZQ89TSa+nrcb7kZj7vuIjOlnvWfpOER4MD5t0fy4/89TmtjA9f/3xs4eXRb7bVH6spL+fzJh3D28uaih19k9Xup1FU0M/f2kQSH21H5zjtUf/opll5e+L70Eg5TEgfolZo5E6QU1fHIt8kcLWvgsgR/npgXjVfdYfj8crCyQ3vdd9yb8j47Snbw0dyPGO1l+vOb3hT9OWO6jvcdz51xd7I6ezW/thbDrevA0hY+XYhfey7vXpvA0usTKKptYcHb2/hyVz6D8UvQjGFo29oofeFFCpfchaWnJ6E//IDXI4+Qm9HE+k/S8At35pKHR7P3l8+pKSniogcfN1jJAzh7+TB3yQOUZWdycO13XPZoAp6Bjqz9IIWCnBa8n3ickK++ROFgT8Htt1P+n9eRavUAvGIzpxMpJR9uzeaSd7dT09zOxzeP4/Wr4vFqzoQvLgc7N7htHd/VprK1aCuPjXtsQJR8X5wzih5g8ajFJHgl8H+7/o9Kexe46RewsIJPF0JtPvNG+rLuoWlMCnPnqZWHeez7Q7SqNGdabDNGoiorI+/6G6j58kvcbrqRkG+/wSYqksL0atZ+mIJXsCMX3B1LaeYRkv9Yw5gFlxA4wng/evi4icSdN5+9q1ZSXZTFRffH4+7vwO/LUijOrMU2Lo7Q77/H5corqfrgA/Juuhl1RYUJX7GZ00lTm5p7vzrAS6vTmBXtxbqHpjEz2guqsuCzS0FpDzf9QrGlJa/ve51JvpNYFLXojMh6Til6C4UFz09+nlZNK//Z+x9wHwY3/gSqFvjqGmhrxMPBmo9uHsf9syP4bl8hVy7dQXlD65kW3YyBNB84QM4VV9CelYX/22/h/eSTKKytqSpq5Lf3D+PiZceF98ahUGhZt/xtXH39SLz6+n7vO+26W3BwcWXDivdRWgkuvj8eR3cb1iw9TH1lCwobG3xffAG/V1+lNTWVnKuvpvXoURO8YjOnk6LaFi59bztrDpfwxPxolt0wBhc7K2iq0il5qdHpFpcgXtz5IgDPTX7ujEVfnVOKHiDEOYRbRt7CquxV7CndA14xcOXHUJ4KPy4GrRYLheDh8yL58MaxZJY3cum7SWSWN5xp0c3oScP69eTfdDMKG1uCv/4Kp/POA6C1ScVvSw+jtLHgovvisbFXsn/NL9SVlTL7trtRWln3e28rWztm3LSY8twsDq77DRsHJQvujkVqJavfO0R7i85d43zRhQR//hmoNeRdcy2NW7b0e28zp4cjxXVc+u52Supa+fTWCSyZPkynwDVq+OFWaCiFa78Dzyi2Fm5lW9E27o6/Gz8HvzMm8zmn6AHuGHUHfvZ+vLb3NZ0fPnwOzP0/OLoaNv0V4j9nuDff3DmRNrWGy9/fwb68mjMotRl9qPnuOwrvfwDr6GidqyZSFwMvtZL1H6fSWN3KvMWjcHC1pqm2hl0rvyFszHiCR8WbTIbIiYkEjYpnx/df0tbchIu3HXPvGElNaTN/fJx64uzHdsQIQr77FmVIMAV330P9b7+ZTAYzA0NSZiVXLd2BpULw/ZLJTInw+OvmxhcgexMs+A8EjEGlVfHa3tcIcgzi2uhrz5jMcI4qehtLG+6Ov5vUqlT+yPtDd3HCnRB/PWx5FXK2nhgbG+DCyrsTcbO34oYVu9iZXXWGpDbTF1WffELpP57BPjGR4E8+PqkGzZ7fcslLqWLqVRH4DnMGYMcPX6Nub2f69beZVA4hBNOuvZnWxgb2/vojAIExbiReHk7uoUoObyo6MVbp7U3wp59iFx9P0SOPUvPttyaVxYzp2Hqsgls+2UOAqx0/3p1IlE+nyLzUX2D7mzD2Vki4AYCVx1aSXZfNw2MfRmmhPENS6zgnFT3AhWEXMsx5GG8feBu1Vg1CwAX/1vntf1wMzdUnxga62fHN4on4udhy88e72Xas8gxKbqY7qj/9jPJ/vYLj3LkEvvcuCru/kt9Ks+vYuzqHqAk+jJjmD0B9ZQWHN6xl5MzzcPPzN7k83mHhRE6ayr7VP9NUq3sSjJ0VQPBId5J+yKSysPHEWAsHBwI/WI791CmUPvMsNV+bvqiVmf6xOaOC2/63l1APe768YwI+zjZ/3awvgV/vB7/RMO8VANo17Xxw+ANiPWOZFTjrDEn9F+esordQWHBfwn3k1ueyJmeN7qKVPVy+Apoq4Jf7oFN4pZeTDV8vnkiIuz23/W8Pe3Kre1jZzOmm5quvKPvnP3E8bw7+r72KUP5lPanaNKz/OBUHVxumLYo8cRi2+6fvAJhw6VUDJlfiVdejbm9nz3GrXgjBrBtjsLKzZN2KI6ja/4roUtjaEvjOOzhMn07p889T98svAyaXGcPYdLScOz7dS7inA1/eMRF3h05nOVLCz/eAqhUu+wAsrQD4KfMnSptKuSfunkFR/uKcVfQAMwNnEu4SzkcpH6GVx5N+/eJhznOQvgoOnfwY7eFgzRe3T8DfxZZbP9lDavGptd3MnG5qvvuO0udfwGHmTPz/85+TlDzA9h8yqatsYc4tMVjZ6mr4NVRVkvLnOkbOnIOTh9eAyebm50/U5KkcWv87LY26w3w7JyvOu3k4NSVN7P4156TxwsoK/zffwG7CBIqffIr6desGTDYz+rEvr5o7P9tHhJcDX9w+ATd7q5MH7F0BWRvg/BfBIwIAlUbFB4c/IM4zjkl+k86A1F05pxW9Qii4bdRtZNZmsrlg8183Jt4NAePh9yeg6WQ3jbuDNZ/dPgEHa0tu/Gg3uZVNp1lqMx00bNxI6bPPYT91Kv5vvoGwOvlDWJBWzZEtRYyeE4RfxF/++v1rfkGr1TJ+4ZUDLuP4hVegam3h4NpVJ64FDndj+FQ/ktfnU553srGgsLEh8N13sB01iqJHHqVx67YBl9FM9xwra+DWT/bi52LLp7eOx/VUJV+TC+v+AcNmw7jbT1z+Pfd3SptKWRy7eFBY83COK3qAeSHz8HfwZ0XKir8uKhRw8dvQ1qBT9qfg72LLZ7eNR6PVcv2KXZTXm+PsTzcthw9T9PAj2IwYQcCbb6A4RcmrVRo2f3kUZy9bxl8ceuJ6e2sLhzeuJWJCIs5eA1MStjOewaGEJYxj/5pfUbX99T6ZfOkwbJ2s+PPzdDSak2uQK+ztCVy+DOthwyh64AFa09MHXE4zJ1NS18JNH+3GylLBp7eOP9ldAzqXzW9/AwRc/JbujA9dpuxnqZ8R5hzGVP+pp1/wHjjnFb2lwpIbht9AckUyRyo7FdX0ioZpj8Lh7yCj6yN0uJcj/7t1PFWN7Sz+bJ85g/Y00l5QQMGSu7D08CDw/fdOOnjtYN/vedRVtDD9migslRYnrqdu3khbUxNjLrj4tMk77qLLaW2oJ337X7Hy1nZKpi+KorKgkYN/5HeZY+HkROCypSgcHSlYcheqsvLTJu+5Tn2rips+2k19q5qPbx5HoFs3VW3TfoFj62DmU+AccOLygfIDpFWncV3MdYPGmgezogfg4mEXY2tpy1fpX518Y8pD4BEFvz2qO2w5hdgAF95YFM/Bgloe+/6QuTbOaUBTW0vBHYtBrSZw+XIsPTy6jKkpbWL/2jwixnkTGON24rrUatm/5hd8wiPxjYg+bTL7x4zAIzCYg2tXn/QeCRvtSdhoT/auzqWhuuv7S+ntTeDS99HU11N4991om5tPm8znKhqt5IGvDpBd0cSyG8Yw0t+566C2BljzOHiPgglLTrr1edrnOFk5cdGwi06TxPphVvSAo5UjF4VdxO+5v1PbWvvXDUtrXchlbR7sfLfbuXNH+PC3uVH8klzMOxszT4/A5yhSo6Ho0b/RXlREwHvvYh0W2nWMlGz5OgNLpQVTrow46V5O8j5qSopIuGDhabW2hBDEz11AeW4WJcdOdsNMuTICCST92P17xyYmBv//vEZrWhpFjz2G1A5MqzkzOl5de5Q/j1bw3MUjSAzvakQAsOlfuuzXi94Ai7+a9BU1FrEhfwNXRl6JreXgaidpVvTHWRS9iDZNGyszV558I2wGRF8IW/4D9cXdzr17xjAuHe3Pf/7IYM3hkoEX9hyl4q23adq2DZ+//x27MWO6HZOXUkVheg3jLwrFzulkv/3+337BwdWNyAmnv0RwzNSZWNnacXDt6pOuO7rZkHB+EJl7yyk+VtvtXMeZM/F+/DEa12+gatmy0yDtucnPB4tYujmLaycEcf3EHhqCVGXBrmUw+joIOLki8NfpXyMQLIo+M4XLesOs6I8T4RrBGO8xfHP0GzTaU/zt578IWhWsf77buUII/u+yUYwOcuHR75LJqmjsdpwZ46lfu46qZctwufJKXK/uPvZdo9GS9EMmLt52jJx+chJUXXkZeYcOEDtnPhaWerdKNhlWNraMmD6bjJ3baK6rPene6LnBOLhas/XbDLTa7t1/rjfeiNNFF1Hx1ts0btt+GiQ+t0gpquOx7w8xPsSN5y4a0fPA9c/qKt7O+sdJl1UaFT9n/sysoFn42PsMsLSG06eiF0J8JIQoF0Kk9HD/b0KIg8d/UoQQGiGE2/F7uUKIw8fvmbaTyACwKHoRRY1FbC8+5YPkFgaT7oVDX0Phvm7n2igtePfaBKwsFdz9+X5a2s2Hs6aiLTOT4iefxCYuFu9//L3HcUe2FFNT2szky8OxOKVLWMqm9SAEI2bMHmhxeyTu/AvQqNUc3njy4b7SyoLJl4dTWdBI+o7unwiFEPg+/xzW4eEUP/ooqqKibseZMZy6FhV3fbEPd3sr3rte9xnultxtkPar7uzO8WRlvqlwEzVtNVwafulpkNhw9LHoP0HXIrBbpJSvSinjpZTxwJPAZill57TRmcfvd9v5ZDAxO2g2bjZurDy2suvNqQ+DnbvuG72HQ1c/F1veWDSajPIG/vFzt9+LZgxE29xM4QMPorC1JeCtt7qEUXbQ1qxiz6oc/KNcCRnlfvIaWg1HNq0nJHb0gCZI9YW7fyCBw0eRsumPLgf34WO88A51YvevOah7MBIUdnYEvP0WUq2m8IEH0ba1nQ6xhzRSSp744RAlta28fW0CHqeGUXag1cLap8DJHybd0+X2j8d+xMvOi8l+kwdYYuPoU9FLKbcA+ub7XwN81eeoQYpSoWRB2AI2FW46+VAWwNoRpv0NcrdC9p89rjE90pP7ZkXw/b5Cvt1TMLACnwOU/d//0Z6djf+r/0bp3XPc+4E/8mltUpF4RXiXg9b8QwdpqKpg5MzzB1rcPhkxYw61pSUUH0076boQgkmXDKOptu2komenYhUSgt8r/6I1JYXyV18baHGHPJ/uyGNNSimPzYtiTLBrzwNTf4KSZJ3LxurkcMvSplKSipNYOGwhFgqL7uefYUzmoxdC2KGz/H/odFkC64QQ+4QQi/uYv1gIsVcIsbfiDHbdWThsIWqtmjW5a7reHHsrOAfB+ud03/A98MDsCKaEe/CPn1M4VmauY28s9b/9Ru133+N+xx3YT+7ZUmppaCd5YyHhY7zwDOza6/fwpvXYODoxbOyEgRRXLyImTEZpbcORLRu63POPciVouBv7fs+lrVnV4xqOs2fjdtON1Hz+OQ2bNg2gtEOblKI6Xj7eHer2KWE9D9RqdOXLPaMhtuv50C9Zv6CVWi6NGJxuGzDtYexFwPZT3DaJUsoEYD5wjxBiWk+TpZTLpZRjpZRjPT0N79lpKqLcoohyjeLnzJ+73rS01iVIlCTrvuF7wEIh+O/V8ThYW/LA1wdpU5v99YbSXlhIyTPPYhsfj+d99/Y6dv+6fDTtGsZd2DXcsqWhnqw9Oxg+ZQaWyjNbKhZ0h7IREyZzNGkrqvaurpeJlwyjrVnNgW6SqDrj+cgjWEdHU/LU06jKzclUhtLUpuaeL/fj7mDFf66MQ6HoJdz28HdQmQEznoRTLHat1LLy2ErG+4wn0DFwgKU2HlMq+kWc4raRUhYf/7McWAmMN+F+A8bC8IUcqTpCVm1W15uxV4HXcPjzn7pv+h7wdLTm31fEklpSz+vrMgZQ2qGHVKspeuQRUCjwe+21LoXKOtNU10bKpkIix/vg5mvf5X769s1o1GpGzjxvIEU2iBHT59De0kzmnp1d7nkGORIx1ovkDQW0NLT3uIbCygr/115F29REyZNPmePrDeSl1ankVzfz5qLRXWvYdEaj0sXNe4+CmK7Z1PvL9lPYWMgl4ZcMnLAmwCSKXgjhDEwHfu50zV4I4djxd+B84Kw4obwg9AIshSU/Z3Vj1SssYPpjUHUMjnRzaNuJ2THeXDchiOVbs0nKMtew15fK5ctpTT6E7wvPYxXQe634/b/nodFIxi4I6fZ+2vbNeAaF4Bnc1do/UwQOH4mTpxepm7u6bwDGLghFrdJycEPvZzzW4eF4P/kETdu3U/2/TwdC1CHJhrQyvtpdwJ3ThjE+1K33wclfQU2O7kle0VVd/pbzG7aWtswOOnPRXPqgT3jlV8AOIEoIUSiEuE0IsUQI0Tn391JgnZSycylHb2CbECIZ2A2sllL+bkrhBwp3W3em+E9hVdaqrjH1ADELdf66La/16qsHeHpBDKHu9jzybTJ1vfhdzehoTU2l8r33cbrwQpzm9RjsBUBDdSspW4uInuSDi1fXeiR15WWUZKQTlTh9oMQ1CqFQMHzqTPIOHaSxumvHMjdfe8ITvDi8qZDWpt7fMy5XX43D7NlU/Pe/tGV18wRq5iSqGtt4/IdDRPs48tB5Eb0PVrfB5n+DXwJEze9yW6VV8UfeH8wImIGdspt6OIMIfaJurpFS+koplVLKACnlCinlUinl0k5jPpFSLjplXraUMu74zwgp5csD8QIGigXDFlDRUsH+8v1dbyoUMPVRqEjT1a3vBTsrS95cNJqKhjae//VIr2PPdbTt7RQ//gSWrq74/P3pPsfv+z0PJIy9IKTb++lJuiJi0ZN7PBo6Y8RMnYmUWjJ2dl+GeOwFIahaNSRv7N2q74ivV9jZUfzkU0i1eiDEHRJIKXnyx8PUt6h5Y1E81pZ9RMgc+AzqCmDW0yeqU3ZmR/EOattquSDsggGS2HSYM2N7YJr/NGwtbfk9p4eHkJGXgXs4bPl3j3H1HYwKcObumeH8eKCIjellAyDt0KDyrbdoO3YM35dexMLFpdexTXVtpCUVEz3JFyf37uuKpG/fjF9kzGkpR2wobn4BeAaHkr5ja7f33f0dCIv35NDGQtpaelfelh4e+DzzD1oPHaLqo48HQtwhwU8Hi1iXWsbf5kYR7ePU+2CNWtcD1n+srt58N/yW8xtOVk4k+p3+khqGYlb0PWCntGN6wHTW56/X9ZQ9FYUFTH0ESg9DRt8eqXtnhhPl7ciTPx6mrsXswjmV5gMHqFrxES5XXonD9L5dLYc2FiA1ktHnB3V7v7Igj8r8XKITB58130HUpKmUZKRTX9l91MzYC0Job1Fz+M++8zEc58/Hce5cKt9+m9YM8+H/qVQ2tvH8r6mMCXbl1il6nNccWQm1+bpEyW6s+RZ1CxvzN3Je8HlnvPG3PpgVfS/MC5lHdWs1u0t3dz9g1JXgEqzz4/Vh1VtZKnj1ylgqG9t5eXXqAEh79iLb2yn5xz+w9PHB6/HH+hzf1qImZXMRw8Z4deubB0jfvgUhFEROnGJqcU1G1CRdY4qjO7p333gGORI8yp2DGwpob+3dqhdC4PPsMygcHXVROGYXzkk8/2sqzW0aXrl8FBa9hVKC7rO87b+6c7jIrr55gM2Fm2lRt3BB6OB324BZ0ffKlIAp2CvtWZu7tvsBFkrdN37xfsje1Od6sQEuLJ4Wxrd7C9mcceaSwgYblR9+SHtmFj7PPoOFg0Of41M2F9LeqiHh/O4rDEopSU/aTNCoOOxdesl2PMO4+PjiHRZORg/uG9BZ9W1Nao5s7b5yamcs3dzweeYZWo8cofrTz0wp6lnN+tQyfk0u5t5Z4YR7dU2o68KxdVB+BBIf7DbSBmBN9ho8bT0Z4919FdXBhlnR94K1hTUzA2eyPm89Kk0P7pa4a8DeC3a8o9eaD8yOINzLgad+PExzu9nqasvOoer9pTjOn4fjjBl9jle3a0jeUEDQCDc8g7r/0Fbk5VBXVjqorfkOoiZNpTTrGLVlpd3e9wl1xi/ChUMbC7q0HOwOx7nn4zBzJhVvv017obnwWX2rir//lEKUtyNLpg/Tb9K2/4JzIIy6otvbzapmthdv57zg8wZtyYNTMSv6PpgXMo/69np2lOzofoClNUy4EzLXQ1nfLhkbpQX/vHQURbUtvLnhmImlPbuQWi2lzzyDsLXF56mn9JqTvqOElgYVCXN7qBcOHNu9AyEUhA+Ckgd98Zf7pmerfvR5QTTWtJG1r+8MWCEEPv/4OwhB6YsvnPNdz15Zk055QyuvXBHbc1XKzuTtgPwdMPk+3RN7N2wv3k6bpo05wXNMLO3AYVb0fTDZbzKOSkfW5XbtG3uCsbeC0k5vq358qBtXjQ1gxdYc0kvrTSTp2UftDz/QvHcv3o/9DUs9yl5oNVoO/JGPT5gTfhEuPY7L3J2Ef8xw7Jx7HjNYcPL0wjc8qscwS4Dgke64+thx4I98vRS30s8Pz/vvo2nzFhrW9vK+HeLszqnmi1353JIYSnygi36Ttr+hq1I7+oYeh6zPW4+rtSujvUabRM7TgVnR94HSQsnUgKlsLtzcffQNgJ0bjL4eDn0L9fp1mHpifgyONpb8fWVKj80mhjLqigrKX30Nu3HjcL78cr3m5CRXUl/Zyujzg3tsBVhdXERlQR4R4wdnudjuCB8/ifKcLOoruz+3EQpB/JwgKgsaKTpao9eabtdfj83w4ZS9/DKahnOvsJ5Ko+XplYcJcLXlkfMj9ZtUeUwXQTd+cZcKlR20a9rZUriFmUEzsVSc/gY2xmJW9HowO2g2tW21HCw/2POgiXeB1MBu/Vq9udlb8eQFMezNq+HbvedeOeOyf72CbG3F54Xn9e7fmryxACcPG0Jie+jlCWTu0bnYwsdNMomcp4MOWbP2dq1900HkBG9sHZUcXK/fe0VYWuLzwguoq6qo+O9/TSLn2cTH23M4Vt7IcxeNwM5KT4W8a5mue9TYW3seUrKLRlXjoC95cCpmRa8Hif6JWCms2FiwsedBbmEQcxHs/UjXJV4PrkgIYHyIG/+3Jp2qxnOniUTTrt3Ur16N+x13YB2qXw2a8rx6SjLriJ0Z2GulwWO7k/AZFoGTx5mrgGoobn7+uPkHdlvkrANLpQWxMwPIS6miqli/VpW2I0fgev111Hz1NS3JyaYSd9BTUtfCG+uPMTvaiznD9UyWa6mFg1/qQqYdem5OsyF/A/ZKeyb4Dv7zn86YFb0e2Cvtmeg3kY35G3v3kU6+H1rr4MDneq2rUAheunQkTW1q/vlbuomkHdxIlYqyl15C6e+P+x236z3v0MZClNYWRE/27XFMfWUFpZkZhJ9FbpsOwsdNpCD1MK2NPSvxkdMCsFQqSNbTqgfwvP8BLD09KX3xpXOmwuXLq9NQayXP9tb79VQOfAaqJpiwpMchGq2GPwv+ZJr/NKwteuhENUgxK3o9mRU4i6LGIjJqesk6DBgLAeNh9/I+i511EOntyB3TwvhhfyF7c/Vt5HX2UvPVV7QdO4b3k0+gsLHRa05TXRvH9pYRPdkXa9ueH8M7LOKzyT/fQfi4iUitluwDe3ocY+OgJGqSLxl7ymht1C+72sLBHq+//Y3WlBTqfvzRVOIOWrZnVrLqUAl3zxhGkLuehcY0ati1HIITwTe2x2EHyg9Q3VrN7OCzy20DZkWvN9MDpyMQbMzvxX0DulDL6mzI6mNcJ+6bFY6Pkw3P/XpkSB/MqisqqHjrbeynTsVhtv4flpQtRWi1ktgZAb2Oy9ydhHtAEG5+vZc2Hoz4hEXg4OpG5u4ewniPM2qGPxqVltTtfSdQdeB04QJsx4yh/PX/oqkfulFe7Wotz/ycQpCbnf4x8wBHf4O6fN05Wy9syN+AlcKKqf5T+ynp6ces6PXEw9aDeK/43v30oGtOYO+l96Es6CpcPnlBNClF9Xy3b+gezJb/53W0bW14P/Wk3gewapWGI1uKCBnpjot3zxZac30dhWlHiBh/9hzCdkYoFAwbN4mc5H3ddp7qwN3PAf8oF1I2F+ltFAgh8Pn702hqa6l4R78Q4LORj7bnkFXRxHMXD8dGaUAi0873wSUIonouZyClZH3+eib7TR70JYm7w6zoDWBW4CzSq9Mpauwl49DSCsbeAsf+gCr964NfHOfHmGBXXl17lPrWoVf0rHn/Aep++gn3m2/W+wAW4NiecloaVMTO6r1NW/b+PUipPauibU4lfNxE1G1t5B8+2Ou4UTMCaKhuJfeQ/s1sbGJicLnqSmq++HJIFj0rb2jl7Q3HmBPjxaxoA6qVliRDfpIupLKXLNf06nRKm0qZFTTLBNKefsyK3gBmBs0E4M/8P3sfOOYW3Ztm70d6ry2E4LmLRlDV1M7bQyxjVmq1lL30EpY+PngsuVP/eVJy6M8C3PzsCYjuvWZN9v7dOLi54xVqwCP7ICNw+Eis7ex7jb4BCI31wMHVmsObCg1a3/OBB7BwcKDsn/835DJm/7M2g3aNlqcXDDds4s6loLTvNUEKYFPhJgSCaQGDtxpqb+jTYeojIUS5EKLbNoBCiBlCiDohxMHjP890ujdPCHFUCJEphHjClIKfCYKdggl3CWdDfvct4E7g5Ktz4Rz4DNqbeh/biVEBzlw1JpCPt+eSVaFfCN3ZQN3Pv9CamorXIw+jsO/a17UnSjJrqSxoJHZmQK+uHo1aRW7yAcISxuntEhqMWFgqCR09lqy9u9D20o9YYaFg5HR/CtNrqC7R//1l6eqK54MP0Lxz55DKmD1SXMe3+wq4cVIIoR76v79orICU7yH+WrB16XXoloItjPIchbute/+EPUPoY9F/AvTe0w22Sinjj/+8ACCEsADeBeYDw4FrhBAGft0OPmYGzuRA+QHq2up6HzjhTl2o5aFvDVr/b/OisFVa8OKqoVHKWNvcTMUbb2AzahROCxYYNDdlcxHWdpZETvDpdVxBagqq1hbCEs6K3vO9Ej5uIi0N9ZQc6929MjzRD4WlIMVAq97lqquwjoqi/LXX0Lb33Hz8bEFKycur03CxVXL/rD5aA57Kgc9A0w7j7+h1WGVLJSlVKUwPGFwtKQ1Bn1aCWwBj4v7GA5nHWwq2A18DC41YZ1AxLWAaGqlhR3Hv0REETgCfUbD7gz5r1XfGw8GaB+ZEsOloBX8e7buI1WCn6uOPUZeV4f3E44geSr52R3N9O1kHKoia6IPSqveDtez9u7FUWhE0sufQuLOF4NjRCIWCnF7CLAFsHa2IGOtN+s5S2vvoQNUZYWGB9+OPoSospObzL/or7hlnfVo5SVlVPDgnEmc7AxqAaDWw72MImQqeUb0O3VqoKzg3pBW9nkwSQiQLIdYIITqyFPyBziEkhcevdYsQYrEQYq8QYm9FxeCt1T7KYxTO1s5sKdzS+0AhdAc85Ucgb7tBe9w4KYQQdzv+9Vs6mrM43FJVVk7VhytwPP987MYYVrc7LakYrUYyclrvoZJSSrL37SZoVBxKa/3i8gczNvYO+EcNJ3t/74oeIHZmAKo2Dek79auv1IH95MnYT5tK5dKlqGv0q50zGGlXa/nnb2kM87Tn2gnddxrrkayNug5SvZQ76GBz4WZ87H2IdNWzZs4gxBSKfj8QLKWMA94Gfjp+vTtnaY9aS0q5XEo5Vko51lOPSoZnCguFBYl+iWwr2oZW9pEUNepKsHXVJVAZgJWlgsfmRXO0rIHvz+Jwy4q33kSq1Xg9+ohB86RWcmRrMf6RLrj69O5zrS4qpK68jLCEcf0RdVAROnosFXk5NFT3HlXjFeyEd6gThzcVGXy46vXoo2gbG6laurQ/op5RPtuZR05lE39fMBylhYGqbM8KXRh09IW9DmvXtJNUnMT0gOln9flPvxW9lLJeStl4/O+/AUohhAc6C75zTFwAoH+WxyBmWsA0atpqSKns9nz6L5S2EH8dpK+GRsPcMPNH+pAQ5MJ/1mWclQ1KWtPTqftxJW7XX49VkGHWVn5qNQ1VrYzow5oHndsGIHT00FH0HV9aOQf29jl25HR/asuaKT5Wa9AeNpGRuFx+OdVffkV7Xp4xYp5RapraeXN9BlMjPJgRZaBhWFsAx9ZCwg26cOhe2Fu6lxZ1y1kbbdNBvxW9EMJHHP+qE0KMP75mFbAHiBBChAohrIBFwC/93W8wkOiXiEIo+nbfAIy5GbRqOGiYP1QIwdMLYihvaOPDrTnGCXqGkFJS9sorWDg5GRRO2UHKliJsnawIi+/7A5y9fw+ewaFnVRGzvnAPCMLRw5Ps/X0r+vAEL6ztLPVqNXgqHvfdi1AqKf/P68aIeUZ5c8MxGtvU/H3BcMMt7f3/052bjbm5z6GbCjdhY2HDeJ+z+6Bfn/DKr4AdQJQQolAIcZsQYokQoqP6zxVAihAiGXgLWCR1qIF7gbVAGvCtlPLIwLyM04uLjQuxHrFsLeq5K9AJPCIgeArs+5/e9W86GBPsxrwRPizbnEVFw9lT3bJx82aad+zE4957sXB2NmhuQ3UreYcrGT7ZF4s+OgK1NDZQdDR1SETbdEYIQdjoceQfPoha1XvynKWVBZETfMg6UK53/ZsOlF5euN92Kw3r1tG8f39/RD6t5FU18fnOPBaNDyLKR48esJ3RqGD/pxBxvi4btheklGwp3MJE34nYWJ7d5z/6RN1cI6X0lVIqpZQBUsoVUsqlUsqlx++/I6UcIaWMk1JOlFImdZr7m5QyUko5TEr58kC+kNPNtIBppFalUtGsx8HxmJuhJgdyNhu8z+Pzo2lTa3lj/dmRzSjVaspffQ2rkBBcF11t8PzUbcVIYPgUvz7H5ibvR2q1Q8o/30FYwjhUba0UpvXhHgRGTPFDq5YGH8oCuN9yC5ZeXpS98spZk0T12roMlBYKHpxjYDglHHejlsG42/ocmlWbRVFjEdMCz263DZgzY42mw2e3rajnFnAniLlIdyi77xOD9wn1sOe6CUF8vaeAzPLBn0RV9/PPtGdl4fnwQwilAeFugEajK9YVPNIdJw/bPsdn79uNrZMzPuFGfOAHOYEjRmGptCJHj+gbd38HfMKcObK12GBlrbCzw/OBB2hNPkTDmjXGinvaSCmq49fkYm6bEoqXoxFW9t4V4BwE4X33e91cqDPMpvmbFf05S6RrJF52Xvq5b5Q2EHctpK8y+FAW4P7ZEdgpLfjXmsFds17b2krF2+9gExeL43nnGTw/N7mS5rp2Rk7t+xBWarXkHTpAaFwCil5qlJytKK1tCBwxqteyxZ0ZMdWP2rJmSjJrDd7L+ZKFuiSqN95E9uEqOtO88ns6rnZKFk8PM3xyZSbkbIExN/Va16aD7cXbiXKNwtvegNo5gxSzojcSIQRT/aeSVJyESqPHh2PMTccPZb80eC93B2uWzBjG+rQyducM3pr1NV9+hbq0FK+HHzEqFC11ezEOrtYEjew7zbwsJ4uWhnpC4hKMEfWsIDRhHLWlJVQX91JE7zjDxnhhZWvcoaywsMDzoQdR5edT+8MPxoh6Wth2rJKtxyq5Z2Y4TjaGPS0CcOBTEBZ91rUBaFI1caD8AJP9z77eBt1hVvT9YFrANJpUTewv1+MgyzMKgibrTvyN6PRza2Io3k7WvLo2fVD6UjUNDVQtW4b9lCnYTzD8cLShupX81GqiJ/n22iqwg9yD+0AIgoewog8bPRbQL8xSaWVB1AQfsvZXGHwoC+AwfTq2CQlUvvse2pYWg+cPNFqt5JXf0/F3seWGScGGL6BRwcGvIHIeOPZtoe8u2Y1aq2aK3xQjpB18mBV9P5joOxGlQnkiRbpPxtysa0qSq+f4TthaWXDfrAj25NawKWPwZQ5XrViBpq4Or4cfMmr+0Z2lICF6Us+tAjuTk7wf79Bw7JwMi+o5m3D28sHNP9Ag941GreXorlKD9xJC4PXIw6grKqj+XL9WmKeT31JKOFxUx8PnRWJtaYSrLnM9NJXD6Ov1Gr69eDu2lraM9hpt+F6DELOi7wd2SjvGeo9lS5Ee8fQAwxeCjYtRh7IAV40NJMjNjld/PzqoOlGpKyqo/t+nOF1wATbDDa9bJ7WStKRi/KNccPbs+xC2tamRkmPpQ9pt00FYwjgKU1Nob2nuc6y7vwPeoU4c2Wp4piyA3Zgx2E+fRtUHH6Kp66No32lEpdHy2tqjRPs4csloI7uHHfhclwkb0ffZkZSSbUXbmOAzAaWFES6iQYhZ0feTaQHTyKnLoaBBj1IFShtdSdS0X6FJ/6YRHVhZKnjovAhSS+r5LcXwULqBovL995EqFZ4P3G/U/OLMWuorW4mZ3HdIJUB+SjJSqyUkfugr+tD4sWg1avL6aEbSwYipftSUNlOSZZyi9nroIbT19VSt0L+XwkDz9Z4CcquaeWxeFBZ6uPW60FgBGb9D3NWgh+LOb8inqLGIRP9EI6QdnJgVfT+Z4q/z4SUVJfUx8jgJN4FWZdShLMDFcf5Eejvw+roM1BrDff2mpj0/n5pvv8PlisuxCjbCdwqkJZVgZWNB2Gj9sltzD+7D2s4ev4hoo/Y7m/CPjkFpY0tusn4JTeFjvbGytSTViENZAJvoaJwWLKD6s89QD4Ligi3tGt7acIzxIW7MjPIybpFD3+gCIeL1c9t0hEwn+pkVvZnjBDsF4+/gz/ZiPStUekVD0KS/0rANxEIheOT8KLIrm/hxf9/RGANNxZtvISwt8bj7bqPmt7eoydpfTvg47z7LEYPusTo3+QBBI+NQWAy9sMpTsbBUEjQyltzkA3q5Y5RWFkSN9yZzXzmtTcaFSnrefx9SpaLy/TNf8OzTHblUNLTxt3lRxhUVk1JXdz5gnO6zpwdJxUkEOQYR6NR7+8qzCbOi7ydCCCb7TWZ36W5UWj0/WKNvgKpMKNhl1J7nD/cmLsCZN9Zn0KbuuRPRQNN27Bj1v/2G2w03oPQyztrK3FeOul1LzGT9DmGriwpoqKo4J9w2HYTEJlBfUUZNiX5Wekyi7lA2c2+ZUftZBQfjcsXl1Hz7Le0FZ656amObmqWbs5ge6cm4EDfjFinaDxXpeh/Ctmva2VO6Z0i5bcCs6E1Col8iTaomksuT9ZswfCFYOegsDSMQQvC3udEU17Xy5a58o9YwBZXvv4/C1ha3W28xeo20pGJcfe3xDnHSa3yHC+NcOIjtoOO16uu+8QxyxCPQgbQk489xPO66G2FpScXbbxu9Rn/5eFsONc0qHj6vH3XgD3wGlrYw4jK9hu8v30+LumVIuW3ArOhNwnjf8VgKS/3dN9YOMOJSSFkJbcaVNUgMd2dSmDvv/plJU9vpL2PclplJ/Zrfcb3+eixde2/c3RPVJU2UZtcTM9lX78fynIP7cPMPxMnDSH/tWYiLjy8uPr7kJu/Te07MZF/K8xqoLDTu/aX09sL1umupX7Watqwso9boD3XNKpZvzea84d7EBboYt0h7M6T8ACMuARv9DIntRdtRKpSM8xla9ZPMit4EOFo5EusZy/YiAzpJjb4eVE2Q+pNRewoheHRuFJWN7XySlGvUGv2h8r33Eba2uN1ys9FrpCeVoFAIovroCdtBR5Gv0HPIbdNBSFwCBamH+6xm2UHkOB8UloL0flj17rfdhrCxofLd94xew1g+3JZNQ6u6f9Z82q/QVq+32wZ0B7EJXgnYKe2M33cQYlb0JiLRP5G06jSqWqr0mxA4AdzDdfG9RjIm2JU5MV4s3ZxFXfPpq1Gis+bX4HbdtUZb8xqNlvRdpQSPcsfOqffmDx0Uph1Bo1IREntuKnp1WxtF6fpV+rZxUBIa68nRXaVo1MZFZ1m6ueF2/fXUr1lDa8bpq55a1djGR9tyWBDrS4yvfpZ4txz4DFxDIVg/N0xZUxmZtZlDzj8PZkVvMjreHEnFeoZZCqGzNPJ36IotGcnD50XR0Krmw23ZRq9hKJXvLz1uzRvvm89PqaKlvp2YRP1i50EXVmmptMJ/+Eij9z1bCRwRi8LCUm8/PUBMoi+tTSpyDxmes9GB2y03o7CzO61W/bIt2bSoNDxkTBniDqpzdBnoo6/Tfdb0oOOze04qeiHER0KIciFEt4WxhRDXCSEOHf9JEkLEdbqXK4Q4LIQ4KITou2DHWUyMWwxuNm76K3qAuGt0RZYM7D7VmeF+Tswf6cPH23OpbW43eh19acvO1kXaXHsNlm5GRkKgi523c7IieIT+a+Qk7ydgxCiUVtZG73u2YmVji3/0cIMUfWCMG/Yu1qTtMN59Y+nqittNN9Kwdi2t6QNfPbW8vpVPd+RyyWh/wr0MbCrSmeSvAKGrGqsn24q24WXrRYTL0Ct7rY9F/wkwr5f7OcB0KWUs8CJwaifsmVLKeCnlWONEPDtQCAUTfSeSVJzUd9PwDhx9dCnZyV+BxvgD1QfmRNDYpuaDrQNv1Ve+9z7Cxga3W281eo2mujZyD1cRNdEHhZ5NnevKy6gpLjwn3TYdhMQlUJmfS2O1fu5BhUIQPcmH/JQqmmqN71DmdtNNKBwdqXjnHaPX0Jf3NmWh0kgemN0PZavVwIEvYNgscNavZIJaq2ZnyU4m+08+q5uA94Q+Haa2AD3WxpVSJkkpa47/cye6JuDnJIn+iVS3VpNebYDlM/p6aCiBrI1G7xvt48SCUb58sj2X6qaBs+rbsnOo/+03XPtpzWfsKkNqpd6x89AprPIcPIjt4ESY5aEDes+JnuSLlBjVfaoDC2dn3G6+icb1G2hJGbhuoMW1LXy5K5+rxgYQ7G5v/EI5m6G+0KBD2JTKFOrb64ek2wZM76O/DejcpkYC64QQ+4QQi3ubKIRYLITYK4TYWzEIUq+NYbKfrna1Qe6biLlg52F0TH0HD8yJoFml4cMBtOorl76PsLbGvR/WvJS6AmY+Yc64+uj/Yc5N3o+TpxdufuesHYFncCj2Lq4GuW9cvOzwi3AhLamkX+Wt3W68EYWzM5UDaNW/vVF3VnXvrH66Tg58ruvoFr1A7ylJxUkohIJJvpP6t/cgxWSKXggxE52if7zT5UQpZQIwH7hHCNFjTy4p5XIp5Vgp5VhPT/1qngw2PGw9iHaLNizM0tIKYq+Go2uMKnTWQaS3IwtG+fK/pIGx6ttycqhftRrXa67B0r3vxiA9UZZbT01pMzGJ+lvzGrWa/JSDhMQmDMnHan0RQhAcO5q8QwfQavXPiI6Z7EtdeYvRhc4ALBwdcb/lFho3baLl0CGj1+mJgupmvttbwKLxgfi79F3BtEeaqyFtFYy6Ciz1P8vZXrSdkR4jcbYemmWvTaLohRCxwIfAQinlCQeilLL4+J/lwErA8I4UZxmT/SZzsPwgTaom/SeNvl5X6OzQt/3a+4HZOqt++RbTW/VVS5cirKxw70cWLOgOYS2tFISP0T/hqSQjnfaWlnPabdNBSFwCrY0NlGXrH6k1LMELpbVFvzJlAVyvvx4LFxcq3ja9Vf/epiwUQnDXjGH9WyjlB9C0GeS2qW2t5XDl4SGXDduZfit6IUQQ8CNwg5Qyo9N1eyGEY8ffgfOBvlvan+Uk+iWilmp2lRhQx8Z7OPgl6B45+/F4HeHtyEWxfny6I5eqRuMP306lLSeHul9X6ax5Dw+j11G1azi2p4zwBC+sbCz1npd7aD8KCwuCRsb1PXiIExw7GoQwyH2jtLYgYqwXmfvKaW81/tDfwsEe99tvo2nrVpr3639O0BdFtS18v6+Aq8cF4uvcD2sedC5Qn1jwjdV7ys6SnUjkkPXPg37hlV8BO4AoIUShEOI2IcQSIcSS40OeAdyB904Jo/QGtgkhkoHdwGop5e8D8BoGFaO9RmNraWuYnx50Fkj5ESg52K/9758dQauJrfqqpct01vxtxvvmAbL3l6Nq1RjktgFd2QPfiGis7fpxQDdEsHNyxjs0nNxkwxRtTKIf6jYNWfsNb07fGddrr8XCzY3Kd0xXA+f9Tbqnk35b8yWHoCRZr56wndlWtA0nKydGug/d/Ax9om6ukVL6SimVUsoAKeUKKeVSKeXS4/dvl1K6Hg+hPBFGKaXMllLGHf8ZIaV8eaBfzGBAaaFkgs8EthVtM+zwa+TlYGnTr0xZgHAvBy6O8+PTHXlUmsCqb8/Lo27VKlwXLeqXNQ86t42zpy2+4S56z2mqraE8J4vQ+DH92nsoERKXQMmxdFqb9K9j4x3qhKuPXb/dNwo7O9zvuIOmpB0079GvxWFvlNS18O2eQq4cG4hff3zzoMtHsbCCUVfoPUVKSVJxEpP8JmGhGLplr82ZsQPAZP/JFDUWkd9gQGVJWxeIuRgOfweq/jVnvn92BG1qDcs2978YVeX7SxGWlv225usqminKqCXagAJmwInOSudStcq+CIkbjdRqyU/Rs1oquoPc6Mm+lGTWUVvWd1vC3nBddDUWHh5UmCBb9v1NWUgkd/fXmle36c64oi8EO/1DfzNqMqhoqRjS/nkwK/oBoaNzvEHRN6BL126t00UN9IMwTwcuiffns515VDQYb9W35+VR9+uvuC66Gst+RkKl7yhFCIieqF8Bsw5yD+7D1skZr5Cwfu0/lPCNiMbK1s4gPz1A1AQfhEKQlmRc96kOFLa2uN92G807d9K8T/+KmqdSWtfK17sLuGJMAAGu/SwidnQNtFTrPkMG0FFxtiM0eqhiVvQDQKBTIIGOgYb76UOmgUsQHOyf+wbgvtkRqDSyX1Z95dJlCEtL3G67rV+yaLWS9B0lBA53x8HVRu95Uqsl99ABQuISEArzW7UDC0tLgkbGkZu83yD3oL2zNcEj3UnfWYq2n20oXa++Suerf+99o9dYujkLrZTcPSO8X7IAOpenkz+EzTRoWlJREhGuEXjbe/dfhkGM+dMzQHR0nWrXGBDTrlBA/HWQvRlq+9dQJNTD/oRVX97QavD89vx86n75BZerrzK6e1QHhWnVNNa0GZQJC1Cem01LfZ3ZbdMNIXEJNFRWUF1UaNC8mMm+NNe1k5/aY7K7Xijs7HC/7Vaatm+n5eBBg+eX17fy5e58Lk8IINCtn9Z8XRFkbYD4a8EAP3uzqpl95ftOPIEPZcyKfoBI9EukRd3CgXIDw9DirgEkHPyq3zLcNysctVayfLPhETiVy3TWvPvtt/dbjrSkEmzslYTGGnaYm3NQ5xYIiR3dbxmGGoZ2neogeJQ7to7KftWp78B10SJdXP17hvvql27ORqOV3DPTBNZ88lcgtTpFbwC7S3ej1qqZ7D+03TZgVvQDxnjf8VgqDOg61YFrMIRO10UQaPv3eB3iYc/CeD8+32WYr769oIC6n37G5ar+W/OtjSqykyuInOCNhdKwt1tu8n68w8Kxc3bplwxDEWcvb1z9Asg9ZJiit7BQEDnBh5xDlbQ09i+DWmFvj9stt9C0ZSsthw/rPa+8oZUvduVx6Wh/gtz7ac1LqXPbhEwFN8POcbYXbcfW0pYEr6H/xGhW9AOEvdKe0V6jDT+QBV1MfW0e5G3rtxz3zYqgXa1l+Rb9ffWVy5YhLCxMYs1n7ClFqzasgBlAW3MTxRlpZrdNL4TEjabwyGFU7YYduMdM8kWrkWTsMq55eGdcr7tWVwPHAF/98s3ZqLWSe01hzeclQU2OQZmwHWwv3s44n3FYWejX+OZsxqzoB5BEv0QyajIobzYwSSXmIrB27ndMPZzsq9cnrr69sPAva967/31Z05JKdM2qAwyrLZ5/OBmp1ZoVfS+Exo1BrWqnKM2wipLu/g54BTv2u9AZgIWDA2433Ujjn3/Smpra5/iKhjY+35XHwng/QjxMkAB34HOwctSFJhtAfn0+BQ0FQz6ssgOzoh9ApvjrDnkMjr5R2sLIyyD1F124ZT+5d1b4cau+b1991bJlCCFwv6P/1nxFfgOVBY0GW/Ogc9tY2drhGxHdbzmGKgHDR2KhVBrUNLyDmMm+VBU1UllgXPPwzrjdcAMKR0cq3+/bqv9gazbtai339bdCJUBbg67n8qjLwcowF1CHS7XjMzrUMSv6ASTSNRIPWw8j3Tc3gLoFUn7stxxhng4sjPfnsz6yZdsLi6hd+dNxa77/4WZpO0qwsFQQMc6wtaSU5CTvI2hkHBaW+tfEOddQWtsQEDOSnIOG+ekBIsbpzkzStvcvph50lS3dbryRhj/W03r0aI/jKhvb+GxHHgvj/Qk1hTV/ZCWomg0ueQA6/3yAQwBBTkH9l+MswKzoBxAhBIl+iSQVJ6ExoKwsAP4J4BnTrzaDnbl3Vjhtag0f9GLVm9KaV6s0ZOwqJSzeAxt7pUFzq4sKaaisMLtt9CA0fgzVRQXUVxjmHrS2UxIW70nGnjLUKgPfm93gduMNKOztqXx/aY9jPtyaQ6taw72zTOCbB53bxiMK/A0rj9GuaWd36e4hXcTsVMyKfoCZ4j+F+vZ6UqoMLNwphC7Lr3APVPRsJenLMM+/auB0V9lSVVRE7cqVuFx5BUofw7JXuyMnuZK2ZjUxk/Vv/t1BhysidLS5vk1fhMTp/o8MDbMEnfumrVlNTrLxfRA6sHB2xvWG62lYu5a2Y8e63K9uaufTHblcFOvHME+Hfu9HRQYU7NIdwhrYo2B/+X5a1C3njNsGzIp+wJnoOxGFUBjnvom9GhSWJjmUBV3nnla1hg+25nS5V7ls+XFr/g6T7JWeVIKDmzX+0a4Gz805uA/3gCCcPPp/GDzUcfMPwNHD80TOgSEERLni4GZtkph6ON5b1ta2W6v+w63ZtKg03D/bRNb8wc9BWEDcIoOnbi/ajlKhZLzPkG+PcQKzoh9gXGxcGOkx0jhF7+ClazWY/DVoVP2WJdzL4US9+s5dqFTFxdSuXInzFZej9DX84PRUGqpbyU+rJnqSLwqFYdaWqq2VwrQUs9tGT4QQhMaNIT/lIBq1YbXmhUIQPcmX/LRqGqoNz54+FUtXV1yvu476NWtoy/7LRVjT1M7/knJZMMqXcC/Doq+6RaPSJRRGztN9RgxkW9E2ErwTsFP2M4b/LMKs6E8DU/ymcLjyMLWttYZPHn09NJXDsT9MIsv9s8NpUWn4oFNv2crlywHwWNxrW1+9ObqzBKQuXttQClIPo1GpCDGXJdabkPgE2ltaKMkwoCn9cWIm+YI8/jszAW633IywsaFy6V9W/YptOTSrNNw/2wSRNgCZ63WfCSNi50ubSsmszTwnyh50xqzoTwOJ/olIJDtKdhg+OeI8sPc02aFsuJcjF8b6negtqyoupvaHH3G5/DKTWPNSK0lLKsE/yhUnD8Pri+ce3I+llTUB0SP6Lcu5QtDIOBQWFuQYEWbp5GGLf9Tx5uHa/sXUA1i6ueF6zTXUr1pNe24utc3tfJKUywUjfYn0NoE1DzpXpr2X7rNhIB1P1ufSQSzo12HqIyFEuRCi29NEoeMtIUSmEOKQECKh0715Qoijx+89YUrBzyZGuI/A2dqZbUVGZLpaKHV+yIzfobHCJPLcP0tn1X+4NZvKDz4ATGfNFx+rpb6y1ajYedAdxAaOGIWl1dDPVjQV1nb2+EXGGOWnB4iZ7Ed9ZSvFmbUmkcf91lsQSiWVy5bz0bYcGtvU3Gcq33xjue6zELdI99kwkO3F2/Gy8yLcxUTynCXoY9F/Aszr5f58IOL4z2LgfQAhhAXw7vH7w4FrhBDD+yPs2YqFwoLJvpPZXrQdrTSifk389aBVw6FvTCJPhLcjC0b5smr9AWq//wGXyy5D6Wd4dEx3pCWVYGVrybDRhtevry0toaak2NxNyghC4hKoyM2mscbwqpRhoz2xsrEw2aGspYcHrouupu6XX/ht7V7mjfAh2sfJJGtz6BvdZ8EIt41Kq2JH8Q6m+k81qPnNUECfVoJbgN7ePQuBT6WOnYCLEMIXGA9kHm8p2A58fXzsOUmifyJVrVVk1GT0PfhUvKLBf2y/m4d35v7ZEVx0ZD1arcRjsWkibdpa1GTtLydirBeWVoa3ZetwPZj984YTOnosAHmHDG/arbSyIHycN5n7+9c8vDNut92GRihYkLLOdNa8lLD/MwgYB55RBk8/XHGYRlXjOee2AdP46P2Bgk7/Ljx+rafr3SKEWCyE2CuE2FtRYRoXxWCio4ONUe4b0FkwFWlQbHi8dHeEyibm5+9mQ/A4Gl361z2qg2N7ylCrtMQkGvd0kHtwHy7evrj6mObp4lzCMzgUexfXfrhvfFG3a8nc17/m4R20OrmyLnQi5xXsI0Lb/zILABTuhcqjRmXCgu6zZyEsmOA7wTTynEWYQtF39wwke7neLVLK5VLKsVLKsZ79bFs3GPG08yTaLdq4MEvQ1b6xtDVZTH3V8g+wQPL5sJms2NY1rt4Y0rYX4+5vj1ew4YduapWK/COHCIk3h1UagxCCkLgE8g4dQGtoFjbgHXK8efh207hvPt2Rx5dh01FYKKg6HtXVbw58Ckp73WfBCLYVbSPOMw4nKxO5kc4iTKHoC4HATv8OAIp7uX7OkuiXyMHygzS2G2Hh2DjD8Ivh8A/9bh6uKiuj9rvvcLnsMsZNHMEnSbroiP5QVdRIeV4DMZP9jPJ/FqUdQd3WRmj82H7JcS4TEpdAa2MDZVmZBs8VQhAz2Y/S7DpqSpv6JUdjm5oPtmYTOzoS1ysup3blSlTF/fzotzXq6j6NuBSsDTckKlsqSatOO6eyYTtjCkX/C3Dj8eibiUCdlLIE2ANECCFChRBWwKLjY89ZEv0TUUs1u0p3GbdA/HXQ1v/m4VUffIiUEvc77+S+2eE0tqn5qJ9Wfer2YhSWgqgJxpVPyEneh4WlJYHDR/VLjnOZ4NjRIITR7pvICd4IhSB9R/+s+s925FHbrOL+2RF4HM+07ojuMprUn6C9ERKMc9vsKNaFNp+L/nnQL7zyK2AHECWEKBRC3CaEWCKEWHJ8yG9ANpAJfADcDSClVAP3AmuBNOBbKaVhhbOHGPGe8dgr7Y1334RM1TUPP/CZ0TKoysqp/fZbnC9ZiFWAP9E+Tswf6cPH23OpazYu+1aj0pKxq4zQWE9sHAwPeQOdf94/ZiRKG/2bh5s5GVtHJ3yHRRpVthg6NQ/fYXzz8OZ2nTU/PdKT+EAXlH5+uFx2GXXf/4CqtNSoNQHdIax7BAQa51/fVrQNNxs3ot3OzbLX+kTdXCOl9JVSKqWUAVLKFVLKpVLKpcfvSynlPVLKYVLKUVLKvZ3m/ialjDx+7+WBfCFnA0oLJRN8JrC9aLtxDR86mofnbIGaPKNkqPrwQ6RWi8edd564dv/sCBra1KzYbpxVn3OoktYmFcMTjYudr6+soKown1Bz2YN+ExKfQGnmMVoa6o2aHzPZl+Z645uHf7Ezn+qm9pOyYD0W34FEdy5kFBUZULDTqAJmABqthqTiJBL9ElGIczNH9Nx81WeQRP9EipuKyak30lXS0QA52fDm4aqycmq/+QbnhRdjFfjX8UmMrxPzRvjw8bYco6z6tO3FOLhaExDjZvBc+KtapTmssv+ExI1BSi15hw8aNb+jeXiaETH1Le0alm3JZkq4B2OC/ypmp/T3x+WSS6j97jtUZUa0LzxRwOwaw+cCqVWp1LbVnrNuGzAr+tNOx5vNaPeNSxCEGdc8vGrFh0iNBo8lS7rc67DqPzLQqj9RwGyy4QXMOsg9uB9Hd0/cA86NJhADiU94BDb2DuQa0YwEdM3Doyb4kHuokpYGww7ov9ydT2VjW7c1bdzvXIyUkqoPVxgmUOcCZo7GNcPZVrwNgTgR4nwuYlb0pxl/B39CnUONj6cHXaZsbT7kbtV7iqq8nNpvvsV54cKTrPkOhvs5MXeENx9tz6GuRX+rPn2H8QXMADRqNXmHDxISn3DOZSsOBAqFBcGxo8lN3md0P9joycebh+/W3/puVWlYujmLiWFujA/t+mRnFRCA88KLqf32W1TlBsTqH1unK2Bm5CEs6IyqkR4jcbUxvGT2UMGs6M8AU/2nsqd0D82qZuMWiLlQ1zzcgEJn1StWINVqPJbc2eOY+2dH0NCq5mM9rfqOAmYB0cYVMAMoPppKe0uzueyBCQkdPZam2hrKc7KMmu/u54BXiBNpScV6f1l8s6eAioburfkOPJYsQarVVK8wwKrf/xk4+EC44QXMAGpaazhUceicDavswKzozwDTA6br6m4YU80SdM3DR10OqT/r1TxcXVFBzdff4HzxxVgF9eweGeHnzPnDvflom35WfWFGDQ1VrcQYeQgLkLV/DxaWlrrQQDMmIXT0WBCC7P17jF5D1zy8iYr8hj7Htqk1vL8pi/EhbkwKc+9xnFVgIM4XX0zN19+g1if7vaFUZ9HHXwMWxvUO3la0DYlkeuB0o+YPFcyK/gww2ns0DkoHthRu6cci14O6FVJ+6HNo1Yd9W/Md3D87gvpWNZ9sz+1zbNr2EqztLAmLNz6TOXv/HgJHxGJlY9wTgZmu2Dk54xsRRfb+3UavETHWS9c8XI9D2e/2FlJa38r9syP6dL95LLkTqVZTteKjvoU4+CVIjc5VaSSbCzfjaetJjFuM0WsMBcyK/gygVChJ9E9kS+EW46pZAvglgNcI2P9pr8PUlZXUfPMNzhddhFVwcJ/LjvR3Zk6MNyu2ZVPf2rNV39qkIvtABZHjvLFUGl7ADKCmpIia4kLCEsYZNd9MzwxLGE9p1jGaamuMmm9tp2RYgicZu8tQtfdcUqFdreX9TVkkBLmQGN6zNd+BVXAwzhdeSM3XX6Ouqup5oJS6ch9Bk8HDuKJoKq2K7UXbmRYw7ZwNq+zg3H71Z5DpAdN1adlVacYtIASMuRmKD0DxwR6HVa34CNnerpc138GDc/q26o/tKUOjNr6AGUD2fl3KhVnRm56O/9PsA8a7b0ZM8ae9RU3m3p4PT3/YX0hRbYte1nwH7kvuRLa3U/VRL1Z9/g6ozurXIeyBsgM0qhqZFjDN6DWGCmZFf4aY4j8FgWBz4WbjF4m9CixtYN8n3d5WV1ZS89VXOms+JETvZXVWvRcrtuXQ0I1VL6XkyNZiPAId8AwyvmtQ9v7duAcE4exlXNkEMz3jERSCo7sn2fuMV/S+4c64+tiRuq2o2/sqjZZ3/8wkLsCZ6ZH6u++sQ0NxWrCAmi+/Ql3dQ2LWvk/A2gmGG1/ZfHPhZqwUVkz0nWj0GkMFs6I/Q7jauBLnGdc/RW/rAiMug8PfQVvXQ7MOa97dAGu+gwdmR1LXouJ/Sbld7pXl1FNV1MiIqT1Wne6TtuZmCtNSCBsz3ug1zPSMEIKwhHHkHTqAWmVcaQshBMOn+FGarft9n8rKA0UU1hhmzXfgcdcSZGsr1R9/3PVmczUc+UlnyFjZGyU7wJbCLYzzHXdONQHvCbOiP4NMD5xOalUq5c39qAE+9hZdsadTDmXVFRXHrfkLsQ4NNXjZUQHOzI724oOtXa36I1uLUFpbEDneuAQWgLxD+9FqNGa3zQASNmYcqrZWClMPG71G9ERfLCwVHNl6cvVJ9XFrfqS/E7OivQxe1zosDKcLLqD6iy9R15xyjpD8FWjaYMwtRsudW5dLbn0u0wPO7WibDsyK/gzS4TvcWqh/4lMXAsaB1/Au7puqD1cgVSo87rrL6KUfmBNBXYuKT3f8VVentUnFsb3lRI73xsrGuJA3gKx9u7FxcMQv4twsMnU6CBwRi6WVNVn7jI++sXHQHcoe3VV60qHszweLyatq5v5ZhlvzHXjcfReypYXqjz/566KUsPdjCBgPPiONlrvjSdnsn9dhVvRnkAiXCPzs/frnvhFCZ/l0OpRVlZdT8/XXBvvmTyU2wIVZ0V58sDWbxjZdi7mju0rRqLT9cttotRpyDuwlNH4MCgvjInbM9I3SypqgUXFk799jdJYswIipJx/KdljzMb5OnDfc+Kc662HDcJo/j5rPP0dTW6u7mLsNqo7pnlT7wZbCLYS7hOPvYPz7dChhVvRnECEE0wKmsbNkJ22aNuMXOuVQ9kQW7N3GW/MdPDA7gtpmna++4xDWK9ixX4ewpZkZtDTUm902p4FhCeOpryijqjDf6DU6DmWPbNUdyv6SXEx2ZRP3zwrvd9kKj7vuQtvcTNX//qe7sO9jXZOdEZcavWZ9ez37y/ab3TadMCv6M8z0wOm0qFvYU2p8dETnQ1lVYa4uC3bhwl6zYPUlLtCFmVGefLg1m+y0ampKmhgxrX9WUvb+PQiFgpA4c9mDgSY0Qdexqz9Zsh2HsmU59ZTl1/PmhmMM93Vi7oj+R0tZR0TgOHcuNZ99jqYkB1J/0VWpVBqfQJdUnIRaqs/5bNjOmBX9GWaczzhsLW3ZVLCpfwsdP5StevXvemfB6ssDcyKpaVbx+8/HsLKxIGKs8Y/rANn7duMfPRwbBwcTSWimJxzdPPAKGdavLFn461B21U/HyKtq5qHzIo2uVnoqHnffjbaxkerX/wFaVb8OYQG2FGzB2dqZWI9Yk8g3FNBL0Qsh5gkhjgohMoUQT3Rz/29CiIPHf1KEEBohhNvxe7lCiMPH7+3tuvq5jbWFNRN9J7KlcEu//KgEjENlF03t+n267lEmsOY7iA90YXaoB+q8JsLGeaO0Nt6vXl9ZTkV+LmEJ5rDK00XYmHEUH003uhkJ6A5lQ0d7UJ9eR5yvE3NiDI+06XHtqEgcz5tD9dp9aLwmgJfxB/QarYatRVuZ6j8VC4X5/KcDfVoJWgDvAvOB4cA1QojhncdIKV+VUsZLKeOBJ4HNUsrOmRAzj983d37uhhmBMyhpKuFozVHjFxGCqvwwpFbicZnpH1kvdXPBEsFR+358GQFZe3X9cs3++dPHsITxSKntl/sGoMxTiZUWbg7wMnlJaY+Lx6Nth+qSYf1a52DFQWrbas3++VPQx6IfD2RKKbOllO3A10Bv6WrXAIa3PzqHmR4wHYVQsCF/g9FrqEpLqd18BJdhbVgVrzahdLpM2LqUGhocFHx4uJCm4xE4xpC5Zwdu/oG4+3etiW9mYPAOC8fB3YPMPUZWS0VXoXLZkSIarQWaY31XtDQUm5o/cAzSUL1m718ROEawIX8DSoWSqQFTTSfcEEAfRe8PFHT6d+Hxa10QQtgB84DO2TsSWCeE2CeEWNzTJkKIxUKIvUKIvRX6lDAdQrjbujPaa3S/FH3V8uVIKXG/fCYc+hZaak0mX1FGLbVlzcTPCKC6qZ3PdhrXr7aloZ6C1BQixk8ymWxm+kYoFISPnUhu8gFUra1GrfHt3kKK6lqImORDWW495XnGu4G60FAG6avxuOZ8tE1NVHWOqzcAKSUb8zcyyW8S9krjM2qHIvoo+u6e0Xp6fr8I2H6K2yZRSpmAzvVzjxCi2wwGKeVyKeVYKeVYT0/jy96ercwOms2xmmPk1xseBqcqKaH2u+9xuewyrObeD6pmXYlXE3FkSxHWdpbMOT+UqREefLAlm+Z2w6367P17kFot4ePMiv50EzF+Eur2NnKTDW8x2KrS8O7GTMYGu3LBxeFYWltweFOh6YQ78Blo1dhc9CBO8+dT/dlnPdfA6YX06nSKGouYHTTbdLINEfRR9IVA5+fsAKC4h7GLOMVtI6UsPv5nObASnSvIzCnMCpoFYJRVX7lsGRLwuHMx+MVD4ATY84HBPWW7o7GmjawDFURP8sXSyoIH50RQ1dTO50ZY9cd2J+Ho7ol3mHFlZ80YT0DMSGwcHDlmhPvm6935lNa38vB5kdjYKYme4MOxPeW0NBrWU7ZbNGrY+xGETgePcDzuvRfZ2krVBx8avNSG/A0ohIIZgTP6L9cQQx9FvweIEEKECiGs0CnzX04dJIRwBqYDP3e6Zi+EcOz4O3A+kGIKwYca/g7+xLjFGKzoVUVF1P7wIy6XXYbS/7hHbfxiqM6GrI39luvI1iKklIyaEQDAmGA3pkZ4sGyzYVa9qrWVvOQDhI+faO4NewZQWFgwbMwEsvfvRqPWv8hZq0rDu5uymBDqxqRhunrzI2f4o1FrSdved1OSPklfBfVFMEHXsN46LFTXherLL1GVGVYDakP+BhK8EnCz6dqz9lynT0UvpVQD9wJrgTTgWynlESHEEiHEkk5DLwXWSSmbOl3zBrYJIZKB3cBqKeXvphN/aDEraBbJFclUNOt/RlHx3nsIjlvzHcRcDPZesHt5v+TRqLQc2VpEyEh3nD3/SmB5YLbOqv9ip/5uppzkfahV7USY3TZnjPDxk2hraqLgiP5Fzj7fmUdFQxsPnRd54gva3c8B/ygXUjYXodX2LwqL3cvBJQgi55645HHP3UiNhqply/ReJq8+j8zaTLPbpgf0iqOXUv4mpYyUUg6TUr58/NpSKeXSTmM+kVIuOmVetpQy7vjPiI65Zrqn4036Z8Gfeo1vy86hbuVPuF57DUq/Tg1ALK10CVTH1ukseyPJ3FdGS4OK2JknR8iMDXEjMdydZVuyaOml+9BJa+3egY2jE/7RI4yWx0z/CI6NR2lto3f0TXO7mqWbs0gMd2fiKb1gR80IoKG6lbzDlcYLVHoY8rbDuDugU8y7VWAgLpdfTs1336Eq6r4W/ql0PAl3uEDNnIw5M3YQEe4STpBjkN7um4q330LY2OC+uJtgpjG36D48e1YYLc+hPwtx9bEjIMa1y70HZkdS2djOF7v69tVr1Cqy9+9h2Jjx5iJmZxCllTUh8Qlk7t2F1OP85rMdeVQ2tvPQnMgu90JjPXBwte7foeyuZWBpq+t/fAoeS+5EAJVLl3ad1w0b8jcQ4xaDn4PxHc+GMmZFP4gQQjA7eDa7S3ZT3957+FpraioNa37H7aYbsXTvplenky/EXKSLaGhvNliW0pw6yvMaGDUjoFuf+vhQNyYPc2fp5uw+rfqCI4dpa24yh1UOAiLGTaKpppqSzN6T8+pbVSzdnMW0SE/GhnT1eSssFIyY6k9BWg01pU3drNAHzdW6hjlxV4Nd1/WVvr64LFpE7Y8rac/r3Zgoby7nUMUhs9umF8yKfpAxO2g2aqlmc0HvpYvL33wThbMz7rf0Uhdk/GJordN9oAzk8J+FKG0siJrYc+GqB2ZHUNnY1qdVf2x3EkprG4JHjTZYDjOmJTRhHAoLSzJ2JfU67sMt2dQ0q/jb+VE9jhk+xQ+FpeDwZv3cKyex/1NQt+reoz3gsfgOhFJJ5Xvv9brUxnxd0MGc4DmGy3GOYFb0g4xRHqPwtvNmXe66Hsc079tH0+YtuN9+GxZOTj0vFjQJvEfqDrwMqKPTVNdG5r5yYib79tpcZEKYO1PCPXhvU1a3vWUBtBoNx3YlEZYwDksrK71lMDMw2Ng7EBwbT8bObT3WVqpsbOPDbTksGOXLqADnHteyc7IifIwX6TtKaG8xIK9Co4Y9H0LIVPDu+czG0tMT1+uupe6XX2nLyupx3NrctYQ6hxLmHKa/DOcYZkU/yFAIBfNC5rGteBt1bXVd7kspKf/vf7Hw9MDtuut6X0wIXdhaWQpkb9JbhiNbi9FqJKOmB/Q59m9zo6huaueDrTnd3s9PSaaloZ7oRHPtkcFC9ORpNFRWUHIsvdv77/6ZSZtay8Pnd/XNn0rcrEBUrRpSt/eUWtMNGWugrqBXa74D99tvR2FrS8Wbb3V7v6ypjH1l+5gfOt8cttsLZkU/CJkfOh+1Vn3ikbQzTdu207J3Hx5LlqCw06PpcexVulDLHe/otbdGpeXIliKCRrjj4t33+nGBLlwwyocPt2ZT2di1eUp60hasbO0IiTfXnh8sDBs7EQulkvSkLV3uFdY088XOfK4cE8Awz77LSHsFO+EX4ULyxgK0Gj0T9HYtA6cAiLqgz6GWrq643XorDevW0XLoUJf76/LWIZHMC5mn397nKGZFPwgZ7j6cAIcAfs89OeVASknFG2+g9PfH9cor9VvM0lpnOWWuh/K0Podn7Cmjub6duNl9W/MdPHJ+FG1qLe9szDzpulqlInP3DiLGT8JSqdR7PTMDi7WdHaHxY8nYuR2t9uSD9DfWHwOh6xesL/FzAmmsbiNrvx75H8UHIHcrTFgMFvr1HHa7+WYs3Nwof+0/XdxNv+f+TrRbNKHOoXrLey5iVvSDECEE80Pns6tkF1UtVSeuN/zxB61HjuBx770IQ/zd427ThbH1YdVLKTm4Ph93fwcCY/TPLhzm6cBVYwP4YlceBdV/RfjkHdpPW3MTUZPMlQQHG1GTp9JUU01R2pET146VNfDj/kJunBiMr7P+HZ5CRnng4m3HwfX5ffdUSHoHrBxhzM16r2/hYI/H3XfTvHs3Tdu2nbhe2FDIoYpDzA2Z28tsM2BW9IOWeaHz0EgN6/PWAyA1GirefAurYcNwvvgiwxazc4P4a3VVLRvKehyWn1pNdXETo88LNNjf+cDsSBRC8N8/Mk5cS9++BRsHR4JGxRsmr5kBZ1jCeCytrU9y37y27ih2VpbcPdOwWkRCIYibHUh5XgMlmbU9D6zNhyMrYcxNur6wBuB61ZUoAwMp/8/rJ3IA1uauBTC7bfTArOgHKREuEYQ5h51w39StXEl7Vhae99+PMCbpaNI9oFHpip31wME/8rF3tiLciFaBPs423JwYwsqDRaSX1qNqayVr7y4iJyRiYanfI7qZ04fSxoZhYyZwbFcSGrWagwW1rD1Sxh1Tw3CzNzw6KmqiDzb2Sg78UdDzoJ1LdQECEw1vWi+srPB84AHa0tOpX63rt7A2dy2xHrEEOOrvZjxXMSv6QYoQgnmh89hXto/Sylwq3nwL2/h4HM8/z7gF3YfpDr/2rOg2gaoiv4HC9BpiZwViYWnc2+Ku6cNwtLbk1d+Pkr1/L6q2VqImm902g5WoyVNpaagnPyWZV9ak425vxW1TjfN1K60sGDndn9xDld0nULXUwv7/6ZrYOxunmJ0umI/18Bgq3niT7IoM0qrTzG4bPTEr+kHMvJB5SCQp7/wf6ooKvB57rH8hZJPvhZZqSO5aq/7g+nyU1haMmGp8CrmLnRVLZgxjQ3o5O9dvwM7ZhYDhI42X18yAEho3BitbOzatWceO7CrunRWOg7XxT1+jZgRgYakgeUM3Vv2+T6C9UfceNBKhUOD18COoiopIWfEfBMKs6PXErOgHMaHOoYxVhuOxchuO552HXUI/M0uDJoFfAux4DzpFWzRUt3JsbznDp/hhbde/6JhbJofibwdlqQeInDgFhblB86DF0sqKYeMmUnZ4L8PcrLluQnC/1rNzsiJygjfpO0tpaehUq17dDruW6mrO+8b1aw/7xMnYTZyA73fbmeAUi7e94W7GcxGzoh/k3LTTFguVlrbFeoZT9oYQMPk+qM6CtF9PXD64XlduOHZW/32dtlYW3OZfj4VWTbWv2Zof7JR6DkepaWNxcAtWRrrsOhM/JwiNSsuhPzsVOzv0DTSUwOT7+72+EIKG2y7BoUnD9cmO/V7vXMGs6AcxbdnZeG84xIbRClapDG8B1y3DF4J7OGx9DaSkub6d1K3FRE3wxsld/5C63rDNO0CTjRtvJrfRqtKvjLGZ009jm5r3jwrarR1R5uwzyZpuvvaEjfbk0J+FtLWodeUOtr2us+TDTVN07GflEXYMt8D7px2oSktNsuZQRy9FL4SYJ4Q4KoTIFEI80c39GUKIOiHEweM/z+g710zPlP/ndRQ2NuRfMYlfs35FozWB0lRYwJSHdbXAj60jeUMBarWWhLn9e2zvoLa0hOKjqURNnUVhbSv/S8o1ybpmTM+yzVlUNKmJSJxBbvJ+mmprTLLumHnBtLeodSWMU3/S9USY+qjuibKftGvaWZO7hoLrpoNWUvHf//Zf4HOAPhW9EMICeBddc+/hwDVCiOHdDN0qpYw//vOCgXPNnELz3r00btiA+x13cP7oKyhrLmN36W7TLB57FTgH0brxbQ5vLiQ8wQtXH3uTLJ26dSMIwQWXXsisaC/e2ZhJVTelEcycWUrqWvhgazYXx/kx88ILkFotaVv1a3jTF17BTgSNcCd5QwGqzW+BZzREX2iStbcUbqGurY7ZE6/B7aabqPv5F1oO698x61xFH4t+PJB5vFtUO/A1sFDP9fsz95xFSknZv1/F0tsbt5tuZGbgTBytHPklq0urXuOwUMKUBzic6YuqVcOY+SEmWVZqtaRu2UjQyDgc3T146oJomlUaXVq9mUHFf9ZloJW6onTu/oH4hEdyZMvGvjNb9WTs/GBaG1Wk5gXC1EdAYRov8c9ZP+Np68kk30m437kYC3d3yv7vXyaTe6iiz/++P9A5Xqrw+LVTmSSESBZCrBFCdNQe1XcuQojFQoi9Qoi9FRX690wditSvWk3roUN4PvAACltbrC2smRcyjw35G2hSGdHkoRvao68hufliQlyz8Ajou3iVPhSlp1JXXsaI6TpfbLiXI9eOD+LL3flkljeYZA8z/edIcR0/7C/klsQQAt10hetGTJtNZX4u5bnGt57sjO8wZ/wdcjnQcjmayEtMsmZ1azXbCrdxYdiFWCgssHBwwPOB+2nZv5+GtWtNssdQRR9F351j7dSvz/1AsJQyDngb+MmAubqLUi6XUo6VUo719PTUQ6yhiba5mfLXXsNmxAicL/nr4efiYRfTom7h9xzT9FZP2VFJm9aeMWIZ5O8yzZqb1qO0sT2pAfiDcyKwU1rwz9+6L4lr5vQipeSfv6XhYqvk7hl/lTqISpyGhaUlKX/+YZqNsjYyRvkxTWoX0nabxnBblbUKtVRz8bCLT1xzufxyrCMjKX/1NbRtZhdhT+ij6AuBzt2hA4CTik9LKeullI3H//4boBRCeOgz18zJVC5fjrqsDO+nn0Z0etyN84wj3CWc7zO+7/ce7a1qDqzLJzDKCR+Xatj0f/1es7WpkaM7thIzZTpKG5sT190drLlnVjgb08vZdqwfjaTNmIS1R8rYnlnFg3Micbb9K2fC1sGRiAmJpG39E1Vba/82kRI2/R8BHlV4hziyb00uGpWeJYx7XFLyXcZ3us+B619fUMLCAu8nHkdVVET1p5/2T+4hjD6Kfg8QIYQIFUJYAYuAk5zFQggfcTxlUwgx/vi6VfrMNfMX7QUFVH/0MU4XXdQlOUoIwRWRV5BSlUJaVd/lhnvj0MZCWhtVjL8kAqY8BNl/Qu62vif2QuqWP1G3txE7u2uBqZsnhxDgasuLq1JR61uz3IzJaVVpeGl1KtE+jlw3IajL/djZc2lrbiJj5/b+bZSxFgr3IGY8xoSFw2isaePINiPaDXZiX9k+cutzuSLyii737CdPxmHGDKqWLkNdVdXNbDN9KnoppRq4F1gLpAHfSimPCCGWCCGWHB92BZAihEgG3gIWSR3dzh2IFzIUKP/3v8HCAq9HHu72/oVhF2JtYd0vq761ScWBP/IJifXAJ9QZxt0ODj6w8SWD2g12RkrJofVr8A6LwDusa+VDG6UFf18wnKNlDXy6o/f+smYGjmWbsymsaeG5i0dgadH1ox8wfBSufgEkr19j/CZaLfz5EriGQvx1BES74h/pwt41eaj6aCLfG99lfIej0rHHkgdejz2Gtq2NijfeNHqPoYxeR+FSyt+klJFSymFSypePX1sqpVx6/O/vSClHSCnjpJQTpZRJvc0105WmHTto+GM9HncuRunTfUNuZ2tn5obMZXXOappVXQuT6cPB9fm0t6gZf9Hx4lVKW5j2KOTvgKwNRq1ZfDSNqsJ8Yuf0XC527ghvpkZ48N8/MqhoMPtSTzeFNc28tymTC2N9mRjm3u0YIQSxs+dSkpFORX6ucRul/azL0ZjxJFgoEUIw4eIwWurbOdw5W9YAalpr+CPvDy4adhG2lt0n9VmHheJ23bXUfv+9OdyyG8yZsYMAqVZT9s9/ogwIwO2WW3ode2XklTSpmvgt5zeD92mubyd5YyHhY7zwDOyUPp5wE7gEGW3VH1q/BitbW6ITp/U4RgjBcxePoFWt4ZXfzQezp5uXV6ehEIKnLojpddyI6bOxUCo5ZIxVr9XAn//Uxc2P+svF4hvuQtAId/avy9NlyxrIL1m/oNKqunXbdMbj3nux8HCn9PkXkBpzRnZnzIp+EFDz5Ve0HcvE6/HHUFhb9zq241D226PfGhw7vH9dHpp2zV/WfAeWVjD9CV2bt/TVBq3Z0lBPxs7txEyZgZVN7yUUhnk6cNuUML7fV8i+PNNkYZrpm+2ZlaxJKeWemcPwc+n9d2Tr6ETkhERSt/xJe2uLYRsd+hYqM2DmU7oM7E5MuDiUtiZ195Ute0ErtXyf8T3xnvFEuPbe3tDC0RHvxx6jNSWF2u9/MEz2IY5Z0Z9hVGXlVLz5JvaTJ+M4Z06f44UQLIpaRFp1GgcrDuq9T0N1Kymbi4ia4NN9Fmzs1eAeobPqNfpbXYc2rEWtaifuvL4bPQPcNyscHycbnv0lBY3WnOQy0Kg0Wp775QhBbnbcPjVMrzlx5y+gvaWZ1M1dm9P3iLpNF73lEwsxF3e57RXsRNhoTw6uzz+5smUfbC/aTm59LldHX63XeKcLL8Ru3DgqXn8ddY3ZmOjArOjPMGX/+j+kSoXPs8/oXWv+omEX4WTlxGepn+m9z86fs0DCuFOt+Q4sLGH2M1CRBgf0W1ejVnNw7SqCRsbhGaxfwwp7a0ueXhBDSlE9X+3O11d8M0ayYlsOx8obeebC4dgo9SsZ7RcZjU94JPvX/HKibV+f7FoGtXkw57kea9pMuDgMdbuW3aty9JQePk/7HC9bL+YG61d3XgiBzzP/QNPYSMXr5jo4HZgV/RmkcetWGtb8jvuSO7EK1r+omJ3Sjisir2BD/gaKG/tOSyjLrSdjVxlxcwJ7r1AZcxEETYY/X4bW+j7XPbZrO43VVSRcYFhViwtjfZkU5s6ra4+aD2YHkILqZt5Yn8HcEd7MGa5/3XYhBAkXLKSmpIicZD2qWjZVwpZXIeL8XitUuvnaM3KqH0e2FlNd3HeGd2ZNJknFSSyKXoTSQv8+CdYREbjdeKPuYDY5We95Qxmzoj9DaFtbKX3hRaxCQnC//XaD518TfQ0CwVfpX/U6TkrJ9u+PYeuoZExfFSqFgLkvQ1MFbOvbGtr/2y+4+PgSNnqsIaIjhODFS0bS0q7hhVWpBs01ox9SSp7+KQWL44fghhI5IREHVzf2/6ZH2sumf0F7E5z3Yp9Dx10YitLagqQfM/sc+0X6F1hbWPd5CNsdHvfcg6Wnp+5gVm34AfBQw6zozxCVS5eiKijA57nnUFgZ3ozZx96H84LP44eMH3oNtcw+WEFJZh0TLg7DylaPNnH+CRC7CHa8C7U9u1aKM9IpyTxKwvyLT8rg1ZdwLwfumRnOr8nF/JlebvB8M72z6lAJWzIqeHRuFL7OhvcZsLC0JH7uheQdOkBlQS+5DxUZsPcjGHsLeEX3ua6toxVj54eQl1JFQWp1j+NqWmv4NetXLgy7EFcbV8Pld7DH+8knaE1Npfp/5oxZs6I/A7RlZVG14iOcF16M/cQJRq9zw/AbaFA18OOxH7u9r1FpSfoxCzc/e2Im++q/8Ox/6Kz79c/3OGTfqpVY29kzYkbfB8g9sWRGGOFeDvz9pxSa2sxWl6moa1bx/K+pxAY4c+OkEKPXiZ0zD0sra/at/qnnQX/8A6zsdXHz+q47MwAnDxu2/3AMbQ8H8t8c/YY2TRvXx1xvoNR/4ThvHg6zZlHx9tu055/b50FmRX+akVotJc8+i8LWFq/HHuvXWrGesYzxHsPHRz6mXdM1kiH5zwLqK1pIvDwcRTeZkD3iHKBrOZjyPeTv7HK7qrCAjN1JxM9d0GdIZW9YW1rwr8tGUVTbwn/WZRi9jpmTeWVtOtVNbfzz0lFYKIxv9mHr6MSoWeeTumUj9ZXdPHVlboCM33UJd/Yeeq9roVQw6dJwqoqaSN3W9YypWdXM52mfMz1g+kl1bQxFCKELcrC0pOSZZ8/pUsZmRX+aqfnyK1r27sP78cexdO8+Q9EQFscupry5vEut+obqVvasyiEk1oOgEUbsk/ggOAXAqodBozrp1u6fv8PSysrgQ9juGBvixvUTg/gkKYfkgtp+r3eusye3mi935XNrYigj/Z37vd7Yiy4DBHt+OeWpUdUCqx/RtaWcsKTbub0xLMET/0gXdv6URXP9yUbKdxnfUddWxx2xd/RDch1Kb2+8Hn2U5p07qfvh3I2tNyv600h7YSHlr7+O/ZQpOF92qUnWnOQ7iZHuI1lxeAVq7V/uj63f6CzkqVf3nmTSI9YOcMG/ofwI7Hz/xOXaslLStm0ibs487Jz6r0gAHpsXjaejNU/8eBiVueiZ0bS0a/jbd8kEuNry0HmRJlnTycOTEdNncXjj2pNbDW77L9TkwIL/gGXvSX7dIYRg+rVRqNo0JP3w18Fsm6aNT458wgTfCcR5xpniJeBy1ZXYjR1L2Sv/RlV+bp4HmRX9aUJKScnf/4EQAt8XX9A7Zr4vhBAsjl1MYWMha3J0aevZByvISa5k3IWh/Wv4Hb0Aoi7QJcLU6jIa9/zyPQqFgrEXXmYK8QFwslHywsKRpJXU8+6ffUdjmOmef69NJ7eqmX9fEYu9tR4H73oybuEVaNUa9q5aqbtQeUyn6EddBWEzjF7X1ceehLnBHN1VSuFR3ZfIymMrqWypZPGoxSaQXIdQKPB58QVkWxtlL75ksnXPJsyK/jRR++13NO/ciddjj6H0NeBgVA+mB04n0jWSDw5/QGtzO1u/ycDNz5642YF9T+6L+a/o/vz9CeorKziyaT0jZ56Pg1v/3U6dmTvCh0vi/XhnYyaHC+tMuva5wK7sKj5JyuXGScFMHqa/v1wfXH38iE6cRvK632iuq4XVD4OlrS4Ut5+MmReMk4cNm788SktrKx+lfES8ZzzjfMb1X/BOWIeG4nHfvTT88Qd1qw0r8zEUMCv600B7YRHl//43dpMm4nLVlSZfXyEULIlbQk5dDl9/uYHGmjZmXBuFhSEHsD3hEgQznoD0Vez4UKf0xy80PK5ZH56/eCTuDlY8/O1BWlXmolT60tyu5m/fHyLQ1Y7H5/Ud4mgMEy67GnV7O7s+eAlytsCcZ8HBq9/rWlpZMO2aKGrLmvni698paSrhrri7TPbE2xn3W27BNi6O0udfQFVWZvL1BzNmRT/ASI2G4scfByHwffGlAXkDA8wJmsMki1k07lUSOdkL33AX0y0+8W6q7Edx5EAa8bPn4OTZ/w94dzjbKXnl8liOlTfy3z/MUTj68q816eRXN/OqiV02nXH3D2REYiLJe1OpcxsHY3qvsmoIwSPcCUlwo3mXHdPtzmeS36S+JxmBsLTE75V/IVUqSp58Sv/yDkMAs6IfYKo++ICWffvweeYfWAV02xfdJGhUWiakXUKjVR2FI/RIWzcECyVbWyehVGgYb3vAtGufwowoL66dEMTyrdnsye05ocaMjo3pZXy6I49bE0OZ0EOdeZMgJZPt9yOAJFUiGJEk1xs5I3fQbtHCuNSFPcbWmwKrkBC8H3+cpqQkar7sPat8KKHXb0sIMU8IcVQIkSmEeKKb+9cJIQ4d/0kSQsR1upcrhDgshDgohNhrSuEHOy2HD1Pxzrs4XXABThddNKB77fwlm9YqSeWEQ3yYsZz69r5r1ehL0dE0slLSGD82DLuj30PaKpOt3R1PXxBDoKsdD359kLpmVd8TzlHK61t59LtDxPg68fj8qIHdLPlrHPN/Z3TCMFL37Kc8N9tkS1e2VPJpzsfUT8ygsUTNvjUD24XM5eqrsJ8+jfLXXqMt23SvYzDTp6IXQlgA7wLzgeHANUKI4acMywGmSyljgReB5afcnymljJdSGlYU5SxG29xM8d8ew9LTE5/nnh0wlw1A8bFakjcUMGKaP7fPv4aG9gaWJ5/6KzAOqdWy+fMV2Lu4krDkFfAZBasehMYKk6zfHfbWlrx1zWjK6lt5/IdD53SiS09otZJHvkumuV3NW4visbbUrzKlUdQVwprHIXAi45e8hI2dPZs//8hkv5d3DrxDu6ad2y6+iohx3uz7LZfyPNMZKqeii3x7EYWNDUUPP4K2begX1tPHoh8PZEops6WU7cDXwEmZMlLKJCllR5DtTiDAtGKefZS++BLteXn4/etfWDg5Ddg+rU0q/vjoCE4etky+bBjRbtFcGnEpX6R9QWZN/0MVj2zeQElGOlOvvRmlvSNcukxX2fKnJbr+oANEfKALj82L4vcjpXyx69xOX++Oj7bnsPVYJf+4cDgR3o59TzAWjRp+uB2kBi55DxsnZyZdeR35hw9ybFc/m4gDhysO8+OxH7k25lqCnYKZtigSO2cr1q04QnvrwJXFUHp54ffKv2hLT6fsX/8asH0GC/ooen+gc1uYwuPXeuI2oHMfMgmsE0LsE0L0GBwrhFgshNgrhNhbUTFw1uLpoPaHH6hbuRKPu+7CfsL4AdtHSsnGT9Norm9n7u0jsLLRHcQ9mPAgdko7Xt71cr+srpbGBrZ88TH+0cMZPm2W7qL3CJj3T8hcDzveMcXL6JHbp4QxLdKTF1alkl46cBbe2cbBglpe+T2d84d7c+34oIHdbPMrun7CF/4X3IcBEH/+BXiGhPHn/z4wvAtVJzRaDS/tegkPWw/ujrsbABt7JefdOpz6iha2fDWwB/IO06fjdtut1H71NfVr+tEQ/SxAH0Xfnc+hW+0hhJiJTtE/3ulyopQyAZ3r5x4hRLeNRaWUy6WUY6WUYz09PfUQa3DSmp5O6QsvYj95Eh733D2gex3eVEROciWTLwvHK/ivpwZXG1ceSHiAvWV7WZ1jfMzw9q8/pbWpkdm3nhLuNvY2Xe36Dc9D4cAduygUgtevisPZVsk9X+yn0Vz4jOqmdu7+fB/eTjb8+4rYAXUJkrNFV2c+/jqIverEZYWFBbNvvYvG6ip2fG/8geb3Gd+TWpXKo2MfxcHK4cR1vwhXxl0YytFdpaTvKOnXS+gLrwcfxDY+npK//4P2vIE9GziT6KPoC4HOmTcBQJdKREKIWOBDYKGUsqrjupSy+Pif5cBKdK6gIYmmoYHCBx7AwtkZv1dfRVgMnN+0JKuO7d8fI2SUO7GzunrKLo+4nJHuI3ltz2vUtRmegFRy7CjJ639n9NwLu3aPEgIufhsc/eDbmwbUX+/hYM2bi+LJrWrm0W+Tz2l/vUYruf+rA1Q2tbP0+jG42Ble3lpv6org+1t1tWzm/7vLbf+oGEbMmMP+336mIk//jlEdVDRX8OaBNxnvM575ofO73B8zPwT/SBc2f3mUysIGo16CPgilEv/X/wOWlhQ+9BDaFuOfUAYz+ij6PUCEECJUCGEFLAJOqqAlhAgCfgRukFJmdLpuL4Rw7Pg7cD6QYirhBxNSq6XkqadRFRbh/9/XTVKwrCeaatv4fdlhHNxsmH3z8G6tOguFBc9Meoa6tjpe3mVYBqOqrZU1776Oo5sHk6/qoUysrStc/Sk0V8J3N3cpfGZKJg/z4Mn50fx+pJT3NmUN2D6Dndf/OMq2zEpeXDjCJAXLekTVCt9cpytcdvXnurpH3TDtuluwcXBkzbuvo1Hr//uXUvLcjudo17Tz94l/7/b9q1AIzrttBNb2Sn57/zAtjfr3mTUUpZ+fzl+flk7J3/8xJI2JPhW9lFIN3AusBdKAb6WUR4QQS4QQHWXrngHcgfdOCaP0BrYJIZKB3cBqKeXvJn8Vg4DKd96l4Y8/8Hr0UezGjBmwfdQqDWuWHaa9TcMFS0ZhY99zi7UY9xjujLuTNTlrWJu7Vu89tn71P2pKiph394NY29n1PNBvNFz0JuRtg7VPGfIyDOa2KaEsjPfjtXVH2XT03CtMtfZIKe/+mcXVYwO5etwA+uWlhFUPQfEB3cF7L81E7JycOe+Oe6nIy2HH91/rvcXKzJVsKdzCgwkPEurcc69he2dr5i8ZRXNdO2s/OIJ2AAveOc6YgeeDD1K/ejXVK1YM2D5nDCnloPsZM2aMPJuoXbVKpkZFy6Inn5JarXbA9tFqtHLdihT5zp0bZOb+Mr3mqDQquejXRXLKV1NkRXNFn+PzDh+Ur121QG74aKn+gq15UspnnaTctVz/OUbQ3KaW897YIkc9+7vMrmgc0L0GE4cLa2X039fIi97eKlva1QO72dbXdb/Ljf/Ue8qad1+X/7n6Ilmckd7n2MKGQjn+8/Hy1t9vlRqtRq/1U7cXy3fu3CD//DxtYD9fWq0sfOghmRodIxs2bRqwfQYKYK/sQaeaM2P7ScuhQ5Q89TS2Y8cMeLz8jp+yyNhdxoSFYQwbrV8ZAkuFJS9PfZkWdQtPbH0CjbbnGjJNtTWsefd1XH39mXrtTfoLdt4LEDkP1jwG6QNXMMrWyoLlN4zB0kLBzR/vpqpx6Mc/l9S1cNv/9uBqp+TDG8dioxzAePlD38L652DEZTD98T6HdzDz5sU4uLmz+u1XaW1s7HGcSqPi8S2P63oGJ76IQuinfmIm+5IwN4gjW4sHNJlKCIHvSy9hHR1N0SOP0pY5dCqpmhV9P1AVF1Nwzz1YengQ8NZbRvV+1ZdDfxZyYF0+I6f5M2ZeH02+TyHMOYynJzzNrpJdvHOw+5BIrUbD6jf/TWtDAxc++DhKaxv9N7CwhCs+0rlyvr8VCnYbJJ8hBLrZ8eFNYymrb+W2/+2lpX3oFj9rbFNz6yd7aWrT8NEt4/ByMuB3YijZm+CnuyFkKly61KASB9Z29ix44DEaKitZ8+5/eqwh8+89/ya5IpnnJz+Pn4OfQeJNXDiMyAne7Polm7SkgYvEUdjZEfjO2wgbG/LvWIyqtHTA9jqdmBW9kairqsi/9TZkaxsB77+HpZvbgO2VllTM1m8zCI3zYOqiSKOeGi6NuJTLIy7nw8MfsiF/Q5f7W7/6HwWph5lzxz14hYQZLqSVPVz7LTj5wxdX6Hy8A0RCkCtvLhpNcmEtD3x9AM0A1kY5U6g0Wu77cj8ZZQ28c+1oon0GLumOvB3w1bXgEak7fDWikYh/VAwzbrqd7P172Lnymy73f836la+Pfs1Nw29ibshcg9cXCsGsG2IIjHHlz8/Tydw3cOc0Sn9/gpYvQ1tfT8Edi9HUnf1ls82K3gg0jY0UHP+2D1y2FJtI03Tz6Y70HSVs/CydwGhXzr99BIp+9AB9asJTjHQfydPbnuZo9dET11O3bGTvrz8Sd/4CRkyfbbyw9h5w409g4wyfXgIlycav1QdzR/jw7IXDWZdaxrO/pAypSAmNVvLQNwf582gFLy4cyYyogakWCuh6An9xBTj5wQ0rwdbF6KXiz1/A8KkzSfruS47tTjpxPbkimed3PM84n3E8OOZBo9e3sFQw785R+IQ5sW7FEbL2D5yytxk+nIB336EtN5eCe+5B29o6YHudDsyK3kC0bW0U3nU3rRkZBLz1JnYJCQO2V1pSCRs+TSMgypUL7orFsp/+WSsLK/478784KB1Ysn4JhQ2F5BzYy9qlbxI4IpaZN93ef6FdguCmVWDtCJ8uhKL9/V+zB25ODGXJ9GF8vjOfF1elDQllr9VKnvjhEKsOlfDUBdFcO2EAI2zydsDnV4CDN9z0Kzh692s5IQRz7rgH3/BIVr/1KoWpKWTXZnPPhnvwsvPi1WmvYqnoXxllKxtLLrw3Du8QR9Z9eGRALXv7iRPxf+VftOzbT9FDDyPbBy7Ec6ARg/HDMXbsWLl37+ArdKlta6Pwvvto2roNv1dfxfnCBQOyj5SSA+vy2bEyi4BoVy64OxallekO4TJrMrnp95sIbnJlwmYr3PwCuerZ/+s9lNJQqnPg04uhqQqu/gzC+/Gk0AtSSl5YlcrH23NZPC2MJ+dHD2y26AAipeT5X1P5JCmX+2dH8LCJ+r52S9oq+OE2cA6Em37RWfQmoqWhnq+feYyGmir+nFJHjWM7n83/jEAnE3Q8O057i5pf306mNKeOaVdHMmrGwJXXqvnqK0qffwGHGTPwf+vNAT2L6w9CiH2yh8KRZoteT7QtLRTedRdNW7fh88LzA6bktVrJtu+OsWNlFhFjvbjwnjiTKnmAcNdw/hn2BKM2aWmwamfGQ/ebVskDuIXCbX+AWxh8eRUkd/XbmgIhBM9cOJwbJwWzfEs2r649elZa9lqt5LlfjvBJUi63TwnloTlGNnXXhz0r4NsbwHsk3LrWpEoewNbRiakP3ksDLYzdbMkr0f8wqZIHsLK15OIH4wkZ5cGWrzPY+VMWcoDOalyvuQaf556lcdMmCu+776ysdmlW9HqgaWigYPGdNO3che8//4nrlaZvBwi6SpSr3knm0MZC4mYFct6tI7BQmv5XlJ+STPK7/8PJ2Z31EytZknQ/xY1dqlr0H0cfuGU1BE2ClYth7dO6aogmRgjBcxeN4NoJQby3KYtnfzlyVh3QqjVa/vb9If63I487poby9IKYgXkqUbfrkqFWPwzhc3SWvL3pM7hz63K5a89DbJ5ci7O9K3veXE5xRprJ91FaWTD/zpEMT/Rl3+95ukTCloGph+S6aBE+zz9P0+YtFN5zL9rm5gHZZ6Awu276QFVaSsHiO2nLzsbvX/8aMEu+Ir+B35cfprG2jemLohg+xbRWVgdHd2zVxcr7+HH50y+Sqcrn7g13Y2dpxzuz3yHabQB6jqrbdZmzez6A0Glw+UfgYPrCdVqt5F+/p7N8SzYLYn15/aq4ga3TbgKa29U8+PVB1qWW8fB5kdw3K3xglHx9sa5URcEuSHwAZj2jC4s1MckVyTyw8QEkkmXnLcNP48Z3Lz1NU00NCx74G8PGTDD5nlJKDm0sZPsPmTh72jL/zlG4+dmbfB+A2u+/p+SZZ7EZMYLApe8PaKkTQ+nNdWNW9L3QevQoBYvvRNvYiP9bb+KQmGjyPbRaycE/8tn1Sza2jlbMu3MkPqGmr2Oi1WjY9vWn7PnlB/yihnPJ3/6OraMuZO9o9VHu3nA39W31PDf5ORaEDcyXGQe+0FmU1o6w8B2I6lrMyhQs25zF/61JZ3yIG+9dn4CHg+HhgqcDXS7AHlKL63n2ohHcNDlkYDZK+VH3/65ph4XvwsjLBmSbHzJ+4OVdL+Nt5827c94lzFkXpttUW8OP/3qO8pwsJl1xLZMuX4QwcStCgKKjNaz9MIX2Vg2TLxvGqOkBiH5EqfVEw4YNFD3yKJaengQuW4Z1WM9lHE4nZkVvBHWrVlPyj39g4ehI4PJl2ESb3tKtKW1i0xdHKT5Wy7DRnsy4Lhobh55r1xhLfWUFa99/g/yUZOLOX8DMm27HwvLkfSpbKnl086PsK9vHoqhFPDTmIeyUJvbbA5Slwo+LoewwjL5Bl1VrZ/ochJ8PFvHY94fwcLBm2Q1jBrYImBEcyK/hrs/309Cq4u1rRzMrun8RL93SWK57kjr8HfiPgUuXg0e46bdpb+SVPa/wU+ZPJPol8sq0V3C2Pvn/W9XexvoP3iV1y0ZCR4/l/Dvvx8HV9L/3pro2/vwsnbyUKgJjXJl+bRTOnqZ/H7ckJ1Nw193I9nb8XvkXjrMHJtjAEMyK3gC07e2Uv/oaNZ99hu2YMfj/93WUXqaNY1a1adj7Wy4H1+ejtLZgypURRE30Mfkju5SSwxvXsfmzD5Fayaxb7mTkzPN6lkur4o19b/Bp6qcEOgbywuQXGOszAN0f1W3w5z8h6W1dzP15z0P89SZvOH2osJY7P9tHTXM7/7hwONeO///2zjw4ruLO459+c+qY0X3bsixbyDK+8IkNJsacdrhcsCzZTWJgAyThSLZCbTiqKFPUBgi7W+s/2GQdwxYkLIT7SMDgJRAMxtgGX7Jly5JsIeu0ZEkjaTTn6/3jPcmSrJFla+QZK/2p6umeN6/ffOf3+v1ev+6e7sKYj8iRUvLc50d46oOD5LidbFy7kLK8KP8ZSg/Dzufh4ycg6IXLHoTlD45LU80X9V+w7st1tHhb+NHsH/HTuT/Fog3fXCalZPdHf+az3z+P1W5n5R33MOPSFeNS7vdvaWDrG1XoYcn8awqZf80UrFEe1BCsr+fYz36Or7ycjLvuIuuB+xG26FfURoty9KPEV1FBwy8fwl9ZSfratWQ/+IuonrhwUGf/5/Xs/KCWXk+AGUtzWbpmOonu6A/Xqj9UwWd/eJ6GygomXziHa378ACnZuaPKu7NpJ49tfYy6rjpWT13NA/MfoCB5pEXFzpKmcnj/QWMFo5xZcPmjRnNOFC/8li4fv3h1D1sOt3LVzByevnkO6UmxGR7X1Onjkbf28ZeDLVw9M4dnbplLSmIUHYOuQ8U7xk20tRKKV8Dqf4PM6I/gqfXUsv6b9Wyu3UxxSjFPXPIEc7LmjCrviYZjfPib9f1l8zvfv5Oc4nF40mj3s/WNwxze2UJymoOFq4uYsSwPiyV6FQrd76f5X39Fx6uv4pw1i/ynnsQxPfq/ZTQoR38a9N5e2jY+R+uGDVhSU8h74glcK1ZE7fi+niAVXzSy95M6utv95JeksnTNNHKLo9+c0Hj4ENvfeZ2qHV+SlJbOJbd+n1krrjzjNlFv0MvGfRt58cCL6FLn1tJb+cHMH0Tf4UsJ5W8YzulENeTNg6X3wcwbwRodh6zrkue/OMLTmw7ictp4eNUMblkw6ZzV7nVd8seddfzqzxUEdZ2Hrp3B2mVF0fv+oM+w4bb/guZyyJph3DTLro/qTRMMB//i/hd58/Cb2Cw27ph1B3fOuhOH5cz6QXQ9zN7Nm9j62kv0dnkoXbqcRTfcPC4Ov76ynW1vV9NU48Gd6WTOysmULc3DnhC9JxzPpg9pWrcO3esl8957Sb/j9nM+3l45+ghIKenatInmZ54h1NCI+7rryHn0EaxpaVE5dmN1J4e+aqJyezMhf5j8klQWfreISaVpUXUyAV8vVTu2seej92morMCRmMSC797EwuvWYHOObSKspp4mnt39LH+q/hM6OlcUXsHNJTezJG/JmP/lOIhwCPa8DF/8J7RVQXIuXPSPMPvvILssKl9xsMnDo2+V83VtO4uK0nhoVRkLpoz9XI/E1upWnvrgIHuPdbK0OIOnbp7NlIwojQhpqYA9r8Dul6DnOGSVwaX/DLNvgQjNJ2dDUA/yZcOXvF75Op/WfYpVs7Jm+hp+Mu8nZCZkjunYfq+XHe++zjcfvEfQ18vkmbOZc9Uqpi1YfGYT650GKSW15W18/cFRmmo82JwWShfncsHiHHKLU6LSaRtqbaXp8cfp2vx/2AoLyfnlv5C8cuU5q1AoRz8EGQ7j2bSJtg2/w3/oEI6yMnIfeZjERYvGdNxQIEz94Q6+LW/jyN5Wutp8WO0a0xdkM2flZLImu6L0C8Dr6aR27y5qvtlB1c5thPx+UnJymb/qBmZdfhV2Z0LUvgsMh//ywZd5vfJ1PAEPGc4MrppyFZcWXMqi3EXR67jVdaj+GL76LVT/BaRuNOtceBNMW2nU+MfgxHRd8trXdfx60yHaegKsKM3i/pXTmV8YvZuvlJKt1W1s+KyGv1YeJz/FyYPXlLLmooKxfYceNtboPfwRVH5odGgLC5RcDUvuMZpqovQbvEEv25u2s+XYFjbXbqbd306aI41bS2/lthm3jdnBD8Xv7WHfxx/yzab36Go9jj0hgekLL6boooVMmT2PRHf0nn6bj3jY+0kdNbuOEwrquNKdTF+YTeGFGeQVp4z5vyvdn39B85NPEqiuxnnhhWTcczeuK8/8qfpMGbOjF0JcC6wHLMBGKeVTQz4X5uerAS9wu5Tym9HkHY7xcvSB2lo63n6bznfeIdTQiH3aNDLvvgv3dded8fquUkp6Ovy01HbRfNRDy1EPTdWdhII6FpvGpNI0ShZmM3VeFnbn2Gq+QZ+P9qYGmmuqaKw6RFNVJce/PQpSkuByU7JkGWXLL6fggrJxL0z+sJ8tx7bwXvV7bG3Yii/sw6pZmZs1lzmZc5iRPoOyjDIKXYURO+VGTXcL7H/LGDVybIexzZliTKU7aSHkzTUc/1mM2unxh3jhy6Ns+KyGDm+Qsjw3/7CkkFWzcs96OGZTp48Pyhv54446DjZ1kZls567lxaxdVnR288j3tEHjbmO+oPqvjb4MX4fh3Ccvhpk3waybx/yfhGA4SF13HQfbDrKvdR/7WvdxoO0AQT1IgjWB5QXLuX7a9VySfwk2y/h2Nkpdp+5AORWff0LV9i/x9XSDEGQXFZN/wQyyp04jZ+p00gsmYx1j/1nAF+LInlYqtzdzrOIEui6x2jTySlLJneomq9BFVqGLpFTHGd+gZTBIx9tv07ZxI8Hab7FNnkzKTTeScuNN2CeNQ38XY3T0QggLUAlchbFQ+A7ge1LKAwP2WQ3cj+HolwDrpZRLRpN3OKLh6GUgQKC2Fn91Nd6dX9OzdSuBmhrQNJKWLSP172/FdcUVgxyjlJJQQCfoD/cHf0+QHo8fb2cAb2eA7nYfHS29dDR7CfqNudA1TZAxKZncaSlMmZVBQUlqxB5+XQ8TCgQI+f2EAgGCAT9Bn4/eLg+9nk68nk56PZ30dHbQ2dxEe1MDPe0n+vM7kpLInXYB+ReUMfWiBeQUT0eL4mP6meAP+9nVsoutDVvZ3ridyvZKgrqxdqhVWMlLzqMguYCC5AJyknJIdaSS6kglxZ5CijMFl82Fw+IwgtWIIy5G0X0cjvzVmDf96BZoP3rys6RsSJsCqVMgrQhSCiAx07gBJGYY69vaEsDqBIt9UK232x/ind31/GHbt1Q0ehAC5k1OZXlJFrMLUrgw302O24llyKN9MKzT2OGjsrmLHbUn2H7kBLu+7QBgZp6b2y8p4oa5+YMdvJTGiKNADwS6jdjXCd3NRuhqgq5GaKuGtsPQ234yb2YpTFpkzBk07XLjNw2DlJKQDOENeukN9dIT7KEn2IM35KUr0EVrbyvHvcdp87XR7G2mzlNHfXc9YWmUZafFycyMmczNmsuygmXMz56P3RKbzmtdD9NcU0Xtnl3Ulu+muaaaoM9cvFsIktMzSM3OJSU7B1dmFgkuN85kFwnJLpwuF47EZGwOBxabDavdjtVuj3itBHpDNBzuoO7gCY4dbKe9sYc+1+hItOLOTMCd4cSdmYArw4kz2UZCsg1nsh1nkg2rXcNq17BYtUE3BRkK0fXRR7S/+hrebduM45WUkLRsKQnzF+CYPg17YWFUBn2M1dEvBdZJKa8x3z8MIKV8csA+/w18KqV82Xx/CFgBFJ0u73CcraNf/70fImUYycDfJAEBAuMC7z8Jkr7dpJmW/duG5u/7nWbQjPmxhRBoFsPRG9n6DigHHAtz7hVJKBBEH8UUAJrFQqI7hZScXFJz8knLyyc1N4+sKcWk5eXHfIhgJIJ6kJqOGg60HaDWU0t9d31/OOE7cfoDYKyI5bQ4sWpWNKEhEEYsjFjDTEvQ9AAiFDD+CKQHjXZ+PTj49A1FmC9Co79cmEgJuhlLOfgwov+FU8pIf9EaEA/e42S5OK04zQKaDSw246ZksYPVgRQaYRk2gh4+NT1g2+nQhEaGM4PMhEwK3YVMcU+hyF1ESVoJ01OnR7fvJYpIXae9qZHmI1WcqD+Gp6WJzuPNdLY0091+4uT1NwKaxYLFZsditSKEQGhGeRJCQH9aAyGQYWkUqbCOHoZwWEcPy5FPIRjFyiwMp1ypum74g76yMMA9gcCi2bn/f//nzI3DyI5+NGe0AKgb8P4YRq39dPsUjDJvn8i7gbsBCgvPbmrWBJsLHdl/ArFaETYbms1mGN28CgUDY9PEmkCzaGiWk7HFoqFZNWx2C1a75eTdWjDA2Q44xgBvMOi7zA+tNhtWuwOrw9Ffw7DZHVgdThJcbhLdbhLcKTgSk+LWmY+ETbNRml5KaXrpKZ8F9SCd/s7+0OHvoDvYjT/sJxAO4A/78Yf8Rhz2E9JDSCS61NGlPjgtJTp6//tBl5PUjVpz2G9MvRA2gwwbbdx62EzrRmxkGuS8BaBLSTAcJhSShKWOroMxfY7xbZomsGoaVouGzaqhDSoPfUeh74o3gmY1HLnFaqathlO3OsHmBIuDUz3DSazCikWzYBFmGC6tWbAKK4m2RBKtiSTZkvrTLruLjIQM0hxpY29WiwFC00jPLyA9/9SmD10P4+/poberC1+3h96uLvzeHuPpORAgHAwQCgYIB4OEAn7CoZDpa3WkLpFmuRqc1vvXXO1HSsIh3QwS3UxL3ej/MfJLo3j1rbQlB0ZmpVJKZDAEoRAyHDb2lXLcbrKjOepwRW/oPS3SPqPJa2yUcgOwAYwa/Sh0ncLdLz57NtkU5wCbZiMzITPqnXgKBYCmWUhwuc1pPcanDfx8ZjSO/hgwcI7RScDQqQ4j7WMfRV6FQqFQjCOjGaKxAygRQkwVQtiB24B3h+zzLvBDYXAx0CmlbBxlXoVCoVCMI6et0UspQ0KI+4APMYZIPi+l3C+E+LH5+W+B9zFG3FRhDK+8Y6S84/JLFAqFQjEsf5N/mFIoFIqJhlpKUKFQKP6GUY5eoVAoJjjK0SsUCsUERzl6hUKhmODEZWesEOI4UHuW2TOB1ijKGS+UzuhzvmhVOqPL+aITxlfrFCnlsDPcxaWjHwtCiJ2Rep7jCaUz+pwvWpXO6HK+6ITYaVVNNwqFQjHBUY5eoVAoJjgT0dFviLWAUaJ0Rp/zRavSGV3OF50QI60Tro1eoVAoFIOZiDV6hUKhUAxAOXqFQqGY4EwYRy+EuFYIcUgIUSWEeCjWeoYihDgqhNgnhNgthNhpbksXQmwWQhw24+EXAh1fXc8LIVqEEOUDtkXUJYR42LTxISHENTHWuU4IUW/adLe5dnGsdU4WQnwihKgQQuwXQvzM3B5XNh1BZzza1CmE2C6E2GNqfdzcHm82jaQz9jbtWyrrfA4YUyBXA8UYi53sAWbGWtcQjUeBzCHbfg08ZKYfAp6Oga7LgPlA+el0ATNN2zqAqabNLTHUuQ54cJh9Y6kzD5hvpl1Apaknrmw6gs54tKkAks20DfgKuDgObRpJZ8xtOlFq9IuBKilljZQyALwC3BhjTaPhRuAFM/0CcNO5FiCl/AwYunJ3JF03Aq9IKf1SyiMY6w8sjqHOSMRSZ6OU8hsz3QVUYKxtF1c2HUFnJGJpUyml7Dbf2swgiT+bRtIZiXOmc6I4+kiLk8cTEvhICPG1uRA6QI40VuLCjLNjpm4wkXTFo53vE0LsNZt2+h7d40KnEKIIuAijZhe3Nh2iE+LQpkIIixBiN9ACbJZSxqVNI+iEGNt0ojj6US9CHkMukVLOB1YB9wohLou1oLMg3uz8G2AaMA9oBP7d3B5znUKIZOAN4OdSSs9Iuw6z7ZxpHUZnXNpUShmWUs7DWHd6sRBi1gi7x0xrBJ0xt+lEcfSjWcA8pkgpG8y4BXgL4xGtWQiRB2DGLbFTOIhIuuLKzlLKZvPC0oHfcfKxN6Y6hRA2DOf5kpTyTXNz3Nl0OJ3xatM+pJQdwKfAtcShTfsYqDMebDpRHH1cL0IuhEgSQrj60sDVQDmGxrXmbmuBd2Kj8BQi6XoXuE0I4RBCTAVKgO0x0Af0X9x9rMGwKcRQpxBCAM8BFVLK/xjwUVzZNJLOOLVplhAi1UwnAFcCB4k/mw6rMy5sOt490ecqYCxOXonRc/1orPUM0VaM0bu+B9jfpw/IAD4GDptxegy0vYzxOBnEqGH800i6gEdNGx8CVsVY5++BfcBejIsmLw50Xorx+L0X2G2G1fFm0xF0xqNN5wC7TE3lwGPm9nizaSSdMbepmgJBoVAoJjgTpelGoVAoFBFQjl6hUCgmOMrRKxQKxQRHOXqFQqGY4ChHr1AoFBMc5egVCoVigqMcvUKhUExw/h8GVTBWYxWO6wAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"### Output Mode 1\n\nAs said, the data set splitting and the calculation of the symmetry function values takes place here. Among general information of your data set and your SFs, you find explicitly how the data set is splitted. As shown in the example below, it is written what happens to each structure (called ``Point``) and if it goes to the training or test set and which number it has there. ``mode 1`` will prepare the necessary files for ``mode 2``:\n* training data\n - function.data: SF values for each atom in each structure\n - trainstruct.data: structural information\n - trainforces.data: force information (if force fitting is used)\n \n\n* test data\n - testing.data: SF values for each atom in each structure\n - teststruct.data: structural information\n - testforces.data: force information (if force fitting is used)"},{"metadata":{},"cell_type":"raw","source":" -------------------------------------------------------------\n Maximum number of atoms: 128\n -------------------------------------------------------------\n Calculating Symmetry Functions\n for 8073 structures\n -------------------------------------------------------------\n 1 Point is used for training 1\n 2 Point is used for training 2\n 3 Point is used for training 3\n 4 Point is used for testing 1\n 5 Point is used for training 4\n 6 Point is used for training 5"},{"metadata":{},"cell_type":"markdown","source":"**RuNNer** ends without any problems, if at the end of the ouput file the following lines are written:"},{"metadata":{},"cell_type":"raw","source":" Normal termination of RuNNer\n -------------------------------------------------------------"},{"metadata":{},"cell_type":"markdown","source":"### Short quick example of SF calculation\n\nTo clarify how the SFs represent the atomic environment for an atom. Let's have a look at this simple structure with three Cu atoms below:"},{"metadata":{},"cell_type":"raw","source":"begin\natom 0.00000000 0.00000000 0.00000000 Cu 0.00000000 0.00000000 -0.00000000 -0.00000000 0.00000002\natom 0.00000000 0.00000000 6.72752138 Cu 0.00000000 0.00000000 0.00000000 0.00000000 -0.00000004\natom 2.34735543 -1.35524733 3.36375974 Cu 0.00000000 0.00000000 0.00000000 -0.00000134 0.00000003\nenergy -0.4746414926841609\ncharge 0.0\nend"},{"metadata":{},"cell_type":"markdown","source":"Here we define the atomic positions as vectors, calculate the distances and angles for the SFs. Finally, we will end up with the SFs vector for the first Cu atom. We use the 13 SFs, which were introduced in the section above \"RuNNer Mode 1\"."},{"metadata":{"trusted":true},"cell_type":"code","source":"# Define atomic positions as vectors\nd1 = np.array([0.0, 0.0, 0.0])\nd2 = np.array([0.0, 0.0, 6.72752138])\nd3 = np.array([2.34735543, 1.35524733, 3.36375974])\n\n# Define distance vectors\nd12 = d1 - d2\nd13 = d1 - d3\nd23 = d2 - d3\n\n# Define angles\na123 = np.dot(d12, d13) / (np.linalg.norm(d12) * np.linalg.norm(d13))\na213 = np.dot(d12, d23) / (np.linalg.norm(d12) * np.linalg.norm(d23))\na312 = np.dot(d13, d23) / (np.linalg.norm(d13) * np.linalg.norm(d23))\n\n# Calculate radial symmetry function values\nfor eta in [0.000, 0.006, 0.016, 0.040, 0.109]:\n value_sf = 0\n for d in [d12, d13]:\n d = np.linalg.norm(d)\n value_sf += fc.radialSF(d, eta)[0]\n print(value_sf)\n\n# Calculate angular symmetry function values\nfor Lambda in [1, -1]:\n for zeta in [1, 2, 4, 16]:\n for a in [a123]:\n value_sf = fc.angularSF(a, np.linalg.norm(d12), np.linalg.norm(d13), np.linalg.norm(d23), 0.0, Lambda, zeta)[0]\n print(value_sf)\n ","execution_count":14,"outputs":[{"output_type":"stream","text":"1.1182423115740479\n0.9463318326255568\n0.7253600030997174\n0.40425285668735783\n0.09616369636385737\n0.411992195819298\n0.4119731729121053\n0.41193512973271224\n0.41170694441910877\n1.9023785577599554e-05\n8.78384860610243e-10\n1.872667361071411e-18\n1.7583909381106493e-70\n","name":"stdout"}]},{"metadata":{},"cell_type":"markdown","source":"## RuNNer Mode 2\n\nIn ``mode 2``, the magic happens and your data will be fitted. The part below of the ``input.nn`` defines how the fitting in ``mode 2`` has to take place. ``epochs`` define how often **RuNNer** will loop over the training data to optimize the weights and biases of the NN, ``fitting_unit`` defines in which unit the output will be presented in ``mode 2``, all other files and units will stay in ``bohr`` and ``Hartree``. ``precondition_weights`` effects the initial weights and biases of the NN. In the second part, there are some parameters for the Kalman-Filter, ``repeated_energy_update`` repeats the energy update after a force component update, to increase the impact of the energies. This is slower in general, but might be necessary, since there a many more force components than energies. ``mix_all_points`` mixes the order of the training points for each epoch to improve the training. Often, the ranges of the symmetry functions are rather different in their order of magnitude and thus a rescaling of SFs can be advantageous numerically stated by ``scale_symmetry_functions`` keyword. Together with that, a centering of the SF average value to zero is performed for numerical reasons, since zero is the non-linear center of most activations functions. ``short_force_fraction`` defines how much of the force components is randomly used for training the NN. The last part, defines to write certain files for each epoch, to analyze it in a later stage. There are many other keywords and options to present. However, you got an idea how **RuNNer** works and what to do to fit your first NNP. In the next part, first steps for analyzing the fit are presented."},{"metadata":{},"cell_type":"raw","source":"### fitting (mode 2):general inputs for short range AND electrostatic part:\n\nepochs 10 # number of epochs\nfitting_unit eV # unit for error output in mode 2 (eV or Ha)\nprecondition_weights # optional precondition initial weights\n\n\n### fitting options ( mode 2): short range part only:\n\nshort_energy_error_threshold 0.10000 # threshold of adaptive Kalman filter short E\nshort_force_error_threshold 1.00000 # threshold of adaptive Kalman filter short F\nkalman_lambda_short 0.98000 # Kalman parameter short E/F, do not change\nkalman_nue_short 0.99870 # Kalman parameter short E/F, do not change\nuse_short_forces # use forces for fitting\nrepeated_energy_update # optional: repeat energy update for each force update\nmix_all_points # do not change\nscale_symmetry_functions # optional\ncenter_symmetry_functions # optional\nshort_force_fraction 0.01 #\n\n\n### output options for mode 2 (fitting):\nwrite_trainpoints # write trainpoints.out and testpoints.out files\nwrite_trainforces"},{"metadata":{},"cell_type":"markdown","source":"During the fitting process of the NN, the error function $\\Gamma$ is minimized, which is defined as \n\\begin{equation}\n \\Gamma = \\frac{1}{N_\\mathrm{struct}} \\sum_{i}^{N_\\mathrm{struct}} (E_{NN}^{i} - E_{Ref}^{i})^2 = RMSE(E),\n\\end{equation}\nif only energy fitting is used, which defines simultaneously the root-mean squared error of the energies $RMSE(E)$. This defines the differences of the reference data and the NNP predictions. During the epochs, the error decreases as you can see in the part of ``mode2`` output."},{"metadata":{},"cell_type":"raw","source":" -------------------------------------------------------------------------------\n RMSEs (energies: eV/atom, forces: eV/Bohr):\n --- E_short: --- - time -\n /atom min\n epoch train test\n ENERGY 0 0.486020 0.481254 9.86\n FORCES 0 0.543702 0.502894\n -------------------------------------------------------------------------------\n ENERGY 1 0.039459 0.039840 19.05\n FORCES 1 0.201312 0.174885\n INFORMATION USED FOR UPDATE (E,F) 1 1998 45\n -------------------------------------------------------------------------------\n ENERGY 2 0.024635 0.026306 19.14\n FORCES 2 0.132738 0.123616\n INFORMATION USED FOR UPDATE (E,F) 2 5565 112\n -------------------------------------------------------------------------------\n ENERGY 3 0.022316 0.024581 19.13\n FORCES 3 0.120274 0.111427\n INFORMATION USED FOR UPDATE (E,F) 3 6033 131\n -------------------------------------------------------------------------------\n ENERGY 4 0.021333 0.023145 19.16\n FORCES 4 0.113496 0.105447\n INFORMATION USED FOR UPDATE (E,F) 4 6132 142\n -------------------------------------------------------------------------------\n ENERGY 5 0.022327 0.023597 19.13\n FORCES 5 0.113152 0.102596\n INFORMATION USED FOR UPDATE (E,F) 5 6064 137\n-------------------------------------------------------------------------------\n ENERGY 6 0.021007 0.022555 19.15\n FORCES 6 0.102685 0.094464\n INFORMATION USED FOR UPDATE (E,F) 6 6094 168\n -------------------------------------------------------------------------------\n ENERGY 7 0.021018 0.022213 19.15\n FORCES 7 0.098023 0.097181\n INFORMATION USED FOR UPDATE (E,F) 7 6226 158\n -------------------------------------------------------------------------------\n ENERGY 8 0.020692 0.022248 19.15\n FORCES 8 0.095995 0.097202\n INFORMATION USED FOR UPDATE (E,F) 8 6186 183\n -------------------------------------------------------------------------------\n ENERGY 9 0.020880 0.022219 19.16\n FORCES 9 0.094960 0.095833\n INFORMATION USED FOR UPDATE (E,F) 9 6122 176\n -------------------------------------------------------------------------------\n ENERGY 10 0.021217 0.022457 19.41\n FORCES 10 0.097554 0.094895\n INFORMATION USED FOR UPDATE (E,F) 10 6226 203\n =============================================================\n Best short range fit has been obtained in epoch 7\n --- E_short: --- --- F_short: ---\n train test train test\n OPTSHORT 0.021018 0.022213 0.098023 0.097181\n -------------------------------------------------------------\n max Eshort error in last epoch (train set): 0.281291 eV/atom (structure 788 )\n max Eshort error in last epoch (test set) : 0.261851 eV/atom (structure 253 )\n -------------------------------------------------------------\n Total runtime (s) : 12095.013\n Total runtime (min): 201.584\n Total runtime (h) : 3.360\n Normal termination of RuNNer\n -------------------------------------------------------------"},{"metadata":{},"cell_type":"markdown","source":"A first and simple plot to anlyze the progress of the fitting procedure, is to show the RMSEs over the epochs. Here, you can easily identify overfitting, if the training $RMSE$ is much lower than the test $RMSE$, for example.\nAnyhow, the $RMSE$ is a rather strong reduction of the really complex potential energy surface (PES) and can only be understood as a rule of thumb for the quality of the NNP fit."},{"metadata":{"trusted":true},"cell_type":"code","source":"# Load here an example fit\n# Use results of the workshop participants\nfit2 = fc.RuNFit('runner_fit/fit_hdf5/fit', 9)\n#fit2 = fc.RuNFit('MH-df4-2', 7)\nfigRMSE = fit2.plot_rmse()","execution_count":15,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABC8klEQVR4nO3deXyU1fX48c8hRBIQ2fd9U0kQAiKICg0ubKIobmBVFFvqry5AbavWarXtt9UWFa0IuEYUAUVQEURcUERAAUVk34Ww71sSyHJ+f9yZZBImySSZyUyS8369nlfmzvPMPHcmkzl57nKuqCrGGGNMXpXCXQFjjDGRyQKEMcYYvyxAGGOM8csChDHGGL8sQBhjjPGrcrgrEEx169bVli1bhrsaxhhTZixfvvyAqtbzt69cBYiWLVuybNmycFfDGGPKDBH5Jb991sRkjDHGLwsQxhhj/LIAYYwxxq9y1QdhjCl/0tPTSU5OJi0tLdxVKdNiYmJo2rQp0dHRAT8mpAFCRPoBzwNRwKuq+lSe/eLZPwBIAe5U1R88+7YBx4FMIENVu4ayrsaYyJScnEz16tVp2bIl7ivDFJWqcvDgQZKTk2nVqlXAjwtZE5OIRAHjgP5AHDBUROLyHNYfaOfZRgDj8+zvraoJFhyMqbjS0tKoU6eOBYcSEBHq1KlT5KuwUPZBdAM2qeoWVT0NTAUG5TlmEDBJnSVATRFpFMI6GWPKIAsOJVec9zCUAaIJsMOnnOy5L9BjFJgnIstFZER+JxGRESKyTESW7d+/v+i1TE+Hf/8b5s0r+mONMaYcC2WA8Beu8i4+UdAxl6pqF1wz1L0i0svfSVT1ZVXtqqpd69XzOxmwYJUrw3//C++/X/THGmMqhKioKBISEujQoQPXXHMNR44cAWDbtm2ICI899lj2sQcOHCA6Opr77rsPgPXr15OYmEhCQgLt27dnxAj3/+5XX31FjRo1SEhIyN4+//zzM87dsmVLLrjgguxjHnjgAQCSkpLYtWtXSF93KDupk4FmPuWmQN5Xk+8xqur9uU9EZuKarBYEvZYiEB8Pa9YE/amNMeVDbGwsK1asAGDYsGGMGzeORx99FIDWrVvz8ccf849//AOA9957j/j4+OzHPvDAA4wePZpBg1wL+88//5y9r2fPnnz88ceFnn/+/PnUrVs3131JSUl06NCBxo0bn3F8ZmYmUVFRRXuRfoTyCmIp0E5EWonIWcAQ4KM8x3wE3CHOxcBRVd0tItVEpDqAiFQD+gCrQlbT+HhYvRpsdT1jTCF69OjBzp07s8uxsbG0b98+O83PtGnTuPnmm7P37969m6ZNm2aXL7jgghLXYfr06Sxbtoxf//rXJCQkkJqaSsuWLfn73//OZZddxnvvvVfic0AIryBUNUNE7gM+xQ1zfV1VV4vIPZ79E4A5uCGum3DDXO/yPLwBMNPTqVIZeEdV54aqrsTFweHDsGcPNLI+cmMi1qhR4PlPPmgSEmDs2IAOzczM5IsvvuDuu+/Odf+QIUOYOnUqDRs2JCoqisaNG2c3/4wePZrLL7+cSy65hD59+nDXXXdRs2ZNAL755hsSEhKyn+f999+nTZs2Z5y3d+/e2VcEw4YNY/To0bz44ouMGTOGrl1zBnnGxMSwcOHCwF97IUI6D0JV5+CCgO99E3xuK3Cvn8dtATqFsm65eC8H16yxAGGMOUNqaioJCQls27aNCy+8kKuuuirX/n79+vHYY4/RoEEDbrnlllz77rrrLvr27cvcuXP58MMPmThxIj/99BNQsiYmf/Keu6RsJjXkBIjVq+GKK8JbF2NM/gL8Tz/YvH0QR48eZeDAgYwbNy67sxjgrLPO4sILL+SZZ55h9erVzJo1K9fjGzduzPDhwxk+fDgdOnRg1arQtJhXq1YtqM9nuZgAGjSA2rVdgDDGmHzUqFGDF154gTFjxpCenp5r34MPPsjTTz9NnTp1ct0/d+7c7GP37NnDwYMHadIk74j/oqtevTrHjx8v8fMUxK4gwI1kiouzAGGMKVTnzp3p1KkTU6dOpWfPntn3x8fH5xq95DVv3jxGjhxJTEwMAP/9739p2LAh69atO6MP4q9//Ss33njjGc/h2wfRsWNHJk2axJ133sk999xDbGwsixcvDvKrdETL0cidrl27arEXDLrnHnj3XTh40AUMY0xEWLt2Le3btw93NcoFf++liCzPL52RNTF5xcfnjGQyxhhjASJbnCePoDUzGWMMYAEih+9QV2OMMRYgstlIJmOMycUChJeNZDLGmFwsQPjyJu0rRyO7jDGmuCxA+LKRTMYYPyzdt8mdcsNyMhljPMpauu9gsSsIX96hrjaSyRiTj0hN9718+XJ+9atfceGFF9K3b192795d4vNYgPBlI5mMiXyJiZCU5G6np7vy22+7ckqKK0+b5spHj7ryjBmufOCAK3uT6RWxOdmb7vvaa6/Ndb833XdycnJ2um8vb7rv/v3789xzz2U3T0FOum/vtnnzZr/n7d27d/Yxzz33HDfeeCNdu3Zl8uTJrFixgsqVK3P//fczffp0li9fzvDhw7OvcErCmph8eVeXswBhjPER6em+169fz6pVq7LrlZmZSaMgNJNbgMgrLs7lZFK1nEzGRKKvvsq5HR2du1y1au5yjRq5y3Xr5i43bBjQKSM93beqEh8fH/SkfdbElJeNZDLG5CNS032fd9557N+/PztApKenszoILSEWIPLyHclkjDF5+Kb79hUfH8+wYcPOOH7evHl06NCBTp060bdv3+x033BmH8T06dP9ntO3D+KOO+4AyE73nZCQQGZmJtOnT+ehhx6iU6dOJCQksGjRohK/Vkv3nZd3XeqxY2HkyKDUyxhTfJbuO3gs3XdJeUcy2VBXY0wFZwEiLxvJZIwxgAUI/7wBohw1vxljTFFZgPAnLg6OHLGRTMaYCs0ChD82kskYYyxA+GUBwhhjLED4Vb++jWQyxmSLpHTfixYtYtu2bbzzzjshf90WIPyxkUzGGB/eVBurVq2idu3ajBs3LnufN923V37pvlesWMHatWu5//77s/f17NmTFStWZG9XXnml3/PPnz8/+5hLLrmkwACRkZFR0pebzXIx5Sc+HqZOtZxMxphcevTowcqVK7PLvum+u3btmp3u27uYTyjSfT/88MOsXbuWhIQEhg0bRq1atZg9ezZpaWmcPHmSL7/8ssTnAAsQ+fMdyWSLBxkTEUbNHcWKPSuC+pwJDRMY229sQMd6033ffffdue73pvtu2LBhdrpvb4Dwpvu+5JJL6NOnD3fddRc1a9YEclJteL3//vu0adPmjPP27t2bqKgoqlSpwnfffcdTTz3FmDFjsq9ckpKSWLx4MStXrqR27dpFfxPyYQEiP7a6nDHGI9LTfQNcddVVQQ0OYAEif74BIp92QWNM6Qr0P/1gi/R03wDVqlUL+nOGtJNaRPqJyHoR2SQiD/vZLyLygmf/ShHpkmd/lIj8KCKFh9hgq18f6tSxkUzGmGyRku7bN9V3KIUsQIhIFDAO6A/EAUNFJC7PYf2Bdp5tBDA+z/6RwNpQ1THbunUwd27u+0RcP4SNZDLG+AhHuu+8OnbsSOXKlenUqRPPPfdcyV9UPkKW7ltEegBPqGpfT/kRAFX9t88xE4GvVHWKp7weSFTV3SLSFHgT+D/gD6o6sLBzFjvd94AB7kph69bcI5b+3/9zI5kOHbKRTMaEiaX7Dp5ISvfdBNjhU0723BfoMWOBPwNZBZ1EREaIyDIRWbZ///7i1XTsWPjuuzODQHy8G8m0e3fxntcYY8qwUAYIf/9y571c8XuMiAwE9qnq8sJOoqovq2pXVe1ar1694tQTzj3XrQORV5ynRcz6IYwxFVAoA0Qy0Myn3BTYFeAxlwLXisg2YCpwuYi8HbqqAhs3wk03uWYmL8vJZIypwEIZIJYC7USklYicBQwBPspzzEfAHZ7RTBcDR1V1t6o+oqpNVbWl53FfquptIawrxMbCN9/AWp8+ce9IJgsQxpgKqNB5ECIyizObho4Cy4CJqprm73GqmiEi9wGfAlHA66q6WkTu8eyfAMwBBgCbgBTgruK+kBJr2hSSk6Gyz1viHclkTUzGmAookIlyW4B6wBRP+RZgL3Au8Apwe34PVNU5uCDge98En9sK3FvQyVX1K+CrAOpZct7gcOIEnH22u205mYwxFVQgTUydVfVWVZ3l2W4DuqnqvUCXwh5c5tx0E1x3XU7ZRjIZU+FZuu/81ROR5t6C57Y3KcjpkNQqnPr3dwHCOz/E21FtzUzGVFhlKd13MAUSIB4EForIfBH5CvgG+JOIVMNNZCtfhg+H++7LaU7yDnW1jmpjDC7d986dO7PLvum+gex0316hSvftnYX93HPPkZmZyZ/+9CcuuugiOnbsyMSJE0t8DgggQHj6EdoBozzbeao6W1VPqurYoNQi0mRkwEcfQVqajWQyJsIkJiWStCIJgPTMdBKTEnl7pRsFn5KeQmJSItNWTQPgaNpREpMSmbF2BgAHUg6QmJTIrPUumd6eE3uKdG5vuu9rr7021/3edN/JycnZ6b69vOm++/fvz3PPPZfdPAVnptrYvHmz3/P27t2bhIQEunfvDsBTTz2VffUxevRoXnvtNWrUqMHSpUtZunQpr7zyClt9h+wXU6DZXC8EWnqO7ygiqOqkEp89Un31FQwa5Dqnb7nFNTNZE5MxFVakp/ueN28eK1euzM7ldPToUTZu3EirVq2K+lJzCWSY61tAG2AFkOm5W4HyGyAuvxxmz4Y+fVw5Ls5GMhkTIb6686vs29FR0bnKVaOr5irXiKmRq1y3at1c5YZnNwzonJGe7ltV+d///kffvn2D+ryB9EF0BS5V1d+r6v2e7YFCH1WWVarkEvh5h73aSCZjDJGb7rtv376MHz8++zwbNmzg5MmTJToHBNbEtApoCFS8b8cJEyA1FbxLAq5eDT5ti8aYisc33XfPnj2z74+Pj881eslr3rx5jBw5kpiYGIDsdN/r1q07Y8nRv/71r9x4442F1sE33fedd97JyJEj2bZtG126dEFVqVevHh988EGJX2uh6b5FZD6QAHwPnPLer6rX5veYcCl2uu/8DBnirhwmTXLJ/MaOhZEjg/f8xphCWbrv4Clquu9AriCeCEK9yqY33nA5mlRtJJMxpsIpNECo6te+ZRG5FLgV+Nr/I8qR2Fj3Mz3d9UNYgDDGVCABZXMVkQQR+Y8n/fY/KY1lQCPFggWu36FhQzfUNUQr8Blj8heqlS8rkuK8h/kGCBE5V0QeF5G1wIu4ld9EVXur6ovFr2YZEx8PV1wBbdvaSCZjwiAmJoaDBw9akCgBVeXgwYPZHeWBKqiJaR0urcY1qroJQERGF7+KZVSdOjBtGsyfD//6l41kMqaUNW3alOTkZIq9pLABXKD1TfkRiIICxA24xXrmi8hc3MpuFXeWmHc50zVrIM8sSmNM6ERHR5d4RrApnnybmFR1pqreApyPW49hNNBARMaLSJ9Sql/kuOMOiIqyjmpjTIURSLK+k6o6WVUH4taMXgE8HOqKRZznn4fOnS1AGGMqjII6qZeJyPMi0k9EYgBU9ZCqTlTVy0uvihGiZ0+46CIbyWSMqTAKuoK4GJgJJAJfi8gcERkpIueWSs0iUYMGbiTTxo3hrokxxoRcQX0QGar6lao+rKrdgbuB48A/ReRHEXmp1GoZKbzpdoOQ48QYYyJdQU1MN3qblgBUdbeqvq6qN+PWh5hcGhWMKN4kWlWqhLcexhhTCgpqYvo1sF1EJolIfxGJ8u5Q1SxV/Tb01YswDRq4q4jVqyErK9y1McaYkCqoiel6oC3wBfAAsMMzxLVXaVUuIrVvDzNmwD33hLsmxhgTUgUOc1XVY6r6pqr2By7ADXH9n4jsKI3KRaQOHeDECWjRItw1McaYkAo0WV8tYDBwC1AbeD+UlYpo8fFw6hTcdVe4a2KMMSFVUCd1dRG5XUTm4LK3XoTL5NpcVUeVUv0iT1yc+7lqFSxfbnMijDHlVkFXEFuBfsB4oJmqjlDVL7Wip1T0Lik4eTJ07QqLF4e3PsYYEyIFJetrrqopACISKyKtVXV9KdUrctWv70YyVaoEEyfCBReEu0bGGBMSBY1i8gaHa3Cd03M95QQR+ahUahep4uNhwwYYMQKqVw93bYwxJiQC6aR+AugGHAFQ1RVAy1BVqEyIi8uZCzFtGsycGe4aGWNM0AUSIDJU9WjIa1KWxMfD0aOwZ4/L8vr66+GukTHGBF0gAWKViNwKRIlIOxH5H7AokCf3ZIJdLyKbROSMFOHivODZv1JEunjujxGR70XkJxFZLSJPFulVhZq3o3r1aruCMMaUW4EEiPuBeOAU8A5wFBhV2IM8qTnGAf2BOGCoiMTlOaw/0M6zjcCNmMJzrstVtROQAPQTkYsDqGvp8A51Xb0amjWDypUhLQ327g1vvYwxJogKGsUEZHdWP+rZiqIbsElVtwCIyFRgELDG55hBwCTP0NklIlJTRBqp6m7ghOeYaM8WOcNrvSOZ1nheSlYWXHaZu2/u3PDWzRhjgqTQAFECTQDflBzJQPcAjmkC7PZcgSzH5YMap6rf+TuJiIzAXX3QvHnz4NQ8EPHxOavLVaoEo0e7wGGMMeVEQKk2ikn83Jf3KiDfY1Q1U1UTcMucdhORDv5Ooqovq2pXVe1ar169ktS3aLwjmbzzBn/9a7jqqtI7vzHGhFgoA0Qy0Myn3BTYVdRjVPUI8BVuVnfk8I5k2r075z5VeOYZ+Pe/w1cvY4wJknybmDyjlfJt91fVBwp57qVAOxFpBewEhgC35jnmI+A+T/9Ed+Coqu4WkXpAuqoeEZFY4Erg6UJfTWnyHcnUuLG7LQI//QQnT7pgIf4ukIwxpmwoqA9imefnpbhRSNM85ZtwfQMFUtUMEbkP+BSIAl5X1dUico9n/wRgDjAA2ASkAN4UqY2ANz39EJWAd1X146K8sJDzDRC+TUuvvGIrzhljyoV8A4SqvgkgIncCvVU13VOeAMwL5MlVdQ4uCPjeN8HntgL3+nncSqBzIOcIm3r1claX8+UNDvv3wy+/uIR+xhhTBgUyiqkxUB045Cmf7bnPxMfnDHXN68YbYdcuWLcOoqL8H2OMMREskADxFPCjiMz3lH+Fy89k4uNd2m9//Q3PPQexsRYcjDFlViAT5d4QkU/ImcPwsKruCW21yoi4ODeSadcuaNIk974uXXJuZ2ZaoDDGlDmBDnONAvYDh4FzRaRX6KpUhng7qvNrZgJ45BG47jpbec4YU+YUegUhIk/j1qJeDWR57lZgQQjrVTbkN5LJV+PGbthrRgZER5de3YwxpoQC6YO4DjhPVU+FuC5lT34jmXzdf3/p1ccYY4IokCamLbhkecafiy6Ct96CRx+FEyfyP27NGpg0qfTqZYwxJRRIgEgBVojIRM/aDS+IyAuhrliZ8dprbkjrv/4F554Lb77psrvm9dRT8NBDkJpa+nU0xphiCCRAfAT8A7dI0HKfzQA0agRvvw2LF7u1Ie68Ey6+2JV9PfMMrFzphr4aY0wZIFqORtd07dpVly1bVviBoZKV5YLFww+7JH633uquHJr55CNUdbOsLTW4MSYCiMhyVfWb8qHQKwjPMqPTRWSNiGzxbsGvZjlQqRLccQds2OD6JN5/H847D558ElJS3DF/+AN065ZTNsaYCBVIE9MbuKVAM4DewCTgrVBWqsw7+2z45z9dmo2BA+GJJ+D882HKFLj+enjgARvyaoyJeIEEiFhV/QLXHPWLqj4BXB7aapUTLVvCu+/C11+74bC33uomzvXqZQHCGFNyjzwCDz4YsqcPJECkiUglYKOI3Cci1wPWgF4UvXrB0qXw6quwaZMbGtu3LwwfbjOsjQmGrCz49tuc8r33uqbd8uaHH9yAF6/jx+HYsZCdLpAAMQqoCjwAXAjcBgwLWY3Kq6gouPtu2LgR/vQn+PxzSEqCv/wFDh8Od+2MKduefRZ69nTzjVTdl6bvvKSnn3ajCMuarCw3IjIz05XnzoXHHoNDnuTaL77o1qAJFVUtN9uFF16oZcaaNaoDB6qCarVqqvfdp7pxY7hrZUzZsWWL6oYN7vahQ6rvvKOalXXmcbt2qZ51lurYsa586pTq99/7PzYSZGWppqe72zNmuO+I+fNd+fBh1WPHgno6YJnm850ayjWpTUHat4dZs2DZMujYESZMcBPtrrvO9VlY05Mx+UtPd1cMo0a5cq1aMHSo/2V+GzWCffvgLs+ClZ995kYSfvaZK2dkRM7f29690Lo1vPGGK/fp4zIweLND16wJ1auXWnUsQITb7t3uEnLiRDc0duFCSEx0K9G9/TacPh3uGhoTGbKyYPZs92UeHe2aaCdODOyxNWrAOee425deCq+/7v7OAMaNc8PRjxxx5S1b3NryXvPmuSHrXi++CP/5T075vvvc5nXDDTDMpxW+b183gdbr0ktzlzt1ygle9evDFVdAixauXK0a3H57Tt1LWb4BQkRsrczSMHCg61wbPhz+8Q/YscN96FNS3AejVSv4979z2hyNqajeecf9vcz3rF125ZXQtGnRn6dmTfeFfNZZrty6NfTu7e4HN9F16NCc48ePh7//Pae8YAF8+WVOuUqV3OvQd+yYk+kZ4LLLci89fPXV7urH69Zb3WsBdwX06qvuyiEC5DuTWkR+xC0vOgWYqqoFLHoQGcI+k7qktm51qcE7dHD/LX36qVuZ7rPPoGpV91/HyJGuKcqYUEpJcZ+5cNu61WUe6NbNNSt9/LFrhvXXlBQsy5e71+/9Et+3z02CrVs3dOcMo4JmUheYakNEzgOG4NaDOE1OsPglFBUtqTIdIFRdO6OI+4D6/gH8/LMLFJMnuz+SgQNh9Gh3iRzKPxRTMWzZ4kb/DBzoyr/5jfsvecMGV374YTecctw4V/a3xG4oqELnzu7LOe/fhAmaYqfaUNX1qvqkqsbhhrbWBL4UkW8LepwpBhHXLvruu2f+IVxwgdu3fbsb4rZ4MVx+uQsoL71kw2RN0Xz5pQsC3qzDL78Mgwe7fz7ABYp77snpuM3IcJtX795uv9e+fcXv5M3MdEv2erMcr1vnPuPp6Tl/E7NmWXAIk4A6qT0T5eoDDYBquOVHTbB17gxt27rb/q6EGjRwk3+2b3djn1XdhKBGjVyb6Wef+U81bsoWVde0cvSoK2/eDLfdltNxumED/Pa3sHatK69f79K3bN7symvXwp//7PqzAGbOdJ+d3btdecsW+OQT98UO7sv+hx9y1k2/7jqXM8z7pTxmTO7O4F693GfVW9f27V3Tp9fChe6KA9wX/8KFsMezjP2mTS49vvfz/fXXbj33JUtcedcu1wH8wQeu3KXLmeu9m9KT3/hXT9NTT+AlYBcwDxgO1CjoMeHcytQ8iIJ4xz7PmVPwcVlZqsuXuzkUtWq5xzRvrvrYY6qbN5dOXU3JpaaqTp/u5saoqq5c6X6Xkye78o8/qrZpo/rVV668eLFq48aqCxe68vz57ve/eLErz5mjGhOjumyZKy9bpjp8uOovv7hyZmbw6n76tOr48Tl127fP1f3pp115wwZXfvNNV960SfX881U//dSV9+51j9+xw5UzMiJ3fkI5RQHzIAoKDjuAb4H7gQb5HRdJW7kJEKdPq/7vf+5noFJTVadNU+3bV1XE/WoTE1UnTVI9eTJ0dTVFl56u+pe/uH8EVFWPH3e/s7/9LWf/+PGqW7eGq4bFl5qqOneum8Sm6ialffqpCwQmIhUUIAoaxdRCfTqjRaSaqp4M4cVMiZXpTur8nDgBaWlFG0GxY4ebXPPGG67ZoXp1GDLEDaXt3t3ac8NhyBA3nPJf/3Ll1q3hllvcEGZwaSDOPRdiYsJXR1MhFauT2hscRKSHiKwB1nrKnUTkpZDU1OSWleUmzdx8c9E6AZs1c5PuNm50bbyDB7sRUD16QFwc/Pe/OW3CpnTUrOnSwHtt3JgTHMCNnbfgYCJMoSvKich3wI3AR6ra2XPfKlXtUAr1K5JyeQXx3nsujYB3Ik1xHT/uRki9/josWuSGDjZt6joAGzd2P72bb7lateC8jopozhw3gMDboWtMBCr2PAjPg79T1e4i8qNPgPhJVTuFoK4lUi4DhK8jR3Jme5bE+vUwdaprftq50227duWMPPFVo4b/IBIf7yYv2Rrb/mVkuPeoefOcnD/GRKCCAkTlAB6/Q0QuAVREzsKl/V4bzAqaAMyd69qsvYnGSuK88+Bvfzvz/uPHc4KFN3D4lr/4wg2V9KYejo52KQR69nTbJZdA7dolq5s/qu68q1a5L97+/SO/H6VyZZfS3QKoKcMCuYKoCzwPXAkIbrjrSFU9WOiTi/TzPDYKeFVVn8qzXzz7BwApwJ2q+oOINMMtbdoQyAJeVtXnCztfub6COHQI/vhH139Qp0746pGZ6cbPL18O33zjxrgvXZozyapDB5d7xhs0mjUr2vMfOeICwapVbga597ZvLqrbbnPzQCKxzX7zZjeG33cegTERrERNTCU4aRSwAbgKSAaWAkPVJ6eTiAzADaMdAHQHnvc0ZzUCGnmCRXVgOXCdFpIPqlwHCF9ZWe6LOlKWLU1Nhe+/d8Him29cH4e3uap5cxcovEGjfXvX/5Ga6iZ05Q0Eyck5z3vOOS7geLcLLnDP//jj7mpl5kyX/TKSPPKIC16rVkHDhuGujTGFCleA6AE8oap9PeVHAFT13z7HTAS+UtUpnvJ6IFFVd+d5rg+BF1W1wMbcChEgMjPdTNT69QNPdZxXqHPpZGa6YZveK4xvvskZNVW7trsC2rw5Z9Z3lSoucPgGgg4d3NWHv3pOnw533OHeg1mz3PGRIivLzXRv2TLcNTEmICXtgyiuJrjJdl7JuKuEwo5pAmQHCBFpCXQGvvN3EhEZAYwAaN68eUnrHPmiotwXYp067ov+yBGXedKbjuCTT1xzz7XXuvJf/uLawR97zJUvucQd+957rvzxx25uRL16wa1j585ue+ABV8/Nm3OCxdGjLsWxNyC0beva7AN1443uC3jQIPd6pkzJSTQXDikprvnvySfd+2jBwZQToQwQ/v5FzXu5UuAxInI28D4wSlX9rsytqi8DL4O7giheVcsY39z0t94KBw+6Jh5wa/OePJkTILZvz91ReuONbtgsuC/qG26A3//eZYsF1wlclC/rQIi4INC2be6FUkqia1f3mgcNcq91zBiX4TYc7f4//eQmJg4YEN5AZUyQFfpNICJVgBuAlr7Hq+rf83uMRzLg20PZFJfTKaBjRCQaFxwmq+qMwupZYY0aBadO5ZTfeitnIRRwq9L5+sMfcm7XqOE6m72rVa1cCVdd5VbPuuyykFU5aJo0cWmp77gDHnzQ9WmMG5f79ZeGHj1ccr1gXoUZEwECyeb6ITAIyABO+myFWQq0E5FWnuGxQ4CP8hzzEXCHOBcDR1V1t2d002vAWlV9NsDXUjH17ZtztQCuY7QoQ007dHAdyeD+++7ZE84/35UXLHBfuGlpwatvsFWt6iYAPvqoW4mrb193RRVqqvDQQ/CR5yNtwcGUQ4G0JTRV1X5FfWJVzRCR+4BPccNcX1fV1SJyj2f/BGAObgTTJtwwV8/CrFwK3A78LCIrPPf9RVXnFLUepgguuMB1AHvNnOna90eMcOUdO9yEOW9a6EhRqRL8858usN19t+tT+fhjaNcup64TJ7ov8xkzci8PWVypqW7pS9/+HmPKmUDmQbwM/E9Vfy6dKhVfhRjFVNr27nVrCYDrdG7c2C0cD64PoFkzl04i3FJSXBNZVhZcfz0cO+b6Uo4ccUHi6afhxx/dDHJw6yXExOTuzynOOWNiXIAypowq9opyHpcBy0VkvYisFJGfRWRlcKtoIpY3OKi6kVD33ptTvuSSnGUoMzNd1thnnnHl06fdF/WsWa586pRb/H3NmpzyokVuvWFwneO7dwfenPXLL65D/sgRV05Kcn0BTZu6wNWwoeusf94zv/Khh3KCA7jzHjiQU3788dwL0efnvfdg2DB35VC1qgUHU64F8unuD7QD+gDXAAM9P01FIuKywg4Y4Mqq7kritttcOT3dNUV17OjKJ0+6oa3e5VAPHHCjpRYudOU9e+DSS11TELhO3saNXQc5uEASE+Oaubzl8893zTrgVlV78MGcVdYGDnQzmGvXhhYt3NXEgAHumPvvz71kJrhU6C95khKfOAETJuSsapaR4fozvCuu+dqyxb0u78xxYyJAZlZmSJ63oPUgzlHVYyLit8dTVQ/5uz+crIkpgmVluS/catXclUZKipsTER/v/us/fBimTXPpzdu1c/mfXnjBBaAOHdyX8qOPuqahLl3clcaxYwXPpM7MdMc/+yz06eOeP79kh5mZ7qqmalV3ZXPppe5q4cYb3VXKzp2uruCCQ6TMYjflQkZWBodSD3Ek7Uj2djTtaO7yqdxl3/tqVKlB8h+SCz+RH8WaSS0iH6vqQBHZipub4DvAXFW1dbFqE0IWIIxfr74K/+//uXkYf/87XHNNwXmcVGH1amjVygW0V191VyJLlrgZ38YU06mMU2w8tJE1+9fk2jYc3EB6Vv5XpVESRc2YmtSIqUHNmJo5WxV3X4NqDXjosoeKVadizaRW1YGen62KdVZjIsVvfuOCw+23u8WXatZ0mXGHDYOLLz5zcp2Iu2rxGjjQdXTb2hgmQCnpKaw/sD4nCBxwPzcf2kymuuYgQWhdqzVx9eIYeO5Amp7TlFoxtfwGgmrR1ZAwTAINWS6mcLArCFOgzEyXsnzSJDfcNTXVNWfdcYcLHi1ahLuGJsKdyjjFwdSDHEw5yIGUA9m3D6YeZP/J/dlXB9uObEM9SSGiJIp2ddoRVy+OuLpxxNWLo3299pxX5zxio8OfDj4syfrCwQKECdixY65D/M033bKsAImJ7qrihhtcP4mpEE5nnmbbkW1sOrSJLYe3sP/kfvfF7/PlfyDlAAdTDnIyPf85wlWjq9KmVhsXCHy2trXbclZUKc/uLwILEMYUZNs2l6Jk0iTYtMl1VA8e7IJF796RNzHQFFlqeipbDm9h06FNOdth93P70e1kaVau42vF1KJO1TrUia1Dnap1qFu1rrvtKZ9xf9U6xFSOwPVJAlDcTurLVfVLz+1WqrrVZ9/gSMyPZAHClIgqLF7sAsXUqS6ZYdOmbiTVsGE5KUhMRDqSdoSth7fmDgSeIJB8LPcIn9qxtWlbu63barXNvt26VmvqVq1LVKWK809BcQPED6raJe9tf+VIYQHCBE1ampvk9+abbrnXzEw3SfCFF2xyXJicyjjFtiPb2Hpka3Yg2Hpka3b5cNrhXMfXr1bfbxBoU7sNtWNDsDRuGVXc9SAkn9v+ysaULzExcNNNbtu7F/71LxccTp50w16t2SkkMrMyWbl3JSv3rsz+8t9yeAtbD29l1/Fd2R2/AGdFnUXLmi1pXas13Zt0p1XNVrSu1ZpWtVrRtnZbzqlyThhfSflQUIDQfG77KxtTfjVoAGPHukWa/vY3N/rprbdsslwQnM48zbJdy/jml29YsH0BC7cv5Ngpt/SLIDQ5pwmtarbiitZX0Lqm+/L3BoJG1RtRSexqLpQKChCtReQj3NWC9zaess2NMBWLiMvXFBvrZmefOuX6KYKRGbYCSUlPYUnyEhb8soAFvyxgSfISUjNSAWhftz1D4ofQq0UvujbuSsuaLalS2d7fcCooQAzyuT0mz768ZWMqhj/9yQWJ+++H665z8yliwz+WPVIdSTvCt9u/dQFh+wKW7VpGRlYGlaQSCQ0TGHHhCHq16MVlzS+jfrUC0qaYsChoJvXXvmXPCm8dgJ2q6ieLmTEVxH33uaDw29/C1Ve7dSbOPjvctcrlQMoBpq+Zzo+7f+SWDrfQu2XvUpuJ+8uRX3hp6Ut8uvlTVu5diaJEV4qmW5Nu/OmSP9GzeU8uaXYJNWJqlEp9TPEVNIppAm4diNUiUgNYDGQCtYE/quqU0qtmYGwUkylVkye74a/du8OcOW4J1zA6fuo4H6z7gCmrpvDZls/IyMogpnIMaRlpdG7YmQd7PMjN8TcTHRWavpOlO5fyzOJnmL7GLTqV2DKRXi160atFL7o36R4Rs4bNmYo7zHW1qsZ7bo8CElX1OhFpCHyiqp1DVeHisgBhSt3778OQIdCpE3z6qevILkVpGWnM2TiHKaum8PGGj0nLSKNFjRYM6TCEoR2Gcl7d85i8cjLPLH6GtQfW0vScpozqPorfdPlNUP6Dz9IsZq2fxTOLn+Gb7d9wTpVzGNFlBPd3v5/mNZoH4RWaUCtugPjRGwREZDbwnqom5d0XSSxAmLCYPdul5zj3XPj884JTkAdBRlYGX2z5gimrpjBz3UyOnTpG/Wr1uTnuZoZeMJQeTXuc0ZyUpVnM3TSXMYvGMH/bfKqfVZ0RF45gZPeRNKvRrMh1SElP4c0Vb/LckufYeGgjzWs0Z1T3Udzd5W4bXlrGFDdAzAeeAXYC84HzVXWPiFQGVqlqxE0rtQBhwubzz93a1C1auNtNmgT16bM0i0U7FjHl5ym8u+ZdDqQcoEaVGgxuP5ihHYbSu1VvKlcKZIl5+GH3Dzyz+BmmrZqGiHBz/M082ONBujQqfO7rnhN7GPf9OMYvG8/B1INc1PgiHuzxIDfE3RDw+U1kKW6AOBd4AWgIjPW5eugL9FHVB0NT3eKzAGHC6ptv3Cp29eu75UuDkB32570/89bKt5i6aio7ju0gtnIs15x3DUM7DKVf234lyv+z/eh2nl/yPK/88ArHTx/n8laX88cef6Rf235nXIGs3reaZxc/y9s/v016ZjrXnnctD/Z4kMuaXxaWNNQmeCxZnzGl5bvvoF8/lw32yy/dOhRFdOzUMaaumsqrP7zK0l1LqVypMn3a9OHWDrdy7XnXUr1KcDPNHk07yis/vMLYJWPZeXwncfXieLDHg9x6wa0s3L6QZxY/w9xNc4mtHMudCXcy+uLRtKvTLqh1MOFT3CuIFwp6UlV9IAh1CyoLECYirFgBV13lZlp//jnExRX6EFVl4faFvPbja7y35j1S0lPoUL8Dd3e+m9s63kbdqnVDXu30zHTeXf0uYxaPYcWeFdkjoBpUa8D93e7nnq73UKdq6XbCm9ArboA4DawC3gV2kSf/kqq+GeR6lpgFCBMxVq+GK6+EjAz47DNISPB72J4Te5j00yRe+/E1NhzcwNlnnc3QDkO5u/PddGvSLSzNN6rKl1u/ZMqqKVza7FJuveBWm9FcjhU3QNQBbgJuATKAacD7qnrY7wMigAUIE1E2boQrroDjx908iR49ADcKae6mubz242vMWj+LTM3k0maX8psuv+GmuJuodpYtbWpKT3HXpD4ITAAmiEgTYCiwWkQeUtW3QlNVY8qRdu1gwQIXJHr2ZNPoYbx+eS3eXDuFXcd3Ub9aff7Q4w8M7zyc8+tG3KBAYwrMxQSAiHTBBYergE+A5aGulDHlRWbzZrz/zqOM//AxvqryOpWWQP+aXRl3yziubnd1yGY1GxMM+QYIEXkSGAisBaYCj6hqRmlVzJiyLD0znXd+fod/LfwXGw5uoHXD1vxfnREMG/s1TZYtg4VvwQsXBX2+hDHBVFAfRBawBUj13OU9UABV1Y6hr17RWB+ECbdTGad4Y8UbPP3t02w7so2Ehgn8tedfub799W7tgvR0ePZZePJJqFwZ/u//4Pe/twWITNgUt5O6wFk+qvpLEOoWVBYgTLikpKfw8vKX+e+i/7Lr+C66N+nOY70eY0C7Af5HIm3Z4gLDp59C167w8svQOeKy15gKoLid1H4DgIhEAUOAiAsQxpS2Y6eO8dLSl3h28bPsT9lPYstEJl03ictbXV7wENXWreGTT+Ddd2HkSBckRo6Ev/894lKHm4or3/X6ROQcEXlERF4UkT7i3I9rdrq59KpoTOQ5lHqIJ756ghZjW/DIF4/QtXFXFt61kPnD5nNF6ysCm78gArfcAuvWwYgR8NxzblLdhx+G/gUYE4CCFnR9CzgP+Bn4DTAPuBEYpKqDCnhcNhHpJyLrRWSTiDzsZ7+IyAue/Ss9I6a8+14XkX0isqpIr8iYENp7Yi8PffYQLca24Mmvn6R3y94s++0y5vx6Dpc2v7R4T1qzJowfD4sWudvXXQfXXw87dgSx5sYUXYFrUqvqBQAi8ipwAGiuqscDeWJPU9Q43PDYZGCpiHykqmt8DusPtPNs3YHxnp8AScCLwKSAX40xQaSqpGWkkZKewv6U/YxfOp6Xf3iZ05mnuSX+Fv7S8y90qN8heCfs0QOWL3dXEk884a4m/vlPt4KddWKbMCgoQKR7b6hqpohsDTQ4eHQDNqnqFgARmYpb59o3QAwCJqnrKV8iIjVFpJGq7lbVBSLSsgjnM8av05mnWbh9IQt+WcCRtCOkpKcEvCk5gzgqV6rM7R1v5+HLHubcOueGprLR0fDnP8NNN7lO7FGjYOJEGDrUXVXEx7umKWNKQUEBopOIHPPcFiDWU/YOcy1sVZAmgO81cjI5VwcFHdME2F1Yxb1EZAQwAqB5c1vByjg7ju7gk02fMGfjHL7Y+gUnTp9AEKpXqU7V6Kq5tmrR1Wh4dsMz7s97zBWtr6BlzZal8wJatXLpOaZPh+efh7/9DR5/3GWHHTzYBYtu3aBSQa3ExpRMQaOYSnpN6+/fnLxjagM5pkCq+jLwMrhhrkV5rCk/Tmee5tvt32YHhdX7VwPQvEZzfn3Br+nftj+Xt7o86KmyQ0rEXUncdBPs2eM6r2fMcPMo/vMfaNw4p7/iV79yVx/BcPw4bNjghuLGxLhlVGvXdj9r1XLzN0yFEMrfdDLgu5ZhU1xW2KIeY4xfyceS+WTjJ8zZNIfPt3zOidMniK4UTc8WPbkz4U76t+1PXL248rGgTcOG8Lvfue3wYbfM6cyZ8MYb8NJL7ov7mmtcsOjTB6pWLfj5MjNh+3ZYvz73tm4d7CrkT7BGjdxBI7+fHTvaTPEyLmQLBnmWJt0AXIFbtnQpcKuqrvY55mrgPmAArvnpBVXt5rO/JfCxqgbUE2gT5cq3zKxMvtn+TXZQWLXPDXBrdk4z+rftz4B2A8reVUJJpaTAvHkuWHz0ERw54oJDv34uWPTu7b7wvV/+3kCwcSOkpeU8T82acN55Odv550ObNm7m98GDbjt0KPfPvPcd9pPoOSHBrbJ39dXQvbt1tkegsK0oJyIDgLFAFPC6qv6fiNwDoKoTxP1r9yLQD0gB7lLVZZ7HTgESgbrAXuBvqvpaQeezAFE+7T+5n1d/eJUJyyew/eh2oitFc1nzyxjQbkD5ukooqfR0+Ppr1wz1wQewO09XXlSU69vwBgDfgFC/fsk7vzMzXZA4dAj274eFC92VzqJFbl/t2i5wXX019O3rrjJM2NmSo6ZM+n7n97z4/YtMWz2N05mn6d2yN/d0vYf+bftXrKuE4sjKgu+/d0ugNm+ec0Vw1lmlX5fDh91Vzpw5bvb4/v2uc/3ii3OuLjp1stFZYWIBwpQZqempTFs9jXFLx7Fs1zLOPutshnUaxu8v+j1x9QpfutNEuKwsWLbMXVnMmeNug+twHzDAbVde6db0NqXCAoSJeFsPb2XCsgm8+uOrHEo9RPu67bn3onu5vdPtnFOlsBHVpszaswfmznUBY948OHbMjcbq2dM1Q/Xp4zq7bThvyFiAMBEpS7P4bPNnvLj0RWZvmE0lqcSg8wdx30X3kdgy0foVKpr0dNdfMXu2y3K7cqW7v359uOqqnK1x4/DWs5yxAGEiyuHUwyStSOKlZS+x6dAm6lerz4guI/hd19/R9Jym4a6eiRS7d8Pnn7sri3nzYN8+d3+HDu7Kok8f6NULYmPDW88yzgKECaqdx3ay9chWUtJTSE1PzZWaIjUjTzk9lZSM3OUf9/xISnoKlzS7hHsvupcb2t9AlcpVwv2yTCTLyoKff84JFt98A6dOQZUqrjnKGzA6drTO7iKyAGFKTFX5dse3jF0ylpnrZpKlWQUeH1M5JjtNRWzl2Jzb0bG0q92O3134Ozo3sgVyTDGlpLgg4Q0YqzxJnxs0cHM/Ond2waJjR2jUyIJGASxAmGI7nXmad1e/y9glY1m+ezm1Y2szossILm91ea5cRbHROUEgpnKMW17TmNKyaxd89lnO1YVvqnTvrG7fLT7emqY8LECYItt3ch8Tl03kpWUvsefEHtrXbc+oi0dxW8fbqBpdSBoHY8Lt8GHXJLVyZc7288/uygPcqKh27c4MHC1aVLirjWItOWoqppV7V/L8kueZ/PNkTmWeon/b/oy6eBRXtb7KRhWZsqNWLdeB3atXzn1ZWS4BoW/Q+OEHeO+9nGOqV3cTClu3PnNr0SI8Ew3DyAKEIUuzmL1hNmO/G8uXW78ktnIswzsP54HuD3B+3fPDXT1jgqNSJZcu3Zsy3ev4cdeHsXKl+7llC6xZ44bbnjqVc5wING16ZuBo1cr9DEa6kghjAaICO37qOEkrknjh+xfYdGgTTc9pylNXPMVvL/wttWNrh7t6xpSO6tXdan49euS+PyvLDbXdutUFDe+2daubp5E3623Vqi57bcOGubcGDXKX69cPXmr2ELMAUcFkaRbf7/yeaaum8fqK1zl26hg9mvbgn73/yeD2g4mOKhsfXGNCrlIl94XfpAlcdtmZ+1NTYdu2nKCxZYsLKHv2uP6Ozz5z2XX9qVv3zCDSoAHUq+cCiO/PwlK3h5AFiAogPTOdr3/5mhlrZ/DBug/YfWI3lStV5sa4GxnVfRTdm+Zd6M8YU6jYWGjf3m35SUuDvXtd0MhvW7jQ/fRNv+6rWjX/gcP3Z4MGbmhvkFmAKKdS0lOYt3keM9fNZNb6WRxOO0zV6Kr0a9uPwecP5upzr6ZmTM1wV9OY8i0mxnVut2hR8HGqcOKEmy2+f3/OT9/b+/a5Zq2ffnK3T5/OeXz9+i4QBZkFiHLkSNoRZm+YzYx1M5i7aS4p6SnUjKnJteddy/XnX0+fNn1siKoxkUjE9YV4R1EVRtV1rnuDR2pqSKplAQLoP7k/1aKr0aJGC5rXaJ5rq1u1bkQP79xzYg8frvuQmetm8sXWL8jIyqDR2Y0Y1mkYg9sP5lctfmX9CsaUNyJwzjlua9s2ZKep8AEiS7PI0ixW7VvFnI1zSM3IHYljKsfkBIxzmp8RQJrVaEZM5Zig10tVOXH6BPtO7mN/yn72n9yf+3bKPjYd2sR3yd+hKG1qtWH0xaMZ3H4w3Zp0s5nMxpgSs5nUPlSVg6kH2X50+xnbL0d/YfvR7ew5seeMx1U/qzqx0bHEVI4htnIssdGxxFb2lH1v+9kHZH/h7z+5n/0pnkBwcj+nMk+dcS6AqtFVqV+tPo2rN6ZP6z4Mbj+YDvU7RPSVjjEmMtlM6gCJCHWr1qVu1bp0adTF7zGnMk6RfCw5V+A4lHqItIw0UjNSSU1PzXX72KljpGZ47ktPzb6dlpEzYqFqdFXqVa1H/Wr1aXh2Qy6ofwH1q9XPvq9etXq5bls/gjGmNFiAKKIqlavQpnYb2tQOoCOpAFmaxamMUyhqX/jGmIhkASJMKkml7CYmY4yJRNaTaYwxxi8LEMYYY/yyAGGMMcYvCxDGGGP8sgBhjDHGLwsQxhhj/LIAYYwxxi8LEMYYY/yyAGGMMcYvCxDGGGP8CmmAEJF+IrJeRDaJyMN+9ouIvODZv1JEugT6WGOMMaEVsgAhIlHAOKA/EAcMFZG4PIf1B9p5thHA+CI81hhjTAiF8gqiG7BJVbeo6mlgKjAozzGDgEnqLAFqikijAB8bVIlJiSStSAIgPTOdxKRE3l75NuDWd05MSmTaqmkAHE07SmJSIjPWzgDgQMoBEpMSmbV+FuBWeUtMSmTuprkA7Di6g8SkRD7f8jkAWw5vITEpka+3fQ3A+gPrSUxKZNGORQCs2reKxKRElu5cCsCKPStITEpkxZ4VACzduZTEpERW7VsFwKIdi0hMSmT9gfUAfL3taxKTEtlyeAsAn2/5nMSkRHYc3QHA3E1zSUxKzF7bYtb6WSQmJXIg5QAAM9bOIDEpkaNpRwGYtmoaiUmJpKSnAPD2yrdJTEokPTMdgKQVSSQmJWa/l68sf4UrJ12ZXX5p6Uv0n9w/u/z8kue5dsq12eUxi8Zww7s3ZJefWvgUQ6YPyS7/4+t/cNuM27LLj89/nLs+vCu7/MjnjzBi1ojs8h/n/ZF7Z9+bXR41dxSj5o7KLt87+17+OO+P2eURs0bwyOePZJfv+vAuHp//eHb5thm38Y+v/5FdHjJ9CE8tfCq7fMO7NzBm0Zjs8rVTruX5Jc9nl/tP7s9LS1/KLl856UpeWf5Kdtk+e/bZ8yrpZy/YQhkgmgA7fMrJnvsCOSaQxwIgIiNEZJmILNu/f3+JK22MMcYJ2YpyInIT0FdVf+Mp3w50U9X7fY6ZDfxbVRd6yl8AfwZaF/ZYf0q6opwxxlQ04VpRLhlo5lNuCuwK8JizAnisMcaYEAplE9NSoJ2ItBKRs4AhwEd5jvkIuMMzmuli4Kiq7g7wscYYY0IoZFcQqpohIvcBnwJRwOuqulpE7vHsnwDMAQYAm4AU4K6CHhuquhpjjDlTyPogwsH6IIwxpmgK6oOwmdTGGGP8sgBhjDHGLwsQxhhj/LIAYYwxxq9y1UktIvuBX4r58LrAgSBWJ1isXkVj9Soaq1fRlMd6tVDVev52lKsAURIisiy/nvxwsnoVjdWraKxeRVPR6mVNTMYYY/yyAGGMMcYvCxA5Xg53BfJh9Soaq1fRWL2KpkLVy/ogjDHG+GVXEMYYY/yyAGGMMcavChUgRKSfiKwXkU0i8rCf/SIiL3j2rxSRLqVUr2YiMl9E1orIahEZ6eeYRBE5KiIrPNvj/p4rBHXbJiI/e855RibEcLxnInKez/uwQkSOicioPMeUyvslIq+LyD4RWeVzX20R+UxENnp+1srnsQV+HkNQr/+KyDrP72mmiNTM57EF/s5DUK8nRGSnz+9qQD6PLe33a5pPnbaJyIp8HhvK98vvd0OpfcZUtUJsuLThm3Gr1Z0F/ATE5TlmAPAJIMDFwHelVLdGQBfP7erABj91SwQ+DsP7tg2oW8D+sLxneX6ve3CTfUr9/QJ6AV2AVT73/Qd42HP7YeDp4nweQ1CvPkBlz+2n/dUrkN95COr1BPDHAH7Ppfp+5dn/DPB4GN4vv98NpfUZq0hXEN2ATaq6RVVPA1OBQXmOGQRMUmcJUFNEGoW6Yqq6W1V/8Nw+DqwlnzW4I1BY3jMfVwCbVbW4M+hLRFUXAIfy3D0IeNNz+03gOj8PDeTzGNR6qeo8Vc3wFJfgVmosVfm8X4Eo9ffLS0QEuBmYEqzzBaqA74ZS+YxVpADRBNjhU07mzC/hQI4JKRFpCXQGvvOzu4eI/CQin4hIfClVSYF5IrJcREb42R/u92wI+f/hhuP9AmigbmVEPD/r+zkm3O/bcNyVnz+F/c5D4T5P09fr+TSXhPP96gnsVdWN+ewvlfcrz3dDqXzGKlKAED/35R3jG8gxISMiZwPvA6NU9Vie3T/gmlE6Af8DPiilal2qql2A/sC9ItIrz/6wvWfilqO9FnjPz+5wvV+BCuf79iiQAUzO55DCfufBNh5oAyQAu3HNOXmF829zKAVfPYT8/SrkuyHfh/m5r0jvWUUKEMlAM59yU2BXMY4JCRGJxn0AJqvqjLz7VfWYqp7w3J4DRItI3VDXS1V3eX7uA2biLlt9he09w/1B/qCqe/PuCNf75bHX28zm+bnPzzFhed9EZBgwEPi1ehqq8wrgdx5UqrpXVTNVNQt4JZ/zhev9qgwMBqbld0yo3698vhtK5TNWkQLEUqCdiLTy/Oc5BPgozzEfAXd4RuZcDBz1XsaFkqeN8zVgrao+m88xDT3HISLdcL+7gyGuVzURqe69jevkXJXnsLC8Zx75/mcXjvfLx0fAMM/tYcCHfo4J5PMYVCLSD3gIuFZVU/I5JpDfebDr5dtndX0+5yv198vjSmCdqib72xnq96uA74bS+YyFouc9UjfciJsNuJ79Rz333QPc47ktwDjP/p+BrqVUr8twl34rgRWebUCeut0HrMaNRFgCXFIK9WrtOd9PnnNH0ntWFfeFX8PnvlJ/v3ABajeQjvuP7W6gDvAFsNHzs7bn2MbAnII+jyGu1yZcm7T3MzYhb73y+52HuF5veT47K3FfYI0i4f3y3J/k/Uz5HFua71d+3w2l8hmzVBvGGGP8qkhNTMYYY4rAAoQxxhi/LEAYY4zxywKEMcYYvyxAGGOM8csChDEFEJF/i8sMe12wM4gWoQ5fiUjQF6Q3pjAWIIwpWHdc7ptfAd+EuS7GlCoLEMb4IW7thJXARcBi4DfAePGzroSI1BOR90VkqWe71HP/EyLyloh86cnb/1vP/eJ5/lWedQRu8XmuP3vu+0lEnvI5zU0i8r2IbBCRniF98cZ4VA53BYyJRKr6JxF5D7gd+APwlapems/hzwPPqepCEWkOfAq09+zriFsnoxrwo4jMBnrgEtN1AuoCS0Vkgee+64DuqpoiIrV9zlFZVbuJW0znb7gUEMaElAUIY/LXGZfa4HxgTQHHXQnEeVI/AZzjzc8DfKiqqUCqiMzHJXK7DJiiqpm4pGtf465UfgW8oZ48Sarquz6BN0nbcqBlCV+XMQGxAGFMHiKSgMvB0xQ4gMv7JOKWnOzh+cL3Vcnf/Z6AkTeXjeI/DTOe+/PLfXPK8zMT+7s1pcT6IIzJQ1VXqGoCOcs7fgn0VdUEP8EBYB4uOSCQHWC8BolIjIjUwS2DuhRYANwiIlEiUg+33OX3nucZLiJVPc/j28RkTKmzAGGMH54v7sPq1ig4X1ULamJ6AOjqWRFtDS6rrNf3wGxcRtl/qFs7YCYuO+dPuODzZ1Xdo6pzcdlMl3muVv4Y7NdlTFFYNldjQkREngBOqOqYcNfFmOKwKwhjjDF+2RWEMcYYv+wKwhhjjF8WIIwxxvhlAcIYY4xfFiCMMcb4ZQHCGGOMX/8fOg9vwS7XZ9gAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"For a more detailed analyze, you could have a look at the predicted energies and forces per structure. This is quite useful to identify inaccurately described structures. The training data set may has a specific order of different structures (bulk, slab, cluster, ...) and you can identify, if some parts of the data set are described inaccurately in general. The second plot shows the atomic energy prediction of the NNP over the reference values. For a perfect fit, all points will be on the blue line, but as we can see this is not the case. In this plot, we can identify, if some energies ranges are not well described in our data set. This is related to our first data set analysis above."},{"metadata":{"trusted":true},"cell_type":"code","source":"figE1, figE2, figF3 = fit2.plot_points()","execution_count":16,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAZAAAAEjCAYAAAAc4VcXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0eUlEQVR4nO3deZwU1b338c+XRVDBhwioyCJolEVAkHGJIkvQKAYDN+INXjHgxiUR17jGJNPk3rweo/Fxi8vFfbtiol4lXhNNVFzjAoKACooKghJFDIg7y+/5o2rGpumerq7ee37v16teU111quqcmpn69Tmn6pTMDOeccy5XLcqdAeecc9XJA4hzzrlYPIA455yLxQOIc865WDyAOOeci8UDiHPOuVg8gLiaJ+nPkiYlff5PSR9J+kf4+V8krZD0qaTB5cupc9XFA4gDQNIySV+EF9GG6fflzlc2kkzSZ2F+10h6TNKPktOY2Wgzuy1M3x34GdDPzHYJk/wOmGZm7cxsXmlLUBhRzoOk2ZK+TPkdX5Q0/4WkzcnrS5j/ZZI+kLR90rKTJc1OKeNCSS2Slv2npFvD+Z5hmob8L5N0QanK0Bx5AHHJjgovog3TtEIfQFKrQu8T2MfM2gG9gVuB30uqz5B2N2CNmX2YsuzVOAcuUnniinIepqX8jn/TMA+MBt5PXl/i/LcCzsiSZldgQpY0HcK8Hwv8StIRhcic25oHEJeVpMmSnpH0O0n/lPSOpNFJ6/+PpJskrZL0XvitsGXSts9KulzSx0BCUkdJf5L0iaSXwvTPhOmvkXRZyvH/JOnMbPk0s4/M7A7gJ8CFkjqG288Ov80eCvwV2DX8hnp3+C27JfCKpLfC9LtKuk/S6rCspyflJSHpXkl3SvoEmByh/E2dux0l3SLp/XD9A0nrxkiaL2mtpOckDYzy+8p0HgpB0vWSfpey7EFJZ4fz54fnYL2kJZJG5bD7S4FzJHVoIs0lwPQogdvM/k7wxaB/DnlwOfAA4qI6AFgCdCL4J75JksJ1twEbgW8Dg4HvASenbPs2sBPwG+Aa4DNgF2BSOJG0r2MbmikkdQJGAXfnkNcHCb7N7p+80Mz+xpbfso9N+pa9j5ntER73T8ArQNfw2GdKOjxpV2OBe4EOwF0Ry5/p3N0BbAfsHZ6fy8Ny7wvcDPw70BH4L2CWpDb5noc8/Tfwo4b8S/oWQXlnSuoNTAP2M7P2wOHAshz2PQeYDZzTRJr7gU+AyU3tSIGDCc5rVTZLVgMPIC7ZA+G33YbplKR1y83sBjPbRHDB7ALsLGlngovymWb2Wdg0dDlbNjO8b2ZXm9lG4GvgaKDezD43s9fC/QFgZi8C6wgu3IT7mW1mH0QthJltAD4Cdsyx/AD7AZ3N7Ndm9rWZvQ3ckFKev5vZA2a2GdiB7OXPdO66hNtONbN/mtkGM3sy3OYU4L/M7AUz2xT24XwFHJjnebgq6ff7cvTT0uhpwIBDws/jCc7H+8AmoA3QT1JrM1tmZm/luP9fAadJ6pxhvQG/JGiayhRMPwI+Bm4ELjCzx3LMg4uoktpvXfmNC7+lp/OPhhkz+zz8AtqO4OLUGlj1zZdqWgArkrZNnu9M8HeXaT0EF9mJBM1NE4ErcymEpNbhcT7OZbvQbgRNXGuTlrUkuHA2WJGSPlv5mzp3H5vZPzPkY5Kk05KWbUPQBxBJhvNwupndGHUfqczMJM0k6F94Cvg34M5w3dKwqTEB7C3pEeDsMLhE3f8iSQ8BFwCvZ0jzsKR3gSkZdtMp/LLiisxrIC5fKwi+GXcysw7htIOZ7Z2UJnnI59UEzT3dkpZ1T9nnncBYSfsAfYEHcszT2PAYL+a4HQTleSepLB3MrL2ZHZmUxlLSZyt/U8faMUOb/wrgNyn52M7McmnKy+c8NOVuYLyk3Qia5+5rWGFm/21mQwkCoAG/jbH/eoIaWNcm0vwCuIig+c+ViQcQlxczWwU8ClwmaQdJLSTtIWl4hvSbCNqxE5K2k9QH+HFKmpXASwT9A/eZ2RdR8hJ2SB9H0MfyWzNbE6NILwKfhJ3B20pqKam/pP0ylCen8qfZ9s/AtZK+Jam1pGHh6huAqZIOCNvzt5f0fUnts+23QOehqXzPI/gicCPwiJmtDY/bW9J3w6alL4EvCJq1ct3/UuAe4PQm0swGFrJl/5krMQ8gLtmftOUzAv8TcbsfEzSvvAb8k6CDuUsT6acB/4egaecOgm+0X6WkuQ0YEK7P5hUFd1MtJei8PsvMfhUx71sIA9xRwCDgHYL29BvD/GaSa/mTHQ9sABYDHwJnhvmYQ/At/PfhPpeSpeOYAp6HCO4GDiXoVG/QBriY4Jz9g+CmgJ8DSDpOUi63Sv8a2D5Lml8Qr5/LFYj8hVKu3CT9FtjFzJKfFh9G0JTVM+ysds5VGK+BuJKT1EfSwLBpZn/gJOB/kta3Jnig7EYPHs5VLg8grhzaE/SDfAb8AbiM4JkFJPUF1hI0AV1Rnuw556LwJiznnHOxeA3EOedcLB5AnHPOxeIBxDnnXCweQJxzzsXiAcQ551wsHkCcc87F4gHEOedcLB5AnHPOxeIBxDnnXCweQJxzzsXiAcQ551wsHkCcc87F4gHEOedcLB5AnHPOxdKq3BkopU6dOlnPnj3LnQ3nnKsqc+fO/cjMOqcub1YBpGfPnsyZM6fc2XDOuaoiaXm65d6E5ZxzLhYPIM4552LxAOKccy6WZtUHks6GDRtYuXIlX375ZbmzUtPatm1Lt27daN26dbmz4pwrkGYfQFauXEn79u3p2bMnksqdnZpkZqxZs4aVK1fSq1evcmfHOVcgzb4J68svv6Rjx44ePIpIEh07dvRanmseEoly56Bkmn0AATx4lICfY9dsTJ9e7hyUjAcQ55xzsXgAKbM1a9YwaNAgBg0axC677ELXrl0bP3/99ddNbjtnzhxOP/30gufp5JNP5rXXXmsyzQMPPJA1jXPNRiIBUjDBN/M13pwlMyt3Hkqmrq7OUp9Ef/311+nbt2/uO0skCv7HkUgkaNeuHeecc07jso0bN9KqVeXd6zB58mTGjBnD+PHjI28T+1w7V00kqLHrqqS5ZlaXutxrIHEVsZ1z8uTJnH322YwcOZLzzz+fF198kYMOOojBgwdz0EEHsWTJEgBmz57NmDFjgCD4nHjiiYwYMYLdd9+dq666CoBly5bRp08fJk2axMCBAxk/fjyff/45AI899hiDBw9mwIABnHjiiXz11VcAjBgxonHIl3bt2nHRRRexzz77cOCBB/LBBx/w3HPPMWvWLM4991wGDRrEW2+9xVVXXUW/fv0YOHAgEyZMKNq5cc5VDg8gFeqNN97gb3/7G5dddhl9+vThqaeeYt68efz617/m5z//edptFi9ezCOPPMKLL77I9OnT2bBhAwBLlixhypQpLFiwgB122IFrr72WL7/8ksmTJ3PPPfewcOFCNm7cyHXXXbfVPj/77DMOPPBAXnnlFYYNG8YNN9zAQQcdxA9+8AMuvfRS5s+fzx577MHFF1/MvHnzWLBgAddff31Rz41zFa2+vtw5KBkPILkoYTvnMcccQ8uWLQFYt24dxxxzDP379+ess87i1VdfTbvN97//fdq0aUOnTp3Yaaed+OCDDwDo3r07Bx98MAATJ07kmWeeYcmSJfTq1Yu99toLgEmTJvHUU09ttc9tttmmsZYzZMgQli1blvbYAwcO5LjjjuPOO++syCY350qmxvs9knkAyUUiEbRtNrRvNswX4Q9m++23b5z/5S9/yciRI1m0aBF/+tOfMj5P0aZNm8b5li1bsnHjRmDrW2glEbXvq3Xr1o3bJ+8z1f/+7/9y6qmnMnfuXIYMGZIxnXOudngAqQLr1q2ja9euANx66605b//uu+/y97//HYC7776boUOH0qdPH5YtW8bSpUsBuOOOOxg+fHjkfbZv357169cDsHnzZlasWMHIkSO55JJLWLt2LZ9++mnO+XTOVRcPIHGVsJ3zvPPO48ILL+Tggw9m06ZNOW/ft29fbrvtNgYOHMjHH3/MT37yE9q2bcstt9zCMcccw4ABA2jRogVTp06NvM8JEyZw6aWXMnjwYN58800mTpzIgAEDGDx4MGeddRYdOnTIOZ/Ouerit/HW+K2ly5YtY8yYMSxatKjcWan5c+1crarI23glHSFpiaSlki5Is16SrgrXL5C0b9K6syS9KmmRpLsltS1t7p1zrnkrWwCR1BK4BhgN9AOOldQvJdloYM9wmgJcF27bFTgdqDOz/kBLwB8+SKNnz54VUftwztWectZA9geWmtnbZvY1MBMYm5JmLHC7BZ4HOkjqEq5rBWwrqRWwHfB+qTLunHOuvAGkK7Ai6fPKcFnWNGb2HvA74F1gFbDOzB5NdxBJUyTNkTRn9erVBcu8c841d+UMIOnG907t0U+bRtK3CGonvYBdge0lTUx3EDObYWZ1ZlbXuXPnvDLsnHPuG+UMICuB7kmfu7F1M1SmNIcC75jZajPbANwPHFTEvDrnnEtRzgDyErCnpF6StiHoBJ+VkmYW8OPwbqwDCZqqVhE0XR0oaTsFj0mPAl4vZeYLJZ/h3CEYUPG5556LffwoQ8KvXbuWa6+9NvYxnHO1qWwBxMw2AtOARwgu/n8ws1clTZXU8ETbw8DbwFLgBuCn4bYvAPcCLwMLCcoxo5T5T8xOFGQ/HTt2ZP78+cyfP5+pU6dy1llnNX7eZpttsm6fbwCpq6trHLk3Ew8gzrl0yvociJk9bGZ7mdkeZvabcNn1ZnZ9OG9mdmq4foCZzUnatt7M+phZfzM73sy+KmXepz9ZvOHc586dy/DhwxkyZAiHH344q1atAthqyPRly5Zx/fXXc/nllzNo0CCefvppJk+ezNSpUznkkEPYa6+9eOihh4Dg3e8nnHBC49PiTzzxBBBtSPgLLriAt956i0GDBnHuueeyatUqhg0bxqBBg+jfvz9PP/100c6Fc65y+bCpFcbMOO2003jwwQfp3Lkz99xzDxdddBE333wzF198Me+88w5t2rRh7dq1dOjQgalTp27xEqqbbrqJZcuW8eSTT/LWW28xcuRIli5dyjXXXAPAwoULWbx4Md/73vd44403tjr+4sWLeeKJJ1i/fj29e/fmJz/5CRdffDGLFi1i/vz5AFx22WUcfvjhXHTRRWzatKnx/SLOuebFA0gOErMTW9Q8ND24Sax+eD2JEYmCHOOrr75i0aJFHHbYYQBs2rSJLl2CR18ahkwfN24c48aNy7iPf/3Xf6VFixbsueee7L777ixevJhnnnmG0047DYA+ffqw2267pQ0gDUPCt2nTZosh4ZPtt99+nHjiiWzYsIFx48YxaNCg/AvunKs6PphiDhIjEli9YfXB3cYN84UKHhDUQPbee+/GfpCFCxfy6KPBIy5Rh0zPZ/j2TEPCJxs2bBhPPfUUXbt25fjjj+f222+PWjznXA3xAFJh2rRpw+rVqxuHX9+wYQOvvvpqxiHTk4dVb/DHP/6RzZs389Zbb/H222/Tu3dvhg0bxl133QUEbzt899136d27d6Q8pR5j+fLl7LTTTpxyyimcdNJJvPzyywUqvXOumngTVkz1w4sznHuLFi249957Of3001m3bh0bN27kzDPPZK+99mLixImsW7cOM2scMv2oo45i/PjxPPjgg1x99dUA9O7dm+HDh/PBBx9w/fXX07ZtW376058ydepUBgwYQKtWrbj11lu3qG00pWPHjhx88MH079+f0aNH079/fy699FJat25Nu3btvAbiXDPlw7nX2BDjkydPZsyYMYwfP77cWdlKrZ1r55qLihzO3TnnXPXyJqwaE+eVt845F4fXQJxzzsXiAcQ551wsHkCcc87F4gHEOedcLB5AqkjDg4R9+/Zl77335sorr2xcN3nyZHr16sWgQYPYZ599eOyxxxrXjRgxgh49emzxNPq4ceNo164dAJs3b+b000+nf//+DBgwgP3224933nkHCN6pPmDAgMYh5rMN/e6caz78LqwKMnv2bG699daMd1K1atWKyy67jH333Zf169czZMgQDjvsMPr16wfApZdeyvjx43niiSeYMmUKb775ZuO2HTp04Nlnn2Xo0KGsXbu2cYRfgHvuuYf333+fBQsW0KJFC1auXMn222/fuP6JJ56gU6dOxSm0c65qeQ2kinTp0oV9990XCIYX6du3L++9995W6b7zne9stXzChAnMnDkTgPvvv58f/vCHjetWrVpFly5daNEi+HPo1q0b3/rWt4pVDOdcjfAaSJIzz4RwxPKCGTQIrriisPsEWLZsGfPmzeOAAw7Yat1f/vKXrUbrHTVqFKeccgqbNm1i5syZzJgxg//4j/8AgtF7hw4dytNPP82oUaOYOHEigwcPbtx25MiRtGzZEoBJkyZx1llnFb5AzrmqEymASOoA/BjombyNmXmDeAEccMABfPXVV3z66ad8/PHHjcOj//a3v+Xwww/fKv2nn37K0UcfzRVXXMEOO+zQuPzcc8/lvPPO48MPP+T555/fYpuWLVsydOhQ7rnnHr744gt69uzZuK5bt24sWbKExx9/nMcff5xRo0bxxz/+kVGjRgHehOWcSy9qDeRh4HmC18duLl52yqsYNYUoXnjhBWDrPpAVK1Y0BpOpU6cydepUNmzYwNFHH81xxx23RTMUBH0gP/zhD7nqqquYNGkSc+fO3WL9hAkT+Jd/+RcSicRWeWjTpg2jR49m9OjR7LzzzjzwwAONAcQ559KJGkDamtnZRc2J20r37t0b3wIIwbtCTjrpJPr27cvZZ6f/dbRo0YIzzjiD2267jUceeWSLGswhhxzChRdeyLHHHrvFNi+//DK77LILu+66K5s3b2bBggUMHDiwKGVyztWOqJ3od0g6RVIXSTs2TEXNmdvKs88+yx133MHjjz/eeFvtww8/vFU6SfziF7/gkksu2Wr5Oeecs1Vz1IcffshRRx1F//79GThwIK1atWLatGmN60eOHNl4vB//+MfFKZxzrupEGs5d0qnAb4C1QMMGZma7Fy9rhdcchnOvZH6unatOmYZzj9qEdTbwbTP7qLDZcs45V62iNmG9CnxezIw455yrLlEDyCZgvqT/knRVw5TvwSUdIWmJpKWSLkizXuGxlkpaIGnfpHUdJN0rabGk1yV9J24+mtNbGcvFz7FztSdqE9YD4VQwkloC1wCHASuBlyTNMrPXkpKNBvYMpwOA68KfAFcCfzGz8ZK2AbaLk4+2bduyZs0aOnbsiKSYpXFNMTPWrFlD27Zty50V51wBRQogZnZbeJHeK1y0xMw25Hns/YGlZvY2gKSZwFggOYCMBW634Ovr82GtowvwGTAMmBzm72vg6ziZ6NatGytXrmT16tWxC+Kya9u2Ld26dSt3NpxzBRT1SfQRwG3AMkBAd0mTzOypPI7dFViR9Hkl39QumkrTFdgIrAZukbQPMBc4w8w+S5P3KcAUgB49emyVidatW9OrV6/4pXDOuWYqah/IZcD3zGy4mQ0DDgcuz/PY6dqLUhvKM6VpBewLXGdmgwlqJFv1oQCY2QwzqzOzus6dO+eTX+ecc0miBpDWZrak4YOZvQG0zvPYK4HuSZ+7Ae9HTLMSWGlmL4TL7yUIKM4550okagCZI+kmSSPC6QaCZqN8vATsKalX2L8yAZiVkmYW8OPwbqwDgXVmtsrM/gGskNQ7TDeKLftOnHPOFVnUu7B+ApwKnE7QrPQUwR1UsZnZRknTgEeAlsDNZvaqpKnh+usJBnE8ElhK8BzKCUm7OA24Kww+b6esc845V2RRhzI5w8yuzLas0qUbysQ551zTMg1lErUJa1KaZZPzypFzzrmq1mQTlqRjgX8DeklK7p9oD6wpZsacc85Vtmx9IM8Bq4BOBLfyNlgPLChWppxzzlW+JgOImS0HlgOxx5lyzjlXmyL1gUg6UNJLkj6V9LWkTZI+KXbmnHPOVa6onei/B44F3gS2BU4Gri5WppxzzlW+qM+BYGZLJbU0s00EY1A9V8R8Oeecq3BRA8jn4QN78yVdQtCxvn3xsuWcc67SRW3COj5MO41g4MLuwNHFypRzzrnKl+05kBnAn4G/mdmXwJfA9FJkzDnnXGXLVgO5GdgHeFjSY5LOD9+/4ZxzrpnL9hzI88DzQEJSR+B7wM8kDQDmEbxS9g/Fz6ZzzrlKk60Ja2cz+wDAzNYAd4cTkoYARxQ9h8455ypStruwXpG0kCBo3Gdm6xpWmNlc8n8niHPOuSqVrQ+kK/A74BDgDUkPSPqRpG2LnzXnnHOVrMkAYmabzOwRMzuB4NbdW4BxwDuS7ipB/pxzrrwSiXLnoGJFfQ4EM/ua4LWxrwOfAP2KlSnnnKsY0/3JhUyyBhBJPSSdK+ll4CGC18+ONbPBRc+dc86Vg9c6ImkygITjXT0N7AxMMbPeZlZvZq+XJHfOOVcO06eDFEzwzbwHli1kuwvrQuApi/LidOecqyUNlz3pm3m3hWyd6E+amUnaK3wSfRGApIGSflGaLDrnXAkkEulrHS6jqJ3oNxDURjYAmNkCYEKxMuWccyWXSAQ1jYbaRsN8fX1Zs1XJogaQ7czsxZRlGwudGeecqzje75FR1ADykaQ9AAOQNJ7gnSB5kXSEpCWSlkq6IM16SboqXL9A0r4p61tKmifpoXzz4pxzjbzWEUnUF0qdCswA+kh6D3gHOC6fA0tqCVwDHAasBF6SNMvMXktKNhrYM5wOAK4LfzY4g+C5lB3yyYtzzm3Bax2RRKqBmNnbZnYo0BnoY2ZDzWx5nsfeH1ga7vtrYCYwNiXNWOB2CzwPdJDUBUBSN+D7wI155sM551wMkZ9EBzCzz8xsfYGO3RVYkfR5ZbgsaporgPOAzU0dRNIUSXMkzVm9enVeGXbOOfeNnAJIgaW7Py71Zuu0aSSNAT4MRwRukpnNMLM6M6vr3LlznHw655xLo5wBZCXBAI0NugHvR0xzMPADScsImr6+K+nO4mXVOedcqqid6Eg6COiZvI2Z3Z7HsV8C9pTUC3iP4LmSf0tJMwuYJmkmQef5OjNbRfBMyoVhvkYA55jZxDzy4pxzLkeRAoikO4A9gPnApnCxAbEDiJltlDQNeIRggMabzexVSVPD9dcDDwNHAkuBz4ET4h7POedcYSnKMFeSXgf6VfuYWHV1dTZnzpxyZ8M556qKpLlmVpe6PGofyCJgl8JmyTnnXDWL2gfSCXhN0ovAVw0LzewHRcmVc865ihc1gCSKmQnnnHPVJ1IAMbMni50R55xz1aXJACLpGTMbKmk9Wz7kJ8DMzMegcs65ZqrJAGJmQ8Of7UuTHeecc9Ui8oOEzdmZZ8L8+eXOhXPOpbds7TJ6dujZZJpBg+CKKwp73HIOZeKcc64Alq9dVpbjeg0kgkJHbeecKyRNH8ns+tI/551TDUTS9uGLoJxzzpVRYnYCTReaHgxa3jCfmJ3ImL7QmhzKRFILgkEOjwP2I3iIsA2wmmCcqhlm9mbBc1UkPpSJc64WabqwLDWQKGkybhtzKJMnCAZRvBDYxcy6m9lOwCHA88DFknwUXOeca4ay9YEcamYbUhea2cfAfcB9kloXJWfOOeciqR9en3Z5YnaC6U9Ob/zc0NxVP7yexIhE3sfN1oTVFpgKfBtYCNxkZhvzPmqZeBOWc665KkcT1m1AHUHwGA1cFuvozjnnak62Jqx+ZjYAQNJNwIvFz5JzzrlCy9TMlY9sNZDG/o9qbrpyzrnmrhB9Hqmy1UD2kfRJOC9g2/CzD6bonHPNXLbBFP2hQeecc2n5WFjOufQSiXLnwFW4JgOIpPWSPgl/rk/6/Lkk7xNxrpZNn549jWvWmgwgZtbezHYIf7YHdgV+A/wDuLIUGXTOJfFagasgkZqwJHWQlABeAdoD+5nZz4qZMedqWnIgyCUoFKpWkOn4iQRIwQTfzHvgcmlkexK9E/Az4EfAzcDVZrauYAeXjiCoybQEbjSzi1PWK1x/JPA5MNnMXpbUHbgd2AXYTDCoY9YakT+J7iqGBA3/e8nzuWxX7OM3LC/UMV3Vivsk+nLgWIIn0j8HTpJ0dsOUZ4ZaAtcQPOHeDzhWUr+UZKOBPcNpCnBduHwj8DMz6wscCJyaZlvnyq8Q39xrsVZQqPNSrH27SLIFkEuBW8L59mmmfOwPLDWzt83sa2AmMDYlzVjgdgs8D3SQ1MXMVpnZywBmth54HeiaZ36cK7zkJqdMgSB5Pt3FL5EIagANtYCG+VwvlLkcv+Fn1KCVa14K0RSXaR/e+V8yTTZhFfXA0njgCDM7Ofx8PHCAmU1LSvMQcLGZPRN+fgw438zmJKXpCTwF9DezT0ghaQpB7YUePXoMWb58efEK5VyqbM1DTaXJZX/55CvbPqMcM9d8FaIcUc6tK4hYTViSftXE9Mt885RmWepvvck0ktoRDCt/ZrrgAWBmM8yszszqOnfuHDuzzkVWzCan+sKPZ1QyhTgvmfbRs2ftNfNVgWxNWJ+lmQBOAs7P89grge5Jn7sB70dNE76H5D7gLjO7P8+8OFc4UZqckgNBLkGhUBfEXI6faX2uAaEQTXGZ9rF8eWGa+eJqpoEqchOWpPbAGQTB4w/AZWb2YewDS62AN4BRwHvAS8C/mdmrSWm+D0wjuAvrAOAqM9s/vDvrNuBjMzsz6jH9LixXcs2lOaXcTVhxmwQLpcZ/z3HvwkLSjpL+E1hAMHbWvmZ2fj7BAxpH950GPELQCf4HM3tV0lRJU8NkDwNvA0uBG4CfhssPBo4HvitpfjgdmU9+nIsl2zfPam5yKqZCnJfhw9PXgIYPz3/fLhozyzgR3IX1FkFzVbum0lbDNGTIEHOuoIJRqc3q68uajbLLVP5Cn5dM+2v4PZRSfX1DQ9mWUw3+LQBzLM01NduDhJuBrwieu0hOWJXDuXsTlis4f9iuaYU+L5V651W5j19ksZqwzKyFmW1r34yJ1TC1r7bg4VzBpOs8blju4j2fki9vKiyLbLfxtsu2gyhpnKspDXcCpV60pk/3W0fhm/MQ9e6sbA/+Rbnbq9x3WzXTAJatCesxYD7wIDDXzD4Ll+8OjAT+FbjBzO4tflbz501YruC8CWtrud4RVY4HKeMq9/HLJG4T1ijgMeDfgVclrZO0BriTYCDDSdUSPJyLJNdvss30m+dWmhomJZf0zb32Vm3S9azX6uR3Ybms4t7NUyt33hSiHMnnMMr+cjnn5TjPzehuq0yIeRfWRDO7M5w/2MyeTVo3zcx+X/wQVzjehOWyaqZNFI2KOUZVMY+Zj0Qies2nDHlNzE6QGJEo6TFTxX2QMHnI9qtT1p2Yd66cqwS11pxS7nzn2qxX7mbACh+9d/qTlZu/bAFEGebTfXauOhVquPRKkesFsdABtBy38ZZKuYNdhckWQCzDfLrPzrlCKuWtqbUUQKMYMSJe0CzROUnMTqDpQtOD/DXMJ2bndvxc0+cqWx/I5wTjUAnYI5wn/Ly7mW1f1NwVmPeBuKxyaQ8vtlza2xOJ9DWP+vrcylPu/ohSKffgiznQdGH18fKXz7Zb7CdDH0irLNv1zfvIzlWTSgkeuUoOfPlcEJtzE00lfXmoEtmeA1meOgEDkuadc4VU7g79Wr6AZjq3DaP3Vmhnev3w3IJ6oZq/osj5lbaSXjazfQuekxLwJixXVeLWJPybdHbpzm2FN2XFUewmrKzvA0m3r7xz41wlqbWLba2Vp5jKXeOrcnECyL8XPBfONSjHP26FNl006/6IYms4tzV+B1quzV+5itSEJWkngrcA7gp8ASwieLR9c1FzV2DehFUF/HWkrlz87yCjWE1YkkZKegT4X2A00AXoB/wCWChpuiR/L4irPt504VKVocZX7Oc0ii3bcyCXAleb2btp1rUCxgAtzey+4mWxcLwGUqEK9QxDXJX0zdM7wJuVQnVyF1umGki2APJDM7u/qDkrIQ8gVaC5N2FVUl5c0VV7AMnWif6LIuXHucoRpenCawWuQEr5nEaxxbkLy7ns4l5wC9EOXYzB/Ip5p5b3xzQriREJrN4aax4N8+Uesj2OqGNhbbWK4CUwA4uVsWLwJqwMitHuXs6mmGIcu1TlqfQmrOS/Fe+vyVutN2G9AxyVZhoT/sw3U0dIWiJpqaQL0qyXpKvC9Qsk7Rt1W5dGpn/2Sn0Ootzijthay5L/VvzvJm/Ffk6j6NK9prBhAuY1tT6fCWgJvAXsDmwDvAL0S0lzJPBnghrPgcALUbdNNzX7V9pmenVo3Ne4pirnqz+Lcezk81Koc5RNpb8mtRznxJUdGV5pm60G8myW9fnYH1hqZm+b2dfATGBsSpqxwO1hGZ4HOkjqEnFb15RitLuX86neWnmiuBLzm+lvJXm+EvNdweJ2mFdaR3u2ALJXw4ykCwt87K7AiqTPK8NlUdJE2RYASVMkzZE0Z/Xq1Xlnuuo09c9fCxfcQss2YmtzlCk4J88397+bHMV9TW2lvd42WwDplDR/TIGPnW5QxtTepExpomwbLDSbYWZ1ZlbXuXPnHLNYAxr+sUv9D1/OcZzyOXami+Xs2YXImXM1pZy38a4Euid97ga8HzFNlG2rX6m+1RXqYp+c33J+I/Vvw8WT/Lfigz3mJO7zHxX93Ei6jpGGCVgLzAL+lDTfODW1bbaJ4G2IbwO9+KYjfO+UNN9ny070F6Num26q2E70TB2n+XRSFqJTOVPaYuS3ElV6h7arWiTi/a/E3S5fZOhEz3aRH97U1NS2USaCu6zeILij6qJw2VRgajgv4Jpw/UKgrqlts00VFUCSL07Fvjsq7n5yzVehA0iuAawQ+y4mD0jRJZ+rGjxvzSKAbJEQOgOdo6avxKmiAkim2yHzqTkUumYQJVAU89bdYgaqctSWaq2GVkw1frtw/RP1Jd0uX5kCSLbh3CWpXtJHwGLgDUmrJf0qUvuYa1rcu6NyfSAwl7bqTA/PZVoeJb/lVCn5cOVRob//uMOWVNxwJ+miSsMEnAX8FeiVtGx34BHgrKa2rcSp7DWQTN/WC9VUVOhv5uU4fqZzNHx45uVNKVVtKZNyPlxZbZr6/4h73mqw9lIOxOwDmQd0SrO8M0V8Sr1YU9kDSLIoF+ooTVKFvkDlE0DiHjPXprdcmjeKEeyylbO53GRQTIVqwqrhc17K5qy4AWRRnHWVOlVEAGm4uKQGgSjbZfsGHvefJcq+U9MXUtS+lnTL020bJagW86JUqpsMalk+AaSZ1PpK2aEeN4C8HGddpU4VEUAa/hly/WOOcgHNNSilU+iLXJR8RKnRJKfJ1JyV7liFri01tc9iHrMWLn5xbyEv5u+qilVDANkEfJJmWg9saGrbSpwqKoDks12UoFGI4xRCUxfTXL4lxv1WX6jyZMtvsb/11sKFsBxlqIXzlqT+iXojwVZTsZuzYgWQWpvKFkAKcXHJ9Rt4Ps1ZhUwfJR/5BJls+y/GN/dSBa1i77PUopSh0L+vWqi5ZVANNZB2Ta2PmqZSpqqrgeR6AS1H22/cPohs+4iaphwXiEqp9VSDYvwtODOrjgDyGHAZMAzYPmn57sBJ4e2845vaRyVNZa2BNCh001K5O2wLcTHNp5+kHOLehZWPSip/XPl8UahSxWxaqvi7sILtOBK4C1gGrAPWAM8BFwG7ZNu+kqaSBpCmaglRt0uW6zfwYv4j5vKtspDfxpuzWriwFqo/rIok1xLK9RR5IXgfSCEDSKY7RHK51TSTQjXVlOqfrxx9EM1RLZzHaqtpFkByACnXOFaFkCmAKFiXnqSJZnZnOH+wmT2btG6amf0++7PulaOurs7mzJmT/46k4DtStvl06uubHl4heR/FlEjkNsxDpvS55DfXY7rmp1R//0WUmJ3I+OInq6/Oskmaa2Z1qcuzvQ/k7KT5q1PWnZh3rmpR8hhRyRoq5ukuoMV4vWw2mcbNyjV9LuNsJe+jGGXz4NS0ajg/NfCOkcSIBFZvaYNFRb3LowCy1UDmmdng1Pl0n6tBXjWQRCL3i266mkk2pfoGlutxCpGvTLW1QqmBb69F5een5DRdjYEkeb7axK2BWIb5dJ9rW5T3QqfON6iUb1W51nQKUTNq6p3spVYN38BdTakfHv1/vyprJek6Rhom4HNgAcHLnBrmGz5/1tS2lTgVrBM9Uwd5LndbZVIpnd/5ps+0j0LfbVOOO8IqUaZzmMuwL66ost2FVcmd7MTsRN8tS/BZXqA4VhIF60RP7gzONF/pmmMTVi034WQqW7HPuSuYSm7iituE9a6ZLc80hTsuU3tEGWV6uVO1BA/IvVmtEM1w5WjKK8cNCs5FlJidaOxYhyrsZE9XLWmYgNnAaUCPlOXbAN8FbgMmN7WPSpoqYigTFyhGE0ohxuWqJoV++ZYrq0p+6JCYTVhtCW7XPQ7oBawF2gItgUeBa8xsfnFCW+EVrAnLVadabsKJ0oTV3BW6ibnA+6vkO7ZiNWGZ2Zdmdq2ZHQzsBowC9jWz3czslGoKHs5VzN1wheLNcLnJ9Tb8Eu8vlzu2KkW2PpBGZrbBzFaZ2doi5se54qm1C27yBSxTcKy1oFnjqq0/JHIAcc5VsKae5WnOCn0TRRFvykh9gr1hPjEi/30XS1kCiKQdJf1V0pvhz29lSHeEpCWSlkq6IGn5pZIWS1og6X8kdShZ5p0rJ7+rLDeZHgDOJ4AUcn9Vrlw1kAuAx8xsT4J3jlyQmkBSS+AaYDTQDzhWUr9w9V+B/mY2EHgDuLAkuXau3PwC1ixUS39IuQLIWIJbgAl/jkuTZn9gqZm9bWZfAzPD7TCzR81sY5jueaBbcbPrnKt6he4PKmL/UiU3WyUrVwDZ2cxWAYQ/d0qTpiuwIunzynBZqhOBPxc8h85VOu8gz02ha2le66NVsXYs6W/ALmlWXRR1F2mWbXFjtKSLgI0Eb0zMlI8pwBSAHj16RDy0c1XAL2CuzIoWQMzs0EzrJH0gqYuZrZLUBfgwTbKVQPekz92A95P2MQkYA4yyJp6GNLMZwAwIHiTMrRTOOecyKVcT1ixgUjg/CXgwTZqXgD0l9ZK0DTAh3A5JRwDnAz8ws89LkF/nnHMpyhVALgYOk/QmcFj4GUm7SnoYIOwknwY8ArwO/MHMXg23/z3QHvirpPmSri91AZxzrrkrWhNWU8xsDcGwKKnL3weOTPr8MPBwmnTfLmoGnXPOZeVPojvnnIvFA4hzzrlYPIA455yLxQOIc865WDyAOOeci8UDiHPOuVg8gDjnnIvFA4hzzrlYPIA455yLxQOIc865WDyAOOeci8UDiHPOuVg8gDjnnIulLKPxVpszz4T588udC+eci2/QILjiisLu02sgzjnnYvEaSASFjtrOOVcLvAbinHMuFg8gzjlXQxKzEyU7lgcQ55yrIdOfnF6yY3kAcc45F4sHEOecq3KJ2Qk0XWi6ABrni92cJTMr6gEqSV1dnc2ZM6fc2XDOuaLRdGH1hb2uS5prZnWpy70G4pxzLpayBBBJO0r6q6Q3w5/fypDuCElLJC2VdEGa9edIMkmdip9r55yrfPXD60t2rHLVQC4AHjOzPYHHws9bkNQSuAYYDfQDjpXUL2l9d+Aw4N2S5Ng556pAYkSiZMcqVwAZC9wWzt8GjEuTZn9gqZm9bWZfAzPD7RpcDpwHNJ9OHOecqyDlCiA7m9kqgPDnTmnSdAVWJH1eGS5D0g+A98zslWJn1DnnXHpFGwtL0t+AXdKsuijqLtIsM0nbhfv4XsR8TAGmAPTo0SPioZ1zzmVTtABiZodmWifpA0ldzGyVpC7Ah2mSrQS6J33uBrwP7AH0Al6R1LD8ZUn7m9k/0uRjBjADgtt445bHOefclsrVhDULmBTOTwIeTJPmJWBPSb0kbQNMAGaZ2UIz28nMeppZT4JAs2+64OGcc654yvIgoaSOwB+AHgR3UR1jZh9L2hW40cyODNMdCVwBtARuNrPfpNnXMqDOzD6KcNzVwPKY2e4EZD1GDfBy1hYvZ20pVzl3M7POqQub1ZPo+ZA0J92TmLXGy1lbvJy1pdLK6U+iO+eci8UDiHPOuVg8gEQ3o9wZKBEvZ23xctaWiiqn94E455yLxWsgzjnnYvEAEkG2UYGrlaTukp6Q9LqkVyWdES6PNFpyNZHUUtI8SQ+Fn2uxjB0k3Stpcfg7/U6NlvOs8O91kaS7JbWtlXJKulnSh5IWJS3LWDZJF4bXpSWSDi91fj2AZJFtVOAqtxH4mZn1BQ4ETg3LlnW05Cp0BvB60udaLOOVwF/MrA+wD0F5a6qckroCpxM8+9Wf4BmxCdROOW8FjkhZlrZs4f/qBGDvcJtrw+tVyXgAyS7bqMBVy8xWmdnL4fx6ggtOV6KNllw1JHUDvg/cmLS41sq4AzAMuAnAzL42s7XUWDlDrYBtJbUCtiMY4qgmymlmTwEfpyzOVLaxwEwz+8rM3gGWElyvSsYDSHYZRwWuJZJ6AoOBF4g2WnI1uYJg6P/NSctqrYy7A6uBW8KmuhslbU+NldPM3gN+RzCCxSpgnZk9So2VM0WmspX92uQBJLu0owKXPBdFJKkdcB9wppl9Uu78FJKkMcCHZja33HkpslbAvsB1ZjYY+IzqbcbJKGz/H0swoOquwPaSJpY3V2VT9muTB5DsMo0KXBMktSYIHneZ2f3h4g/CUZJpYrTkanEw8INwzLSZwHcl3UltlRGCv9OVZvZC+PlegoBSa+U8FHjHzFab2QbgfuAgaq+cyTKVrezXJg8g2aUdFbjMeSoIBePh3wS8bmb/L2lVlNGSq4KZXWhm3cKRmycAj5vZRGqojADhaNQrJPUOF40CXqPGyknQdHWgpO3Cv99RBH13tVbOZJnKNguYIKmNpF7AnsCLpcyYP0gYQZRRgauRpKHA08BCvukf+DlBP8hWoyWXJZMFJGkEcI6Zjck0InQZs5c3SYMIbhTYBngbOIHgS2KtlXM68COCuwjnAScD7aiBckq6GxhBMOruB0A98AAZyibpIuBEgnNxppn9uaT59QDinHMuDm/Ccs45F4sHEOecc7F4AHHOOReLBxDnnHOxeABxzjkXiwcQ5wBJ/1fSCEnjch1xWVJnSS+EQ4gckrJuTLj8FUmvSfr3cPm4Qg7KKWmypF0LtT/novAA4lzgAILnX4YTPBuTi1HAYjMbbGaN24ZP+c8AjjKzfQjGGpsdrh5HMLrzVsJBAnM1mWBoj8hiHse5Rv4ciGvWJF0KHE4wttJbwB7AO8C9ZvbrlLS7ATcDnQkGLjwB2JHgieBtgfeA75jZF2H6HYHFwG4Ny8LlBwEPAevC6WiCEQGeIxh6ZRYwAHjIzO4Nt/nUzNqF8+cBxxM8/PlnYA7BMODvAV8A3yF4OrvOzD6SVAf8zsxGSEoQBJqewEcEw9xfT/CQGgQPoz0b93y65sW/gbhmzczOlfRHggvy2cBsMzs4Q/LfA7eb2W2STgSuMrNxkn5FcLGelrLvjyXNApZLeowgaNxtZs+Fy5MDBEAHMxsefr41XQYkjSaovRxgZp9L2jE8zjSCp+znJO0vkyHAUDP7QtJ/A5eb2TOSegCPAH2b2ti5Bh5AnAualuYDfQjGj8rkO8APw/k7gEuy7djMTpY0gGAQwHOAwwiam9K5J0JeDwVuMbPPw/3HGa5jVlKN6FCgX1LA2UFS+/D9MM41yQOIa7bCsaNuJRjF9COClxNJ0nySmqKaEKn918wWAgsl3UHQPDY5Q9LPkuY3EvZRhoMGbtOQ7YjHbdweaNvEcVoQrazObcU70V2zZWbzzWwQ8AZBh/bjwOFmNijDBfU5ghF9AY4Dnmlq/5LahQM4NhgELA/n1wPtm9h8GUFTEwTvv2gdzj8KnChpu/AYO2bYX/L2RzdxnEeBxqa3MKg6F4kHENesSeoM/NPMNgN9zKypJqzTgRMkLSDoMzkj2+6B8yQtCWs10/mm9jETODe8xXePNNveAAyX9CLBHWKfAZjZXwg62eeE+zwnTH8rcL2k+ZK2DY91paSngU1ZylQnaYGk14CpWcrkXCO/C8s551wsXgNxzjkXiwcQ55xzsXgAcc45F4sHEOecc7F4AHHOOReLBxDnnHOxeABxzjkXiwcQ55xzsfx/rpBJNeq0agQAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAZcAAAEjCAYAAAD+PUxuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABE7klEQVR4nO3dd5xU1f3/8dcbUDAoEhV7QRNEpS2CFWnRqBhrLMFoBNEQsAWNRhR1B5R8UWJMrESxoGAsJPaG+JNiRHEpShELsgoWRAwoiivl8/vj3IFhmba7MztbPs/HYx57y7n3nrkM85lT7jkyM5xzzrlcalDoDDjnnKt7PLg455zLOQ8uzjnncs6Di3POuZzz4OKccy7nPLg455zLOQ8urt6S9IKkPgnrN0j6StIX0fopkhZLWiWpY+Fy6lzt48HFpSWpVNLq6As2/rq90PnKRJJJ+i7K73JJr0j6TWIaM+tlZmOi9HsAfwIOMLOdoyR/BS4ys63NbFb1voPcyOY+SJok6Ydy/8ZDEpZXS1qfuL8a818qaamkpgnbzpc0qdx7nCOpQcK2GyQ9EC23jNLE818qaXB1vYf6yoOLy8YJ0Rds/HVRri8gqVGuzwl0MLOtgdbAA8DtkopTpN0LWG5mX5bbNq8yF87T+6msbO7DReX+jYfHl4FewGeJ+6s5/42AP2ZIsyvQO0Oa5lHezwSuk3RsLjLnkvPg4ipNUl9Jr0n6q6T/SVokqVfC/m0l3Svpc0mfRr8mGyYc+19Jt0j6GohJ2l7SM5K+kfRWlP61KP0dkm4ud/1nJA3KlE8z+8rMHgIGAldJ2j46flL0K/go4GVg1+iX7b+iX+cNgbclLYzS7yrp35KWRe/1koS8xCSNlzRW0jdA3yzef7p7t52k+yV9Fu1/MmHf8ZJmS1oh6XVJ7bP590p1H3JB0ihJfy237SlJl0XLV0b34FtJ70k6sgKnHwlcLql5mjQ3AUOzCepmNo3wo6FtBfLgKsiDi6uqQ4D3gB0I/8HvlaRo3xhgLfBzoCNwNHB+uWM/AnYEhgN3AN8BOwN9ohcJ5zozXvUhaQfgSOBfFcjrU4RfwQcnbjSziWz66/zMhF/nHczsZ9F1nwHeBnaLrj1I0jEJpzoJGA80B8Zl+f5T3buHgJ8AbaL7c0v0vg8E7gP+AGwP/BN4WlLjqt6HKnoY+E08/5J+Sni/j0hqDVwEHGRm2wDHAKUVOHcJMAm4PE2a/wDfAH3TnUhBF8J9rZVVnbWFBxeXjSejX8nx1+8T9n1sZveY2TrCl+kuwE6SdiJ8YQ8ys++i6qZb2LTq4jMzu83M1gI/AqcCxWb2vZnNj84HgJlNB1YSvtSJzjPJzJZm+ybMbA3wFbBdBd8/wEFACzMbZmY/mtlHwD3l3s80M3vSzNYDzcj8/lPdu12iYweY2f/MbI2ZTY6O+T3wTzN708zWRW1GZcChVbwPtyb8+87M/rZsMBUwoGu0fhrhfnwGrAMaAwdI2sLMSs1sYQXPfx1wsaQWKfYbcC2huitVoP0K+BoYDQw2s1cqmAdXATWpXtjVXCdHv+6T+SK+YGbfRz9ctyZ8cW0BfL7xxzgNgMUJxyYutyB8HlPth/AFfDahCuts4B8VeROStoiu83VFjovsRag2W5GwrSHhSzVucbn0md5/unv3tZn9L0U++ki6OGHbloQ2h6ykuA+XmNnobM9RnpmZpEcI7RlTgN8CY6N9H0bVlzGgjaSXgMuiwJPt+edKehYYDLybIs3zkj4B+qc4zQ7RDxlXDbzk4vJlMeEX9Q5m1jx6NTOzNglpEofkXkaoQto9Ydse5c45FjhJUgdgf+DJCubppOga0yt4HIT3syjhvTQ3s23M7LiENFYufab3n+5a26VoY1gMDC+Xj5+YWUWqB6tyH9L5F3CapL0IVX7/ju8ws4fN7AhCcDTgxkqcv5hQctstTZprgCGEKkVXQB5cXF6Y2efABOBmSc0kNZD0M0ndU6RfR6g3j0n6iaT9gHPKpVkCvEVoj/i3ma3OJi9R4/hZhDadG81seSXe0nTgm6hheitJDSW1lXRQivdTofef5NgXgDsl/VTSFpK6RbvvAQZIOiRqP2gq6VeStsl03hzdh3T5nkX4kTAaeMnMVkTXbS3pF1F11Q/AakJVWUXP/yHwKHBJmjSTgDls2l7nCsCDi8vGM9r0GYgnsjzuHEKVzXzgf4TG7l3SpL8I2JZQXfQQ4ZdwWbk0Y4B20f5M3lbo9fUhoSH9UjO7Lsu8byIKficARcAiQv396Ci/qVT0/Sf6HbAGWAB8CQyK8lFC+PV+e3TOD8nQiE0O70MW/gUcRWjgj2sMjCDcsy8IHRSuBpB0lqSKdPceBjTNkOYaKteu5nJIPlmYq6kk3QjsbGaJT9F3I1SPtYwazp1zNZCXXFyNIWk/Se2j6p6DgfOAJxL2b0F4mG60BxbnajYPLq4m2YbQ7vId8BhwM+GZDCTtD6wgVCv9vTDZc85ly6vFnHPO5ZyXXJxzzuWcBxfnnHM558HFOedcznlwcc45l3MeXJxzzuWcBxfnnHM558HFOedcznlwcc45l3MeXJxzzuWcBxfnnHM558HFOedcznlwcc45l3MeXJxzzuWcBxfnnHM516jQGagJdthhB2vZsmWhs+Gcc7XKjBkzvjKzFsn2eXABWrZsSUlJSaGz4ZxztYqkj1Pt82ox55xzOefBxTnnXM55cHHOOZdz3uaSwpo1a1iyZAk//PBDobNSpzVp0oTdd9+dLbbYotBZcc7lkAeXFJYsWcI222xDy5YtkVTo7NRJZsby5ctZsmQJe++9d6Gz45zLIa8WS+GHH35g++2398CSR5LYfvvtvXToXB3kwSUNDyz55/fYubrJg4tzztVDZjB6NDz7bH7O78Glhlq+fDlFRUUUFRWx8847s9tuu21Y//HHH9MeW1JSwiWXXJLzPJ1//vnMnz8/bZonn3wyYxrnXGF9+in86lfw+9/D2LH5uYY36OdaLBZeVbT99tsze/bs6JQxtt56ay6//PIN+9euXUujRsn/+Tp37kznzp2rnIfyRo8enTHNk08+yfHHH88BBxyQ8+s756rGDMaNg4svhrIyuPVWuPDC/FyrICUXSddLekfSbEkTJO2aIl2ppDlRupKE7dtJelnSB9Hfnybsu0rSh5Lek3RMdbyfTQwdmrdT9+3bl8suu4yePXty5ZVXMn36dA4//HA6duzI4YcfznvvvQfApEmTOP7444EQmPr160ePHj3YZ599uPXWWwEoLS1lv/32o0+fPrRv357TTjuN77//HoBXXnmFjh070q5dO/r160dZWRkAPXr02DBMztZbb82QIUPo0KEDhx56KEuXLuX111/n6aef5oorrqCoqIiFCxdy6623csABB9C+fXt69+6dt3vjnEvvyy/h1FPhd7+D/feHt98OQaZBnqJAoarFRppZezMrAp4FrkuTtqeZFZlZ4k/xwcArZtYKeCVaR9IBQG+gDXAscKekhvl4A4Xy/vvvM3HiRG6++Wb2228/pkyZwqxZsxg2bBhXX3110mMWLFjASy+9xPTp0xk6dChr1qwB4L333qN///688847NGvWjDvvvJMffviBvn378uijjzJnzhzWrl3LXXfdtdk5v/vuOw499FDefvttunXrxj333MPhhx/OiSeeyMiRI5k9ezY/+9nPGDFiBLNmzeKdd95h1KhReb03zrnkxo+HNm3guefgpptg6lRo1Sq/1yxIcDGzbxJWmwJWwVOcBIyJlscAJydsf8TMysxsEfAhcHAVspqdWAyk8IKNyzmoHivv9NNPp2HDEC9XrlzJ6aefTtu2bbn00kuZN29e0mN+9atf0bhxY3bYYQd23HFHli5dCsAee+xBly5dADj77LN57bXXeO+999h7773Zd999AejTpw9TpkzZ7JxbbrnlhtJRp06dKC0tTXrt9u3bc9ZZZzF27NiU1XjOufz4+mv47W/h9NNhr71g5ky44gpoWA0/uQvWoC9puKTFwFmkLrkYMEHSDEn9E7bvZGafA0R/d4y27wYsTki3JNqWX7FYqMy0KEbGl/MQXJo2bbph+dprr6Vnz57MnTuXZ555JuXzIo0bN96w3LBhQ9auXQts3g1YEmbZxfkttthiw/GJ5yzvueee48ILL2TGjBl06tQpZTrnXG49+2worTz+OAwbBtOmhfXqkrfgImmipLlJXicBmNkQM9sDGAdclOI0XczsQKAXcKGkbpkum2Rb0m9LSf0llUgqWbZsWZbvqmZZuXIlu+0WYucDDzxQ4eM/+eQTpk2bBsC//vUvjjjiCPbbbz9KS0v58MMPAXjooYfo3r171ufcZptt+PbbbwFYv349ixcvpmfPntx0002sWLGCVatWVTifzrnsrVwJ/frBCSdAixYwfTpcey1U9whLeQsuZnaUmbVN8nqqXNKHgVNTnOOz6O+XwBNsrOJaKmkXgOjvl9H2JcAeCafYHfgsxbnvNrPOZta5RYukc91UTnFx7s6VwZ///GeuuuoqunTpwrp16yp8/P7778+YMWNo3749X3/9NQMHDqRJkybcf//9nH766bRr144GDRowYMCArM/Zu3dvRo4cSceOHfnggw84++yzadeuHR07duTSSy+lefPmFc6ncy47EydCu3YwZgxcfTW89RZ07FigzJhZtb+AVgnLFwPjk6RpCmyTsPw6cGy0PhIYHC0PBm6KltsAbwONgb2Bj4CGmfLTqVMnK2/+/PmbbatLFi1aZG3atCl0Nsys7t9r5/Lt22/NBg4M9fGtW5u98Ub1XBcosRTfq4VqYR0hqTWwHvgYGAAQdUkebWbHATsBT0T1+o2Ah83sxfjxwGOSzgM+AU4HMLN5kh4D5gNrgQvNrOI/6Z1zrpaYOhX69oVFi+Cyy+CGG2CrrQqdqwI9RGlm6arBjouWPwI6pEi3HDgyxb7hwPDc5LTuatmyJXPnzi10NpxzlbR6NQwZAn//O+y9N0yeDF27FjpXG3nfUOecq2XefBP69IH33oOBA8OzK1tvXehcbcrHFnPOuVqirCw01B9+OHz3HUyYAHfeWfMCC3jJxTnnaoXZs+Gcc2DOHDj3XLjlFth220LnKjUvuTjnXA22Zg1cfz0cdBAsWwbPPAP33VezAwt4cKmxqjLkPoTBK19//fVKXz+bYftXrFjBnXfeWelrOOfSmz8fDjsMrrsuDOEydy5Eoy7VeB5cciw2KZaT88SH3J89ezYDBgzg0ksv3bC+5ZZbZjy+qsGlc+fOG0ZQTsWDi3P5sW4djBwJBx4IH38chnB5+GHYfvtC5yx7HlxybOjk/A25P2PGDLp3706nTp045phj+PzzzwE2G9a+tLSUUaNGccstt1BUVMTUqVPp27cvAwYMoGvXruy77748G00/98MPP3DuuedueIr+1VdfBbIbtn/w4MEsXLiQoqIirrjiCj7//HO6detGUVERbdu2ZerUqXm7F87VVR98AN26wZ//DL16hdLKaacVOlcV5w36tYSZcfHFF/PUU0/RokULHn30UYYMGcJ9993HiBEjWLRoEY0bN2bFihU0b96cAQMGbDLB2L333ktpaSmTJ09m4cKF9OzZkw8//JA77rgDgDlz5rBgwQKOPvpo3n///c2uv2DBAl599VW+/fZbWrduzcCBAxkxYgRz587dMKnZzTffzDHHHMOQIUNYt27dhvlhnHOZrV8fen79+c/QuDE89BCcddbGwdZrGw8uORCbFNukxKKh4dNQ3L2YWI9YTq5RVlbG3Llz+eUvfwnAunXr2GWXXYCNw9qffPLJnHzyySnPccYZZ9CgQQNatWrFPvvsw4IFC3jttde4+OKLAdhvv/3Ya6+9kgaX+LD9jRs33mTY/kQHHXQQ/fr1Y82aNZx88skUFRVV/Y07Vw+UlobBJl99FY49Nsxtv1v+x3PPK68Wy4FYjxhWbFhxGIA5vpyrwAKh5NKmTZsN7S5z5sxhwoQJQPbD2ldliP1Uw/Yn6tatG1OmTGG33Xbjd7/7HQ8++GC2b8+5esksBJJ27cIgk/fcA88/X/sDC3hwqTUaN27MsmXLNgyRv2bNGubNm5dyWPvEoe/jHn/8cdavX8/ChQv56KOPaN26Nd26dWPcuHFAmOXyk08+oXXr1lnlqfw1Pv74Y3bccUd+//vfc9555zFz5swcvXvn6p5PP4Vf/Qp+//vQzXjOHDj//NpbDVaeV4vlWHH3/Ay536BBA8aPH88ll1zCypUrWbt2LYMGDWLffffl7LPPZuXKlZjZhmHtTzjhBE477TSeeuopbrvtNgBat25N9+7dWbp0KaNGjaJJkyZccMEFDBgwgHbt2tGoUSMeeOCBTUop6Wy//fZ06dKFtm3b0qtXL9q2bcvIkSPZYost2Hrrrb3k4lwSZjBuXJi/vqwMbrsNLrggf3PZF4qyrRapyzp37mwlJSWbbHv33XfZf//9C5Sj3Ovbty/HH388p9XAbid17V47l8rSpTBgADz5ZBjC5YEH8j+XfT5JmmFmnZPtq2Ox0jnnaqbx46FtW3jhhfAMy5QptTuwZOLVYvVEZaZBds5V3fLlcNFF8Mgj0KkTPPggHHBAoXOVf15ycc65PHn22VBaGT8ehg2DadPqR2ABL7k451zOrVwJgwaFNpV27UL34oLNZV8gBSm5SLpe0juSZkuaEE1vnCxdqaQ5UbqShO0jJS2IzvGEpObR9paSVkfpZ0saVU1vyTnnAHj55RBQHnwwzL3y1lv1L7BA4arFRppZezMrAp4FrkuTtqeZFZXrkfAy0NbM2gPvA1cl7FsYpS8yswE5z7lzziWxalXoUnz00fCTn8Drr8Pw4WEol/qoIMHFzL5JWG0KVKg/tJlNMLP4I+JvALvnKm81ScOGDTcMAnnCCSewYsWKtOmXLVvGIYccQseOHX3QSOeq0dSp0KEDjBoFl10Gs2bBIYcUOleFVbAGfUnDJS0GziJ1ycWACZJmSOqfIk0/4IWE9b0lzZI0WVLXNNfvL6lEUsmyZcsq9R7ybauttmL27NnMnTuX7bbbbsMgk6m88sor7LfffsyaNYuuXVO+dedcjqxeHYJJ9+5hffJkuPlm2GqrwuarJshbcJE0UdLcJK+TAMxsiJntAYwDLkpxmi5mdiDQC7hQUrdy1xgCrI3OAfA5sKeZdQQuAx6W1CzZic3sbjPrbGadW7RoUeX3m2+HHXYYn376KQALFy7k2GOPpVOnTnTt2pUFCxYwe/Zs/vznP/P8889TVFTE6tWrC5xj5wogFqu2S735ZmhLueUWGDgQ3n4b/DfdRnnrLWZmR2WZ9GHgOWCzcVPM7LPo75eSngAOBqYASOoDHA8cadEwA2ZWBpRFyzMkLQT2BUrKn7siBg0K81fnUlER/P3v2aVdt24dr7zyCueddx4A/fv3Z9SoUbRq1Yo333yTCy64gP/3//4fw4YNo6SkhNtvvz23mXWuthg6NO8BpqwsXObGG8MAky+/DEdl+22XjVisWoNkvhSkK7KkVmb2QbR6IrAgSZqmQAMz+zZaPhoYFu07FrgS6G5m3ycc0wL42szWSdoHaAV8lN93kz+rV6+mqKiI0tJSOnXqxC9/+UtWrVrF66+/zumnn74hXVlZWQFz6Vz9MXs2nHNOGGTy3HNDqSXnc9lXQ4CsDoV6zmWEpNbAeuBjYABA1CV5tJkdB+wEPBENE98IeNjMXoyOvx1oDLwc7X8j6hnWDRgmaS2wDhhgZl9XNbPZljByLd7msnLlSo4//njuuOMO+vbtS/PmzTdM0OVcvReLhS/kuPiwwsXFOfuSXrMGRowID0LusAM880ztmcu+YMys3r86depk5c2fP3+zbdWtadOmG5Znzpxpe+yxh/3444922GGH2WOPPWZmZuvXr7fZs2ebmdn9999vF154YUHyWhU14V67OgJyfsq5c806dQqnPvNMs6++yvklzIqLwwXKv4qL83Cx3AFKLMX3qg//Ukt07NiRDh068MgjjzBu3DjuvfdeOnToQJs2bXjqqac2Sz9q1ChGjfJnSJ2rrHXrwgCTBx4IH38chnB5+GHYfvs8XCwW2xhSYONyLa4e8yH3qR9D7tdkfq9dzuSoMfyDD6Bv3/Ag5CmnhOdXdtyxyqfNjrQxyNRwPuS+c65+qGJgWb8+TN7VoQPMnw9jx8K//12NgQVCW1Ed4ANXOuccUFoK/frBq6/CsceGue0LMpd9La4KS+QllzS8yjD//B67QjODe+4Jg02+9VZYfv75AgWWOsSDSwpNmjRh+fLl/uWXR2bG8uXLadKkSaGz4uqpTz+F446D/v3hoIPC8yvnn7+xN7OrPK8WS2H33XdnyZIl1NRxx+qKJk2asPvudXLcUVeDmcG4cXDxxeGJ+9tuCyMaN/Cf2znjwSWFLbbYgr333rvQ2XDO5djSpTBgADz5JBx+eJjQqy7PZV8oHqedc/XG+PFh2uEXXgjPsEyZ4oElXzy4OOfqvOXL4cwz4fTToWVLmDkTLr8cGjYsdM7qLg8uzrk67dlnQ2ll/Hi4/vrwYOQBBxQ6V3Wft7k45+qklSvDdBkPPADt24eqsKKiAmeqHvGSi3Ouznn55fDcyoMPwtVXw/TpHliqmwcX51ydsWpV6FJ89NHQtClMmwbDh0PjxoXOWf3jwcU5VydMmRLGBBs1KsxrP3MmHHxwoXNVf3lwcc7VaqtXh2DSo0dYnzwZbr4ZttqqoNmq9woSXCRdL+kdSbMlTYhmoEyWrlTSnChdScL2mKRPo+2zJR2XsO8qSR9Kek/SMdXxfpxzhfHmm9CxY5hueOBAePtt6Nq10LlyULiSy0gza29mRcCzwHVp0vY0s6IkcwbcEm0vMrPnASQdAPQG2gDHAndK8p7sztUxZWWhof7ww+H770MD/h13wNZbFzpnLi6rrsiS9gYuBlomHmNmJ1bmomb2TcJqUyBXo0OeBDxiZmXAIkkfAgcD03J0fudcgc2aBX36hEEmzz03lFq23bbQuXLlZfucy5PAvcAzwPpcXFjScOAcYCXQM0UyAyZIMuCfZnZ3wr6LJJ0DlAB/MrP/AbsBbySkWRJtS3b9/kB/gD333LMqb8U5Vw3WrIH/+7/wIOQOO8Azz8Dxxxc6Vy6VbKvFfjCzW83sVTObHH+lO0DSRElzk7xOAjCzIWa2BzAOuCjFabqY2YFAL+BCSd2i7XcBPwOKgM+Bm+OXTXKOpKUiM7vbzDqbWecWLVqkeyvOuQKbNw8OOyxM0nj66TB3rgeWmi7bkss/JBUDE4Cy+EYzm5nqADM7KstzPww8B2w2t6eZfRb9/VLSE4QqrilmtjSeRtI9hHYbCCWVPRJOsTvwWZb5cM7VMOvWwd/+BtdcA82ahSFcTj210Lly2cg2uLQDfgf8go3VYhatV5ikVmb2QbR6IrAgSZqmQAMz+zZaPhoYFu3bxcw+j5KeAsyNlp8GHpb0N2BXoBUwvTJ5dM4V1gcfQN++YSywU04Jz69U61z2rkqyDS6nAPuY2Y85uu4ISa0JgepjYABA1CV5tJkdB+wEPKEwJVwj4GEzezE6/iZJRYQAVwr8AcDM5kl6DJgPrAUuNLN1Ocqzc64arF8fen5deWV4sn7sWPjtb312yNpG2UzjK+lR4GIz+zL/Wap+nTt3tpKSkswJnXN5VVoK/frBq69Cr15hPnufy77mkjQjyWMiQPYll52ABZLeYtM2l0p1RXbOuURmMHp0eNJeCsv9+nlppTbLNrhs1tjunHO58OmncP758OKL8ItfwH33wV57FTpXrqqy6oocdTteAGwTvd7N1BXZOefSMYOHHgoTeU2ZArffHp6098BSN2QVXCSdQeh1dTpwBvCmpNPymTHnXN21dGnoAXbOOdCmTRgT7MILoYEPpVtnZFstNgQ4KN6gL6kFMBEYn6+MOefqpscfD4NMrloFI0fCpZf6XPZ1Uba/ExqU6ym2vALHOuccy5fDmWfCGWfA3nuH+VYuv9wDS12VbcnlRUkvAf+K1n8DvJCfLDnn6ppnnoH+/UOAuf56GDwYGmX77eNqpaz+ec3sCkm/Bo4gjN91t5k9kdecOedqvZUrYdAgeOABaN8eXnjB57KvL7Idcv9GM7sS+E+Sbc45t5mXXw7Pqnz2WZh75brrfC77+iTbdpNfJtnWK5cZcc7VDatWwQUXwNFHh8m7pk2D4cM9sNQ3aYOLpIGS5gCto2mJ469FwDvVk0XnXG0xZQp06BAGmbzsstBof/DBhc7V5mKTYoXOQp2XqeTyMHACYbThExJenczs7DznzTlXS6xeHYJJjx5hffJkuPlm2GqrgmYrpaGThxY6C3Ve2uBiZivNrNTMzjSzj4HVhJGIt5bk0zc6VwF19dfym29Cx45huuGBA8MDkV27FjpXrtCyfUL/BEkfAIuAyYRh7r0rsnMVUNd+LZeVhYb6ww+H778PDfh33BHaWWqi2KQYGio0NIyGGV+uq0G/0LLtaX4DcCgw0cw6SuoJnJm/bDnnarJZs6BPH5gzJ/QI+9vfYNttC52r9GI9YsR6xIAQWKw483QjrvKy7S22xsyWAw0kNTCzVwnz1zvn0qhrv5bXrIFhw0Ij/bJl8OyzcO+9NT+wuOqXbcllhaStgSnAOElfEmZ6rBRJ1wMnEWai/BLoa2abzXUvqRT4FlgHrI1PShNNXtY6StYcWGFmRZJaAu8C70X73jCzAZXNp3NVVZd+Lc+bF0orM2aEmSFvuw22267Quaqc4u4+i0i+ZRtcTgJ+AC4FzgK2JZrPvpJGmtm1AJIuAa4jmuo4iZ5m9lXiBjP7TXxZ0s3AyoTdC82sqAp5c84lWLcu9Py69lpo1gzGj4dTTy10rqomHvBd/qQNLtF4Yi8CL5jZgmjzmKpe1My+SVhtSuiBVmGSRJgC4BdVzZNz+VYbfy2//z707RsehPz1r+Guu2DHHQudK1cbZGpz6QP8D4hJminpLkknRVVkVSJpuKTFhJLQdSmSGTBB0gxJ/ZPs7wosNbMPErbtLWmWpMmSUnaIlNRfUomkkmXLllX6fTiXrdr0a3n9erj11jAO2LvvwtixocTigcVlS2bZFRokNQAOIQz7ciThmZcJZnZTivQTgZ2T7BpiZk8lpLsKaGJmm/2sk7SrmX0maUfgZeBiM5uSsP8u4EMzuzlabwxsbWbLJXUCngTalCspbaZz585WUlKSLolz9UZpKZx7LkyaBMcdB/fcA7vuWuhcuZpI0ox4W3h5marFOptZCYCZrQemRa/rJO0AHJPqWDM7Ksv8PQw8B2wWXOKN/Gb2paQngIMJnQqQ1Aj4NdApIX0ZUBYtz5C0ENgX8MjhXAZmIZD86U8gwejRoZuxVOicudooU7XYPZI+kDRM0gGJO8zsKzMbV5mLSmqVsHoisCBJmqaStokvA0cDcxOSHAUsMLMlCce0kNQwWt4HaAV8VJk8OleffPop9OoFf/hD6GY8Zw6cd54HFld5mYZ/6QgcT+gKPF7SbElXStqritcdIWmupHcIQeOPEKrBJD0fpdkJeE3S28B04DkzezHhHL3ZOHlZXDfgneiY8cAAM/u6inl1rs4yg4cegrZtYepUuP328KT9XlX9H+5qj1gsL6fNus0FQFIHwpf6GcAXZtYlL7mqZt7m4uqjpUtDSeWpp6BLlzCh189/XuhcuWonhV8ZlTo0dZtLtk/oxxv0dySUKJoC3sXKuVrq8cehTRt48UUYOTKMYuyBxeVSxuAiqaukO4ElwBXAa0BrMzs5z3lzzuXY8uVw5plwxhmw995hvpXLL4eGDQudM1etYrFQYok3qsWXc1hFlrZaLHoO5RPgEeAxM1uasyvXIF4t5uqDZ56B/v1DgLnuOhg8GBplO0aHq7sKVC12hJl1MbPbzGxp1GvLOVeLrFwZnls58cTwEOT06XDNNZUMLHlq/HV1T6beYh8DSDpM0nzCoJBI6hBVlTnnarAJE0JPsIcegiFD4K23wlP3lTa0bs1J44Di/AxLlG2D/t8JD0wuBzCztwndfp1zNdCqVWFWyGOOCZN3vf463HADbLlloXPmapw8lUaz7i1mZovLbVqX47w453Jg8mRo3x7++c/wtP3MmeHByEqrhsZfV/dkG1wWSzocMElbSrqcqIrMOZdBNX0Jr14Nl14KPXtCgwYwZQr89a+w1VZVPHEsFhp8442+8WUPLi6NbIPLAOBCYDdCl+SiaN05l0k1tFO88UZoS/n73+GCC+Dtt+GII/J+WedSyqq/SDRZ11l5zotzroLKykIB4qabYPfdYeJEOPLIPF4wT42/ru7Jus3FOVcB1dBOMXMmdO4MI0aErsZz5uQ5sIBXhbmseXBxLh/y2E6xZg0MGwaHHBIeiHz22TA8frNmVT61cznjz+c6V4vMmwd9+sCMGfDb38Jtt8F22xU6V85tLqvgEs3weCrQMvEYMxuWn2w5V4fkoJ1i3Tq4+Wa49tpQQhk/Hk49NQd5cy5Psi25PAWsBGYQzfTonMtSFavC3n8f+vaFadPg17+Gu+7yuexdzZdtcNndzI7Na06cc5tYvz5M3jV4MDRuDGPHhqownx3S1QbZNui/Lqldri4q6XpJ70QzW06QtGuKdM0ljZe0QNK7kg6Ltm8n6eVoCuaXJf004ZirJH0o6T1Jx+Qqz85Vp9LS0PPrj38MD0XOmwdnneWBxdUe2QaXI4AZ0Rf2O5LmRFMUV9ZIM2tvZkXAs8B1KdL9A3jRzPYDOrBxVIDBwCtm1gp4JVpH0gGEmTLbAMcCd0rymSpcrWEGd98N7dqFRvvRo0NvsF2T/vxyrubKtlqsVy4vambfJKw2BTabTEBSM8LgmH2jY34Efox2nwT0iJbHAJOAK6Ptj5hZGbBI0ofAwcC0XObfuXxYsgTOPx9eegl+8Qu47z6fy97VXmlLLtEXPMC3KV6VJml4NBnZWSQvuexDmEr5fkmzJI1OmE9mJzP7HCD6G2/e3A1IHGBzSbQt2fX7SyqRVLJsmc/Y7PIki8Z8M3jwwTA0/tSpoZ3l5Zc9sLjaLVO12MPR3xlASfR3RsJ6SpImSpqb5HUSgJkNMbM9gHHARUlO0Qg4ELjLzDoC3xFVf6W7bJJtSadYM7O7zayzmXVu0aJFhtM6V0kZxhVbuhROOSU8u9K2bRgT7MILw8CTztVmaavFzOz46O/eFT2xmR2VZdKHgeeA8g8DLAGWmNmb0fp4NgaXpZJ2MbPPJe0CfJlwzB4J59gd+KyieXeuOjz+eJhzZdWqMHrxoEE+l72rOwry+0hSq4TVE4EF5dOY2ReEof5bR5uOBOZHy08DfaLlPoTncOLbe0tqLGlvoBUwPcfZdy69DOOKLV8OvXvDGWfAPvvArFlh3hUPLK4ukVnSWqP8XlT6N9AaWA98DAwws0+jLsmjzey4KF0RMBrYEvgIONfM/idpe+AxYE/gE+B0M/s6OmYI0A9YCwwysxcy5adz585WUpK2ls+5ypE2ji8GPP009O8PX38dHty/8spKzmXvXA0gaYaZdU66rxDBpabx4OLyJgouK1aEaq8xY8IskQ8+CB06JEkfi/nIw67WSBdcsq4Wk/RTSW0k7SPJmxudy0ZxMRMmhOdWxo6Fa66Bt95KEVigWiYWc646pC2QS9qWMOPkmYSqqWVAE2AnSW8Ad5rZq3nPpXO10KpVcMXSGKOOgf32C2ODHXRQoXPlXPXIVAIZT3hupKuZtTazI6Luu3sAI4CTJJ2X91w6V8tMnhyqv/75z9BYP3NmmsBSDROLOVfdMnVF/mWaffHnXZxzkdWr4eqr4R//CD3BpkzJPJd9rAfEYlHbZ7kOAM7VVpme0N9R0t8lPSvp/xKe2HfOlfPGG1BUBH//O1xwQXggMm1giUomQyd7O4urezJViz1IeDL+NmBr4Na858i5WqasDK66Crp0gR9+gIkTwxAuTZtmONAb710dlim47BwN0/KSmV0MtK+OTDlXW8ycCZ07w4gRcO65MGdOGCo/k9ikGIqBhoZ2Fg0VGipiPfA2F1cnZHp8S9FcKfExuxomrscfXHSuvlmzBv7yF7jhBmjRIgyL/6tfZXFgLAZDhxIDYtEmxcCsOHrGxdtcXN2Q9iFKSaWEp+iTDghpZvvkKV/Vyh+idBUxbx6cc04otZx1Ftx6K2y3XSVOFDXea6iwYm/Qd7VPuocoM/UWa5mXHDlXC61bFwaYvO462HZb+Pe/w5z2VVXcPWHM1uLy47c6Vztleohyz3T7zeyT3GbHuZrp/fehb9/wIOSvfw133QU77pjxsPSiQBLrEdu4zdtZXB2Rqc3lOcJ8KInVYga0IEzQ5eO4ujpt/Xq47bbQG6xJExg3Ds48M0dz2XsgcXVYpmqxdonrkloSphM+CvhL/rLlXOEtWgT9+sGkSXDccXDPPT6XvXPZymoASkmtJD0AvEB4Kv8AM7stnxlzrlDM4O67w/AtM2bAvfeG3mAeWJzLXqY2l7bAEKANcBNwnpmtq46MOVcIS5bA+efDSy+F51XuvdfnsneuMjKVXN4GDgOmAgcDt0i6Nf7Ke+6cq6LYpFhW6czCHCtt28LUqXDHHTBhggcW5yorU3A5jzC3/XRCdVj5V6VIul7SO5JmS5oQzUCZLF1zSeMlLZD0rqTDou0jo23vSHpCUvNoe0tJq6PzzpY0qrJ5dHVDNuN2LV0Kp5wCffqEeVfefjuMDdbAZy1yrtLS/vcxswfMbEyqVxWuO9LM2ptZEfAscF2KdP8AXjSz/YAOwLvR9peBtmbWHngfuCrhmIVmVhS9BlQhj662qEKvq8cfhzZt4MUXwzMskybBz3+es5zVDt5rzeVBpif07yd0PU7GzKzKc7lIugrY08wGltvejFAtt4+lyaSkU4DTzOysqDfbs2bWtiJ58Cf0a7lyT7XHJsWSlliKuxdveKZk+XK48EJ49NEwz8qYMbD//tWV4RrGRwVwlZTuCf1MweXUJJv3BAYBDc1s9ypkajhwDrAS6Glmy8rtLwLuBuYTSi0zgD+a2Xfl0j0DPGpmY6PgMo9QmvkGuMbMpqa4fn+gP8Cee+7Z6eOPP67sW3GFlurLUQrjdhVvuu/pp6F/f/j66/Ac45VXQqNMT3zVZR5cXCWlCy6ZqsX+HX8Bs4BewEDCLJRpxxWTNFHS3CSvk6JzD4lmtBwHXJTkFI2AA4G7zKwjYej/weWuMQRYG50D4HNCKagjcBnwcKo5aMzs7mhWzc4tWrRI91ZcTZRu9sb4vrho34rBI+jbF046CXbaKcxlP2RIPQ0sPvulyzczS/sC9gfGEkoEfYFGmY6pyAvYC5ibZPvOQGnCelfguYT1PsA04Cdpzj0J6JwpD506dTJXixQXb7oeqmg37gu/w83AinuEvy+d/aDtvrtZw4Zm11xjVlZWnRmu4RLvn3MVAJRYiu/VTDNRPg48H32J9wCeBppJ2k5SZcaBjZ+3VcLqicCC8mnM7AtgsaTW0aYjCVVkSDqWMFLAiWb2fcJ5W0hqGC3vA7QCPqpsPl0NlW6SrVhsY2gB/jRpawb8wThm7O/YZpswNtj118OWW1ZPVp2rrzJVCBxEaNC/HPhTtC1e32BkqBpLY0QUNNYDHwMDAKIuyaPN7Lgo3cXAOElbEoLEudH224HGwMsKxfo3LPQM6wYMk7QWWAcMMJ9zpu5LMZLwZLpxbvMnKb0bLr88BJUmTao5b7WBj8Ts8iBtg3594b3FaoFokq3NFBdv1k7w/fdw9dXwj3/Az34GDzyQYS5751ylVKW3WEszK02zX8BuZrakyrksIA8utUya3k1vvBEehnz/fbjoojD9cMa57J1zlVLpycKAkZIaAE8RugIvA5oAPwd6EtpBioFaHVxc7VdWFgoxI0fC7rvDxInZzWXvnMuPTEPuny7pAOAsoB+wC/A94Un554HhZvZD3nPpXKJybQQzZ4bSyty5cN558Le/QbOkHdCdc9UlYw9/M5tPGBnZuZohamNZswb+8he44QZo0QKeey7Mu+KcK7xMXZH/nLB8erl9PlmYK5h58+DQQ0Oc+c1vQqnFA4tzNUemcV97JyxfVW7fsTnOi3MZrVsHN94IBx4IixfDf/4DY8fCdpV+6so5lw+ZgotSLCdbd/VNNQ8V8v770LUrDB4Mxx8fSi+nnFKtWXDOZSlTcLEUy8nWXX2T+NxJHgPN+vXhmZWiIliwAMaNg/HjQztLlSTm2cfUci6nMj3nso4wYKSArQg9xYjWm5jZFnnPYTXw51wqKfF5k/hyfODIHFm0CPr1C/OsHHcc3HNPDueyT5Z/yPl7cK6uqsqoyA3NrJmZbWNmjaLl+HqdCCyuglKNphuXbtyvCjCDu++G9u1hxowwl/2zz+YwsKSTo/fgXH3mE7m6iik3MOQm4kGmir/6lyyBXr3gD3+AQw6BOXNC6UW5aOVLFxzLB8pC8VKTqwM8uLiqKz/w4dChlZobxAwefBDatoWpU+GOO2DCBNhrr9xldbPgmC5QFmp+Ey85uTqgPk6T5Kqq/CCS8eXi4rBcicFQv/gilFSefjoMMnn//dU0l32qkooP6OpclXjJxVVcsl//SUYnztZjj4XSyksvwc03h8b7agksxcXZlWKqg88M6eoYH3If7y1WJeVHKK5AT6uvvoILLwzB5aCDYMwY2H//vOQys5rUW8zntHe1RKV7izmXUfn2liy/lJ9+OpRWnngChg+H11+vQmDJRSBIfB9eWnCuygoSXCRdL+kdSbMlTYhmoEyWrrmk8ZIWSHpX0mHR9pikT6PjZ0s6LuGYqyR9KOk9ScdU13uqtyr4RbxiBfTd+UVOOgl23hneeitM7NWoKq1/uWgAr0kBxWeGdHVAoUouI82svZkVAc8C16VI9w/gRTPbD+hAGOo/7hYzK4pezwNE0wP0BtoQxj67U1LDfL2Jeq0SX8YTJkC7djB26VFccw1Mnw4dOuQ+a7VeTQp0zlVSQYKLmX2TsNqUJEPJSGoGdAPujY750cxWZDj1ScAjZlZmZouAD4GDc5Jpt6kKlBa+/RYGDIBjjoFttoFpHMb118OWW1bh+t4A7lyNVrA2F0nDJS0mTESWrOSyD2Hmy/slzZI0WlLihLUXRVVr90n6abRtN2BxQpol0bZk1+8vqURSybJly6r+hlxSkyeH0snd/1zP5Yxk5rtNOIiSjcGgR4/KnTjV8yoeXJyrEfIWXCRNlDQ3yeskADMbYmZ7AOOAi5KcohFwIHCXmXUkjHE2ONp3F/AzoAj4HLg5ftkk50na7cbM7jazzmbWuUWVR0CsPWKTYlU4OJaxtBA///ffw6BBIXY0bAhTX2vASLuCJvGJS+PBYNKkyufHOVdzmVlBX8BewNwk23cGShPWuwLPJUnXMn48Yc6ZqxL2vQQclikPnTp1svqCGDk6UfLzEMOmTTPbd9+Q5KKLzFatyu7YtIqLK7cvm1O/WrXjnauvgBJL8b1aqN5irRJWTwQWlE9jZl8AiyW1jjYdCcyPjt8lIekpwNxo+Wmgt6TGkvYGWgHTc5x9l0JZGfDy/9GlC/zwA0ycCLfdBk2blkvYvXvFT56ujaeKVWFDJ/twK87lWqHaXEZEVWTvAEcDfwSQtKuk5xPSXQyMi9IVAfGplW+SNCfa3hO4FMDM5gGPEYLQi8CFZrauOt5QTRabFENDhYaG6qz4cpWqyBK6y8YmxdAfDqTJnnPgv4NZ32E0n/y2GVMbpji/V4U5V/elKtLUp1d9qBaLV/1kXS2WZVXTjz+axWJmjRqZ7bKLGb/tVbkMJrtucbHZxtaZja/u3at2DQv3gxibvbyKzLnskaZazId/oX4M/6Khwoptw9/MB2QegmTuXOjTB2bOhLPOgltvhe1vy/L8Fb1uqom9ciDre+Kc24QP/+I2KO5egae/U7RlrFsHN94InTrB4sXwn//A2LGw3XYVPL9zrs7y4FJXxWJJ21qGTh66aVtL+XnkE7saJ5mX5f33w5D4gwfDCSfAvHlwyikJp+iRcL4K5DXjA5Hdu+ftoUkPiM7lnleLUUerxcpVHaWs+klXDQUb9q1fH3p+DR4MW20VJvLq3TsPEzdmU+XlowY7VyN4tZjLXrwUESexSHvzi31KGTQIjjwytLWceWYFAos/Ne9cvePBpS5JU720SdVPumqo+LAqxcUYcPc/jXZNFzHz65bcdx880ynGrknHsE6jIqMWZzMisI8a7FyN59Vi1I9qsYqmW7IEzt/jRV7iWI46Cu69F/bcswLnrUheCj05l3OuUrxarC7L8ZeyGTz4YJjIa+oWv+DOO8NQ+XvuWYl8ZdsAn4v5WJxzNYoHl9ou1RdztlVHCem++AJOPjk8u9K+Pbzz7pYMHAgaGksfKJIFDB+12Ll6zavFqOXVYjnqOfXYY3DBBbBqFfzlL/DHP4bRjLO6XqY8JNsfiyUPjMXFHoCcqyW8WqyuqehEWWm2f/UV/OY34bXPPjBrFlx2WYrAkul8qSQrRXnJxrm6LdW4MPXpVavHFstm+PoUaZ7iBNup6be2xRZmw4ebrVmTxfXi432lGvcr05hkyfZXZgh+51zBUdOG3HcVVNFf8xnSr1gR2lVO4ml2/u5D3noLrr4aGjWqwLkrW/JIVRXmnKtTPLjUBul6UyX7Yh46NGXV2Uvtr6DtT5cw7sG1XMP1TOdgOhRlMYxKPues96ow5+ocDy51VbmSxbffGH/obxw7ZyTNdmjMNA7jeq5jS9aE9PGAlOX5NimpZCp55DMwOedqJA8uNVWmL+T433ipJk36SXSnfXu45x64/HKYubgFB9lbG6+Vokor68nEsgkS3njvXL1SqGmOr5f0jqTZkiZISjqgiKTmksZLWiDpXUmHRdsfjY6dLalU0uxoe0tJqxP2jarGt1W9yleVJSlZfP+dMWhFjJ5MolEjmDoVRo6EJk2iYzKUOFJO/5uppNKjR/q8OufqvlQt/fl8Ac0Sli8BRqVINwY4P1reEmieJM3NwHXRcktgbkXzUyN6iyXrRRXfFu9NFV/P1FML7PXXzVq1Cpsvushs1aoKXDeS9ayVmx1I6vUsZ7h0ztV81LTeYmb2TcJqU2CzJ/AkNQO6AfdGx/xoZivKpRFwBvCvvGW2uiT7dV++HSQ+v0r5tMXFG6qZyspgcJepHHEElJXBK6+EofKbNk1x3SRVYeXngNFQZV9FlnjeZNV0zrn6IVXUyfcLGA4sBuYCLZLsLwKmAw8As4DRQNNyabqREDkJJZfvovSTga5prt8fKAFK9txzz1wG84opXzpJlKREssn2+CsyY4ZZmzZh0/nnm61cmeJaWapQyaV79+Slqfh251ydQ5qSS96Gf5E0Edg5ya4hZvZUQrqrgCZmtklFvqTOwBtAFzN7U9I/gG/M7NqENHcBH5rZzdF6Y2BrM1suqRPwJNDGNi0pbaZgw7/EYsQmDyU2qWqnWUMj/tJ9Ajf8tyc77gijP+tFL3th84QVHCqm0nPLl7+OT+7lXJ1UkOFfzOwoM2ub5PVUuaQPA6cmOcUSYImZvRmtjwcOjO+U1Aj4NfBowjXLzGx5tDwDWAjsm7t3lWOxGEN7sHkvqgo8VDh34B0ceuAaYpN70rt3mMirFy/mJHsZp//NtreXPyTpXL1TqN5irRJWTwQWlE9jZl8AiyW1jjYdCcxPSHIUsMDMliSct4WkhtHyPkAr4KMcZ7/qkrVHxLfH/yb+0o8HnfgysG6tcSN/ptO9F7B4MfznjEd4aKz46Xbl2jh69Kj0OGSxHrGU+4DUvcC6d09/nHOuzivUcy4jJM2V9A5wNPBHAEm7Sno+Id3FwLgoXRHwl4R9vdm8Ib8b8I6ktwklnQFm9nWe3kPlxGLEeoBi4QUbl2M9yqUt/yUdlQDepxVHHAGDuZETToA+d9/EKY/2Tv4syaRJybenkq7bcLZdiidNyi6dc67O8iH3qeY2l3j7Q/RrXhqaul1D2mQI+vXrQ8+vwZevYatttuCOO6B3b2gwrFzbSKo2jsTt2aRJlR8fKt85hw+5X3ipZl9M9iVdPm20vmgR/OIXMGgQHHnMFsybB2eemaJ3b6o2jlTb040GUH5fPM/xc8VLQh5YnHMJPLhUh/jzKeXbWIBi6540baxnSGMS/9QfaNf6R2bOhPvug2eegX++l+Z5lHRf9MmCiFdjOedyzKvFqIZqsXh1EqSfljheSjBDQ8Unsd05/+jFTJgARx0F996bfC77SnUZzlQtls2Mk/GSjXOuXvJqseqU2OOrfHVSpsZybSytMPsc2jGH1179kTvvhAkTkgeWnIrnvaozXDrn6j0PLjkUmxTbdJTi8j2z4s+wpGj7iBV3R3/aiQb7PgVPjmHlnu/w/cD9Wbp/bGNNWpIv9IzPoySTaurh+FAy8fwmtqf48yrOuSx5tRg5qBZr2RJKS0P1VIyNX86xWIVGBH6UM7iAO/mu8faUdb+Mtc//jYaNCvS0uz9V75zLwKvF8u3jjzfttpVYHVb+ifskX9hfsT2/OcPozaP8fLfVzD7/djj8lhBYEs9XndVQXkpxzlWBB5cqik2KJX8g8tXiTdtfUni6zVW0YR5PPAHDh8N/S3dnv9svClVd8UBUvjNAdQQbb09xzlWBV4tRyWqxli1DiSWBYmxaLQZh+JXJkzc7fAXb8kf+wYP0oYhZjBnwBu3vGrj5dXwQSOdcDeXVYvlQWpp0zK/NqpOSDL/yEkfTdrcVjOMsrmUYb5Z1TB5Ykp3POedqAQ8uOVTcPfMQKJcdNo1jeYlmn87nDQ5lGMVs2ThNNVf5bR5snHO1gFeLkbveYhn16MEdp0/i44f/y7BXutBkq4RGf+ecq2XSVYt5cKGAk4XJg4tzrvZKF1waVXdmXAKv4nLO1VEeXArJu/s65+oob9B3zjmXc4Wa5vh6Se9Imi1pgqRdk6RpHe2Pv76RNCjat52klyV9EP39acJxV0n6UNJ7ko6pxrflnHMuUqiSy0gza29mRcCzwHXlE5jZe2ZWFKXpBHwPPBHtHgy8YmatgFeidSQdQJj+uA1wLHCnpIZ5fi/OOefKKUhwMbNvElabApm6Sx0JLDSz+CPxJwFjouUxwMkJ2x8xszIzWwR8CByck0w755zLWsEa9CUNB84BVgI9MyTvDfwrYX0nM/scwMw+l7RjtH034I2EdEuibc4556pR3koukiZKmpvkdRKAmQ0xsz2AccBFac6zJXAi8Hg2l02yLWmpSFJ/SSWSSpYtW5bFqZ1zzmUrbyUXMzsqy6QPA88BqR766AXMNLOlCduWStolKrXsAnwZbV8C7JGQbnfgsxT5uxu4G0DSMkkfJ0uXhR2Aryp5bH3i9yk7fp+y5/cqO/m8T3ul2lGQajFJrczsg2j1RGBBmuRnsmmVGMDTQB9gRPT3qYTtD0v6G7Ar0AqYnik/ZtYi+9xvSlJJqidU3UZ+n7Lj9yl7fq+yU6j7VKg2lxGSWgPrgY+BAQBRl+TRZnZctP4T4JfAH8ofDzwm6TzgE+B0ADObJ+kxYD6wFrjQzNZVw/txzjmXwMcWqyL/9ZQdv0/Z8fuUPb9X2SnUffIn9Kvu7kJnoJbw+5Qdv0/Z83uVnYLcJy+5OOecyzkvuTjnnMs5Dy5ZyOdYaHVJNvcpStdc0nhJCyS9K+mwaHtM0qcJ9/C46n0H1SMH98k/T5umK5U0J0pXkrDdP0+bpkt1n/LyefJqsSxIahYfskbSJcABZjYgTfqGwKfAIWb2saSbgK/NbISkwcBPzezKasl8Ncr2PkkaA0w1s9HRQ7I/MbMVkmLAKjP7a7VmvJrl4D7552nTdKVAZzP7qtz2GP55SkxXSvL7lJfPk5dcspDHsdDqlGzuk6RmQDfg3uiYH81sRbVksIbIwX3yz5PbIAf3KS+fJw8uWZI0XNJi4CySjOJcTtqx0IAdkx5VB2Rxn/YBlgH3S5olabSkpgn7L4qK+PfV1eoeqPJ98s/TpgyYIGmGpP7l9vnnaaNU9ykvnyevFotImgjsnGTXEDN7KiHdVUATM0s6XE1UffEZ0CY+ZI2kFWbWPCHN/8ysVn7Qq3qfJHUmDC7axczelPQP4Bszu1bSToRhKgy4HtjFzPrl673kU57vk3+eNj3Hrmb2mcIAti8DF5vZFP88bXaOVPcpP58nM/NXBV6EsXTmptl/EjCh3Lb3CB9sgF2A9wr9Pgp1n6L/IKUJ612B55Kka5nuPteVV2Xuk3+e0qaLAZcn2V6vP0/p7lO+Pk9eLZYFSa0SVqsyFhpsOhZanZLNfTKzL4DFCsP/QGifmh8dv0tC0lOAuXnKakFV9T7hn6fENE0lbRNfBo4m+tz452mTNCnvE/n6PBU60taGF/Dv6B/iHeAZYLdo+67A8wnpfgIsB7Ytd/z2hBkzP4j+blfo91Tg+1QElETpniT0TgF4CJgTbX+a6NdUXXvl4D755ym6T4S2qbej1zxCNVH8eP88ZXef8vJ58jYX55xzOefVYs4553LOg4tzzrmc8+DinHMu5zy4OOecyzkPLs4553LOg4tzzrmc8+Di6hVJ67Tp1AiDE/aNl7RPtBwfnnyOpPmSbpDUONrXUtLqcucpTlhOvMYlki6SdG6K/AyQdE4O3tckSceU2zZI0p0J6y9K2i3NOfoqxXDtzlVUo0JnwLlqttrMispvlNQGaGhmHyVs7mlmX0namjBV7N1sfJJ5YZLzDI3OtSpxn6SfAP8F7i9/XTMbVfm3sol/EQZMfSlhW2/giigPWxEejvs0zTn6Eh7G+yxHeXL1mJdcnAvOIsWwF2a2ChgAnCxpu4qe2My+B0olHVx+n8KEVpdHy5Mk3ShpuqT3JXVNdj5JV0h6Kxrtd2i0eTxwfGLpivCE9mvR/h7ApGjfddHxcyXdreA0oDMwLipxbSXpyGhE5jnRqMLxc5dK+oukaZJKJB0o6SVJCyWlnOfI1S8eXFx9s1W56qzfRNu7ADNSHWRhzoxFQHwcp58lnOOOLK5bQhh8MpNGZnYwMAhINrLt0VEeDiYMD9NJUjczWw5MB46NkvYGHrWNQ3D0Al6Mlm83s4PMrC2wFXC8mY2P8nhWVOoy4AHgN2bWjlDLMTAhK4vN7DBgapTuNOBQYFgW79HVA14t5uqbpNVihNFgl2U4VgnLyarF0vkS2C+LdP+J/s4gjORb3tHRa1a0vjUh2ExhY9XYU9HfxOHluwCXR8s9Jf2ZMBbedoSxpp4pd53WwCIzez9aHwNcCPw9Wn86+jsH2NrMvgW+lfSDpOZWzyaAc5vz4OJcsBpokmpnNKJsS+B9YNtKnL9JdI1MyqK/60j+/1PA/5nZP5PsexL4m6QDga3MbCZA1ElhsZn9KKkJcCdhutvFClMBJ3vfSrItWT7XJyzH1/17xXm1mHORd4GfJ9sRNejfCTxpZv+r5Pn3JTdDvr8E9IvyhKTdosmf4m1Dk4D72HTah8QqsXggiXdUOC0h3bfANtHyAqClpPg9+R0wOQf5d/WEBxdX35RvcxkRbX+O0Oid6FVJcwltGZ8Af6jCdbsAE6twPABmNgF4GJgmaQ6hIX+bhCT/AjoAjyRsO5YouETVVfcQqrOeBN5KSPcAMErSbELJ5Vzg8eg664Fc9Wxz9YAPue8cG7rqvkqYVnhdjs/dEbjMzH6Xy/Nmee3GwH/NrHN1X9vVbx5cnItEDyG+a2af5Pi8vwQ+MLPSXJ7XuZrMg4tzzrmc8zYX55xzOefBxTnnXM55cHHOOZdzHlycc87lnAcX55xzOff/AfhK5AuGktOsAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAty0lEQVR4nO3de5xVdb3/8deHi6CgYYBJIA4YVwEHITRBGA55wUip8BxMDNTkTHlJLE2PdmZPnc4xOZZRXg7mvX5qWT819YRpgLe8gCAXBUUcFSEl/IGoiYCf3x9rzbBnsy9r9uz7vJ+Px3rM2mt911rfvWbP/sz3uszdERERaal2xc6AiIiUJwUQERHJigKIiIhkRQFERESyogAiIiJZ6VDsDBRSjx49vKqqqtjZEBEpK0uXLv27u/dM3N6mAkhVVRVLliwpdjZERMqKmb2ebLuqsEREJCsKICIikhUFEBERyUqbagNJZufOnWzYsIGPPvqo2FmpaJ07d6ZPnz507Nix2FkRkRxp8wFkw4YN7L///lRVVWFmxc5ORXJ3tmzZwoYNG+jXr1+xsyMiOdLmq7A++ugjunfvruCRR2ZG9+7dVcoTKaZYLOenbPMBBFDwKADdY5Eiq6/P+SkVQEREJCsKIEW2ZcsWqqurqa6u5uCDD6Z3795Nrz/++OO0xy5ZsoQLLrgg53n65je/yYsvvpg2zb333psxjYgUWSwGZsECe9ZzVJ1lbemBUqNHj/bEkegvvfQSQ4YMafnJYrGc1ynGYjG6du3K9773vaZtu3btokOH0uvrMGvWLKZMmcK0adMiH5P1vRaR1jODLL/vzWypu49O3K4SSLbyUJ/YaNasWVx00UVMnDiR73//+zz77LMcc8wxjBw5kmOOOYa1a9cCsGjRIqZMmQIEweess86ipqaG/v37M2/ePAAaGhoYPHgwM2fOZMSIEUybNo0PP/wQgEcffZSRI0cyfPhwzjrrLHbs2AFATU1N05QvXbt25fLLL+eII47g6KOP5u233+app57i/vvv5+KLL6a6uppXX32VefPmMXToUEaMGMH06dPzdm9EpHQogJSol19+mUceeYSrr76awYMH89hjj7Fs2TJ++MMf8m//9m9Jj1mzZg0LFizg2Wefpb6+np07dwKwdu1aZs+ezYoVKzjggAO47rrr+Oijj5g1axZ33303K1euZNeuXVx//fV7nfODDz7g6KOP5oUXXmD8+PHceOONHHPMMZx88snMnTuX5cuXc9hhh3HllVeybNkyVqxYwQ033JDXeyMiWairy/kpFUBaIs/1ifFOPfVU2rdvD8C2bds49dRTGTZsGHPmzGH16tVJj/nSl75Ep06d6NGjBwcddBBvv/02AIcccghjx44FYMaMGTzxxBOsXbuWfv36MXDgQABmzpzJY489ttc599lnn6ZSzqhRo2hoaEh67REjRnD66afz61//uiSr3ETaPHXjLbJYLKhDbKxHbFzPwy+mS5cuTes/+MEPmDhxIqtWreKPf/xjyvEUnTp1alpv3749u3btAvbuQmtmRG376tixY9Px8edM9OCDD3LuueeydOlSRo0alTKdiFQOBZAysG3bNnr37g3Arbfe2uLj33jjDf76178CcOeddzJu3DgGDx5MQ0MD69atA+COO+5gwoQJkc+5//77s337dgA++eQT3nzzTSZOnMhVV13F1q1bef/991ucTxEpLwog2cpDfWIql1xyCZdddhljx45l9+7dLT5+yJAh3HbbbYwYMYJ3332Xb33rW3Tu3JlbbrmFU089leHDh9OuXTtqa2sjn3P69OnMnTuXkSNH8sorrzBjxgyGDx/OyJEjmTNnDt26dWtxPkWkvKgbb4V3LW1oaGDKlCmsWrWq2Fmp+HstUqlKshuvmZ1oZmvNbJ2ZXZpkv5nZvHD/CjM7Mm7fHDNbbWarzOxOM+tc2NyLiLRtRQsgZtYeuBaYDAwFTjOzoQnJJgMDwmU2cH14bG/gAmC0uw8D2gMafJBEVVVVSZQ+RKTyFLMEMgZY5+7r3f1j4C7glIQ0pwC3e+BpoJuZ9Qr3dQD2NbMOwH7AxkJlXEREihtAegNvxr3eEG7LmMbd3wL+G3gD2ARsc/eHk13EzGab2RIzW7J58+acZV5EpK0rZgBJNr93Yot+0jRmdiBB6aQf8Fmgi5nNSHYRd5/v7qPdfXTPnj1blWEREdmjmAFkA3BI3Os+7F0NlSrNF4HX3H2zu+8E/gAck8e8iohIgmIGkOeAAWbWz8z2IWgEvz8hzf3AN8LeWEcTVFVtIqi6OtrM9rNgmPQk4KVCZj5XWjOdOwQTKj711FNZXz/KlPBbt27luuuuy/oaIlKZihZA3H0XcB6wgODL/7fuvtrMas2scUTbQ8B6YB1wI/Dt8NhngHuA54GVBO9jfiHzH1sUy8l5unfvzvLly1m+fDm1tbXMmTOn6fU+++yT8fjWBpDRo0c3zdybigKIiCRT1HEg7v6Quw9098Pc/cfhthvc/YZw3d393HD/cHdfEndsnbsPdvdh7n6Gu+8oZN7rF+dvOvelS5cyYcIERo0axQknnMCmTZsA9poyvaGhgRtuuIGf/exnVFdX8/jjjzNr1ixqa2s59thjGThwIA888AAQPPv9zDPPbBotvnDhQiDalPCXXnopr776KtXV1Vx88cVs2rSJ8ePHU11dzbBhw3j88cfzdi9EpHRp2tQS4+6cf/753HffffTs2ZO7776byy+/nJtvvpkrr7yS1157jU6dOrF161a6detGbW1ts4dQ3XTTTTQ0NLB48WJeffVVJk6cyLp167j22msBWLlyJWvWrOH444/n5Zdf3uv6a9asYeHChWzfvp1BgwbxrW99iyuvvJJVq1axfPlyAK6++mpOOOEELr/8cnbv3t30fBERaVsUQFogtijWrORh9UEnsboJdcRqYjm5xo4dO1i1ahXHHXccALt376ZXr2DoS+OU6VOnTmXq1Kkpz/HP//zPtGvXjgEDBtC/f3/WrFnDE088wfnnnw/A4MGDOfTQQ5MGkMYp4Tt16tRsSvh4n//85znrrLPYuXMnU6dOpbq6uvVvXETKjiZTbIFYTQyvc7wu6G3cuJ6r4AFBCeTwww9vagdZuXIlDz8cDHGJOmV6a6ZvTzUlfLzx48fz2GOP0bt3b8444wxuv/32qG9PRCqIAkiJ6dSpE5s3b26afn3nzp2sXr065ZTp8dOqN/rd737HJ598wquvvsr69esZNGgQ48eP5ze/+Q0QPO3wjTfeYNCgQZHylHiN119/nYMOOohzzjmHs88+m+effz5H715EyomqsLJUNyE/07m3a9eOe+65hwsuuIBt27axa9cuLrzwQgYOHMiMGTPYtm0b7t40ZfqXv/xlpk2bxn333ccvfvELAAYNGsSECRN4++23ueGGG+jcuTPf/va3qa2tZfjw4XTo0IFbb721WWkjne7duzN27FiGDRvG5MmTGTZsGHPnzqVjx4507dpVJRCRNkrTuVfYFOOzZs1iypQpTJs2rdhZ2Uul3WuRtqIkp3MXEZHypSqsCpPNI29FRLKhEoiIiGRFAURERLKiACIiIllRABERkawogJSRxoGEQ4YM4fDDD+fnP/95075Zs2bRr18/qqurOeKII3j00Ueb9tXU1NC3b99mo9GnTp1K165dAfjkk0+44IILGDZsGMOHD+fzn/88r732GhA8U3348OFNU8xnmvpdRNoO9cIqIYsWLeLWW29N2ZOqQ4cOXH311Rx55JFs376dUaNGcdxxxzF06FAA5s6dy7Rp01i4cCGzZ8/mlVdeaTq2W7duPPnkk4wbN46tW7c2zfALcPfdd7Nx40ZWrFhBu3bt2LBhA126dGnav3DhQnr06JGfNy0iZUslkDLSq1cvjjzySCCYXmTIkCG89dZbe6X7whe+sNf26dOnc9dddwHwhz/8ga9+9atN+zZt2kSvXr1o1y74OPTp04cDDzwwX29DRCqESiBxLrwQwhnLc6a6Gq65JrfnBGhoaGDZsmUcddRRe+3705/+tNdsvZMmTeKcc85h9+7d3HXXXcyfP58f/ehHQDB777hx43j88ceZNGkSM2bMYOTIkU3HTpw4kfbt2wMwc+ZM5syZk/s3JCJlRwGkBBx11FHs2LGD999/n3fffbdpevSf/OQnnHDCCXulf//99/na177GNddcwwEHHNC0/eKLL+aSSy7hnXfe4emnn252TPv27Rk3bhx33303//jHP6iqqmra16dPH9auXctf/vIX/vKXvzBp0iR+97vfMWnSJEBVWCKSXKQAYmbdgG8AVfHHuHtFtajmo6QQxTPPPAPs3Qby5ptvNgWT2tpaamtr2blzJ1/72tc4/fTTm1VDQdAG8tWvfpV58+Yxc+ZMli5d2mz/9OnT+cpXvkIsFtsrD506dWLy5MlMnjyZz3zmM9x7771NAUREJJmobSAPEQSPlcDSuEXy6JBDDmn2vHR35+yzz2bIkCFcdNFFSY9p164d3/nOd/jkk09YsGBBs33HHnssl112Gaeddlqz7c8//zwbN24Egh5ZK1as4NBDD83PmxKRihG1Cquzuyf/xpKCefLJJ7njjjuautUC/Od//icnnXRSs3RmxhVXXMFVV13VrArMzJoefRvvnXfe4ZxzzmHHjuCx8mPGjOG8885r2h/fBjJixAhN3y4iQMTp3M1sDvA+8ACwo3G7u7+bv6zlXluYzr2U6V6LlKdU07lHLYF8DMwFLgcaI44D/XOTPRERKTdRA8hFwOfc/e/5zIyIiJSPqI3oq4EPc31xMzvRzNaa2TozuzTJfjOzeeH+FWZ2ZNy+bmZ2j5mtMbOXzOwL2eajLT2VsVh0j0UqT9QSyG5guZktpHkbSNbdeM2sPXAtcBywAXjOzO539xfjkk0GBoTLUcD14U+AnwN/cvdpZrYPsF82+ejcuTNbtmyhe/fumFmW70bScXe2bNlC586di50VEcmhqAHk3nDJpTHAOndfD2BmdwGnAPEB5BTgdg/+fX06LHX0Aj4AxgOzANz9Y4J2mhbr06cPGzZsYPPmzVm/Ecmsc+fO9OnTp9jZEJEcihRA3P228L/8geGmte6+s5XX7g28Gfd6A3tKF+nS9AZ2AZuBW8zsCIIxKd9x9w8SL2Jms4HZAH379t0rEx07dqRfv37ZvwsRkTYqUhuImdUArxBUOV0HvGxm41t57WT1RYkV5anSdACOBK5395EEJZK92lAA3H2+u49299E9e/ZsTX5FRCRO1Cqsq4Hj3X0tgJkNBO4ERrXi2huAQ+Je9wE2RkzjwAZ3fybcfg8pAoiIiORH1F5YHRuDB4C7vwx0bOW1nwMGmFm/sHpsOnB/Qpr7gW+EvbGOBra5+yZ3/xvwppkNCtNNonnbiYiI5FnUEsgSM7sJuCN8fTqtnAvL3XeZ2XnAAqA9cLO7rzaz2nD/DQRzcJ0ErCPoRnxm3CnOB34TBp/1CftERCTPok5l0gk4FxhH0C7xGHBt2PupbCSbykRERNJr7VQmte7+U+CncSf8DsFYDBERaYOitoHMTLJtVg7zISIiZSZtCcTMTgO+DvQzs/gG7v2BLfnMmIiIlLZMVVhPAZuAHgRdeRttB1bkK1MiIlL60gYQd38deB3IeqJCERGpTFFHoh9tZs+Z2ftm9rGZ7Taz9/KdORERKV1RG9F/CZxGMJ3JvsA3gV/kK1MiIlL6onbjxd3XmVl7d99NMInhU3nMl4iIlLioAeTDcMT3cjO7iqBhvUv+siUiIqUuahXWGWHa8whmvj0E+Fq+MiUiIqUv0ziQ+cD/Ao+4+0fAR0B9ITImIiKlLVMJ5GbgCOAhM3vUzL4fPsBJRETauEzjQJ4GngZiZtYdOB74rpkNB5YRPJP8t/nPpoiIlJpMVVifcfe3Adx9C8FDpO4M940CTsx7DkVEpCRl6oX1gpmtJAgav3f3bY073H0prXwmiIiIlK9MbSC9gf8GjiV4Dvq9ZvYvZrZv/rMmIjkVixU7B1Jh0gYQd9/t7gvc/UyCrru3AFOB18zsNwXIn4jkSr06UEpuRR0HQvj0wReBl4D3gKH5ypRIxVNpQCpAxgBiZn3N7GIzex54gOD55ae4+8i8506kUhWqNBCLgVmwwJ51BTDJgbTPRA/nu+oN/A64y93L+oHieia6lAwzSPO3VzHXlIqQ6pnomUoglwFV7v69cg8eIkWn0oBUmEyN6Ivd3c1sYDgSfRWAmY0wsysKk0WRChGLBSWAxlJA43qhAkhdXWGuI21G1Eb0GwlKIzsB3H0FMD1fmRKRPFBJR3IsagDZz92fTdi2q7UXN7MTzWytma0zs0uT7DczmxfuX2FmRybsb29my8zsgdbmRaSgVBqQChA1gPzdzA4DHMDMphE8EyRrZtYeuBaYTNAl+DQzS+waPBkYEC6zgesT9n+HoFuxSHlRaUAqQNQAci7wP8BgM3sLuBCobeW1xwDr3H19OMbkLuCUhDSnALd74Gmgm5n1AjCzPsCXgF+1Mh8iIpKFSE8kdPf1wBfNrAvQzt235+DavYE3415vAI6KkKY3QennGuASYP90FzGz2QSlF/r27duqDIuIyB6RR6IDuPsHOQoeAJbsElHSmNkU4J1wQse03H2+u49299E9e/bMJp8iIpJEiwJIjm0gmF+rUR9gY8Q0Y4GTzayBoOrrn8zs1/nLqoiIJCpmAHkOGGBm/cxsH4JuwfcnpLkf+EbYG+toYJu7b3L3y9y9j7tXhcf9xd1nFDT3IiJtXKQ2EAAzOwaoij/G3W/P9sLuvsvMzgMWEMyvdbO7rzaz2nD/DcBDwEnAOuBD4MxsryciIrmVdi6spkRmdwCHAcuB3eFmd/cL8pe13NNcWCIiLZdqLqyoJZDRwFCPEm1ERKRNiNoGsgo4OJ8ZERGR8hK1BNIDeNHMngV2NG5095PzkisRESl5UQNILJ+ZEBGR8hN1JPrifGdERETKS9oAYmZPuPs4M9tO81HiRtAL64C85k5EREpW2gDi7uPCn2nnm5K9XXghLF9e7FxIvIatDVR1qyp2NkSKoroarrkmt+cs5kh0kYJ6fWtDsbMgUlEij0SXlsl1pJfWs/qJLKrTUCaRXFEJRCpabFEMqzesPpjYuXE9tihW3IxJ3ul3nH+RpjJpShw8D+Qjd9+dMXEJ0lQmbZvVG64SSJuh33fupJrKJG0JxMzamdnXzexBM3sHWANsMrPVZjbXzAbkK8MiIlLaMlVhLSSYRPEy4GB3P8TdDwKOBZ4GrjQzTaMuZaFuQl2xsyB5pirLwkpbhWVmHd19Z9oTREhTKlSFJdJ2qAord7Kdjbe9mZ0LfA5YCdzk7rviE5RL8BARkdzKVIV1G8FU7iuBycDVec+RiEgOqMoy/zKVQIa6+3AAM7sJeDb/WRIRab1YTazYWah4mUogTdVTiVVXIiLStmUqgRxhZu+F6wbsG77WZIoiIm1c2hKIu7d39wPCZX937xC3ruAhzcVixc6BiBSQpjKR3KmvL3YORKSAMo1E325m74U/t8e9/tDM1CbSFqhUISIpZKrC2j+uymp/4LPAj4G/AT8vRAalCGpq9qynK1XU1AQBxixYYM+6Ao9IxYtUhWVm3cwsBrwA7A983t2/29qLm9mJZrbWzNaZ2aVJ9puZzQv3rzCzI8Pth5jZQjN7KZyX6zutzYvEWRzxCcaLFweBwj1YYM9PBRCRipepCquHmf0X8DywCxjp7le4+5bWXtjM2gPXEgxQHAqcZmZDE5JNBgaEy2zg+nD7LuC77j4EOBo4N8mxEkWqL/pSKFXk43rx51SQE2mVTHNhfQBsBm4Btifud/efZn1hsy8AMXc/IXx9WXjO/4pL8z/AIne/M3y9Fqhx900J57oP+KW7/zndNTUXVhJmQamhpiZ1ySP+M5Iq3aGHwuuv7729rm7PF3Us1rIv7ca85VL8OfNxfpEKlO1cWHOBxr+wXD8XvTfwZtzrDcBREdL0BpoCiJlVASOBZ5JdxMxmE5Re6Nu3b2vzXLkWLdqznvglGyVdvFTb6+v1X79IBcnUiB5z9/pUSyuvbUm2JX7rpE1jZl2B3wMXuvt7SdLi7vPdfbS7j+7Zs2fWma0oLWn4rivwfEL5aJRPdc5cnV+kjcpUhfXvaY51d/9R1hduZRWWmXUEHgAWRK1KUxVWEslKCzU1zUsaqaRKF19VFYsl78kVX7XVkry1lqqwpFS0tEq3iFJVYWUKIMl6WnUBzga6u3vXVmSoA/AyMAl4C3gO+Lq7r45L8yXgPOAkguqtee4+xsyMYKbgd939wqjXVABJopBfoi29lgKIVLIy+vxl9Uhbd7+6cQHmA/sCZwJ3Af1bk6FwcsbzgAXAS8Bv3X21mdWaWW2Y7CFgPbAOuBH4drh9LHAG8E9mtjxcTmpNftqU+P96Cl1F1RK5yluqKqwJE3JzfpG2yt3TLsCngf8AXgNiwIGZjinVZdSoUS4ejNoohrq63KRpzXWL9d5F3IPP4p6RU3uWfHzucwhY4km+UzNVYc0FvkpQ+rjW3d/Pd0DLJ1VhhUq56KxqK2kryuizmFUVFvBdgulLrgA2hvNgNc6NlbTXk5SoUppyJNtr5iKvpVxlJ1JmMrWBtHP3fX3PnFjxU7trOnfJTmKvrKjBrSWz/abruivplUnPoLJXAf/MZKrC6pqp2ipKmlKhKqxQsYvO6a6f7b5sryd70/2SBNlWYd1nZleb2Xgz6xJ3sv5mdraZLQBOzHVmJYdK5b/JbKvQSqnqTUSayVSFNQl4FPhXYLWZbTOzLcCvgYOBme5+T/6zKVlLNYgv16IEgsRZe933Pi4xb1GPS6cCqgryToFaspC2CqvStMkqrAjVEbFFMWI1sbxfJ6u0uTiu1JT6CORKuc+SM1lVYZnZjLj1sQn7zstd9iSnWvjfZP3iiI3TufrSy7ZEUCklCT36VypEpjaQi+LWf5Gw76wc50VyJRfVPslk23sqWf6yUcr/tVeSSgnUkneZAoilWE/2WspIbFEMqzesPvg1Nq7HFsXCBLEIJ4nlJ1BVmliMWKymfNoYSjFPUpIydeN93t2PTFxP9roctMk2kAj17VZveF3C56CxHjzqbLqqN0/NDIux5x7rXkmZybYb7+DwWeQr49YbXw/KS04lt1r732S2vackPf2XLxUgUwAZAnwZmBK33vhazyCvEHUTwi//1nTl1Bdic7EYsYlBtaDFgk1N1YR1E9SQLhWhxd14zWyKuz+Qp/zkVZuswspWsmqWUu9+WqoSq7DCbarGknKRbRVWMj/MQX4kn/L1Ja/g0ToarCcVJpsAot5X+Zbr7rbZUJtG7tTVBdWE6rUmFSabKqwx7v5snvKTV2VThdXa6g1Vj5Q+/Y6kjLSqCsvMDjKzr5jZucAwMxtjZtmUXiRLTeMzUiaIqXqknKiEJxUg01QmE8MZdx8EJgO9CHpfXQGsNLN6M9NzQXIhQwDION1IrqtHFHjyS/dXKkCUR9r+wt3fSLKvA0F33vbu/vv8ZTF3yrkKK+lgvxYcn4s8iEjblG0V1l+TBQ8Ad9/l7veWS/AoRxmnG0klWfWI/uMVkRzLFECuKEgu2roUo7pjNTG8zptKHo3rTVOvpwoKybZH6ZmldhQRaYHIc2FVgqJWYaUbhBehuijtfFVRtLRKqrVVWDU1sGhR9seLSMlo7VxYictKM1uRg0ydaGZrzWydmV2aZL+Z2bxw/wozOzLqsSUl1YSELdA03UhLr1usEsXixfm/hogUl7unXIDVwKGplnTHZlqA9sCrQH9gH+AFYGhCmpOA/yUYvHg08EzUY5Mto0aN8qJo7BMVr65uz/b4pa4u/bmyOS7Z9TPJlI9MWno9ESlZwBJP8p2aqQTysbu/nmppZewaA6xz9/Xu/jFwF3BKQppTgNvD9/A00M3MekU8tvgaSwCN4ksAsRixhXUt73ZbqNHMac6XshG/piZ5iaemJrd5E5GSkCmAPJnHa/cG3ox7vSHcFiVNlGMBMLPZZrbEzJZs3ry51ZmOLMJzNCI/Sjbb68d/mUPOqq9S5nvRouTBTW0hIhUpUwAZ2LhiZpfl+NrJ5tRKbLVNlSbKscFG9/nuPtrdR/fs2bOFWWyFxpJC88wk/wLPxzPCNe+SiORZpgDSI2791BxfewNwSNzrPsDGiGmiHFt88V/WjV1zk43tsPrMYzsynT/PWjwmZcKEguVNRIokWcNI4wI8n2w9FwvQAVgP9GNPQ/jhCWm+RPNG9GejHptsKVgj+oQJmRu66+qcWNjQnO8G59Y2iCdoyreItAlk2Yje38zuN7M/xq03La0MXLuA84AFwEvAb919tZnVmlltmOyhMFCsA24Evp3u2NbkJ6cWL25efdW4Hl9iiDqwryWljJYMLGzJ/lKnB12JFEWmgYRp6yHcvaw6+xdkIGG6MR/x99qMWA3EFiWkiWtkb2oAT/M7aibbwX8tPC62KLZnNHwpaOl9EpEWSTWQMPLzQMysJ4C7F7ArU27lNYC0drBgst9Dpi/GxP+8CxRASk6xA4hKQFLhshqJHo4ErzOzvwNrgJfNbLOZ/Xu+MlqREntCJb6Ol6r7bbIuuPX12Y82L/d5r1pyn/ItF0+AFClHyRpGGhdgDvBnoF/ctv4EbQ9z0h1bikvBGtGTNaAnNqLHN5wnNK7vdZ7E9MnOkSpNsvMmbivzUeN1NRT3PZT5/RPJhBSN6JkCyDKgR5LtPYFl6Y4txaUgASTVVCOJgSRVz6j4L6NkASTdVCbpvsjSBaAy/wIkVoQAku1UNCJlKFUA6ZChgNLR3f+epNSy2cw65qgQVFnq6/duCHdP386QqQ49vpoJ9pw/V20XmQYkFqNaq6XXLfQjYuPzV+5tSCJZyno693Kc6r0gvbASv0yiBJD4evxEjcckOz7TF1dLGvbjg15LrpEvGa4bWxRLOqVK3YS6wvcQUwCRCpeqET1TFdZu4L0ky3ZgZ7pjS3HJWxVWlGqrdNUbyaqtki3JrhtVlDaUqMcVQgveb9EHNqraSioc2QwkdPf27n5AkmV/d1cVVqPEeadSTeMRP6lgql5QkLynViEfU1usHlqZrluqvZ3KpeeaSK4liyqNC9A13f6oaUplyVUJpG5hXYoddXv/59zS//JT9dRqrXS9sNIppRJIiryk/H2ISE6Q5VQm95nZ1WY23sy6NG40s/5mdraZLQBOzFt0K1H1i+tTP3c8SVtC0gkH05VAGuWyYThZfsvhP+cIpaGSGhUv0oZkHIluZicBpwNjgQOBXcBa4EHgJnf/W74zmSutakSvqoKGBiB8PnmM1I3a8Y2qNTXYxMV7P8882XGlqJR6YZXyfRKpYNk+Ex13f8jdT3f3Knf/lLt3d/dj3P3H5RQ8WivW7/Xm05nHgkASi9Xs/R8y7Pnya2z3aHyd7YSHxVKsfJXq/RCRJpmmMpkRtz42Yd95+cpUKYotAve6oOQBeCxYYvWLg6qmhOqm2OL65gHHgtexZE/zq6vbMy1Jygyk2VdoxcpLocd6iEhakceBJI77aBPjQKqq4PW9H/1uMaJXYZFQ5ZWqGibThIClVH1TSnkRkbzLtgrLUqwne115GhqSdqmtm5DiP+HE/5AbG4AbJTYE19S0/rnlURrsRUTyIFMA8RTryV63GbGaWPpxGY37wvEhTQEncWzHokXJz9NYnRVlPEbC2Ihko7NbLWpeRKRNyVSF9SHB0wANOCxcJ3zd3927pDq2FOWqF1ZWMk1pkm0VVrLqsnQ9vrIRf41iP3tDRAou2yqsIcCXgSlx642vh+Y6kyWtNcED9pQ0UjUEt6SBOKE0EJtozRvsw3VVZ4lIXiUbXdi4EJZQWpumVJaCPQ8kW+lGhkeZR8u9aV6oVo/OjjotvYhUPLIcib7QzM43s77xG81sHzP7JzO7DZiZl8jWFuWwG2+r20IS5/dKtq72j+Z0PwpH97okZAogJxLMyHunmW00sxfNbD3wCnAa8DN3vzXPeZR0Eqq+UvYQy5b+UKMr1ckeK5HudUnIOJVJU8LgAVI9gH+4+9Z8ZipfCvI8kCLKyzMyzJrP71WsqU3KgcbHFI7udUGlakSPHEAqQaUHkHg5642lP9T0Uj20K9UDuiR7utdFk/VcWHnKzKfN7M9m9kr488AU6U40s7Vmts7MLo3bPtfM1pjZCjP7v2bWrWCZbws05iO6VG1Fule5p3tdcooSQIBLgUfdfQDwaPi6GTNrD1wLTCboMnyamTV2Hf4zMMzdRwAvA5cVJNdlpFVtIfpDFZEIihVATgFuC9dvA6YmSTMGWOfu6939Y+Cu8Djc/WF33xWmexrok9/slh89I6MINNlj4ehel4RiBZDPuPsmgPDnQUnS9AbejHu9IdyW6Czgf3OeQwnoDzU6ldAKR/e6JHTI14nN7BHg4CS7Lo96iiTbmrXmmtnlBA+4+k2afMwGZgP07ds3VTJJRX+oIpJC3gKIu38x1T4ze9vMern7JjPrBbyTJNkG4JC4132AjXHnmEkwpcokT9OVzN3nA/Mh6IXVsnchIiKpFKsK6372jGCfCdyXJM1zwAAz62dm+wDTw+MwsxOB7wMnu/uHBciviIgkKFYAuRI4zsxeAY4LX2NmnzWzhwDCRvLzgAXAS8Bv3X11ePwvgf2BP5vZcjO7odBvQESkrctbFVY67r4FmJRk+0bgpLjXDwEPJUn3ubxmUEREMipWCURERMqcAoiIiGRFAURERLKiACIiIllRABERkawogIiISFYUQEREJCsKICIikhUFEBERyYoCiIiIZEUBREREsqIAIiIiWVEAERGRrBRlNt624MILYfnyYudCRCRQXQ3XXJPbc6oEIiIiWVEJJE9yHelFREqNSiAiIpIVBRCRHIstihU7CyIFoQAikmP1i+uLnQWRglAAERGRrCiAiORAbFEMqzes3gCa1lWdJZXM3L3YeSiY0aNH+5IlS4qdDalwVm94Xdv5u5LKZ2ZL3X104naVQEREJCtFCSBm9mkz+7OZvRL+PDBFuhPNbK2ZrTOzS5Ps/56ZuZn1yH+uRaKpm1BX7CyIFESxSiCXAo+6+wDg0fB1M2bWHrgWmAwMBU4zs6Fx+w8BjgPeKEiORSKK1cSKnQWRgihWADkFuC1cvw2YmiTNGGCdu69394+Bu8LjGv0MuARQZbOISBEUK4B8xt03AYQ/D0qSpjfwZtzrDeE2zOxk4C13fyHfGRURkeTyNheWmT0CHJxk1+VRT5Fkm5vZfuE5jo+Yj9nAbIC+fftGvLSIiGSStwDi7l9Mtc/M3jazXu6+ycx6Ae8kSbYBOCTudR9gI3AY0A94wcwatz9vZmPc/W9J8jEfmA9BN95s34+IiDRXrCqs+4GZ4fpM4L4kaZ4DBphZPzPbB5gO3O/uK939IHevcvcqgkBzZLLgISIi+VOUgYRm1h34LdCXoBfVqe7+rpl9FviVu58UpjsJuAZoD9zs7j9Ocq4GYLS7/z3CdTcDr2eZ7R5AxmuI7lNEuk/R6D5Fk+/7dKi790zc2KZGoreGmS1JNhJTmtN9ikb3KRrdp2iKdZ80El1ERLKiACIiIllRAIlufrEzUCZ0n6LRfYpG9ymaotwntYGIiEhWVAIREZGsKICIiEhWFEDimNmPzGyFmS03s4fDcSmJaQaF+xuX98zswnBfpGnqy12U+xSm62Zm95jZGjN7ycy+EG6PmdlbcffwpMK+g8LIwX3S56l5ugYzWxmmWxK3XZ+n5ulS3aecf57UBhLHzA5w9/fC9QuAoe5emyZ9e+At4Ch3f93MrgLedfcrw+eXHOju3y9I5gso6n0ys9uAx939V+FsAvu5+1YziwHvu/t/FzTjBZaD+6TPU/N0DSQZNKzP017pGkh+n3L+eVIJJE7jLyfUhcxTxU8CXnX3xtHtUaapL3tR7pOZHQCMB24Kj/nY3bcWJIMlIgf3SZ8naZKD+5Tzz5MCSAIz+7GZvQmcDvx7huTTgTvjXkeZpr4iRLhP/YHNwC1mtszMfmVmXeL2nxcWx2+u1KoZaPV90uepOQceNrOlFsyyHU+fpz1S3aecf57aXBWWpZlm3t3vi0t3GdDZ3ZM+nzSsatgIHO7ub4fbtrp7t7g0/8/dy/LD3Nr7ZGajgaeBse7+jJn9HHjP3X9gZp8hmLfHgR8Bvdz9rHy9l3zK833S56n5OT7r7hvN7CDgz8D57v6YPk97nSPVfcr958ndtSRZgEOBVWn2nwI8nLBtLcGHF6AXsLbY76NY9yn8I2iIe30s8GCSdFXp7nOlLNncJ32e0qaLAd9Lsr1Nf57S3ad8fJ5UhRXHzAbEvTwZWJMm+Wk0r76CaNPUl70o98mD6fXfNLNB4aZJwIvh8b3ikn4FWJWnrBZVa+8T+jzFp+liZvs3rhM8UG5V+Fqfpz1pUt4n8vF5KnYkLaUF+H14s1cAfwR6h9s/CzwUl24/YAvwqYTjuwOPAq+EPz9d7PdU5PtUDSwJ091L0OsD4A5gZbj9fsL/iiptycF90ucpvE8EbUUvhMtqgiqdxuP1eYp2n3L+eWpzbSAiIpIbqsISEZGsKICIiEhWFEBERCQrCiAiIpIVBRAREcmKAohUJDPbbc1nTb40bt89ZtY/XG+cuXSlmb1oZv9hZp3CfVVm9o+E89TFrcdf4wIzO8/MzkzIxxfM7MY0+awys6/n6R7Umtk3cnCeRWZ2QsK2C83sutaeW8pbh2JnQCRP/uHu1YkbzexwoL27r4/bPNHd/25mXQkeDTqfPQOuXk1ynvrwXO/H7zOz/YAngVvi0p4I/ClNPquArwP/J/Nbahl3vyFHp7qTYN63BXHbpgMX5+j8UqZUApG25nRSjMB19/eBWmCqmX26pSd29w+BBjMbE7d5EvBIWNJ43MyeD5djwv1XAseGpZg5ZtbZzG4JS0TLzGwigJnNMrN7zeyPZvZaWNq5KEzzdLL8WvCcjO+F64vM7Cdm9qyZvWxmxyZ7D2Z2sZk9F05MWB9uvgeYEl8yIxi89kRL75FUFgUQqVT7JlQ9/Uu4fSywNNVBHkyZ/RrQOG3EYXHnuDbCdZcQzGeFmfUAdrr7NuAd4Dh3PxL4F2BemP5SgmeBVLv7z4Bzw3wMJ5gu5zYz6xymHUZQWhkD/Bj40N1HAn8FolRVdXD3McCFQLJJ+I4P3/cYgtHxo8xsvLtvAZ4lKE1BUPq42zUKuc1TFZZUqqRVWASTyG3OcKzFrSerwkrnHWBwuH488HC43hH4pZlVA7uBgSmOHwf8AsDd15jZ63FpF7r7dmC7mW0jmM4Cgmk8RkTI2x/Cn0sJqs4SHR8uy8LXXQkCymPsqca6L/xZlrPdSm4pgEhb8w+gc6qd4UR0VcDLwKeyOH/n8BoAk4GfhutzgLeBIwhK/h+lykKac++IW/8k7vUnRPtbbky/O0V6A/7L3f8nyb57gZ+a2ZHAvu7+fITrSYVTFZa0NS8Bn0u2I2xEvw64193/X5bnHwisMjMjKBUsD7d/Ctjk7p8AZwDtw+3bgf3jjn+MoJ0GMxsI9CWYhrsQFgBnhfcBM+sdPlOisX1oEXAze89CLW2UAohUqsQ2kCvD7Q8CNQlpF5rZKoJ6/jeAf23FdccCjwCjgGVx7QTXATPN7GmCIPNBuH0FsMvMXjCzOWG69ma2ErgbmOXuOygAd3+YoDfYX8Pr30Pz4HYnQQnqrkLkR0qfZuOVNsXM9gUWEjwBcHeOzz0SuMjdzzCzK4B17q4vW6lYCiDS5oSD4l5y9zdyfN7jgFfcvSGX5xUpVQogIiKSFbWBiIhIVhRAREQkKwogIiKSFQUQERHJigKIiIhk5f8DOocxgP0hDQoAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"The same plot can also be done for the atomic forces."},{"metadata":{"trusted":true},"cell_type":"code","source":"figF1, figF2, figF3 = fit2.plot_forces()","execution_count":17,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAZUAAAEjCAYAAAD6yJxTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA5IElEQVR4nO3deXxU1fn48c9DQEBAEYgsgoKtIiIQFqUISBAVcako1h9UbRStpdVasBS0thJa2wIqIF9tLVUEq4hoXWiL1oXgUmtldUHrjoJEQZBFBWV5fn+cO8lkmElmOZNZ8rxfr3nl3jv3nvucSXKfucs5R1QVY4wxxod6mQ7AGGNM/rCkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG0sqJq+JyC9F5M6w+XNFZJ2IfCEiPUWks4isEpEdInJ1JmM1Jh9YUjFxE5G1IrIzOCCHXu0yGM9SEdkVJITtIrJCRK4VkYahdVT196p6edhmNwNXqWpTVV0FTACWqmozVZ1V23XwIZ7PQURKRWR3xO/uhoh5FZEvw+YH1lL8c4N9nxC27NsiomHzoTp2CFt2ioisDZsP//v8VETuFpGmtVEHU8mSiknU2cEBOfTakMjGIlLfczxXqWozoC3wc2AksFhEJMb6RwBrqpmPWxrqkop4PocHIn53vwmfD9bpEbbs+VqMfwtwYw3rfAn8uoZ1zg7q0gs4HviVh9hMAiypmJSJSEMRmSkiG4LXzNC3ZBEpFpH1IjJRRD4B7haRguCy1HvBt+sVoW+gInKMiDwlIltE5C0RuSCeGFT1S1VdCnwX6AecGZRXKiL3BjF+ARQArwT7XgIMBm4Lvt0eHax3s4h8FHzbvUNEGldTl3rBWcF7IrJZRBaKSItg/Y7BN/CSoLzPROT6sM+t1j4HH0RkpIgsj1g2TkQWBdNniMgbQV0+FpHxCRQ/D+guIoOqWWcWMEpEvl1TYar6MfA4cFwCMRgPLKkYH64HvgMUAT2AE6j6DbEN0AJ3VnAFcA0wCjgDOAgYDXwlIk2Ap4D5wKHBOn8Uka7xBqKqHwHLgYERy7+O+Db+LVU9GXieysthbwNTgaODunwbOAy4oZq6XA0MBwYB7YDPgdsjwhoAdAaGADeISJdgea1/DilaBHQWkaPCln0/iBPgLuBHwRnTccCSBMr+Cvg98Ltq1vkY+AtQWlNhQXI+A1iVQAzGA0sqJlGPisjW4PVosOxC4DequlFVNwGTgYvDttkHTAoO7DuBy4Ffqepb6ryiqpuBs4C1qnq3qu5R1ZXA34DzE4xxA+7An5DgUtEPgXGqukVVd+AOdCOrqcuPgOtVdb2qfo074J0fcWlssqruVNVXgFdwiRdq/3O4IOx3t1USvB+mql8Bj+GSHEFyOQaXbAB2A8eKyEGq+nkQdyL+DBwuIsOqWecPwNnVJNhHRWQr8ALwLO73Z2qRJRWTqOGq2jx4DQ+WtQM+DFvnw2BZyCZV3RU23wF4L0rZRwB9ww98uITVJsEYD8Ndo09UIXAgsCJs/08Ey0Mi63IE8EjY+m8Ce4HWYet8Ejb9FRA6Y6rtz2Fh2O+ueaL3wwLzCZIK7izl0SDZAIzAnR18KCLPiki/RAoOkvJvg1fUe2LBl5bbgN/EKCb093mEqv4kSPymFllSMT5swB0IQw4PloVEdoW9DvhWlHLWAc9GHPiaquqP4w0kuOzRG3dZK1GfATuBrmH7PzjsshlEr8uwiJgbBdf0a5Ktn0N1ngRaiUgRLrmELn2hqstU9RzcJbtHgYVJlH83cDBwbjXr3IS7F9Y7ifJNmllSMT7cD/xKRApFpBXuHsS91ax/J/BbETlKnO4i0hL4B3C0iFwsIg2C1/Fh9yBiEpEDg5u8jwEvA4sTrYSq7sNds58hIocG5R4mIkOr2ewO4HcickSwfqGInBPnLrPyc6iOqu4BHsId2Fvg7v0gIgeIyIUicrCq7ga2487Ykim/FJhYzTpbgVtwj4ObLGNJxfhwI+6m8KvAa8BKqn88dDruW+yTuIPPXUDj4B7Gabh7GBtwl42mAg1jlAPuya0dwKfATNy9h9ODBJGMicC7wEsish14GneTPZZbcfcUngzieAnoG+e+svlzqM584BTgwSAJhFwMrA0+tzHARQAicri4p+sOj7P8+4HyGta5lSSSlkk/URukyxhjjCd2pmKMMcYbSyrGGGO8saRijDHGG0sqxhhjvLGkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG0sqxhhjvLGkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG0sqxhhjvLGkYowxxpv6mQ4g01q1aqUdO3bMdBjGGJNTVqxY8ZmqFkYur/NJpWPHjixfvjzTYRhjTE4RkQ+jLbfLX8YYY7yxpGKMMcYbSyrGGGO8qfP3VIx/u3fvZv369ezatSvToRhjUtSoUSPat29PgwYN4lrfkorxbv369TRr1oyOHTsiIpkOxxiTJFVl8+bNrF+/nk6dOsW1jV3+Mt7t2rWLli1bWkIxJseJCC1btkzoqoMlFZMWdTKhbN8On3yS6SiM8SrR/2VLKsb4sH07vP8+HHhgpiMxJqMsqZi8s3nzZoqKiigqKqJNmzYcdthhFfPffPNNtdsuX76cq6++usZ9FBQUUNS1K0VHH03R0UezdulS6NABDjrIUy2yQyqfJcDSpUt58cUXK+ZLS0urlHHttdemM/yMqqufnd2oN3mnZcuWrF69GnD/iE2bNmX8+PEV7+/Zs4f69aP/6ffp04c+ffrUuI/GjRuzes2aygXr1sFXX0HLlinFnm1q+ixrsnTpUpo2bcqJJ55YsWzcuHEJlZGr6upnl3VnKiJyuoi8JSLvish+qVhEjhGR/4jI1yIyPpFtTd11ySWXcM011zB48GAmTpzIyy+/zIknnkjPnj058cQTeeuttwD3j3zWWWcB7kAwevRoiouLOfLII5k1a1bsHbRuzfS77mL06NEAvPbaaxx33HF89dVXaa9bbVuxYgWDBg2id+/eDB06lPLycgBmzZrFscceS/fu3Rk5ciRr167ljjvuYMaMGRQVFfH8889HLW/btm107ty54ncwatQo/vKXv9RafaIp+6CMaf+e5r1c35/d8uXLK85cunXrlh33MlU1a15AAfAecCRwAPAKcGzEOocCxwO/A8Ynsm20V+/evdX49cYbbyS2wZQpqmPHqq5c6X5OmeItlkmTJulNN92kJSUleuaZZ+qePXtUVXXbtm26e/duVVV96qmn9LzzzlNV1bKyMj3zzDMrtu3Xr5/u2rVLN23apC1atNBvvvlGVVXr1aunPXr00B49eujw4cNVVXXv3r06cOBAffjhh7V37976wgsveKtHvKY8P0XHPj5WV25YqWMfH6tTnvf7WU6bNk379eunGzduVFXVBQsW6KWXXqqqqm3bttVdu3apqurnn39esc1NN91UpYx27dpVfHZPPPGEqqo++eST+p3vfEfvv/9+HTp0qLeYk7Hk/SXaalorXfL+Em9lpvOzCxk/fryOHz/eW8zhov1PA8s1yjE12y5/nQC8q6rvA4jIAuAc4I3QCqq6EdgoImcmuq3JUiUlMG0a9OoF48a5+TT43ve+R0FBAeC+HZeUlPDOO+8gIuzevTvqNmeeeSYNGzakYcOGHHrooXz66ae0b9/eXf4KLm2E1KtXj7lz59K9e3d+9KMf0b9//7TUozolRSVM+/c0es3uxbjvjKOkyO9n+fXXX/P6669z6qmnArB3717atm0LQPfu3bnwwgsZPnw4w4cPj1lGtEs4p556Kg8++CBXXnklr7zyiteY41G6tJTJz06umJ9/3nwGdxrsdR/p+uwAFi5cyMqVK3nyySe9xpyMbLv8dRiwLmx+fbDM67YicoWILBeR5Zs2bUoqUONRmzYwfbqbnj7dzadBkyZNKqZ//etfM3jwYF5//XX+/ve/x3wOv2HDhhXTBQUF7Nmzp9p9vPPOOzRt2pQNGzb4CTpBbZq2YfpQ91lOHzqdNk39fpaqSteuXVm9ejWrV6/mtddeqziQ/fOf/+TKK69kxYoV9O7du8bPKty+fft48803ady4MVu2bPEaczxKi0vRSYpOUsb2HcuyDcu87yNdn92aNWuYNGkSCxYsqPjSlEnZllSiXRBU39uq6mxV7aOqfQoL9xsOwNQB27Zt47DD3HeOuXPneivzZz/7Gc899xybN2/moYce8lJuNmnYsCGbNm3iP//5D+C65FmzZg379u1j3bp1DB48mGnTprF161a++OILmjVrxo4dO2osd8aMGXTp0oX777+f0aNHxzxzrA0T+k+gdZPW3stNx2e3bds2Ro4cyT333EO2HMuyLamsBzqEzbcH4v3Kl8q2JhtMmlRru5owYQLXXXcd/fv3Z+/evV7KHDduHD/5yU84+uijueuuu7j22mvZuHGjl7ITNWlQej7LevXq8dBDDzFx4kR69OhBUVERL774Inv37uWiiy6iW7du9OzZk3HjxtG8eXPOPvtsHnnkkWpvNr/99tvceeed3HLLLQwcOJCTTjqJG2+8MS3xx6Nts7ZMHDDRe7np+OweffRRPvzwQ374wx9W3LDPNHH3W7KDiNQH3gaGAB8Dy4Dvq+qaKOuWAl+o6s2JbhuuT58+aoN0+fXmm2/SpUuXTIdhct327e4x7TRdDjXxi/Y/LSIrVHW/5++z6ka9qu4RkauAf+Ge5pqjqmtEZEzw/h0i0gZYDhwE7BORsbinvLZH2zYjFTHGpCbUQ8GRR2Y6EpOgrEoqAKq6GFgcseyOsOlPcJe24trWGJMjNmxwr5BOnfKuh4K6IOuSijGmjmrXzr0gb3soqAuy7Ua9McZA69YQoysdk90sqRhjss8BB0DQMNDkFksqxhhjvLGkYvJOrXV9H5RZVFTE2rVrPUWfXepq9+21LdT4sUuXLnTt2pVbb7214r1LLrmETp06UVRURI8ePXjmmWcq3isuLubwww8nvGnI8OHDadq0KeB6Krj66qs57rjj6NatG8cffzwffPABAB07dqRbt24Vv4t4/u7jEq1DsLr0sg4l/Uu4Q8mQSZO8xuGKrNopn6pWdCSZiiZNmqRcRjpNKpvkv8won2Wi2yRTRj4oKyvTkpKSmO9v2LBBV6xYoaqq27dv16OOOkrXrFmjqqolJSX64IMPqqrqkiVL9Nvf/nbFdoMGDdJu3brp888/r6quM8oTTjih4u9z/vz5OmLECN27d6+qqq5bt063bNmiqqpHHHGEbtq0Ka74E+lQ0s5UTPaYPLnmdZKU7q7vL774Yh577LGK+QsvvJBFixalrT41Ce8c0Tef3be/99579OrVq2L+nXfeoXfv3mmLPVu1bdu24nNo1qwZXbp04eOPP95vvX79+u23fOTIkSxYsACAhx9+mPPOO6/ivfLyctq2bUu9eu5Q3759ew455JB0VQOwR4pNHfL222/z9NNPU1BQwPbt23nuueeoX78+Tz/9NL/85S/529/+tt82//vf/ygrK2PHjh107tyZH//4xzRo0ICdO3dWdInRqVMnxo4dy4wZMzjnnHPYtm0bL774IvPmzavlGqafqvLTn/6Uxx57jMLCQh544AGuv/565syZw5QpU/jggw9o2LAhW7dupXnz5owZM6bK4FTPPPMMM2bM4N577wVg6tSpHHzwwaxevZqioiLuvvtuLrnkEu9xjx0LEZ1Kp6yoCGbO9FsmwNq1a1m1ahV9+/bd770nnnhiv16MhwwZwg9/+EP27t3LggULmD17Nr/97W8BuOCCCxgwYADPP/88Q4YM4aKLLqJnz54V2w4ePLiiE8qSkhLGjRuXcvyWVEzmlZe7ru8ByspgsN8ux0PS3fX9lVdeycaNG3n44YcZMWJEzNEl06l8R3nF4FJlH5TlRPftn332GXfffTfTp0/ngQce4OWXX/Yacyb17duXr7/+mi+++IItW7ZUfBGZOnUqQ4cO3W/9L774ghEjRjBz5kwOCmv4+Ytf/IIJEyawceNGXnrppSrbFBQUMGDAAB544AF27txJx44dK95r3749b731FkuWLGHJkiUMGTKEBx98kCFDhgBQVlZGq1atvNbZkorJvHvuARGYPx8uuAAWLkxLYonW9f0jjzzC2rVrKS4ujrpNIl3fX3zxxdx3330sWLCAOXPmeIs7Efe8cg8iwvzz5nPBQxew8PyFXhOLBt23h3raDffPf/6T5557jkWLFvHb3/6WNWvi6yVpxIgRTJ48mZNPPpnevXvTMg0NHtNxRhGP//73v4C7rDp37tyKHrHXrVtXkWDGjBnDmDFj2L17NyNGjODCCy+scgkL4KabbuK8885j1qxZlJSUsGLFiirvjxw5knPPPZfS0tL9YmjYsCHDhg1j2LBhtG7dmkcffbQiqaSDJRWTeRPDeoRt0waWLUvb2UpIOrq+v+SSSzjhhBNo06YNXbt29VJmosJ7123TtA3LNizzmlTCu2/v168fu3fv5u2336ZLly4VTzANGDCA+fPnV3Tfvn379mrLbNSoEUOHDuXHP/4xd911l7dYs1mHDh2qnOmqKpdddhldunThmmuuibpNvXr1+NnPfsa8efP417/+VeVMZ+DAgVx33XWMGjWqyjYrV66kTZs2tGvXjn379vHqq6/SvXv3tNSpIs60lm5MogYPhgkT0r6bdHR937p1a7p06cKll17qpbxUDe40mAn9/X6W6ei+HdyDDSLCaaed5jXeXPHvf/+bv/71ryxZsqTiEd/Fi/fvxlBE+NWvfsW00OXisOXjx4/f71LWxo0bOfvssznuuOPo3r079evX56qrrqp4f/DgwRX7+8EPfuClLlnV9X0mWNf3/tXVru+/+uorunXrxsqVKzn44IMzHU5Oufnmm9m2bVvFDWaTXXK263tjctXTTz/N6NGjueaaayyhJOjcc8/lvffeY8mSJZkOxXhgScUYD0455RQ++uijTIeRkx555JFMh2A8snsqxhhjvLGkYowxxhtLKsYYY7yxpGKMMcYbSyom71jX98Zkjj39ZfJOy5YtK1orl5aWVunQEGDPnj0x++Xq06cPffrs9+j9fqL1/WWMsTMVk23Kyio7l/Qo3V3fA1x++eUVZy6FhYVMTmNX/sZkKztTMdmjrKyyQ8k0SGfX94888gh33nknAB9++CFDhw5NSxfuxmQ7Syoms0pLqw7ONX9+znZ9D7Br1y6+973vcdttt3HEEUekpR7GZDO7/GUyq7QUVN1r7FjXQ3GaROv6/vXXX+fvf/87u3btirpNIl3fg+vG/LzzzuOUU07xE7QxOcaSiskeEyZA69a1sqt0dH1/++23s2PHDq699lov5RmTiyypmOzRtm3VsVXSKB1d399888289tprFTfr77jjDi/lGpNLrOt76/reu7ra9b0x+SqRru/tTMUYY4w3llSMMcZ4Y0kl3UpLMx1BRtT1y6rG5ItE/5cTTioiUjt3UvPF5MlpayWerRo1asTmzZstsRiT41SVzZs306hRo7i3qbHxo4iEN28WoAiYmnB0dVkaW4lno/bt27N+/Xo2bdqU6VCMMSlq1KgR7du3j3v9eFrUb1fVy0MzIvKnZAKrUyJbif/oR2lrJZ6NGjRoQKdOnTIdRlWlpXX2UqQxtanGR4pFpJOqfhA230JVt6Q9slqStkeKp06FTz+F//3PXf5avLhOJZasI+Ja7RtjvIj1SHGNZyqhhCIirVT1s3xKKGkVasRXXg6TJrnuRyypGGPyXCIdSs4BvpuuQPJW27Ywe3amo6i7yssrH5IoK7PEbkyaJfL0l6QtCmPS5Z573KWv+fPdAxNlZZmOyJi8lsiZSq1ckBaR04FbgQLgTlWdEvG+BO+fAXwFXKKqK4P31gI7gL3AnmjX+0wdE96XWJs2dhnSmDRLJKmk/UxFRAqA24FTgfXAMhFZpKpvhK02DDgqePUF/hT8DBmsqp+lO1aTgwYPtoRiTJolcvnrurRFUekE4F1VfV9VvwEWAOdErHMOcI86LwHNRaRtLcRmjDGmBnEnFVV9PXKZiDQUke+JyKOe4jkMWBc2vz5YFu86CjwpIitE5IpYOxGRK0RkuYgstwZ6xhjjTzLdtIiIDBGRu4ENwJnAXE/xRLvEFnkvp7p1+qtqL9wlsitF5KRoO1HV2araR1X7FBYWJh+tMcaYKmpMKiJSIiL/FJFfi8jNwHvAlcDjwBeqeomqPuopnvVAh7D59rjEFdc6qhr6uRF4BHc5zZjcYC3+TR6I50zlGqAEmAz0AYpV9TxVXYh7ysqnZcBRItJJRA4ARgKLItZZBPwgOGP6DrBNVctFpImINAMQkSbAacB+l+xy1tSpMG4crFoF558PZ5yR6YiMb3Ww81GTf+JJKv8HzMMllWXAEhH5m4icH+f2cVPVPcBVwL+AN4GFqrpGRMaIyJhgtcXA+8C7wF+AnwTLWwMviMgrwMvAP1X1CZ/xZVRJiWtv0auX6/LlsssyHZFJhwsugOOPz3QUmWdnbTkr4eGEg3YiJwMX4p7EWgw8oqoP+w8v/XJiOOHIDirnz4dRozIWjvEo8nd7/fVw440ZCydrWF9tWS9W318pjVEvIo1wiWWUqg5PPrzMyYmkEk7EXQabPj3TkRhfrPPR/VlSyXpJdyhZHVXdBTwQvExtuOYaOPTQTEdhfLLORytZX205L6WkYjLgllsyHUHybEyT6lnno/v31bZwoSWWHBP3jXYRuU1ETkxnMCbPhd87yAeWIP2bONFd2h01yiWUZcsyHZFJUCJnKu8AtwRdojwA3K+qq9MSVQ4YOxZWr850FLmmDIozHYNHzxbD0gzHkNcGu9fiTMeRv4qKYOZMv2Um0k3LraraDxgEbAHuFpE3ReQGETnab1gmr3zzNbz7rpve+nlmYzHGpFWqT3/1xA3e1V1VC7xFVYty7umvXBR6uun44+Hqq3P/OnnoZvLMmbBkSW7XxZgkeXv6S0QaAKfjWrsPAZ7FNYw0Jrp8G9PEbiYbE1PcSUVETgVG4TqQfBnXLf0VqvplmmIz+SgfxjTJtyRpjEeJnKn8EpgPjFfVLWmKx5jckg9J0hiP4k4qqjoYKrq+vwg4UlV/IyKHA21U9eV0BWmMMSY3JNMh5B+BfrhLYeDGhL/dW0TGGGNyVjIt6vuqai8RWQWgqp8H3dQbY4yp45I5U9ktIgUEoy2KSCGwz2tUxuQaa11vDJBcUpmFG1XxUBH5HfAC8HuvURmTa/KtCxpjkpRwUlHV+4AJwB+AcmC4qj7oOzBTx9k3f2NyUlIjN6rq/1T1dlW9TVXf9B2UMVn9zT98yN/ycje+TWh5MoYNcyN63n+/+zlsmJ84jckAr8MBG5NRtTG+e1lZ1SF/I1vXJ5NYpk51ZXz/++7n1Kl+YzamFtl4Kia7JDtIU+hgv3Ch/5iiDeccistH6/ru3WHFCpdQVqxIOVxjMinhMxURaSgi3xeRXwY9FN8gIjekIzgTRb7fa0jkm39pqVtXBE4+GWbNSk/r9tJSN7StqhvzINYYH4MHw4QJ/vdvTA5JuJdiEXkC2AasAPaGlqtqTg5JmHO9FNelsbvLytwBPJ4D9bhx7rOZPj29MZWXu8QXfobiS3ExLF3qv1xj0sDnGPXtVfV0DzEZU71E+tWaMMEd7NOtbdv0JBRj8kQyN+pfFJFu3iMx1fPxlFE+y4eD/bPPujOtM87IdCTGJC2ZpDIAWCEib4nIqyLymoi86juwnFdYCAceCD/9qftZWJhaecXFcN997qmj006DE07wEqbJAqFHigF+/nN4//3MxmNMCpJJKsOAo4DTgLOBs4KfJtyf/uR+3nZb1flkPfggdOjg7jF06gT9+6dWXki+3PjP1XoUF8MTT8CqVW6+SZP0PMFmTC1JaTjhfJD2G/W+b6xne3mZksv1GDYMNm6ElSvd/C23wDXXZDYmY2oQ60Z93GcqIvJC8HOHiGwPe+0Qke0+gzVR+Linkqvf5vPd449Xtk855hh4+unMxmNMCuJOKqo6IPjZTFUPCns1U9WD0hdiHjjnnNTvqYTab0DyLbfDG/Dly43/fKkHwKBB8OabsHhxpiMxJmnWTUttWLQITjwxtTImTqxsg7FwYewGePHy0b1INsiXeoC1UTF5wbppSYfmzWHbtsr5Zs3gscdSK3P1ahg92k2vWpVYy+1oXZ/46F4kG+RLPYzJE3ajPl036gsL4csvYedON//d76aWWEI3cz/5BDZsgHr1YO/emrcD10Hhp5+6x5Gvvtqd6diB1xiTAp8t6kMFNgF2qWqcR7Y6ZtMm91PEJYDHH0+tvND2ofsqjRvHv619m88NzZvD1q2ZjsKYlMSdVESkHjASuBA4HvgaaCgim4DFwGxVfSctUeY6VZgyJfnt69evelbSogVs3pxcWYl0fWJqx9Sp7gx02zY48kh3Vvnll5mOypikJHKjvgz4FnAd0EZVO6jqocBA4CVgiohclIYYc09xcWXvueBu0qfS7mDPHncfpWdPN79lS8ohemePKyevpKTyb+WDD2DAgMzGY0wK4r6nIiINVHV3qutkm7TdU/HdoK1lS/dNNnTG0qABfPNN6nEmqrQ0egLJ5caHiYhV/2RFPtQB0KpV5eVTY7JUrHsqiSSVRsAY4NvAa8BdqrrHa5QZUCst6hs0cGcb+/YlX87YsW642Y0b3fwhh2TmjCVW8sj3pBK6RDVzpvtdtGnjrwPLgw6CHTsq5wsK3N+LMVks5Rb1wDygDy6hDANycvyUWhPqUBJg9+7UDrgdO8Ktt1YmFIDPP08pPG+uv76yM8Tzz099KNypU11jxlWr3M9sGVo3/BLV8uXw3nv+Yuzfv/LSJsT/VJ8xWSiRpHKsql6kqn8GzsfdSzHR1K8Pn31W+Thxqtau9VNOKmIlj/B7R3//O7z+emr7CR28e/VyP0tKUivPl9DIj+DOVJo29RNj8+ZVO5Q0JsclklQq7pWk87KXiJwedKv/rohcG+V9EZFZwfuvikiveLdNq/Dr7LEuc4WvE226uLhyWfh06KAdKdb64dOxrv+HrxNt3cjywpPH4sXw7W+79W+8sbLfqsaN3dlZrFjiibVNm8qeA6ZPd/Px1DNW+dHqn+jnVlxctZucMWPg7LOrxhgutG2szzN8eVHR/vFFrlPTdCLr+pqu7m8llbKjnanW9P+RjnqGyk9D2aVLq5+O9X7x3OKElsczHb6tN6oa1ws3dPD24LUD2BM2vT3ecmrYRwHwHnAkcADwCu4MKXydM4DHAQG+A/w33m2jvXr37q1egOqSJapTp4a+00Z/ha8TOQ2qt9yiOmzY/tOxXrHWD5/+4Q9VBwxQXblSdeBA1c6d3fKBA1X796+6LDymeMoOf82fX/lZRFtf1U1XV16i+z/zTNWOHV3dxo5VnTJl/3VGjFC9+uqq9Yyn7GixTJpUdXms/Yd+n7Hqk+rfSuTfTbzr+pqO93eVaNkPPeT+VkF13DjV8vL4/j/SUc/Q36rnsilFl7y/RKe+EH26uvdvefEWHXbvsLiXxzMd2jbxQx7LI4+nwX9/6snA1wvoB/wrbP464LqIdf4MjAqbfwtoG8+20V4pJ5UpU9zBBFTr11ft2rX6A0X4OuHTIpXrHHBA5fQhh1RfXuT60bZt1Ej1uOMql7duvX8Zffu6n/XqqbZoEb280AE5vLzGjV3S6ttX9YgjVHv2jB1Lx46x4w7FGirvtNPcfLt28dezY8eq9Qwtr18/et1rKi/ys+jcuerv/rTT3O/tpJPc+wMGuNjD9xlZRqyyE/lbiZxOZF1f0zX9rYR/9omUHfr9Q9X/rZr+P3zVLdrvxVPZU4rr69jxxymlaP3f1Neut3fdf3py/f2W1ZtcT1tMaaGUopSih0w5pNrlMcuupszO/9c56uGtOrGSSlZ10yIi5wOnq+rlwfzFQF9VvSpsnX8AU1Q11BX/M8BEoGNN24aVcQVwBcDhhx/e+8MPP0wu4NLSqj3/1kUnnOC6nzn3XHjppdrff4MG8P/+H9x7b3r306QJvPii6+bm2Wcrl/frB337uqfCTOpCf09t22Y6Eq9Ki2FycYaDiKFJ/Sa8ePmLdG/dPaHtfIynckM1r18nFE01u4myLDLrxVonnm3dQtXZqtpHVfsUptIlfWmpaykf6nq9fn13E7s64euET4ffNznssMrpk06qOY7w9aNt27Bh5X4OOAC6dau6fZMmcMUVbrpePTjqqOjlhXTuXFnnV1913bX//vfuAB9r21AsBQXVv9+oESxZ4p6Gatas8uGAWPXcvRs++shNd+xYtW6R+4yse02fW/hn8eWXbpyT4uLK77A9e8IXX1T+7gYMqPwcQ/uM/DyjlR1LrL+V8OnQfuJZ19d0rLpF+wwTLTv09zRpUtX/rZr+P3zVLdrvxUPZpUthSll9xh3mltevV5/zu+w/XSAF+y2rRz2OalEZ00lHnFTt8lhlxyrzyz1f8vT7/sbwSeRG/ZdRXgpchjtT8GE90CFsvj2wIc514tnWv/Au6S+91HXaWJ3wdcKnL7/c/TzmGOjevXK6SZPqy4tcP9q2P/hB5X5OPtn944bWARg4EP78Zzd92WWxYxk2zE0XFlbWedcuV+bJJ8O8efD229XHcuqp1b9/8cWub7I5c9yjtuGDV9VUzw8+qFq30PJQ786Rda+pvMjP4umnq56ZzpnjDnChz+L55ys/x9A+I8uIVnYssf5WwqdD+4lnXV/TseoW7TNMtOxu3eCGG9wYRJ98Aq1bu+W+9xNrOrJOHsueePSlTN/ipi8tupTjD9t/enTP0fstu6zXZVzey8V0TMtjaNKgSbXLY5VdXZk+k8p+18PieQHNgF8BHwBTgUOTKSdKufWB94FOVN5s7xqxzplUvVH/crzbRnt5u1E/aVLldKxr5OHrRJseNKhyWfh0rPJirR8+HRlX5Drhy8LXjSwv/Pp2//5uPrLsceNqrkdNsYb2E37jO556RqtbeJ1ivR/P5xZrP+GifY6xyohcnszfSqz91NZ0dX8rqZRdXu7+jkJ/T+XlNf9/pKOeofLTUPaksuqnY70/6O5BCS2PZzp820Th40Y90AK4MUgmpcAhiWwf5z7OAN7GPcl1fbBsDDAmmBbg9uD914A+1W1b08tbUglXUBD9QJEKH+WF/5FXtyya1asrb8Kff777Z1eNnmwS2X+kaAeVeNRUdrz1jOWXv6ysf9eurq7hiS+V8i+/3N2g9vW3kg/sM8h6KScV4KbgYD0RaBrvdtn+SktSUVVt0KDqEyup/pOEP/GSiQPPlCmVB/tWrdzjkaqxk02qsu2gcv31qr16ubgaNVI966zEE1800c5UTjvNW9g5K9t+/2Y/sZJKIvdUfg60Cy57bRCR7SKyI3htT6Cc/Fdaun/XLA0apFbmhx9W3rQEd0OxNsUazviJJyobii1d6m6y5qPwRp6LF7v7UBC98WMiVq/ef9kLLyRfXr6YNCnTEZgkZdUjxZmQtg4lQ6Mtzpjhnlw56KDkB2AqLq76GCuk3utxskpLY/dSvGSJSzaJDHWc6H4yLbzjTF+daEZ2KNmwoXsAwpgslvLIjyJyQzVvq6r+NqnI8lWoB9sZM9yBp107v+WHd0BYm2Id6CdN8jsAWDYmFKj6DdrXt+ntwYl+6LHZhg39lGtMBqT6SDH4faQ4PzRvXrWvrGbN4I03ki9v6VI4/fTKDgyh8lJUItJ5oM7WJOBbrL6dUikv/G/l+uv3H1/FmBwSd1JR1VtCL2A20Bi4FFiA62/LhGzd6gZaCo0jv2OHe+4+VaFbuQcckFzr9bre+j8bhTegLShwlzXLyjIdlTFJS+hur4i0EJEbgVdxl856qepEVd1Yw6Z1z6ZN8NVXbrpePXj88dTKmzq18ttsYWFlw6xU5csZRi7XI/QQxLp1lY0/jclRiXTTchOwDNcrcTdVLVXVz9MWWT5Rdd9GU7FvX+VN4Y8/dn1txau8vPLJschvwfly9pIP9WjbFmbP9vOggzEZkuojxdvtkeIoIscfOfHE1J7UKi52N+aTHcgpNBbI/PlwwQV2ecUYkzaJ3FOpp6qNVbWZqh4U9mqmqgelM8icE35jvVUr+Pe/k7uxHlle6Imv+vXhD3+If/vQ5ZVRoyrbmFR39pJL8qUeEHvQMWNySCKXv6L1ApzwOnXG44+7xnJPPVXZGWEqxo93l73A3ah/5pnkyhk82F1eyZezl3ypB7i2SNOnwxlnZDoSY5IWdzsVoExE/gY8pqofhRaKyAHAAKAEKAPmeo0wVxUWuu7SL7vMtYb/7LPUylu+HC680LV7OfBA2Lw5tfImhj0F3qaNO3vx1cakNuVDPYYNcw1lAX7+cze0gDE5Ku4W9SLSCBgNXIjrCXgr0Ag3jO+TwO2qujotUaZR2lrUP/SQ63J+5073aPE999Q81ko8fLdcN5kV2VtCaDCwUPfuxmSpWC3qk+qmRUQaAK2Anaq6NfXwMidtSSXEV1ce6SrPZN6wYbBxI6xc6eYz1QWPMQnwMfLj4aFpVd2tquW5nlBySj7dkDZVhe6/gZ/7b8ZkUCKPFD8amgjurZh4HHywn3KKi+G+++Cqq+C009xY3vksmcaMZWUwbZr3UGrNoEGul+fFizMdiTFJSySphD/ZZd2yxCvZnokjPfggdOgAt90GnTq5oXbzWaKNGcvK3NNfNQ3n7EOuJy9j0iiRpKIxpk1t6N698hLJ22+7p8DquvDOGE8+GWbNSv+TX7GSl49uYuyRYpMHEkkqPUIt6IHu1qI+TtagLTGJ3DsqLa3sZHPs2PT1mRVP8vLVTcz48XDKKX7KMiYDEmlRXxDWgr5+0Iq+s7Wor4Hvb5+DBuX3t9lkGzNOmACtW6cnpnQmL99d+hiTYamOSftPL1HkO5/fPr/73fz+NhutS5l4tG1btSFkukQmr1SfyvPdpY8xGZbScMIiskpVMzQEoR9paacS2aCtf//Uxh2PLO+qq+D//i/58ow/oWGjjz8err7aJcJk7+usXu2SaadO9gSYyXpeGz+GFfoTVf1jSpFlWNoaP4YatH30keuixVeDttDoj6Gb9iZ7lJVZTwemzki58WOUApsAf04pqnzmu0PJkDlz4NBD/ZRl/Ap11mlMHRZ3h5IiUg8Yiev763jga6ChiGwCFgOzVfWdtESZy4qKXIM2n+WlOoqkMcakSSJnKmXAt4DrgDaq2kFVDwUGAi8BU0TkojTEaIwxJkck0vX9Kaq6O3Khqm4B/gb8Leho0hhjTB2VyJnKf2taIVrSMSZv+WhFb0yeSbbvL2OMr1b0xuSRRC5/FYpIzGdiVdVabJnqlZbat3tj8lwiSaUAaIqdsQCut47VqzMdRY55thiWZjgGH775Gj5aB5RB0efQ/JBMR2RMUoqKYOZMv2UmklTKVfU3fndvTA765FP31apLF1jzBnQ91hKLMYFEkoqdoYTxnd3zWnm5G3/k2ZkwaUn6u6dPu8MrJ8vegGV/sUaPvtml0pyVyI36y9IWhclvyfY8nAusFX162EMQOSuRM5U7gV7ghhNW1RHpCcnknfDeg9u0cf1j5fzZijEmGhtO2NQu+2ZvqpPqUAIm42w4YWMybepUdyBdtcr9nDo10xFlTj5fKq0jErn81SMYNliAxmFDCAugNvqjMUkqKXEPMvTq5ZJKSUmmI8ocu1Sa81IaTyUfpG08FWMSJeKGLDYmB3gdT0VECkWkMPWwqpTZQkSeEpF3gp9RH/wXkdNF5C0ReVdErg1bXioiH4vI6uCVp4O4G2NM9oo7qYhTKiKfAW8Bb4vIJhG5wVMs1wLPqOpRwDPBfGQMBcDtwDDgWGCUiBwbtsoMVS0KXjYeq8ktkyZlOgJjUpbImcpYoD9wvKq2UNVDgL5AfxEZ5yGWc4B5wfQ8YHiUdU4A3lXV91X1G2BBsJ0xuc8a+5k8kEhS+QEwSlU/CC1Q1feBi4L3UtVaVcuDcsuBaGPmHgasC5tfHywLuUpEXhWRObEunwGIyBUislxElm/atMlD6MYYYyCxpNJAVT+LXKiqm4C4BucSkadF5PUor3jPNqJ1FRO6s/kn3MiURUA5cEusQlR1tqr2UdU+hYVebw0ZY0ydlsgjxd8k+V4FVT0l1nsi8qmItFXVchFpC2yMstp6oEPYfHtgQ1D2p2Fl/QX4RzwxGWOM8SeRM5UeIrI9ymsH0M1DLIuA0AP6JcBjUdZZBhwlIp1E5ABgZLAdQSIKORd43UNMJl/Y/QpjakXWtFMRkZbAQlwXsB8B31PVLSLSDrhTVc8I1jsDmIkb32WOqv4uWP5X3KUvBdYCPwrdo6mOtVOpI6wNiDFexWqnEndSERHRGlaOZ51sY0mljrCkYoxXPho/lonIT0Xk8PCFInKAiJwsIvOovHxlTHawDgqNqVWJJJXTgb3A/SJSLiJviMj7wDvAKFzDw7lpiNGY5FkHhcbUqkSe/jpUVf8I/FFEGgCtgJ2qujUtkRnjg3VQaEytSiSpPEowSBewwAbpMjln8GBLKMakmQ3SZYwxxhsbpMsYY4w3NkiXMcYYb+JOKqpakM5AjDHG5L6kBukyxhhjorGkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG0sqxhhjvLGkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG0sqxhhjvLGkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG0sqxhhjvLGkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG0sqxhhjvLGkYowxxhtLKsaY7FRWBtOmZToKkyBLKsaY7FNWBhdcAMcfn+lITIIsqRhjskNpKYi418knw6xZMHhwpqMyCbKkYozJDqWloOpeY8fCsmWZjsgkIWuSioi0EJGnROSd4OchMdabIyIbReT1ZLY3xuSACROgdetMR2GSkDVJBbgWeEZVjwKeCeajmQucnsL2xphs17YtTJyY6ShMErIpqZwDzAum5wHDo62kqs8BW5Ld3hhjTPpkU1JprarlAMHPQ9O1vYhcISLLRWT5pk2bkg7YGGNMVfVrc2ci8jTQJspb19dmHKo6G5gN0KdPH63NfRtjTD6r1aSiqqfEek9EPhWRtqpaLiJtgY0JFp/q9sYYY1KUTZe/FgElwXQJ8Fgtb29MaqwFuDFZlVSmAKeKyDvAqcE8ItJORBaHVhKR+4H/AJ1FZL2IXFbd9sbUCmsBbgxQy5e/qqOqm4EhUZZvAM4Imx+VyPbGpE1pKUyeXDk/f761ADd1XjadqRiTW6wFuDH7saRijA/WAtwYwJKKMX5YC3BjAEsqxhhjPLKkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGG1Gt2530isgm4MMkN28FfOYxnGxl9cwvVs/8kql6HqGqhZEL63xSSYWILFfVPpmOI92snvnF6plfsq2edvnLGGOMN5ZUjDHGeGNJJTWzMx1ALbF65herZ37JqnraPRVjjDHe2JmKMcYYbyypJElETheRt0TkXRG5NtPx+CIiHUSkTETeFJE1IvKzYHkLEXlKRN4Jfh6S6VhTJSIFIrJKRP4RzOdjHZuLyEMi8r/gd9ovT+s5Lvh7fV1E7heRRvlSTxGZIyIbReT1sGUx6yYi1wXHpbdEZGhtx2tJJQkiUgDcDgwDjgVGicixmY3Kmz3Az1W1C/Ad4MqgbtcCz6jqUcAzwXyu+xnwZth8PtbxVuAJVT0G6IGrb17VU0QOA64G+qjqcUABMJL8qedc4PSIZVHrFvyvjgS6Btv8MThe1RpLKsk5AXhXVd9X1W+ABcA5GY7JC1UtV9WVwfQO3EHoMFz95gWrzQOGZyRAT0SkPXAmcGfY4nyr40HAScBdAKr6japuJc/qGagPNBaR+sCBwAbypJ6q+hywJWJxrLqdAyxQ1a9V9QPgXdzxqtZYUknOYcC6sPn1wbK8IiIdgZ7Af4HWqloOLvEAh2YwNB9mAhOAfWHL8q2ORwKbgLuDy3x3ikgT8qyeqvoxcDPwEVAObFPVJ8mzekaIVbeMH5ssqSRHoizLq8foRKQp8DdgrKpuz3Q8PonIWcBGVV2R6VjSrD7QC/iTqvYEviR3LwHFFNxPOAfoBLQDmojIRZmNKmMyfmyypJKc9UCHsPn2uNPtvCAiDXAJ5T5VfThY/KmItA3ebwtszFR8HvQHvisia3GXLk8WkXvJrzqC+ztdr6r/DeYfwiWZfKvnKcAHqrpJVXcDDwMnkn/1DBerbhk/NllSSc4y4CgR6SQiB+BujC3KcExeiIjgrsG/qarTw95aBJQE0yXAY7Udmy+qep2qtlfVjrjf3RJVvYg8qiOAqn4CrBORzsGiIcAb5Fk9cZe9viMiBwZ/v0Nw9wLzrZ7hYtVtETBSRBqKSCfgKODl2gzMGj8mSUTOwF2XLwDmqOrvMhuRHyIyAHgeeI3K+w2/xN1XWQgcjvsn/p6qRt48zDkiUgyMV9WzRKQleVZHESnCPYxwAPA+cCnuy2S+1XMy8P9wTy+uAi4HmpIH9RSR+4FiXG/EnwKTgEeJUTcRuR4Yjfssxqrq47UaryUVY4wxvtjlL2OMMd5YUjHGGOONJRVjjDHeWFIxxhjjjSUVY4wx3lhSMSYGEfmDiBSLyPBEe6IWkUIR+W/QPcrAiPfOCpa/IiJviMiPguXDfXZMKiKXiEg7X+UZEw9LKsbE1hfXPmcQru1OIoYA/1PVnqpasW3QW8Fs4GxV7YHrW21p8PZwXK/X+wk6SkzUJbhuS+KW5H6MqWDtVIyJICI3AUNxfUm9B3wL+AB4SFV/E7HuEcAcoBDXeeOlQAtcy+bGwMdAP1XdGazfAvgfcERoWbD8ROAfwLbgNQLXs8GLuG5lFgHdgH+o6kPBNl+oatNgegJwMa7B6uPAclyX6R8DO4F+uFbmfVT1MxHpA9ysqsUiUopLPh2Bz3BDAtyBa1gHrgHdv5P9PE3dYt9KjImgqr8QkQdxB+lrgKWq2j/G6rcB96jqPBEZDcxS1eEicgPuAH5VRNlbRGQR8KGIPINLJPer6ovB8vCkAdBcVQcF83OjBSAiw3BnOX1V9SsRaRHs5ypcbwHLw8qLpTcwQFV3ish8YIaqviAihwP/ArpUt7ExIZZUjImuJ7AaOAbXX1Ys/YDzgum/AtNqKlhVLxeRbriOEMcDp+IuVUXzQByxngLcrapfBeUn0xXJorAzp1OAY8OS0EEi0iwYX8eYallSMSZM0FfWXFzvrp/hBnwSEVlN2GWsasR1PVlVXwNeE5G/4i6tXRJj1S/DpvcQ3AcNOk48IBR2nPut2B5oVM1+6hFfXY3Zj92oNyaMqq5W1SLgbdxN8yXAUFUtinGQfRHX0zHAhcAL1ZUvIk2DTixDioAPg+kdQLNqNl+Lu0wFbvyQBsH0k8BoETkw2EeLGOWFbz+imv08CVRctgsSrTFxsaRiTAQRKQQ+V9V9wDGqWt3lr6uBS0XkVdw9mJ/VVDwwQUTeCs5+JlN5lrIA+EXwuPG3omz7F2CQiLyMezLtSwBVfQJ3I395UOb4YP25wB0islpEGgf7ulVEngf21lCnPiLyqoi8AYypoU7GVLCnv4wxxnhjZyrGGGO8saRijDHGG0sqxhhjvLGkYowxxhtLKsYYY7yxpGKMMcYbSyrGGGO8saRijDHGm/8PH2xvFCmsGGYAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAZkAAAEoCAYAAACKM4weAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6E0lEQVR4nO3deXxU1fnH8c8jIIsgKLIJIijuyi7uFVCCWq1b9Ycr1CrV6s8CbcFWW4LV/sQqWqqtWutCW6Roi0trLQLBpbiwCAKKuIEgERDZFEGW5/fHmSFDmCQzydyZSfJ9v17zytw799459yaZZ8459zzH3B0REZEo7JHrAoiISM2lICMiIpFRkBERkcgoyIiISGQUZEREJDIKMiIiEhkFGanRzOznZvZwwvL5ZrbMzL40s25mdpiZvWVmG83sxlyWVaQmUpCRlJnZEjP7OvYBHX/sn8PyTDezzbEAscHMZpvZTWZWP76Nu//a3a9O2O0u4AZ3b+zubwHDgenu3sTdx2b7HDIhletgZoVmtrXU7+6XpZbdzL5KWD4lS+V/LPbevRLWdTIzT1iOn+MBCetON7MlCcuJf58rzexRM2ucjXOQsinISLrOiX1Axx8r0tnZzOpmuDw3uHsToA3wY2AA8LyZWRnbHwgsLGc5ZRGcS1Wkch3+Vup3d2vicmybLgnrXsli+b8Abqtgm6+AX1SwzTmxc+kOHAvckoGySRUoyEiVmVl9M7vXzFbEHvfGv0WbWW8zW25mI8zsM+BRM6sTa8b6MPbte3b8G6qZHW5mL5rZF2b2npldnEoZ3P0rd58OfAc4Afh27HiFZvaXWBm/BOoA82LvPQ3oA9wX+/Z7aGy7u8zsk9i34QfMrGE557JHrNbwoZmtMbOJZrZvbPsOsW/oA2PH+9zMbk64blm7DplgZgPMbFapdUPN7NnY87PM7J3YuXxqZj9J4/CPA53N7NRythkLXGJmnSo6mLt/CvwbODqNMkgEFGQkE24Gjge6Al2AXuz6DbI1sC+h1jAYGAZcApwF7A1cBWwys72AF4HxQMvYNr83s6NSLYi7fwLMAk4ptX5LqW/rB7t7X+AVSprPFgOjgUNj59IJaAv8spxzuRE4DzgV2B9YC9xfqlgnA4cBpwG/NLMjYuuzfh2q6FngMDM7JGHdpbFyAvwJ+EGsRnU0MC2NY28Cfg3cXs42nwJ/BAorOlgsWJ8FvJVGGSQCCjKSrqfNbF3s8XRs3WXAre6+yt1XA6OAKxL22QGMjH3Qfw1cDdzi7u95MM/d1wBnA0vc/VF33+buc4C/A99Ns4wrCIEgLbGmpWuAoe7+hbtvJHzwDSjnXH4A3Ozuy919C+ED8LulmtJGufvX7j4PmEcIxJD963Bxwu9unaXZn+bum4BnCEGPWLA5nBB8ALYCR5rZ3u6+NlbudDwItDezM8vZ5v+Ac8oJuE+b2TrgVeAlwu9PckhBRtJ1nrs3iz3Oi63bH1iasM3S2Lq41e6+OWH5AODDJMc+EDgu8YOQEMBap1nGtoQ2/nS1ABoBsxPe/4XY+rjS53IgMClh+3eB7UCrhG0+S3i+CYjXqLJ9HSYm/O6apdufFjOeWJAh1GKejgUfgAsJtYelZvaSmZ2QzoFjQfpXsUfSPrXYl5j7gFvLOEz87/NAd/9h7IuA5JCCjGTCCsIHY1z72Lq40qm+lwEHJznOMuClUh+Ejd39ulQLEmsm6UFoBkvX58DXwFEJ7980oZkNkp/LmaXK3CDWJ1CRfL0O5ZkM7GdmXQnBJt5UhrvPdPdzCU18TwMTK3H8R4GmwPnlbPMbQl9aj0ocX7JMQUYy4QngFjNrYWb7Efow/lLO9g8DvzKzQyzobGbNgX8Ch5rZFWZWL/Y4NqEPo0xm1ijWafwM8CbwfLon4e47CG3+95hZy9hx25pZ/3J2ewC43cwOjG3fwszOTfEt8/I6lMfdtwFPET7o9yX0HWFme5rZZWbW1N23AhsINbrKHL8QGFHONuuAuwm3n0ueU5CRTLiN0Mn8NjAfmEP5t6OOIXzLnUz4MPoT0DDWB1JA6ANZQWhmGg3UL+M4EO4M2wisBO4l9F2cEQsYlTEC+AB43cw2AFMInfZl+S2hT2JyrByvA8el+F75fB3KMx44HXgyFhTirgCWxK7btcDlAGbW3sLde+1TPP4TQHEF2/yWSgQxyT5zTVomIiIRUU1GREQioyAjIiKRUZAREZHIKMiIiEhkFGRERCQyCjIiIhIZBRkREYmMgoyIiERGQUZERCKjICMiIpFRkBERkcgoyIiISGQUZEREJDIKMiIiEhkFGRERiYyCjIiIREZBRkREIlM31wXItf322887dOiQ62KIiFQrs2fP/tzdW1S0Xa0PMh06dGDWrFm5LoaISLViZktT2U7NZSIiEhkFGRERiYyCjIiIRKbW98kks3XrVpYvX87mzZtzXRSRWq9Bgwa0a9eOevXq5booUgkKMkksX76cJk2a0KFDB8ws18URqbXcnTVr1rB8+XI6duyY6+JIJai5LInNmzfTvHlzBRiRHDMzmjdvrlaFakxBpgwKMFLtbdgAn32W61JUmf4XqzcFGZGaaMMG+OgjaNQo1yWRWi7vgoyZnWFm75nZB2Z2U5LXDzez18xsi5n9JJ19q4s1a9bQtWtXunbtSuvWrWnbtu3O5W+++abcfWfNmsWNN95Y4XvUqVNn5zG7du3KkiVLMlT6/FKVawkwffp0ZsyYsXO5sLBwl2PcdFMe/ZmtWAGzZoXH4sVwwAGw995VOmStun4Sibzq+DezOsD9QD9gOTDTzJ5193cSNvsCuBE4rxL7VgvNmzdn7ty5QPinbNy4MT/5SUk83bZtG3XrJv/V9ezZk549e1b4Hg0bNtz5HjVZRdeyItOnT6dx48aceOKJO9cNHTo0rWNkzf77hwfAsmWwaRM0b16lQ9aq6yeRyLeaTC/gA3f/yN2/ASYA5yZu4O6r3H0msDXdfauzQYMGMWzYMPr06cOIESN48803OfHEE+nWrRsnnngi7733HhD+qc8++2wgfChcddVV9O7dm4MOOoixY8eW+x5jxozhqquuAmD+/PkcffTRbNq0KdoTy4HZs2dz6qmn0qNHD/r3709xcTEAY8eO5cgjj6Rz584MGDCAJUuW8MADD3DPPffQtWtXXnnllaTHW79+PYcddtjO38Ell1zCH//4x6ydT1KtWlG06g3u/O+dGT90pq/frFmzdtZsjjnmGPXB1DB5VZMB2gLLEpaXA8dlel8zGwwMBmjfvn36pSxt9OjQwXrllTBuHLRuDSNGVP24pSxevJgpU6ZQp04dNmzYwMsvv0zdunWZMmUKP//5z/n73/++2z6LFi2iqKiIjRs3cthhh3HddddRr149vv76a7p27QpAx44dmTRpEkOGDKF3795MmjSJ22+/nQcffJBGOWjTH/3qaD778jOu7HIl4+aNo3Xj1ow4OTPX09353//9X5555hlatGjB3/72N26++WYeeeQR7rjjDj7++GPq16/PunXraNasGddee+0u396nTp3KPffcw1/+8pdQ1tGj6d+/P/fddx+DBg3iRz/6EWvXruWaa67JSHkrq+jT/3LxtOuY+N2JGT1uVNcvXlv66U9/yhlnnJHRMktu5VuQSfYVxjO9r7s/BDwE0LNnz1SPX7aBA+HOO6F7dxg6NCxH4KKLLqJOnTpA+PY8cOBA3n//fcyMrVtLV+yCb3/729SvX5/69evTsmVLVq5cSbt27ZI2l+2xxx489thjdO7cmR/84AecdNJJkZxHRQZ2Hcid/72T7g91Z+jxQxnYNXPXc8uWLSxYsIB+/foBsH37dtq0aQNA586dueyyyzjvvPM477zzyjxGsuaefv368eSTT3L99dczb968jJU3HYXTCxn10qidy+MvGE+fjn0y+h5RXT+AiRMnMmfOHCZPnpzRMktu5Vtz2XLggITldsCKLOxbNa1bw5gx4fmYMWE5AnvttdfO57/4xS/o06cPCxYs4LnnnitzHEH9+vV3Pq9Tpw7btm0r9z3ef/99GjduzIoV2bl0ybRu3Jox/cP1HNN/DK0bZ+56ujtHHXUUc+fOZe7cucyfP3/nh9q//vUvrr/+embPnk2PHj0qvFaJduzYwbvvvkvDhg354osvMlbedBT2LsRHOj7SGXLcEGaumJnx94jq+i1cuJCRI0cyYcKEnV+kpGbItyAzEzjEzDqa2Z7AAODZLOxb7axfv562bdsC8Nhjj2XsmD/60Y94+eWXWbNmDU899VRGjptP6tevz+rVq3nttdeAkEJo4cKF7Nixg2XLltGnTx/uvPNO1q1bx5dffkmTJk3YuHFjhce95557OOKII3jiiSe46qqryqxZZsvwk4bTaq9WyV+swviZKK7f+vXrGTBgAOPGjaNFiwqnJ5FqJq+CjLtvA24A/gO8C0x094Vmdq2ZXQtgZq3NbDkwDLjFzJab2d5l7ZvVExg5MmtvNXz4cH72s59x0kknsX379owcc+jQofzwhz/k0EMP5U9/+hM33XQTq1atysixK2PkqZm/nnvssQdPPfUUI0aMoEuXLnTt2pUZM2awfft2Lr/8co455hi6devG0KFDadasGeeccw6TJk0qt+N68eLFPPzww9x9992ccsopfOtb3+K2227LeNnT0aZJm+T9WFUcPxPF9Xv66adZunQp11xzzc4bAKTmMPeqd0lUZz179vTSk5a9++67HHHEETkqkUiGrVgRHnEdO1b51uZs0/9k/jGz2e5e4XiJfOv4F5FMi2D8jEiq8qq5TEQi1qoVlDGQVyQKCjIitcmee0LslmORbFCQERGRyCjIiIhIZBRkREQkMgoyeUip/jNHqeqrLv63cvTRR3POOeewbt26crdfvXo1xx13HN26dStzbIzUHrrNJJMKC8OjipTqPyicXkhh78IqHUOp6qsu8W9l4MCB3H///dx8881lbj916lQOP/xwHn/88SyVUPKZajKZNGpUxdtUUtSp/q+44gqeeeaZncuXXXYZzz6b26w8ickeMymTqeo//PBDunfvvnP5/fffp0ePHpGUOx+ccMIJfPrpp0A49zPOOIMePXpwyimnsGjRIubOncvw4cN5/vnn6dq1K19//XWOSyy5pppMNRJlqv8hQ4Zwzz33cO6557J+/XpmzJhRI7+JRpGqvmnTpsydO5euXbvy6KOPMmjQoEjKPmQIZLry2bUr3Htvattu376dqVOn8v3vfx+AwYMH88ADD3DIIYfwxhtv8MMf/pBp06Zx6623MmvWLO67777MFlaqJQWZTCguDqn+AYqKoE9m06vHRZ3q//rrr2fVqlX84x//4MILLyyzSS5qxRuLd062VfRxUUbT1UeRqv7zzz/n0UcfZcyYMfztb3/jzTffzFh580H8C8mSJUvo0aMH/fr148svv2TGjBlcdNFFO7fbsmVLDkspacnSHFigIJMZ48aBGYwfDxdfDBMnRhJokqX6nzRpEkuWLKF3795J90kn1f8VV1zBX//6VyZMmMAjjzySsXKna9y8cZgZ4y8Yz8VPXczE707MWKCJp6qPZxFO9K9//YuXX36ZZ599ll/96lcsXJhaftULL7yQUaNG0bdvX3r06EHziFK2pFrjyLT4F5L169dz9tlnc//99zNo0CCaNWuW9/16UoYszYEF6pPJjBEjwjwyl1wSAszMzM/jUVoUqf4HDRrEvbFPsqOOOiojx6yMESePYEz/MVxyzCVM/O7EjM6LEkWq+gYNGtC/f3+uu+46vve972WsrPmmadOmjB07lrvuuouGDRvSsWNHnnzySSAE71xN1iaVkKU5sEBBJvP69IHhwyN/myhS/bdq1Yojjjgirz4o+3Tsw/CTMnc9o0hVD+FGCTOjoKAgY2XNR926daNLly5MmDCBv/71r/zpT3+iS5cuHHXUUbvcOBL3wAMP8MADD+SgpJIvlOpfqf532rRpE8cccwxz5syhadOmuS5OtXLXXXexfv16fvWrX+W6KDVSbf2fjFwVhl0o1b+kZcqUKVx11VUMGzZMASZN559/Ph9++CHTpk3LdVFE0pOBcX0VUZARAE4//XQ++eSTXBejWpo0aVKuiyCSt9QnIyIikVGQERGRyCjIiIhIZBRkREQkMgoyeUip/kWkptDdZXlIqf5FpKZQTSbTiopKkmVmUNSp/gGuvvrqnTWbFi1aMCrCqQtEpHZQTSaTiopKEmRGIMpU/5MmTeLhhx8GYOnSpfTv3z+ylPUiUnsoyFRVYeGuk5WNH19tU/0DbN68mYsuuoj77ruPAw88MJLzEJHaQ81lVVVYCO7hMWRIpBmYk6X6X7BgAc899xybN29Ouk86qf4Brr32Wi644AJOP/30zBRaRGo1BZlMGj4cWrXKyltFker//vvvZ+PGjdx0000ZOZ6IiIJMJrVpE9nscqVFker/rrvuYv78+Ts7/5WiXUSqSqn+lepfJO/pfzL/pJrqXzUZERGJjIKMiIhERkGmDLW9GVEkX+h/sXpTkEmiQYMGrFmzRn/cIjnm7qxZs4YGDRrkuihSSRqMmUS7du1Yvnw5q1evznVRRGq9Bg0a0K5du1wXQypJQSaJevXq0bFjx1wXQ6TyCguzMn+7SEXUXCZSEym5qeQJBRkREYlM3gUZMzvDzN4zsw/MbLf8JhaMjb3+tpl1T3htiZnNN7O5Zjar9L4iNV5xMQwdGp4XFeW2LCLkWZAxszrA/cCZwJHAJWZ2ZKnNzgQOiT0GA38o9Xofd++aykhUkRpn3DgwC9nAL75YgUZyLt86/nsBH7j7RwBmNgE4F3gnYZtzgXEe7i9+3cyamVkbdy/OfnFF8kxi7rzWrUNW8IimnhBJRV7VZIC2wLKE5eWxdalu48BkM5ttZoMjK6VIddCnT8gMLpJD+VaTsSTrSo+ILG+bk9x9hZm1BF40s0Xu/vJubxIC0GCA9u3bV6W8IiJSjnyrySwHDkhYbgesSHUbd4//XAVMIjS/7cbdH3L3nu7es0WLFhkquoiIlJZvQWYmcIiZdTSzPYEBwLOltnkWuDJ2l9nxwHp3LzazvcysCYCZ7QUUAAuyWXgREdlVXjWXufs2M7sB+A9QB3jE3Rea2bWx1x8AngfOAj4ANgHfi+3eCphkZhDOa7y7v5DlUxARkQSatCzJpGUiIlI+TVomIiI5pyAjUpPUlKSY8fOoKedTi6m5TM1lUpOYQU34nzaDadOgb18YPBgOPhiOPTYMLtXYn7yg5jIRCaprbeC888LPCROgbt2QJufYY3NaJElf2kHGzEZUvJWIZFV5iTGrS9r/wsJQg7HYeOsNG0p+/vjHMHasUuRUQxUGGTObmPB4Erg6C+USkXRUlBizOtRmCgvhjjtCsDz00HA+rVpBgwZw4YWhqUyqbMMGeOYZuP56+OST6N8vlXEyG9x9Z2Axs9JZj0Uk15Ilxjz8cLjzzrBu1KjqEWji5/HTn4bHihXQqRO0bAlNmuS2bNXU9u0waxZMnhwer70W1u21F5x9NkSdWavCjn8z6+juHycs7+vuX0RbrOxRx7/UWKNHw8qVoR/j0ktDR7qam2qFpUtLgsqUKbBuXagY9ugBBQXhccIJsOeelX+PVDv+K6zJxAOMme3n7p/XpAAjUqONGBH6auK1mQkTakaQKSzc9Rbn6lBDi9jGjTB9eklgWbw4rG/bFi64IASV006D/fbLftnSSSvzCPCdqAoiIhFI7Ku58UYYMCD/As3o0fDcc3DggWF56VI455xdmwATjRoFp54amgQTn9eiW5u3b4c5c0qCyowZsG0bNGwIvXvDdddB//6hxdSS5a3PonSCTI6LKiJpqw6TmA0cCB99BA89FJYHDw7rynPxxTBx4u7Pa7Bly3ZtAvsi1qbUrVu4+a6gAE46CerXz205S0t5MKaZPevuNa4moz4ZkTwR/8qd7DOpsLDsW7Fvvhluuy2yYuXKl1/CSy+VBJZFi8L6Nm1K+lVOPz3cE5ELGeuTSTxmFcojIlJ5hYWhLWjlyvBp++KLYbDmV1/B3XeHDod8q6GlaccOmDs3BJT//Af++1/YujXcwX3qqXDNNSGwHHVU7pvA0pFOkPlZZKUQERk5svzX401/xcVh206d4IorwvN8bAZMwaefhng5eXL4+fnnYX2XLjBkSAgqJ58cAk11VaXcZWZWn3AzwGXufl6mCpVNai6TWid+R1bv3uGWpEweU8q1aRO8/HJJE9jChWF9q1a7NoG1bp3bcqYi1eaytIOMhVnB+gKXEwLMc8DT7v50JcqZcwoyUuvEk2iahU+1OnXg+eczc0zZxY4d8PbbJUHllVfgm29C5/wpp4Q7wAoK4JhjqlcTGGSwT8bMBgIXA68DTYELgLnABKCvuw+qUklFJHcmTw59GpIxxcW7NoGtWhXWH3003HBDCCqnnAKNGuW2nNmSSp/MMOA0YBXwMtDb3T8BMLM7IiybiGRScXFJFuPEr83DhlXtmAcdFJ6ff37osd5rL1i9umSbGt6U9vXXoYYSr63Mnx/Wt2gB/fqFoNKvH+y/f27LmSuppJW5GjgfeBNoHHs+D3gCuMvdO0RcxkipuUxqjXiamWnTYMGC0Ez2zTdh5N7vf1/5Y8Y/YbduDXlKLroofMJeeWUYDHrvvTWqKc09XL54UHn5Zdi8OZz6ySeX9K106QJ71ODJVDKZVuZh4OGEAw8n9MlcBjQxsz8Dk9z9H1Uor4hELXFg5uDB4Y6slSvh4YdDYEjn7qzCQnjjjbB/PJHlW2+FW4kbNQo1me7dw6cuhKzQEyaEyceq4cj8lSvDAMh4YPnss7D+yCPh2mtDUPnWt0IlTnaVzi3MAHio+kwFpppZA+Bc4EpAQUakuoiProcQANK9BXjUKJg3D773vZB8s3v3sP6RR0KutD/+MSwfcQS8+mpIE1OnDjz9dMZOIUqbN4dxKvGgMnduWN+8+a5NYO3a5bSY1YKmX1ZzmVR38SCRzRpC4t1k8efNmoV0v/F1peXxyHx3eOedkqDy0kuhr6VevZCqJd4E1q1bzW4CS0fGp182s/vM7MSqFUtEKq2oqCSjcuK6bE5LnDgDZ+n8YvEAEzdyZPj0HjIkDJx86aVslDBlq1fDE0+Eyli7duHur2HD4OOPw+j6f/4z5AcrKoKf/SykyVeASV86zWXvA3ebWRvgb8AT7j43klKJyK7iwWTixN3zeI0fn73R7vGszvHngwaFnCeljRxZckfZ8OGhn2bvvbNTxjJs2RKyFcdrK3PmhPX77BMGQMabwOLJoCUzKjMY80BgQOzRgHCX2QR3X5z54kVPzWWSt5IFk0su2XWboUPDh/6YMVkt2s5A07FjyKCch9zhvfdKgsr06SHVWd26YcKueBNYjx6hu0jSE9mI/1Jv0o0wz0xnd6+WvyYFGakWygomxcWhRlHW3CuZFs8bFu/YhzBO5rDDqp41IAPWrIGpU0sCy7JlYf0hh5QEld69c16pqhEy3ieTcOB6ZnaOmf0V+DewGLiwEmUUkVQNHx4SXJXWpk3FASbZQMjevStXjnHj4N134cwzoUmTsO6jj0IP+VlnVe6YVfDNN2Gcyi23QK9eYXjO//wPPPVUWH7wwVC8xYvhvvvgO99RgMm2dOaT6QdcAnybMDBzAiFn2VfRFS96qslIjZd4J1h89L1ZSCczZUr6NZDevXfvxDeDu+6qWvaAFLjD+++X1FSKisK8K3XqwPHHl9RWevYMzWISnYw3l5lZETAe+Lu7f1HF8uUNBRmp8ZLdbmxWtcCw776wdm3JcocO4basCKxdu2sT2NKlYf1BB5UkmOzTB5o2jeTtpQwZn7TM3fvEDmxmdjlwkLvfambtgdbu/mbliysiGVdcXHLLc1FRyU0E8U77hg1DBsfKBJkvvghNZkuWhLaoJUtCf1EGajJbt4ZkAvGgMnNmyGa8997Qt29oHSwoCMkDJP9VpkL5e2AHIbXMrcBG4O9Alm7UF5GUxG83Hj8evvvdktuc99wzdGZs2hSmWaysf/87/Jw7N9z1NmVKpYPMBx+UBJVp02DjxjAmpVev0N9SUBCe16tX+eJKblTmFuY57t7dzN5y926xdfPcvUskJYyYmsukVhg8OHTY//CHcOONYQrGAw4I41cWLcp6puR160LlKh5Y4ndBH3hgSRNY375hDIvkp4w3lyXYamZ1AI+9UQtCzUZE8lVirrLWrcMn+LJloXoQb0qLMMhs2xaaveJB5Y03YPt2aNw4FGXYsBBYOnWqfpN3SfkqE2TGApOAlmZ2O/Bd4JaMlkpEMq/04E4IM2qddlrm3mP06JCi+Mor+fh3/2TyumOZbGcwdSqsXx8CyLHHhjQtBQXhjjA1gdVslcnC/Fczm02YyMyA89z93YyXTEQya/r03dctWVLyvKioSulpNmyAolaDmfzEQibf25gP+AUQWuUuuqikCax580q/hVRDlbqT3N0XAYsyXBYRidKZZyZPUtmhA/z61yW50coLNAmZlrdvh1mzSprAXnsNtm/fh732Opk+PMeNZ7xPwb1nceihSZrAavhsmVJCqf7V8S81WfzDPFlTWdy++4Z8LBVNGVBUxNK+g5jc5adMfrc9U/f6DmvXhgDSvTsUNHmNguazOXH4yex5XLewT1mfL4ljd6RaykrusppAQUZqtPiHeb16ofc9mUaNQubIJDZuDK1skx9ZzuSnv2IxhwHQ1j6lYP+FFNxVwGmnhXQufPZZGJdzzz2hs+X110Oa//g0zK1bl6TAUZCp9qK8u0xEqpuygkz9+vDLX+5c3L49zKI8eTJMfmgJM5buz1b2pCH70pu3uY4/UMBkjujaEHvsUeiccKzWrcOAzMQg8+c/w733wuGHh1xnGzaE8TlQ5T4gqR4qkyCzvpldamY/N7Nfxh+ZKpCZnWFm75nZB2Z2U5LXzczGxl5/28y6p7qvSK2ROLlYUVGY5jHGRiZst2ULy07/Ho88AgMGhBycxx4bJrHcsHoLwxjDVPqyln14nm8zhN9yJO9iB7SDzp0pkxn8/vclNaRFi8K0kvF0NuPHhz6goqLMn7vklcrUZJ4B1gOzgS2ZLExs/M39QD9gOTDTzJ5193cSNjsTOCT2OA74A3BcivuK1A6Jo/3PO2/X17Y2wgacCh8XcMQbBbzbsyUAbZpv4ewOiykYewynz/w/Wr70ZKjWdOsGfmQY2f/EE2F0/4wZZb934oRlhx8ebimDkBI5UevWoQ9ItZkarTJBpp27n5HxkgS9gA/c/SMAM5sAnAskBopzgXEeOpNeN7Nmsdk6O6Swr0j1lDD+hHHjQs3g8MOT93dAyfOiInZs2MhcutGjbwF8VAB3nAw79oS6X9P+gI+4+otfUHBdJ46663vYxnrw2mB4+OFd33/EiBBcHn8c2raF554LNaXS7wu73jVWXgDp00cBphaozIzVM8zsmIyXJGgLLEtYXh5bl8o2qewLgJkNNrNZZjZr9erVVS60SOQGDiy5jcssBJ1Zs8Ly6tXw4YdhHUBhIZ9aWx6zQVzat5hWrKQHc2DaHfD1vnD8vXDF6XS+dB9eWHY0w766jaPvGoT96MaQM/+++8J7/PnP4Xi9e4cAc/zx4T0uvrikHAMHVlz2kSPDQ2qlyuQuewfoBHxMaC4zwN29nAbalI99EdDf3a+OLV8B9HL3/03Y5l/A/7n7q7HlqcBw4KCK9k1Gd5dJ1lQ0NiSVsSOJd2XdcgvcfjsAm7qcwMtH/IDJbQYyeTIsXBg2adVoA/0a/ZeCz8dz5bAXocnK2H8ssAP8V7HjDhlSMvNmWVMDJH5W6O6wWi/Ku8vOrMQ+qVoOHJCw3A5YkeI2e6awr0juJOYHO/NMWLkSfvpT+M1vQo/7Cy+kNkBx9Gh2FK9k/uEXMZkt/If+vLKgN9/Mq0v9+nDKKaGCUVAAx+z3FXu0CzNWXhGbudkKCUHGgBUrYP/9w9iYceN2fy/VQKSKKpNWZmkUBYmZCRxiZh2BT4EBwKWltnkWuCHW53IcsN7di81sdQr7iuSHww6D2bPh0kvDIJNvfSsEmbKceSafLd/Gi3UGMfmm/XnRBrHSWwEncDTzueFHdSkoCAGmUaOE/Qof3P1YDn5r7PmG2HwzixaV9K0kzv4VD3qlg42Cj6TK3VN6AK/Gfm4ENiQ8NgIbUj1OCu9zFrAY+BC4ObbuWuDa2HMj3EX2ITAf6FnevhU9evTo4SKRWrHCfcgQd3CfNi2sKy52Hzo0rLvmGvdevcLzBx8M295xh2/a5D55svtPfuLe+dBNHtqn3Fuw0i/lL/4YV/qnDz4XVpanfn3fuXPpx9Ch7uPHu++3X0nZRFIAzPIUPmM14l99MhK10aND09ixx4a5XBLzg5nBHXfARx/hnyxjwQvLmNz5J0zeZwAvv1GfzZvDHGMnnxybv/6mbnTZ/hZ71IklA3Mvvy8n/lqdOmF6ydLi//8VpZQRKUVpZVKkICNZVerDfKW1YspfVjJ5cpgJubg4bHbkkbGgUhBa0vbaK7Z/Ykd84niUspiFALN9e/LXa/n/v1Se0sqI5KEtJ/bh1R19mDwipG6Zy0q4HJo32kS/dosoKP4d/b5/IO0Oabj7+BOAU08NP5s2TT2LcbIaTMuWoXYlEjEFGZEIuYdZj+Pp8KdPDxle6tWDE08MGfYLCqBbmw3scddfYPFjsPdQGHht8gPG54SJpdsvU3FxSFYJMHVqyaj7uLVrK39SImmodHOZme0FbHb3Murh1YOayyTTPv8cpkwpCSyffhrWH3ZYSRPYqaeGfJG7ydT4k9Gj4Xe/K3nz0srJvCySiow3l5nZHoTbgi8DjiUMxKwfu3X4eeAhd3+/kuUVqba++Sak8ooHlTlzQpzYZx84/fQQVPr1gwMPzGKhRowIj91mC4uJN7uBJhCTSKVckzGzl4AphASZC9x9R2z9vkAfwpiUSe7+l4jKGgnVZCRd7vDee7s2gX31FdStCyecUFJb6dEj9LmnJaoP/LlzQ6LLOI3elyrK+N1lZlbP3bdWdZt8oyAjqVizJnRtxAPLsliWvEMOKQkqvXvD3nvntJjlS6zVTJu2623UCjKSpijuLqtjZtcT8pbNB/7k7rvMglTdAoxIWb75Jsy5FQ8qs2aFz+GmTUMT2C23hCawjh1zXdIKNGsG69eXLNerFzIpX3wx/OEP8N//hvWaQEwikk6QeRzYCrxCyF92JPCjKAolkm3u8MEHJUFl2jT48svQ3HX88aEFq6AAevYMzWI5EW9GS6c5bd26kLbmq69g82bYuhUmTAgDQn/zmzBdQHwCscRBoiIZkk5z2Xx3Pyb2vC7wprt3r2C3vKfmstpr7doQTOKBZcmSsL5jR+jfPwSVvn13TeWVU5Ywyr8yJkwI8880bRqmB0ikEf+Spij6ZOYkBpXSy9WVgkztsXUrvPlmSVB5880wTnHvvUMwifetHHxwrktahqoGmagoQNVKUfTJdDGzDYQElQANE5bd3fO5y1NqqQ8/3LUJbMMG2GMP6NUr9KsUFITn9erluqTlKC7eNetxLvpPygokRUUlTW0iSaQcZNw93ZsxRbJu/fpdm8A++iisP/BAGDCgpAlsn31yW860jBsX0gaceSb8+99w/vkwaVL2Ak3pQFJYGObGiRs/Xn05UqZ0mst+Wc7L7r5zjr1qRc1l1du2beELdjyovPFGyAXZuPGuTWCdOpU9LjGnUpktM/GnGQweHNr03OG550pGeS5dCueckzznWWXKVTqQXHLJ7tsNHVoyo6bUKlH0yfw4yeq9gO8Dzd29cXpFzA8KMtXPxx+XBJWpU0PtxSxk0o8HleOPz/MmsLiKxqjEI+Pll4c7E159tWSMy2efhWa0hx4K2wweHAJD69aZLWN5gaS4ONS0MhHYpFqJNNW/mTUh3L78fWAicLe7r0r7QHlAQSb/bdgQRtXHA8v7seRFBxxQElROOw2aN89pMSsn1SDToAGcfTZccEHyOWmg/ONUJZOAAokkkWqQ2SPNg+5rZrcBbxP6c7q7+4jqGmAkP23fHu78uu22MJdK8+Zw7rnw6KNw6KHw29+GLoqlS+Hhh0N3QbULMMXFoYYAoc8jUWFhCByJ7Xs//jE8+WRospo4MbQRpiOx6SvdYNOmjQKMVFo6zWW/AS4AHgLud/cvoyxYtqgmkx8++aSkpjJlShjDYgbdu5fUVk44AerXz3VJM6Ss2TLPPDOMwq9TJwykjNd09twTXngheQd7KoM0E2tMSiMjGRBFn8wOQublbUDiTtX6FmYFmdz48stdm8Deey+sb9t21yawFi1yWszsSLw9+O234X/+BxYtCq916hSqb59/DhdemP5YlD59YOHCMPiyU6fweOEFBRmpsoyPk3H3tJrWRBLt2BFS4MeDyowZYXBkw4YhseS114bAcsQReXoXWJT69CmpoXTuHDr2998/LD/0UNVuD+7SBd55Jzz/+GPo0CE8V64yyRLNjCmRWb581yawNWvC+m7dYNiwEFROPDH0aUuCceNKnlc1p9i994aHGVx1VejMUq4yyaJ0Ji2rkeNkJHO++gpeeqkksLz7bljfpk24MaqgIGQwbtkyt+XMeyNGhEGXEG5RnjkzM8EgfqszhNucM3VckXJUdZxMI+BqNE6mVtqxA+bNKwkqr74aUuQ3aBDuCisoCIkmjzqqFjaB5ZvevUMnmEiGRNEnc3fCwePjZK4CJgB3l7Wf1CwrVsCLL4ag8uKLJcl8O3cON0kVFMDJJ4e+FskjCjCSI2n1ycSmWh4GXEaYX6a7u6+NomCSHzZtgldeKamtLFgQ1rdsWZIO//TTQ5NYjTR6dBhZv2NHuBAnnxxuL27dWmNHRFKQ8h1jsXEyM4GNwDHuXqgAU/O4hyaw3/wmzPy4775wxhlw//3hc/XOO8N08cXF8Oc/wxVX1OAAAzBwYGjrGzs2/Pzd78LPgQNzXbLMqGwWAJEUaZyM+mT47LNdm8BWrgzrjz66ZMzKKadAo0a5LWdOxQcw1rSBjDXtfCRrNE5GyrR5c+ik/89/QmB5++2wvkWLUHuJN4G1bZvbckqWVCWvmUgF0rmF2byCak8q20j2uYdB3/F+lZdeCoGmXr3QxXDHHSGwdOkSJvSSJOKThiVOHladFReHtk8Iec0UZCQi6TSXTQf+Djzj7p8krN8TOBkYCBS5+2OZL2Z0ampz2apVYQBkPLAUF4f1RxxR0gR26qmw1165LafkSGLutEsvLZk+IE61G6lAFLnLGhBuWb4MOAhYCzQA6gCTCUkz51a2wLlSU4LMli0hr2I8qLz1Vli/774lTWD9+oX0+CJASW3m3nvDXDQPPljymvpqpAIZ75MBWrr774Hfm1k9YD/ga3dfV8kyShW4hxH1iU1gmzZB3bpw0klw++0hsHTrFu64FdnNuHEhmIwfHwY5DRigDACScekEmaeB7rHnE9z9wswXR8rz+ee7NoF9+mlYf9hh8P3vlzSBNWmS23JKNZE4zieeZubww0v6apREUzIgnSCTmBjkoEwXRHb3zTchW3E8qMyZE2ow++wT7v6KN4HFp3gXqbR4JujRo0tqN0qiKRmQTpDxMp5LhrjD4sUlQaWoKCSdrFs3TNh1660hsPTooSYwiUiy2o2CjFRBOkGmi5ltINRoGsaeQzUfjJlrX3wBU6eWBJZPYvftdeoEgwaFoNK7N+ytqyvZljjPjUglpTMYU9+dM2DrVnj99ZKgMnNmqME0bRpmgvz5z0MT2EFqkBSRGkCTlkXMHT74YNcmsI0bQ3PXcceFsX0FBWG4Ql39NkSkhsmbj7VYhue/AR2AJcDFyRJwmtkZwG8J43Medvc7YusLgWuAWPJ5fu7uz0de8CTWrg1j2+KBZcmSsL5jR7jsshBU+vSBZs1yUToRkezJmyAD3ARMdfc7zOym2PIuudTNrA5wP9APWA7MNLNn3T02iTn3uPtd2Sw0wLZt8MYbJUHlzTdDZvgmTUIT2PDhIbAcfHC2SyYiklv5FGTOBXrHnj8OTKdUkAF6AR+4+0cAZjYhtt87ZNmSJfDCCyGoTJ0KGzaEvF+9esEtt4Sg0qtXyA8mIlJb5VOQaeXuxQDuXmxmyWaCbwssS1heDhyXsHyDmV0JzAJ+XNZ8N2Y2GBgM0L59+0oV9te/hj/+MYxRGTAgBJW+fcMYFhERCbKac9fMppjZgiSPc1M9RJJ18TE7fwAOBroCxZQzJbS7P+TuPd29Z4sWLdI5hZ2GD4f33oOPPw4pny68UAFGagAlxZQMy2pNxt1PL+s1M1tpZm1itZg2wKokmy0HElM8tgNWxI69MuFYfwT+mZlSJ9epU5RHF8kRpf2XDMun2UOeJUwXQOznM0m2mQkcYmYdY1MMDIjtRywwxZ0PLIiwrCIikoJ8CjJ3AP3M7H3C3WPxW5P3N7PnAdx9G3AD8B/gXWCiuy+M7X+nmc03s7eBPsDQbJ+ASLVVXAxDY/8yRUW5LYvUKHnT8e/ua4DTkqxfAZyVsPw8sNv4F3e/ItICitRkiWn/lRhTMihvgoyI5JASY0pEFGREZFdKjCkZlE99MiIiUsMoyIiISGQUZEREJDIKMiIiEhkFGRERiYyCjIiIREZBRkREIqMgIyIikVGQERGRyCjIiIhIZBRkREQkMgoyIiISGQUZERGJjIKMiIhERkFGREQioyAjIiKRUZAREZHIKMiIiEhkFGRERCQyCjIiIhIZBZnaorAw1yUQkVpIQaa2GDUKiorgzjtzXRIRqUUUZGqTiy+GY4/NdSlEpBZRkKnJCgvBLDwAfvAD6NMnp0USkdqlbq4LIBEqLISGDWHlSli0CO6+G047TYFGRLJGQaamGzEi/CwuhpEjYeZMBRkRyRoFmdqiTRt46KFcl0JEahkFmepm9Gj47DO48koYNw5aty6prYiI5Bl1/Fc3AweGjvzu3cPPgQNzXSIRkTKZu+e6DDnVs2dPnzVrVq6LkT4zqOW/OxHJHTOb7e49K9pONRkREYmMgkx1NXJkrksgIlIhBZnqSrnIpCqUYkiyREGmqvTPKtVNUZFSDEnWKMhUhf5ZpbpITDHUty+MHatBuZIVCjLp0j+rVEeFheFuRHcYMiRkfhDJgrwJMma2r5m9aGbvx37uU8Z2j5jZKjNbUJn9q0z/rFLdDR8OrVrluhRSS+RNkAFuAqa6+yHA1NhyMo8BZ1Rh/8zRP6tUR23aKEuEZE0+BZlzgcdjzx8Hzku2kbu/DHxR2f0zSv+sIiLlyqcg08rdiwFiP1tmeX8REcmwrCbINLMpQOskL92c5XIMBgYDtG/fPptvLSJSq2Q1yLj76WW9ZmYrzayNuxebWRtgVZqHT3l/d38IeAhC7rI030ekZisqCje0DB+e65JIDZBPzWXPAvGUwgOBZ7K8f3ZopL7kM439kgzLpyBzB9DPzN4H+sWWMbP9zez5+EZm9gTwGnCYmS03s++Xt3/eGTVKWQIkv2jsl0RIqf6znerfDPbbDyZO1D+y5J+hQ8Pf6JgxuS6J5Dml+s8nid8UAX7wAwUYyU8a+yUZpumXs6GwEBo2hJUrYdEiuPtuOO00BRrJPxr7JRmmIJMt8X/c4uIwF8zMmQoyIlLjKchkW5s28NBDuS6FiEhWqE9GREQioyAjIiKRUZAREZHIKMiIiEhkFGRERCQyCjIiIhKZWp9WxsxWA0tzXY4M2Q/4PNeFyDO6JrvTNdmdrsnuKromB7p7i4oOUuuDTE1iZrNSySVUm+ia7E7XZHe6JrvL1DVRc5mIiERGQUZERCKjIFOzKF/N7nRNdqdrsjtdk91l5JqoT0ZERCKjmoyIiERGQaYaMbN9zexFM3s/9nOfMrY7w8zeM7MPzOymJK//xMzczPaLvtTRquo1MbPfmNkiM3vbzCaZWbOsFT7DUvi9m5mNjb3+tpl1T3Xf6qqy18TMDjCzIjN718wWmtmPsl/66FTlbyX2eh0ze8vM/lnhm7m7HtXkAdwJ3BR7fhMwOsk2dYAPgYOAPYF5wJEJrx8A/IcwNmi/XJ9Trq8JUADUjT0fnWz/6vCo6Pce2+Ys4N+AAccDb6S6b3V8VPGatAG6x543ARbXhGtS1euS8PowYDzwz4reTzWZ6uVc4PHY88eB85Js0wv4wN0/cvdvgAmx/eLuAYYDNaUzrkrXxN0nu/u22HavA+2iLW5kKvq9E1se58HrQDMza5PivtVRpa+Juxe7+xwAd98IvAu0zWbhI1SVvxXMrB3wbeDhVN5MQaZ6aeXuxQCxny2TbNMWWJawvDy2DjP7DvCpu8+LuqBZVKVrUspVhG9v1VEq51jWNqlen+qmKtdkJzPrAHQD3sh8EXOiqtflXsIX1R2pvJlmxswzZjYFaJ3kpZtTPUSSdW5mjWLHKKhs2XIlqmtS6j1uBrYBf02vdHmjwnMsZ5tU9q2OqnJNwotmjYG/A0PcfUMGy5ZLlb4uZnY2sMrdZ5tZ71TeTEEmz7j76WW9ZmYr41X5WNV1VZLNlhP6XeLaASuAg4GOwDwzi6+fY2a93P2zjJ1ABCK8JvFjDATOBk7zWINzNVTuOVawzZ4p7FsdVeWaYGb1CAHmr+7+jwjLmW1VuS7fBb5jZmcBDYC9zewv7n55me+W604oPdLqsPsNu3Zy35lkm7rAR4SAEu/UOyrJdkuoGR3/VbomwBnAO0CLXJ9LFa9Dhb93Qjt6Ymfum+n8zVS3RxWviQHjgHtzfR75dF1KbdObFDr+c37CeqT1x9EcmAq8H/u5b2z9/sDzCdudRbgb5kPg5jKOVVOCTJWuCfABoe15buzxQK7PqQrXYrdzBK4Fro09N+D+2OvzgZ7p/M1Ux0dlrwlwMqEJ6e2Ev42zcn0+ub4upY6RUpDRiH8REYmM7i4TEZHIKMiIiEhkFGRERCQyCjIiIhIZBRkREYmMgoyIiERGQUZERCKjICNSi5nZ1WY238y+l8K2B5nZn8zsqWyUTWoGBRmR2u1CoC9wUUUbekgN//3oiyQ1iYKM1Gpmtt3M5iY8OphZQzN7yczqlNpmoZnNM7NhZrZHOcfokfD8MzP7NGF5TzN72cySJqc1sxkZOKfpZta/1LohZvb7JJu/QUgq+kbCtseY2T9LPZJNoSBSIWVhltrua3fvmrjCzK4H/uHu20tvE/uwHQ80BUaWdQwgvn0h8KW735Vw/KnA/5BkWgF3P7FKZxM8AQwgzIAaNwD4aZJtGwOvEM4nXob5hKzUIlWmmozI7i4Dnkn2gruvAgYDN1hszoRKeDr2Hrsxsy9jPzvE5pf/Y6wGNdnMGibZ/nIzezNWS3owVvt6CjjbzOrHj0VIGPpqqX33AM4HrgTOj9fcymJmzc3sAaCbmf0szXOWWkpBRmq7hglNWZPMbE/gIHdfUtYO7v4R4X+nZbJjpPCeC4BjU9juEOB+dz8KWEfoP9nJzI4g1IhOitWktgOXufsa4E3CNAYQajF/892z4fYF3o6d67zYcpncfY27X+vuB7v7/6VQfhE1l0mtt0tTl5ntT/hAr0hiLSZZc1mZ3H27mX1jZk08zB9flo/dfW7s+WygQ6nXTwN6ADNjlaqGlEzaFm8yeyb286okx78stl18+8uAF1M9D5FUKMiI7Oprwox/ZTKzgwi1hmSzcKaqPrC5gm22JDzfTggiuxQFeNzdkzVdPQ2MMbPuQEN3n7PLjqHp7VzgNDO7k1Aza2JmDd3969RPQ6R8ai4TSeDua4E6ZpY00JhZC+AB4L4kzU8pMbPmwGp331r5kgJhkrbvxu/8MrN9zexAAHf/EpgOPEJJbSXRd4B/u3t7d+/g7u2B54BzqlgmkV0oyIjsbjJhZsS4eJ/LQmBK7PVRVTh+H+D5KuwPgLu/A9wCTDaztwlNXW0SNnkC6AJMSLL7ZUDp/qNJQNlztYtUgmbGFCnFzLoBw9z9ioiO/w/gZ+7+XhTHF8knqsmIlOLubwFFFd3SWxmxu9eeVoCR2kI1GRERiYxqMiIiEhkFGRERiYyCjIiIREZBRkREIqMgIyIikVGQERGRyCjIiIhIZP4fgFCokWuf7goAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}},{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAZkAAAEoCAYAAACKM4weAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2nUlEQVR4nO3de3hU5bn38e9NUEBBrYAQRAWrtYggAmJVrERURGtFqW4o2qhtra1WwVrQ2l1Ca/sSVLDs6raeYVtEPIBarQcknmqtAuIBzwcUJAqCcqiigPf7xzOTTMIkmUnWykyS3+e61jUza5615lmLMPc8Z3N3RERE4tAq1xkQEZHmS0FGRERioyAjIiKxUZAREZHYKMiIiEhsFGRERCQ2CjLSrJnZb8zsxpTXJ5vZcjPbaGYHmdl+ZvaCmW0wswtymVeR5khBRjJmZsvM7IvEF3Ry65bD/DxuZpsSAWK9mS0ys0vMrE0yjbv/yd1/knLYlcD57t7e3V8AxgOPu3sHd5/e2NcQhUzug5mVmNnmav92v6v22s3sPymvj2ik/N+a+OxBKfv2MTNPeZ28xj1S9h1tZstSXqf+fX5sZreYWfvGuAapmYKMZOvExBd0cluZzcFm1jri/Jzv7h2AQuBXwCjgQTOzGtLvBSyt5XXGYriWhsjkPtxR7d/u96mvE2kOTNn3VCPmfy1weR1p/gP8dx1pTkxcS3/gYOC3EeRNGkBBRhrMzNqY2dVmtjKxXZ38FW1mQ8xshZlNMLOPgFvMrCBRjfVO4tf3ouQvVDP7tpk9amZrzewNMzstkzy4+3/c/XHg+8ChwAmJ85WY2W2JPG4ECoAXE5+9ACgC/pL49futRLorzeyDxK/h68ysXS3X0ipRanjHzNaY2Rwz2zWRvkfiF3px4nyfmNllKfet0e5DFMxslJktrLZvnJndl3h+vJm9mriWD83s4ixOPwPoa2ZH1pJmOjDazPap62Tu/iHwD+CALPIgMVCQkShcBnwH6AccCAyi6i/IrsCuhFLDOcBFwGjgeGAn4GzgczPbEXgUmAXslkhzrZn1zjQj7v4BsBA4otr+L6v9Wv+mux8FPEVl9dmbQCnwrcS17APsDvyulmu5ABgBHAl0Az4FrqmWrcHAfsBQ4Hdm1iuxv9HvQwPdB+xnZvum7PthIp8ANwE/S5SoDgAWZHHuz4E/AX+sJc2HwA1ASV0nSwTr44EXssiDxEBBRrI1z8w+S2zzEvvGAL9391XuvhqYBJyRcszXwMTEF/0XwE+A37r7Gx686O5rgO8By9z9Fnff4u6LgbuBH2SZx5WEQJCVRNXST4Fx7r7W3TcQvvhG1XItPwMuc/cV7v4l4QvwB9Wq0ia5+xfu/iLwIiEQQ+Pfh9NS/u0+syzb09z9c+BeQtAjEWy+TQg+AJuB/c1sJ3f/NJHvbPwV2NPMhteS5v8BJ9YScOeZ2WfA08AThH8/ySEFGcnWCHffJbGNSOzrBryfkub9xL6k1e6+KeX1HsA7ac69F3BI6hchIYB1zTKPuxPq+LPVGdgBWJTy+Q8l9idVv5a9gLkp6V8DtgJdUtJ8lPL8cyBZomrs+zAn5d9ul2zb0xJmkQgyhFLMvETwARhJKD28b2ZPmNmh2Zw4EaT/kNjStqklfsT8Bfh9DadJ/n3u5e6/SPwQkBxSkJEorCR8MSbtmdiXVH2q7+XAN9OcZznwRLUvwvbu/vNMM5KoJhlAqAbL1ifAF0DvlM/fOaWaDdJfy/BqeW6baBOoS77eh9o8AnQys36EYJOsKsPdn3f3kwhVfPOAOfU4/y3AzsDJtaS5gtCWNqAe55dGpiAjUbgd+K2ZdTazToQ2jNtqSX8j8Acz29eCvmbWEfg78C0zO8PMtktsB6e0YdTIzHZINBrfCzwHPJjtRbj714Q6/2lmtlvivLub2bBaDrsO+KOZ7ZVI39nMTsrwI/PyPtTG3bcAdxG+6HcltB1hZtub2Rgz29ndNwPrCSW6+py/BJhQS5rPgKsI3c8lzynISBQuJzQyvwS8DCym9u6oUwm/ch8hfBndBLRLtIEcS2gDWUmoZioF2tRwHgg9wzYAHwNXE9oujksEjPqYALwNPGtm64H5hEb7mvyZ0CbxSCIfzwKHZPhZ+XwfajMLOBq4MxEUks4AliXu27nA6QBmtqeF3nt7Znj+24HyOtL8mXoEMWl85lq0TEREYqKSjIiIxEZBRkREYqMgIyIisVGQERGR2CjIiIhIbBRkREQkNgoyIiISGwUZERGJjYKMiIjERkFGRERioyAjIiKxUZAREZHYKMiIiEhsFGRERCQ2CjIiIhIbBRkREYmNgoyIiMSmda4zkGudOnXyHj165DobIiJNyqJFiz5x9851pWvxQaZHjx4sXLgw19kQEWlSzOz9TNKpukxERGKjICMiIrFRkBERkdi0+DYZid7mzZtZsWIFmzZtynVWRKSB2rZtS/fu3dluu+3qdbyCjERuxYoVdOjQgR49emBmuc6OiNSTu7NmzRpWrFhBz54963UOVZdJ5DZt2kTHjh0VYESaODOjY8eODaqVUJCRWCjANGHr18NHH+U6F5InGvp/WUFGRCqtXw/vvgs77JDrnEgzoTYZaXbWrFnD0KFDAfjoo48oKCigc+cwMPm5555j++23r/HYhQsXMnPmTKZPn17rZxQUFNCnT5+K1/PmzaPJzhyxcmXYknr2hJ12Ahp2LwEef/xxtt9+ew477DAASkpKuOGGGyrOcdxxxzF58uSorygv6N4FCjLS7HTs2JElS5YA4T9m+/btufjiiyve37JlC61bp//THzhwIAMHDqzzM9q1a1fxGU1et25hA1i+HD7/HDp2BOq+l3V5/PHHad++fcUXJcC4ceOyOkdTpXsX5F11mZkdZ2ZvmNnbZnZJmve/bWb/MrMvzezibI6VluvMM8/koosuoqioiAkTJvDcc89x2GGHcdBBB3HYYYfxxhtvAOE/9ve+9z0gfDGcffbZDBkyhL333rvO0s3UqVM5++yzAXj55Zc54IAD+Pzzz+O9sKh16QI1BOCkRYsWceSRRzJgwACGDRtGeXk5ANOnT2f//fenb9++jBo1imXLlnHdddcxbdo0+vXrx1NPPZX2fOvWrWO//far+DcYPXo0N9xwQ7TXlaWy98qY8s8pkZ836nu3cOFC+vXrR79+/ejTp09+toW6e95sQAHwDrA3sD3wIrB/tTS7AQcDfwQuzubYdNuAAQNcovXqq69md8Dkye5jx7ovXhweJ0+OLC8TJ070K664wouLi/2EE07wLVu2uLv7unXrfPPmze7u/uijj/opp5zi7u5lZWV+wgknVBx76KGH+qZNm3z16tW+6667+ldffeXu7q1atfIDDzzQDzzwQB8xYoS7u2/dutWPOOIIv+eee3zAgAH+9NNPR3YdmZr81GQf+4+xvnjlYh/7j7E++alo7+WUKVP80EMP9VWrVrm7++zZs/2ss85yd/fCwkLftGmTu7t/+umnFcdcccUVVc7RrVu3inv30EMPubv7I4884t/5znf89ttv92HDhkWW5/pY8O4C7zSlky94d0Fk54zz3iVdfPHFfvHFF0eW51Tp/k8DCz2D7/V8qy4bBLzt7u8CmNls4CTg1WQCd18FrDKzE7I9VvJUcTFMmQL9+8O4ceF1DE499VQKCgqA8Ou5uLiYt956CzNj8+bNaY854YQTaNOmDW3atGG33Xbj448/pnv37mmry1q1asWtt95K3759+dnPfsbhhx8ey3XUprhfMVP+OYX+1/dn3HfGUdwv2nv55Zdf8sorr3DMMccAsHXrVgoLCwHo27cvY8aMYcSIEYwYMaLGc6Sr8jnmmGO48847Oe+883jxxRcjzXMmSh4vYdITkypezzplFkU9iyL9jLjuHcCcOXNYvHgxjzzySKR5jkK+VZftDixPeb0isS/SY83sHDNbaGYLV69eXa+MSoS6doWpU8PzqVPD6xjsuOOOFc//+7//m6KiIl555RXuv//+GscBtGnTpuJ5QUEBW7ZsqfUz3nrrLdq3b8/K1Ib0RtS1fVemDgv3cuqwqXRtH+29dHd69+7NkiVLWLJkCS+//HLFF9sDDzzAeeedx6JFixgwYECd9yrV119/zWuvvUa7du1Yu3ZtpHnORMmQEnyi4xOdsYeM5fmVz0f+GXHdu6VLlzJx4kRmz55d8SMqn+RbkElXoehRH+vu17v7QHcfmOypIS3LunXr2H338Bvk1ltvjeycF154IU8++SRr1qzhrrvuiuS8+aRNmzasXr2af/3rX0CYQmjp0qV8/fXXLF++nKKiIqZMmcJnn33Gxo0b6dChAxs2bKjzvNOmTaNXr17cfvvtnH322TWWLBvD+MPH02XHLpGfN457t27dOkaNGsXMmTPJ1++yfAsyK4A9Ul53BzL9SdiQYyUfTJzYaB81fvx4Lr30Ug4//HC2bt0ayTnHjRvHL37xC771rW9x0003cckll7Bq1apIzp2tiUfGcy9btWrFXXfdxYQJEzjwwAPp168fzzzzDFu3buX000+nT58+HHTQQYwbN45ddtmFE088kblz59baeP3mm29y4403ctVVV3HEEUfw3e9+l8svvzyW/GeisEMhEwZPiPy8cdy7efPm8f777/PTn/60ogNAvrHQfpMfzKw18CYwFPgQeB74obsvTZO2BNjo7ldme2yqgQMHuhYti9Zrr71Gr169cp0Nqc369aGrckxVk9K8pPs/bWaL3L3O/v551fDv7lvM7HzgYUJvsZvdfamZnZt4/zoz6wosBHYCvjazsYReZOvTHZuTCxHJZ8lR/XvvneucSAuQV0EGwN0fBB6stu+6lOcfEarCMjpWRKh1VL9InPIuyIhIDGoZ1S8Sp3xr+BeRuGUwql8kKgoyIi3N9ttDYhCgSNwUZEREJDYKMtLsrFmzpmLMQNeuXdl9990rXn/11Ve1Hrtw4UIuuOCCOj+joKCg4pz9+vVj2bJlEeU+vzTkXkKYcPSZZ56peF1SUlLlHJdconlsgYrBmL169aJ37978+c9/rnjvzDPPpGfPnvTr148DDzyQxx57rOK9IUOGsOeee5I6FGXEiBG0b98eCDMpXHDBBRxwwAH06dOHgw8+mPfeew+AHj160KdPn4p/i0z+7uslkwnOmvOmCTKjl/UEmUkTJ0aaj3DKqpMMunvFxJgNseOOOzb4HHGaWDYx+nOmuZfZHlOfczQHZWVlXlxcXOP7K1eu9EWLFrm7+/r1633ffff1pUuXurt7cXGx33nnne7uvmDBAt9nn30qjjvyyCO9T58+/tRTT7l7mFxz0KBBFX+fs2bN8pEjR/rWrVvd3X358uW+du1ad3ffa6+9fPXq1RnlvyETZKokI/lj0qS609RT3FP9n3HGGdx7770Vr8eMGcN9990X2/XUJXWyx6hFOV39O++8Q//+/Stev/XWWwwYMCC2vOerwsLCivvQoUMHevXqxYcffrhNukMPPXSb/aNGjWL27NkA3HPPPZxyyikV75WXl1NYWEirVuGrvnv37nzjG9+I6zLSUhcTaTHefPNN5s+fT0FBAevXr+fJJ5+kdevWzJ8/n9/85jfcfffd2xzz+uuvU1ZWxoYNG9hvv/34+c9/znbbbccXX3xRMYVHz549GTt2LNOmTeOkk05i3bp1PPPMM8yYMaORrzB+7s4vf/lL7r33Xjp37swdd9zBZZddxs0338zkyZN57733aNOmDZ999hm77LIL5557bpXFuh577DGmTZvGbbfdBkBpaSk777wzS5YsoV+/ftxyyy2ceeaZked77FiIeo25fv3g6qujPSfAsmXLeOGFFzjkkEO2ee+hhx7aZpbmoUOH8tOf/pStW7cye/Zsrr/+ev7whz8AcNpppzF48GCeeuophg4dyumnn85BBx1UcWxRUVHFpJrFxcWMGzcu8utRkJHcKy8PU/0DlJVBUbRTrCfFPdX/eeedx6pVq7jnnnsYOXJkjatvxql8Q3nFYltl75U1ienqP/nkE2655RamTp3KHXfcwXPPPRdpnnPpkEMO4csvv2Tjxo2sXbu24odJaWkpw4YN2yb9xo0bGTlyJFdffTU7pQyW/fWvf8348eNZtWoVzz77bJVjCgoKGDx4MHfccQdffPFFlWXAu3fvzhtvvMGCBQtYsGABQ4cO5c4776xYFrqsrIxOnTpFf+EpFGQk92bOBDOYNQtOOw3mzIkl0KSb6n/u3LksW7aMIUOGpD0mm6n+zzjjDP72t78xe/Zsbr755sjynY2ZL87EzJh1yixOu+s05vxgTqSBxhPT1SdnEk71wAMP8OSTT3Lffffxhz/8gaVLM5vVaeTIkUyaNImjjjqKAQMG0DGGQaJxlDgy8e9//xsI1bC33nprxYzfy5cvrwg45557Lueeey6bN29m5MiRjBkzpkqVF8AVV1zBKaecwvTp0ykuLmbRokVV3h81ahQnn3wyJSUl2+ShTZs2DB8+nOHDh9OlSxfmzZtXEWQag4KM5N6ElBlvu3aF55+PrTSTFMdU/2eeeSaDBg2ia9eu9O7dO5JzZit19uCu7bvy/MrnIw0yqdPVH3rooWzevJk333yTXr16VfSQGjx4MLNmzaqYrn79+vW1nrNt27YMGzaMn//859x0002R5TWf7bHHHlVKwu7Oj3/8Y3r16sVFF12U9phWrVpx4YUXMmPGDB5++OEqJaEjjjiCSy+9lNGjR1c5ZvHixXTt2pVu3brx9ddf89JLL9G3b99YrqkmaviX/FJUBOPHx/4xcUz136VLF3r16sVZZ50VyfkaqqhnEeMPj/ZexjFdPYSOEmbGscceG2l+m4p//vOf/N///R8LFiyo6FL84IPbTsNoZvz2t79lSrJ6OWX/xRdfvE3V16pVqzjxxBM54IAD6Nu3L61bt+b888+veL+oqKji8370ox/Fcm15NdV/Lmiq/+i11Kn+P//8c/r06cPixYvZeeedc52dJuXKK69k3bp1FQ3Wkl+azVT/Ik3V/PnzOfvss7nooosUYLJ08skn884777BgwYJcZ0VioCAjEoGjjz6aDz74INfZaJLmzp2b6yxIjNQmIyIisVGQERGR2CjIiIhIbBRkREQkNgoy0uxoqn+R/KHeZdLsdOzYsWI0dUlJSZUJGgG2bNlS47xiAwcOZODAOrv+p527TES2pZKM5JeyssrJMiMU91T/AD/5yU8qSjadO3dmUoxLF4g0FSrJSP4oK6ucIDMGcU71P3fuXG688UYA3n//fYYNGxbLlPUiTY2CjORWSUnVxcpmzWqyU/0DbNq0iVNPPZW//OUv7LXXXrFch0hTouoyya2SEnAP29ixYQbmmKSb6v+VV17h/vvvZ9OmTWmPyWaqfwjTtp9yyikcffTR0WRapIlTkJH8MX48dOnSKB8Vx1T/11xzDRs2bOCSSy6J5HwizYGCjOSPwsKqa8vEKI6p/q+88kpefvnlisb/6667LpLzijRlmupfU/1HrqVO9S/SXDVkqv+sSzJm1jg/NUVEpMmrs3eZmaX2JzWgH1AaV4ZERKT5yKQks97dT0tspwLz485Us1ZSkuscNIqWXg0r0lw09P9yJkHmj9VeX9agT2zpJk2KbVR7vmjbti1r1qxRoBFp4tydNWvW0LZt23qfo87qMnd/D8DMOrn7J+6+tt6fJkGMo9rzQffu3VmxYgWrV6/OdVZEpIHatm1L9+7d6318NiP+bwa+X+9Pasmqj2r/2c9iG9WeD7bbbjt69uyZ62xIfZSUtJgqXWkcGXdhNrP73f3EmPPT6BqtC3NpKXz8Mbz+eqgue/DBZh1opIkyC7MviNQh0y7M2ZRk9JfXEMlBhuXlMHFimD5FQUZEmrlsgozFlouWpLAQrr8+17kQqaq8vLIzSlmZfgBJZLIZjHlpbLkQkdyaOTNUlc2aFTqmlJXlOkfSTGRcknH3V6rvM7M2hM4AY9x9RBQZMrPjgD8DBcCN7j652vuWeP944HPgTHdfnHhvGbAB2ApsyaS+UESoOmdc166qzpXIZL2eTOJL/ijgdEKAuR+4NYrMmFkBcA1wDLACeN7M7nP3V1OSDQf2TWyHAP+beEwqcvdPosiPSItUVKQAI5HJZFqZYuA04FlgZ+AUYAkwGzjK3c+MMD+DgLfd/d3EZ88GTgJSg8xJwEwP3eKeNbNdzKzQ3csjzIeIiEQgk5LMRcBQYBXwJDDE3T8AMLPJtR1YD7sDy1Ner6BqKaWmNLsD5YQecI+YmQN/dfe0Lexmdg5wDsCee+4ZTc5FRGQbmQSZ/wFmAJOA9sACM3sRuJ3o16NJ14Otetfp2tIc7u4rzWw34FEze93dn9wmcQg+10MYJ9OQDIuISM3qDBLufqO7n+Duk9z914S2kGsJDe8dzOz/zOyUiPKzAtgj5XV3YGWmadw9+bgKmEuofhPQKG4RyYmsSyIePObuZxOqqf4O/Cii/DwP7GtmPc1se2AUcF+1NPcBP7LgO8A6dy83sx3NrAOAme0IHAts0yMuco092WVpKYwbBy+8EB5LM1x1oQVMzCki+adB1V3uvsnd74iq+7K7bwHOBx4GXgPmuPtSMzvXzM5NJHsQeBd4G7gB+EVifxfg6URV3nPAA+7+UBT5qlFZWRhTcPDBsX5MFcXFYTxD//7hsbg482MbO6/SdKnkKxHJZu6yvwCz3P2ZeLPUuLKeu6z6ZJezZsHo0ZHnq06ZzDFVPa+XXQaXXx5rtqSZ0BxmUodM5y7LJshcSKi+KgTuAG539yUNyWQ+aNAEmePGhf+MU6dGm6lMZPoloIk5pT4UZKQOmQaZjKvL3P3P7n4ocCSwFrjFzF4zs9+Z2bcakNema/x46NIlN589cWJm6SZMCEHwppvgjDPCSG6RmpSXhx9PoKllJBIZl2TSHmx2EGGdmb7uXhBZrhpRo031L5KvUteQSZZ8Dz4YLrggLK6nkq+kEcdU/8kTbwccR6g6Gwo8QRhDIyJNTbLdLhlkNIeZRCzjIGNmxwCjgRMIvbdmA+e4+39iylteGzsWlizJdS5EGuiJIcAQGJLuzaKwPdh42ZHG1a8fXH11vJ+RTUnmN8As4GJ3XxtTfkSksXz1ZeXzzz6FXb6Ru7xIs5XNVP9FEGZhNrPTgb3d/fdmtifQ1d2fiyuT+Sju6C8Sq/JyOPVU4J+ha/tfT4Vpan+R6NVnMOa1wKGEqjMI67dcE1mORCR+M2fCoEFhnNdf/wqXXqqehxKLrBv+gUPcvb+ZvQDg7p8mpoARkaYiXQP/+PG5y480W/UJMpsTi4s5gJl1Br6ONFci0ni0SJnEqD7VZdMJMxzvZmZ/BJ4G/hRprkREpFnIuiTj7n8zs0WEMTIGjHD31yLPmYiINHn1qS7D3V8HXo84LyIi0sxEvbKliOQ7TeMvjUhBRqSlmaRZoKTxKMiItAQqvUiO1GeCzDbASKBH6vHu/vvosiUikRg+PMyq/MILcPfdsGFD2F9WFl235bIyjbORGtWnJHMvcBKwBfhPyiYi+aa0NCxABrB2LRxxRBjlf9pp2a0XU1YGU6ak369lvaUW9eld1t3dj4s8JyISvc6d4bvfhcWL4bbbKksv2Uzjnwwkc+aE1+mWINdgTqlBfUoyz5hZn8hzIiJVRdGOMnNmZUkmtfRSVFR79VZJSTjODI46CqZPrwwkJSVhaWb3sOaF5jyTWmS9MqaZvQrsA7wHfEkYkOnu3jf67MVPK2NK3jILX+RRGDIkLNldn7aTceNCXqZO3fa98vIQyFLnQpMWIdOVMesTZPZKt9/d38/qRHlCQUbyllkIDJDb3mEKJJJGbMsvN9VgItJklJdXNrIn2z7Ky+Gb38xND67CQgUYqbdsll9+2t0Hm9kGEjMwJ98iVJftFHnuRHKttBQ++gi+/hqeegoGD4aCgtBwHscX7/DhsGABtGkDnTrBJ5+E/bNnw7x5oUSTLNWUlsL998NeicqF99+HE09UQJC8knHDv7sPTjx2cPedUrYOCjDSbBUXh2qr6dPD4//8T3gsLo7m/NWrwUpLoUOHMJ4lGWAAfvnL0PCe2quruBh69w69u2bNCs/rky8N1JQYZd0m09yoTUYykmyEj7IxPvW86fYD9OgBH3wArVvDQw+Fnl7V0yfT1jdfUV+TtAiZtsloWhmRfPbMMzB6dNVSSjaDKFPtskt4VMlFGpGCjEgmkr28ko8NVV4eugZD+qBx5JFhKywMgyj/679g+fLwXvXR+hMnZpavdevgpJOqdiaoLQ8iEah3dZmZ7Qhscvet0Wapcam6THKitDTMKXbwwXDBBWE0fV2j5pPVYgsW1G+8S/J4CNVj9cmDSELkXZjNrBUwChgDHEwYiNnGzFYDDwLXu/tb9cyvSMuS2gOsrileysu3LalkGmB22SWUYJK22w42bw4ll2zyIFJPGZdkzOwJYD5hgsxX3P3rxP5dgSLgh8Bcd78tprzGQiUZyXulpfD3v4deZ08/Da1awdy5mQeEzp1hzZqqjfudOqnkIg0Sx2DMo919c/Wd7r4WuBu428y2y+J8IpKJCRMqSx1lZWHMTKaljpISWL06VJXttBOsXx+C1Jw5KrlIo8imJNMWOJcwb9nLwE3uviXGvDUKlWSkWUtth0nq2TO0xfxHK3RI/cXRhXkGMJAQYIYDV9UzbyLSGIYMSb//vffCzAW5pG7ULUY2QWZ/dz/d3f8K/AA4IqY8iUhDlZfDQQfV/P7GjfDtb4fncX3h13be1JkLpFnLJshUtMc0h2oykWYtuY7M5MmhDaa6Z56BN94Iz+P6wp80KXRaGDcuLP88blx4LS1KNg3/B5rZesKEmADtUl5rgkyRfJLaPXnQoDAdTRSSE4b+6EchkNU1Uehtt8Eee0D//mGKnHnzqg4AVceDZi+bCTILUibE7ODurTVBpkgTUNsXeeoX/s47h3E0v/wl7LBD6PpcvSSyYUMoIfXvX/NEoakzCXz5JfzjH+H5vfeG+dfMwoSe1WcukGYpm8GYv6vlbXf3P0SQH8zsOODPQAFwo7tPrva+Jd4/HvgcONPdF2dyrEiLVK2HmU0En5Ty3qxZMGIEbNkSqtb+8pcwIechh4RgMmECXH11CBzTp4du0NOmpV8pEyqr6mbNCjMJJPXtG7YkDQBtEbJpk/lPmg3gx0AkC1iYWQFwDaH32v7AaDPbv1qy4cC+ie0c4H+zOFYkP8XVdpGu8d3A/hvsd4Rg8cMfhsBx0kmh5AEhsKxcCcceG7o7QwgIGzaELtDJPKe7hmOPDQM/P/ggjMeB9HOrFRXlZhE2aVTZVJddldyA64F2wFnAbGDviPIzCHjb3d91968S5z6pWpqTgJkePAvsYmaFGR4rkp+S69bUVg0FoQprhx2qVmnVpqSkYvZl+10oxQBV/+d36gQjR4aSRdL551d2gf7e98Lj00+Hx2XLQrXahg11X0NRUZjoU12WW6ysZmE2s13N7HLgJUJVW393n+DuqyLKz+7A8pTXKxL7MkmTybEAmNk5ZrbQzBauXr26wZkWabAZMyqnfXEPr1MNHx6+vH/4Q/jii1Cl9dVXsOOOcOGFtZd+7rknBJdWVHbbAfqtSDyZPj0sxtalS3i9884h4CxeHF5ff/225zz//LCl6tq18hxnnBHyU1oKjz+e2T2QZinjIGNmVwDPAxuAPu5e4u6fRpyfNMOTqT4lQU1pMjk27HS/3t0HuvvAznX9EhRpDMXF8Oyz4Xm6kkxpaeUKnX36hH1bt0LHjpWrdlY/pqQk7D/qqNAG8zVV/kcsSf4Eu/basKRAspfYZ5+Fx2RwcA9LTifzBvDOO1VLPqnXAXWXyKTFyKYk8yugG/BbYKWZrU9sGxJdmaOwAtgj5XV3YGWGaTI5ViR3aqsy6tq1MshMnbrtF3jfvrBoUXj+0kuV+7/73fCYWvpJBpfk+JdZs0KS36c0+Kf+LDvyyJrzlWxLWbgQvvnNinPxzDM1X0fymHTXIS2Pu+fNRqiCexfoCWwPvAj0rpbmBOAfhP8i3wGey/TYdNuAAQNcpFGEXpjB5MnuY8e6L14cHidPDu+npqntHG3ahOdjxoTHwYPdy8vTpx83rvLc4EykyuusTZxYd5r6nFeaFGChZ/C9ns1gzNi5+xYzOx94mNAN+WZ3X2pm5ybev46wds3xwNuELsxn1XZsDi5DpG4PPwyvvBK6Bu+6a2jEhzDIMZ3kIMj+/UP7y8UXw2OPwd/+Ft6/886qpYbycpgyJTzfuBHatw+PpJRmoLLzwHnnZd44n0m6qFYQlSYvm1mYG2WcTGPTLMwSu+QX/tVXh1Uti4pClddZZ4XG9W7dwoj844+veYXKjz4K55g2LQSZ8eNDUEm2kVT/f1x91cvddoNXX02fv969YenSbc8hUotMZ2HOJsj8Ks3uHYCfAB3dvX12WcwPCjISu9qWOTar+uVeVlb70srV05uFUkNtpYuyMvjTn2D+/NrPWZ8gk+zmrB5kLU7kQabayTsAFxIGYs4BrvLoujE3KgUZaVTVg0j1oFGX6ulLSjKv5iothUsu2XZ/hw5hzEuylJWNZEnq298OgzQffDC746XJimM9mcYYJyPSvFUf5V5bz650qrd1ZDPIMTmHWHUbNzZ8LrHXX4ejj67fsdKs5ds4GZGWJdtqpoaMnE+3iNlFF8GwYTB6dOWSzJmcx6zqnGiHHx7OJVJNNm0yXwNfAluoOsixSU/1r+oyaVHMQm+y5EwXO+0E69bV7zwQBmlu3RqeX3WVAk0LEnl1mbu3cvd2npjaP2XTVP8i+ax66WePxJjlHXYI3acbYuFC2GuvML1NTR0LSkpCNdzPflbZrVpajGym+jevo9iTSRoRaWSTJlX9gr/yytBl+osvwkSb2Sgvr9ou9OmnYcLMuj5/551Dh4V587L7PGnysmn4LzOzX5rZnqk7zWx7MzvKzGYAmqhIJB/NnBkGbELlKpmHHZZ99dbMmfDaa+F5hw5hHZp0nQWSU9skq9XWrYPrrtPaMS1QNkHmOGArcLuZlZvZq2b2LvAWMBqY5u63xpBHEamP1BUqBw2CFSvguONg333D4mT//GfNC4/VZMIEeOqp8Pzee2HUqKqdBUpLYfBgeOstOPnkMPEmwD77ZNapIBOp1X9aQiDvZTOtzG7ufi1wrZltB3QCvnD3z2LJmYg0TOoKlaedFnqPJbsxL1kSepTNn59daSZ1uhqAv/616vvFxfDuu5XLA/TpEwag/v73FdPaNNikSaHr9/PPV32uBdDyUjZBZh7QP/F8truPjD47IhKZCSkL1lZf6rhfv8pqr2ykBq5hw0Kj/0cfhQCy556h19qOO1amT84Yfcgh0ZVkoDJoVn8ueSebLswvuPtB1Z83derCLFJPN94YOgGsTFlRo127EIhOPTW8jqofUElJ5dIF1V12GVx+eTSfIxnLtAtzNiUZr+G5iLREP/lJ2FIHZX7+eXiMehbmkpIQwD7+OMwu8OijodPBf/4TxucMHapOBXkqmyBzYGJxMgPapSxU1qQHY4pIA5SXp98fR4N8svov2Y16n33CMs8TJ1atCpS8knGQcfeCODMiIvVU18zNtclmgs10Zs6E3XeHK66AMWNCXrL9si8thfvvD+07AO+/DyeeWLVNKVVhYWXHAqj6XPJOVhNkikgOlZVtO2K+rCw0fB98cPbnGzKk5naOTE2YELpGjx4dFlGrT+N+cXFY02bWrLD17h32SbNQr6n+mxM1/EuTkAwmc+bAE09UDQ6zZoUv+UwlSy/JtpThw/Njiv6aFmCTvBTLVP8i0ohSR80fdRRMnx6qokpKKhcZGzs2+9LDpElV21J69Iguz1FJVuFpsGWT16AgY2Zd604lIvWSSTAZPx66dMn8nMnp/rt1C4/f+laYbqa+68hEaeLEyl5pkyaFPKXOu5auulDyXkNLMnlQxhZpAWoKJoWFNTeQV1deDgclhrftuy906gRvvhnGtEQ5ULK+qndCGDEiPM6eDa1b17/tSXKqoUHG6k4iIg2WTTCpSepo/U8/hT/9KSybvGxZfkzJUn1SzfXrKx9/9avK6kJpUrIZJ5PODZHkQkTil26amfpMLROX1AGXDzwQJtncbbcwg/MJJ4T8ZtPBQfKCepepd5lI/ikvh1//OkxZs88+Idh06NDw0pxEJo5pZUREGkdhIdx2W65zIRFQF2YREYlNvYOMme1oZppqRkREapRxkDGzVmb2QzN7wMxWAa8D5Wa21MyuMLN948umiDSIBjVKjmRTkikDvglcCnR19z3cfTfgCOBZYLKZnR5DHkWkoRo6R5lIPWXT8H+0u2+uvtPd1wJ3A3cnlmUWkXyiUozkUDZB5t9ULr+cVrog1FyNHRuWSRfJa199Cf8aAgyBfp/CLt/IcYYkn/TrB1dfHe9nZFNdptH9Ik3NRx+Hx169YOmr8Nmnuc2PtDjZlGQ6m9lFNb3p7lMjyE+TEXf0F6mX1Pm/ysthyrTwx3rNgrDv+RvyYwoZaTGyKckUAO2BDjVsIpJrqQ38qXOVnXZa2KcAI40sm5JMubv/PraciEi00s1VpgkmpZGpTUakOSgvh3HjwvN0a8MUFakUIzmRTZD5cWy5EJGGqV41lg+LkEn+Ki0NP0peeCE8lpbG9lHZBJkbk0/M7O4Y8iIi9TVhAkydGqbCnzMnPxYhk/xVXBx+lPTvHx6Li2P7qIyn+jezF9z9oOrPmzpN9S8iLZZZWN67XodmNtV/NiUZr+F5JMxsVzN71MzeSjymHTVmZseZ2Rtm9raZXZKyv8TMPjSzJYnt+KjzKCIi2ckmyBxoZuvNbAPQN/F8vZltMLP1EeTlEuAxd98XeCzxuorErM/XAMOB/YHRZrZ/SpJp7t4vsT0YQZ5ERJqviRNj/4iMg4y7F7j7Tu7ewd1bJ54nX+8UQV5OAmYkns8ARqRJMwh4293fdfevgNmJ40REJFuNMK9dvdaTMbPOZtY54rx0cfdygMTjbmnS7A4sT3m9IrEv6Xwze8nMbq6pug3AzM4xs4VmtnD16tVR5F1ERNLIZj0ZS7R7fAK8AbxpZqvN7HdZnGO+mb2SZsu0NJJurE6yfeh/CUsR9APKgatqOom7X+/uA919YOfOUcdKERFJymbE/1jgcOBgd38PwMz2Bv7XzMa5+7S6TuDuR9f0npl9bGaF7l5uZoXAqjTJVgB7pLzuDqxMnPvjlHPdAPy97ksSEZE4ZVNd9iNgdDLAALj7u8Dpifca6j4g2Vm7GLg3TZrngX3NrKeZbQ+MShxHIjAlnQy8EkGeRJomrSEjeSKbILOdu39Sfae7rwaiWKxsMnCMmb0FHJN4jZl1M7MHE5+1BTgfeBh4DZjj7ksTx08xs5fN7CWgCBgXQZ5EmiathCl5Ipvqsq/q+V5G3H0NMDTN/pXA8SmvHwS26Z7s7mc0NA8iIhKt+oyTqb5tAPrElUERyUJdE2WKNLL6jJOpvnVw9yiqy0SkoTRRpuSZjKvLzMy8jonOMkkjIjHSGjKSZ7KpLiszs1+a2Z6pO81sezM7ysxmUNk7TERyTWvISB7IpuH/OOBs4PbE+JhPgbaEZZkfIcwbtiTyHIqISJOVTZDZzd2vBa41s+2ATsAX7v5ZLDkTEZEmL5vqsnkpz2e7e7kCjIiI1CabIJM6b9jeUWdERESan7xZtExERJqfbNpkDkwsTmZAu5SFygzwiNaUERGRZiTjIOPuBXFmREREmp96LVomIiKSCQUZERGJjYKMiIjERkFGRERioyAjIiKxUZAREZHYKMiIiEhsFGRERCQ2CjIiIhIbBRkREYmNgoyIiMRGQUZERGKjICMiIrFRkBERkdgoyIiISGwUZEREJDYKMiIiEhsFGRERiY2CjIiIxEZBRkREYqMgIyIisVGQERGR2CjIiIhIbBRkRFqasjKYMiXXuZAWQkFGpCUpK4PTToODD851TqSFUJARae5KSsAsbEcdBdOnQ1FRrnMlLYSCjEhzV1IC7mEbOxaefz7XOZIWJG+CjJntamaPmtlbicdv1JDuZjNbZWav1Od4kRZt/Hjo0iXXuZAWJG+CDHAJ8Ji77ws8lnidzq3AcQ04XqTlKiyECRNynQtpQfIpyJwEzEg8nwGMSJfI3Z8E1tb3eBERaTz5FGS6uHs5QOJxt7iON7NzzGyhmS1cvXp1vTMsIiK1a92YH2Zm84Guad66rDHz4e7XA9cDDBw40Bvzs0VEWpJGDTLufnRN75nZx2ZW6O7lZlYIrMry9A09XkREIpZP1WX3AcWJ58XAvY18vEjzopH9kgfyKchMBo4xs7eAYxKvMbNuZvZgMpGZ3Q78C9jPzFaY2Y9rO16kRdLIfskTjVpdVht3XwMMTbN/JXB8yuvR2Rwv0mKUlMCkSZWvZ83SyH7JuXwqyYhIQ2hkv+QhBRmR5kgj+yVPKMiINEca2S95QkFGRERioyAjIiKxUZAREZHYKMiIiEhsFGRERCQ2CjIiIhIbc2/ZkxCb2Wrg/VznIyKdgE9ynYk8o3uyLd2TbemebKuue7KXu3eu6yQtPsg0J2a20N0H5jof+UT3ZFu6J9vSPdlWVPdE1WUiIhIbBRkREYmNgkzzcn2uM5CHdE+2pXuyLd2TbUVyT9QmIyIisVFJRkREYqMg04SY2a5m9qiZvZV4/EYN6Y4zszfM7G0zuyTN+xebmZtZp/hzHa+G3hMzu8LMXjezl8xsrpnt0miZj1gG/+5mZtMT779kZv0zPbapqu89MbM9zKzMzF4zs6VmdmHj5z4+DflbSbxfYGYvmNnf6/wwd9fWRDZgCnBJ4vklQGmaNAXAO8DewPbAi8D+Ke/vATxMGBvUKdfXlOt7AhwLtE48L013fFPY6vp3T6Q5HvgHYMB3gH9nemxT3Bp4TwqB/onnHYA3m8M9aeh9SXn/ImAW8Pe6Pk8lmablJGBG4vkMYESaNIOAt939XXf/CpidOC5pGjAeaC6NcQ26J+7+iLtvSaR7Fugeb3ZjU9e/O4nXMz14FtjFzAozPLYpqvc9cfdyd18M4O4bgNeA3Rsz8zFqyN8KZtYdOAG4MZMPU5BpWrq4ezlA4nG3NGl2B5anvF6R2IeZfR/40N1fjDujjahB96Saswm/3pqiTK6xpjSZ3p+mpiH3pIKZ9QAOAv4dfRZzoqH35WrCD9WvM/mw1vXKosTGzOYDXdO8dVmmp0izz81sh8Q5jq1v3nIlrntS7TMuA7YAf8sud3mjzmusJU0mxzZFDbkn4U2z9sDdwFh3Xx9h3nKp3vfFzL4HrHL3RWY2JJMPU5DJM+5+dE3vmdnHyaJ8oui6Kk2yFYR2l6TuwErgm0BP4EUzS+5fbGaD3P2jyC4gBjHek+Q5ioHvAUM9UeHcBNV6jXWk2T6DY5uihtwTzGw7QoD5m7vfE2M+G1tD7ssPgO+b2fFAW2AnM7vN3U+v8dNy3QilLasGuyuo2sg9JU2a1sC7hICSbNTrnSbdMppHw3+D7glwHPAq0DnX19LA+1DnvzuhHj21Mfe5bP5mmtrWwHtiwEzg6lxfRz7dl2pphpBBw3/OL1hbVn8cHYHHgLcSj7sm9ncDHkxJdzyhN8w7wGU1nKu5BJkG3RPgbULd85LEdl2ur6kB92KbawTOBc5NPDfgmsT7LwMDs/mbaYpbfe8JMJhQhfRSyt/G8bm+nlzfl2rnyCjIaMS/iIjERr3LREQkNgoyIiISGwUZERGJjYKMiIjERkFGRERioyAjIiKxUZAREZHYKMiItGBm9hMze9nMzsog7d5mdpOZ3dUYeZPmQUFGpGUbCRwFnFpXQg9Tw/84/ixJc6IgIy2amW01syUpWw8za2dmT5hZQbU0S83sRTO7yMxa1XKOASnPPzKzD1Neb29mT5pZ2slpzeyZCK7pcTMbVm3fWDO7Nk3yfxMmFf13Sto+Zvb3alu6JRRE6qRZmKWl+8Ld+6XuMLPzgHvcfWv1NIkv21nAzsDEms4BJNOXABvd/cqU8z8G/BdplhVw98MadDXB7cAowgqoSaOAX6dJ2x54inA9yTy8TJiVWqTBVJIR2dYY4N50b7j7KuAc4HxLrJlQD/MSn7ENM9uYeOyRWF/+hkQJ6hEza5cm/elm9lyilPTXROnrLuB7ZtYmeS7ChKFPVzu2FXAy8CPg5GTJrSZm1tHMrgMOMrNLs7xmaaEUZKSla5dSlTXXzLYH9nb3ZTUd4O7vEv7v7JbuHBl85ivAwRmk2xe4xt17A58R2k8qmFkvQono8ERJaiswxt3XAM8RljGAUIq5w7edDfco4KXEtb6YeF0jd1/j7ue6+zfd/f9lkH8RVZdJi1elqsvMuhG+0OuSWopJV11WI3ffamZfmVkHD+vH1+Q9d1+SeL4I6FHt/aHAAOD5RKGqHZWLtiWrzO5NPJ6d5vxjEumS6ccAj2Z6HSKZUJARqeoLwop/NTKzvQmlhnSrcGaqDbCpjjRfpjzfSggiVbICzHD3dFVX84CpZtYfaOfui6scGKreTgKGmtkUQsmsg5m1c/cvMr8Mkdqpukwkhbt/ChSYWdpAY2adgeuAv6SpfsqImXUEVrv75vrnFAiLtP0g2fPLzHY1s70A3H0j8DhwM5WllVTfB/7h7nu6ew933xO4HzixgXkSqUJBRmRbjxBWRkxKtrksBeYn3p/UgPMXAQ824HgA3P1V4LfAI2b2EqGqqzAlye3AgcDsNIePAaq3H80Fal6rXaQetDKmSDVmdhBwkbufEdP57wEudfc34ji/SD5RSUakGnd/ASirq0tvfSR6r81TgJGWQiUZERGJjUoyIiISGwUZERGJjYKMiIjERkFGRERioyAjIiKxUZAREZHYKMiIiEhs/j/Q6fo4CwZsRAAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{},"cell_type":"markdown","source":"The ``mode 2`` output gives further information about the parameters of the fitting procedure, about the fitting data and it gives information about the defined SFs and the SFs ranges. These ranges define the known configuration space of your NNP and are used to identify the already mentioned ``extrapolations``. If the NNP is made to predict energies, forces or stress, it first calculates the SF vectors and compares these values to the trainings range shown below. If a SF value occurs, which is not in the range, **RuNNer** will give an ``extrapolation warning`` and tell the user, but you will still get your wanted energy, force or stress. Another usage of these ranges is to increase the data set and the known configuration space."},{"metadata":{},"cell_type":"raw","source":" =============================================================\n Short range symmetry function values for element Cu\n Training set: min max average range stddev range/stddev\n 1 6.72393532 25.25447208 14.00001115 18.53053676 4.02011080 4.60945921\n 2 5.03976308 19.37796546 10.59714429 14.33820238 3.11321693 4.60559053\n 3 3.25577537 13.11073890 6.98744718 9.85496353 2.14525332 4.59384607\n 4 1.25883453 6.21227127 3.05195579 4.95343674 1.07630994 4.60224009\n 5 0.06568766 1.53442885 0.48718005 1.46874120 0.26713619 5.49809898\n 6 2.42989188 42.06637435 12.30898440 39.63648248 7.96564228 4.97593051\n 7 6.59284339 109.34982696 33.28285935 102.75698358 21.03610544 4.88479124\n 8 0.78142670 19.11390444 5.22756080 18.33247774 3.61016236 5.07802030\n 9 5.20079617 86.39735705 26.20143575 81.19656088 16.68008353 4.86787495\n 10 0.15497639 7.72411752 1.91198556 7.56914113 1.46079520 5.18152107\n 11 3.59136462 60.38094318 17.95854981 56.78957856 11.72399989 4.84387403\n 12 0.00059457 1.66933490 0.34750355 1.66874033 0.32743124 5.09646040\n 13 0.52030958 18.24849080 4.70826264 17.72818122 3.59567219 4.93042198\n -------------------------------------------------------------"},{"metadata":{},"cell_type":"markdown","source":"During ``mode 2`` several files will be printed by **RuNNer** and some are printed every epoch:\n- scaling.data: information about the SFs if ``scale_symmetry_functions`` is used\n- xxxxxx.XXX.out: weights and biases of the specific epoch xxxxxx for atomic NN of element XXX\n- optweights.XXX.out: weights and biases of the epoch with lowest RMSE defined by **RuNNer** for element XXX\n- trainpoints.xxxxxx.out, testpoints.xxxxxx.out: optional, giving information about training and test energies of epoch xxxxxx\n- trainforces.xxxxxx.out, testforces.xxxxxx.out: optional, giving information about training and test forces of epoch xxxxxx"},{"metadata":{},"cell_type":"markdown","source":"## RuNNer Mode 3\n\n**RuNNer** ``mode 3`` is the prediction mode and brings the NNP to application. Via N2P2, NNP can also be used in LAMMPS. For ``mode 3``, the ``input.nn``, ``scaling.data`` (if scaling is used), ``weights.XXX.data`` and the ``input.data``, contaning the structures to predict, are needed. A first application of the NNP in the Cu case is to predict the correct energy-volume behaviour."},{"metadata":{"trusted":true},"cell_type":"code","source":"pr_ev = pr.create_group(\"E_V_curve\") # Creating a new sub-project within the main project\na_list = np.linspace(3.4, 4.0, 7)\nfor a in a_list:\n job_name = \"job_a_{:.4}\".format(a).replace(\".\", \"_\")\n job = pr_ev.create.job.Lammps(job_name, delete_existing_job=False)\n job.structure = pr_ev.create_ase_bulk(\"Cu\", a=a)\n #job.potential = '2012--Mendelev-M-I--Cu--LAMMPS--ipr1'\n job.potential = j.lammps_potential\n job.calc_minimize()\n job.run()","execution_count":18,"outputs":[{"output_type":"stream","text":"The job job_a_3_4 was saved and received the ID: 83\nThe job job_a_3_5 was saved and received the ID: 84\nThe job job_a_3_6 was saved and received the ID: 85\nThe job job_a_3_7 was saved and received the ID: 86\nThe job job_a_3_8 was saved and received the ID: 87\nThe job job_a_3_9 was saved and received the ID: 88\nThe job job_a_4_0 was saved and received the ID: 89\n","name":"stdout"}]},{"metadata":{"trusted":true},"cell_type":"code","source":"pr_ev.job_table()","execution_count":19,"outputs":[{"output_type":"execute_result","execution_count":19,"data":{"text/plain":" id status chemicalformula job subjob projectpath \\\n0 83 finished Cu job_a_3_4 /job_a_3_4 /home/jovyan/ \n1 84 finished Cu job_a_3_5 /job_a_3_5 /home/jovyan/ \n2 85 finished Cu job_a_3_6 /job_a_3_6 /home/jovyan/ \n3 86 finished Cu job_a_3_7 /job_a_3_7 /home/jovyan/ \n4 87 finished Cu job_a_3_8 /job_a_3_8 /home/jovyan/ \n5 88 finished Cu job_a_3_9 /job_a_3_9 /home/jovyan/ \n6 89 finished Cu job_a_4_0 /job_a_4_0 /home/jovyan/ \n\n project timestart \\\n0 day_2/02-runner/runner_fit/E_V_curve/ 2021-03-09 07:32:12.843419 \n1 day_2/02-runner/runner_fit/E_V_curve/ 2021-03-09 07:32:13.759829 \n2 day_2/02-runner/runner_fit/E_V_curve/ 2021-03-09 07:32:14.706468 \n3 day_2/02-runner/runner_fit/E_V_curve/ 2021-03-09 07:32:15.705833 \n4 day_2/02-runner/runner_fit/E_V_curve/ 2021-03-09 07:32:16.604464 \n5 day_2/02-runner/runner_fit/E_V_curve/ 2021-03-09 07:32:17.534287 \n6 day_2/02-runner/runner_fit/E_V_curve/ 2021-03-09 07:32:18.524329 \n\n timestop totalcputime \\\n0 2021-03-09 07:32:13.347096 0.0 \n1 2021-03-09 07:32:14.211568 0.0 \n2 2021-03-09 07:32:15.184423 0.0 \n3 2021-03-09 07:32:16.130043 0.0 \n4 2021-03-09 07:32:17.055248 0.0 \n5 2021-03-09 07:32:18.072337 0.0 \n6 2021-03-09 07:32:19.045336 0.0 \n\n computer hamilton \\\n0 pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1 Lammps \n1 pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1 Lammps \n2 pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1 Lammps \n3 pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1 Lammps \n4 pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1 Lammps \n5 pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1 Lammps \n6 pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1 Lammps \n\n hamversion parentid masterid \n0 0.1 None None \n1 0.1 None None \n2 0.1 None None \n3 0.1 None None \n4 0.1 None None \n5 0.1 None None \n6 0.1 None None ","text/html":"<div>\n<style scoped>\n .dataframe tbody tr th:only-of-type {\n vertical-align: middle;\n }\n\n .dataframe tbody tr th {\n vertical-align: top;\n }\n\n .dataframe thead th {\n text-align: right;\n }\n</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>status</th>\n <th>chemicalformula</th>\n <th>job</th>\n <th>subjob</th>\n <th>projectpath</th>\n <th>project</th>\n <th>timestart</th>\n <th>timestop</th>\n <th>totalcputime</th>\n <th>computer</th>\n <th>hamilton</th>\n <th>hamversion</th>\n <th>parentid</th>\n <th>masterid</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td>83</td>\n <td>finished</td>\n <td>Cu</td>\n <td>job_a_3_4</td>\n <td>/job_a_3_4</td>\n <td>/home/jovyan/</td>\n <td>day_2/02-runner/runner_fit/E_V_curve/</td>\n <td>2021-03-09 07:32:12.843419</td>\n <td>2021-03-09 07:32:13.347096</td>\n <td>0.0</td>\n <td>pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1</td>\n <td>Lammps</td>\n <td>0.1</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>1</th>\n <td>84</td>\n <td>finished</td>\n <td>Cu</td>\n <td>job_a_3_5</td>\n <td>/job_a_3_5</td>\n <td>/home/jovyan/</td>\n <td>day_2/02-runner/runner_fit/E_V_curve/</td>\n <td>2021-03-09 07:32:13.759829</td>\n <td>2021-03-09 07:32:14.211568</td>\n <td>0.0</td>\n <td>pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1</td>\n <td>Lammps</td>\n <td>0.1</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>2</th>\n <td>85</td>\n <td>finished</td>\n <td>Cu</td>\n <td>job_a_3_6</td>\n <td>/job_a_3_6</td>\n <td>/home/jovyan/</td>\n <td>day_2/02-runner/runner_fit/E_V_curve/</td>\n <td>2021-03-09 07:32:14.706468</td>\n <td>2021-03-09 07:32:15.184423</td>\n <td>0.0</td>\n <td>pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1</td>\n <td>Lammps</td>\n <td>0.1</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>3</th>\n <td>86</td>\n <td>finished</td>\n <td>Cu</td>\n <td>job_a_3_7</td>\n <td>/job_a_3_7</td>\n <td>/home/jovyan/</td>\n <td>day_2/02-runner/runner_fit/E_V_curve/</td>\n <td>2021-03-09 07:32:15.705833</td>\n <td>2021-03-09 07:32:16.130043</td>\n <td>0.0</td>\n <td>pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1</td>\n <td>Lammps</td>\n <td>0.1</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>4</th>\n <td>87</td>\n <td>finished</td>\n <td>Cu</td>\n <td>job_a_3_8</td>\n <td>/job_a_3_8</td>\n <td>/home/jovyan/</td>\n <td>day_2/02-runner/runner_fit/E_V_curve/</td>\n <td>2021-03-09 07:32:16.604464</td>\n <td>2021-03-09 07:32:17.055248</td>\n <td>0.0</td>\n <td>pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1</td>\n <td>Lammps</td>\n <td>0.1</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>5</th>\n <td>88</td>\n <td>finished</td>\n <td>Cu</td>\n <td>job_a_3_9</td>\n <td>/job_a_3_9</td>\n <td>/home/jovyan/</td>\n <td>day_2/02-runner/runner_fit/E_V_curve/</td>\n <td>2021-03-09 07:32:17.534287</td>\n <td>2021-03-09 07:32:18.072337</td>\n <td>0.0</td>\n <td>pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1</td>\n <td>Lammps</td>\n <td>0.1</td>\n <td>None</td>\n <td>None</td>\n </tr>\n <tr>\n <th>6</th>\n <td>89</td>\n <td>finished</td>\n <td>Cu</td>\n <td>job_a_4_0</td>\n <td>/job_a_4_0</td>\n <td>/home/jovyan/</td>\n <td>day_2/02-runner/runner_fit/E_V_curve/</td>\n <td>2021-03-09 07:32:18.524329</td>\n <td>2021-03-09 07:32:19.045336</td>\n <td>0.0</td>\n <td>pyiron@jupyter-pyiron-2dpyiron-5fpotentialfit-2d5rxuppx2#1</td>\n <td>Lammps</td>\n <td>0.1</td>\n <td>None</td>\n <td>None</td>\n </tr>\n </tbody>\n</table>\n</div>"},"metadata":{}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"def get_volume(job):\n return job[\"output/generic/volume\"][-1]\ndef get_energy(job):\n return job[\"output/generic/energy_tot\"][-1]","execution_count":20,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"# Analysing the data\nvol_list = list()\nenergy_list = list()\n\nfor job in pr[\"E_V_curve\"].iter_jobs(status=\"finished\"):\n vol_list.append(get_volume(job))\n energy_list.append(get_energy(job))\n\nargs = np.argsort(vol_list)\nvol_list = np.array(vol_list)\nenergy_list = np.array(energy_list)\nplt.plot(vol_list[args], energy_list[args], \"-x\")\nplt.xlabel(\"Volume [$\\mathrm{\\AA^3}$]\")\nplt.ylabel(\"Energy [eV]\");","execution_count":21,"outputs":[{"output_type":"display_data","data":{"text/plain":"<Figure size 432x288 with 1 Axes>","image/png":"iVBORw0KGgoAAAANSUhEUgAAAYoAAAEOCAYAAACXX1DeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtlklEQVR4nO3deXxU1f3/8dcnIewQloCyCoR9B6MIblWpWhQUqb9asFrbSrHFpa0LiIKtoli1K2Lr11ZtK2pV3EAR942KsibsJKwBgbCFJQSyfH5/ZMCASciQTO4keT8fj3lkljtz35doPnPPOfccc3dERESKExN0ABERiW4qFCIiUiIVChERKZEKhYiIlEiFQkRESqRCISIiJQqkUJjZ/WaWbGaLzWyOmbUsYps2Zvahma0ws2VmdmsQWUVEqjsL4joKM2vo7ntD928Burv7mOO2aQG0cPeFZtYAWABc6e7LKzywiEg1ViOInR4pEiH1gG9VK3f/Gvg6dH+fma0AWgEnLBQJCQnerl278gkrIlINLFiwYIe7NyvqtUAKBYCZTQauAzKBC06wbTugHzCvNJ/drl075s+fX9aIIiLVhpltKO61iPVRmNl7Zra0iNsVAO4+wd3bAM8BY0v4nPrAK8Btx52JHL/daDObb2bzMzIyyvtwRESqrUD6KI4JYHYaMMvdexbxWhwwE3jH3f9Q2s9MSkpynVGIiJSemS1w96SiXgtq1FOnQg+HASuL2MaAfwArwikSIiJSvoK6jmJKqBkqGbgYuBXAzFqa2Vuhbc4GfgRcGBpGu9jMhgSUV0Sk2gpq1NOIYp7fAgwJ3f8MsIrMJSJS2fzt4zR6t45nUGLC0efmpu0gOT2TMecnlss+dGW2iEgl1rt1PGOnL2Ju2g6goEiMnb6I3q3jy20fgQ2PFRGRshuUmMDUkf246T8Luahbcz5alcHUkf2OOcMoK51RiIhUcgPaN6VOXAwzFm7mB0mty7VIgAqFiEild98by9i69xAXdz+FF+enH22GKi8qFCIildjrizbz7y820KdNPH//0elMHdnvmD6L8qBCISJSSbk7f3xvNbVrxDBt1OmY2dE+i+T0zHLbjzqzRUQqqZcXpLN+Zxa/u6IHrRrVOfr8oMQEdWaLiFR32/dl88CsFSSd1phrB5wW0X2pUIiIVEL3vbGMgzl5PPz93sTERPbaZBUKEZFKZvbSr3krZSu3XtSJxGb1I74/FQoRkUokMyuHe19fRrcWDRl9XocK2ac6s0VEKpEH31rBrgOHefrHZxAXWzHf9XVGISJSSXyeuoMX52/ixnM70LNV+c3ldCIqFCIilUDW4VzGzUimfUI9bhvc6cRvKEdqehIRqQQem7OaTbsO8sLos6gdF1uh+9YZhYhIlFu0cTdPf76OUQPaclaHphW+fxUKEZEodjg3n7teSeaUhrUZ972ugWRQ05OISBSb9lEqq7ft5x/XJ9GgdlwgGXRGISISpVZv28fjH6YyrE9LLup2SmA5VChERKJQXr5z58vJ1K9Vg0lDuweaRYVCRCQKPTN3PYs37WHS0B40rV8r0CwqFCIiUWbTriwefWcVF3RpxhV9WwYdR4VCRCSauDvjZ6QQYzB5eC/MIjszbGmoUIiIRJGXFqTzWeoOxg3pRstCixEFSYVCRCRKbN+bzQMzl3NmuyaMOrNt0HGOUqEQEYkSE19fRnZuPg+N6BXxxYjCoUIhIhIF3k75mtnLtnLb4IpZjCgcKhQiIgE7shhRj5YNufHcilmMKByawkNEJGAPzFrO7qzDPHNDxS1GFI7oSyQiUo18uiaDlxakM/q8il2MKBwqFCIiAck6nMv4GSl0SKjHrRdV7GJE4VDTk4hIQB59ZzXpuw/yYgCLEYVDZxQiIgFYuHE3T89dx7VntWVAAIsRhSOQQmFm95tZspktNrM5ZvatyUzMrLaZfWlmS8xsmZn9NoisIiLl7VBuHne9nMypDWtz16XBLEYUjqDOKB5x997u3heYCUwsYptDwIXu3gfoC1xqZmdVXEQRkciY9mEaa7bvZ/LwnoEtRhSOQPoo3H1voYf1AC9iGwf2hx7GhW7f2k5EpDJZuXUv0z5K5Yq+Lbmwa3CLEYUjsM5sM5sMXAdkAhcUs00ssADoCDzu7vMqLqGISPnKy3fueiWFBrXjmHh5sIsRhSNiTU9m9p6ZLS3idgWAu09w9zbAc8DYoj7D3fNCzVOtgTPNrGcJ+xttZvPNbH5GRkYEjkhEpGye/nwdSzbtYdLQ7oEvRhSOiJ1RuPvgUm46HZgFTCrhs/aY2UfApcDSYrZ5EngSICkpSU1UIhJVNu7M4tE5q7ioa3OG9Ql+MaJwBDXqqfCVJcOAlUVs08zMGoXu1wEGF7WdiEi0c3fGzUimRkwMDwzvGRWLEYUjqD6KKWbWBcgHNgBjAELDZJ9y9yFAC+DZUD9FDPBfd58ZUF4RkZP23/mbmJu2kweu7EmL+OhYjCgcQY16GlHM81uAIaH7yUC/iswlIlLetu3N5oFZKzizfRNGRtFiROHQldkiIhHi7tz72lIO5+Yz5aroWowoHCoUIiIR8vbSrcxZvo3bBnemQ5QtRhQOFQoRkQjYk3WYia8vo2erhtx4bvug45SJZo8VEYmAB2atYHfWYZ79yRnUiMLFiMJRudOLiEShT1Zn8PKCdH5+Xgd6tIzOxYjCoUIhIlKODhz6ZjGiW6J4MaJwqOlJRKQcPTpnFZv3HOSlMQOjejGicOiMQkSknCzYsJtn5q7nuoGncUa7JkHHKTcqFCIi5eBQbh53vZJMi4a1ubMSLEYUDjU9iYiUg8c/SCV1+36e/vEZ1K9Vtf606oxCRKSMVny9l2kfpTG8Xysu6No86DjlToVCRKQMcvPyueuVZOLrxHFvJVqMKBwqFCIiZfD05+tJTs9k0rAeNKlXM+g4EaFCISJykjbsPMBj765icLfmDO3dIug4EaNCISJyEtydca+kEBcTw/1XVr7FiMKhQiEichJe/GoT/1u7k/FDulXKxYjCoUIhIhKmbXuzmfzWCga0b8I1Z7QJOk7EqVCIiITB3bnnyGJEI3pX2sWIwqFCISIShrdStvLu8m38+rudaZ9QL+g4FUKFQkSklHYfOMykN5bSq1U8Pz2nci9GFI6qdZ25iEgE3T9rOXuycvjXTwZU+sWIwlF9jlREpAw+Xp3BjIWbGXN+It1bNgw6ToVSoRAROYH9h3K5e0YKic3qMfbCjkHHqXBqehIROYFH31nFlsyDvPTzqrMYUTh0RiEiUoIFG3bx7P/Wc91Zp5FUhRYjCocKhYhIMbJz8rjz5WRaxtfhjiq2GFE41PQkIlKMxz9MJS3jAM/cUPUWIwqHzihERIqw4uu9PPFRGlf1a8V3ulS9xYjCoUIhInKc6rAYUTiq77mUiEgx/vn5OpLTM5k6sh+Nq+hiROHQGYWISCHrdxzgsTmrGdztFC7rVXUXIwpHsWcUZta/FO/PcfeUcswjIhIYd2fcjGRqxsbwQBVfjCgcJTU9fQx8BZT0L9UeaFeegUREgvLCV5v4Yu0uHrqqF6fG1w46TtQoqVB85e4XlvRmM/ugnPOIiARia2Y2D85awcAOTavFYkThKLaP4kRForTbFMXM7jezZDNbbGZzzKxlCdvGmtkiM5t5MvsSETmRgsWIUjicl89DV/VSk9Nxii0UZrbczCaYWWIE9vuIu/d2977ATGBiCdveCqyIQAYREQBmJn/Neyu285uLO9OumixGFI6SRj39EKgPzDGzeWZ2W0nf/MPh7nsLPawHeFHbmVlr4DLgqfLYr4jI8XYfOMx9byyjd+t4fnJ29VmMKBwlNT0tcffx7p5Iwbf604AvzOwDM7uxrDs2s8lmtgkYRfFnFH8C7gTyS/F5o81svpnNz8jIKGs8Eakm7p+5nMyDOTw8one1WowoHKX6V3H3L9z9V8B1QGNg6oneY2bvmdnSIm5XhD5zgru3AZ4Dxhbx/suB7e6+oJQZn3T3JHdPatasWWneIiLV3EertjNj0WZu+k4i3VpUr8WIwnHCK7PN7AwKmqFGAOuBJ4GXTvQ+dx9cygzTgVnApOOePxsYZmZDgNpAQzP7j7tfW8rPFREp1v5DuUx4dWm1XYwoHCVdcPcg8ANgN/ACcLa7p5fHTs2sk7uvCT0cBqw8fht3Hw+MD23/HeB2FQkRKS+PzF7JlsyDvDxmILVqVL/FiMJR0hnFIeB77r46AvudYmZdKOh72ACMAQh1lj/l7kMisE8REQC+Wr+Lf32xgesHtuP006rnYkThMPciBxx9s4FZXeA3QFt3v9HMOgFd3D1qr2tISkry+fPnBx1DRKJQdk4eQ/7yKYdy8pnzq/OoV43XmSjMzBa4e1JRr5WmM/tpCs4uBoYepwMPlFM2EZEKNfWDVNZmHODBq3qpSJRSaQpForv/HsgBcPeDlDz/k4hIVFq2JZO/fZzGiP6tOb+zRkeWVmkKxWEzq0PoorjQldqHIppKRKScHVmMqFHdOO69vFvQcSqV0px3TQJmA23M7DkKhq3+OJKhRETK21OfrWPp5r08PrI/jepqMaJwnLBQuPu7ZrYQOIuCJqdb3X1HxJOJiJTB3z5Oo3freAYlJrBuxwH++O5qkk5rzMZdB4KOVumUNCngqUfuu/tOd5/l7jMLF4nC24iIRJPereMZO30Rn6/ZwbhXkokxSN2+nz5tGgUdrdIpqY/irVK8vzTbiIhUuEGJCUwd2Y8b/z2feet2EWPGtGv7MygxIeholU5JTU99zGxvCa8bUNLrIiKBqlUjhoOH8wD4yTntVSROUrGFwt11TbuIVFo79x/iZ8/OxwxuPLcDz83byMDEpioWJ0Fz6opIlZOX7/z46S/ZnZXDA1f25O4h3Zg6sh9jpy9ibprG4oRLhUJEqpypH6SSsnkvPz2nPSMHnAZ802eRnJ4ZcLrKR9evi0iV8tmaHfzp/dUM79eKey479sK6QYkJano6CSc8ozCzR82sR0WEEREpi62Z2dz6wiI6NqvP5OE9MdNsQ+WhNE1PK4EnQ+tmjzGz+EiHqmh/+zjtW+2Wc9N28LeP0wJKJCLhysnLZ+z0hRzMyeOJa/tTt6YaTMrLCQuFuz/l7mdTsAxqOyDZzKab2QWRDldRjlyYc6RYzE3bwdjpi+jdusrVRJEq65F3VjF/w24euqoXHZs3CDpOlVKqkmtmsUDX0G0HsAT4tZn93N2viWC+CjEoMYHHru7NDU9/xSU9TuWz1B1MHdlPbZkilcScZVt58pO1jBrQliv6tgo6TpVTmjWz/0DBcqXvAw+6+5ehlx42s1WRDFeRBnVMoG7NWN5YsoWbzu+gIiFSSWzcmcVvXlpCz1YNuffy7kHHqZJK00exFOjt7j8vVCSOODMCmQKxYMNucvMLVvt7+vP1GmstUglk5+Txi+kLAJg28nRqx+k64UgoTaFYDHQ1s/6FbolmVsPdq8SA5CN9En//0emMGtCWQ7n5jPn3AhULkSh3/8zlLN28l8eu7kPbpnWDjlNllaaPYhrQH0imYH6nnqH7Tc1sjLvPiWC+CpGcnnm0T6Jnq3jeXb6NOnGxLN64R01QIlHq9cWbeW7eRkaf14GLe2gi60gqzRnFeqCfuye5++lAPwqaowYDv49gtgoz5vzEowWhYe04fndFDzbsyiI2RmOwRaJR6vZ9jJ+RwhntGnPHJV2CjlPllaZQdHX3ZUceuPtyCgrH2sjFCtalPVtwcfdT+ON7q9m4MyvoOCJSSNbhXG76z0LqxMXy1x/2Jy5WMxFFWmn+hVeb2RNmdn7oNi30XC0gJ8L5AvO7K3pSIyaGCa+l4O5BxxERwN2Z8OpSUjP28+dr+nFqfO2gI1ULpSkU1wOpwG3Ar4C1FKyZnQNUmYvujndqfG3uurQLn67ZwWuLNwcdR0SA57/cxKuLNnPrRZ04p5P6DytKiZ3ZoQvt3nT3wcBjRWyyPyKposSoAafx6qLN3D9zBed3bk6TelqQXSQoSzdnct+byzi3UwI3X9gp6DjVSolnFO6eB2RVxfmdSiMmxpgyojf7snN4YObyoOOIVFuZB3P4xXMLaVK3Jn/6QV8NNKlgpRkemw2kmNm7wIEjT7r7LRFLFUU6n9KAMecn8tcPUhnevxXndmoWdCSRasXdueOlJWzec5AXR59F0/q1go5U7ZSmj2IWcC/wCbCg0K3a+OUFHenQrB4TXl16dP1dEakY//hsHXOWb2PcpV1Jatck6DjVUmlmj30W+C/whbs/e+QW+WjRo3ZcLA8O78XGXVn86f3VQccRqTYWbNjFlLdXcnH3U/jZue2DjlNtlWbhoqEUTOMxO/S4r5m9EeFcUeesDk255ow2PPXpOpZurhIzl4hEtZ37D/HL5xbRslEdHrm6jxYhClBpmp7uo2Dyvz0A7r4YqJalffz3utG4bk3Gz0ghNy8/6DgiVVZevnPbi4vZlXWYaaP6E18nLuhI1VppCkVuEZP/Vcsr0OLrxnHfsO6kbM7kmbnrg44jUmVN/SCVT9fsYNLQ7vRsVS0HXUaVUk0zbmYjgVgz62RmfwXmRjhX1LqsVwsu6tqcx+asZtMuTe8hUt4+W7ODP72/miv7tmTkmW2DjiOUrlDcDPQADgHPA3spuEr7pJnZ/WaWbGaLzWyOmbUsZrv1ZpYS2m5+WfZZXsyM313ZkxiDe15bquk9RMrR1sxsbn1hEYnN6jN5eC/1S0SJ0ox6ynL3Ce5+RmgG2Qnunl3G/T7i7r3dvS8wE5hYwrYXuHtfd08q4z7LTatGdbj9ki58vDqDN5ZsCTqOSJWQk5fPzc8vJOtwHk+M6k+9WqVaqVkqQGlGPXU2sydD3/w/OHIry07dfW+hh/WohH0e1w1sR582jfjdm8vZk3U46Dgild6j76ziq/W7mTKiF51OaRB0HCmkNE1PLwGLgHuAOwrdysTMJpvZJmAUxZ9RODDHzBaY2egTfN5oM5tvZvMzMjLKGu+EYmOMKVf1IvNgDpNnrYj4/kSqsneXb+Pvn6xl1IC2XNG3VdBx5Dh2ojZ2M1sQWrAovA82ew8oatmpCe7+eqHtxgO13X1SEZ/R0t23mFlz4F3gZnf/5ET7TkpK8vnzK6ZL4/ezVzLtozSm/2wAgzpqNkuRcG3alcVlf/mUtk3r8vKYQVr3OiChv/VFNvGX5oziTTP7hZm1MLMmR24nepO7D3b3nkXcXj9u0+nAiGI+Y0vo53bgVQqu54gqt1zUiXZN63L3qylk52h6D5FwZOfk8YvnFuLAtJGnq0hEqdKuR3EHBUNij8zzVKav62ZWeI7gYcDKIrapZ2YNjtwHLqZgCdaocmR6j/U7s/jL+2uCjiNSqTwwazkpmzN57Oo+tG1aN+g4UowTDitw90hchT3FzLoA+cAGYAwUNDUBT7n7EOAU4NXQ8LgawHR3nx2BLGU2qGMC3z+9NU9+spahfVrSrUXDoCOJRL3XF2/mP19sZPR5Hbi4R1Gt1BItij2jMLM7C92/+rjXHizLTt19RKgZqre7D3X3zaHnt4SKBO6+1t37hG493H1yWfYZaROGdCO+ThzjZqSQl1/pBnGJVKjU7fsYPyOFM9o15o5LugQdR06gpKanawrdH3/ca5dGIEul1rheTSYO7c6STXv41//WBx1HJGplHc7lpv8spE5cLH/9YX/iYkvTAi5BKuk3ZMXcL+qxAMP6tOT8zs145J1VbN5zMOg4IlHH3bnn1aWkZuznz9f049T42kFHklIoqVB4MfeLeiwUTO/xwJU9cYeJmt5D5Fte+GoTMxZt5taLOnFOJw0nryxKKhR9zGyvme0DeofuH3ncq4LyVTptmtTlNxd35v2V23krZWvQcUSixtLNmUx6Yxnndkrg5gs7nfgNEjWKLRTuHuvuDd29gbvXCN0/8liTw5fgx4Pa0atVPJPeWEZmVk7QcUQCtzc7h19OX0iTujX50w/6Ehuj1uvKRL1IEVAjNoaHrurF7qzDTJmt6T2kenN37nhpCem7DzJ1ZD+a1q8VdCQJkwpFhPRsFc/PzmnP819u4ou1O4OOIxKYf3y2jneWbWPcpV1JanfCSR0kCqlQRNBtgzvTpkkd7p6h6T2kelqwYRdT3l7Jxd1P4WfnVssVlKsEFYoIqlOzYHqPtTsOMO3D1KDjiFSoXQcOM3b6Ilo2qsMjV/fRIkSVmApFhJ3bqRlX9WvFEx+nsXrbvqDjiFSI/HznthcXs/PAYaaN6k98HY1/qcxUKCrAhMu6Ub9WDca9kky+pveQamDqh6l8sjqDSUO707NVfNBxpIxUKCpA0/q1uPfy7izcuIfn5m0IOo5IRH2euoM/vreaK/u2ZOSZbYOOI+VAhaKCDO/XinM7JfDw7FVszSzrkuMi0Wnb3mxufWERic3qM3l4L/VLVBEqFBXEzJh8ZS9y8/OZ+HrULashUma5efncPH0RBw7l8cSo/tSrdcJVDKSSUKGoQG2b1uVXgzszZ/k2Zi/9Oug4IuXqkTmr+HL9Lh66qhedTmkQdBwpRyoUFeyn57Sne4uGTHx9GXuzNb2HVA3vLt/G3z9ey8gBbbmyX6ug40g5U6GoYDViY5gyohc79h/i4be/tQKsSKWzaVcWv/nvYnq2asjEy7sHHUciQIUiAL1bN+KGs9vz3LyNfLV+V9BxRE7aodw8fjl9IQ5MG3k6teNig44kEaBCEZBff7czrRrVYfyMFA7lanoPqZwemLmC5PRMHr26D22b1g06jkSICkVA6tWqwQPDe5K6fT9PfJQWdByRsL2xZAv//mIDN57bnkt6nBp0HIkgFYoAXdClOcP6tGTah2mkbtf0HlJ5pG7fz7hXkkk6rTF3Xto16DgSYSoUAZs4tDt1asYyfkaKpveQSiHrcC6/eG4BteNi+evIfsTF6s9IVaffcMAS6tdiwmXd+Gr9bl74alPQcURK5O7c89pS1mzfz5+v6UuL+DpBR5IKoEIRBa4+vTUDOzTlobdXsH2vpveQ6PXiV5uYsXAzt1zYiXM7NQs6jlQQFYooYGY8eFUvDuXmc9+by4KOI1KkZVsymfjGMs7pmMAtF3UKOo5UIBWKKNE+oR63XtSJt1K28u7ybUHHETnG3uwcfvHcQhrXjeNP1/QlNkaT/VUnKhRRZPR5Heh6agPufW0p+zS9h0QJd+fOl5JJ332QqSP7k1C/VtCRpIKpUESRuNgYHrqqF9v2ZfPoO6uCjiMCwD8/X8/sZVu569IunNGuSdBxJAAqFFGmX9vGXD+wHf/6YgMLNuwOOo5Ucws27Oaht1bw3e6ncOO5HYKOIwFRoYhCt1/ShRYNa3P3jBQO5+YHHUeqqV0HDjN2+kJaNKrNo1f30SJE1ZgKRRSqX6sGv7uiJ6u27ePJTzS9h1S8/HznthcXs3P/YaaNPJ34OnFBR5IAqVBEqcHdT+GyXi34yweprM3YH3QcqWYe/zCVT1ZnMHFod3q1jg86jgRMhSKKTRrWnVo1Yhg/IwV3Te8hFWNu6g7++N5qrujbklED2gYdR6JAIIXCzO43s2QzW2xmc8ysZTHbNTKzl81spZmtMLOBFZ01SM0b1ObuId2Yt24X/52v6T0kMv72cRpz03YAsG1vNre8sIhT42uT2Ky++iUECO6M4hF37+3ufYGZwMRitvszMNvduwJ9gBUVlC9q/CCpDWe2b8LkWSvI2Hco6DhSBfVuHc/Y6Yv4dE0GNz+/iL0HczlwKI+kdo2DjiZRIpBC4e57Cz2sB3yrXcXMGgLnAf8Iveewu++pkIBRJCbGeOiqXmTn5PNbTe8hETAoMYGpI/tx47/m8+W6XcTVMJ64tj+DEhOCjiZRIrA+CjObbGabgFEUfUbRAcgAnjazRWb2lJnVq9CQUSKxWX3GXtiRmclf88FKTe8h5WvdjgM89ek6snMKhmL/9Oz2KhJyjIgVCjN7z8yWFnG7AsDdJ7h7G+A5YGwRH1ED6A884e79gAPAuBL2N9rM5pvZ/IyMjAgcUbDGnJ9Ip+b1ufe1ZRw4lBt0HKkC9h/K5aG3V3DxHz9mbtoO6taM5ZcXJPKfeRuP9lmIQAQLhbsPdveeRdxeP27T6cCIIj4iHUh393mhxy9TUDiK29+T7p7k7knNmlW96Y9r1ohhyohebMk8yKNzNL2HnLz8fGfGwnQuePQj/v7xWgYmNqV2XCxPXZ/EHZd0ZerIfoydvkjFQo4KatRT4TmKhwErj9/G3bcCm8ysS+ipi4DlFRAvap1+WhOuHXAaz8xdz+JNe4KOI5VQcvoevv+3ufz6v0to2agOr/5iEIMSE5g26ps+iSN9FsnpmQGnlWhhQYzPN7NXgC5APrABGOPum0PDZJ9y9yGh7foCTwE1gbXADe5+wgmQkpKSfP78+ZGKH6h92TkMfOgDGteN44Pbv3N0Gcq5aTtITs9kzPmJASeUaLRj/yEemb2K/y7YRNN6tbjr0i6M6N+aGE0XLiFmtsDdk4p6rUZFhwFw96KamnD3LcCQQo8XA0UGr64a1I5j9Hkd+MO7q7n3taVMGdGbuWk7GDt9EVNH9gs6nkSZnLx8/vW/DfzpvdUcPJzHjed24OYLO9KgtqbkkNILpFBI2dxyUSc+XZPBC19tIi42hlkpXzN1ZD+NVJFjfLomg9++uZzU7fs5r3MzJl7enY7N6wcdSyohTeFRSU0d2Z+asca/v9hAvzaNGNihadCRJEps3JnF6H/N50f/+JKcvHyeui6JZ284Q0VCTprOKCqptIz91KlZg4Sasby/cjuX/eUzHh/Vn/YJ1fJSEwGyDucy7cM0nvx0LTVijDsv7cJPz2lPrRqxQUeTSk6FohI60ifxxLX9Oat9Uya/tZx/fraei//wMbd9tzOjz+twtJNbqj53583kr3norRV8nZnNlX1bMu573Tg1vnbQ0aSKCGTUU6RV5VFPUDCJW+/W8cf0ScxK3sKf31/D6m376XpqA6aM6E3fNo2CCykVYtmWTH77xnK+XL+Lnq0act/QHiRpuVI5CSWNelKhqGLeWbaVia8vJWPfIa4f1I7bL+5CvVo6caxqdh04zGNzVvH8lxtpVLcmd1zShf+X1IZYDXeVkxR1w2Mlci7pcSoDE5vy+9krefrz9cxZto0HruzJBV2bBx1NykFuXj7Tv9zIY3NWs/9QLtcNbMevBncmvq6Gu0rk6IyiCpu/fhfjZqSQun0/Q/u0ZNLQ7iTUrxV0LDlJ/0vbyW/fXMbKrfs4u2NTJg3tQedTGgQdS6oINT1VY4dy83jiozSmfZhGnZqxTLisG1ef3loL0lQim/cc5MFZK5iV8jWtG9fhnsu6cUmPU/U7lHKlQiGkbt/HuFdSmL9hN2d3bMrkK3vRTkNpo1p2Th5//3gtT3ycCsAvvtOR0ed1oHachrtK+VOhEKBg1tDpX27k4bdXcjgvn9sGd+Zn57bXUNoo4+7MXrqVB2atYPOeg1zWuwV3D+lGq0Z1go4mVZgKhRxja2Y2k95YyjvLttGtRUMeHtGL3q0bBR1LgFVb9/HbN5cxN20nXU9twKShPRiYqKvuJfJUKKRIs5cWDKXdsf8QN5zdnl9/t7OG0gYkMyuHP763mn9/sYH6tWpw+8Wd+eGZbamhsz2pIBoeK0W6tOepDOrYlIffXsk/PltX0NwxvCcXdNFQ2oqSl++8+NUmHnlnJZkHcxg14DR+/d3ONK5XM+hoIkfpjEIA+Gr9Lsa9kkxaxgGG9WnJRA2ljbj563cx6Y1lLNuylzPbN+G+oT3o3rJh0LGkmlLTk5TKodw8pn2YxrSPUqlXqwYThnTj+xpKW+62Zmbz0NsreH3xFlrE1+buId24vHcL/TtLoFQoJCxrtu1j3IwUFoSG0j44vBenNdVQ2rLKzsnjH5+t4/EPU8nNd35+Xgdu+k4idWuqBViCp0IhYcvPd54LDaXN0VDaMnF33luxnQdmLWfDziwu6XEK91zWnTZN6gYdTeQoFQo5aVszs5n4+lLmLNdQ2pORun0/v5u5nE9WZ9CxeX3uG9qDczppJUKJPioUUmazl37NxNeXHR1K+5uLO6vJpAR7s3P46/trePrz9dSpGcuvBnfmRwNP0xmZRC0Nj5Uyu7RnCwYmJvDw7G+G0k4e3pPvaCjtMfLznZcXpvP72SvZeeAwP0hqw+2XdNEIMqnUdEYhYfty3S7GzygYSntF35ZMvLw7TfWHkEUbd3Pfm8tZsmkP/ds24rfDetKrdXzQsURKRU1PUu4O5ebx+IdpPBEaSnvPZd0Z0b9VtRjiefwKg9v3ZfOb/y7h0zU7aN6gFuOHdOXKvtXj30KqDhUKiZjV2/Yx7pVkFm7cwzkdE5g8vGeVH0p7ZM3yP/2gLyu37uUP764mOyefYX1a8uBVvaivaVCkElKhkIjKz3eem7eBh2evIjc/NJT2nPZVYp4id2dPVg7puw+yaXcW6buzSN99kJT0TJak7yHfIS7WeHhEb67q3zrouCInTZ3ZElExMcaPBrZjcPdTmPj6Mqa8vZI3l2xhylW9o76N3t3JPFhQCI4UgfTdB9m0K+vocwcO5x3znoa1a9C6cV3aJdRjbcYBbjo/UUVCqjSdUUi5OrKWwsQ3lrFz/yF+ek57fvXdYIfSFhSCLDbtOrYYpO/OYvPug+w7lHvM9vVr1aB14zq0aVKX1o3r0LrxkZ8F9+PrxB1tfrp2QFv+M28jU0f2O9pnIVIZ6YxCKoyZ8b1eLRjUMYEpb6/k/z5dx9tLt/Lg8F6c17lZRPa5NzuH9OOKwKbd35wR7Ms+thDUqxl7tAic1aHpMcWgTeO6NKxTo8SO6CNF4khxOCux6TGPRaoanVFIRM1bu5PxM1JYu+MAPVo25OYLO3JpzxZHX5+btoPk9EzGnJ9Y7GfsP5RbxBnBN0Uh82DOMdvXrRl79I9/m2POCAp+NqobV6YRScePeirtcYhEM3VmS6Cyc/J4/MNUHv8wFXcY851E7rykC/9bu5Ox0xfx6NW9adWo7jFFYNOug6TvKXi8J+vYQlA7LoY2jY9vFqpLmyYFPxuXsRCIVEcqFBIVVm3dxy+nLyB1+wGaN6jFzgOHqVsz9ltNQ7VqxHzrj3/hotC0Xk0VApFypj4KiQpdTm3AO7edz0+e+YqPV2fQtkldzumU8K1mooT6KgQi0USFQirUvHU7SdmcyS0XduQ/8zZyee8W6gAWiXKV/4ooqTQKjxb69cVdmDqyH2OnL2Ju2o6go4lICQIpFGZ2v5klm9liM5tjZi2L2KZL6PUjt71mdlsAcaWcJKdnHjOEdFBiAlNH9iM5PTPgZCJSkkA6s82sobvvDd2/Beju7mNK2D4W2AwMcPcNJ/p8dWaLiISnpM7sQM4ojhSJkHrAiarVRUBaaYqEiIiUr8A6s81sMnAdkAlccILNrwGeP8HnjQZGA7Rt27Y8IoqICBFsejKz94BTi3hpgru/Xmi78UBtd59UzOfUBLYAPdx9W2n2raYnEZHwBHIdhbsPLuWm04FZQJGFAvgesLC0RUJERMpXUKOeOhV6OAxYWcLmP+QEzU4iIhI5QY16egXoAuQDG4Ax7r45NEz2KXcfEtquLrAJ6ODupR5DaWYZoc+NhASgKgz8rwrHoWOIHlXhOKr7MZzm7kVO8Vwl53qKJDObX1w7XmVSFY5DxxA9qsJx6BiKpyuzRUSkRCoUIiJSIhWK8D0ZdIByUhWOQ8cQParCcegYiqE+ChERKZHOKEREpEQqFCIiUiIVihKY2T/NbLuZLS30XBMze9fM1oR+Ng4y44kUcwxXm9kyM8s3s0oxHLCY43jEzFaGpqx/1cwaBRjxhIo5hhNOuR9NijqGQq/dbmZuZlG/ElUxv4v7zGxzoaUNhgSZ8USK+12Y2c1mtir0//jvy2NfKhQlewa49LjnxgHvu3sn4P3Q42j2DN8+hqXAVcAnFZ7m5D3Dt4/jXaCnu/cGVgPjKzpUmJ7h28fwiLv3dve+wExgYkWHCtMzfPsYMLM2wHeBjRUd6CQ9QxHHAfzR3fuGbm9VcKZwPcNxx2BmFwBXAL3dvQfwaHnsSIWiBO7+CbDruKevAJ4N3X8WuLIiM4WrqGNw9xXuviqgSCelmOOY4+65oYdfAK0rPFgYijmGcKfcD1Qx/08A/BG4kyjPf0QJx1FpFHMMNwFT3P1QaJvt5bEvFYrwneLuXwOEfjYPOI8U+AnwdtAhToaZTTazTcAoov+M4lvMbBiw2d2XBJ2lHIwNNQX+M9qblYvRGTjXzOaZ2cdmdkZ5fKgKhVR6ZjYByAWeCzrLyXD3Ce7ehoL8Y4POE47QfGwTqIQFrghPAIlAX+Br4LFA05ycGkBj4CzgDuC/ZmZl/VAVivBtM7MWAKGf5XJqJyfHzK4HLgdGeeW/KGg6MCLoEGFKBNoDS8xsPQXNfwvNrKi1aKKau29z9zx3zwf+Dzgz6EwnIR2Y4QW+pGDi1TIPLlChCN8bwPWh+9cDr5ewrUSQmV0K3AUMc/esoPOcjDCn3I867p7i7s3dvZ27t6PgD1V/d98acLSwHfkCGDKcgkEflc1rwIUAZtYZqEl5zIjr7roVc6NgHYyvgRwK/gf4KdCUgtFOa0I/mwSd8ySOYXjo/iFgG/BO0DlP8jhSKZiGfnHo9regc57EMbxCwR+kZOBNoFXQOcM9huNeXw8kBJ3zJH8X/wZSQr+LN4AWQec8iWOoCfwn9N/UQuDC8tiXpvAQEZESqelJRERKpEIhIiIlUqEQEZESqVCIiEiJVChERKREKhQiIlIiFQqRSsbMfmZmKWZ2Q+hxNzP7m5m9bGY3BZ1Pqh4VCpHKZwQFV99eDUdnAx4D/D+gUqwvIpWLCoVUS2b2kZldctxzt5nZtBLesz/yyY7ZXzszO2hmi497aR4Fc4zNK7TtMOAzCmYLwMzqhBbfOVwZFhKS6KZCIdXV88A1xz13Tej5aJLmBYsaFVYf+BSIP/KEu7/h7oMomKocdz8Yet+WCsopVZgKhVRXLwOXm1ktKPj2DrQEPjOzX5vZ0tDttuPfGPqmX3gJzdvN7L5Cr600s6dC73/OzAab2eeh5XPPDG13rZl9GfrW/3cziy1NaDOLoWCuruuA4WYWa2bfMbO/mNnfgWhflU0qIRUKqZbcfSfwJd8sJXkN8CLQH7gBGEDBnP43mlm/MD++I/BnoDfQFRgJnAPcDtxtZt2AHwBnh7715xE6EyiFC4Fkd18PLKFg0reP3P0Wd/+5uz8eZlaRE1KhkOqscPPTkWanc4BX3f2Au+8HZgDnhvm567xg+u18YBkFa6w7BTOTtgMuAk4Hvgr1P1wEdCjlZ4/im+ax5yl9gRE5aTWCDiASoNeAP5hZf6COuy80s/NK8b5cjv2SVfu41w8Vup9f6HE+Bf/PGfCsu48PJ6yZ1aFgzfaLzOz3oQwNzKyOux8M57NEwqEzCqm2QmcMHwH/5Jtv6Z8AV5pZXTOrR0F/wKfHvXUb0NzMmob6OC4Pc9fvA983s+YAZtbEzE4rxfuGAW+7e1svWCioLQVrWAwNc/8iYVGhkOrueaAP8AKAuy8EnqGg/2Ie8JS7Lyr8BnfPAX4Xen0mYa5K5+7LgXuAOWaWDLwLtCj5XUBBM9Orxz33KnBtOPsXCZcWLhKJUqGRWDPdvWcZPmM9kOTuZV8OU6otnVGIRK88IL6IC+5O6MgFd0AcBX0jIidNZxQiIlIinVGIiEiJVChERKREKhQiIlIiFQoRESmRCoWIiJRIhUJEREqkQiEiIiVSoRARkRL9fyiklMCREhJcAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"name":"python3","display_name":"Python 3","language":"python"},"language_info":{"name":"python","version":"3.7.10","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"}},"nbformat":4,"nbformat_minor":4} \ No newline at end of file