WorkshopPotentialEAM.ipynb 88.7 KB
Newer Older
1
2
{
 "cells": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
  {
   "cell_type": "markdown",
   "id": "ranking-inside",
   "metadata": {},
   "source": [
    "# Fitting an EAM potential\n",
    "EAM potentials are pair functionals. \n",
    "In a generalised form they are equal to Finnis-Sinclair, effective medium theory or glue potentials. Their total energy can be written as\n",
    "\n",
    "$E = \\sum_{ij}V(r_{ij}) + \\sum_i F(\\rho_i)$\n",
    "\n",
    "with\n",
    "\n",
    "$\\rho_i = \\sum_j \\rho(r_{ij})$\n",
    "\n",
    "The original functions for V, $\\rho$ and F were derived from different theories, but they can be chosen freely.\n",
    "\n",
    "Fitting is done using atomicrex https://atomicrex.org. In the fit process an objective or cost function is minimized. The objective function is defined as\n",
    "\n",
    "$\\chi^2 = \\sum_i w_i r_i$\n",
    "\n",
    "where $w_i$ is a weight and $r_i$ is a residual that describes the difference to target values. This residual can be defined in different ways, so it is not possible to simply compare the residual for different fitting processes or codes. A more in depth explanation and some examples can be found on https://atomicrex.org/overview.html#objective-function."
   ]
  },
27
28
29
  {
   "cell_type": "code",
   "execution_count": 1,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
30
   "id": "honey-element",
31
32
33
34
35
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
36
    "import matplotlib.pyplot as plt\n",
37
    "\n",
38
    "from pyiron import Project, ase_to_pyiron"
39
40
   ]
  },
Niklas Leimeroth's avatar
Niklas Leimeroth committed
41
42
43
44
45
46
47
48
  {
   "cell_type": "markdown",
   "id": "governing-madagascar",
   "metadata": {},
   "source": [
    "### Import the training data"
   ]
  },
49
50
51
  {
   "cell_type": "code",
   "execution_count": 2,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
52
   "id": "constant-respect",
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>id</th>\n",
       "      <th>status</th>\n",
       "      <th>chemicalformula</th>\n",
       "      <th>job</th>\n",
       "      <th>subjob</th>\n",
       "      <th>projectpath</th>\n",
       "      <th>project</th>\n",
       "      <th>timestart</th>\n",
       "      <th>timestop</th>\n",
       "      <th>totalcputime</th>\n",
       "      <th>computer</th>\n",
       "      <th>hamilton</th>\n",
       "      <th>hamversion</th>\n",
       "      <th>parentid</th>\n",
       "      <th>masterid</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
96
       "      <td>759</td>\n",
97
98
99
100
101
       "      <td>finished</td>\n",
       "      <td>None</td>\n",
       "      <td>df1_A1_A2_A3_EV_elast_phon</td>\n",
       "      <td>/df1_A1_A2_A3_EV_elast_phon</td>\n",
       "      <td>/home/niklas/pyiron/projects/</td>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
102
       "      <td>pyiron_potentialfit/datasets/imported_datasets/Cu_database/</td>\n",
103
104
105
106
       "      <td>2021-02-08 10:33:52.341472</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>zora@cmti001#1</td>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
107
       "      <td>TrainingContainer</td>\n",
108
109
110
111
112
113
       "      <td>0.4</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
114
       "      <td>760</td>\n",
115
116
117
118
119
       "      <td>finished</td>\n",
       "      <td>None</td>\n",
       "      <td>df3_10k</td>\n",
       "      <td>/df3_10k</td>\n",
       "      <td>/home/niklas/pyiron/projects/</td>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
120
       "      <td>pyiron_potentialfit/datasets/imported_datasets/Cu_database/</td>\n",
121
122
123
124
       "      <td>2021-02-08 10:33:53.993230</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>zora@cmti001#1</td>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
125
       "      <td>TrainingContainer</td>\n",
126
127
128
129
130
131
       "      <td>0.4</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
132
       "      <td>761</td>\n",
133
134
135
136
137
       "      <td>finished</td>\n",
       "      <td>None</td>\n",
       "      <td>df2_1k</td>\n",
       "      <td>/df2_1k</td>\n",
       "      <td>/home/niklas/pyiron/projects/</td>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
138
       "      <td>pyiron_potentialfit/datasets/imported_datasets/Cu_database/</td>\n",
139
140
141
142
       "      <td>2021-02-08 10:33:54.435308</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "      <td>zora@cmti001#1</td>\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
143
       "      <td>TrainingContainer</td>\n",
144
145
146
147
148
149
150
151
152
153
       "      <td>0.4</td>\n",
       "      <td>None</td>\n",
       "      <td>None</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    id    status chemicalformula                         job  \\\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
154
155
156
       "0  759  finished            None  df1_A1_A2_A3_EV_elast_phon   \n",
       "1  760  finished            None                     df3_10k   \n",
       "2  761  finished            None                      df2_1k   \n",
157
158
159
160
161
162
       "\n",
       "                        subjob                    projectpath  \\\n",
       "0  /df1_A1_A2_A3_EV_elast_phon  /home/niklas/pyiron/projects/   \n",
       "1                     /df3_10k  /home/niklas/pyiron/projects/   \n",
       "2                      /df2_1k  /home/niklas/pyiron/projects/   \n",
       "\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
163
164
165
166
167
168
169
170
171
       "                                                       project  \\\n",
       "0  pyiron_potentialfit/datasets/imported_datasets/Cu_database/   \n",
       "1  pyiron_potentialfit/datasets/imported_datasets/Cu_database/   \n",
       "2  pyiron_potentialfit/datasets/imported_datasets/Cu_database/   \n",
       "\n",
       "                   timestart timestop totalcputime        computer  \\\n",
       "0 2021-02-08 10:33:52.341472     None         None  zora@cmti001#1   \n",
       "1 2021-02-08 10:33:53.993230     None         None  zora@cmti001#1   \n",
       "2 2021-02-08 10:33:54.435308     None         None  zora@cmti001#1   \n",
172
       "\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
173
174
175
176
       "            hamilton hamversion parentid masterid  \n",
       "0  TrainingContainer        0.4     None     None  \n",
       "1  TrainingContainer        0.4     None     None  \n",
       "2  TrainingContainer        0.4     None     None  "
177
178
179
180
181
182
183
184
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
185
    "data_pr = Project(\"../../datasets/imported_datasets/\")\n",
186
    "if len(data_pr.job_table()) == 0:\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
187
    "    data_pr.unpack(\"../../datasets/Cu_training_archive\")\n",
188
189
190
191
192
193
    "data_pr.job_table()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
194
   "id": "dirty-measurement",
195
196
197
198
199
200
201
202
203
204
   "metadata": {},
   "outputs": [],
   "source": [
    "data_job = data_pr.load(\"df1_A1_A2_A3_EV_elast_phon\")\n",
    "df = data_job.to_pandas()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
205
   "id": "referenced-julian",
206
207
208
209
210
211
212
213
214
215
216
   "metadata": {},
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      "Are you sure you want to delete all jobs from 'WorkshopPotential'? y/(n) y\n"
     ]
    }
   ],
   "source": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
217
218
219
220
221
222
223
224
225
226
    "pr = Project(\"WorkshopPotential\")\n",
    "pr.remove_jobs()"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "voluntary-limit",
   "metadata": {},
   "source": [
    "### Create an atomicrex job"
227
228
229
230
231
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
232
   "id": "entertaining-jacksonville",
233
234
235
   "metadata": {},
   "outputs": [],
   "source": [
236
    "job = pr.create_job(pr.job_type.Atomicrex, \"PotentialDF1\")"
237
238
239
240
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
241
   "id": "raising-clear",
242
243
244
245
246
247
248
249
250
   "metadata": {},
   "source": [
    "### Add the structures that should be fitted.\n",
    "It is possible to assign different weights to certain structures or properties, depending on what should be investigated using the potential. Here every structure has the same weight, but the force vector with N*3 values is normalized to have the same total weight as the single value energy. Therefore it is divided by the number of atoms. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
251
   "id": "located-individual",
252
253
254
255
256
257
258
259
260
261
262
263
   "metadata": {},
   "outputs": [],
   "source": [
    "for id, row in df.iterrows():\n",
    "    struct = ase_to_pyiron(row.atoms)\n",
    "    s = job.structures.add_structure(struct, f\"id{id}\", relative_weight=1)\n",
    "    s.fit_properties.add_FitProperty(\"atomic-energy\", target_value=row.energy/row.number_of_atoms, relative_weight=1)\n",
    "    s.fit_properties.add_FitProperty(\"atomic-forces\", target_value=row.forces, relative_weight=1/row.number_of_atoms)"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
264
   "id": "angry-leader",
265
266
267
268
269
270
271
272
273
   "metadata": {},
   "source": [
    "### Define the type of potential and necessary functions.\n",
    "In this case an eam potential is fitted."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
274
   "id": "functional-formation",
275
276
277
278
279
280
281
282
   "metadata": {},
   "outputs": [],
   "source": [
    "job.potential = job.factories.potentials.eam_potential()"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
283
   "id": "realistic-karaoke",
284
285
286
287
288
   "metadata": {},
   "source": [
    "It is necessary to define a pair potential, an electronic density function and an embedding function.\n",
    "For all of those it is possible to choose between different functional forms.\n",
    "Classic pair potentials are physically motivated and  have a very limited number of paramaters that are derived from a experimentally measured quantity.\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
289
    "Splines or polynomials offer more flexibility, but can lead to unphysical oscillations or overfitting. Compared with the machine learning potentials shown later the number of parameters is very low no matter which functions you choose and the problem is highly non linear.\n",
290
    "\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
291
    "In this case a generalized morse function is used for the pair interaction. It has the form\n",
292
    "\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
293
294
295
296
297
298
    "$(\\frac{D_0}{S-1}exp(-\\beta \\sqrt{2S}(r-r_0))-\\frac{D_0S}{S-1}exp(-\\beta\\sqrt{2/S}(r-r_0)))+\\delta $\n",
    "\n",
    "The parameters in the morse potential can be derived from phyiscal quantities, but in this case they are just educated guesses. For example $r_0$ is the equilibrium distance of a dimer. The nearest neighbor distance in fcc Cu is about 2.5 $\\mathring A$ so it is taken as initial value.\n",
    "In the case of analytic functions the initial parameter choices should not matter too much, since the functional form is constrained.\n",
    "\n",
    "The electronic density and embedding function will be splines. Depending on the properties that are calculated other functional forms could give better results. The inital parameters require more testing and hand tuning than the parameters of analytic functions."
299
300
301
302
303
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
304
   "id": "interpreted-orange",
305
306
307
   "metadata": {},
   "outputs": [],
   "source": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
308
    "V = job.factories.functions.morse_B(identifier=\"V_CuCu\", D0=0.35, r0=2.5, beta=2, S=2, delta=0)"
309
310
311
312
313
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
314
   "id": "mathematical-gasoline",
315
316
317
318
   "metadata": {},
   "outputs": [],
   "source": [
    "V.parameters.D0.min_val = 0\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
319
320
321
322
323
    "V.parameters.D0.max_val = 2\n",
    "V.parameters.r0.min_val = 1.5\n",
    "V.parameters.r0.max_val = 3.0\n",
    "V.parameters.S.min_val = 1.1\n",
    "V.parameters.S.max_val = 10.0\n",
324
325
326
327
328
329
330
331
    "V.parameters.delta.min_val = -1\n",
    "V.parameters.delta.max_val = 1\n",
    "V.parameters.beta.min_val = 0.1\n",
    "V.parameters.beta.max_val = 10"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
332
   "id": "written-commission",
333
334
335
336
337
338
339
340
   "metadata": {},
   "source": [
    "Additionally a screening function needs to be defined for the morse potential"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
341
   "id": "discrete-terminology",
342
343
344
345
346
347
348
349
   "metadata": {},
   "outputs": [],
   "source": [
    "V.screening  = job.factories.functions.exp_A_screening(identifier=\"V_cutoff\", cutoff=7)"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
350
   "id": "wireless-parts",
351
352
   "metadata": {},
   "source": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
353
    "The electron density is chosen to be a spline function. The cutoff has to be defined. Derivatives left and right are optional, they default to 0. For the right cutoff this is fine, since the forces should smoothly go to 0. For the left this is not necessarily the best choice, since the function value should increase at very close distances. Very large absolute values will lead to osciallations and should be avoided."
354
355
356
357
358
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
359
   "id": "authentic-expression",
360
361
362
363
364
365
366
367
   "metadata": {},
   "outputs": [],
   "source": [
    "rho = job.factories.functions.spline(identifier=\"rho_CuCu\", cutoff=7, derivative_left=-1)"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
368
   "id": "bored-afternoon",
369
370
371
372
373
374
375
376
377
   "metadata": {},
   "source": [
    "For a spline function it is necessary to define node points. They can be equally spaced or sampled with higher density around turning points, f.e. the first neighbor distance.\n",
    "Too few nodepoints mean low flexibilty, too many lead to overfitting. This requires some testing to find an optimal choice."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
378
   "id": "hidden-wildlife",
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0.5 , 1.58, 2.67, 3.75, 4.83, 5.92, 7.  ])"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "rho_nodes = np.linspace(0.5, 7.0, 7).round(2)\n",
    "rho_nodes"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
399
   "id": "binary-devil",
400
401
402
403
404
405
406
407
   "metadata": {},
   "source": [
    "The nodes need initial values. The electron density should be proportional to $e^{-r}$, so this function is chosen to calculate them."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
408
   "id": "comparative-brush",
409
410
411
412
413
414
415
416
417
   "metadata": {},
   "outputs": [],
   "source": [
    "decaying_exp = lambda r: np.exp(-r)\n",
    "rho_initial = decaying_exp(rho_nodes)"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
418
   "id": "gentle-infrastructure",
419
420
421
422
423
424
425
426
427
428
   "metadata": {},
   "source": [
    "Additionally it is a good idea to define limits for the node points. This is optional for local minimizers, but the fit can quickly run away without limits. Global optimizers typically require them to constrain the sampled space.\n",
    "\n",
    "A density can't be negative so the lower limit is set to 0. The upper limit is chosen to be 3 times the initial values. These choices aswell as the choice for $e^{-r}$ as initial values are somewhat arbitrary, but don't matter much. The electron density from single atoms does not directly influence the calculated energies and forces, instead the summed up density at some place is used in the embedding function, so the final numerical values are an interplay between electron density and embedding function. Since the latter will also be a spline function it can only be defined for a certain range of rho values as node points. Therefore it is better to limit the range of electron density values and define larger limits for the embedding function instead. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
429
   "id": "funny-trinidad",
430
431
432
433
434
435
436
437
438
439
   "metadata": {},
   "outputs": [],
   "source": [
    "rho_mins = np.zeros((len(rho_nodes)))\n",
    "rho_maxs = 3*rho_initial.round(6)\n",
    "rho.parameters.create_from_arrays(rho_nodes, rho_initial, min_vals=rho_mins, max_vals=rho_maxs)"
   ]
  },
  {
   "cell_type": "raw",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
440
   "id": "promising-draft",
441
442
443
444
445
446
447
448
   "metadata": {},
   "source": [
    "Finally the last node point at the cutoff range is set to 0 and fitting is disabled to prevent a discontinuous change of energy at the cutoff."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
449
   "id": "mexican-absence",
450
451
452
453
454
455
456
457
458
   "metadata": {},
   "outputs": [],
   "source": [
    "rho.parameters[\"node_7.0\"].start_val = 0\n",
    "rho.parameters[\"node_7.0\"].enabled = False"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
459
   "id": "standard-relative",
460
461
462
463
464
465
466
467
468
469
470
   "metadata": {},
   "source": [
    "$-\\sqrt(\\rho)$ can be used as initial guess for the embedding energy, which is taken from second moment approximation tight binding. \n",
    "The node points have to be chosen in a range compatible to the electron density. This can be estimated by calculating it for a densely packed structure.\n",
    "Alternatively atomicrex writes the maximum electron density of all structures to the output. This can be used as a hint for the node points for consequent fits.\n",
    "Everything else is similar to the electron density."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
471
   "id": "large-rating",
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
   "metadata": {},
   "outputs": [],
   "source": [
    "F = job.factories.functions.spline(identifier=\"F_CuCu\", cutoff=5)\n",
    "F_nodes = np.linspace(0.0, 5.0, 7).round(2) #9 is worse 11 is worse 7 is best\n",
    "F_init = -np.sqrt(F_nodes)\n",
    "F_maxs = np.zeros(len(F_nodes))\n",
    "F_mins = -np.ones(len(F_nodes))*5\n",
    "F.parameters.create_from_arrays(F_nodes, F_init, F_mins, F_maxs)\n",
    "F.parameters[\"node_0.0\"].enabled=False\n",
    "F.parameters[\"node_0.0\"].start_val = 0\n",
    "F.parameters[\"node_5.0\"].enabled=False\n",
    "F.parameters[\"node_5.0\"].start_val = 0"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
489
   "id": "several-mercy",
490
491
492
493
494
495
496
497
   "metadata": {},
   "source": [
    "The functions have to be assigned to the potential"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
498
   "id": "heavy-acoustic",
499
500
501
502
503
504
505
506
507
508
   "metadata": {},
   "outputs": [],
   "source": [
    "job.potential.pair_interactions[V.identifier] = V\n",
    "job.potential.electron_densities[rho.identifier] = rho\n",
    "job.potential.embedding_energies[F.identifier] = F"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
509
   "id": "alien-chancellor",
510
511
512
513
514
515
516
517
518
519
   "metadata": {},
   "source": [
    "### Define fitting procedure\n",
    "Finally a few parameters need to be set that influence the fitting process.\n",
    "The minimization can be done with different algorithms. Atomicrex itself implements the BFGS algorithm. Additionally the algorithms from the nlopt library can be used."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
Niklas Leimeroth's avatar
Niklas Leimeroth committed
520
   "id": "enormous-segment",
521
522
523
524
525
526
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
527
      "The job PotentialDF1 was saved and received the ID: 819\n"
528
529
530
531
532
533
     ]
    },
    {
     "data": {
      "application/json": {
       "error": "None",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
534
535
       "iterations": "array([   1,    2,    3, ..., 1998, 1999, 2000], dtype=uint32)",
       "residual": "array([1.39371e+03, 1.39371e+03, 1.39371e+03, ..., 1.52231e-01,\n       1.52231e-01, 1.52231e-01])"
536
537
      },
      "text/plain": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
538
539
       "Output({'error': None, 'residual': array([1.39371e+03, 1.39371e+03, 1.39371e+03, ..., 1.52231e-01,\n",
       "       1.52231e-01, 1.52231e-01]), 'iterations': array([   1,    2,    3, ..., 1998, 1999, 2000], dtype=uint32)})"
540
541
542
543
544
545
546
547
548
549
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "## Define the atom types of the potential\n",
    "job.input.atom_types.Cu = None\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
550
551
    "## Limited number of steps for the workshop\n",
    "job.input.fit_algorithm = job.factories.algorithms.ar_lbfgs(max_iter=2000)\n",
552
553
554
555
556
557
    "job.run()\n",
    "job.output"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
   "id": "vanilla-chocolate",
   "metadata": {},
   "source": [
    "Plot the resiudal over steps to see how the calculation converges"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "aging-backing",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x7fdb336c5ee0>]"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWUUlEQVR4nO3dcZBdZ33e8e8jrS2wwWDjtaNIMpI9KiCTEsyOa0pC6TjENiGW2wwZeUjRJJ5RwzgNtM0kVj1T6Ew1Q5omTWhrZwS4iIZgVAJjtQkpHiUpacfGWRsbWxaOZQS2kLAWMwEDRrbkX/+4R9qrvbsr7d7du/a538945577nvfc89PZ9bNn33Pfe1JVSJKGw7KlLkCSNDiGviQNEUNfkoaIoS9JQ8TQl6QhMrLUBZzK+eefX2vXrl3qMiTpReXee+/9dlWNTm1/wYf+2rVrGR8fX+oyJOlFJck3pmt3eEeShoihL0lDxNCXpCFi6EvSEDll6Ce5LcnhJA9Ns+43klSS87vatibZl+SRJFd1tb8pyYPNug8nycL9MyRJp+N0zvQ/Dlw9tTHJGuDtwONdbRuATcClzTa3JFnerL4V2AKsb756XlOStLhOGfpV9UXgO9Os+k/AbwLdH9O5Ebi9qo5U1X5gH3B5kpXAOVV1V3U+1vMTwHX9Fi9Jmpt5jeknuRb4ZlU9MGXVKuCJrucHmrZVzfLU9plef0uS8STjExMT8ymRj/+//ex64OC8tpWktprz5KwkZwE3Az873epp2mqW9mlV1XZgO8DY2Ni8PvD/g//zYZYFrn3Dj89nc0lqpfmc6V8CrAMeSPJ1YDVwX5Ifo3MGv6ar72rgYNO+epr2RfPet13CyDLfnCRJ3eacilX1YFVdUFVrq2otnUC/rKq+BewCNiVZkWQdnQu291TVIeDpJFc079p5D3DHwv0zJEmn43Tesvkp4C7gNUkOJLlhpr5VtQfYCTwM/DlwY1Uda1a/F/gonYu7jwGf77N2SdIcnXJMv6quP8X6tVOebwO2TdNvHHj9HOvrS8182UCShlJrB72d+SVJvVob+pKkXoa+JA0RQ1+ShkirQ7+8jitJJ2lt6PsZnpLUq7WhL0nqZehL0hBpdeg7pC9JJ2tt6MfpWZLUo7WhL0nqZehL0hAx9CVpiLQ69MvZWZJ0ktaGvpOzJKlXa0NfktTL0JekIWLoS9IQaXXoexlXkk7W2tD3Oq4k9Tpl6Ce5LcnhJA91tf1Okq8m+UqSzyV5Zde6rUn2JXkkyVVd7W9K8mCz7sOJ76+RpEE7nTP9jwNXT2m7E3h9Vf194G+BrQBJNgCbgEubbW5JsrzZ5lZgC7C++Zr6mpKkRXbK0K+qLwLfmdL2hao62jy9G1jdLG8Ebq+qI1W1H9gHXJ5kJXBOVd1VnRlTnwCuW6B/wyy1L/YeJOnFZSHG9H8F+HyzvAp4omvdgaZtVbM8tX1aSbYkGU8yPjExMb+qHD2SpB59hX6Sm4GjwCePN03TrWZpn1ZVba+qsaoaGx0d7adESVKXkflumGQz8E7gypr8kJsDwJqubquBg0376mnaJUkDNK8z/SRXA78FXFtVP+xatQvYlGRFknV0LtjeU1WHgKeTXNG8a+c9wB191i5JmqNTnukn+RTwNuD8JAeAD9B5t84K4M7mnZd3V9WvVtWeJDuBh+kM+9xYVceal3ovnXcCvZTONYDPI0kaqFOGflVdP03zx2bpvw3YNk37OPD6OVXXBy/jSlKv1s7IlST1MvQlaYi0PvS9e5YkTWpt6Ds3S5J6tTb0JUm9DH1JGiKGviQNkdaHvtdxJWlSa0M/Ts+SpB6tDX1JUi9DX5KGSOtD3yF9SZrU2tB3cpYk9Wpt6EuSehn6kjREDH1JGiKtD30/ZVOSJrU29L2OK0m9Whv6kqRepwz9JLclOZzkoa6285LcmeTR5vHcrnVbk+xL8kiSq7ra35TkwWbdhxPfVClJg3Y6Z/ofB66e0nYTsLuq1gO7m+ck2QBsAi5ttrklyfJmm1uBLcD65mvqay4KR/QladIpQ7+qvgh8Z0rzRmBHs7wDuK6r/faqOlJV+4F9wOVJVgLnVNVd1bmy+omubRaFf0dIUq/5julfWFWHAJrHC5r2VcATXf0ONG2rmuWp7dNKsiXJeJLxiYmJeZYoSZpqoS/kTnd+XbO0T6uqtlfVWFWNjY6OLlhxkjTs5hv6TzZDNjSPh5v2A8Carn6rgYNN++pp2iVJAzTf0N8FbG6WNwN3dLVvSrIiyTo6F2zvaYaAnk5yRfOunfd0bbOonJslSZNGTtUhyaeAtwHnJzkAfAD4ELAzyQ3A48C7AKpqT5KdwMPAUeDGqjrWvNR76bwT6KXA55uvReM7QiWp1ylDv6qun2HVlTP03wZsm6Z9HHj9nKqTJC0oZ+RK0hAx9CVpiLQ+9Ms5uZJ0QutDX5I0ydCXpCFi6EvSEGl96Ds5S5ImtTb0nZslSb1aG/qSpF6GviQNEUNfkoaIoS9JQ6S1oZ9p79siScOttaEvSepl6EvSEGl96Ds5S5ImtTb0nZwlSb1aG/qSpF6GviQNkb5CP8m/TLInyUNJPpXkJUnOS3Jnkkebx3O7+m9Nsi/JI0mu6r98SdJczDv0k6wCfh0Yq6rXA8uBTcBNwO6qWg/sbp6TZEOz/lLgauCWJMv7K//UvHOWJE3qd3hnBHhpkhHgLOAgsBHY0azfAVzXLG8Ebq+qI1W1H9gHXN7n/mfkdVxJ6jXv0K+qbwL/EXgcOAR8t6q+AFxYVYeaPoeAC5pNVgFPdL3EgaatR5ItScaTjE9MTMy3REnSFP0M75xL5+x9HfDjwNlJfmm2TaZpm3bspaq2V9VYVY2Njo7Ot0RJ0hT9DO/8DLC/qiaq6jngs8A/BJ5MshKgeTzc9D8ArOnafjWd4aBF5eQsSZrUT+g/DlyR5KwkAa4E9gK7gM1Nn83AHc3yLmBTkhVJ1gHrgXv62P+snJwlSb1G5rthVX0pyWeA+4CjwJeB7cDLgJ1JbqDzi+FdTf89SXYCDzf9b6yqY33WL0mag3mHPkBVfQD4wJTmI3TO+qfrvw3Y1s8+JUnz54xcSRoirQ99r+NK0qTWhr53zpKkXq0NfUlSL0NfkoaIoS9JQ6T1oV9OyZWkE1ob+s7IlaRerQ19SVIvQ1+ShkjrQ98RfUma1PrQlyRNMvQlaYgY+pI0RAx9SRoirQ9952ZJ0qTWhn6cnSVJPVob+pKkXoa+JA2R9oe+Y/qSdEJfoZ/klUk+k+SrSfYmeXOS85LcmeTR5vHcrv5bk+xL8kiSq/ovf5baFvPFJelFqt8z/T8A/ryqXgu8AdgL3ATsrqr1wO7mOUk2AJuAS4GrgVuSLO9z/5KkOZh36Cc5B3gr8DGAqnq2qv4O2AjsaLrtAK5rljcCt1fVkaraD+wDLp/v/iVJc9fPmf7FwATw35J8OclHk5wNXFhVhwCaxwua/quAJ7q2P9C09UiyJcl4kvGJiYk+SpQkdesn9EeAy4Bbq+qNwA9ohnJmMN0w+7SXWatqe1WNVdXY6OhoHyVCeSVXkk7oJ/QPAAeq6kvN88/Q+SXwZJKVAM3j4a7+a7q2Xw0c7GP/s3JuliT1mnfoV9W3gCeSvKZpuhJ4GNgFbG7aNgN3NMu7gE1JViRZB6wH7pnv/iVJczfS5/b/AvhkkjOBrwG/TOcXyc4kNwCPA+8CqKo9SXbS+cVwFLixqo71uX9J0hz0FfpVdT8wNs2qK2fovw3Y1s8+58oPXJOkSa2dkeuQviT1am3oS5J6GfqSNEQMfUkaIq0Pfa/jStKk1oa+d86SpF6tDX1JUi9DX5KGSOtDv5ydJUkntDb0HdKXpF6tDX1JUi9DX5KGiKEvSUOk9aHvZVxJmtTa0Pc6riT1am3oS5J6GfqSNEQMfUkaIq0PfSfkStKkvkM/yfIkX07yv5rn5yW5M8mjzeO5XX23JtmX5JEkV/W771MUtqgvL0kvRgtxpv8+YG/X85uA3VW1HtjdPCfJBmATcClwNXBLkuULsH9J0mnqK/STrAZ+DvhoV/NGYEezvAO4rqv99qo6UlX7gX3A5f3sX5I0N/2e6f8+8JvA811tF1bVIYDm8YKmfRXwRFe/A01bjyRbkownGZ+YmOirwHJ6liSdMO/QT/JO4HBV3Xu6m0zTNm0iV9X2qhqrqrHR0dH51TevrSSp3Ub62PYtwLVJ3gG8BDgnyR8BTyZZWVWHkqwEDjf9DwBrurZfDRzsY/+SpDma95l+VW2tqtVVtZbOBdq/qKpfAnYBm5tum4E7muVdwKYkK5KsA9YD98y7cknSnPVzpj+TDwE7k9wAPA68C6Cq9iTZCTwMHAVurKpji7B/SdIMFiT0q+qvgL9qlp8Crpyh3zZg20Ls87R5HVeSTmjtjFznZklSr9aGviSpl6EvSUOk9aHvkL4kTWpt6MfpWZLUo7WhL0nqZehL0hAx9CVpiLQ+9L1zliRNam3oOzlLknq1NvQlSb0MfUkaIq0Pfe+cJUmTWhv6DulLUq/Whr4kqZehL0lDxNCXpCHS+tB3cpYkTWpt6Ds5S5J6zTv0k6xJ8pdJ9ibZk+R9Tft5Se5M8mjzeG7XNluT7EvySJKrFuIfIEk6ff2c6R8F/nVVvQ64ArgxyQbgJmB3Va0HdjfPadZtAi4FrgZuSbK8n+IlSXMz79CvqkNVdV+z/DSwF1gFbAR2NN12ANc1yxuB26vqSFXtB/YBl893/5KkuVuQMf0ka4E3Al8CLqyqQ9D5xQBc0HRbBTzRtdmBpm1ReR1Xkib1HfpJXgb8CfD+qvrebF2naZs2k5NsSTKeZHxiYmJ+dTknV5J69BX6Sc6gE/ifrKrPNs1PJlnZrF8JHG7aDwBrujZfDRyc7nWrantVjVXV2OjoaD8lSpK69PPunQAfA/ZW1e91rdoFbG6WNwN3dLVvSrIiyTpgPXDPfPcvSZq7kT62fQvwz4AHk9zftP0b4EPAziQ3AI8D7wKoqj1JdgIP03nnz41VdayP/Z+WcnaWJJ0w79Cvqv/LzB9meeUM22wDts13n3PikL4k9WjtjFxJUi9DX5KGSOtD/+kfHV3qEiTpBaO1oX/J6NkAfOSLX1viSiTphaO1of+mV5/Hq84+k89++Zsc+u4zS12OJL0gtDb0AW7+udcB8NePfnuJK5GkF4ZWh/7bN1wIwN2PPbXElUjSC0OrQ/9lKzrTEJ55btHngEnSi0KrQz8Jl130Sr5/xHfwSBK0PPQBzjpzxDF9SWq0PvRf/pLOEI+fwSNJQxD6P7H6FQAcOfr8ElciSUuv9aF//GLuN5764RJXIklLr/Whf8noywB490fvZu+h2W7sJUnt1/rQf/PFr+Kf/6OL+fb3n+X6j9zNj3z7pqQh1vrQX7YsbL3mdfzyW9bydz98jmv+4K/Zd/j7S12WJC2J1of+cR/4+Uu59d2Xsf/bP+A//8WjS12OJC2JoQl9gGt+YiUAj3/Hi7qShtNQhT7AP37NKM8867i+pOE0dKF/zkvP4LvPPLfUZUjSkhh46Ce5OskjSfYluWnQ+3/JyHIOffdHfh6PpKE0MsidJVkO/Ffg7cAB4G+S7KqqhwdVw09e9Eo+Pf4Eb/h3X2DrNa/l7BUjrBhZxpkjyzhj+TLOOnM5r/2xcxh9+YpBlSRJAzPQ0AcuB/ZV1dcAktwObAQGFvq/cNlq7nrsKXY9cJB//6d7Z+2bQOh8WueyQOg0pFm3LDmxPgDH27q2O973pGVyYvsT+2nal+Xk1zv+OpKGz5/++k+xYmT5gr7moEN/FfBE1/MDwD+Y2inJFmALwEUXXbSgBZw5sowPX/9GfvcX38APjxzjB88e5cjR5zl67HmePfY833vmKHsOfpfvPfMcBVRBUVTB881y8x9V1Wnr6gPwfNVJbcf71pS+1fTtfr1O2+Qyfk6cNLSa078FNejQn+5f0BNrVbUd2A4wNja2KLF3xvJlvOKsZbzirDN61r35klctxi4lackN+kLuAWBN1/PVwMEB1yBJQ2vQof83wPok65KcCWwCdg24BkkaWgMd3qmqo0l+DfjfwHLgtqraM8gaJGmYDXpMn6r6M+DPBr1fSdIQzsiVpGFm6EvSEDH0JWmIGPqSNERS9cKe8plkAvjGPDc/H/j2ApazUKxrbqxrbqxrbtpa16uranRq4ws+9PuRZLyqxpa6jqmsa26sa26sa26GrS6HdyRpiBj6kjRE2h7625e6gBlY19xY19xY19wMVV2tHtOXJJ2s7Wf6kqQuhr4kDZFWhv5S3nw9yZokf5lkb5I9Sd7XtH8wyTeT3N98vaNrm61NrY8kuWoRa/t6kgeb/Y83becluTPJo83juYOsK8lruo7J/Um+l+T9S3G8ktyW5HCSh7ra5nx8krypOc77knw4fd7vcoa6fifJV5N8JcnnkryyaV+b5Jmu4/aHi1XXLLXN+Xs3oGP26a6avp7k/qZ9IMdslmwY7M9Y5zZ+7fmi85HNjwEXA2cCDwAbBrj/lcBlzfLLgb8FNgAfBH5jmv4bmhpXAOua2pcvUm1fB86f0vYfgJua5ZuA3x50XVO+d98CXr0Uxwt4K3AZ8FA/xwe4B3gznTvFfR64ZhHq+llgpFn+7a661nb3m/I6C1rXLLXN+Xs3iGM2Zf3vAv92kMeMmbNhoD9jbTzTP3Hz9ap6Fjh+8/WBqKpDVXVfs/w0sJfOvYFnshG4vaqOVNV+YB+df8OgbAR2NMs7gOuWsK4rgceqarYZ2ItWV1V9EfjONPs77eOTZCVwTlXdVZ3/Oz/Rtc2C1VVVX6iqo83Tu+nchW5Gi1HXTLXNYkmP2XHNWfEvAp+a7TUWuq5ZsmGgP2NtDP3pbr4+W+gumiRrgTcCX2qafq35c/y2rj/hBllvAV9Icm86N58HuLCqDkHnhxK4YAnqOm4TJ/+PuNTHC+Z+fFY1y4OqD+BX6JztHbcuyZeT/J8kP920DbquuXzvBl3bTwNPVtWjXW0DPWZTsmGgP2NtDP3Tuvn6oheRvAz4E+D9VfU94FbgEuAngUN0/ryEwdb7lqq6DLgGuDHJW2fpO9DjmM7tM68F/kfT9EI4XrOZqY5BH7ebgaPAJ5umQ8BFVfVG4F8Bf5zknAHXNdfv3aC/p9dz8snFQI/ZNNkwY9cZ9t9XXW0M/SW/+XqSM+h8Uz9ZVZ8FqKonq+pYVT0PfITJIYmB1VtVB5vHw8DnmhqebP5cPP7n7OFB19W4Brivqp5salzy49WY6/E5wMlDLYtWX5LNwDuBdzd/5tMMBTzVLN9LZxz47w2yrnl87wZ5zEaAfwp8uqvegR2z6bKBAf+MtTH0l/Tm68144ceAvVX1e13tK7u6/RPg+LsKdgGbkqxIsg5YT+cizULXdXaSlx9fpnMh8KFm/5ubbpuBOwZZV5eTzr6W+nh1mdPxaf48fzrJFc3Pwnu6tlkwSa4Gfgu4tqp+2NU+mmR5s3xxU9fXBlVXs985fe8GWRvwM8BXq+rE8MigjtlM2cCgf8bmeyX6hfwFvIPOlfHHgJsHvO+fovOn1leA+5uvdwD/HXiwad8FrOza5uam1kdYgHdUzFDXxXTeCfAAsOf4cQFeBewGHm0ezxtkXc1+zgKeAl7R1Tbw40Xnl84h4Dk6Z1M3zOf4AGN0gu4x4L/QzHxf4Lr20RnvPf4z9odN319ovr8PAPcBP79Ydc1S25y/d4M4Zk37x4FfndJ3IMeMmbNhoD9jfgyDJA2RNg7vSJJmYOhL0hAx9CVpiBj6kjREDH1JGiKGviQNEUNfkobI/wdEaXp5kEKZcAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "plt.plot(job.output.iterations, job.output.residual)\n",
    "#plt.ylim(0,5)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "informed-formula",
601
602
   "metadata": {},
   "source": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    "Finally it is a good idea to have a look at the final potential. This can reveal unphysical behavior"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "resident-gnome",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(<Figure size 576x1296 with 3 Axes>,\n",
       " array([[<AxesSubplot:title={'center':'Cu F'}, xlabel='$\\\\rho $ [a.u.]'>],\n",
       "        [<AxesSubplot:title={'center':'Cu rho_CuCu'}, xlabel='r [$\\\\AA$]'>],\n",
       "        [<AxesSubplot:title={'center':'Cu V_CuCu'}, xlabel='r [$\\\\AA$]'>]],\n",
       "       dtype=object))"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAQVCAYAAABuRsmlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABVvklEQVR4nO3deZhc5Xnn/d9dVb0vavWitdVqCQFiR7jNvuMFDAFv48EOtmPHQzKxE/t1Mh479puZZDKZN8mMx+MtDmM7xoEYxwY7DoYYY8DYBgEtIRBCaN9aW3dr632rut8/qiRaTbfUUp/qp6vq+7muvmo5p855DoX62+dU1SlzdwEAgDBioQcAAEAhI8QAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxkOPM7ANm1mpmPWa218weNbOrT3NZbma9mWX1mNnhiIcLYAxCDOQwM/u0pC9J+itJcyU1Sfq6pDumsNiL3L0y81Mz5UECOCHjzFpAbjKzWZJ2S/qIu/9ggnm+I6nN3b+QuX29pPvcvXGC+V3Sme6+ORtjBvBG7BEDuesKSaWSfhR6IABOHyEGcledpE53H4l4uavN7HDm58sRLxvAGInQAwBw2g5IqjezRMQxvoRD08D0YY8YyF3PShqQ9M4TzNMrqXzU7XnZHBCAU0eIgRzl7kck/Zmkr5nZO82s3MyKzOwWM/ubzGxrJL3DzGrNbJ6kTwUaLoAJEGIgh7n7FyV9WtIXJHVI2iXpE5J+nJnlHyW9JGm7pMckfX/aBwnghPj4EgAAAbFHDABAQIQYAICACDEAAAERYgAAAiLEAAAEFOTMWvX19d7c3Bxi1QAATLtVq1Z1unvDeNOChLi5uVmtra0hVg0AwLQzsx0TTePQNAAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAkYXYzOJm9qKZPRzVMgEAyHdR7hF/UtL6CJcHAEDeiyTEZtYo6VZJ34xieQAAFIqo9oi/JOkzklITzWBmd5tZq5m1dnR0RLRaAABy25RDbGa3SWp391Unms/d73H3FndvaWhomOpqAQDIC1HsEV8l6XYz2y7pAUk3mtl9ESwXAIC8N+UQu/vn3L3R3Zsl3SnpCXe/a8ojAwCgAPA5YgAAAkpEuTB3f0rSU1EuEwCAfMYeMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAAU05xGa2yMyeNLP1ZrbOzD4ZxcAAACgEiQiWMSLpj919tZlVSVplZj9391cjWDYAAHltynvE7r7X3VdnrndLWi9p4VSXCwBAIYj0NWIza5a0QtJz40y728xazay1o6MjytUCAJCzIguxmVVKelDSp9y9a+x0d7/H3VvcvaWhoSGq1QIAkNMiCbGZFSkd4fvd/aEolgkAQCGI4l3TJulbkta7+xenPiQAAApHFHvEV0n6oKQbzWxN5ucdESwXAIC8N+WPL7n7ryVZBGMBAKDgcGYtAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAAUUSYjO72cw2mNlmM/tsFMsEAKAQTDnEZhaX9DVJt0g6V9L7zezcqS4XAIBCkIhgGZdK2uzuWyXJzB6QdIekVyNY9km9uqdLm9q7VZKIqyQRU3EipoqShOoqilVXWazy4ig2EQCA7IiiUgsl7Rp1u03SZWNnMrO7Jd0tSU1NTRGsNu2RtXv11Sc3Tzi9rCiuebNK1VRbrua6ci2uq9CShgqdN79ac6pLIxsHAACnI4oQ2zj3+RvucL9H0j2S1NLS8obpp+t3r16id65YqMGRpIZGUhocSalnYEQHe4d0oHdInT2D2ndkQDsO9mr1jkPqHhw59tj6yhKdt6Ba5y+s1psWz9abFtdqVllRVEMDAOCkoghxm6RFo243StoTwXInZXZFsWZXFE9qXnfXwd4hbW7v0bo9XXp1b5fW7enS3/9yq0ZSLjPpnHnVunRJra44o05XLatXZQmHtgEA2WPuU9s5NbOEpI2SbpK0W9ILkj7g7usmekxLS4u3trZOab1R6h9K6sVdh/TCtkN6fvsBrdpxSAPDKRXFTZcuqdUNZ8/RDcvnaGl9hczGOwAAAMDEzGyVu7eMO22qIc6s4B2SviQpLunb7v7fTzT/TAvxWEMjKa3acUhPbWjXkxvatXF/jyRpaUOFbrtgvm69cIHOmltJlAEAk5L1EJ+qmR7isdoO9enJ19r16Cv7tHLrAaVcWjanUrdeMF+3X7xAZzRUhh4iAGAGI8QR6uge1L+t26efvrxHz207KHdpRVON3teySLddOF9VpbzZCwBwPEKcJe1dA/rRi7v1g1Vt2tzeo9KimG45f77+3ZsadcUZdRy6BgBIIsRZ5+5as+uwfrCqTf/60h51D4xoaX2F7rp8sd7b0qhq9pIBoKAR4mk0MJzUI2v36h9X7tCLOw+rvDiud65YqA9dsVjL51WHHh4AIABCHMjatiP67rPb9ZOX9mhwJKVLm2v10auX6K3nzlU8xmFrACgUhDiwQ71D+sGqXfruszvUdqhfzXXl+t1rluq9lzSqrDgeengAgCwjxDPESDKln63br3ue3qKX2o6otqJYH7x8sT50xWLVVZaEHh4AIEsI8Qzj7np+20H9319t1ePr21WSiOm9b2rU3dcu1eK6itDDAwBE7EQh5kTKAZiZLltap8uW1mlze4+++aut+kFrm773/E7dcfFCffyGM7RsTlXoYQIApgF7xDNEe9eA/u+vtuq+lTs1MJLULefP08dvWKbzFswKPTQAwBRxaDqHHOwd0rd/vU33PrNd3YMjumn5HH38xmW6pGl26KEBAE4TIc5BR/qH9d1ntuvbv9mmQ33DumpZnT5xw5m6fGktZ+wCgBxDiHNY7+CI/um5nfr7p7eqs2dQb26erT+66UxdvayeIANAjiDEeWBgOKnvv7BL3/jlFu09MqAVTTX6oxvP1PVnNxBkAJjhCHEeGRxJ6oer2vT1J7do9+F+XbBwlv7wxmV667lzCTIAzFCEOA8NJ1P60erd+uqTm7XzYJ/OmV+tP7pxmd5+3jzFOH0mAMwohDiPjSRT+slLe/TVJzZra2evzppbqU/ceKZuvWA+57MGgBmCEBeAZMr18MvpIG9q79HShgp94oZluv2iBUrEY6GHBwAFjRAXkFTK9W/r9unLv9ik1/Z1a3FduT5+wzK9a8VCFRFkAAiCEBegVMr1+Pr9+vITm/TK7i41zi7TH1y/TO9500KVJPjGJwCYToS4gLm7ntzQri//YrPW7Dqs+bNK9R+vP0Pva1mk0iKCDADTgRBD7q5fberUl3+xSa07DmlOVYl+77oz9IFLm/hOZADIMkKMY9xdz249oC//YpNWbj2o+spi3X3tUv32ZYtVUcKXcQFANhBijOv5bQf1lSc26VebOjW7vEgfu2apPnTFYlWVFoUeGgDkFUKME1q985C+8otNenJDh2aVFemjVy3R71zVrFllBBkAokCIMSkvtx3WV57YrJ+/ul9VJQn9zlXN+uhVSzS7ojj00FAghkZSOtI/rCP9w+oaGNbQSEqplCvprmTKlYjFVFYcU1lRQmXFcVWXJjS7vJizyWHGI8Q4Jev2HNFXn9isR1/Zp9KimN59SaM+elWzls2pCj005DB3V2fPkDa392hbZ6/2HO7XniP92nO4X3uPDKi9a1D9w8lTXm4iZqqvLNGc6hLNqy7VkoYKLa2v0JL6Si1tqFB9ZUkWtgY4NYQYp2Xj/m59+9fb9NCLuzU0ktJ1ZzXod69eomvO5CsYcWIDw0m9urdLa9uO6NU9Xdrc0aPN7T060j98bJ54zDS3qkQLaso0v6ZMc6tKVFNepOqyIs0qK1J1aZFKEjHFYqZ4zBQzU8pdfUNJ9Q8l1T88oiN9w2rvHlR796A6ugfVdqhPOw/2aTj5+u+1udUlumDhLJ2/cJYuWDhLFy+qUR1xxjQjxJiSAz2Duv+5nfruszvU2TOoM+dU6qNXL9G7Vizks8hQKuXa3NGjF7Yf1Nq2I3q57Yg27u/WSCr9u6W2oljL5lSmfxrSl0sbKjSvujQrp18dSaa05/CAtnam4//K7iNau/uItnb26uivuzPnVOrypXW6bGmtLltSp4YqwozsIsSIxOBIUg+/tFff+vU2vbq3S7PLi/TvWhbp/Zc2aUl9RejhYZqMJFNav7dbz207oOe3HdQL2w/qUF96T7emvEgXLJylCxtn6YKFNbpo0SzNqy6dEUdQegZH9OqeLrXuOKiVWw9q1faD6h1KHwpfPq9KNy6foxuXz9HFi2o4PzsiR4gRKXfXc9sO6t5ntuvnr+7XSMp11bI6/fZli/XWc+dyTus84+7a2tmrX27o0NObOtS6/ZB6BkckSYvrynVpc60uXVKrNzfXanFd+YyI7mSMJFN6ZU+Xnt1yQE9taFfrjkNKplw15UW69swGve28ubpx+RyVF/P5ekwdIUbWtHcN6J9bd+l7z+/S7sP9aqgq0b9vWaQ7L12kxtnloYeH09Q7OKJnthzQLze265cbO7TrYL8kaWlDha48o06XLqnTpc21mjerNPBIo3Okf1i/3tSpJ15r1y83tquzZ0ilRTHduHyObr1ggW5Y3kCUcdoIMbIumXL9cmO77l+5U09uaJdLuvKMOr17RaNuPn8eZ+2a4dxdG/f36KkN6fC+sP2ghpOuiuK4rlxWr+vOatB1ZzVoUW1h/HGVTLle2H5QP315rx59ZZ86ewZVVhTXjefM0btXLNS1ZzVw5AenhBBjWu0+3K8ftO7SQ6t3a+fBPpUXx3XL+fP1nksW6vKldXzmc4boGhjWbzZ16pcbO/TLjR3ae2RAUvr10uvOatB1ZzeoZXGtihOFHZxkyvX8toP66do9enTtPh3oHVJ9ZbHeefFCvedNjTpnfnXoISIHEGIE4e5q3XFID65q009f3qvuwREtrCnT7Rcv0K0XzNd5C6pz5vXEfJBKuV7d25UO74YOrdqZfk20qiShq8+s1/VnN+jasxo0f1ZZ6KHOWMPJlJ7a0KEfrtqlJ15r13DSdd6Car3nkka9a8VCTn6DCRFiBDcwnNRjr+7Xg6va9OvNnUqmXM115XrHBfP1DqKcNYd6h/SrzZ16akO7nt7Yqc6eQUnS+QurM4eb52hFUw2HWU/Dwd4h/WTNbj24erfW7j6i4kRMt14wX3dd3qRLmmbz/zOOQ4gxoxzsHdJj6/bpp2v36pktB45F+ZYL5ust58zVxYtqFOfw9WkZSab0UtuRY4ebX247LPf0x4quObNB15/VoGvOqtecqvx5k9VMsH5vl773/E49tHq3egZHtHxelX77sia9c8VCvkQFkggxZrDxolxbUazrz2rQDcvn6NqzGvjyiZPYe6RfT2/s0NMbO/WrTR3qGhhRzKSLFtXo2jPTr/Ve1MgfN9Ohd3BE//rSHt333A69srtL5cVx3XHxAv32ZYt1/sJZoYeHgAgxcsKRvmE9valDT7zWrqc2tOtQ37DiMVPL4tm6elm9rlxWpwsbOYx6pG9Yz28/qGe3HNCvN3do4/4eSelTOV53Vvp13quX1aumnNcrQ3q57bDuX7lT//LSbg0Mp/Tm5tn6nSuX6O3nzeWEIQWIECPnJFOuNbsO6YnX2vXkax16dW+XJKm8OK43N9fqyjPqdMUZdTpnfnXeh7lrYFgvbEuHd+W2A1q3p0vuUnEipjc3zz72Wu9Zcyt5XXIGOtI/rB+07tK9z27XroP9mj+rVB+8YrHe/+Ym3txVQAgxct7B3iE9t/WAntlyQM9uPaDN7em9wJJETBcsnKUVTTW6eNFsXdxUowWzZsYpFU9HKuXa0tGjF3ce1ou7DmvNrsPasK9LKZeK4zGtaKrRFWfU6YqldbpoUQ3n+s4hyZTridfa9Z1ntuk3mw+oJBHTu1Ys1O9c1azl8/gIVL4jxMg77V0DWrntoNbsPKw1uw7plT1dGhpJSZLqK0u0fF6Vzs78LJ9XpTPnVKmseGZFa2A4qc3tPXptX7c27OvSq3u79PKuI+rOnD6yqjShixfVaEXTbF2+tFaXNM0mvHliw75ufeeZ7frRi20aGE7piqV1+shVzbrpnLm8lp+nCDHy3tBISuv3dmnNrsNauzv97T8b93drYDgdZzNpwawyNdWWp3/qyrWotlyNs8vUUFmi+sqSyEPt7uoeHFF716B2HerTzgPpr+jbebBPWzt6tP1An5KZbygqTsR01txKXdSYDu/Fi2q0tL6Ck5/kuUO9Q/p+6y5995nt2nNkQItqy/Shy5v1vjcv4k2KeYYQoyAlU66dB/u0YV+XXtvXrZ0H+rQjE8KO7sE3zF9RHFdDVYlqK4pVWVqkiuK4yosTqihJX8YsHXST6eiR74HhpPqHk+ofSql/eES9g0kd7B3SgZ5BdfYOHdtLP6q0KKam2nItrqvQ8nlVWj6vWmfPq1JzXTlv4ClgI8mUHnt1v/7hN9v0wvZDKi+O6z2XNOrDVzZr2ZzK0MNDBAgxMEbf0IjaDvVr9+F+dXYPqqNnUJ3dQ+rsGdSB3kH1DibVN5QOa+/QiPoGk0q5y5Xe0z36r6Y0EVdZcVxlRenL8uK4aiuKVVdRovqqYtVnLptq03vgDZUlOfv6NabHK7uP6DvPbNdP1uzRUDKla89q0EeuatZ1ZzZwhCSHEWIAyDGdPYP63nM79Y8rd6i9e1BL6yv04Sub9Z43NaqSL1HJOYQYAHLU0EhKj76yV//wm+1as+uwqkoS+ncti/ThKxdrcV1F6OFhkggxAOSBF3ce0nee2a6fvrxXSXfdtHyOPnLVEl15Rh0vecxwhBgA8sj+rgHdv3KH7n9upw70DumsuZX6nSuX6F0rFs64j+khLWshNrO/lfRbkoYkbZH0EXc/fLLHEWIAmLqB4aQefnmv/uE327RuT5dmlRXpzjcv0p2XNmlJPYetZ5Jshvhtkp5w9xEz+2tJcvf/fLLHEWIAiM7R7/7+h99s08/W7Vcy5bpiaZ3ef1mT3n7eXJUk2EsO7UQhntJb79z9sVE3V0p671SWBwA4dWamNzfX6s3NtWrvGtAPVrXpgRd26o++96JmlxfpPZc06s5Lm/hM8gwV2WvEZvavkr7v7vdNMP1uSXdLUlNT05t27NgRyXoBAG+USrl+s6VT33t+px5bt18jKdelzbV6b0ujbjl/Ht+TPM2mdGjazB6XNG+cSZ9393/JzPN5SS2S3u2TKDuHpgFg+nR0D+rB1W164Pmd2n6gTyWJmN567ly9a8VCXXtWQ95/g9lMkNV3TZvZhyX9vqSb3L1vMo8hxAAw/dxdL+46rH95cbf+9eW9Otg7pNqKYt124XzdftECXdI0m7N3ZUk236x1s6QvSrrO3Tsm+zhCDABhDSdT+tWmDv3oxT16bN0+DY6k1FBVoredO1dvP2+eLl9ap+JE4e4pD44kI32TWzZDvFlSiaQDmbtWuvvvn+xxhBgAZo7ugWE9uaFDP3tln57c0K6+oaSqSxO66Zy5umH5HF2zrF6zK4pDDzPrDvUO6adr9+rHL+5WSVFM93/s8siWnc13TS+byuMBAOFVlRbp9osW6PaLFmhgOKlfb+rUv63bp8fX79ePXtwtM+nChbN0zZkNuvasBq1oqsmb15X3HunXY+v262fr9um5bQeVTLnOmlup95zbKHefljOWcWYtAMC4kinXy22H9fTGTj29qUNrdh1WMuUqL47r4kU1ammuVcvi2VrRVJMz78IeGE6qdfsh/WZLp36zuVMvtx2RJJ3RUKG3nzdP77hgvs5bUB15gDnFJQBgyo70D+vZLZ1aufWgXth+UOv3dinlUsyks+dV6/wF1Tp3QbXOnV+tcxZUqzpwnN1d+7oG9NKuw3qp7Yhe3HlIq3ce1tBISomY6eJFNbph+Ry9/bx5Wf+MNSEGAESuZ3BEL+48pBe2H9KLOw/p1T1dOtA7dGx64+wyLamvUHNdhZrrK9RcV66m2nLNqSpVdVkisr3OgeGk9ncNaOfBPm3t6NWWjh5t6ejRxv096ugelCQlYqbl86t0+ZI6XbWsXm9eUjutXyeZtdeIAQCFq7IkoWvObNA1ZzZISu+BdnQPat3eLr26p0uv7evW9s5e/XjnbnUPjhz32OJETA2VJWqoKlFtRbHKi+OqKE6ovCR9GYuZ5K6ju4ojKVfv4Ih6BkeOXXZ0D2p/16CO9A8ft+yqkoSWzqnUtWc26MLGWbqwcZbOmV+t0qKZeapPQgwAiISZaU51qeZUl+qGs+ccu9/ddahvWNsP9GrXwT51dA++/tMzqP1dA+ofSqp3aER9g+nLlB9dpmSS4jFTRUlCFcUJVZYkVFESV3NdhS5fWqe51aWaW12qBTWlWjanUg2VJTn1tZCEGACQVWam2opi1VYU65Km2aGHM+Pkx/vPAQDIUYQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgCIJsZn9iZm5mdVHsTwAAArFlENsZoskvVXSzqkPBwCAwhLFHvH/lvQZSR7BsgAAKChTCrGZ3S5pt7u/FNF4AAAoKImTzWBmj0uaN86kz0v6U0lvm8yKzOxuSXdLUlNT0ykMEQCA/GXup3dE2cwukPQLSX2Zuxol7ZF0qbvvO9FjW1pavLW19bTWCwBArjGzVe7eMt60k+4RT8Td10qaM2ol2yW1uHvn6S4TAIBCw+eIAQAI6LT3iMdy9+aolgUAQKFgjxgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIHP36V+pWYekHREusl5SZ4TLC4ltmXnyZTsktmWmypdtyZftkKLflsXu3jDehCAhjpqZtbp7S+hxRIFtmXnyZTsktmWmypdtyZftkKZ3Wzg0DQBAQIQYAICA8iXE94QeQITYlpknX7ZDYltmqnzZlnzZDmkatyUvXiMGACBX5cseMQAAOYkQAwAQUE6F2MxuNrMNZrbZzD47znQzsy9npr9sZpeEGOdkTGJbrjezI2a2JvPzZyHGeTJm9m0zazezVyaYnkvPycm2JVeek0Vm9qSZrTezdWb2yXHmyYnnZZLbMuOfFzMrNbPnzeylzHb8+Tjz5MpzMpltmfHPyVFmFjezF83s4XGmTc9z4u458SMpLmmLpKWSiiW9JOncMfO8Q9KjkkzS5ZKeCz3uKWzL9ZIeDj3WSWzLtZIukfTKBNNz4jmZ5LbkynMyX9IlmetVkjbm8L+VyWzLjH9eMv+dKzPXiyQ9J+nyHH1OJrMtM/45GTXWT0v6p/HGO13PSS7tEV8qabO7b3X3IUkPSLpjzDx3SPqup62UVGNm86d7oJMwmW3JCe7+tKSDJ5glV56TyWxLTnD3ve6+OnO9W9J6SQvHzJYTz8skt2XGy/x37sncLMr8jH2nbK48J5PZlpxgZo2SbpX0zQlmmZbnJJdCvFDSrlG32/TGf5CTmWcmmOw4r8gc/nnUzM6bnqFFLleek8nKqefEzJolrVB6r2W0nHteTrAtUg48L5lDoGsktUv6ubvn7HMyiW2RcuA5kfQlSZ+RlJpg+rQ8J7kUYhvnvrF/hU1mnplgMuNcrfS5SS+S9BVJP872oLIkV56Tycip58TMKiU9KOlT7t41dvI4D5mxz8tJtiUnnhd3T7r7xZIaJV1qZuePmSVnnpNJbMuMf07M7DZJ7e6+6kSzjXNf5M9JLoW4TdKiUbcbJe05jXlmgpOO0927jh7+cfdHJBWZWf30DTEyufKcnFQuPSdmVqR0uO5394fGmSVnnpeTbUsuPS+S5O6HJT0l6eYxk3LmOTlqom3JkefkKkm3m9l2pV8evNHM7hszz7Q8J7kU4hcknWlmS8ysWNKdkn4yZp6fSPpQ5p1ul0s64u57p3ugk3DSbTGzeWZmmeuXKv1cHZj2kU5drjwnJ5Urz0lmjN+StN7dvzjBbDnxvExmW3LheTGzBjOryVwvk/QWSa+NmS1XnpOTbksuPCfu/jl3b3T3ZqV/Bz/h7neNmW1anpNE1AvMFncfMbNPSPqZ0u86/ra7rzOz389M/4akR5R+l9tmSX2SPhJqvCcyyW15r6T/aGYjkvol3emZt/HNJGb2PaXfIVlvZm2S/ovSb97IqedEmtS25MRzovRf+h+UtDbzOp4k/amkJinnnpfJbEsuPC/zJd1rZnGlo/TP7v5wLv7+0uS2JReek3GFeE44xSUAAAHl0qFpAADyDiEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIgTxhZs1m1j/qxBdRLrvM0t8rOzQDT1UI5DRCDOSXLZmT8UfK3fszy53R5z4GchEhBnKImf2Bmb1iZjvM7A8nMf+PzWyVma0zs7vHmd5sZq+Muv0nZvZfIx42gBPImXNNA4XOzN4j6a1KfydvvdLnX/47dx85wcM+6u4HMyfnf8HMHnT3GXXyfaDQEWIgd/yRpP/g7sOS9prZsE5+VOuPzOxdmeuLJJ2pGfYtOEChI8RADsh8J++F7r4xc3u+pE53HzrBY65X+ivqrnD3PjN7SlLpmNlGdHzMx04HkGW8RgzkhnMlzTKzpWYWk/Q/JH3lJI+ZJelQJsLLJV0+zjz7Jc0xszozK5F0W6SjBnBShBjIDSsk3S/pe5JelrTT3e85yWP+TVLCzF6W9N8krTw6wcweMbMFmcPcfyHpOUkP641f8P6ImS2IbjMAjMX3EQM5wMy+JOlZd//+CeZplvSwu5+fxXFsl9Ti7p3ZWgdQaNgjBnLDxZLWnGSepNKHr0823yk7ekIPSUWSUlEvHyhk7BEDABAQe8QAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIgRxkZtebWVvocQCYOkIMZImZfcDMWs2sx8z2mtmjZnZ16HGdiJnNN7NvZcbbbWavmdmfm1nFdDweKESEGMgCM/u0pC9J+itJcyU1Sfq6pDsiWHZiqsuYYLm1kp6VVCbpCnevkvRWSTWSzsj244FCRYiBiJnZLKW/4/fj7v6Qu/e6+7C7/6u7/6fMPN8xs78c9ZgTHmo2Mzezj5vZJkmbRt3/x2bWntkD/cjoMZjZd82sw8x2mNkXzOxk/94/Lalb0l3uvl2S3H2Xu3/S3V82s+bMOI79IWBmT5nZxyJ6PFCQCDEQvSsklUr6UcTLfaekyySdm7k9T9IsSQsl/a6kr5nZ7My0r2SmLZV0naQPSfqITuwtkh5y99P9msOpPh4oSIQYiF6dpE53H4l4uf/D3Q+6e3/m9rCkv8jsbT8iqUfS2WYWl/TvJX3O3bsze6f/S9IHJzHuvVMY31QfDxQkQgxE74Ck+iy8lrtr7HrGxL5PUqWkeknFknaMmrZD6T3nEzkgaf4UxjfVxwMFiRAD0XtW0oDSh5In0iupfNTteZNYrk9y/Z1K7y0vHnVfk6TdJ3nc45LedYLXknszlxONe6qPBwoSIQYi5u5HJP2Z0q/ZvtPMys2syMxuMbO/ycy2RtI7zKzWzOZJ+lSE609K+mdJ/93MqsxssdJvpLrvJA/9oqRqSfdmHiMzW2hmXzSzC929Q+mY32VmcTP7qI5/N/RUHw8UJEIMZIG7f1Hp+H1BUofSh5U/IenHmVn+UdJLkrZLekzS9yMewh8qvQe6VdKvJf2TpG+fZMwHJV2p9N70c2bWLekXko5I2pyZ7T9I+k9KH4Y+T9IzUT0eKFTmPtmjXQAAIGrsEQMAEBAhBgqImX0jc8rNsT/fCD02oFBxaBoAgICycs7ak6mvr/fm5uYQqwYAYNqtWrWq090bxpsWJMTNzc1qbW0NsWoAAKadme2YaBqvEQMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAEFFmIzSxuZi+a2cNRLRMAgHwX5R7xJyWtj3B5AADkvUhCbGaNkm6V9M0olgcAQKGIao/4S5I+IykV0fIAACgIUw6xmd0mqd3dV51kvrvNrNXMWjs6Oqa6WgAA8kIUe8RXSbrdzLZLekDSjWZ239iZ3P0ed29x95aGhoYIVgsAQO6bcojd/XPu3ujuzZLulPSEu9815ZEBAFAA+BwxAAABJaJcmLs/JempKJcJAEA+Y48YAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICAphxiM1tkZk+a2XozW2dmn4xiYAAAFIJEBMsYkfTH7r7azKokrTKzn7v7qxEsGwCAvDblPWJ33+vuqzPXuyWtl7RwqssFAKAQRPoasZk1S1oh6blxpt1tZq1m1trR0RHlagEAyFmRhdjMKiU9KOlT7t41drq73+PuLe7e0tDQENVqAQDIaZGE2MyKlI7w/e7+UBTLBACgEETxrmmT9C1J6939i1MfEgAAhSOKPeKrJH1Q0o1mtibz844IlgsAQN6b8seX3P3XkiyCsQAAUHA4sxYAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICAcj7E6/Yc0fee36mhkVTooQAAcMpyPsQ/WbNHn3torW74n0/pvpU7NDiSDD0kAAAmLedD/Nlbluvej16qudUl+sKPX9F1f/OU7n1muwaGCTIAYOYzd5/2lba0tHhra2uky3R3PbPlgP7P45v0/PaDmlNVot+77gx94NImlRXHI10XAACnwsxWuXvLuNPyJcSjPbvlgL78i016dusB1VcW6+5rl+quyxervDiRtXUCADCRggvxUc9vO6ivPLFJv9rUqdqKYv2Ha5bqg1csVmUJQQYATJ+CDfFRq3Yc0pd/sUm/3NihmvIifezqJfrQlc2qLi2atjEAAApXwYf4qDW7Dusrv9ikX7zWrurShD569RJ95MolmlVOkAEA2UOIx3hl9xF9+Reb9Nir+1VVktDvXNWsj161RLMrioONCQCQvwjxBF7d06WvPrlJj6zdp4riuD58ZbM+ds1S1RJkAECECPFJbNjXra88sUk/XbtXZUVxffDyxfrYNUvVUFUSemgAgDxAiCdpc3u3vvrEZv3kpT0qTsT025ct1u9du1RzqktDDw0AkMMI8Sna2tGjrz25RT9es1vxmOkDlzbp965bqvmzykIPDQCQgwjxadre2auvP7VZD63erZiZ3vfmRv3H65dpYQ1BBgBMHiGeol0H+/T1p7boh6t2SZLe+6ZG/cH1y7SotjzwyAAAuYAQR2T34X5946kt+v4Lu5Ry17svWaiP37BMi+sqQg8NADCDEeKI7TsyoG/8cov+6fmdSqZcd1y8QJ+4YZmWNlSGHhoAYAYixFnS3jWgv396q+5/bocGR1K6/qwG3XX5Yl1/9hzFYxZ6eACAGYIQZ1lH96C+++x2PfDCLnV0D2phTZk+cFmT3vumRs3lo08AUPAI8TQZTqb02Lr9um/lDj279YDMpCvPqNMdFy/UzefP40smAKBAEeIAtnb06Mcv7taP1+zRzoN9Kk7EdOPZc/TWc+fqhuVzOI0mABQQQhyQu+vFXYf1Ly/u1qOv7FN796BiJr1p8Wy95Zy5uubMBi2fV6UYrykDQN4ixDNEKuV6Zc8RPb6+XY+/ul+v7u2SJM0uL9JlS+p0xRl1unxpnc6cU0mYASCPEOIZas/hfj275YCe2XJAK7ce0O7D/ZKkiuK4LmicpYsaa3RhY40uWDhLjbPLiDMA5Kish9jMbpb0fyTFJX3T3f+/E81PiN/I3bXrYL+e23ZAL7cd0ctth7V+b7eGkilJUllRXGfMqdCyhkqdObdKZzRUqnF2mRpnl2lWWZHMiPR4UinXUDKlwZGUhpMpDY26HDp224/dP3a+kZTL3ZVyvX6po9dd7srcl74eM1MiZorFTHGT4seupy8TMUvfZ+nLeMxUnIipJB5TcSKmosxlcSKm4viYy0RMiZjxXAM5KKshNrO4pI2S3iqpTdILkt7v7q9O9BhCPDlDIylt2NetV/Yc0eb2Hm1q79GW9p5je85HVRTHtXB2mRbWlGnerFLVVhSrtqJEdRXFmevFmlVWpIqShMqL4ypJxIL8Mj8axaOhGxxJaWA4qYHhlAZGkpnrmdujL0fS1weHk+ofO09mGYOZ+16fnp42NJKa9u3MJjOpKH58uEuKXo91ydGIJ+LHrpe8YVpMJYn4scgf//hRj0sc/0dBSVH8+PXEYxylASbpRCFORLD8SyVtdvetmZU9IOkOSROGGJNTnIjpgsZZuqBx1nH39wyOaFtHr9oO9Wn34X61HerX7sP92n2oX2t3d+lQ35CSqYn/wIrHTOXFcVWWJFRWHFdRLKZ4zFQUT++hJeLpPa9EPKaYadTe4NE9wPSeoY5ddyVTrqGkazj5xj3P4WQ6wCca02SUJGIqLYqrtCimsqK4SoviKimKqzQRU015sUqLMtMTcZUVx1VSFFNpIn5caIrjr+91FsVfj83r95lKRt0+uidrSu/tmklmptjoS6XvlyR3KemuZNLTl6nX//scvT6ScqVS6ekjmf82QyNv3FsfvXc+evrgmPtGP34wc3mkf1iDw8lxpw2OJDXFp+KY9H+viaL++h8F6aMDMcVjUiLz/9uxHzPF45nLzH2J0dNPMI9GPQeZmzI7/vka/bwdf78kjXkuJ3q8MvePWl760ZnLY3+PjDfN3jCvZW6N/Xt4vGmvL89GzfPG9R4/7/jrPbqc8dY7dqzjrXf08jTeWEdt83jrPX4B4yxz1BjGG/txyxlz/3j3jTfvydZ13LzTtMMSRYgXSto16nabpMsiWC4mUFmSGDfQR6VSrq6BYR3oHdLB3iEd6BlS98Cw+oaS6h0aUd9g+rJ3cER9Q0mNJNNxGEmlMtfTv7D7hpJKuSs2NjxHf1HFTEUxk+n1Q6zp0NlxsTsauKJRMUzELBPVdFhLMgE9GtOyUdNKi8LtxeerkeTrAR8cFerBkeRxgR8cHj1fctR8Y+dJviH4R6cd6R9O/+GR+RlJpZRypS9T6ctkSkqmUsfmOfpHTPqlgdD/tVCIzp1frUc+ec20rCuKEI/32/EN/3TM7G5Jd0tSU1NTBKvFRGIxU015sWrKi3VGQ+jRYCZKxGNKxGMqz4GPs6dGhflYpDN/PLo8c2Qm/Tr90aM37jp29MalY0dzfMzt1Kh5Rz8+fcTg6O3jH3/0aIJnfs35sdvp6Uevj74yet7R82vMY3zMA9847/jrHb2c46eNmdfHX+/YsY633jdsx5iVHTfGce47bl1jxjt23OON/Y2PP/G8xy/31JdVX1ky/sKyIIoQt0laNOp2o6Q9Y2dy93sk3SOlXyOOYL0ACkAsZorJVBQPPRIgO2IRLOMFSWea2RIzK5Z0p6SfRLBcAADy3pT3iN19xMw+IelnSn986dvuvm7KIwMAoABEcWha7v6IpEeiWBYAAIUkikPTAADgNBFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAAU0pxGb2t2b2mpm9bGY/MrOaiMYFAEBBmOoe8c8lne/uF0raKOlzUx8SAACFY0ohdvfH3H0kc3OlpMapDwkAgMIR5WvEH5X06EQTzexuM2s1s9aOjo4IVwsAQO5KnGwGM3tc0rxxJn3e3f8lM8/nJY1Iun+i5bj7PZLukaSWlhY/rdECAJBnThpid3/Liaab2Ycl3SbpJncnsAAAnIKThvhEzOxmSf9Z0nXu3hfNkAAAKBxTfY34q5KqJP3czNaY2TciGBMAAAVjSnvE7r4sqoEAAFCIOLMWAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABRRJiM/sTM3Mzq49ieQAAFIoph9jMFkl6q6SdUx8OAACFJYo94v8t6TOSPIJlAQBQUKYUYjO7XdJud39pEvPebWatZtba0dExldUCAJA3EiebwcwelzRvnEmfl/Snkt42mRW5+z2S7pGklpYW9p4BANAkQuzubxnvfjO7QNISSS+ZmSQ1SlptZpe6+75IRwkAQJ46aYgn4u5rJc05etvMtktqcffOCMYFAEBB4HPEAAAEdNp7xGO5e3NUywIAoFCwRwwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQkLn79K/UrEPSjggXWS+pM8LlzVRsZ35hO/ML25lfot7Oxe7eMN6EICGOmpm1untL6HFkG9uZX9jO/MJ25pfp3E4OTQMAEBAhBgAgoHwJ8T2hBzBN2M78wnbmF7Yzv0zbdubFa8QAAOSqfNkjBgAgJ+V8iM3sZjPbYGabzeyzoceTDWb2bTNrN7NXQo8lm8xskZk9aWbrzWydmX0y9JiywcxKzex5M3sps51/HnpM2WJmcTN70cweDj2WbDKz7Wa21szWmFlr6PFki5nVmNkPzey1zL/TK0KPKWpmdnbmeTz602Vmn8rqOnP50LSZxSVtlPRWSW2SXpD0fnd/NejAImZm10rqkfRddz8/9HiyxczmS5rv7qvNrErSKknvzMPn0yRVuHuPmRVJ+rWkT7r7ysBDi5yZfVpSi6Rqd78t9Hiyxcy2S2px97z+fK2Z3SvpV+7+TTMrllTu7ocDDytrMo3ZLekyd4/y3BfHyfU94kslbXb3re4+JOkBSXcEHlPk3P1pSQdDjyPb3H2vu6/OXO+WtF7SwrCjip6n9WRuFmV+cvcv4gmYWaOkWyV9M/RYMHVmVi3pWknfkiR3H8rnCGfcJGlLNiMs5X6IF0raNep2m/LwF3chMrNmSSskPRd4KFmROWS7RlK7pJ+7ez5u55ckfUZSKvA4poNLeszMVpnZ3aEHkyVLJXVI+ofMyw3fNLOK0IPKsjslfS/bK8n1ENs49+XdnkWhMbNKSQ9K+pS7d4UeTza4e9LdL5bUKOlSM8urlxzM7DZJ7e6+KvRYpslV7n6JpFskfTzzclK+SUi6RNLfufsKSb2S8vJ9OZKUOfR+u6QfZHtduR7iNkmLRt1ulLQn0FgQgcxrpg9Kut/dHwo9nmzLHNp7StLNYUcSuask3Z557fQBSTea2X1hh5Q97r4nc9ku6UdKv2yWb9oktY06evNDpcOcr26RtNrd92d7Rbke4hcknWlmSzJ/vdwp6SeBx4TTlHkT07ckrXf3L4YeT7aYWYOZ1WSul0l6i6TXgg4qYu7+OXdvdPdmpf9dPuHudwUeVlaYWUXmzYXKHKp9m6S8+4SDu++TtMvMzs7cdZOkvHoj5Rjv1zQclpbShxpylruPmNknJP1MUlzSt919XeBhRc7Mvifpekn1ZtYm6b+4+7fCjiorrpL0QUlrM6+fStKfuvsj4YaUFfMl3Zt5R2ZM0j+7e15/vCfPzZX0o/TfkUpI+id3/7ewQ8qaP5R0f2bHZ6ukjwQeT1aYWbnSn8b5vWlZXy5/fAkAgFyX64emAQDIaYQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgqYmX3FzFab2ZtDjwUoVIQYKFCZ0zHOUfrsQXn7XcHATEeIgTxnZs1m1j/qtKGSJHfvVfp0m09J+nJm3jIzW2NmQ2ZWP+2DBQoQIQbyjKWN/be9JfO1i6Pnq5NULqlbUlKS3L0/Mx/fYgZME0IM5IHMXu96M/u6pNU6/utBJ/IFSf9T0jpJ52ZzfAAmRoiB/HG2pO+6+wp333GiGc2sWdKVkr4vab2k87I/PADjIcRA/tjh7isnOe9fSvoLT3/9GiEGAsrp7yMGcJzeycxkZhdLerekq83sa5JKJa3N4rgAnAAhBgrPX0v6LXf/hSSZ2VxJL4YdElC4ODQNFBAzu1FSxdEIS5K775dUYWa14UYGFC72iIE84O7bJZ0/ifmekPTEOPfPysKwAEwCe8RA/ktKmjX2hB7jOXpCD0lFklJZHhcASZZ+0yQAAAiBPWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYmCamdkHzKzVzHrMbK+ZPWpmV5/Gcl4zs4+Oc/8nzax1Eo9/u5k9bWbdZtZhZr80s9tPYf1TejyANEIMTCMz+7SkL0n6K0lzJTVJ+rqkO05jcfdK+tA4938wM+1E43ivpB9I+q6kxsxY/kzSb01mxVN9PIDXcYpLYJqY2SxJuyV9xN1/MME835HU5u5fyNy+XtJ97t44zryNkrZLOsPdd2TuO0fSS5IWuHvnBOswSTskfcXd/3aCef6rpGXuflfmdrOkbUqfgzo5lce7+8h4jwEKFXvEwPS5QlKppB9FsTB3b5P0pNJ7wEd9SNIjE0U442xJiyT98DRXPdXHAxiFEAPTp05SZ8R7hPcqE2Izi0n6bZ3ksHRmHJK09zTXOdXHAxiFEAPT54CkejOL8nvAH5I038wul3S9pHJJP53EOCRp/mmuc6qPBzAKIQamz7OSBiS98wTz9Cod06PmnWiB7t6n9CHiDym9Z/yAuw+dZBwbJO2S9J7THMdUHw9gFEIMTBN3P6L0O4u/ZmbvNLNyMysys1vM7G8ys62R9A4zqzWzeZI+NYlF3yvp3ysdxpMdlpan36H5aUn/r5l9xMyqzSxmZleb2T2jxnGtmTVl3mT2uageD+B4hBiYRu7+RaUj9gVJHUrvWX5C0o8zs/yj0u963i7pMUnfn8Rin5Z0RNJud39hkuP4odLx/qikPZL2S/pLSf+Smf7zzLpflrRK0sNRPh7A6/j4EgAAAbFHDABAQFG+exPADGJmPRNMusXdfzWtgwEwIQ5NAwAQUJA94vr6em9ubg6xakRow75ulRfHtai2/OQzA0ABW7VqVae7N4w3LUiIm5ub1dp60i+HwQz37q//RmXFcd3/sctDDwUAZjQz2zHRNN6shdPWUFWizu6TnTsCAHAihBinrb6yRB09g6GHAQA5jRDjtNVXluhQ35CGk6nQQwGAnEWIcdoaqkrkLh3s5fA0AJwuQozTVl9ZIknq6ObwNACcLkKM09ZQlQ5xJ68TA8BpI8Q4bQ3sEQPAlBFinLb6qmJJUmcPrxEDwOkixDht5cUJVRTH2SMGgCkgxJiS+qoSXiMGgCkgxJiShsoS9ogBYAoIMaakvpI9YgCYCkKMKWmoKlE7e8QAcNoIMaZkbnWJjvQPa2A4GXooAJCTCDGmZG51qSSpvYu9YgA4HYQYU3I0xPu6BgKPBAByEyHGlMyblQ7xfkIMAKeFEGNK5lYRYgCYCkKMKakuS6i0KEaIAeA0EWJMiZlpbnWp9vFmLQA4LYQYUza3upQ9YgA4TYQYU0aIAeD0EWJM2bzqEu3vGpC7hx4KAOQcQowpm1tdqoHhlLr6R0IPBQByTmQhNrO4mb1oZg9HtUzkhqMn9djfzeFpADhVUe4Rf1LS+giXhxxx7OxaRwgxAJyqSEJsZo2SbpX0zSiWh9wyr5qTegDA6Ypqj/hLkj4jKTXRDGZ2t5m1mllrR0dHRKvFTDCnukQSIQaA0zHlEJvZbZLa3X3VieZz93vcvcXdWxoaGqa6WswgpUVx1ZQX8cUPAHAaotgjvkrS7Wa2XdIDkm40s/siWC5yyNyqUu07wtm1AOBUTTnE7v45d29092ZJd0p6wt3vmvLIkFPm15RqX1d/6GEAQM7hc8SIxIKaMu05zKFpADhVkYbY3Z9y99uiXCZyw8KaMh3sHVL/UDL0UAAgp7BHjEgsqEl/hGnPEQ5PA8CpIMSIxIJZZZKkPYcJMQCcCkKMSCyoIcQAcDoIMSIxb1apzKTdvGELAE4JIUYkiuIxza0qZY8YAE4RIUZkFs4uI8QAcIoIMSKzoKZMuwkxAJwSQozILKgp1d7DA0qlPPRQACBnEGJEZmFNmYaSKXX2cs5pAJgsQozIvP5ZYt45DQCTRYgRGT5LDACnjhAjMgsJMQCcMkKMyFSXJVRZklDbIUIMAJNFiBEZM1Pj7DLtOtgXeigAkDMIMSK1uK5cOwkxAEwaIUakmmrTIeazxAAwOYQYkWqqLdfgSEodPXyWGAAmgxAjUotqyyWJw9MAMEmEGJFqyoR4xwFCDACTQYgRqcbZ5TJjjxgAJosQI1LFiZgWzOIjTAAwWYQYkVtUW8YeMQBMEiFG5Jpqy3mNGAAmiRAjcovrKtTZM6i+oZHQQwGAGY8QI3JHP8K06yDnnAaAkyHEiNzrH2HqDTwSAJj5CDEit5jPEgPApBFiRG52RbFmlxdpa2dP6KEAwIxHiJEVSxsqtaWDQ9MAcDKEGFmxtL5CWwkxAJwUIUZWLG2oVGfPoLoGhkMPBQBmNEKMrFjaUCFJ7BUDwEkQYmTFGcdCzBu2AOBECDGyoqm2QvGYsUcMACdBiJEVxYmYFs0u4yNMAHAShBhZs7Shkj1iADgJQoysWVpfoW2dvUqlPPRQAGDGIsTImqUNlRocSWnPEb78AQAmQoiRNcvmVEqSNrXzOjEATIQQI2vOmpsO8cZ93YFHAgAzFyFG1tSUF2tudYk27CfEADARQoysOmtulTYSYgCYECFGVi2fV6VN+3uU5J3TADAuQoysOmtulQZHUtpxgM8TA8B4CDGy6ux5VZLE4WkAmAAhRladOadKZtKGfXyECQDGQ4iRVWXFcS2uLWePGAAmQIiRdWfNreIjTAAwgSmH2MwWmdmTZrbezNaZ2SejGBjyx9nzqrSts1cDw8nQQwGAGSeKPeIRSX/s7udIulzSx83s3AiWizxx3oJqJVOuDZxhCwDeYMohdve97r46c71b0npJC6e6XOSP8xbMkiS9sudI4JEAwMwT6WvEZtYsaYWk56JcLnJb4+wyzSor0iu7CTEAjBVZiM2sUtKDkj7l7l3jTL/bzFrNrLWjoyOq1SIHmJkuWDhLawkxALxBJCE2syKlI3y/uz803jzufo+7t7h7S0NDQxSrRQ45b2G1Nuzr1tBIKvRQAGBGieJd0ybpW5LWu/sXpz4k5KMLFs7ScNL5PDEAjBHFHvFVkj4o6UYzW5P5eUcEy0UeOf/oG7Y4PA0Ax0lMdQHu/mtJFsFYkMcW15WrqjShtbuP6M7QgwGAGYQza2FamJnOW1DNHjEAjEGIMW0uaqzRq3u7OMMWAIxCiDFtLlk8W8NJ1zpO7AEAxxBiTJtLmmZLklbtOBR4JAAwcxBiTJuGqhI11ZYTYgAYhRBjWr1p8Wyt3nlY7h56KAAwIxBiTKtLmmrU0T2otkP9oYcCADMCIca0umQxrxMDwGiEGNPq7LlVqiiOE2IAyCDEmFaJeEwrmmbr+W0HQw8FAGYEQoxpd8UZddqwv1udPYOhhwIAwRFiTLsrz6iTJK3ceiDwSAAgPEKMaXfBwlmqLEnomS2EGAAIMaZdIh7TpUtq9SwhBgBCjDCuPKNO2zp7tfcInycGUNgIMYK4IvM68TOb2SsGUNgIMYI4Z161aiuK9atNHaGHAgBBEWIEEYuZrj+rQU9t7FAyxXmnARQuQoxgblg+R4f7hvXiTs6yBaBwEWIEc+1ZDYrHTE+81h56KAAQDCFGMLPKivSmxbMJMYCCRogR1I3L5+i1fd3ac5iPMQEoTIQYQb3lnDmSpMfW7Qs8EgAIgxAjqGVzqnTW3Eo9spYQAyhMhBjB3XrBAr2w46D2HRkIPRQAmHaEGMHdeuE8uUuPvrI39FAAYNoRYgS3bE6Vls+r0k9fJsQACg8hxoxw6wXz1brjkNoO9YUeCgBMK0KMGeGdKxZKkh5ctTvwSABgehFizAiLast11bI6/WDVLqU49zSAAkKIMWO8r2WR2g71a+VWvhoRQOEgxJgx3n7ePFWVJvT91l2hhwIA04YQY8YoLYrrXSsW6tG1+9TRPRh6OAAwLQgxZpQPX9msoWRK963cEXooADAtCDFmlDMaKnXj8jm6b+UODQwnQw8HALKOEGPG+d2rl+hA75B+8tKe0EMBgKwjxJhxrjyjTsvnVekbv9yiJB9lApDnCDFmHDPTJ286U1s7evWTlzjBB4D8RogxI739vHk6Z361/s/jmzSSTIUeDgBkDSHGjBSLmf6ft5yp7Qf69NBq9ooB5C9CjBnrrefO1cWLavS3j21Q98Bw6OEAQFYQYsxYZqY/v/08dXQP6itPbA49HADICkKMGe2iRTV6X0ujvv3rbdrc3h16OAAQOUKMGe8zNy9XZWlCf/KDl3njFoC8Q4gx49VXlui/3XG+1uw6rL9/emvo4QBApAgxcsJvXbRAt144X196fKNe2nU49HAAIDKEGDnjL+84X3OqSvX7961SZw/fzgQgPxBi5IzZFcX6+w++SQd7h/Tx+1drcIQvhQCQ+wgxcsr5C2fpr99zoZ7bdlCf/v5LnIsaQM6LJMRmdrOZbTCzzWb22SiWCUzknSsW6gu3nqOfrt2rP31orVLEGEAOS0x1AWYWl/Q1SW+V1CbpBTP7ibu/OtVlAxP52DVL1dU/rC8/sVk9QyP64vsuUkkiHnpYAHDKphxiSZdK2uzuWyXJzB6QdIckQoys+vTbzlZlaUJ/9chrOtAzqK9+4BLVV5aEHhZmiFTKNZJyJVOukVRKyZRrOHn87WPTk+n7Ui6l3OXu6eup9OWx2+5KHp2eSt8eOz39eCmZev16atT04+c9+tj0fJLkktwl1+v3Sen50ve/Pl3HrqevHJ2WXs748+vYfa9P1zjrdPdxp41eh47eN+ag1OuPfP3xx0/XCaePt4yT3JSPWcjJ1nGyxzfOLtdnb1n+xoFlQRQhXihp16jbbZIuGzuTmd0t6W5JampqimC1gHT3tWeooapEn31wrW798q/05TtX6LKldaGHVXDcXYMjKQ0MJ9U3lFT/cFL9Yy4HMteHkykNjqQ0lExpaGTUT3LM5UTXk6nj4nksqMnXwzqcSo37yz3fmUmm9OlhpaPXJVN6gh03n407v0bdl7n79duZx0pjp2XWMWYsx91+w1jH3jP+9px4mVNb5xtGMOqOoZHpO3lQFCEe77/mG/4JuPs9ku6RpJaWlgL8J4JsedeKRp09t1p/cP8q3fl/V+quyxbrP918tqpLi0IPbUYbSabUPTCinsGRY5c9g8PqHhh1O3PZNTB87Hrv4Mix2I4O7+mGLxEzFSdiKk7EVBSPqTgeU0nmdnEifbs4EVNlaSI9PRFTUcwUj8WUiJkScVPi6O24KR5L306Muf36ZWzUY9LzxUdNN5NiZpmf9C/vmKW/Eezo7Xhm+rF5Yxozf+YxZsced9z8o+Y9et/rkXs9ktLxkRsdzuPmn0TUMHNFEeI2SYtG3W6UtCeC5QKTdu6Caj38R9fofz22Qfc+s12PvrJPf3D9GfrAZU0qLcr/1457B0d0oGdIh/rSP0f6h3Wod0iH+obT1/uGdLhvWIf70vcd7htS18DISZcbM6myJKGq0iJVlSZUWZJQTXmxFtTEVVYUV2lxXOVFcZUVx1ValL6vvPj12+XFmfky10uK4sfCWpIJbzxGRFDYbOxx8VNegFlC0kZJN0naLekFSR9w93UTPaalpcVbW1untF5gIi+3HdZfPbJeK7ce1JyqEn3gsia9r2WRFtSUhR7aKekfSqqzZ1AdPYPq6B5MXz/ucujY7b6hiT9TXV2a0OyKYtWUFammvFg15UWanbmszgQ2HdlMbEsTqipJX5YVxdnbAiJgZqvcvWXcaVMNcWYF75D0JUlxSd929/9+ovkJMabDs1sO6O9+uUW/2tQhk3TZkjrddM4c3bh8jpbUVwQJzOBI8lhAx4/r65HtGRx/j7W2olj1lcVqqCpRfWWJGipLVF9VorqKYtVWFB8X21llRexxAjNA1kN8qggxptOug33659Zd+tm6fdq4v0dSOmYXL6rR+QuqtbiuQs315VpYU66a8qJJH8p2dw0Mp3S4P30oOH3od1hd/cPq7B291zpwLLwTHQ6eVVZ0fFxHXTYcvawqUW1FsYrinIcHyDWEGMjYeaBPT2/q0Jpdh7Vm12Ft7ejR2POBlBbFVFNWrOJE7NgbeuIx01AypcHh9Dt+B0eSGhxOv4N3IhXF8WMBHb33elxsq0pUX1nMZ6CBPHeiEEfxZi0gZzTVleuuusW66/LFktIfUWg71KcdB/q050j/sTc0He4b1sixz5mmNJJ0FSViKk3EVVKUfqNRSSKuWWVFqikvSl+WFam6LH29rrJY5cX88wJwcvymQEErTsS0tKFSSxsqQw8FQIHixSYAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACCgKYXYzP7WzF4zs5fN7EdmVhPRuAAAKAhT3SP+uaTz3f1CSRslfW7qQwIAoHBMKcTu/pi7j2RurpTUOPUhAQBQOKJ8jfijkh6NcHkAAOS9xMlmMLPHJc0bZ9Ln3f1fMvN8XtKIpPtPsJy7Jd0tSU1NTac1WAAA8s1JQ+zubznRdDP7sKTbJN3k7n6C5dwj6R5JamlpmXA+AAAKyUlDfCJmdrOk/yzpOnfvi2ZIAAAUjqm+RvxVSVWSfm5ma8zsGxGMCQCAgjGlPWJ3XxbVQAAAKEScWQsAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAiIEAMAEBAhBgAgIEIMAEBAhBgAgIAiCbGZ/YmZuZnVR7E8AAAKxZRDbGaLJL1V0s6pDwcAgMISxR7x/5b0GUkewbIAACgoUwqxmd0uabe7vzSJee82s1Yza+3o6JjKagEAyBuJk81gZo9LmjfOpM9L+lNJb5vMitz9Hkn3SFJLSwt7zwAAaBIhdve3jHe/mV0gaYmkl8xMkholrTazS919X6SjBAAgT500xBNx97WS5hy9bWbbJbW4e2cE4wIAoCDwOWIAAAI67T3isdy9OaplAQBQKNgjBgAgIEIMAEBAhBgAgIAIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGACAgQgwAQECEGACAgAgxAAABEWIAAAIixAAABESIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAERIgBAAjI3H36V2rWIWlHhIusl9QZ4fJmKrYzv7Cd+YXtzC9Rb+did28Yb0KQEEfNzFrdvSX0OLKN7cwvbGd+YTvzy3RuJ4emAQAIiBADABBQvoT4ntADmCZsZ35hO/ML25lfpm078+I1YgAAclW+7BEDAJCTCDEAAAHlfIjN7GYz22Bmm83ss6HHkw1m9m0zazezV0KPJZvMbJGZPWlm681snZl9MvSYssHMSs3seTN7KbOdfx56TNliZnEze9HMHg49lmwys+1mttbM1phZa+jxZIuZ1ZjZD83stcy/0ytCjylqZnZ25nk8+tNlZp/K6jpz+TViM4tL2ijprZLaJL0g6f3u/mrQgUXMzK6V1CPpu+5+fujxZIuZzZc0391Xm1mVpFWS3pmHz6dJqnD3HjMrkvRrSZ9095WBhxY5M/u0pBZJ1e5+W+jxZIuZbZfU4u55faILM7tX0q/c/ZtmViyp3N0PBx5W1mQas1vSZe4e5UmojpPre8SXStrs7lvdfUjSA5LuCDymyLn705IOhh5Htrn7XndfnbneLWm9pIVhRxU9T+vJ3CzK/OTuX8QTMLNGSbdK+mbosWDqzKxa0rWSviVJ7j6UzxHOuEnSlmxGWMr9EC+UtGvU7Tbl4S/uQmRmzZJWSHou8FCyInPIdo2kdkk/d/d83M4vSfqMpFTgcUwHl/SYma0ys7tDDyZLlkrqkPQPmZcbvmlmFaEHlWV3SvpetleS6yG2ce7Luz2LQmNmlZIelPQpd+8KPZ5scPeku18sqVHSpWaWVy85mNltktrdfVXosUyTq9z9Ekm3SPp45uWkfJOQdImkv3P3FZJ6JeXl+3IkKXPo/XZJP8j2unI9xG2SFo263ShpT6CxIAKZ10wflHS/uz8UejzZljm095Skm8OOJHJXSbo989rpA5JuNLP7wg4pe9x9T+ayXdKPlH7ZLN+0SWobdfTmh0qHOV/dImm1u+/P9opyPcQvSDrTzJZk/nq5U9JPAo8JpynzJqZvSVrv7l8MPZ5sMbMGM6vJXC+T9BZJrwUdVMTc/XPu3ujuzUr/u3zC3e8KPKysMLOKzJsLlTlU+zZJefcJB3ffJ2mXmZ2duesmSXn1Rsox3q9pOCwtpQ815Cx3HzGzT0j6maS4pG+7+7rAw4qcmX1P0vWS6s2sTdJ/cfdvhR1VVlwl6YOS1mZeP5WkP3X3R8INKSvmS7o3847MmKR/dve8/nhPnpsr6UfpvyOVkPRP7v5vYYeUNX8o6f7Mjs9WSR8JPJ6sMLNypT+N83vTsr5c/vgSAAC5LtcPTQMAkNMIMQAAARFiAAACIsQAAAREiAEACIgQAwAQECEGCpiZfcXMVpvZm0OPBShUhBgoUJmzQM1R+qQFefsVhcBMR4iBPGdmzWbWP+psZZIkd+9V+ixfT0n6cmbessyXoQ+ZWf20DxYoQIQYyDOWNvbf9pbMtz2Nnq9OUrmkbklJSXL3/sx8fHkKME0IMZAHMnu9683s65JW6/hvJZvIFyT9T0nrJJ2bzfEBmBghBvLH2ZK+6+4r3H3HiWY0s2ZJV0r6vqT1ks7L/vAAjIcQA/ljh7uvnOS8fynpLzz9rS+EGAgop78GEcBxeiczk5ldLOndkq42s69JKpW0NovjAnAChBgoPH8t6bfc/ReSZGZzJb0YdkhA4eLQNFBAzOxGSRVHIyxJ7r5fUoWZ1YYbGVC42CMG8oC7b5d0/iTme0LSE+PcPysLwwIwCewRA/kvKWnW2BN6jOfoCT0kFUlKZXlcACRZ+k2TAAAgBPaIAQAIiBADABAQIQYAICBCDABAQIQYAICACDEAAAERYgAAAiLEAAAE9P8DwBoSJ+DLvO4AAAAASUVORK5CYII=\n",
      "text/plain": [
       "<Figure size 576x1296 with 3 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "job.plot_final_potential()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "adult-democracy",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The job PotentialTest was saved and received the ID: 820\n",
      "The job strain_0_9 was saved and received the ID: 821\n",
      "The job strain_0_92 was saved and received the ID: 822\n",
      "The job strain_0_94 was saved and received the ID: 823\n",
      "The job strain_0_96 was saved and received the ID: 824\n",
      "The job strain_0_98 was saved and received the ID: 825\n",
      "The job strain_1_0 was saved and received the ID: 826\n",
      "The job strain_1_02 was saved and received the ID: 827\n",
      "The job strain_1_04 was saved and received the ID: 828\n",
      "The job strain_1_06 was saved and received the ID: 829\n",
      "The job strain_1_08 was saved and received the ID: 830\n",
      "The job strain_1_1 was saved and received the ID: 831\n",
      "job_id:  821 finished\n",
      "job_id:  822 finished\n",
      "job_id:  823 finished\n",
      "job_id:  824 finished\n",
      "job_id:  825 finished\n",
      "job_id:  826 finished\n",
      "job_id:  827 finished\n",
      "job_id:  828 finished\n",
      "job_id:  829 finished\n",
      "job_id:  830 finished\n",
      "job_id:  831 finished\n"
     ]
    }
   ],
   "source": [
    "lmp = pr.create_job(\"Lammps\", \"template\", delete_existing_job=True)\n",
    "lmp.structure = pr.create_ase_bulk(\"Cu\", cubic=True)\n",
    "lmp.potential = job.lammps_potential\n",
    "murn = lmp.create_job(\"Murnaghan\", \"PotentialTest\")\n",
    "murn.run(delete_existing_job=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "vocal-heather",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEbCAYAAAAWFMmuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABBXklEQVR4nO3dd5xU1fnH8c+XpQmCKEVR1AUDERFEXSxRVJCosSEoihpjV4z6U1HsJpJEE4kKsUuwYOwaWzTGKIK9gIpKERsoCCpC6EXK8/vj3HFmh5nZ2d2Zndnd5/163Re333Mvs/e5555zz5GZ4ZxzzuVSg0InwDnnXN3jwcU551zOeXBxzjmXcx5cnHPO5ZwHF+eccznnwcU551zOeXBxVSLpakn3Fzodzrni5MGlCEiaJelHSW2S5k+WZJJKC5Q0lwVJbSS9IWmBpEWS3pK0V4b1t5L0tKSFkuZIGpK0vK+k9yUtkfSlpDMSlg2WNEPSYknfSxorqWWKY3SWtCrxAUDSDpImSfpfNLwkaYeE5ZJ0XXQeCySNkKRoWTtJD0maGx37DUm7pzm/e6Lf7c8S5m0m6RFJP0TDA4npljQ6Oq/1kk5K2p8k/UnSN9GxJ0jqlrB8QnSuy6JhRsKy0igtyxKGq7I554Ttx0taIekTSf0Slu0XpTdx3yemuibZqOBYlycdZ2V07DaZ9llQZuZDgQdgFjADODdhXvdongGlVdhnwzyn+Wrg/kJfu8peB0BAg0psX+H6QFPg54SHNQFHAAvT/R8A44FRQCNgp2jdPtGyRsBi4MxoX72AZcBO0fKtgTbR+MbAA8BNKY7xX+C1xP8joBVQGu23BPg/4KOE5WdGv7kOwFbANGBItKwTMBRoH217BvADsHHScfcGXo1+tz9LmH9blKaWwCbAS8CNCcvPBvYHJgEnJe3zaGBulIYS4M/A+wnLJwCnpbnWpVFa0v1fpD3naPlbwI3ARsCRwCKgbbRsP2BODn+raY+V5u/v5UL/fWUaPOdSPP4B/CZh+kTgvsQVoie00xKmT5L0esK0STpb0mfAZ9GT1RxJF0ZPufMknZyw/iGSPoiekGdLujrpeL+R9FX0RHeVQg6rX8IqjSXdJ2mppKmSyhK2vVTSF9GyaZIGJKdb0vXRE/RMSb/K9kJJ2lLSPyXNj7b9v4RlV0t6XNL9kpYAJ0XX7RpJbwArgE6SfiFpYvQkPFHSL5Kuc7n1M6XHzFaZ2QwzW0+4ca8DNgU2S5H2jQk3pWvMbI2ZfQg8DpwSrbIZ4Qb8DwsmAtOBHaJjzTazHxJ2uQ74WcI0kgYTbkzjktK5yMxmWbg7KcW2JwI3mNkcM/sGuAE4Kdr2SzO70czmmdk6MxsNNCYE1dhxGwI3A+ekuEwdgafMbImZLQaeBH7KfZjZrWY2DliVZtvXozSsA+6PXY8cSHvOkroAuwC/N7OVZvZP4GPCjb9CkjaRdFf0d/dNlPsqSbNu1seKclYnAGMre7I1yYNL8XgbaCmpa/QDPIbwR1RZRwC7E//j24LwpLgVcCpwq6RNo2XLCQGtFXAIcJakIyC8QiE8bR5PeFqN7SPR4cDD0fbPALckLPsC6B1tNxy4X1L7hOW7E54Y2wAjgLtiryOiwPRsqpOT1AD4F/BhlJ79gfMlHZiwWn/CDbsV4ckewh/jGUALYCnwHHAT0JrwtPicpNYJ+0hc/ytJz0q6NFWaEtL2EeHm+Awwxsy+T7Va0r+x8R0BzOw74CHgZEklkvYEtgUSHyL2lrQ4Oo8jCbmg2LKWwB+ACzOkc1GUzpuBaxMWdSNc15gPSQgASfvoSQgunyfMvgB41cw+SrHJrcChkjaNfn9HAs+nS2OSh4GfSeoiqREhIPwnaZ0/K7xue0PSfin28VX0oHVP0qukTOfcDfjSzJamWQ7QTtJ30UPOSEnNE5aNBdYSAvjOwAHAaaSWzbFiegObA/9Ms6/iUOiskw8/vRbrB1xJyPIfBLwINCThtRhJ2X/CE9brCdMG9E2Y3g9YScIrAeB7YI806RgFjIzGfwc8lLCsGfAj0C+avhp4KWH5DsDKDOc4GeifkO7Pk/ZtwBZZXKvdga+T5l0G3JOQrleTlk8A/pAwfQLwbtI6bxG9jklev5L/l02BY4ETM6zzOuHG3pTwtLoQmJGw/DDgO8KNaS1wepr9bBWdb5eEeX8DLkm4FilfXQLNgd8ChyTMWwdsnzDdOfp/UdK2LQlP1ZclzNuaEGg2SfgtJr4W25LwKmx9NLwINE5zbU5Kmtc4Oi+LrsdMoGPSb6IF0IQQeJYC20XLNgbKCH9LmxMeOl7I5pyj38nbSWm5Brg3Gt+C8LtvQMhdvQrcGS3bHFgNbJSw7bHA+DT/HxmPlTT/rlTzi23wnEtx+QdwHOHme1/mVdOanTS9wMzWJkyvIPzBIWn3qABxfvQkPISQk4BwM/hpX2a2AliQtO9vk/bbNHo1EnulNlmhgHsR4cm8Tapto30TS1cFtgW2jO032vflhD/mmORrkDxvS+CrpOVfUT5nlmofFbLwiuwh4FJJO6VZ7XjCzWg2cDshdzUHQNL2wCOEHGVjwpPrxZIOSXGsbwhP8A9H2/YkPKSMzCKdy4E7gPsktYtmLyMEjpiWwDKL7mjRMTYi5BzfNrM/J6w7ihCQF6c55GPAp4Qg0JKQs802Z/57QtnT1oSAPBx4WVKz6FzeMbOlZrbazMYCbwAHR8uWmdkkM1trIVd4DnCA4pUJMp1z8rLY8qXRvr81s2lmtt7MZgIXA0dF621LKD+bl/A7vRNoBxC9Ro4Vzveu6Fgx0fUfRJG/EgN/LVZUzOwrwlPZwcATKVZZTnjKj9ki1W4qccgHCa9wtjazTQg3m9jrmnmEQk7gpx916w32kIKkbYG/E/6QW5tZK2AK5V8FVdVsYKaZtUoYWpjZwQnrpLoGifPmEv74E20DfFPBPiqjEWnKaszsKzM71MzamtnuhOv6brR4R0Iu5oXopjWD8AovXZlUQ2C7aHw/QgH215K+BS4CjpT0fpptGxB+T7GgOpVQwSBmp2geAJKaAE8RrtOZSfvaH/irpG+jYwO8Jem4hH3daWbLzWwZ4bd2MNnZCXjEQrnIWjO7l1Cmla7cJZbzSLeMhOWZznkqoXyuRZrlmY47m5BzaZPwO21pZt0AzKybmW0cDa9V4lgDCTndCWnSUDQ8uBSfUwmvtpanWDYZGCipmUI1z1OreawWwEIzWyVpN0KuKeZx4LCo4Lsx4Wkx2+DQnPCHNh9AoRLBjtVMa8y7wBJJl0jaKCqX2FFSr0rs499AF0nHSWoo6RjCjSplOU9FJO0RlYM0jtJ0CSEn9U6a9btKahGt/2vCu/gbo8UfAJ0VqiNL0nbAoUTlApKOl7RNtGxbwquTWMH9aEKg6RkNdxAC04HRtr+UtHN0zVpGx/wfocIAhNzyUIWq0lsSym3ujbZtRPhNrAR+Y6HyQqIuhJth7NgQXu89GY1PBE6Lrs9GhPKsn8o6omvRlPAbaySpaVS+Ftt2kKTNJTWQdAIheH8uqZWkA6P1G0o6HtgHeCHa7+6Sfh5t15pQzjYhIYeV9pzN7FPC39zvo/0PAHoQlXUoVJiJ/V9sDfwFeDradh6hdtwNklpGx99O0r6kUNGxEpwI3JeYmyxahX4v50O8zCXF/OQylzaEH+xSQtb/ajYsc0l8z70fSVUlE49FyMJ/Fe3vWUKBfGLV1ZOArwmvw64iPLH2jpZdnbRuKQlVPgk3vYWE6qo3Aq8QlReRVFaUnHbCa67nM1yvLQmF3t8Sbo5vU74s6P6k9SeQVFWVUGX2PUK13/eAvStY/3ng8jTp2Zdwo1wanfMrwD4Jy48HpiZMn08IvMsJZQxlSfs7mpDTW0p4XXYdUXXo6LrOibadQwgordOkK/n/aBDwCeEVzHxCkO2RsFyEyhULo2EEUXlLdI5GeP25LGHonebYyb/FjoTXaQuiff8H6Jx0zS1p2C9a1pRQIWAesAR4HzgoWtaWEHyWEmrIvQ38MmG/xxLeBiyPtr+PhLK9TOec8LueQAiqM0j4OyVUzf4muiazCeVoLRKWb0J47TmH8Dv7ABic4Xed9ljR8q2IKggU+p6VzRD74TiXkUIV2kWEG8LMAifHOVfk/LWYS0vSYdEruObA9YQaQrMKmyrnXG3gwcVl0p9Q+D2XUEVzsHlW1zmXBX8t5pxzLuc85+Kccy7nGhY6AcWgTZs2VlpausH8b7+F5s2hRYsNt6mspUth+XLYItWXKc45Vwu99957P5hZ21TLPLgApaWlTJo0aYP548fD0UfDHXdAnz5V339sP48+Wr39OOdcMZGU3NLFT/y1WAZ9+oSAcPTRIUBUhQcW51x95MGlAtUJMB5YnHP1lQeXLFQlwHhgcc7VZ17mkqXEAFNRwPDA4lzNWLNmDXPmzGHVqlR9jLlcadq0KR06dKBRo0ZZb+PBpRKyCTAeWJyrOXPmzKFFixaUlpYi5aLRbZfMzFiwYAFz5syhY8eOWW/nr8UqKdMrMg8sztWsVatW0bp1aw8seSSJ1q1bVzp36MGlChIDzL//DV9/7YHFuULxwJJ/VbnG/lqsirp0gd694dBDoXNnWLjQA4tzzsV4zqWKli+HJ58EM/j0Uzj2WA8szrmK7bfffik/2q4Jv/jFLypcZ+ONs+ltvGIeXKqoSxcoK4tPjxlT9Q8tnXOuJrz55ps1diwPLlU0fnzIscSUlFTvS37nXO00a9Ystt9+e0488UR69OjBUUcdxYoVKxg3bhw777wz3bt355RTTmH16tXltrvrrru44IILfpr++9//ztChQ5k1axZdu3bl9NNPp1u3bhxwwAGsXLkSgMmTJ7PHHnvQo0cPBgwYwP/+9z8g5IYuuOAC9tlnH7p27crEiRMZOHAgnTt35sorr/zpGLFcybJly9h///3ZZZdd6N69O08//XTuL0whur8kdLc6FVhPUhev0fJtCF2oXlTBfi4idIfaJqGb0JWEvqgnA3dkk55dd93VKuPll83atDF78UWzTp3Mwssxs6FDw/yXX67U7pxzVTRt2rSfxmN/h/kYMpk5c6YB9vrrr5uZ2cknn2x//OMfrUOHDjZjxgwzMzvhhBNs5MiRZma277772sSJE23ZsmXWqVMn+/HHH83MbM8997SPPvrIZs6caSUlJfbBBx+YmdmgQYPsH//4h5mZde/e3SZMmGBmZldddZWdd955P+3z4osvNjOzUaNGWfv27W3u3Lm2atUq22qrreyHH34wM7PmzZubmdmaNWts8eLFZmY2f/5822677Wz9+vXl1sl0rePXnEmW5r5aqJzLFGAg8Gqa5SMJfZanJWlr4JeEPt4TfWFmPaNhSLVTmiSxVli/fnD22fFlL70EjzziORjn6putt96avfbaC4Bf//rXjBs3jo4dO9KlSxcATjzxRF59tfztrnnz5vTt25dnn32WTz75hDVr1tC9e3cAOnbsSM+ePQHYddddmTVrFosXL2bRokXsu+++Kfd5+OGHA9C9e3e6detG+/btadKkCZ06dWL27Nnljm1mXH755fTo0YN+/frxzTff8N133+X0mhQkuJjZdDObkWqZpCOALwk5m0xGAhcTci41IlV141NOgWbNwvhHH0HDhtVv7NI5V7tUtTr0aaedxr333ss999zDySef/NP8Jk2a/DReUlLC2rVrK9xXbJsGDRqU275BgwYbbP/AAw8wf/583nvvPSZPnszmm2+e81YOiqrMJeqr/RJgeAXrHQ58Y2YfpljcUdIHkl6R1DvDPs6QNEnSpPnz51eYtnTfsbRqBSecEJ+++ebctKbsnKucfL4Yq8jXX3/NW2+9BcBDDz1Ev379mDVrFp9//jkA//jHP37KcSTafffdmT17Ng8++CDHHntsxmNssskmbLrpprz22msZ95mNxYsX065dOxo1asT48eP56qu0LedXWd6Ci6SXJE1JMfTPsNlwYKSZLcuw32bAFcDvUiyeB2xjZjsDQ4EHJbVMtR8zG21mZWZW1rZtyr5uflLRB5KJr8aefBJmz/YA41x90rVrV8aOHUuPHj1YuHAhF1xwAffccw+DBg2ie/fuNGjQgCFDUr+lP/roo9lrr73YdNNNKzzO2LFjGTZsGD169GDy5Mn87nepboMVO/7445k0aRJlZWU88MADbL/99lXaT0bpCmNqYgAmkFCgD7wGzIqGRcBC4JykbboD3yest5ZQ7rJFRftPN2Qq0I8V3ldUSN+nT/w555JLKr+9c67yUhUy17SZM2dat27dqrz9IYccYi+99FIOU5QftaVAPyUz621mpWZWCowCrjWzW5LW+djM2iWsNwfYxcy+ldRWUgmApE5AZ0L5TZVUpkmX886Lj48eDStWhHHPwTjnUlm0aBFdunRho402Yv/99y90cnKuIMFF0gBJc4A9geckvZDFNmMklVWw2j7AR5I+BB4HhpjZwqqmc+LE7Jt0OfRQiDUY+r//wf33x5fFAszEiVVNiXOuWJWWljJlypRKb9eqVSs+/fRTHnvssTykqvBk2ZRW1XFlZWWWi+YYRo6EoUPDeLdu8PHH4G3qOZc/06dPZ/vtt/fGK/PMzPjkk0/o2rVrufmS3jOzlA/9RfVarLY75RSINcszdSqMG1fY9DhX1zVt2pQFCxbgD8n5Yxb6c2natGmltvNWkXNok03gpJPglqiUaNSo8KGlcy4/OnTowJw5c8jmcwJXdbGeKCvDX4uRu9diAJ99Fhq1jJkxo/y0c87VFf5arAZ17gyHHBKf/tvfCpcW55wrFA8ueRAr1Ae4997QkZhzztUnHlzyoE8f6NEjjK9YEb57cc65+sSDSx5I5XMvN98MP/5YuPQ451xN8+CSJ4MHw+abh/G5c6GOfiflnHMpeXDJkyZN4Jxz4tM33phd66rOOVcXeHDJoyFDIPbd0fvvwyuvFDY9zjlXUzy45FGbNvCb38Snb7ihcGlxzrma5MElzxIL9p99FqZPL1xanHOupnhwybOf/xyirq2BUPbinHN1nQeXGnDRRfHx++6Db78tXFqcc64meHCpAXvvDbvvHsZ//BFuvbWw6XHOuXzz4FIDpPK5l9tug+XLC5ce55zLNw8uNWTAgHhPlQsXwt13FzY9zjmXTx5cakhJSfmaYzfcAGvXFi49zjmXTx5catApp4RvXwC++goefbSw6XHOuXzx4FKDmjWDc8+NT48Y4U3COOfqpoIEF0mDJE2VtF7SBr2YSdpG0jJJF6XZ/mpJ30iaHA0HJyy7TNLnkmZIOjCf51EVZ58dggzAhx/CCy8UNj3OOZcPhcq5TAEGAq+mWT4SeL6CfYw0s57R8G8ASTsAg4FuwEHAbZJKcpTmnGjdGk4/PT593XWFS4tzzuVLQYKLmU03sxmplkk6AvgSmFqFXfcHHjaz1WY2E/gc2K3KCc2TCy4IBfwAEybAO+8UNDnOOZdzRVXmIqk5cAkwPIvVz5H0kaS7JW0azdsKmJ2wzpxoXqpjnSFpkqRJ8+fPr1a6K2vbbeHYY+PTf/lLjR7eOefyLm/BRdJLkqakGPpn2Gw44XXXsgp2fzuwHdATmAfE2htWinVTFpmb2WgzKzOzsrZt21ZwuNy75JL4+FNPwbRpNZ4E55zLm4b52rGZ9avCZrsDR0kaAbQC1ktaZWa3JO37u9i4pL8Dz0aTc4CtE1btAMytQjrybscdQ4OWzzwTpq+7DsaOLWyanHMuV4rqtZiZ9TazUjMrBUYB1yYHFgBJ7RMmBxAqCAA8AwyW1ERSR6Az8G5+U111l10WH3/gAZg1q2BJcc65nCpUVeQBkuYAewLPSaqwQq6kMQnVlkdI+ljSR0Af4AIAM5sKPApMA/4DnG1m6/JyEjmwxx7Qp08YX7cOrr++sOlxzrlckflXfJSVldmkSZMKcuwXX4QDDgjjTZuG3MvmmxckKc45VymS3jOzDb5VhCJ7LVYf9esHZdF/zapV3pmYc65u8OBSYBJcfnl8+rbbYMGCwqXHOedywYNLEejfH7p1C+PLlsFNNxU2Pc45V10eXIpAgwZwxRXx6b/9DRYvLlx6nHOuujy4FImjj4bOncP44sXeFbJzrnbz4FIkSkrKl73ceKN3heycq708uBSR44+H0tIwvmAB3H57QZPjnHNV5sGliDRqBJdeGp/+619hxYrCpcc556rKg0uROekk2DpqHe377+GOOwqaHOecqxIPLkWmSZPybY6NGOG5F+dc7ePBpQidcgp06BDGv/sORo8ubHqcc66yPLgUoSZNype9XHcdrFxZuPQ451xleXApUqeeCltFfWh++y3ceWdh0+Occ5XhwaVINW1aPvfyl7942Ytzrvbw4FLETjutfNnLbbcVNj3OOZctDy5FaMQIGD8+5F4S2xy77rrQsGVljB8f9uecczXJg0sR6tUrtDU2fnyoObbNNmH+Dz/ALRt0+pze+PFhP7165SedzjmXjgeXItSnDzz6aAgMb7wBV10VX/bXv8KSJRXvIxZYHn003pWyc87VFA8uRSoxwGy7LXTqFOYvXAijRmXe1gOLc67QPLgUsViAOe44GDQoPv+GG0KQScUDi3OuGBQkuEgaJGmqpPWSylIs30bSMkkXpdn+aknfSJocDQdH80slrUyYX+tb5ooFmLvuirc5tmRJ6kJ6DyzOuWJRqJzLFGAg8Gqa5SOB5yvYx0gz6xkN/06Y/0XC/CG5SGyhxQLMokXxeTfdBPPmxac9sDjniklBgouZTTezGamWSToC+BKYWqOJKnJ9+sCTT0LDhmF65Uq45pow7oHFOVdsiqrMRVJz4BJgeBarnyPpI0l3S9o0YX5HSR9IekVS7wzHOkPSJEmT5s+fX92k14j994c//CE+PXo0PPSQBxbnXPHJW3CR9JKkKSmG/hk2G0543VXRp4K3A9sBPYF5wA3R/HnANma2MzAUeFBSy1Q7MLPRZlZmZmVt27atzKkV1KWXQrduYXzNGjj5ZA8szrni0zBfOzazflXYbHfgKEkjgFbAekmrzKzcp4Nm9l1sXNLfgWej+auB1dH4e5K+ALoAk6p0EkVICs3A7LtvmF69Gtq1K2yanHMuWVG9FjOz3mZWamalwCjg2uTAAiCpfcLkAEIFASS1lVQSjXcCOhPKb+qUdetCl8gxZ5xRuLQ451wqhaqKPEDSHGBP4DlJL2SxzZiEassjJH0s6SOgD3BBNH8f4CNJHwKPA0PMLM0XIbVTrPD+1lvj8958E26+uXBpcs65ZDKzQqeh4MrKymzSpOJ/c5ZcK+z44+HBB8Oyhg3hhRegb9/CptE5V39Ies/MNvhWEYrstZhLL1V14z/+Mf56bO1aGDAgrOecc4XmwaUWSPcdS6dOcOaZ8enNNou3puycc4WUMbhI2lPSrdH3JPMlfS3p35LOlrRJTSWyPqvoA8mrroKNNw7js2aFqskeYJxzhZY2uEh6HjgNeAE4CGgP7ABcCTQFnpZ0eE0ksr7K5sv7du1g2LD49AMPwNixHmCcc4WVtkBfUhsz+yHjxlmsUxsUY4F+ZZp0Wb4cfvYz+PbbMP2nP8EvfuFf7jvn8quqBfpXS/pFph3XhcBSjCrbVljz5uWbhbnuuvAVf6w/GM/BOOdqWqbg8hlwg6RZkq6T1LOG0lTvTZxY+RzHySfDDjuE8aVLYfjweGvKEyfmJ53OOZdOhd+5SNoWGBwNTYGHgIfN7NP8J69mFONrsap49lk47LAwXlICU6bA9tsXNk3OubqrWt+5mNlXZnZd1BjkcYTmVqbnOI0uBw45JJ7bWbcOLkrZ1ZpzzuVfhcFFUiNJh0l6gNCB16fAkXlPmas0KXSBLIXp556DF18sbJqcc/VTpqrIv5R0NzAHOAP4N7CdmR1jZk/VUPpcJe28M5x0Unz6wgtDLsY552pSppzL5cBbQFczO8zMHjCz5TWULlcNf/oTNGsWxj/+GO65p7Dpcc7VP2mDi5n1MbO/m9lCSXtLOhl+ata+Y80l0VXWllvCJZfEp6+8EpYsKVx6nHP1TzZlLr8ndD18WTSrEXB/PhPlqu+ii2CrrcL4d9/BNdcUNj3Oufolm4YrBwCHA8sBzGwu0CKfiXLV16wZjBgRnx45Ej77rHDpcc7VL9kElx8tfAxjAJKa5zdJLleOPTY0AwOwZo1XTXbO1Zxsgsujku4EWkk6HXgJ+Ht+k+VyQYK//S0+/cwz8N//Fi49zrn6I5uPKK8ndBn8T+DnwO/MzDvVrSXKykLTMDHnnx9yMc45l0+ZvnNRbNzMXjSzYWZ2kZm9mGodV7yuvTbe58v06XDLLYVNj3Ou7suUcxkv6VxJ2yTOlNRYUl9JY4ETq3JQSYMkTZW0XtIG7dJI2kbSMklpSwmitM2I9jMiYf5lkj6Plh1YlfTVNVtsAb/7XXz697+PN8/vnHP5kCm4HASsAx6SNFfSNEkzCa0lHwuMNLN7q3jcKcBA4NU0y0cSmppJSVIfoD/Qw8y6AddH83cgNLDZLUr/bZJKqpjGOuW88+KNWC5dWv47GOecy7VMH1GuMrPbzGwvYFtgf2BnM9vWzE43s8lVPaiZTTezGamWSToC+BKYmmEXZwF/MbPV0f6+j+b3J7TYvNrMZgKfA7tVNZ11SePGcNNN8en77oM33ihcepxzdVs2tcUwszVmNs/MFuUzMVE150uA4RWs2gXoLekdSa9I6hXN3wqYnbDenGheqmOdIWmSpEnz58+vbtJrhV/+Eo5MaHL0nHNg7drCpcc5V3dlFVyqQtJLkqakGPpn2Gw44XXbsgp23xDYFNgDGEaoLi0gVQWDlB3WmNloMyszs7K2bdtmcUZ1ww03wEYbhfHJk+H22wuaHOdcHdUwXzs2s35V2Gx34KiogL4VsF7SKjNLrt80B3gi+rjzXUnrgTbR/K0T1usAzK1COuqsbbeFK64I7Y1B+Peoo6B9+8KmyzlXt2TTttg5kjaticSYWW8zKzWzUmAUcG2KwALwFNA3Sl8XoDHwA/AMMFhSk6hxzc7AuzWQ9FrloougS5cwvmSJf7nvnMu9bF6LbQFMlPSopINy8W2LpAGS5gB7As9JeiGLbcYkVFu+G+gkaQrwMHCiBVOBR4FpwH+As83MezNJ0qQJ3HZbfPrBB+HllwuXHudc3aPwZqmClUJAOQA4GSgj3MDvMrMv8pu8mlFWVmaTJk0qdDJq3HHHwUMPhfGf/xw+/DAEHuecy4ak98xsg28VIfvaYgZ8Gw1rCYXpjyd+vOhqnxtugBZR+9YzZpRvRdk556ojmzKX/5P0HjACeAPobmZnAbsCR2bc2BW19u3L9/NyzTXw6aeFS49zru7IJufSBhhoZgea2WNmtgbAzNYDh+Y1dS7vfvtb6BV9JbR6NQwZAlm8KXXOuYyyCS6jgKWSNksYGkH40j6vqXN5V1ICo0eHfwHGjw9f7zvnXHVkE1zeB+YDnxLaFZsPzJT0vqRd85k4VzN69gxN8cdceCHUk0YLnHN5kk1w+Q9wsJm1MbPWwK8ItcV+C9yWcUtXawwfDttE7V8vWFA+2DjnXGVlE1zKzOyn71DM7L/APmb2NuAVV+uI5s3hjjvi0w8+CM89V7j0OOdqt2yCy0JJl0jaNhouBv4XNWW/Ps/pczXoV7+C44+PT591Vmie3znnKiub4HIcoY2up6Jh62heCXB0vhLmCmPUKGjTJozPng2XXVbQ5DjnaqmMwSXKnYwys3PNbOdoONfM5pvZj2b2eQ2l09WAESPg44/L9/ty663w2muV39f48f5RpnP1WcbgErXL1VZS4xpKjyugXr3g6KNh883hkEPi8085BVasyH4/48eH/cS+n3HO1T/ZvBabBbwh6SpJQ2NDntPlCqBPH3j0UTjmGPjNb6BlyzD/88/jTfRXJBZYHn007M85Vz9lE1zmAs9G67ZIGFwdFAswZ58NZ54Znz9qVMXdIntgcc7FZNUqMoQuiM1seZ7TUxD1tVXkTGKBorQUYpemc+fQe2WzZunX98DiXP1RrVaRJe0paRowPZreSZJ/PFnHxXIwX34Z7xb5s89CL5bJPLA455Jl27bYgcACADP7ENgnj2lyRaJPH3j88Xi7YxBej40fH5/2wOKcSyXb/lxmJ83y3h3riT594OmnoVGj+LyTTw7dI3tgcc6lk01wmS3pF4BJaizpIqJXZK5+6NsXHngAYh1cf/UVDB7sgcU5l142wWUIcDawFTAH6BlNu3pk0KDy1ZGffz40bumBxTmXSta1xeoyry2WvW7dYNq0MN62bfiif/PNC5sm51xhVLe2WFtJl0saLenu2FDNBA2SNFXSekkbJEzSNpKWRa/g0u3jXEkzov2MiOaVSlopaXI03JFue1d548fDd9/BxhuH6fnzw9f7/nzinEvWMIt1ngZeA14idwX5U4CBwJ1plo8Enk+3saQ+QH+gh5mtltQuYfEXZtYzR+l0kVjh/WOPwbp18Mtfhvn//jfcfnvoLtk552KyCS7NzOySXB401j2yYiXECSQdAXwJZPpg8yzgL2a2Otrf97lMnysvVa2woUPhxhvDeKzspWvXgiXROVdksinQf1bSwXlPCaEVAOASYHgFq3YBekt6R9IrkhKbSOwo6YNofu8MxzpD0iRJk+Z7n75ppatufM010L17GF+zBg47DFatKkwanXPFJ5vgch4hwKyStETSUklLKtpI0kuSpqQY+mfYbDgw0syWVbD7hsCmwB7AMOBRhWzQPGAbM9sZGAo8KKllqh2Y2WgzKzOzsrZt21Z0OvVSpu9YmjYNvVU2ifoi/eILOO64mk+jcy61ESPKf/BcHVXpQqPC4GJmLcysgZk1NbOW0XTKG3bSdv3MbMcUw9MZNtsdGCFpFnA+cLmkc1KsNwd4woJ3CT1itjGz1WYWa0ngPeALQi7HVVI2H0juuGP81RjAk0+GHI1zrvBiXWhUN8BUtQuNbGqLSdKvJV0VTW8tabeqJTMzM+ttZqVmVkpoduZaM7slxapPAX2j9HQBGgM/RDXbSqL5nYDOhPIbVwmV+fL+rLPgiCPi01ddFbZzzhVWrH3A6gSY6rTCkc1rsduAPQldGwMsA26t3GHKkzRA0pxov89JeiGLbcYkVFu+G+gkaQrwMHCihQ929gE+kvQh8DgwxMwWViet9U1lf0wS3HUXdOgQps3g17+Gl17KbzqdcxWrToCpdvNOZpZxAN6P/v0gYd6HFW1Xm4Zdd93VnNnLL5u1aRP+raxXXjFr0MAshBezZs2qth/nXO5V9m872/WBSZbmvppNzmVN9KrJIHxUSSjjcHXMxIlVf0rZZx+4+ur49IoVoT0y51zhVSYHk6sGabMJLjcBTwLtJF0DvA5cW/VDumJ18cXV+zFdfnn840oIrSl/80310+Wcq75sAkwuWzrPprbYA8DFwJ8JVX2PMLPHqndYVxeVlMD990P79mH6hx/gmGPCdzDOucLLFGBy3YWGN1yJN1yZa6+8EprpXx+9PD3/fBg5sqBJcs4liAWSfv1CIOncuWqBpVoNVzpXWfvuC9cmvDgdNcqrJztXTPbdF3r3hocfhjPPhP79c983kwcXlxcXX1z++5dTToHp3sWccwW3bl0IKE8+GZ+35Zaw3365PY4HF5cXEtx7L/zsZ2F6+XIYMAAWLy5ospyr19auhZNOgjFj4vO6doUFC2DChNwey4OLy5tNNoEnnoCNNgrTM2aEDyzXe0V252rc6tWhgs3998fnHXAAfPRR9b/kT8WDi8ur7t3h7oSu5Z59FoZX1Oa1cy6nVqwI5SpPPBGfd+ihobvyhg1z01RMMg8uLu8GD4Zhw+LTf/hD+fe9zrn8WbwYDjwQXkhoZOuoo+CZZ6BBQgTIdYDx4OJqxJ//XP4DyxNOCNlx51z+fP99CBqvvx6fd9JJIYik6KsxpwHGg4urESUlodpjp05hevny0MHY996HqHN58dVXsPfe8MEH8Xm//S3cc0/qwBKTqwDjwcXVmM02C1nxFi3C9Ndfw8CBoaDROZc706fDXnvBZ5/F5w0bBrdm2Z59LgKMBxdXo7p1g4ceij85vfFGqHPvDUU4lxtvvRVyLInt+l19deV7kqxugPHg4mrcIYfAX/8anx47tvwX/c65qnnuOdh/f1iY0IvV9dfD739ftf1VJ8B4cHEFMXRo+Go/5sorQ47GOVc1Y8eG6sYrV4bpZs3gttvgwgurt99YgJk4sXLbecOVeMOVhfLjj/CrX8HLL4fpxo1h3LiQpXfOZccs1Ma84or4vG23hf/+F7p0ye+xveFKV5QaN4Z//jM0PwEh2PTvH77kr47x4yv/ftm52mjdOjj77PKBpXt3ePPN/AeWinhwcQXVqlV4T9yqVZheuDB88DVvXtX2F2tKvFevXKXQueK0YgUceSTcfnt8Xp8+8NproSHKQvPg4gquY8eQhW/SJEx/9RUcfDAsWVK5/eS6syPnitV334VWjJ9+Oj7v2GNDcy6bbFKwZJVTkOAiaZCkqZLWS9rgfZ2kbSQtk3RRmu0fkTQ5GmZJmpyw7DJJn0uaIenAPJ6Gy6FevUK7R7HmKCZPrtw3MB5YXH3xySewxx7lC9iHDQsNUsYe0IpBoXIuU4CBwKtplo8Enk+3sZkdY2Y9zawn8E/gCQBJOwCDgW7AQcBtkkpymG6XRwcfDH//e3x63LjQivK6dZm388Di6ouXX4Y994RZs8J0gwbhw8gRI8q3E1YMCpIcM5tuZimLbSUdAXwJTK1oP5IEHA3EKrH2Bx42s9VmNhP4HNgtJ4l2NeKUU+CPf4xPP/44DBmS/iNLDyyumI0YkbtWhocNC+3zLVoUpps1C6/Ffvvb3Ow/14oq1klqDlwCZNsoe2/gOzOLNXKwFTA7YfmcaF6qY50haZKkSfPnz69qkl0eXHEFnHdefHrMGLj00g3X88Diil2vXtVvo2vdutCy+PXXx/tCat8eXn01NJtfrPIWXCS9JGlKiqF/hs2GAyPNbFmWhzmWeK4FIFVzbCmfec1stJmVmVlZ27ZtszycqwkS3HhjaDk5ZsQIuOaa+LQHFlcbVLcJlaVLQ1/3jzwSn9ezJ7z7Luy6a86SmRcN87VjM+tXhc12B46SNAJoBayXtMrMbkleUVJDQrlN4iWeA2ydMN0BmFuFdLgCa9AA7ror9EXxzDNh3pVXhl4td97ZA4urPRIDTGV+s7NmQd++MHNmfN5hh8GDD8LGG+clqTlVVK/FzKy3mZWaWSkwCrg2VWCJ9AM+MbM5CfOeAQZLaiKpI9AZeDefaXb506hReGLrl/CYcuGFcPjhHlhc7VLZHMwrr8BOO5UPLMOGhU72akNggcJVRR4gaQ6wJ/CcpBey2GZMUrXlwZR/JYaZTQUeBaYB/wHONrMK6hq5Yta0KTz1VHg1ELNsGXz+ecGS5FyVZBNgzEJ7YH37xr/zatwY7r03vBouqUV1X71tMbxtsdrg2WdhwABYuzY+b/RoOP30wqXJuapIV164ejWce2756vibbx6aSNprr5pPZza8bTFXq40fDyefHP7IyhJ+xmecUf4P0bnaIFUOZs4c2Gef8r/nsjKYNKl4A0tFPLi4opb4lHf44fDiixsGmGx713OuWCQGmFGjQs2vdxNKh3/961DVuEOHgiWx2jy4uKKV6vVBq1YbBphzzinf+ZhztcF++4WGJy+4AL7/Psxr0CAEm/vuCzUjazMPLq4oZfqOJRZg9tgjPu/ii0NXrl6E6GqDxYtD23l33hmf16xZaN7lvPPi3YDXZh5cXNHJ5gPJVq1CS8r77RefN3x46OEy9hWzc8Xogw9Czvupp+Lzttoq1IysS79dDy6uqFTmy/sWLUJfMAcmtH09ahSceCKsWZPXZDpXaWZwxx2h4cnEqvQDBsCXX4Z29KrbVEwx8eDiikZVmnSJNd531FHxefffH/5gV6zITzqdq6wlS0J/K2edVb4biauuCl1NNG5c/aZiio0HF1cUqtNWWJMm8PDDcOaZ8XnPPRf2Eysoda5Q3nkntAeW2D5YSQmMHQt/+EP5detSgPHg4orCxInVa9KlpCR095rYl/i774ZXEJ99ln475/Jl/Xr4y19g773LN+PStGn4KPg3v0m9XV0JMP6FPv6Ffl1z223hS+dY4Wjr1uHVWW39GM3VPrNnh+AxYUJ8XvPmoarx009n9xBVG1r+9i/0Xb3y29+G99ix7wQWLAhtNd1/f2HT5eqHhx+G7t3LB5Yddgivb7MNLFD7czAeXFyd1L9/+IOMddXz44+hf5grrqhb1T1d8Vi4EI47LhTcL14c5jVoEH53338faoNVNgdSmwOMBxdXZ+2+eyh36dYtPu/aa8NX0bEWZ53Lheefhx13hIcS2mkvLQ1V459/vnqvtmprgPHg4uq00lJ480341a/i8556Knzd/+mnue3jfPz4sD9XfyxeHFrmPvhgmDcvPv/EE+HDD2HlytyUmcQCzMSJ1dtPTfLg4uq8li1Db5ZDh8bnTZ8Ou+0WPrbMxRNhrPC1V6/q7cflRz4eImK5lTFj4svatQsPL/feG353F1+cu8L4Pn3C/moLDy6uXmjYEG64IRTqN20a5i1eHLpO3n//6gWY2lCrp77r1St3DxGDBsG4cSG3MiehH9yBA2HKlFDe5zy4uHrm+OPhjTdgm23i8x55BNq3D1/5V/bm44GldshFucXLL4fAsWZNaNcupk2b8Bt6/PF4BRLnwcXVQ7vsAu+/H548Yz7+OPRyecQR2d98PLDULtUJMPffDwcdBEuXlq8McswxMG1a2GddaMk4lzy4uHqpdWv417/gmmtCdVEIN40lS0LQeeGFzNt7YKmdKhtgVq+GU04J1YkTG0Pt0CH8fh5+2HMr6RQkuEgaJGmqpPWSNvi6U9I2kpZJuijN9o9ImhwNsyRNjuaXSlqZsOyOPJ+Kq8UaNIDLLw/vz7fcMj5/1So45JDyBbWJPLDUbtkGmOefh+22g3vuic+TQud006bBoYfmP621WaFyLlOAgcCraZaPBJ5Pt7GZHWNmPc2sJ/BP4ImExV/ElpnZkFwl2NVd++0Xqo0efnh83rp1oYrp6aeH8RgPLHVDpgDz5ZehbOXgg+Gbb+LzY10R33xz6O7BZVaQ4GJm081sRqplko4AvgSmVrQfSQKOBh6qaF3nMmnTJlQhvfXW8t3LjhkTqptOneqBpa5JDjBLlsAll0DXrqHqeswmm4SA8s475bvXdpk1LHQCEklqDlwC/BJI+UosSW/gOzNLbPe2o6QPgCXAlWb2Wu5T6uoiKbRL1q9faHTwnXfC/E8+gR49QhXmJ5/0wFKX9OkDDz4Ycq0NG8KiReWXn3pqaNWhXbuCJK9Wy1vORdJLkqakGDLVAh8OjDSzZVke5ljK51rmAduY2c7AUOBBSS3TpO8MSZMkTZo/f36Wh3P1QZcu8Prr8Kc/QaNGYd769aHzsaFD4TV/XKkTzMLDwrnnwrJl5QNL167h4WLMGA8sVVXQJvclTQAuMrNJ0fRrwNbR4lbAeuB3ZnZLim0bAt8Au5rZnOTlqfafjje579K55x4444xQTTnRySeHr7TbtClMulz1jB8fGjF9660Nlw0cGL5Z8arFFas1Te6bWW8zKzWzUmAUcG2qwBLpB3ySGFgktZVUEo13AjoTym+cq7Tx40NzG88/DzfeGP+yH0LQ6dwZbrqpfBVVV9zefju89uzbt3xgadYs9Ldy6aXw6qvlm8t3VVOoqsgDJM0B9gSek1TBVwUgaUxSteXBbFiQvw/wkaQPgceBIWa2MFfpdvVHYuF9v35wwQWhocu9946vs2gRnHce7LQT/Oc/4TWLK05vvgkHHhh6Jh03Lj6/ceOQU9loo/Ddyp//XDtbIC5KZlbvh1133dWci3n5ZbM2bcK/qVxzjVmDBmYhnMSHvn3NJk7M/jjXXZf+GFVJ83XX5WZf+VST57x+vdm4cWb9+m34f1VSYnbqqWYPPZT6/7qi34ALgEmW5r5a8Bt7MQweXFxMtjeV//zHrHlzs6ZNN7xxHX202bRpuTtWTe2nJtTEOa9da/bPf5rtttuG/zcNGpgdf7zZjBkVp6U2XddC8eDiwcVlobI3k5dfNttsM7NDDw1Pwok3Mcns2GPNpk/P7TFzvX0h5Oucly41u+kms06dUgeVE04IQaUyaaiN17cmeXDx4OIqUNWbSGy7e+81Gzhww5uaZHbkkZlfl1X32LXxxpfLc/70U7PzzzfbZJMNr3+TJmZDhph98UXVj12br3O+eXDx4OIyyOWT9Lvvmh188IY3uViZzL/+ZbZuXfXTUBdueNU559WrzR5/3OyAA1Jf6003Nbv0UrO5c6t3zOpuV9d5cPHg4tLIVxnA22+nDzLbbWc2cqTZwoVVS0t101xMFQkqe8533202bJhZu3apr23nzma33mq2bFnVj1XdtNYnHlw8uLg08n2j/fBDs+OOS127rGlTs9/8xuy110LNptg+8l3IXGwVCSraz2OPhcoTXbqkDiiS2WGHhUoWqXKFNZnW+saDiwcXV2CzZoUn7latUt8gt9vO7Pe/N/vss/Q3sFze2IrtKT55f99+a3bHHWY9e6a+XmC21VZmV11lNnNmxfsvptxaXeLBxYOLKxLLloWb5s47p79p7rKL2WmnhXKD2A0xH0/MxVT+sH692T33hBxKt24hN5Lq2jRubDZoUCi7WrMmd8d3VZMpuBS0bbFi4W2LuZpmBu+9B6NHhy/CFy9OvV5JCfTqBdOnh/UOOCC36ahsNwK57HZgwYLQzMpLL4Umdr76KvV6Euy7Lxx7LAwaBJtuWr3jutzJ1LaYBxc8uLjCWrUqND1y332he+V0bZU1awb77AP77x+aodlll9B8SXVlGzCqG1i++QbeeCMMr70GkydnbjJnm23gwgvhqKPK9xTqiocHlwp4cHHFYtGiEGgeeyy0V5apUcymTUOupqws9JK4yy6hMc2GVeilqaLAUZnAsn59yIVMmRJ6+Jw0KQyJvTqm0rJlaKftgw/gzDNh7FjvmK3YeXCpgAcXV2xiN/OhQ+Hrr+Hpp2HevIq3a9w49EfTtWsINB07QqdO0KEDtG+fuXvedAEkeb4ZLF8Oc+eGtM2eDTNnwmefhWHGjNA/SkVKSmC33cI+DzgAfvwRjjsufhzv+bP4eXCpgAcXV0zS3VQffDA80e+xR+jn/csqdCax8cahD5pNNw3DxhuHFoGbNQs5nnnzQhnI/vuH9b7+OrzG2n77EAwWLoTvv4eVKyt/7GbNQjDZa6/40LJl5nP2AFPcPLhUwIOLKxaVeT21/faht8QPPoD33w//VvTqqaa0bg3du8OOO4ZXdmVlITdVUrLhurl8JedqlgeXCnhwccUgFwXrixfDJ5+E2mVffhleV82cGV5hzZ0Lq1fnJq1NmsAWW4RC9623Dv927hyGLl1C18DZ9ORYU5UJXH54cKmABxdXaDVRJdgsVBhYuBD+978wLF8OK1aE11xr14Z1pk+Hu+8OvTWOHw/DhoXaaS1bQqtWIXBsvHH1uwEuZDVolxuZgkvBP2AshsE/onSFVEwfMybvM1/NnRTTObuqw7/Q9+DiilMxNcNSE83O5GJ/HmCKhwcXDy6uCBVTY4o10WBmMe7HVU+m4NKgJt/POefiJk7MTflBnz5hPxMnVm37bMoyYsc4+uiwflUVyzm7/CtIgb6kQcDVQFdgNzOblLR8G2AacLWZXZ9i+57AHUBTYC3wWzN7N1p2GXAqsA74PzN7oaL0eIG+q6+8UN1VR6YC/ULlXKYAA4FX0ywfCTyfYfsRwHAz6wn8LppG0g7AYKAbcBBwm6QUNeudc1UJFLnKwbi6ryDBxcymm9mMVMskHQF8CUzNtAsg+raXTYC50Xh/4GEzW21mM4HPgd1ykmjn6pDq5EA8wLhsFFWZi6TmwCXA8ApWPR/4q6TZwPXAZdH8rYDZCevNiealOtYZkiZJmjR//vxqpdu52iQXr7Y8wLiKVKH91OxIegnYIsWiK8zs6TSbDQdGmtkyZf5C6yzgAjP7p6SjgbuAfkCqjVIWKpnZaGB0lNb5kpJ7k2gD/JApEXVcfT9/qLPXYMvNYfmKvn0XL81i5QquwSYt+vZt3gzmfper1BWZOvobqJRM12DbdBvlLbiYWb8qbLY7cJSkEUArYL2kVWZ2S9J6JwLnReOPAWOi8TnA1gnrdSD+yixTWtsmz5M0KV1BVX1Q388f/BqAX4P6fv5Q9WtQVK/FzKy3mZWaWSkwCrg2RWCBEDD2jcb7Ap9F488AgyU1kdQR6Ay8m99UO+ecS5a3nEsmkgYANwNtgeckTTazAyvYZgxwR1Rt+XTgb5IaAquAMwDMbKqkRwnVmNcCZ5vZujyeinPOuRS84co0JJ0RlcvUS/X9/MGvAfg1qO/nD1W/Bh5cnHPO5VxRlbk455yrGzy4OOecyzkPLhFJJZI+kPRsNP1XSZ9I+kjSk5JaFTiJeZV8/gnzL5JkktoUKm01JdU1kHSupBmSpkZV5Ou0FH8HPSW9LWly9NFxnW7xQtIsSR/Hzjeat5mkFyV9Fv27aaHTmS9pzr9K90IPLnHnAdMTpl8EdjSzHsCnxFsBqKuSzx9JWwO/BL4uSIpqXrlrIKkPoUmhHmbWjdAaRF2X/DtI2Y5fHdfHzHomfNtxKTDOzDoD46Lpuiz5/Kt0L/TgAkjqABxC/GNMzOy/ZrY2mnyb8EFmnZTq/CMjgYtJ08pBXZLmGpwF/MXMVgOY2feFSFtNSXMN0rXjV5/0B8ZG42OBIwqXlJpX1XuhB5dgFOEmuj7N8lPI3EpzbTeKpPOXdDjwjZl9WKhE1bBRbPgb6AL0lvSOpFck9SpIymrOKDa8BueTuh2/usqA/0p6T9IZ0bzNzWweQPRvu4KlLv9SnX+irO+F9T64SDoU+N7M3kuz/ArCB5kP1GjCakiq85fUDLiC8BqkzsvwG2gIbArsAQwDHlUFjd7VVhmuQawdv62BCwjt+NVle5nZLsCvgLMl7VPoBNWwtOdf2XthQb7QLzJ7AYdLOpjQ+VhLSfeb2a8lnQgcCuxvdfeDoA3OH/gH0BH4MLqXdgDel7SbmX1bsJTmT8rfAKGtuiei//t3Ja0nNOJXF5vRTncNDiN1O351kpnNjf79XtKThC47vpPU3szmSWoP1NnXo2nO/9Uq3QvT9X9cHwdgP+DZaPwgQjMybQudrkKcf9L8WUCbQqevAL+BIcAfovEuhO4cVOg01vA1mA7sF43vD7xX6PTl8bybAy0Sxt+M7gN/BS6N5l8KjCh0Wmv4/Kt0L/ScS3q3AE2AF6On97fNbEhhk+Rq2N3A3ZKmAD8CJ1r0l1ePpGzHr47aHHgy+ntvCDxoZv+RNJHwSvRUQs3JQQVMYz6lO//PqcK90Jt/cc45l3P1vkDfOedc7nlwcc45l3MeXJxzzuWcBxfnnHM558HFOedcznlwcc45l3MeXJxzzuWcBxfn6gFJN0t6P9b4pqSuku6Q9LikswqdPlf3eHBxro6T1JzQku+ZhPahMLPp0VfWRwNlGTZ3rko8uDiXBUkTJB2YNO98Sbdl2GZZ/lO2wTE3iroHKInNM7PlQHtgAnBTwrqHA68TOsBCUmNJr0ZNvThXLR5cnMvOQ8DgpHmDo/nF5BRCS87rYjMktQaaAUuBn+ab2TNm9gvg+Gj6R0KgOaZGU+zqJA8uzmXnceBQSU0AJJUCWwKvSxoqaUo0nJ+8oaTSqPHL2PRFkq5OWPaJpDHR9g9I6ifpjajP9t2i9X4t6d2ob/M7E3MmSY4Hnk6adyWho6+pwA7R/vaTdJOkO4F/J6z7VLQP56rFg4tzWTCzBcC7hObHIeRaHgF2AU4Gdid0Kna6pJ0rufufAX8DegDbA8cBewMXAZdL6krITexloS/7daQIAJIaA53MbFbCvFLgF1FapwPdovOZYGb/Z2ZnmtmtCbuZAtT1HjddDfDg4lz2El+NxV6J7Q08aWbLzWwZ8ATQu5L7nWlmH5vZekLuYlzUtP/HQCmhH5VdgYmSJkfTnVLspw2wKGnenwh90hgJwSWd6HXaj5JaVPIcnCvHC+6cy95TwI2SdgE2MrP3s+wGdy3lH+SaJi1fnTC+PmF6PeFvVMBYM6uo//qVifuW1BMYCOwt6dZo2cdZpLcJoe8W56rMcy7OZSnKmUwgdCIWK8h/FThCUrOoyu8A4LWkTb8D2klqHZXZHFrJQ48DjpLUDkDSZpK2TZG+/wElkmIB5jrgMDMrNbNSYCcqyLlEhf/zzWxNJdPoXDmec3Guch4ivPoaDBDlXu4llMcAjDGzDxI3MLM1kv4AvAPMBD6pzAHNbJqkK4H/SmoArAHOBr5Ksfp/CTmV9UBzMxuXsJ/vJDWXtJmZLUxzuD6UL+B3rkq8J0rn6pCoMsFQMzuhits/AVxmZjNymzJX3/hrMefqkCjXND5DVeW0otpmT3lgcbngORfnnHM55zkX55xzOefBxTnnXM55cHHOOZdzHlycc87lnAcX55xzOefBxTnnXM79PwwynoLhVcSYAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "murn.plot()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "attached-palestinian",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "140.0186998321462"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "murn[\"output/equilibrium_bulk_modulus\"]"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "injured-rainbow",
   "metadata": {},
   "source": [
    "### Same cane be done for the 1000 structures dataset\n",
    "The final parameters of the 100 structure fit can be used for the 1000 Structure fit. This can speed up the fitting process and often leads to better results, especially if the initially guessed values are far from the optimum. \n",
738
739
740
    "\n",
    "In general it is a good idea to start with few structures and try around with different functions and initial parameters. This is much faster than using all structures from the beginning and gives good guesses for the initial values of the parameters. It also allows to use global optimization with millions of steps in short time spans.\n",
    "\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
741
742
    "### This can take long and writes 1000 seperate POSCAR files, TAKE CARE\n",
    "Run these jobs with more cores or more time after the workshop. Also increase the number of iterations for better results"
743
744
745
746
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
747
748
   "execution_count": 24,
   "id": "focal-rehabilitation",
749
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
   "outputs": [
    {
     "name": "stdin",
     "output_type": "stream",
     "text": [
      "Are you sure you want to delete all jobs from 'PotentialDF2'? y/(n) n\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "No jobs removed from 'PotentialDF2'.\n"
     ]
    }
   ],
766
   "source": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
767
768
    "pr = Project(\"PotentialDF2\")\n",
    "pr.remove_jobs()\n",
769
    "j = pr.create_job(pr.job_type.Atomicrex, \"PotentialDF2\")\n",
770
771
    "j.potential = job.potential.copy()\n",
    "## Use the final parameters as starting values for the new fit\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
772
    "j.potential.copy_final_to_initial_params()"
773
774
775
776
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
777
778
   "execution_count": 25,
   "id": "bibliographic-wonder",
779
780
781
782
783
784
785
786
787
788
789
790
791
   "metadata": {},
   "outputs": [],
   "source": [
    "df = data_pr.load(\"df2_1k\").to_pandas()\n",
    "for id, row in df.iterrows():\n",
    "    struct = ase_to_pyiron(row.atoms)\n",
    "    s = j.structures.add_structure(struct, f\"id{id}\", relative_weight=1)\n",
    "    s.fit_properties.add_FitProperty(\"atomic-energy\", target_value=row.energy/row.number_of_atoms, relative_weight=1)\n",
    "    s.fit_properties.add_FitProperty(\"atomic-forces\", target_value=row.forces, relative_weight=1/row.number_of_atoms)"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
792
793
   "execution_count": 26,
   "id": "taken-remove",
794
795
796
797
798
799
800
801
   "metadata": {},
   "outputs": [],
   "source": [
    "import time"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
802
803
   "execution_count": 27,
   "id": "loved-princess",
804
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
805
   "outputs": [],
806
   "source": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
807
808
809
810
811
    "j.input.atom_types.Cu = None\n",
    "j.input.fit_algorithm = j.factories.algorithms.ar_lbfgs(max_iter=100000)\n",
    "\n",
    "## if possible increase number of cores\n",
    "#j.server.cores = 16\n",
812
    "t1 = time.time()\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
813
814
    "## Uncomment if you want to run the job\n",
    "#j.run()\n",
815
816
817
818
819
    "t2 = time.time()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
820
821
   "execution_count": 28,
   "id": "sunrise-brother",
822
823
824
825
826
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
827
       "2.1457672119140625e-05"
828
829
      ]
     },
Niklas Leimeroth's avatar
Niklas Leimeroth committed
830
     "execution_count": 28,
831
832
833
834
835
836
837
838
839
840
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "t2-t1"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
841
842
   "execution_count": 29,
   "id": "therapeutic-treasure",
843
844
845
846
847
848
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/json": {
       "error": "None",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
849
850
       "iterations": "array([   1,    2,    3, ..., 5594, 5595, 5596], dtype=uint32)",
       "residual": "array([758.612 , 758.612 , 758.612 , ...,  58.7461,  58.7461,  58.7461])"
851
852
      },
      "text/plain": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
853
       "Output({'error': None, 'iterations': array([   1,    2,    3, ..., 5594, 5595, 5596], dtype=uint32), 'residual': array([758.612 , 758.612 , 758.612 , ...,  58.7461,  58.7461,  58.7461])})"
854
855
      ]
     },
Niklas Leimeroth's avatar
Niklas Leimeroth committed
856
     "execution_count": 29,
857
858
859
860
861
862
863
864
865
866
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "j.output"
   ]
  },
  {
   "cell_type": "markdown",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
867
   "id": "composite-porter",
868
869
870
871
872
873
874
   "metadata": {},
   "source": [
    "This is the result if the initilly guessed values are taken instead of the fitted ones."
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
875
876
   "execution_count": 33,
   "id": "regulated-document",
877
878
879
880
881
882
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
883
      "The job PotentialDF2_BadStartParams was saved and received the ID: 832\n"
884
885
886
887
     ]
    }
   ],
   "source": [
888
    "j2 = pr.create_job(pr.job_type.Atomicrex, \"PotentialDF2_BadStartParams\", delete_existing_job=True)\n",
889
    "j2.potential = job.potential.copy()\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
890
891
    "j2.input.atom_types.Cu = None\n",
    "j2.input.fit_algorithm = j.factories.algorithms.ar_lbfgs(max_iter=100000)\n",
892
    "j2.structures = j.structures\n",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
893
894
895
    "## if possible increase number of cores\n",
    "j2.server.cores = 16\n",
    "## Uncomment if you want to run the job\n",
896
897
898
899
900
    "j2.run()"
   ]
  },
  {
   "cell_type": "code",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
901
902
   "execution_count": 34,
   "id": "greek-infrastructure",
903
904
905
906
907
908
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/json": {
       "error": "None",
Niklas Leimeroth's avatar
Niklas Leimeroth committed
909
910
       "iterations": "array([   1,    2,    3, ..., 5289, 5290, 5291], dtype=uint32)",
       "residual": "array([5717.28  , 5717.28  , 5717.28  , ...,   58.7461,   58.7461,\n         58.7461])"
911
912
      },
      "text/plain": [
Niklas Leimeroth's avatar
Niklas Leimeroth committed
913
914
       "Output({'error': None, 'residual': array([5717.28  , 5717.28  , 5717.28  , ...,   58.7461,   58.7461,\n",
       "         58.7461]), 'iterations': array([   1,    2,    3, ..., 5289, 5290, 5291], dtype=uint32)})"
915
916
      ]
     },
Niklas Leimeroth's avatar
Niklas Leimeroth committed
917
     "execution_count": 34,
918
919
920
921
922
923
924
925
926
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "j2.output"
   ]
  },
  {
Niklas Leimeroth's avatar
Niklas Leimeroth committed
927
928
   "cell_type": "markdown",
   "id": "twenty-collins",
929
   "metadata": {},
Niklas Leimeroth's avatar
Niklas Leimeroth committed
930
931
932
   "source": [
    "With this choice of functions and initial parameters starting directly from all structures gives the same residual. In a previous iteration of the potential it was about 7 times worse, so it is a good idea to test this."
   ]
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
956
}