parser2.py 8.34 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from __future__ import division
import os
from contextlib import contextmanager
import numpy as np
from ase import units
from ase.data import chemical_symbols
from ase.io.aff import affopen
#from ase.io.trajectory import read_atoms
from ase.data import atomic_masses
from ase.units import Rydberg
import setup_paths
from nomadcore.unit_conversion.unit_conversion import convert_unit as cu
from nomadcore.local_meta_info import loadJsonFile, InfoKindEl
from nomadcore.parser_backend import JsonParseEventsWriterBackend
from libxc_names import get_libxc_name
from default_parameters import parameters as parms


@contextmanager
def open_section(p, name):
    gid = p.openSection(name)
    yield gid
    p.closeSection(name, gid)


def c(value, unit=None):
    """ Dummy function for unit conversion"""
    return value
    return cu(value, unit)


parser_info = {"name": "parser2_gpaw", "version": "1.0"}
path = '../../../../nomad-meta-info/meta_info/nomad_meta_info/' +\
        'gpaw.nomadmetainfo.json'
metaInfoPath = os.path.normpath(
    os.path.join(os.path.dirname(os.path.abspath(__file__)), path))

metaInfoEnv, warns = loadJsonFile(filePath=metaInfoPath,
                                  dependencyLoader=None,
                                  extraArgsHandling=InfoKindEl.ADD_EXTRA_ARGS,
                                  uri=None)


def parse(filename):
    p = JsonParseEventsWriterBackend(metaInfoEnv)
    o = open_section
    r = affopen(filename) #  Reader(filename)
    p.startedParsingSession(filename, parser_info)
    parms.update(r.parameters.asdict())
    with o(p, 'section_run'):
        p.addValue('program_name', 'GPAW')
        p.addValue('program_version', r.gpaw_version)
        mode = parms['mode']
        if isinstance(mode, basestring):
            mode = {'name': mode}
        if  mode['name'] == 'pw':
            p.addValue('program_basis_set_type', 'plane waves')
            with o(p, 'section_basis_set_cell_dependent'):
                p.addValue('basis_set_cell_dependent_name',
                           'PW_%.1f_Ry' % (mode['ecut'] / r.ha * 2))  # in Ry
                p.addRealValue('basis_set_planewave_cutoff',
                               c(mode['ecut'], 'eV'))
        elif mode['name'] == 'fd':
            p.addValue('program_basis_set_type', 'real space grid')
            with o(p, 'section_basis_set_cell_dependent'):
                cell = r.atoms.cell
                ngpts = r.density.density.shape
                h1 = np.linalg.norm(cell[0]) / ngpts[0]
                h2 = np.linalg.norm(cell[1]) / ngpts[1]
                h3 = np.linalg.norm(cell[2]) / ngpts[2]
                h = (h1 + h2 + h3) / 3.0
                p.addValue('basis_set_cell_dependent_name',
                           'GR_%.1f' % (c(h, 'angstrom') * 1.0E15))  # in fm
        elif mode['name'] == 'lcao':
            p.addValue('program_basis_set_type', 'numeric AOs')
            with o(p, 'section_basis_set_atom_centered'):
                p.addValue('basis_set_atom_centered_short_name',
                          parms['basis'])
        with o(p, 'section_system') as system_gid:
            p.addArrayValues('simulation_cell',
                             c(r.atoms.cell, 'angstrom'))
            symbols = np.array([chemical_symbols[z] for z in r.atoms.numbers])
            p.addArrayValues('atom_labels', symbols)
            p.addArrayValues('atom_positions', c(r.atoms.positions, 'angstrom'))
            p.addArrayValues('configuration_periodic_dimensions',
                             np.array(r.atoms.pbc, bool))
            if hasattr(r.atoms, 'momenta'):
                masses = atomic_masses[r.atoms.numbers]
                velocities = r.atoms.momenta / masses.reshape(-1, 1)
                p.addArrayValues('atom_velocities',
                                c(velocities * units.fs / units.Angstrom,
                                  'angstrom/femtosecond'))
        with o(p, 'section_sampling_method'):
            p.addValue('ensemble_type', 'NVE')
        with o(p, 'section_frame_sequence'):
            pass
        with o(p, 'section_method') as method_gid:
            p.addValue('relativity_method', 'pseudo_scalar_relativistic')
            p.addValue('electronic_structure_method', 'DFT')
            p.addValue('scf_threshold_energy_change',
                       c(parms['convergence']['energy'], 'eV')) # eV / electron
            #if r.FixMagneticMoment:
            #    p.addValue('x_gpaw_fixed_spin_Sz',
            #               r.MagneticMoments.sum() / 2.)
            if parms['occupations'] is None:  # use default values
                if tuple(parms['kpts']) == (1, 1, 1):
                    width = 0.0
                else:
                    width = 0.1
                parms['occupations'] = {'width': width, 'name': 'fermi-dirac'}

            p.addValue('smearing_kind', parms['occupations']['name'])
            p.addRealValue('smearing_width',
                               c(parms['occupations']['width'], 'eV'))
            p.addRealValue('total_charge', parms['charge'])
            with o(p, 'section_XC_functionals'):
                p.addValue('XC_functional_name',
                           get_libxc_name(parms['xc']))
        with o(p, 'section_single_configuration_calculation'):
            p.addValue('single_configuration_calculation_to_system_ref',
                       system_gid)
            p.addValue('single_configuration_to_calculation_method_ref',
                       method_gid)
            p.addValue('single_configuration_calculation_converged',
                      r.scf.converged)
            p.addRealValue('energy_total',
                           c(r.hamiltonian.e_total_extrapolated, 'eV'))
            p.addRealValue('energy_free',
                           c(r.hamiltonian.e_total_free, 'eV'))
            p.addRealValue('energy_XC', c(r.hamiltonian.e_xc, 'eV'))
            p.addRealValue('electronic_kinetic_energy',
                           c(r.hamiltonian.e_kinetic, 'eV'))
            p.addRealValue('energy_correction_entropy',
                           c(r.hamiltonian.e_entropy, 'eV'))
            p.addRealValue('energy_reference_fermi',
                          c(r.occupations.fermilevel, 'eV'))
            p.addRealValue('energy_reference_fermi',
                          c(r.occupations.fermilevel, 'eV'))
            if hasattr(r.results, 'forces'):
140
                p.addArrayValues('atom_forces_free_raw',
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
                                 c(r.results.forces, 'eV/angstrom'))
            if hasattr(r.results, 'magmoms'):
                p.addArrayValues('x_gpaw_magnetic_moments',
                                 r.results.magmoms)
                p.addRealValue('x_gpaw_spin_Sz', r.results.magmoms.sum() / 2.0)
            #p.addArrayValues('x_gpaw_atomic_density_matrices',
            #                 r.AtomicDensityMatrices)
            #p.addArrayValues('x_gpaw_projections_real', r.Projections.real)
            #p.addArrayValues('x_gpaw_projections_imag', r.Projections.imag)
            with o(p, 'section_eigenvalues'):
                p.addValue('eigenvalues_kind', 'normal')
                p.addArrayValues('eigenvalues_values',
                                 c(r.wave_functions.eigenvalues, 'eV'))
                p.addArrayValues('eigenvalues_occupation',
                                 r.wave_functions.occupations)
                #p.addArrayValues('eigenvalues_kpoints', r.IBZKPoints)
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            if hasattr(r.wave_functions, 'band_paths'): # could change in GPAW
                with o(p, 'section_k_band'):
                    for band_path in r.wave_functions.band_paths:
                        with o(p, 'section_k_band_segment'):
                            p.addArrayValues('band_energies',
                                            c(band_path.eigenvalues, 'eV'))
                            p.addArrayValues('band_k_points', 'eV',
                                             band_path.kpoints)
                            p.addArrayValues('band_segm_labels',
                                            band_path.labels)
                            p.addArrayValues('band_segm_start_end',
                                             np.asarray(
                                                 [band_path.kpoints[0],
                                                  band_path.kpoints[-1]])


173
174
175
176
177
178
    p.finishedParsingSession("ParseSuccess", None)

if __name__ == '__main__':
    import sys
    filename = sys.argv[1]
    parse(filename)