from __future__ import division from builtins import str from builtins import range from builtins import object import setup_paths from nomadcore.simple_parser import mainFunction, SimpleMatcher as SM from nomadcore.local_meta_info import loadJsonFile, InfoKindEl from nomadcore.caching_backend import CachingLevel from nomadcore.unit_conversion.unit_conversion import convert_unit import os, sys, json, logging import numpy as np import ase import csv # description of the output mainFileDescription = SM( name = 'root', weak = True, forwardMatch = True, startReStr = "", subMatchers = [ SM(name = 'newRun', startReStr = r"\s*Cite this work as:", # endReStr = r"\s*Normal termination of Gaussian", repeats = True, required = True, forwardMatch = True, fixedStartValues={ 'program_name': 'Gaussian', 'program_basis_set_type': 'gaussians' }, sections = ['section_run'], subMatchers = [ SM(name = 'header', startReStr = r"\s*Cite this work as:", forwardMatch = True, subMatchers = [ SM(r"\s*Cite this work as:"), SM(r"\s*Gaussian [0-9]+, Revision [A-Za-z0-9.]*,"), SM(r"\s\*\*\*\*\*\*\*\*\*\*\*\**"), SM(r"\s*(?PGaussian)\s*(?P[0-9]+):\s*(?P[A-Za-z0-9-.]+)\s*(?P[0-9][0-9]?\-[A-Z][a-z][a-z]\-[0-9]+)"), SM(r"\s*(?P[0-9][0-9]?\-[A-Z][a-z][a-z]\-[0-9]+)"), ] ), SM(name = 'globalparams', startReStr = r"\s*%\w*=", subFlags = SM.SubFlags.Unordered, forwardMatch = True, subMatchers = [ SM(r"\s*%[Cc]hk=(?P[A-Za-z0-9.]*)"), SM(r"\s*%[Mm]em=(?P[A-Za-z0-9.]*)"), SM(r"\s*%[Nn][Pp]roc=(?P[A-Za-z0-9.]*)") ] ), SM(name = 'charge_multiplicity_natoms', sections = ['x_gaussian_section_system'], startReStr = r"\s*Charge =", subFlags = SM.SubFlags.Sequenced, forwardMatch = True, subMatchers = [ SM(r"\s*Charge =\s*(?P[-+0-9]+) Multiplicity =\s*(?P[0-9]+)"), SM(r"\s*NAtoms=(?P[0-9]+)"), ] ), SM(name = 'atomic masses', sections = ['x_gaussian_section_atomic_masses'], startReStr = r"\s*AtmWgt=", endReStr = r"\s*Leave Link 101", forwardMatch = True, subMatchers = [ SM(r"\s*AtmWgt=\s+(?P[0-9.]+(\s+[0-9.]+)(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?)", repeats = True) ] ), # this SimpleMatcher groups a single configuration calculation together with output after SCF convergence from relaxation SM (name = 'SingleConfigurationCalculationWithSystemDescription', startReStr = "\s*Standard orientation:", # endReStr = "\s*Link1: Proceeding to internal job step number", repeats = False, forwardMatch = True, subMatchers = [ # the actual section for a single configuration calculation starts here SM (name = 'SingleConfigurationCalculation', startReStr = "\s*Standard orientation:", repeats = True, forwardMatch = True, sections = ['x_gaussian_section_single_configuration_calculation'], subMatchers = [ SM(name = 'geometry', sections = ['x_gaussian_section_geometry'], startReStr = r"\s*Standard orientation", endReStr = r"\s*Rotational constants", subMatchers = [ SM(r"\s+[0-9]+\s+(?P[0-9]+)\s+[0-9]+\s+(?P[-+0-9EeDd.]+)\s+(?P[-+0-9EeDd.]+)\s+(?P[-+0-9EeDd.]+)",repeats = True), SM(r"\s*Rotational constants") ] ), SM(name = 'TotalEnergyScfGaussian', sections = ['x_gaussian_section_scf_iteration'], startReStr = r"\s*Cycle\s+[0-9]+", forwardMatch = True, repeats = True, subMatchers = [ SM(r"\s*Cycle\s+[0-9]+"), SM(r"\s*E=\s*(?P[-+0-9.]+)\s*Delta-E=\s*(?P[-+0-9.]+)") ] ), SM(name = 'TotalEnergyScfConverged', sections = ['x_gaussian_section_total_scf_one_geometry'], startReStr = r"\s*SCF Done", forwardMatch = True, subMatchers = [ SM(r"\s*(?PSCF Done):\s*[()A-Za-z0-9-]+\s*=\s*(?P[-+0-9.]+)") ] ), SM(name = 'RealSpinValue', sections = ['x_gaussian_section_real_spin_squared'], startReStr = r"\s*Convg\s*=", forwardMatch = True, subMatchers = [ SM(r"\s*[A-Z][*][*][0-9]\s*=\s*(?P[0-9.]+)"), SM(r"\s*Annihilation of the first spin contaminant"), SM(r"\s*[A-Z][*][*][0-9]\s*before annihilation\s*[0-9.,]+\s*after\s*(?P[0-9.]+)") ] ), SM(name = 'ForcesScfGaussian', sections = ['x_gaussian_section_atom_forces'], startReStr = "\s*Center\s+Atomic\s+Forces ", forwardMatch = True, subMatchers = [ SM(r"\s*Center\s+Atomic\s+Forces "), SM(r"\s+[0-9]+\s+[0-9]+\s+(?P[-+0-9EeDd.]+)\s+(?P[-+0-9EeDd.]+)\s+(?P[-+0-9EeDd.]+)",repeats = True), SM(r"\s*Cartesian Forces:\s+") ] ), SM(name = 'Geometry_optimization', startReStr = r"\s*Optimization completed.", subMatchers = [ SM(r"\s*(?POptimized Parameters)"), SM(r"\s*(?POptimization stopped)"), SM(r"\s+[0-9]+\s+[0-9]+\s+[0-9]+\s+[-+0-9EeDd.]+\s+[-+0-9EeDd.]+\s+[-+0-9EeDd.]+",repeats = True), SM(r"\s*Distance matrix|\s*Rotational constants|\s*Stoichiometry") ] ), SM(name = 'Orbital symmetries', sections = ['x_gaussian_section_orbital_symmetries'], startReStr = r"\s+Population analysis", subFlags = SM.SubFlags.Sequenced, subMatchers = [ SM(r"\s*Orbital symmetries"), SM(r"\s*Alpha Orbitals"), SM(r"\s*Occupied\s+(?P\((.+)\))?"), SM(r"\s+(?P\((.+)\)?)", repeats = True), SM(r"\s*Virtual\s+(?P\((.+)\))?"), SM(r"\s+(?P\((.+)\)?)", repeats = True), SM(r"\s*Beta Orbitals"), SM(r"\s*Occupied\s+(?P\((.+)\))?"), SM(r"\s+(?P\((.+)\)?)", repeats = True), SM(r"\s*Virtual\s+(?P\((.+)\))?"), SM(r"\s+(?P\((.+)\)?)", repeats = True), ] ), SM(name = 'Electronicstatesymmetry', sections = ['x_gaussian_section_symmetry'], startReStr = r"\s*The electronic state is", forwardMatch = True, subMatchers = [ SM(r"\s*The electronic state is\s*(?P[A-Z0-9-]+)[.]") ] ), SM(name = 'Eigenvalues', sections = ['x_gaussian_section_eigenvalues'], startReStr = r"\s*Alpha occ. eigenvalues --", forwardMatch = True, subFlags = SM.SubFlags.Sequenced, subMatchers = [ SM(r"\s*Alpha occ. eigenvalues --\s+(?P(.+)?)", repeats = True), SM(r"\s*Alpha virt. eigenvalues --\s+(?P(.+)?)", repeats = True), SM(r"\s*Beta occ. eigenvalues --\s+(?P(.+)?)", repeats = True), SM(r"\s*Beta virt. eigenvalues --\s+(?P(.+)?)", repeats = True), SM(r"\s*- Condensed to atoms (all electrons)"), ] ), SM(name = 'Multipoles', sections = ['x_gaussian_section_molecular_multipoles'], startReStr = r"\s*Charge=", forwardMatch = True, subMatchers = [ SM(r"\s*Charge=(?P\s*[-0-9.]+)"), SM(r"\s*Dipole moment "), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)"), SM(r"\s*Quadrupole moment"), SM(r"\s+\w+=\s+(?P[0-9-.]+)\s+\w+=\s+(?P[0-9-.]+)\s+\w+=\s+(?P[0-9-.]+)"), SM(r"\s+\w+=\s+(?P[0-9-.]+)\s+\w+=\s+(?P[0-9-.]+)\s+\w+=\s+(?P[0-9-.]+)"), SM(r"\s*Traceless Quadrupole moment"), SM(r"\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+"), SM(r"\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+"), SM(r"\s*Octapole moment"), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)"), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)"), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)"), SM(r"\s*Hexadecapole moment"), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)"), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)"), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)"), SM(r"\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)\s+\w+=\s+(?P[-+0-9EeDd.]+)") ] ), SM (name = 'Frequencies', sections = ['x_gaussian_section_frequencies'], startReStr = r"\s*Frequencies --", endReStr = r"\s*- Thermochemistry -", forwardMatch = True, repeats = True, subFlags = SM.SubFlags.Unordered, subMatchers = [ SM(r"\s*Frequencies --\s+(?P([-]?[0-9]+\.\d*)\s*([-]?[-0-9]+\.\d*)?\s*([-]?[-0-9]+\.\d*)?)", repeats = True), SM(r"\s*Red. masses --\s+(?P(.+))", repeats = True), SM(r"\s*[0-9]+\s*[0-9]+\s*(?P([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+))", repeats = True), SM(r"\s*[0-9]+\s*([0-9]+)?\s*([0-9]+)?"), ] ), SM(name = 'Thermochemistry', sections = ['x_gaussian_section_thermochem'], startReStr = r"\s*Temperature", forwardMatch = True, subMatchers = [ SM(r"\s*Temperature\s*(?P[0-9.]+)\s*Kelvin.\s*Pressure\s*(?P[0-9.]+)\s*Atm."), SM(r"\s*Principal axes and moments of inertia in atomic units:"), SM(r"\s*Eigenvalues --\s*(?P[0-9.]+)\s*(?P[0-9.]+)\s*(?P[0-9.]+)"), SM(r"\s*Zero-point correction=\s*(?P[0-9.]+)"), SM(r"\s*Thermal correction to Energy=\s*(?P[0-9.]+)"), SM(r"\s*Thermal correction to Enthalpy=\s*(?P[0-9.]+)"), SM(r"\s*Thermal correction to Gibbs Free Energy=\s*(?P[0-9.]+)"), ] ), SM(name = 'Forceconstantmatrix', sections = ['x_gaussian_section_force_constant_matrix'], startReStr = r"\s*Force constants in Cartesian coordinates", forwardMatch = True, subMatchers = [ SM(r"\s*Force constants in Cartesian coordinates"), SM(r"\s*[0-9]+\s*(?P(\-?\d+\.\d*[-+D0-9]+)\s*(\-?\d+\.\d*[-+D0-9]+)?\s*(\-?\d+\.\d*[-+D0-9]+)?\s*(\-?\d+\.\d*[-+D0-9]+)?\s*(\-?\d+\.\d*[-+D0-9]+)?)", repeats = True), SM(r"\s*Force constants in internal coordinates") ] ), SM(name = 'run times', sections = ['x_gaussian_section_times'], startReStr = r"\s*Job cpu time:", forwardMatch = True, subMatchers = [ SM(r"\s*Job cpu time:\s*(?P\s*[0-9]+\s*[a-z]+\s*[0-9]+\s*[a-z]+\s*[0-9]+\s*[a-z]+\s*[0-9.]+\s*[a-z]+)"), SM(r"\s*Normal termination of Gaussian\s*[0-9]+\s* at \s*(?P[A-Za-z]+\s*[A-Za-z]+\s*[0-9]+\s*[0-9:]+\s*[0-9]+)"), ] ) ]) ]) ]) ]) # loading metadata from nomad-meta-info/meta_info/nomad_meta_info/gaussian.nomadmetainfo.json metaInfoPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),"../../../../nomad-meta-info/meta_info/nomad_meta_info/gaussian.nomadmetainfo.json")) metaInfoEnv, warnings = loadJsonFile(filePath = metaInfoPath, dependencyLoader = None, extraArgsHandling = InfoKindEl.ADD_EXTRA_ARGS, uri = None) parserInfo = { "name": "parser_gaussian", "version": "1.0" } class GaussianParserContext(object): """Context for parsing Gaussian output file. This class keeps tracks of several Gaussian settings to adjust the parsing to them. The onClose_ functions allow processing and writing of cached values after a section is closed. They take the following arguments: backend: Class that takes care of writing and caching of metadata. gIndex: Index of the section that is closed. section: The cached values and sections that were found in the section that is closed. """ def __init__(self): # dictionary of energy values, which are tracked between SCF iterations and written after convergence self.totalEnergyList = { 'energy_XC_potential': None } def initialize_values(self): """Initializes the values of certain variables. This allows a consistent setting and resetting of the variables, when the parsing starts and when a section_run closes. """ # start with -1 since zeroth iteration is the initialization self.scfIterNr = -1 self.scfConvergence = False self.geoConvergence = None self.geoCrashed = None self.scfenergyconverged = 0.0 def startedParsing(self, path, parser): self.parser = parser # allows to reset values if the same superContext is used to parse different files self.initialize_values() def onClose_x_gaussian_section_geometry(self, backend, gIndex, section): xCoord = section["x_gaussian_atom_x_coord"] yCoord = section["x_gaussian_atom_y_coord"] zCoord = section["x_gaussian_atom_z_coord"] numbers = section["x_gaussian_atomic_number"] atom_coords = np.zeros((len(xCoord),3), dtype=float) atom_numbers = np.zeros(len(xCoord), dtype=int) atomic_symbols = np.empty((len(xCoord)), dtype=object) for i in range(len(xCoord)): atom_coords[i,0] = xCoord[i] atom_coords[i,1] = yCoord[i] atom_coords[i,2] = zCoord[i] for i in range(len(xCoord)): atom_numbers[i] = numbers[i] atomic_symbols[i] = ase.data.chemical_symbols[atom_numbers[i]] backend.addArrayValues("x_gaussian_atom_labels", atomic_symbols) backend.addArrayValues("x_gaussian_atom_positions", atom_coords) def onClose_x_gaussian_section_atom_forces(self, backend, gIndex, section): xForce = section["x_gaussian_atom_x_force"] yForce = section["x_gaussian_atom_y_force"] zForce = section["x_gaussian_atom_z_force"] atom_forces = np.zeros((len(xForce),3), dtype=float) for i in range(len(xForce)): atom_forces[i,0] = xForce[i] atom_forces[i,1] = yForce[i] atom_forces[i,2] = zForce[i] backend.addArrayValues("x_gaussian_atom_forces", atom_forces) def onClose_section_run(self, backend, gIndex, section): """Trigger called when section_run is closed. """ # write geometry optimization convergence gIndexTmp = backend.openSection('x_gaussian_section_single_configuration_calculation') if self.geoConvergence is not None: backend.addValue('x_gaussian_geometry_optimization_converged', self.geoConvergence) # use values of control.in which was parsed in section_method backend.closeSection('x_gaussian_section_single_configuration_calculation', gIndexTmp) def onClose_x_gaussian_section_single_configuration_calculation(self, backend, gIndex, section): """Trigger called when section_single_configuration_calculation is closed. Write number of SCF iterations and convergence. Check for convergence of geometry optimization. """ # write number of SCF iterations self.scfenergyconverged = section['x_gaussian_energy_total_scf_converged'] backend.addValue('x_gaussian_number_of_scf_iterations', self.scfIterNr) # write SCF convergence and reset backend.addValue('x_gaussian_single_configuration_calculation_converged', self.scfConvergence) backend.addValue('x_gaussian_energy_total_scf_converged', self.scfenergyconverged) self.scfConvergence = False # check for geometry optimization convergence if section['x_gaussian_geometry_optimization_converged'] is not None: if section['x_gaussian_geometry_optimization_converged'][-1] == 'Optimization completed': self.geoConvergence = True else: if section['x_gaussian_geometry_optimization_converged'][-1] == 'Optimization stopped': self.geoConvergence = False if section['x_gaussian_geometry_optimization_converged'] is not None: if section['x_gaussian_geometry_optimization_converged'][-1] == 'Optimization stopped': self.geoCrashed = True else: self.geoCrashed = False # start with -1 since zeroth iteration is the initialization self.scfIterNr = -1 def onClose_x_gaussian_section_scf_iteration(self, backend, gIndex, section): # count number of SCF iterations self.scfIterNr += 1 # check for SCF convergence if section['x_gaussian_single_configuration_calculation_converged'] is not None: self.scfConvergence = True def onClose_x_gaussian_section_atomic_masses(self, backend, gIndex, section): if(section["x_gaussian_atomic_masses"]): atomicmasses = str(section["x_gaussian_atomic_masses"]) atmass = [] mass = [float(f) for f in atomicmasses[1:].replace("'","").replace(",","").replace("]","").replace(" ."," 0.").replace(" -."," -0.").split()] atmass = np.append(atmass, mass) backend.addArrayValues("x_gaussian_masses", atmass) def onClose_x_gaussian_section_eigenvalues(self, backend, gIndex, section): eigenenergies = str(section["x_gaussian_alpha_occ_eigenvalues_values"]) eigenen1 = [] energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()] eigenen1 = np.append(eigenen1, energy) if(section["x_gaussian_beta_occ_eigenvalues_values"]): occoccupationsalp = np.ones(len(eigenen1), dtype=float) else: occoccupationsalp = 2.0 * np.ones(len(eigenen1), dtype=float) eigenenergies = str(section["x_gaussian_alpha_vir_eigenvalues_values"]) eigenen2 = [] energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()] eigenen2 = np.append(eigenen2, energy) viroccupationsalp = np.zeros(len(eigenen2), dtype=float) eigenencon = np.zeros(len(eigenen1) + len(eigenen2)) eigenencon = np.concatenate((eigenen1,eigenen2), axis=0) eigenencon = convert_unit(eigenencon, "hartree", "J") occupcon = np.concatenate((occoccupationsalp, viroccupationsalp), axis=0) backend.addArrayValues("x_gaussian_alpha_eigenvalues", eigenencon) backend.addArrayValues("x_gaussian_alpha_occupations", occupcon) if(section["x_gaussian_beta_occ_eigenvalues_values"]): eigenenergies = str(section["x_gaussian_beta_occ_eigenvalues_values"]) eigenen1 = [] energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()] eigenen1 = np.append(eigenen1, energy) occoccupationsbet = np.ones(len(eigenen1), dtype=float) eigenenergies = str(section["x_gaussian_beta_vir_eigenvalues_values"]) eigenen2 = [] energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()] eigenen2 = np.append(eigenen2, energy) viroccupationsbet = np.zeros(len(eigenen2), dtype=float) eigenencon = np.zeros(len(eigenen1) + len(eigenen2)) eigenencon = np.concatenate((eigenen1,eigenen2), axis=0) eigenencon = convert_unit(eigenencon, "hartree", "J") occupcon = np.concatenate((occoccupationsbet, viroccupationsbet), axis=0) backend.addArrayValues("x_gaussian_beta_eigenvalues", eigenencon) backend.addArrayValues("x_gaussian_beta_occupations", occupcon) def onClose_x_gaussian_section_orbital_symmetries(self, backend, gIndex, section): symoccalpha = str(section["x_gaussian_alpha_occ_symmetry_values"]) symviralpha = str(section["x_gaussian_alpha_vir_symmetry_values"]) if(section["x_gaussian_beta_occ_symmetry_values"]): symoccbeta = str(section["x_gaussian_beta_occ_symmetry_values"]) symvirbeta = str(section["x_gaussian_beta_vir_symmetry_values"]) symmetry = [str(f) for f in symoccalpha[1:].replace("'","").replace(",","").replace("(","").replace(")","").replace("]","").split()] sym1 = [] sym1 = np.append(sym1, symmetry) symmetry = [str(f) for f in symviralpha[1:].replace("'","").replace(",","").replace("(","").replace(")","").replace("]","").split()] sym2 = [] sym2 = np.append(sym2, symmetry) symmetrycon = np.concatenate((sym1, sym2), axis=0) backend.addArrayValues("x_gaussian_alpha_symmetries", symmetrycon) if(section["x_gaussian_beta_occ_symmetry_values"]): symmetry = [str(f) for f in symoccbeta[1:].replace("'","").replace(",","").replace("(","").replace(")","").replace("]","").split()] sym1 = [] sym1 = np.append(sym1, symmetry) symmetry = [str(f) for f in symvirbeta[1:].replace("'","").replace(",","").replace("(","").replace(")","").replace("]","").split()] sym2 = [] sym2 = np.append(sym2, symmetry) symmetrycon = np.concatenate((sym1, sym2), axis=0) backend.addArrayValues("x_gaussian_beta_symmetries", symmetrycon) def onClose_x_gaussian_section_molecular_multipoles(self, backend, gIndex, section): if(section["quadrupole_moment_xx"]): x_gaussian_number_of_lm_molecular_multipoles = 35 else: x_gaussian_number_of_lm_molecular_multipoles = 4 x_gaussian_molecular_multipole_m_kind = 'polynomial' char = str(section["charge"]) cha = str([char]) charge = [float(f) for f in cha[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").replace('"','').split()] # charge = convert_unit dipx = section["dipole_moment_x"] dipy = section["dipole_moment_y"] dipz = section["dipole_moment_z"] dip = str([dipx, dipy, dipz]) dipoles = [float(f) for f in dip[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()] dipoles = convert_unit(dipoles, "debye", "coulomb * meter") quadxx = section["quadrupole_moment_xx"] quadxy = section["quadrupole_moment_xy"] quadyy = section["quadrupole_moment_yy"] quadxz = section["quadrupole_moment_xz"] quadyz = section["quadrupole_moment_yz"] quadzz = section["quadrupole_moment_zz"] quad = str([quadxx, quadxy, quadyy, quadxz, quadyz, quadzz]) quadrupoles = [float(f) for f in quad[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()] if(section["quadrupole_moment_xx"]): quadrupoles = convert_unit(quadrupoles, "debye * angstrom", "coulomb * meter**2") octaxxx = section["octapole_moment_xxx"] octayyy = section["octapole_moment_yyy"] octazzz = section["octapole_moment_zzz"] octaxyy = section["octapole_moment_xyy"] octaxxy = section["octapole_moment_xxy"] octaxxz = section["octapole_moment_xxz"] octaxzz = section["octapole_moment_xzz"] octayzz = section["octapole_moment_yzz"] octayyz = section["octapole_moment_yyz"] octaxyz = section["octapole_moment_xyz"] octa = str([octaxxx, octayyy, octazzz, octaxyy, octaxxy, octaxxz, octaxzz, octayzz, octayyz, octaxyz]) octapoles = [float(f) for f in octa[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()] if(section["octapole_moment_xxx"]): octapoles = convert_unit(octapoles, "debye * angstrom**2", "coulomb * meter**3") hexadecaxxxx = section["hexadecapole_moment_xxxx"] hexadecayyyy = section["hexadecapole_moment_yyyy"] hexadecazzzz = section["hexadecapole_moment_zzzz"] hexadecaxxxy = section["hexadecapole_moment_xxxy"] hexadecaxxxz = section["hexadecapole_moment_xxxz"] hexadecayyyx = section["hexadecapole_moment_yyyx"] hexadecayyyz = section["hexadecapole_moment_yyyz"] hexadecazzzx = section["hexadecapole_moment_zzzx"] hexadecazzzy = section["hexadecapole_moment_zzzy"] hexadecaxxyy = section["hexadecapole_moment_xxyy"] hexadecaxxzz = section["hexadecapole_moment_xxzz"] hexadecayyzz = section["hexadecapole_moment_yyzz"] hexadecaxxyz = section["hexadecapole_moment_xxyz"] hexadecayyxz = section["hexadecapole_moment_yyxz"] hexadecazzxy = section["hexadecapole_moment_zzxy"] hexa = str([hexadecaxxxx, hexadecayyyy, hexadecazzzz, hexadecaxxxy, hexadecaxxxz, hexadecayyyx, hexadecayyyz, hexadecazzzx, hexadecazzzy, hexadecaxxyy, hexadecaxxzz, hexadecayyzz, hexadecaxxyz, hexadecayyxz, hexadecazzxy]) hexadecapoles = [float(f) for f in hexa[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()] if(section["hexadecapole_moment_xxxx"]): hexadecapoles = convert_unit(hexadecapoles, "debye * angstrom**3", "coulomb * meter**4") if(section["quadrupole_moment_xx"]): multipoles = np.hstack((charge, dipoles, quadrupoles, octapoles, hexadecapoles)) else: multipoles = np.hstack((charge, dipoles)) x_gaussian_molecular_multipole_values = np.resize(multipoles, (x_gaussian_number_of_lm_molecular_multipoles)) # x_gaussian_molecular_multipole_lm[0] = (0,0) # x_gaussian_molecular_multipole_lm[1] = (1,0) # x_gaussian_molecular_multipole_lm[2] = (1,1) # x_gaussian_molecular_multipole_lm[3] = (1,2) backend.addArrayValues("x_gaussian_molecular_multipole_values", x_gaussian_molecular_multipole_values) backend.addValue("x_gaussian_molecular_multipole_m_kind", x_gaussian_molecular_multipole_m_kind) def onClose_x_gaussian_section_frequencies(self, backend, gIndex, section): frequencies = str(section["x_gaussian_frequency_values"]) vibfreqs = [] freqs = [float(f) for f in frequencies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace("\\n","").replace(" ."," 0.").replace(" -."," -0.").split()] vibfreqs = np.append(vibfreqs, freqs) vibfreqs = convert_unit(vibfreqs, "inversecm", "J") backend.addArrayValues("x_gaussian_frequencies", vibfreqs) masses = str(section["x_gaussian_reduced_masses"]) vibreducedmasses = [] reduced = [float(f) for f in masses[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").split()] vibreducedmasses = np.append(vibreducedmasses, reduced) vibreducedmasses = convert_unit(vibreducedmasses, "amu", "kilogram") backend.addArrayValues("x_gaussian_red_masses", vibreducedmasses) vibnormalmodes = [] vibdisps = str(section["x_gaussian_normal_modes"]) disps = [float(s) for s in vibdisps[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace("\\n","").replace(" ."," 0.").replace(" -."," -0.").split()] dispsnew = np.zeros(len(disps), dtype = float) # Reorder disps if len(vibfreqs) % 3 == 0: k = 0 for p in range(0,len(vibfreqs) // 3): M = len(disps)/len(vibfreqs) * (p+1) for m in range(3): for n in range(M - len(disps) // len(vibfreqs),M,3): for l in range(3): dispsnew[k] = disps[3*(n + m) + l] k = k + 1 elif len(vibfreqs) % 3 != 0: k = 0 for p in range(len(vibfreqs)-1,0,-3): M = (len(disps) - len(disps) // len(vibfreqs)) // p for m in range(3): for n in range(M - len(disps) // len(vibfreqs),M,3): for l in range(3): dispsnew[k] = disps[3*(n + m) + l] k = k + 1 for m in range(len(disps) // len(vibfreqs)): dispsnew[k] = disps[k] k = k + 1 vibnormalmodes = np.append(vibnormalmodes, dispsnew) backend.addArrayValues("x_gaussian_normal_mode_values", vibnormalmodes) def onClose_x_gaussian_section_force_constant_matrix(self, backend, gIndex, section): forcecnstvalues = [] forceconst = str(section["x_gaussian_force_constants"]) numbers = [float(s) for s in forceconst[1:].replace("'","").replace(",","").replace("]","").replace("\\n","").replace("D","E").replace(" ."," 0.").replace(" -."," -0.").split()] length = len(numbers) dim = int(((1 + 8 * length)**0.5 - 1) / 2) cartforceconst = np.zeros([dim, dim]) forcecnstvalues = np.append(forcecnstvalues, numbers) if dim > 6: l = 0 for i in range(0,5): for k in range(0,i+1): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] for i in range(5,dim): for k in range(0,5): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] for i in range(5,dim-2): for k in range(5,i+1): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] for i in range(dim-2,dim): for k in range(5,dim-2): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] for i in range(dim-2,dim): for k in range(i,dim): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] elif dim == 6: l = 0 for i in range(0,5): for k in range(0,i+1): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] for i in range(5,dim): for k in range(0,5): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] for i in range(dim,dim): for k in range(i,dim): l = l + 1 cartforceconst[i,k] = forcecnstvalues[l-1] for i in range(0,dim): for k in range(i+1,dim): cartforceconst[i,k] = cartforceconst[k,i] cartforceconst = convert_unit(cartforceconst, "forceAu / bohr", "J / (meter**2)") backend.addArrayValues("x_gaussian_force_constant_values", cartforceconst) # which values to cache or forward (mapping meta name -> CachingLevel) cachingLevelForMetaName = { "x_gaussian_atom_x_coord": CachingLevel.Cache, "x_gaussian_atom_y_coord": CachingLevel.Cache, "x_gaussian_atom_z_coord": CachingLevel.Cache, "x_gaussian_atomic_number": CachingLevel.Cache, "x_gaussian_section_geometry": CachingLevel.Ignore, "x_gaussian_natoms": CachingLevel.Cache, "x_gaussian_section_total_scf_one_geometry": CachingLevel.Cache, "x_gaussian_geometry_optimization_converged": CachingLevel.Cache, "x_gaussian_section_scf_iteration": CachingLevel.Cache, "x_gaussian_single_configuration_calculation_converged": CachingLevel.Ignore, "x_gaussian_atom_x_force": CachingLevel.Cache, "x_gaussian_atom_y_force": CachingLevel.Cache, "x_gaussian_atom_z_force": CachingLevel.Cache, "x_gaussian_section_atom_forces": CachingLevel.Ignore, "x_gaussian_section_frequencies": CachingLevel.Forward, "x_gaussian_atomic_masses": CachingLevel.Cache, "x_gaussian_section_eigenvalues": CachingLevel.Cache, "x_gaussian_section_orbital_symmetries": CachingLevel.Cache, "x_gaussian_section_molecular_multipoles": CachingLevel.Cache, } if __name__ == "__main__": mainFunction(mainFileDescription, metaInfoEnv, parserInfo, cachingLevelForMetaName = cachingLevelForMetaName, superContext = GaussianParserContext())