g09 tests

parent bfe3311f

Too many changes to show.

To preserve performance only 165 of 165+ files are displayed.

......@@ -5,7 +5,7 @@ from nomadcore.caching_backend import CachingLevel
import os, sys, json, logging
import numpy as np
# description of the input
# description of the output
mainFileDescription = SM(
name = 'root',
weak = True,
......@@ -40,14 +40,22 @@ mainFileDescription = SM(
),
SM(name = 'charge_multiplicity',
sections = ['section_system_description','gaussian_section_labels'],
startReStr = r"\s*Symbolic Z-matrix:",
subMatchers = [
startReStr = r"\s*Charge =",
subFlags = SM.SubFlags.Sequenced,
forwardMatch = True,
subMatchers = [
SM(r"\s*Charge =\s*(?P<total_charge>[-+0-9]+) Multiplicity =\s*(?P<target_multiplicity>[0-9]+)"),
SM(r"\s*(?P<gaussian_atom_label>\D{1,2}?(?=\s*[0-9,-]))",repeats = True),
SM(r"\s*(?P<gaussian_atom_label>\w{1,2}(?=\s))",repeats = True),
SM(r"\s*Variables:|\s*NAtoms=|\s*Z-MATRIX"),
SM(r"\s*"),
]
SM(r"\sModel"),
SM(r"\sShort"),
SM(r"\s*Atom"),
SM(r"\s*\d\d?\d?\s{7,8}?[A-Za-z-]", repeats = True),
SM(r"\s*Generated"),
SM(r"\sNo Z-Matrix found in file|\sZ-Matrix found in file"),
SM(r"\sRedundant internal coordinates found in file"),
SM(r"\s*(?P<gaussian_atom_label>([A-Za-z][A-Za-z]|[A-WYZa-wyz]|\d\d?\d?))[^A-Za-z]", repeats=True),
SM(r"\sRecover connectivity data from disk."),
SM(r"\s*Variables:|\s*------|\s*\r?\n")
]
),
SM(name = 'geometry',
sections = ['section_system_description','gaussian_section_geometry'],
......
# SP, RHF/STO-3G punch=archive trakio scf=conventional
Gaussian Test Job 00
Water with archiving
0 1
O
H 1 0.96
H 1 0.96 2 109.471221
Entering Gaussian System, Link 0=g09
Initial command:
/mf/frisch/g09/l1.exe "/altuv/s0/scratch/Gau-11282.inp" -scrdir="/altuv/s0/scratch/"
Default CPUs for threads: 0
Entering Link 1 = /mf/frisch/g09/l1.exe PID= 11307.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
24-Apr-2013
******************************************
SetSPE: set environment variable "MP_BIND" = "yes"
SetSPE: set environment variable "MP_BLIST" = "0"
------------------------------------------------------
# SP, RHF/STO-3G punch=archive trakio scf=conventional
------------------------------------------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/6=3,11=1,16=1,25=20,28=1,30=1,116=1/1,2,3,20;
4//1;
5/5=1/2;
6/7=2,8=2,9=2,10=2,28=1/1;
99/5=1,9=1,10=8/99;
-----------------------------------------
Gaussian Test Job 00 Water with archiving
-----------------------------------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
O
H 1 0.96
H 1 0.96 2 109.47122
1 tetrahedral angles replaced.
1 tetrahedral angles replaced.
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.000000
2 1 0 0.000000 0.000000 0.960000
3 1 0 0.905097 0.000000 -0.320000
---------------------------------------------------------------------
Distance matrix (angstroms):
1 2 3
1 O 0.000000
2 H 0.960000 0.000000
3 H 0.960000 1.567673 0.000000
Stoichiometry H2O
Framework group C2V[C2(O),SGV(H2)]
Deg. of freedom 2
Full point group C2V NOp 4
Largest Abelian subgroup C2V NOp 4
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.110851
2 1 0 0.000000 0.783837 -0.443405
3 1 0 0.000000 -0.783837 -0.443405
---------------------------------------------------------------------
Rotational constants (GHZ): 919.0227225 408.0852053 282.5991530
Standard basis: STO-3G (5D, 7F)
There are 4 symmetry adapted cartesian basis functions of A1 symmetry.
There are 0 symmetry adapted cartesian basis functions of A2 symmetry.
There are 1 symmetry adapted cartesian basis functions of B1 symmetry.
There are 2 symmetry adapted cartesian basis functions of B2 symmetry.
There are 4 symmetry adapted basis functions of A1 symmetry.
There are 0 symmetry adapted basis functions of A2 symmetry.
There are 1 symmetry adapted basis functions of B1 symmetry.
There are 2 symmetry adapted basis functions of B2 symmetry.
7 basis functions, 21 primitive gaussians, 7 cartesian basis functions
5 alpha electrons 5 beta electrons
nuclear repulsion energy 9.1571759100 Hartrees.
NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 1 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 7 RedAO= T EigKep= 4.82D-01 NBF= 4 0 1 2
NBsUse= 7 1.00D-06 EigRej= -1.00D+00 NBFU= 4 0 1 2
Enter DskPsm, NBasis= 7 NBas6D= 7 NShell= 4 IDoSP=3.
Generating unsorted Raff 1 combos
Use symmetry via Dacre-Elder procedure.
NGot= 33292271 Memory for integrals= 33289052 for sort= 0.
Out2e will use a cutoff of 1.00D-10
141 integrals produced for a total of 141.
ExpMin= 1.69D-01 ExpMax= 1.31D+02 ExpMxC= 1.31D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Initial guess orbital symmetries:
Occupied (A1) (A1) (B2) (A1) (B1)
Virtual (A1) (B2)
The electronic state of the initial guess is 1-A1.
Two-electron integrals will be kept in memory, NGetB= 151273.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RHF) = -74.9607232756 A.U. after 7 cycles
NFock= 7 Conv=0.25D-09 -V/T= 2.0051
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Occupied (A1) (A1) (B2) (A1) (B1)
Virtual (A1) (B2)
The electronic state is 1-A1.
Alpha occ. eigenvalues -- -20.23454 -1.26079 -0.62393 -0.44051 -0.38697
Alpha virt. eigenvalues -- 0.59296 0.75410
Condensed to atoms (all electrons):
1 2 3
1 O 7.839228 0.266628 0.266628
2 H 0.266628 0.591638 -0.044508
3 H 0.266628 -0.044508 0.591638
Mulliken charges:
1
1 O -0.372485
2 H 0.186243
3 H 0.186243
Sum of Mulliken charges = 0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
1 O 0.000000
Electronic spatial extent (au): <R**2>= 17.8525
Charge= 0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= -1.6890 Tot= 1.6890
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -6.0921 YY= -4.1965 ZZ= -5.4605
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.8424 YY= 1.0532 ZZ= -0.2108
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= -0.1756 XYY= 0.0000
XXY= 0.0000 XXZ= -0.0059 XZZ= 0.0000 YZZ= 0.0000
YYZ= -0.5889 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -3.2294 YYYY= -6.5599 ZZZZ= -4.7128 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -1.8138 XXZZ= -1.3522 YYZZ= -1.7002
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 9.157175909978D+00 E-N=-1.969263790991D+02 KE= 7.458406050829D+01
Symmetry A1 KE= 6.662722514868D+01
Symmetry A2 KE= 0.000000000000D+00
Symmetry B1 KE= 5.057462452019D+00
Symmetry B2 KE= 2.899372907588D+00
1\1\GINC-ALTUV\SP\RHF\STO-3G\H2O1\FRISCH\24-Apr-2013\0\\# SP, RHF/STO-
3G punch=archive trakio scf=conventional\\Gaussian Test Job 00 Water w
ith archiving\\0,1\O\H,1,0.96\H,1,0.96,2,109.47122063\\Version=ES64L-G
09RevD.01\State=1-A1\HF=-74.9607233\RMSD=2.458e-10\Dipole=0.5425712,0.
,0.3836558\Quadrupole=0.1565292,-0.6262971,0.4697679,0.,-0.4429865,0.\
PG=C02V [C2(O1),SGV(H2)]\\@
The archive entry for this job was punched.
ASKING DUMB QUESTIONS IS EASIER THAN CORECTING DUMB MISTAKES.
Job cpu time: 0 days 0 hours 0 minutes 1.1 seconds.
File lengths (MBytes): RWF= 5 Int= 1 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Wed Apr 24 18:58:31 2013.
#P TEST STO-3G COMPLEX pop=full scf=tight
Gaussian Test Job 01
SINGLET DELTA STO-3G//STO-3G DIOXYGEN
0 1
O
O 1 R
R 1.220
Entering Gaussian System, Link 0=g09
Initial command:
/mf/frisch/g09/l1.exe "/altuv/s0/scratch/Gau-11451.inp" -scrdir="/altuv/s0/scratch/"
Default CPUs for threads: 0
Entering Link 1 = /mf/frisch/g09/l1.exe PID= 11452.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
24-Apr-2013
******************************************
SetSPE: set environment variable "MP_BIND" = "yes"
SetSPE: set environment variable "MP_BLIST" = "0"
-----------------------------------------
#P TEST STO-3G COMPLEX pop=full scf=tight
-----------------------------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/6=3,11=9,16=1,25=1,30=1,116=5/1,2,3;
4//1;
5/5=2,32=2,38=5/2;
6/7=3,28=1/1;
99/5=1,9=1/99;
Leave Link 1 at Wed Apr 24 18:58:31 2013, MaxMem= 0 cpu: 0.1
(Enter /mf/frisch/g09/l101.exe)
----------------------------------------------------------
Gaussian Test Job 01 SINGLET DELTA STO-3G//STO-3G DIOXYGEN
----------------------------------------------------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
O
O 1 R
Variables:
R 1.22
NAtoms= 2 NQM= 2 NQMF= 0 NMMI= 0 NMMIF= 0
NMic= 0 NMicF= 0.
Isotopes and Nuclear Properties:
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
in nuclear magnetons)
Atom 1 2
IAtWgt= 16 16
AtmWgt= 15.9949146 15.9949146
NucSpn= 0 0
AtZEff= 0.0000000 0.0000000
NQMom= 0.0000000 0.0000000
NMagM= 0.0000000 0.0000000
AtZNuc= 8.0000000 8.0000000
Leave Link 101 at Wed Apr 24 18:58:31 2013, MaxMem= 33554432 cpu: 0.1
(Enter /mf/frisch/g09/l202.exe)
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.000000
2 8 0 0.000000 0.000000 1.220000
---------------------------------------------------------------------
Stoichiometry O2
Framework group D*H[C*(O.O)]
Deg. of freedom 1
Full point group D*H NOp 8
Largest Abelian subgroup D2H NOp 8
Largest concise Abelian subgroup C2 NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 8 0 0.000000 0.000000 0.610000
2 8 0 0.000000 0.000000 -0.610000
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 42.4566383 42.4566383
Leave Link 202 at Wed Apr 24 18:58:31 2013, MaxMem= 33554432 cpu: 0.0
(Enter /mf/frisch/g09/l301.exe)
Standard basis: STO-3G (5D, 7F)
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
There are 3 symmetry adapted cartesian basis functions of AG symmetry.
There are 0 symmetry adapted cartesian basis functions of B1G symmetry.
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
There are 3 symmetry adapted cartesian basis functions of B1U symmetry.
There are 1 symmetry adapted cartesian basis functions of B2U symmetry.
There are 1 symmetry adapted cartesian basis functions of B3U symmetry.
There are 3 symmetry adapted basis functions of AG symmetry.
There are 0 symmetry adapted basis functions of B1G symmetry.
There are 1 symmetry adapted basis functions of B2G symmetry.
There are 1 symmetry adapted basis functions of B3G symmetry.
There are 0 symmetry adapted basis functions of AU symmetry.
There are 3 symmetry adapted basis functions of B1U symmetry.
There are 1 symmetry adapted basis functions of B2U symmetry.
There are 1 symmetry adapted basis functions of B3U symmetry.
10 basis functions, 30 primitive gaussians, 10 cartesian basis functions
8 alpha electrons 8 beta electrons
nuclear repulsion energy 27.7601158605 Hartrees.
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 3 integral format.
Two-electron integral symmetry is turned on.
Leave Link 301 at Wed Apr 24 18:58:31 2013, MaxMem= 33554432 cpu: 0.1
(Enter /mf/frisch/g09/l302.exe)
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
One-electron integrals computed using PRISM.
One-electron integral symmetry used in STVInt
NBasis= 10 RedAO= T EigKep= 5.22D-01 NBF= 3 0 1 1 0 3 1 1
NBsUse= 10 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 1 1 0 3 1 1
Leave Link 302 at Wed Apr 24 18:58:31 2013, MaxMem= 33554432 cpu: 0.1
(Enter /mf/frisch/g09/l303.exe)
DipDrv: MaxL=1.
Leave Link 303 at Wed Apr 24 18:58:31 2013, MaxMem= 33554432 cpu: 0.0
(Enter /mf/frisch/g09/l401.exe)
ExpMin= 3.80D-01 ExpMax= 1.31D+02 ExpMxC= 1.31D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Harris En= -147.511097071396
JPrj=0 DoOrth=F DoCkMO=T.
Mixing orbitals, IMix= 2 IMixAn= 0 NRI=2 NE= 8 Coef= 7.07106781D-01 7.07106781D-01
Initial guess <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.0000 <S**2>= 0.0000 S= 0.0000
Leave Link 401 at Wed Apr 24 18:58:31 2013, MaxMem= 33554432 cpu: 0.1
(Enter /mf/frisch/g09/l502.exe)
Complex closed shell SCF:
Using DIIS extrapolation, IDIIS= 1040.
Integral symmetry usage will be decided dynamically.
Keep R1 and R3 ints in memory in symmetry-blocked form, NReq=826145.
IVT= 21784 IEndB= 21784 NGot= 33554432 MDV= 33531405
LenX= 33531405 LenY= 33530082
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
NMat0= 1 NMatS0= 55 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
An orbital has undefined symmetry, so N**3 symmetry is turned off.
Cycle 1 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-04
Density matrix has no symmetry -- integrals replicated.
E= -147.577080141794
DIIS: error= 2.71D-02 at cycle 1 NSaved= 1.
NSaved= 1 IEnMin= 1 EnMin= -147.577080141794 IErMin= 1 ErrMin= 2.71D-02
ErrMax= 2.71D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 7.39D-03 BMatP= 7.39D-03
IDIUse=3 WtCom= 7.29D-01 WtEn= 2.71D-01
Coeff-Com: 0.100D+01
Coeff-En: 0.100D+01
Coeff: 0.100D+01
Gap= 0.572 Goal= None Shift= 0.000
GapD= 0.572 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
RMSDP=4.37D-03 MaxDP=1.39D-02 OVMax= 0.00D+00
Cycle 2 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density matrix has no symmetry -- integrals replicated.
E= -147.578444395512 Delta-E= -0.001364253718 Rises=F Damp=F
DIIS: error= 3.52D-03 at cycle 2 NSaved= 2.
NSaved= 2 IEnMin= 2 EnMin= -147.578444395512 IErMin= 2 ErrMin= 3.52D-03
ErrMax= 3.52D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.07D-04 BMatP= 7.39D-03
IDIUse=3 WtCom= 9.65D-01 WtEn= 3.52D-02
Coeff-Com: -0.993D-01 0.110D+01
Coeff-En: 0.000D+00 0.100D+01
Coeff: -0.958D-01 0.110D+01
Gap= 0.572 Goal= None Shift= 0.000
RMSDP=1.13D-03 MaxDP=3.68D-03 DE=-1.36D-03 OVMax= 0.00D+00
Cycle 3 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density matrix has no symmetry -- integrals replicated.
E= -147.578509321733 Delta-E= -0.000064926222 Rises=F Damp=F
DIIS: error= 4.49D-04 at cycle 3 NSaved= 3.
NSaved= 3 IEnMin= 3 EnMin= -147.578509321733 IErMin= 3 ErrMin= 4.49D-04
ErrMax= 4.49D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.27D-06 BMatP= 1.07D-04
IDIUse=3 WtCom= 9.96D-01 WtEn= 4.49D-03
Coeff-Com: 0.120D-01-0.250D+00 0.124D+01
Coeff-En: 0.000D+00 0.000D+00 0.100D+01
Coeff: 0.119D-01-0.249D+00 0.124D+01
Gap= 0.572 Goal= None Shift= 0.000
RMSDP=2.16D-04 MaxDP=7.06D-04 DE=-6.49D-05 OVMax= 0.00D+00
Cycle 4 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density matrix has no symmetry -- integrals replicated.
E= -147.578511032136 Delta-E= -0.000001710403 Rises=F Damp=F
DIIS: error= 4.91D-07 at cycle 4 NSaved= 4.
NSaved= 4 IEnMin= 4 EnMin= -147.578511032136 IErMin= 4 ErrMin= 4.91D-07
ErrMax= 4.91D-07 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.49D-12 BMatP= 2.27D-06
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Coeff-Com: 0.851D-06-0.547D-04-0.716D-03 0.100D+01
Coeff: 0.851D-06-0.547D-04-0.716D-03 0.100D+01
Gap= 0.572 Goal= None Shift= 0.000
RMSDP=2.23D-07 MaxDP=7.29D-07 DE=-1.71D-06 OVMax= 0.00D+00
Cycle 5 Pass 1 IDiag 1:
Density matrix breaks symmetry, PCut= 1.00D-07
Density matrix has no symmetry -- integrals replicated.
E= -147.578511032138 Delta-E= -0.000000000002 Rises=F Damp=F
DIIS: error= 6.41D-11 at cycle 5 NSaved= 5.
NSaved= 5 IEnMin= 5 EnMin= -147.578511032138 IErMin= 5 ErrMin= 6.41D-11
ErrMax= 6.41D-11 0.00D+00 EMaxC= 1.00D-01 BMatC= 5.65D-20 BMatP= 2.49D-12
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
Large coefficients: NSaved= 5 BigCof= 0.00 CofMax= 10.00 Det=-4.61D-28
Inversion failed. Reducing to 4 matrices.
Coeff-Com: -0.508D-08 0.718D-06-0.516D-03 0.100D+01
Coeff: -0.508D-08 0.718D-06-0.516D-03 0.100D+01
Gap= 0.572 Goal= None Shift= 0.000
RMSDP=3.33D-11 MaxDP=1.09D-10 DE=-1.88D-12 OVMax= 0.00D+00
Density matrix breaks symmetry, PCut= 1.00D-07
Density matrix has no symmetry -- integrals replicated.
SCF Done: E(CRHF) = -147.578511032 A.U. after 5 cycles
NFock= 5 Conv=0.33D-10 -V/T= 2.0109
KE= 1.459836914369D+02 PE=-4.057231402774D+02 EE= 8.440082194796D+01
Leave Link 502 at Wed Apr 24 18:58:31 2013, MaxMem= 33554432 cpu: 0.1
(Enter /mf/frisch/g09/l601.exe)
Copying SCF densities to generalized density rwf, IOpCl= 2 IROHF=0.
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Occupied (SGU) (SGG) (SGG) (SGU) (SGU) (SGG) (SGU) (SGG)
Virtual (SGG) (SGU)
Alpha occ. eigenvalues -- -20.42283 -20.42220 -1.54274 -0.99559 -0.66338
Alpha occ. eigenvalues -- -0.57808 -0.48357 -0.36051
Alpha virt. eigenvalues -- 0.21109 0.71386
Molecular Orbital Coefficients (Real Part):
1 2 3 4 5
(SGU)--O (SGG)--O (SGG)--O (SGU)--O (SGU)--O
Eigenvalues -- -20.42283 -20.42220 -1.54274 -0.99559 -0.66338
1 1 O 1S 0.70297 0.70367 -0.16926 -0.18557 0.00000
2 2S 0.01949 0.01273 0.57792 0.77599 0.00000
3 2PX 0.00000 0.00000 0.00000 0.00000 0.46671
4 2PY 0.00000 0.00000 0.00000 0.00000 0.00000
5 2PZ -0.00549 -0.00006 -0.16830 0.15497 0.00000
6 2 O 1S -0.70297 0.70367 -0.16926 0.18557 0.00000
7 2S -0.01949 0.01273 0.57792 -0.77599 0.00000
8 2PX 0.00000 0.00000 0.00000 0.00000 0.46671
9 2PY 0.00000 0.00000 0.00000 0.00000 0.00000
10 2PZ -0.00549 0.00006 0.16830 0.15497 0.00000
6 7 8 9 10
(SGG)--O (SGU)--O (SGG)--O (SGG)--V (SGU)--V
Eigenvalues -- -0.57808 -0.48357 -0.36051 0.21109 0.71386