parser_gaussian.py 65.3 KB
Newer Older
1
2
3
4
from __future__ import division
from builtins import str
from builtins import range
from builtins import object
5
import setup_paths
6
from nomadcore.simple_parser import mainFunction, SimpleMatcher as SM
7
from nomadcore.local_meta_info import loadJsonFile, InfoKindEl
8
from nomadcore.caching_backend import CachingLevel
9
from nomadcore.unit_conversion.unit_conversion import convert_unit
10
11
import os, sys, json, logging
import numpy as np
12
import ase
13
14
15
16
17
18
19
import re

############################################################
# This is the parser for the output file of Gaussian.
############################################################

logger = logging.getLogger("nomad.GaussianParser")
20

Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
21
# description of the output
22
23
24
mainFileDescription = SM(
    name = 'root',
    weak = True,
25
    forwardMatch = True, 
26
27
28
    startReStr = "",
    subMatchers = [
        SM(name = 'newRun',
29
30
           startReStr = r"\s*Cite this work as:",
#           endReStr = r"\s*Normal termination of Gaussian",
31
32
33
           repeats = True,
           required = True,
           forwardMatch = True,
34
35
           fixedStartValues={ 'program_name': 'Gaussian', 'program_basis_set_type': 'gaussians' },
           sections   = ['section_run'],
36
37
           subMatchers = [
               SM(name = 'header',
38
39
                  startReStr = r"\s*Cite this work as:",
                  forwardMatch = True,
40
41
42
43
                  subMatchers = [
                      SM(r"\s*Cite this work as:"),
                      SM(r"\s*Gaussian [0-9]+, Revision [A-Za-z0-9.]*,"),
                      SM(r"\s\*\*\*\*\*\*\*\*\*\*\*\**"),
44
                      SM(r"\s*Gaussian\s*(?P<program_version>[0-9]+):\s*(?P<x_gaussian_program_implementation>[A-Za-z0-9-.]+)\s*(?P<x_gaussian_program_release_date>[0-9][0-9]?\-[A-Z][a-z][a-z]\-[0-9]+)"),
45
                      SM(r"\s*(?P<x_gaussian_program_execution_date>[0-9][0-9]?\-[A-Z][a-z][a-z]\-[0-9]+)"),
46
                      ]
47
             ),
48
49
50
51
52
               SM(name = 'globalparams',
                  startReStr = r"\s*%\w*=",
                  subFlags = SM.SubFlags.Unordered,
                  forwardMatch = True,
                  subMatchers = [
53
54
55
                      SM(r"\s*%[Cc]hk=(?P<x_gaussian_chk_file>[A-Za-z0-9.]*)"),
                      SM(r"\s*%[Mm]em=(?P<x_gaussian_memory>[A-Za-z0-9.]*)"),
                      SM(r"\s*%[Nn][Pp]roc=(?P<x_gaussian_number_of_processors>[A-Za-z0-9.]*)")
56
                      ]
57
58
59
60
61
62
63
64
65
             ),
               SM (name = 'SectionMethod',
               sections = ['section_method'],
                   startReStr = r"\s*#",
                   forwardMatch = True,
                   subMatchers = [
                       SM(r"\s*(?P<x_gaussian_settings>([a-zA-Z0-9-/=(),#*+:]*\s*)+)"),
                       SM(r"\s*(?P<x_gaussian_settings>([a-zA-Z0-9-/=(),#*+:]*\s*)+)")
                       ]
66
67
             ),
               SM(name = 'charge_multiplicity_natoms',
68
               sections = ['section_system'],
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
69
		  startReStr = r"\s*Charge =",
70
                  subFlags = SM.SubFlags.Unordered,
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
71
72
                  forwardMatch = True,
                  subMatchers = [
73
74
                      SM(r"\s*Charge =\s*(?P<x_gaussian_total_charge>[-+0-9]*) Multiplicity =\s*(?P<x_gaussian_spin_target_multiplicity>[0-9]*)"),
                      SM(r"\s*NAtoms=\s*(?P<x_gaussian_natoms>[0-9]*)\s*NQM="),
75
                      ]
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
             ),
               SM(name = 'atomic masses',
                  sections = ['x_gaussian_section_atomic_masses'],
                  startReStr = r"\s*AtmWgt=",
                  endReStr = r"\s*Leave Link  101",
                  forwardMatch = True,
                  subMatchers = [
                      SM(r"\s*AtmWgt=\s+(?P<x_gaussian_atomic_masses>[0-9.]+(\s+[0-9.]+)(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?)", repeats = True)
                      ]
             ),
            # this SimpleMatcher groups a single configuration calculation together with output after SCF convergence from relaxation
            SM (name = 'SingleConfigurationCalculationWithSystemDescription',
                startReStr = "\s*Standard orientation:",
#                endReStr = "\s*Link1:  Proceeding to internal job step number",
                repeats = False,
                forwardMatch = True,
                subMatchers = [
                # the actual section for a single configuration calculation starts here
                SM (name = 'SingleConfigurationCalculation',
                  startReStr = "\s*Standard orientation:",
                  repeats = True,
                  forwardMatch = True,
98
                  sections = ['section_single_configuration_calculation'],
99
100
101
102
103
                  subMatchers = [
                  SM(name = 'geometry',
                   sections  = ['x_gaussian_section_geometry'],
                   startReStr = r"\s*Standard orientation",
                   endReStr = r"\s*Rotational constants",
104
                      subMatchers = [
105
                      SM(r"\s+[0-9]+\s+(?P<x_gaussian_atomic_number>[0-9]+)\s+[0-9]+\s+(?P<x_gaussian_atom_x_coord__angstrom>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_y_coord__angstrom>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_z_coord__angstrom>[-+0-9EeDd.]+)",repeats = True),
106
107
108
109
                      SM(r"\s*Rotational constants")
                    ]
                ),
                    SM(name = 'TotalEnergyScfGaussian',
110
                    sections  = ['section_scf_iteration'],
111
112
113
114
115
                    startReStr = r"\s*Cycle\s+[0-9]+",
                    forwardMatch = True,
                    repeats = True, 
                    subMatchers = [
                    SM(r"\s*Cycle\s+[0-9]+"),
116
                    SM(r"\s*E=\s*(?P<energy_total_scf_iteration__hartree>[-+0-9.]+)\s*Delta-E=\s*(?P<x_gaussian_delta_energy_total_scf_iteration__hartree>[-+0-9.]+)")
117
118
119
120
121
122
123
                    ]
                ), 
                    SM(name = 'TotalEnergyScfConverged',
                    sections  = ['x_gaussian_section_total_scf_one_geometry'],
                    startReStr = r"\s*SCF Done",
                    forwardMatch = True,
                    subMatchers = [
124
                    SM(r"\s*(?P<x_gaussian_single_configuration_calculation_converged>SCF Done):\s*[(),A-Za-z0-9-]+\s*=\s*(?P<energy_total__hartree>[-+0-9.]+)")
125
126
127
128
                    ]  
                ),
                    SM(name = 'RealSpinValue',
                    sections  = ['x_gaussian_section_real_spin_squared'],
129
                    startReStr = r"\s*Annihilation of the first spin contaminant",
130
                    forwardMatch = True,
131
                    repeats = True,
132
133
                    subMatchers = [
                     SM(r"\s*Annihilation of the first spin contaminant"),
134
                     SM(r"\s*[A-Z][*][*][0-9]\s*before annihilation\s*(?P<spin_S2>[0-9.]+),\s*after\s*(?P<x_gaussian_after_annihilation_spin_S2>[0-9.]+)")
135
136
                     ]
                ),
137
                   SM(name = 'ForcesGaussian',
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
                   sections  = ['x_gaussian_section_atom_forces'],
                   startReStr = "\s*Center\s+Atomic\s+Forces ",
                   forwardMatch = True,
                   subMatchers = [
                    SM(r"\s*Center\s+Atomic\s+Forces "),
                    SM(r"\s+[0-9]+\s+[0-9]+\s+(?P<x_gaussian_atom_x_force__hartree_bohr_1>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_y_force__hartree_bohr_1>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_z_force__hartree_bohr_1>[-+0-9EeDd.]+)",repeats = True),
                    SM(r"\s*Cartesian Forces:\s+")
                    ]
                ),
                  SM(name = 'Geometry_optimization',
                  startReStr = r"\s*Optimization completed.",
                  subMatchers = [
                  SM(r"\s*(?P<x_gaussian_geometry_optimization_converged>Optimized Parameters)"),
                  SM(r"\s*(?P<x_gaussian_geometry_optimization_converged>Optimization stopped)"),
                  SM(r"\s+[0-9]+\s+[0-9]+\s+[0-9]+\s+[-+0-9EeDd.]+\s+[-+0-9EeDd.]+\s+[-+0-9EeDd.]+",repeats = True),
                  SM(r"\s*Distance matrix|\s*Rotational constants|\s*Stoichiometry")
                    ]
               ),
                SM(name = 'Orbital symmetries',
                sections = ['x_gaussian_section_orbital_symmetries'],
                startReStr = r"\s+Population analysis",
                subFlags = SM.SubFlags.Sequenced,
                subMatchers = [
                      SM(r"\s*Orbital symmetries"), 
                      SM(r"\s*Alpha Orbitals"),
                      SM(r"\s*Occupied\s+(?P<x_gaussian_alpha_occ_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_alpha_occ_symmetry_values>\((.+)\)?)", repeats = True),
                      SM(r"\s*Virtual\s+(?P<x_gaussian_alpha_vir_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_alpha_vir_symmetry_values>\((.+)\)?)", repeats = True),
                      SM(r"\s*Beta Orbitals"),
                      SM(r"\s*Occupied\s+(?P<x_gaussian_beta_occ_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_beta_occ_symmetry_values>\((.+)\)?)", repeats = True),
                      SM(r"\s*Virtual\s+(?P<x_gaussian_beta_vir_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_beta_vir_symmetry_values>\((.+)\)?)", repeats = True),
                      ]
             ),
                SM(name = 'Electronicstatesymmetry',
                sections = ['x_gaussian_section_symmetry'],
                startReStr = r"\s*The electronic state is",
                forwardMatch = True,
                subMatchers = [
179
                      SM(r"\s*The electronic state is\s*(?P<x_gaussian_elstate_symmetry>[A-Z0-9-']+)[.]")
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
                      ]
             ),
                SM(name = 'Eigenvalues',
                sections = ['x_gaussian_section_eigenvalues'],
                startReStr = r"\s*Alpha  occ. eigenvalues --",
                forwardMatch = True,
                subFlags = SM.SubFlags.Sequenced,
                subMatchers = [
                      SM(r"\s*Alpha  occ. eigenvalues --\s+(?P<x_gaussian_alpha_occ_eigenvalues_values>(.+)?)", repeats = True), 
                      SM(r"\s*Alpha virt. eigenvalues --\s+(?P<x_gaussian_alpha_vir_eigenvalues_values>(.+)?)", repeats = True),
                      SM(r"\s*Beta  occ. eigenvalues --\s+(?P<x_gaussian_beta_occ_eigenvalues_values>(.+)?)", repeats = True),
                      SM(r"\s*Beta virt. eigenvalues --\s+(?P<x_gaussian_beta_vir_eigenvalues_values>(.+)?)", repeats = True),
                      SM(r"\s*- Condensed to atoms (all electrons)"),
                      ]
             ),
                SM(name = 'Multipoles',
                  sections = ['x_gaussian_section_molecular_multipoles'],
197
198
                  startReStr = r"\s*Electronic spatial extent",
                  forwardMatch = False,
199
                  subMatchers = [
200
                      SM(r"\s*Charge=(?P<charge>\s*[-0-9.]+)"),
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
                      SM(r"\s*Dipole moment "), 
                      SM(r"\s+\w+=\s+(?P<dipole_moment_x>[-+0-9EeDd.]+)\s+\w+=\s+(?P<dipole_moment_y>[-+0-9EeDd.]+)\s+\w+=\s+(?P<dipole_moment_z>[-+0-9EeDd.]+)"),
                      SM(r"\s*Quadrupole moment"), 
                      SM(r"\s+\w+=\s+(?P<quadrupole_moment_xx>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_yy>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_zz>[0-9-.]+)"), 
                      SM(r"\s+\w+=\s+(?P<quadrupole_moment_xy>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_xz>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_yz>[0-9-.]+)"),
                      SM(r"\s*Traceless Quadrupole moment"),
                      SM(r"\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+"),
                      SM(r"\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+"),
                      SM(r"\s*Octapole moment"),
                      SM(r"\s+\w+=\s+(?P<octapole_moment_xxx>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_yyy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_zzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xyy>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<octapole_moment_xxy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xxz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_yzz>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<octapole_moment_yyz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xyz>[-+0-9EeDd.]+)"),
                      SM(r"\s*Hexadecapole moment"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_xxxx>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyyy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_zzzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_xxxy>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_xxxz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyyx>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyyz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_zzzx>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_zzzy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_xxyy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_xxzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyzz>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_xxyz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyxz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_zzxy>[-+0-9EeDd.]+)")
                      ]
             ),    
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
                     SM (name = 'Frequencies',
                     sections = ['x_gaussian_section_frequencies'],
                     startReStr = r"\s*Frequencies --",
                     endReStr = r"\s*- Thermochemistry -",
                     forwardMatch = True,
                     repeats = True,
                     subFlags = SM.SubFlags.Unordered,
                     subMatchers = [
                          SM(r"\s*Frequencies --\s+(?P<x_gaussian_frequency_values>([-]?[0-9]+\.\d*)\s*([-]?[-0-9]+\.\d*)?\s*([-]?[-0-9]+\.\d*)?)", repeats = True),
                          SM(r"\s*Red. masses --\s+(?P<x_gaussian_reduced_masses>(.+))", repeats = True),
                          SM(r"\s*[0-9]+\s*[0-9]+\s*(?P<x_gaussian_normal_modes>([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+))", repeats = True),
                          SM(r"\s*[0-9]+\s*([0-9]+)?\s*([0-9]+)?"),
                      ]
             ),
                SM(name = 'Thermochemistry',
                sections = ['x_gaussian_section_thermochem'],
                startReStr = r"\s*Temperature",
237
238
                forwardMatch = True,
                subMatchers = [
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
                      SM(r"\s*Temperature\s*(?P<x_gaussian_temperature>[0-9.]+)\s*Kelvin.\s*Pressure\s*(?P<x_gaussian_pressure__atmosphere>[0-9.]+)\s*Atm."),
                      SM(r"\s*Principal axes and moments of inertia in atomic units:"),
                      SM(r"\s*Eigenvalues --\s*(?P<x_gaussian_moment_of_inertia_X__amu_angstrom_angstrom>[0-9.]+)\s*(?P<x_gaussian_moment_of_inertia_Y__amu_angstrom_angstrom>[0-9.]+)\s*(?P<x_gaussian_moment_of_inertia_Z__amu_angstrom_angstrom>[0-9.]+)"),
                      SM(r"\s*Zero-point correction=\s*(?P<x_gaussian_zero_point_energy__hartree>[0-9.]+)"),
                      SM(r"\s*Thermal correction to Energy=\s*(?P<x_gaussian_thermal_correction_energy__hartree>[0-9.]+)"),
                      SM(r"\s*Thermal correction to Enthalpy=\s*(?P<x_gaussian_thermal_correction_enthalpy__hartree>[0-9.]+)"),
                      SM(r"\s*Thermal correction to Gibbs Free Energy=\s*(?P<x_gaussian_thermal_correction_free_energy__hartree>[0-9.]+)"), 
                      ]
             ),       
                SM(name = 'Forceconstantmatrix',
                sections = ['x_gaussian_section_force_constant_matrix'],
                startReStr = r"\s*Force constants in Cartesian coordinates",
                forwardMatch = True,
                subMatchers = [
                      SM(r"\s*Force constants in Cartesian coordinates"),
                      SM(r"\s*[0-9]+\s*(?P<x_gaussian_force_constants>(\-?\d+\.\d*[-+D0-9]+)\s*(\-?\d+\.\d*[-+D0-9]+)?\s*(\-?\d+\.\d*[-+D0-9]+)?\s*(\-?\d+\.\d*[-+D0-9]+)?\s*(\-?\d+\.\d*[-+D0-9]+)?)", repeats = True),
                      SM(r"\s*Force constants in internal coordinates")
256
257
258
259
260
261
262
263
264
                      ]
             ),
                SM(name = 'run times',
                  sections = ['x_gaussian_section_times'],
                  startReStr = r"\s*Job cpu time:",
                  forwardMatch = True,
                  subMatchers = [
                      SM(r"\s*Job cpu time:\s*(?P<x_gaussian_program_cpu_time>\s*[0-9]+\s*[a-z]+\s*[0-9]+\s*[a-z]+\s*[0-9]+\s*[a-z]+\s*[0-9.]+\s*[a-z]+)"),
                      SM(r"\s*Normal termination of Gaussian\s*[0-9]+\s* at \s*(?P<x_gaussian_program_termination_date>[A-Za-z]+\s*[A-Za-z]+\s*[0-9]+\s*[0-9:]+\s*[0-9]+)"),
265
                      ]
266
267
268
269
270
271
             )
          ])
        ])
      ])
    ])

272
273
274
275
276
277
278
279
280
# loading metadata from nomad-meta-info/meta_info/nomad_meta_info/gaussian.nomadmetainfo.json
metaInfoPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),"../../../../nomad-meta-info/meta_info/nomad_meta_info/gaussian.nomadmetainfo.json"))
metaInfoEnv, warnings = loadJsonFile(filePath = metaInfoPath, dependencyLoader = None, extraArgsHandling = InfoKindEl.ADD_EXTRA_ARGS, uri = None)

parserInfo = {
  "name": "parser_gaussian",
  "version": "1.0"
}

281
class GaussianParserContext(object):
282
283
284
285
286
287
288
289
290
291
292
293
294
295
      """Context for parsing Gaussian output file.

        This class keeps tracks of several Gaussian settings to adjust the parsing to them.
        The onClose_ functions allow processing and writing of cached values after a section is closed.
        They take the following arguments:
        backend: Class that takes care of writing and caching of metadata.
        gIndex: Index of the section that is closed.
        section: The cached values and sections that were found in the section that is closed.
      """
      def __init__(self):
        # dictionary of energy values, which are tracked between SCF iterations and written after convergence
        self.totalEnergyList = {
                                'energy_XC_potential': None
                               }
296

297
298
299
300
301
302
303
304
305
306
307
308
309
310
      def initialize_values(self):
        """Initializes the values of certain variables.

        This allows a consistent setting and resetting of the variables,
        when the parsing starts and when a section_run closes.
        """
        # start with -1 since zeroth iteration is the initialization
        self.scfIterNr = -1
        self.scfConvergence = False
        self.geoConvergence = None
        self.geoCrashed = None
        self.scfenergyconverged = 0.0

      def startedParsing(self, path, parser):
311
        self.parser = parser
312
313
        # save metadata
        self.metaInfoEnv = self.parser.parserBuilder.metaInfoEnv
314
315
        # allows to reset values if the same superContext is used to parse different files
        self.initialize_values()
316

317
318
319
      def onClose_x_gaussian_section_geometry(self, backend, gIndex, section):
        xCoord = section["x_gaussian_atom_x_coord"]
        yCoord = section["x_gaussian_atom_y_coord"]
320
321
        zCoord = section["x_gaussian_atom_z_coord"]
        numbers = section["x_gaussian_atomic_number"]
322
        atom_coords = np.zeros((len(xCoord),3), dtype=float)
323
        atom_numbers = np.zeros(len(xCoord), dtype=int)
324
        atomic_symbols = np.empty((len(xCoord)), dtype=object)
325
        for i in range(len(xCoord)):
326
327
328
329
330
331
           atom_coords[i,0] = xCoord[i]
           atom_coords[i,1] = yCoord[i]
           atom_coords[i,2] = zCoord[i]
        for i in range(len(xCoord)):
          atom_numbers[i] = numbers[i]
          atomic_symbols[i] = ase.data.chemical_symbols[atom_numbers[i]]
332
333
334
335
        gIndexTmp = backend.openSection("section_system")
        backend.addArrayValues("atom_labels", atomic_symbols)
        backend.addArrayValues("atom_positions", atom_coords)
        backend.closeSection("section_system", gIndexTmp)
336
337
338
339
340
341
342
343
344
345

      def onClose_x_gaussian_section_atom_forces(self, backend, gIndex, section):
        xForce = section["x_gaussian_atom_x_force"]
        yForce = section["x_gaussian_atom_y_force"]
        zForce = section["x_gaussian_atom_z_force"]
        atom_forces = np.zeros((len(xForce),3), dtype=float)
        for i in range(len(xForce)):
           atom_forces[i,0] = xForce[i]
           atom_forces[i,1] = yForce[i]
           atom_forces[i,2] = zForce[i]
346
        backend.addArrayValues("atom_forces_raw", atom_forces)
347
348
349
350

      def onClose_section_run(self, backend, gIndex, section):
        """Trigger called when section_run is closed.
        """
351
352
        # write geometry optimization convergence
        gIndexTmp = backend.openSection('section_single_configuration_calculation')
353
354
        if self.geoConvergence is not None:
            backend.addValue('x_gaussian_geometry_optimization_converged', self.geoConvergence)
355
        backend.closeSection('section_single_configuration_calculation', gIndexTmp)
356

357
      def onClose_section_single_configuration_calculation(self, backend, gIndex, section):
358
359
360
361
362
        """Trigger called when section_single_configuration_calculation is closed.
         Write number of SCF iterations and convergence.
         Check for convergence of geometry optimization.
        """
        # write number of SCF iterations
363
        self.scfenergyconverged = section['energy_total']
364
365
366
        backend.addValue('x_gaussian_number_of_scf_iterations', self.scfIterNr)
        # write SCF convergence and reset
        backend.addValue('x_gaussian_single_configuration_calculation_converged', self.scfConvergence)
367
        backend.addValue('energy_total', self.scfenergyconverged)
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        self.scfConvergence = False
        # check for geometry optimization convergence
        if section['x_gaussian_geometry_optimization_converged'] is not None:
            if section['x_gaussian_geometry_optimization_converged'][-1] == 'Optimization completed':
               self.geoConvergence = True
            else:
               if section['x_gaussian_geometry_optimization_converged'][-1] == 'Optimization stopped':
                  self.geoConvergence = False
        if section['x_gaussian_geometry_optimization_converged'] is not None:
             if section['x_gaussian_geometry_optimization_converged'][-1] == 'Optimization stopped':
               self.geoCrashed = True
             else:
               self.geoCrashed = False
        # start with -1 since zeroth iteration is the initialization
        self.scfIterNr = -1

384
      def onClose_section_scf_iteration(self, backend, gIndex, section):
385
386
387
388
389
390
391
        # count number of SCF iterations
        self.scfIterNr += 1
        # check for SCF convergence
        if section['x_gaussian_single_configuration_calculation_converged'] is not None:
            self.scfConvergence = True

      def onClose_x_gaussian_section_atomic_masses(self, backend, gIndex, section):
392
393
394
395
396
          if(section["x_gaussian_atomic_masses"]):
             atomicmasses = str(section["x_gaussian_atomic_masses"])
             atmass = []
             mass = [float(f) for f in atomicmasses[1:].replace("'","").replace(",","").replace("]","").replace(" ."," 0.").replace(" -."," -0.").split()]
             atmass = np.append(atmass, mass)
397
             gIndexTmp = backend.openSection("section_system")
398
             backend.addArrayValues("x_gaussian_masses", atmass)   
399
             backend.closeSection("section_system", gIndexTmp)
400
401
402
403
       
      def onClose_x_gaussian_section_eigenvalues(self, backend, gIndex, section):
          eigenenergies = str(section["x_gaussian_alpha_occ_eigenvalues_values"])
          eigenen1 = []
404
          energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()]
405
          eigenen1 = np.append(eigenen1, energy)
406
407
408
409
410
          if(section["x_gaussian_beta_occ_eigenvalues_values"]):
             occoccupationsalp = np.ones(len(eigenen1), dtype=float)
          else:
             occoccupationsalp = 2.0 * np.ones(len(eigenen1), dtype=float)

411
412
          eigenenergies = str(section["x_gaussian_alpha_vir_eigenvalues_values"])
          eigenen2 = []
413
          energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()]
414
415
416
417
          eigenen2 = np.append(eigenen2, energy)
          viroccupationsalp = np.zeros(len(eigenen2), dtype=float)
          eigenencon = np.zeros(len(eigenen1) + len(eigenen2))
          eigenencon = np.concatenate((eigenen1,eigenen2), axis=0)
418
          eigenencon = convert_unit(eigenencon, "hartree", "J")
419
420
421
422
          occupcon = np.concatenate((occoccupationsalp, viroccupationsalp), axis=0)
          backend.addArrayValues("x_gaussian_alpha_eigenvalues", eigenencon)
          backend.addArrayValues("x_gaussian_alpha_occupations", occupcon)

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
          if(section["x_gaussian_beta_occ_eigenvalues_values"]):
             eigenenergies = str(section["x_gaussian_beta_occ_eigenvalues_values"])
             eigenen1 = []
             energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()]
             eigenen1 = np.append(eigenen1, energy)
             occoccupationsbet = np.ones(len(eigenen1), dtype=float)
             eigenenergies = str(section["x_gaussian_beta_vir_eigenvalues_values"])
             eigenen2 = []
             energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").split()]
             eigenen2 = np.append(eigenen2, energy)
             viroccupationsbet = np.zeros(len(eigenen2), dtype=float)
             eigenencon = np.zeros(len(eigenen1) + len(eigenen2))
             eigenencon = np.concatenate((eigenen1,eigenen2), axis=0)
             eigenencon = convert_unit(eigenencon, "hartree", "J")
             occupcon = np.concatenate((occoccupationsbet, viroccupationsbet), axis=0)
             backend.addArrayValues("x_gaussian_beta_eigenvalues", eigenencon)
             backend.addArrayValues("x_gaussian_beta_occupations", occupcon)
440
441
442
443

      def onClose_x_gaussian_section_orbital_symmetries(self, backend, gIndex, section):
          symoccalpha = str(section["x_gaussian_alpha_occ_symmetry_values"])
          symviralpha = str(section["x_gaussian_alpha_vir_symmetry_values"])
444
445
446
447
          if(section["x_gaussian_beta_occ_symmetry_values"]):
             symoccbeta = str(section["x_gaussian_beta_occ_symmetry_values"])
             symvirbeta = str(section["x_gaussian_beta_vir_symmetry_values"])

448
          symmetry = [str(f) for f in symoccalpha[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("'E","E").replace("G'","G").replace("\"A'\"","A'").split()]
449
450
          sym1 = []
          sym1 = np.append(sym1, symmetry)  
451
          symmetry = [str(f) for f in symviralpha[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("\"A'\"","A'").replace("'E","E").replace("G'","G").split()]
452
453
454
455
          sym2 = []
          sym2 = np.append(sym2, symmetry)
          symmetrycon = np.concatenate((sym1, sym2), axis=0)
          backend.addArrayValues("x_gaussian_alpha_symmetries", symmetrycon) 
456
457

          if(section["x_gaussian_beta_occ_symmetry_values"]):
458
             symmetry = [str(f) for f in symoccbeta[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("\"A'\"","A'").replace("'E","E").replace("G'","G").split()]
459
460
             sym1 = []
             sym1 = np.append(sym1, symmetry)
461
             symmetry = [str(f) for f in symvirbeta[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("\"A'\"","A'").replace("'E","E").replace("G'","G").split()]
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
             sym2 = []
             sym2 = np.append(sym2, symmetry)
             symmetrycon = np.concatenate((sym1, sym2), axis=0)
             backend.addArrayValues("x_gaussian_beta_symmetries", symmetrycon)

      def onClose_x_gaussian_section_molecular_multipoles(self, backend, gIndex, section):
          if(section["quadrupole_moment_xx"]):
             x_gaussian_number_of_lm_molecular_multipoles = 35
          else:
             x_gaussian_number_of_lm_molecular_multipoles = 4

          x_gaussian_molecular_multipole_m_kind = 'polynomial'

          char = str(section["charge"])
          cha = str([char])
          charge = [float(f) for f in cha[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").replace('"','').split()]
#         charge = convert_unit

          dipx = section["dipole_moment_x"]
          dipy = section["dipole_moment_y"]
          dipz = section["dipole_moment_z"]
          dip = str([dipx, dipy, dipz])
          dipoles = [float(f) for f in dip[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()]
          dipoles = convert_unit(dipoles, "debye", "coulomb * meter")

          quadxx = section["quadrupole_moment_xx"]
          quadxy = section["quadrupole_moment_xy"]
          quadyy = section["quadrupole_moment_yy"]
          quadxz = section["quadrupole_moment_xz"]
          quadyz = section["quadrupole_moment_yz"]
          quadzz = section["quadrupole_moment_zz"]
          quad = str([quadxx, quadxy, quadyy, quadxz, quadyz, quadzz])
          quadrupoles = [float(f) for f in quad[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()] 
          if(section["quadrupole_moment_xx"]): 
             quadrupoles = convert_unit(quadrupoles, "debye * angstrom", "coulomb * meter**2")

          octaxxx = section["octapole_moment_xxx"]
          octayyy = section["octapole_moment_yyy"]
          octazzz = section["octapole_moment_zzz"]
          octaxyy = section["octapole_moment_xyy"]
          octaxxy = section["octapole_moment_xxy"]
          octaxxz = section["octapole_moment_xxz"]
          octaxzz = section["octapole_moment_xzz"]
          octayzz = section["octapole_moment_yzz"]
          octayyz = section["octapole_moment_yyz"]
          octaxyz = section["octapole_moment_xyz"]
          octa = str([octaxxx, octayyy, octazzz, octaxyy, octaxxy, octaxxz, octaxzz, octayzz, octayyz, octaxyz])
          octapoles = [float(f) for f in octa[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()]
          if(section["octapole_moment_xxx"]):
             octapoles = convert_unit(octapoles, "debye * angstrom**2", "coulomb * meter**3")

          hexadecaxxxx = section["hexadecapole_moment_xxxx"]
          hexadecayyyy = section["hexadecapole_moment_yyyy"]
          hexadecazzzz = section["hexadecapole_moment_zzzz"]
          hexadecaxxxy = section["hexadecapole_moment_xxxy"]
          hexadecaxxxz = section["hexadecapole_moment_xxxz"]
          hexadecayyyx = section["hexadecapole_moment_yyyx"]
          hexadecayyyz = section["hexadecapole_moment_yyyz"]
          hexadecazzzx = section["hexadecapole_moment_zzzx"]
          hexadecazzzy = section["hexadecapole_moment_zzzy"]
          hexadecaxxyy = section["hexadecapole_moment_xxyy"]
          hexadecaxxzz = section["hexadecapole_moment_xxzz"]
          hexadecayyzz = section["hexadecapole_moment_yyzz"]
          hexadecaxxyz = section["hexadecapole_moment_xxyz"]
          hexadecayyxz = section["hexadecapole_moment_yyxz"]
          hexadecazzxy = section["hexadecapole_moment_zzxy"]
          hexa = str([hexadecaxxxx, hexadecayyyy, hexadecazzzz, hexadecaxxxy, hexadecaxxxz, hexadecayyyx, hexadecayyyz,
          hexadecazzzx, hexadecazzzy, hexadecaxxyy, hexadecaxxzz, hexadecayyzz, hexadecaxxyz, hexadecayyxz, hexadecazzxy])
          hexadecapoles = [float(f) for f in hexa[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()]
          if(section["hexadecapole_moment_xxxx"]):
             hexadecapoles = convert_unit(hexadecapoles, "debye * angstrom**3", "coulomb * meter**4")

          if(section["quadrupole_moment_xx"]):
             multipoles = np.hstack((charge, dipoles, quadrupoles, octapoles, hexadecapoles))
          else:
             multipoles = np.hstack((charge, dipoles)) 

          x_gaussian_molecular_multipole_values = np.resize(multipoles, (x_gaussian_number_of_lm_molecular_multipoles))

#          x_gaussian_molecular_multipole_lm[0] = (0,0) 
#          x_gaussian_molecular_multipole_lm[1] = (1,0)
#          x_gaussian_molecular_multipole_lm[2] = (1,1)
#          x_gaussian_molecular_multipole_lm[3] = (1,2)
          backend.addArrayValues("x_gaussian_molecular_multipole_values", x_gaussian_molecular_multipole_values)
          backend.addValue("x_gaussian_molecular_multipole_m_kind", x_gaussian_molecular_multipole_m_kind)

      def onClose_x_gaussian_section_frequencies(self, backend, gIndex, section):
          frequencies = str(section["x_gaussian_frequency_values"])
          vibfreqs = []
          freqs = [float(f) for f in frequencies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace("\\n","").replace(" ."," 0.").replace(" -."," -0.").split()]
          vibfreqs = np.append(vibfreqs, freqs)
          vibfreqs = convert_unit(vibfreqs, "inversecm", "J")
          backend.addArrayValues("x_gaussian_frequencies", vibfreqs)

          masses = str(section["x_gaussian_reduced_masses"])
          vibreducedmasses = []
          reduced = [float(f) for f in masses[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").split()]
          vibreducedmasses = np.append(vibreducedmasses, reduced)
          vibreducedmasses = convert_unit(vibreducedmasses, "amu", "kilogram")
          backend.addArrayValues("x_gaussian_red_masses", vibreducedmasses)

          vibnormalmodes = []
          vibdisps = str(section["x_gaussian_normal_modes"])
          disps = [float(s) for s in vibdisps[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace("\\n","").replace(" ."," 0.").replace(" -."," -0.").split()]
          dispsnew = np.zeros(len(disps), dtype = float)

#  Reorder disps 

          if len(vibfreqs) % 3 == 0:
             k = 0
572
             for p in range(0,len(vibfreqs) // 3):
573
                M = int(len(disps)/len(vibfreqs)) * (p+1) 
574
                for m in range(3):
575
                  for n in range(M - int(len(disps) / len(vibfreqs)),M,3):
576
577
578
579
580
581
                    for l in range(3):
                      dispsnew[k] = disps[3*(n + m) + l]
                      k = k + 1
          elif len(vibfreqs) % 3 != 0:
             k = 0
             for p in range(len(vibfreqs)-1,0,-3):
582
                M = (len(disps) - int(len(disps) / len(vibfreqs))) // p
583
                for m in range(3):
584
                  for n in range(M - int(len(disps) / len(vibfreqs)),M,3):
585
586
587
                    for l in range(3):
                      dispsnew[k] = disps[3*(n + m) + l]
                      k = k + 1
588
             for m in range(int(len(disps) / len(vibfreqs))):
589
590
591
592
                   dispsnew[k] = disps[k]
                   k = k + 1

          vibnormalmodes = np.append(vibnormalmodes, dispsnew)
593
594
          natoms = int(len(disps) / len(vibfreqs) / 3)
          vibnormalmodes = np.reshape(vibnormalmodes,(len(vibfreqs),natoms,3))
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
          backend.addArrayValues("x_gaussian_normal_mode_values", vibnormalmodes)

      def onClose_x_gaussian_section_force_constant_matrix(self, backend, gIndex, section):

          forcecnstvalues = []
          forceconst = str(section["x_gaussian_force_constants"])
          numbers = [float(s) for s in forceconst[1:].replace("'","").replace(",","").replace("]","").replace("\\n","").replace("D","E").replace(" ."," 0.").replace(" -."," -0.").split()]
          length = len(numbers)
          dim = int(((1 + 8 * length)**0.5 - 1) / 2) 
          cartforceconst = np.zeros([dim, dim])
          forcecnstvalues = np.append(forcecnstvalues, numbers) 
          if dim > 6:
             l = 0
             for i in range(0,5):
                for k in range(0,i+1):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(5,dim):
                for k in range(0,5):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(5,dim-2): 
                for k in range(5,i+1):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(dim-2,dim):
                for k in range(5,dim-2):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(dim-2,dim):
                for k in range(i,dim):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
          elif dim == 6:
             l = 0
             for i in range(0,5):
                for k in range(0,i+1):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(5,dim):
                for k in range(0,5):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(dim,dim):
                for k in range(i,dim):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
 
          for i in range(0,dim):
             for k in range(i+1,dim):
                 cartforceconst[i,k] = cartforceconst[k,i]

          cartforceconst = convert_unit(cartforceconst, "forceAu / bohr", "J / (meter**2)")

          backend.addArrayValues("x_gaussian_force_constant_values", cartforceconst) 
650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
      def onClose_section_method(self, backend, gIndex, section):
        # handling of xc functional
        # two functions to convert hybrid_xc_coeff to the correct weight
        def GGA_weight(x):
          return 1.0 - x
        def HF_weight(x):
          return x
       # TODO vdW functionals and double-hybrid functionals
       # Dictionary for conversion of xc functional name in aims to metadata format.
       # The individual x and c components of the functional are given as dictionaries.
       # Possible keys of such a dictionary are 'name', 'weight', and 'convert'.
       # If 'weight' is not given it is not written.
       # With 'convert', a funtion is specified how hybrid_xc_coeff is converted to the correct weight for this xc component.
        xcDict = {
              'S':           [{'name': 'LDA_X'}],
              'XA':	     [{'name': 'X_ALPHA'}],
              'VWN5':        [{'name': 'LDA_C_VWN'}],
              'VWN':         [{'name': 'LDA_C_VWN_3'}],
              'LSDA':        [{'name': 'LDA_X'}, {'name': 'LDA_C_VWN'}], 
              'B':           [{'name': 'GGA_X_B88'}],
              'BLYP':        [{'name': 'GGA_C_LYP'}, {'name': 'GGA_X_B88'}],
              'PBE':         [{'name': 'GGA_C_PBE'}],
              'PBEPBE':      [{'name': 'GGA_C_PBE'}, {'name': 'GGA_X_PBE'}],
              'PBEH':        [{'name': 'GGA_X_PBEH'}],
              'WPBEH':       [{'name': 'GGA_X_WPBEH'}],
              'PW91PW91':    [{'name': 'GGA_C_PW91'}, {'name': 'GGA_X_PW91'}],
              'M06L':        [{'name': 'MGGA_C_M06_L'}, {'name': 'MGGA_X_M06_L'}],
              'M11L':        [{'name': 'MGGA_C_M11_L'}, {'name': 'MGGA_X_M11_L'}],
              'SOGGA11':     [{'name': 'GGA_XC_SOGGA11'}],
              'MN12L':       [{'name': 'GGA_XC_MN12L'}],
              'N12':         [{'name': 'GGA_C_N12'}, {'name': 'GGA_X_N12'}],
              'VSXC':        [{'name': 'GGA_XC_VSXC'}],
              'HCTH93':      [{'name': 'GGA_XC_HCTH_93'}],
              'HCTH147':     [{'name': 'GGA_XC_HCTH_147'}],
              'HCTH407':     [{'name': 'GGA_XC_HCTH_407'}],
              'HCTH':        [{'name': 'GGA_XC_HCTH_407'}],
              'B97D':        [{'name': 'GGA_XC_B97D'}],
              'B97D3':       [{'name': 'GGA_XC_B97D3'}],
              'MPW':         [{'name': 'GGA_X_MPW'}],
              'G96':         [{'name': 'GGA_X_G96'}],
              'O':           [{'name': 'GGA_X_O'}],
              'BRX':         [{'name': 'GGA_X_BRX'}],
              'PKZB':        [{'name': 'GGA_C_PKZB'}, {'name': 'GGA_X_PKZB'}],
              'PL':          [{'name': 'GGA_C_PL'}],
              'P86':         [{'name': 'GGA_C_P86'}],
              'B95':         [{'name': 'GGA_C_B95'}],
              'KCIS':        [{'name': 'GGA_C_KCIS'}],
              'BRC':         [{'name': 'GGA_C_BRC'}],
              'VP86':        [{'name': 'GGA_C_VP86'}],
              'V5LYP':       [{'name': 'GGA_C_V5LYP'}],
              'tHCTH':       [{'name': 'MGGA_XC_TAU_HCTH'}],
              'TPSSTPSS':    [{'name': 'MGGA_C_TPSS'}, {'name': 'MGGA_X_TPSS'}],
              'B3LYP':       [{'name': 'HYB_GGA_XC_B3LYP'}], 
              'B3PW91':      [{'name': 'HYB_GGA_XC_B3PW91'}],
              'B3P86':       [{'name': 'HYB_GGA_XC_B3P86'}], 
              'B1B95':       [{'name': 'HYB_GGA_XC_B1B95'}],
              'MPW1PW91':    [{'name': 'HYB_GGA_XC_MPW1PW91'}],
              'MPW1LYP':     [{'name': 'HYB_GGA_XC_MPW1LYP'}],
              'MPW1PBE':     [{'name': 'HYB_GGA_XC_MPW1PBE'}],
              'MPW3PBE':     [{'name': 'HYB_GGA_XC_MPW3PBE'}],
              'B98':         [{'name': 'HYB_GGA_XC_B98'}],
              'B971':        [{'name': 'HYB_GGA_XC_B971'}],
              'B972':        [{'name': 'HYB_GGA_XC_B972'}],
              'O3LYP':       [{'name': 'HYB_GGA_XC_O3LYP'}], 
              'TPSSh':       [{'name': 'HYB_GGA_XC_TPSSh'}],
              'BMK':         [{'name': 'HYB_GGA_XC_BMK'}],
              'X3LYP':       [{'name': 'HYB_GGA_XC_X3LYP'}],
              'tHCTHhyb':    [{'name': 'HYB_GGA_XC_tHCTHHYB'}],
              'BHANDH':      [{'name': 'HYB_GGA_XC_BHANDH'}],
              'BHANDHLYP':   [{'name': 'HYB_GGA_XC_BHANDHLYP'}],
              'APF':         [{'name': 'HYB_GGA_XC_APF'}],
              'APFD':        [{'name': 'HYB_GGA_XC_APFD'}],
              'B97D':        [{'name': 'HYB_GGA_XC_B97D'}],
              'RHF':         [{'name': 'RHF_X'}],
              'UHF':         [{'name': 'UHF_X'}],
              'ROHF':        [{'name': 'ROHF_X'}],
              'OHSE2PBE':    [{'name': 'HYB_GGA_XC_HSE03'}],
              'HSEH1PBE':    [{'name': 'HYB_GGA_XC_HSE06'}],
              'OHSE1PBE':    [{'name': 'HYB_GGA_XC_HSEOLD'}],
              'PBEH1PBE':    [{'name': 'HYB_GGA_XC_PBEh1PBE'}],
              'PBE1PBE':     [{'name': 'GGA_C_PBE'}, {'name': 'GGA_X_PBE', 'weight': 0.75, 'convert': GGA_weight}, {'name': 'HF_X', 'weight': 0.25, 'convert': HF_weight}],
              'M05':         [{'name': 'HYB_MGGA_XC_M05'}],
              'M052X':       [{'name': 'HYB_MGGA_XC_M05_2X'}],
              'M06':         [{'name': 'HYB_MGGA_XC_M06'}],
              'M062X':       [{'name': 'HYB_MGGA_XC_M06_2X'}],
              'M06HF':       [{'name': 'HYB_MGGA_XC_M06_HF'}],
              'M11':         [{'name': 'HYB_MGGA_XC_M11'}],
              'SOGGAX11':    [{'name': 'HYB_MGGA_XC_SOGGA11_X'}],
              'MN12SX':      [{'name': 'HYB_MGGA_XC_MN12_SX'}],
              'N12SX':       [{'name': 'HYB_MGGA_XC_N12_SX'}],
              'LC-WPBE':     [{'name': 'LC-WPBE'}],
              'CAM-B3LYP':   [{'name': 'CAM-B3LYP'}],
              'WB97':        [{'name': 'WB97'}],
              'WB97X':       [{'name': 'WB97X'}],
              'WB97XD':      [{'name': 'WB97XD'}],
              'HISSBPBE':    [{'name': 'HISSBPBE'}],
              'B2PLYP':      [{'name': 'B2PLYP'}],
              'MPW2PLYP':    [{'name': 'MPW2PLYP'}],
              'B2PLYPD':     [{'name': 'B2PLYPD'}],
              'MPW2PLYPD':   [{'name': 'MPW2PLYPD'}],
              'B97D3':       [{'name': 'B97D3'}], 
              'B2PLYPD3':    [{'name': 'B2PLYPD3'}],
              'MPW2PLYPD3':  [{'name': 'MPW2PLYPD3'}],
              'LC-':         [{'name': 'Long-range corrected'}],
             }

        methodDict = {
              'AMBER':     [{'name': 'Amber'}],
              'DREIDING':  [{'name': 'Dreiding'}],
              'UFF':       [{'name': 'UFF'}],
              'AM1':       [{'name': 'AM1'}],
              'PM3':       [{'name': 'PM3'}],
              'PM3MM':     [{'name': 'PM3MM'}],
              'PM6':       [{'name': 'PM6'}],
              'PDDG':      [{'name': 'PDDG'}],
              'CNDO':      [{'name': 'CNDO'}],
              'INDO':      [{'name': 'INDO'}],
              'MINDO':     [{'name': 'MINDO'}],
              'MINDO3':    [{'name': 'MINDO3'}],
              'ZINDO':     [{'name': 'ZINDO'}],
              'ONIOM':     [{'name': 'ONIOM'}],
              'RHF':       [{'name': 'RHF'}],
              'UHF':       [{'name': 'UHF'}],
              'ROHF':      [{'name': 'ROHF'}],
              'GVB':       [{'name': 'GVB'}],
              'DFT':       [{'name': 'DFT'}],
              'CID':       [{'name': 'CID'}],
              'CISD':      [{'name': 'CISD'}],
              'CIS':       [{'name': 'CIS'}],
              'BD':        [{'name': 'BD'}],
              'CCD':       [{'name': 'CCD'}],
              'CCSD':      [{'name': 'CCSD'}],
              'EOMCCSD':   [{'name': 'EOMCCSD'}],
              'QCISD':     [{'name': 'QCISD'}],
              'MP2':       [{'name': 'MP2'}],
              'MP3':       [{'name': 'MP3'}],
              'MP4':       [{'name': 'MP4'}],
              'MP5':       [{'name': 'MP5'}],
              'CAS':       [{'name': 'CASSCF'}],
              'CASSCF':    [{'name': 'CASSCF'}],
              'G1':        [{'name': 'G1'}],
              'G2':        [{'name': 'G2'}],
              'G2MP2':     [{'name': 'G2MP2'}],
              'G3':        [{'name': 'G3'}],
              'G3MP2':     [{'name': 'G3MP2'}],
              'G3B3':      [{'name': 'G3B3'}],
              'G3MP2B3':   [{'name': 'G3MP2B3'}],
              'G4':        [{'name': 'G4'}],
              'G4MP2':     [{'name': 'G4MP2'}],
              'CBSExtrap':   [{'name': 'CBSExtrapolate'}],
              'CBSExtrapolate':   [{'name': 'CBSExtrapolate'}],
              'CBS-4M':    [{'name': 'CBS-4M'}],
              'CBS-4O':    [{'name': 'CBS-4O'}],
              'CBS-QB3':   [{'name': 'CBS-QB3'}],
              'CBS-QB3O':  [{'name': 'CBS-QB3O'}],
              'CBS-APNO':  [{'name': 'CBS-APNO'}],
              'W1U':       [{'name': 'W1U'}],
              'W1BD':      [{'name': 'W1BD'}],
              'W1RO':      [{'name': 'W1RO'}],
             }

        basissetDict = {
              'STO-3G':      [{'name': 'STO-3G'}],
              '3-21G':       [{'name': '3-21G'}],
              '6-21G':       [{'name': '6-21G'}],
              '4-31G':       [{'name': '4-31G'}],
              '6-31G':       [{'name': '6-31G'}],
              '6-311G':      [{'name': '6-311G'}],
              'D95V':        [{'name': 'D95V'}],
              'D95':         [{'name': 'D95'}],
              'CC-PVDZ':     [{'name': 'cc-pVDZ'}],
              'CC-PVTZ':     [{'name': 'cc-pVTZ'}],
              'CC-PVQZ':     [{'name': 'cc-pVQZ'}],
              'CC-PV5Z':     [{'name': 'cc-pV5Z'}],
              'CC-PV6Z':     [{'name': 'cc-pV6Z'}],
              'SV':          [{'name': 'SV'}],
              'SVP':         [{'name': 'SVP'}],
              'TZV':         [{'name': 'TZV'}],
              'TZVP':        [{'name': 'TZVP'}],              
              'DEF2SV':      [{'name': 'Def2SV'}],
              'DEF2SVP':     [{'name': 'Def2SVP'}],
              'DEF2SVPP':    [{'name': 'Def2SVPP'}],
              'DEF2TZV':     [{'name': 'Def2TZV'}],
              'DEF2TZVP':    [{'name': 'Def2TZVP'}],
              'DEF2TZVPP':   [{'name': 'Def2TZVPP'}],
              'DEF2QZV':     [{'name': 'Def2QZV'}],
              'DEF2QZVP':    [{'name': 'Def2QZVP'}],
              'DEF2QZVPP':   [{'name': 'Def2QZVPP'}],
              'QZVP':        [{'name': 'QZVP'}],
              'MIDIX':       [{'name': 'MidiX'}],
              'EPR-II':      [{'name': 'EPR-II'}],
              'EPR-III':     [{'name': 'EPR-III'}],
              'UGBS':        [{'name': 'UGBS'}],     
              'MTSMALL':     [{'name': 'MTSmall'}],
              'DGDZVP':      [{'name': 'DGDZVP'}],
              'DGDZVP2':     [{'name': 'DGDZVP2'}],
              'DGTZVP':      [{'name': 'DGTZVP'}],
              'CBSB3':       [{'name': 'CBSB3'}],  
              'CBSB7':       [{'name': 'CBSB7'}],
              'SHC':         [{'name': 'SHC'}],
              'SEC':         [{'name': 'SHC'}],
              'CEP-4G':      [{'name': 'CEP-4G'}],
              'CEP-31G':     [{'name': 'CEP-31G'}],
              'CEP-121G':    [{'name': 'CEP-121G'}],
              'LANL1':       [{'name': 'LANL1'}],
              'LANL2':       [{'name': 'LANL2'}],
              'SDD':         [{'name': 'SDD'}],
              'OLDSDD':      [{'name': 'OldSDD'}], 
              'SDDALL':      [{'name': 'SDDAll'}],
              'GEN':         [{'name': 'General'}],
              'CHKBAS':      [{'name': 'CHKBAS'}],
              'EXTRABASIS':  [{'name': 'ExtraBasis'}],
              'DGA1':        [{'name': 'DGA1'}],
              'DGA2':        [{'name': 'DGA2'}],
              'SVPFIT':      [{'name': 'SVPFit'}],
              'TZVPFIT':     [{'name': 'TZVPFit'}],
              'W06':         [{'name': 'W06'}],
              'CHF':         [{'name': 'CHF'}],
             }

        global xc, method, basisset, xcWrite, methodWrite, basissetWrite, methodreal, basissetreal, exc, corr, exccorr, methodprefix
        xc = None
        method = None
        basisset = None
        xcWrite = False
        methodWrite = False
        basissetWrite = False
        methodreal = None
        basissetreal = None 
        methodprefix = None
        exc = None
        corr = None
        exccorr = None
        settings = section["x_gaussian_settings"]
        settings = map(str.strip, settings)  
        settings = [''.join(map(str,settings))]
        settings = str(settings)
        settings = re.sub('[-]{2,}', '', settings)

        method1 = settings.replace("['#p ","").replace("['#P ","")
        method1 = method1.upper()

        if 'ONIOM' not in method1: 
          if settings.find("/") >= 0:
               method1 = settings.split('/')[0].replace("['#p ","").replace("['#P ","")
               method1 = method1.upper()
               for x in method1.split():
                  method2 = str(x)
                  if method2 != 'RHF' and method2 != 'UHF' and method2 != 'ROHF':
                     if (method2[0] == 'R' and method2[0:2] != 'RO') or method2[0] == 'U':
                        methodprefix = method2[0] 
                        method2 = method2[1:]
                     elif method2[0:2] == 'RO':
                        methodprefix = method2[0:2]
                        method2 = method2[2:]
                  if method2[0] == 'S' or method2[0] == 'B' or method2[0] == 'O':
                     exc = method2[0]
                     corr = method2[1:]
                     if exc in xcDict.keys() and corr in xcDict.keys():
                        xc = xcDict.get([exc][-1]) + xcDict.get([corr][-1])
                  if method2[0:3] == 'BRX' or method2[0:3] == 'G96':
                     exc = method2[0:3]
                     corr = method2[3:]
                  if exc in xcDict.keys() and corr in xcDict.keys():
                      xc = xcDict.get([exc][-1]) + xcDict.get([corr][-1])
                  if method2[0:5] == 'WPBEH':
                     exc = method2[0:5]
                     corr = method2[6:]
                     if exc in xcDict.keys() and corr in xcDict.keys():
                        xc = xcDict.get([exc][-1]) + xcDict.get([corr][-1])
                  if method2[0:3] == 'LC-':
                     exccorr = method2[3:]
                     if exccorr in xcDict.keys():
                        xc = 'LC-' + xcDict.get([exccorr][-1])
                  if method2 in xcDict.keys():
                     xc = method2
                     xcWrite= True
                     method = 'DFT'
                  if method2 in methodDict.keys():
                     method = method2
                     methodWrite = True
                     methodreal = method2
                  else:
                     for n in range(2,9):
                        if method2[0:n] in methodDict.keys():
                           method = method2[0:n]
                           methodWrite = True  
                           methodreal = method2
                        if method2[0:9] == 'CBSEXTRAP':
                           method = method2[0:9]
                           methodWrite = True
                           methodreal = method2 
               rest = settings.split('/')[1]
               rest = rest.upper() 
               for x in rest.split():
                  if x in basissetDict.keys():
                     basisset = x
                     basissetWrite = True
                     basissetreal = x
                  if 'D95' in x:
                     method2 = x
                     basisset = method2[0:3]
                     basissetWrite = True
                     basissetreal = method2
                  if 'AUG-' in x:
                     method2 = x
                     basisset = method2[4:]
                     basissetWrite = True
                     basissetreal = method2
                  if 'UGBS' in x:
                     method2 = x
                     basisset = method2[0:4]
                     basissetWrite = True
                     basissetreal = method2
                  if 'CBSB7' in x:
                     method2 = x
                     basisset = method2[0:5]
                     basissetWrite = True
                     basissetreal = method2
                  if '6-31' in x:
                     method2 = x
                     if '6-311' in x:
                        basisset = '6-311G'
                        basissetWrite = True
                        basissetreal = '6-311' + method2[5:]
                     else:
                        basisset = '6-31G'
                        basissetWrite = True
                        basissetreal = '6-31' + method2[4:]
          else:
               method1 = settings.split()
               for x in method1: 
                  method2 = str(x)
                  method2 = method2.upper() 
                  if method2 != 'RHF' and method2 != 'UHF' and method2 != 'ROHF':
                    if (method2[0] == 'R' and method2[0:2] != 'RO') or method2[0] == 'U':
                      methodprefix = method2[0] 
                      method2 = method2[1:]
                    elif method2[0:2] == 'RO':
                      methodprefix = method2[0:2] 
                      method2 = method2[2:]
                  if method2[0] == 'S' or method2[0] == 'B' or method2[0] == 'O':
                   if method2[0] in xcDict.keys() and method2[1:] in xcDict.keys():
                      exc = method2[0]
                      corr = method2[1:]
                      xc = xcDict.get([exc][-1]) + xcDict.get([corr][-1])
                  if method2[0:3] == 'BRX' or method2[0:3] == 'G96':
                   exc = method2[0:3]
                   corr = method2[3:]
                   if exc in xcDict.keys() and corr in xcDict.keys():
                      xc = xcDict.get([exc][-1]) + xcDict.get([corr][-1])
                  if method2[0:5] == 'WPBEH':
                   exc = method2[0:5]
                   corr = method2[6:]
                   if exc in xcDict.keys() and corr in xcDict.keys():
                      xc = xcDict.get([exc][-1]) + xcDict.get([corr][-1])
                  if method2[0:3] == 'LC-':
                   exccorr = method2[3:]
                   if exccorr in xcDict.keys():
                      xc = 'LC-' + xcDict.get([exccorr][-1])
                  if method2 in xcDict.keys(): 
                   xc = method2
                   xcWrite= True
                   method = 'DFT'
                  if method2 in methodDict.keys():
                   method = method2 
                   methodWrite = True
                   methodreal = method2
                  else:
                   for n in range(2,9):
                      if method2[0:n] in methodDict.keys():
                         method = method2[0:n]
                         methodWrite = True
                         methodreal = method2
                      if method2[0:9] == 'CBSEXTRAP':
                         method = method2[0:9]
                         methodWrite = True
                         methodreal = method2
                  if method2 in basissetDict.keys():
                   basisset = method2
                   basissetWrite = True
                   basissetreal = method2
                  if 'D95' in method2:
                   basisset = method2[0:3]
                   basissetWrite = True
                   basissetreal = method2
                  if 'AUG-' in method2:
                   basisset = method2[4:]
                   basissetWrite = True
                   basissetreal = method2
                  if 'UGBS' in method2:
                   basisset = method2[0:4]
                   basissetWrite = True
                   basissetreal = method2
                  if 'CBSB7' in method2:
                   basisset = method2[0:5]
                   basissetWrite = True
                   basissetreal = method2
                  if '6-31' in method2:
                   if '6-311' in method2:
                      basisset = '6-311G'
                      basissetWrite = True
                      basissetreal = '6-311' + method2[5:]
                   else:
                      basisset = '6-31G'
                      basissetWrite = True
                      basissetreal = '6-31' + method2[4:]

# special options for ONIOM calculations
        else:
          method = 'ONIOM'       
          methodWrite = True
          method1 = settings.split()
          for x in method1:
             method2 = str(x)
             method2 = method2.upper()
             if 'ONIOM' in method2:
                methodreal = method2

# description for hybrid coefficient
        xcHybridCoeffDescr = 'hybrid coefficient $\\alpha$'
        hseFunc = 'HSEh1PBE'
# functionals where hybrid_xc_coeff is written
        writeHybridCoeff = ['B3LYP', 'OHSE2PBE', 'HSEh1PBE', 'PBE1PBE' ]
        if xc is not None:
          # check if only one xc keyword was found in output
          if len([xc]) > 1:
              logger.error("Found %d settings for the xc functional: %s. This leads to an undefined behavior of the calculation and no metadata can be written for xc." % (len(xc), xc))
          else:
              backend.superBackend.addValue('xc', [xc][-1])
            # check for hybrid_xc_coeff
#                hybridCoeff = valuesDict.get('hybrid_xc_coeff')
            # write hybrid_xc_coeff for certain functionals
#                if hybridCoeff is not None and xc[-1] in writeHybridCoeff:
#                    backend.superBackend.addValue('hybrid_xc_coeff', hybridCoeff[-1])
            # convert xc functional for metadata
              if xcWrite:
              # get list of xc components according to parsed value
                  xcList = xcDict.get([xc][-1])
                  if xcList is not None:
                  # loop over the xc components
                      for xcItem in xcList:
                          xcName = xcItem.get('name')
                          if xcName is not None:
                          # write section and XC_functional_name
                              gIndexTmp = backend.openSection('section_XC_functionals')
                              backend.addValue('XC_functional_name', xcName)
                            # write hybrid_xc_coeff for B3LYP and HSE03 into XC_functional_parameters
#                                if hybridCoeff is not None and xc[-1] in ['B3LYP', 'OHSE2PBE']:
#                                    backend.addValue('XC_functional_parameters', {xcHybridCoeffDescr: hybridCoeff[-1]})
                            # write hybrid_xc_coeff for HSE06
#                                elif xc[-1] == hseFunc:
                                # add hybrid_xc_coeff
#                                    if hybridCoeff is not None:
#                                        hybrid = hybridCoeff[-1]
#                                    else:
#                                        hybrid = 0.25
#                                    parameters[xcHybridCoeffDescr] = hybrid
#                                    backend.addValue('XC_functional_parameters', parameters)
                            # adjust weight of functionals that are affected by hybrid_xc_coeff
#                                elif hybridCoeff is not None and 'convert' in xcItem:
#                                    backend.addValue('XC_functional_weight', xcItem['convert'](hybridCoeff[-1]))
                            # write weight if present for current xcItem
#                                else:
#                                    xcWeight = xcItem.get('weight')
#                                    if xcWeight is not None:
#                                        backend.addValue('XC_functional_weight', xcWeight)
#                                backend.closeSection('section_XC_functionals', gIndexTmp)
                          else:
                              logger.error("The dictionary for xc functional '%s' does not have the key 'name'. Please correct the dictionary xcDict in %s." % (xc[-1], os.path.basename(__file__)))
                  else:
                      logger.error("The xc functional '%s' could not be converted for the metadata. Please add it to the dictionary xcDict in %s." % (xc[-1], os.path.basename(__file__)))

# Write electronic structure method to metadata

        if method is not None:
          # check if only one method keyword was found in output
          if len([method]) > 1:
              logger.error("Found %d settings for the method: %s. This leads to an undefined behavior of the calculation and no metadata can be written for the method." % (len(method), method))
          else:
              backend.superBackend.addValue('method', [method][-1])
          methodList = methodDict.get([method][-1])
          if methodWrite:
               if methodList is not None:
        # loop over the method components
                  for methodItem in methodList:
                        methodName = methodItem.get('name')
                        if methodName is not None:
                 # write section and method name
                           gIndexTmp = backend.openSection('x_gaussian_section_elstruc_method')
                           if methodprefix != None:
                              backend.addValue('x_gaussian_elstruc_method_name', str(methodprefix) + methodreal)
                           else:
                              backend.addValue('x_gaussian_elstruc_method_name', methodreal)
                        else:
                              logger.error("The dictionary for method '%s' does not have the key 'name'. Please correct the dictionary methodDict in %s." % (method[-1], os.path.basename(__file__)))
               else:
                      logger.error("The method '%s' could not be converted for the metadata. Please add it to the dictionary methodDict in %s." % (method[-1], os.path.basename(__file__)))

#Write basis sets to metadata

        if basisset is not None:
          # check if only one method keyword was found in output
          if len([basisset]) > 1:
              logger.error("Found %d settings for the basis set: %s. This leads to an undefined behavior of the calculation and no metadata can be written for the basis set." % (len(method), method))
          else:
              backend.superBackend.addValue('basisset', [basisset])
          basissetList = basissetDict.get([basisset][-1])
          if basissetWrite:
               if basissetList is not None:
        # loop over the basis set components
                  for basissetItem in basissetList:
                        basissetName = basissetItem.get('name')
                        if basissetName is not None:
                 # write section and method name
                           gIndexTmp = backend.openSection('section_basis_set_atom_centered')
                           backend.addValue('basis_set_atom_centered_short_name', basissetreal)
                        else:
                              logger.error("The dictionary for basis set '%s' does not have the key 'name'. Please correct the dictionary basissetDict in %s." % (basisset[-1], os.path.basename(__file__)))
               else:
                      logger.error("The basis set '%s' could not be converted for the metadata. Please add it to the dictionary basissetDict in %s." % (basisset[-1], os.path.basename(__file__)))


1174
# which values to cache or forward (mapping meta name -> CachingLevel)
1175

1176
cachingLevelForMetaName = {
1177
        "x_gaussian_atom_x_coord": CachingLevel.Cache,
1178
1179
1180
        "x_gaussian_atom_y_coord": CachingLevel.Cache,
        "x_gaussian_atom_z_coord": CachingLevel.Cache,
        "x_gaussian_atomic_number": CachingLevel.Cache,
1181
1182
1183
1184
1185
1186
1187
        "x_gaussian_section_geometry": CachingLevel.Ignore,
        "x_gaussian_geometry_optimization_converged": CachingLevel.Cache,
        "x_gaussian_single_configuration_calculation_converged": CachingLevel.Ignore,
        "x_gaussian_atom_x_force": CachingLevel.Cache,
        "x_gaussian_atom_y_force": CachingLevel.Cache,
        "x_gaussian_atom_z_force": CachingLevel.Cache,
        "x_gaussian_section_atom_forces": CachingLevel.Ignore, 
1188
        "x_gaussian_section_frequencies": CachingLevel.Forward,
1189
1190
1191
        "x_gaussian_atomic_masses": CachingLevel.Cache, 
        "x_gaussian_section_eigenvalues": CachingLevel.Cache,
        "x_gaussian_section_orbital_symmetries": CachingLevel.Cache,
1192
        "x_gaussian_section_molecular_multipoles": CachingLevel.Cache,
1193
}
1194
1195

if __name__ == "__main__":
1196
1197
    mainFunction(mainFileDescription, metaInfoEnv, parserInfo,
                 cachingLevelForMetaName = cachingLevelForMetaName,
Mohamed, Fawzi Roberto (fawzi)'s avatar
cleanup    
Mohamed, Fawzi Roberto (fawzi) committed
1198
                 superContext = GaussianParserContext())