parser_gaussian.py 87.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright 2015-2018 Rosendo Valero, Fawzi Mohamed, Ankit Kariryaa, Rosendo Valero Montero
# 
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.

15 16 17 18
from __future__ import division
from builtins import str
from builtins import range
from builtins import object
19
from functools import reduce
20
import setup_paths
21
from nomadcore.simple_parser import mainFunction, SimpleMatcher as SM
22
from nomadcore.local_meta_info import loadJsonFile, InfoKindEl
23
from nomadcore.caching_backend import CachingLevel
24
from nomadcore.unit_conversion.unit_conversion import convert_unit
25 26
import os, sys, json, logging
import numpy as np
27
import ase
28 29 30 31 32 33 34
import re

############################################################
# This is the parser for the output file of Gaussian.
############################################################

logger = logging.getLogger("nomad.GaussianParser")
35

Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
36
# description of the output
37 38 39
mainFileDescription = SM(
    name = 'root',
    weak = True,
40
    forwardMatch = True, 
41 42 43
    startReStr = "",
    subMatchers = [
        SM(name = 'newRun',
44
           startReStr = r"\s*Cite this work as:",
45 46 47
           repeats = True,
           required = True,
           forwardMatch = True,
48 49
           fixedStartValues={ 'program_name': 'Gaussian', 'program_basis_set_type': 'gaussians' },
           sections   = ['section_run'],
50 51
           subMatchers = [
               SM(name = 'header',
52 53
                  startReStr = r"\s*Cite this work as:",
                  forwardMatch = True,
54 55 56 57
                  subMatchers = [
                      SM(r"\s*Cite this work as:"),
                      SM(r"\s*Gaussian [0-9]+, Revision [A-Za-z0-9.]*,"),
                      SM(r"\s\*\*\*\*\*\*\*\*\*\*\*\**"),
58
                      SM(r"\s*Gaussian\s*(?P<program_version>[0-9]+):\s*(?P<x_gaussian_program_implementation>[A-Za-z0-9-.]+)\s*(?P<x_gaussian_program_release_date>[0-9][0-9]?\-[A-Z][a-z][a-z]\-[0-9]+)"),
59
                      SM(r"\s*(?P<x_gaussian_program_execution_date>[0-9][0-9]?\-[A-Z][a-z][a-z]\-[0-9]+)"),
60
                      ]
61
             ),
62 63 64 65 66
               SM(name = 'globalparams',
                  startReStr = r"\s*%\w*=",
                  subFlags = SM.SubFlags.Unordered,
                  forwardMatch = True,
                  subMatchers = [
67 68 69
                      SM(r"\s*%[Cc]hk=(?P<x_gaussian_chk_file>[A-Za-z0-9.]*)"),
                      SM(r"\s*%[Mm]em=(?P<x_gaussian_memory>[A-Za-z0-9.]*)"),
                      SM(r"\s*%[Nn][Pp]roc=(?P<x_gaussian_number_of_processors>[A-Za-z0-9.]*)")
70
                      ]
71 72 73 74 75 76 77
             ),
               SM (name = 'SectionMethod',
               sections = ['section_method'],
                   startReStr = r"\s*#",
                   forwardMatch = True,
                   subMatchers = [
                       SM(r"\s*(?P<x_gaussian_settings>([a-zA-Z0-9-/=(),#*+:]*\s*)+)"),
78
                       SM(r"\s*(?P<x_gaussian_settings>([a-zA-Z0-9-/=(),#*+:]*\s*)+)"),
79
                       ]
80
             ),
81
               SM(name = 'charge_multiplicity_cell_masses',
82
               sections = ['section_system'],
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
83
		  startReStr = r"\s*Charge =",
84
                  endReStr = r"\s*Leave Link  101\s*",
85
                  subFlags = SM.SubFlags.Unordered,
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
86 87
                  forwardMatch = True,
                  subMatchers = [
88
                      SM(r"\s*Charge =\s*(?P<x_gaussian_total_charge>[-+0-9]*) Multiplicity =\s*(?P<x_gaussian_spin_target_multiplicity>[0-9]*)"),
89
                      SM(r"\s*(Tv|Tv\s*[0]|TV|TV\s*[0])\s*(?P<x_gaussian_geometry_lattice_vector_x>[0-9.]+)\s+(?P<x_gaussian_geometry_lattice_vector_y>[0-9.]+)\s+(?P<x_gaussian_geometry_lattice_vector_z>[0-9.]+)", repeats = True),
90 91 92 93 94 95 96 97 98 99 100 101
                      SM(r"\s*AtmWgt=\s+(?P<x_gaussian_atomic_masses>[0-9.]+(\s+[0-9.]+)(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?(\s+[0-9.]+)?)", repeats = True)
                      ]
             ),
            SM (name = 'SingleConfigurationCalculationWithSystemDescription',
                startReStr = "\s*Standard orientation:",
                repeats = False,
                forwardMatch = True,
                subMatchers = [
                SM (name = 'SingleConfigurationCalculation',
                  startReStr = "\s*Standard orientation:",
                  repeats = True,
                  forwardMatch = True,
102
                  sections = ['section_single_configuration_calculation'],
103 104 105
                  subMatchers = [
                  SM(name = 'geometry',
                   sections  = ['x_gaussian_section_geometry'],
106
                   startReStr = r"\s*Standard orientation:",
107
                   endReStr = r"\s*Rotational constants",
108
                      subMatchers = [
109
                      SM(r"\s+[0-9]+\s+(?P<x_gaussian_atomic_number>[0-9]+)\s+[0-9]*\s+(?P<x_gaussian_atom_x_coord__angstrom>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_y_coord__angstrom>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_z_coord__angstrom>[-+0-9EeDd.]+)",repeats = True),
110 111
                      SM(r"\s*Rotational constants")
                    ]
112 113 114 115 116 117
                ),
                    SM(name = 'SectionHybridCoeffs',
                    sections = ['x_gaussian_section_hybrid_coeffs'],
                    startReStr = r"\s*IExCor=",
                    forwardMatch = True,
                    subMatchers = [
118 119 120
                     SM(r"\s*IExCor=\s*[0-9-]+\s*DFT=[A-Z]\s*Ex\+Corr=[a-zA-Z0-9]+\s*ExCW=[0-9]\s*ScaHFX=\s*(?P<hybrid_xc_coeff1>[0-9.]+)"),
                     SM(r"\s*IExCor=\s*[0-9-]+\s*DFT=[A-Z]\s*Ex\=[a-zA-Z0-9+]+\s*Corr=[ a-zA-Z0-9]+\s*?ExCW=[0-9]\s*ScaHFX=\s*(?P<hybrid_xc_coeff1>[0-9.]+)"),
                     SM(r"\s*IExCor=\s*[0-9-]+\s*DFT=[A-Z]\s*Ex\=[a-zA-Z0-9+]+\s*Corr=[ a-zA-Z0-9]+\s*ScaHFX=\s*(?P<hybrid_xc_coeff1>[0-9.]+)"),
121 122
                     SM(r"\s*ScaDFX=\s*(?P<hybrid_xc_coeff2>[0-9.]+\s*[0-9.]+\s*[0-9.]+\s*[0-9.]+)")
                    ]
123 124
                ),
                    SM(name = 'TotalEnergyScfGaussian',
125
                    sections  = ['section_scf_iteration'],
126 127
                    startReStr = r"\s*Requested convergence on RMS",
                    forwardMatch = False,
128
                    repeats = True,
129
                    subMatchers = [
130 131 132
                     SM(r"\s*Cycle\s+[0-9]+|\s*Initial guess <Sx>="),
                     SM(r"\s*E=\s*(?P<energy_total_scf_iteration__hartree>[-+0-9.]+)\s*Delta-E=\s*(?P<x_gaussian_delta_energy_total_scf_iteration__hartree>[-+0-9.]+)"),
                     SM(r"\s*(?P<x_gaussian_single_configuration_calculation_converged>SCF Done):\s*E\((?P<x_gaussian_hf_detect>[A-Z0-9]+)\)\s*=\s*(?P<x_gaussian_energy_scf__hartree>[-+0-9.]+)"),
133 134
                     SM(r"\s*NFock=\s*[0-9]+\s*Conv=(?P<x_gaussian_energy_error__hartree>[-+0-9EeDd.]+)\s*"),
                     SM(r"\s*KE=\s*(?P<x_gaussian_electronic_kinetic_energy__hartree>[-+0-9EeDd.]+)\s*"),
135
                     SM(r"\s*Annihilation of the first spin contaminant"),
136
                     SM(r"\s*[A-Z][*][*][0-9]\s*before annihilation\s*(?P<spin_S2>[0-9.]+),\s*after\s*(?P<x_gaussian_after_annihilation_spin_S2>[0-9.]+)"),
137
                     SM(r"\s*[()A-Z0-9]+\s*=\s*[-+0-9D.]+\s*[()A-Z0-9]+\s*=\s*(?P<x_gaussian_perturbation_energy__hartree>[-+0-9D.]+)"),
138
                    ]
139
                ),
140 141 142 143 144
                    SM(name = 'PerturbationEnergies',
                    sections = ['x_gaussian_section_moller_plesset'],
                    startReStr = r"\s*E2 =\s*",
                    forwardMatch = True,
                    subMatchers = [
145 146 147 148 149 150
                     SM(r"\s*E2 =\s*(?P<x_gaussian_mp2_correction_energy__hartree>[-+0-9EeDd.]+)\s*EUMP2 =\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)"),
                     SM(r"\s*E3=\s*(?P<x_gaussian_mp3_correction_energy__hartree>[-+0-9EeDd.]+)\s*EUMP3=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)\s*"),
                     SM(r"\s*E4\(DQ\)=\s*(?P<x_gaussian_mp4dq_correction_energy__hartree>[-+0-9EeDd.]+)\s*UMP4\(DQ\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)\s*"),
                     SM(r"\s*E4\(SDQ\)=\s*(?P<x_gaussian_mp4sdq_correction_energy__hartree>[-+0-9EeDd.]+)\s*UMP4\(SDQ\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)"),
                     SM(r"\s*E4\(SDTQ\)=\s*(?P<x_gaussian_mp4sdtq_correction_energy__hartree>[-+0-9EeDd.]+)\s*UMP4\(SDTQ\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)"),
                     SM(r"\s*DEMP5 =\s*(?P<x_gaussian_mp5_correction_energy__hartree>[-+0-9EeDd.]+)\s*MP5 =\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)"),
151 152 153 154 155 156 157 158
                     ]
                ),
                    SM(name = 'CoupledClusterEnergies',
                    sections = ['x_gaussian_section_coupled_cluster'],
                    startReStr = r"\s*CCSD\(T\)\s*",
                    endReStr = r"\s*Population analysis using the SCF density",
                    forwardMatch = True,
                    subMatchers = [
159 160
                     SM(r"\s*DE\(Corr\)=\s*(?P<x_gaussian_ccsd_correction_energy__hartree>[-+0-9EeDd.]+)\s*E\(CORR\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)", repeats = True),
                     SM(r"\s*CCSD\(T\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)"),
161 162 163 164 165 166 167 168
                     ]
                ),
                    SM(name = 'QuadraticCIEnergies',
                    sections = ['x_gaussian_section_quadratic_ci'],
                    startReStr = r"\s*Quadratic Configuration Interaction\s*",
                    endReStr = r"\s*Population analysis using the SCF density",
                    forwardMatch = True,
                    subMatchers = [
169 170 171 172
                     SM(r"\s*DE\(Z\)=\s*(?P<x_gaussian_qcisd_correction_energy__hartree>[-+0-9EeDd.]+)\s*E\(Z\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)", repeats = True),
                     SM(r"\s*DE\(Corr\)=\s*(?P<x_gaussian_qcisd_correction_energy__hartree>[-+0-9EeDd.]+)\s*E\(CORR\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)", repeats = True),
                     SM(r"\s*QCISD\(T\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)"),
                     SM(r"\s*DE5\s*=\s*(?P<x_gaussian_qcisdtq_correction_energy__hartree>[-+0-9EeDd.]+)\s*QCISD\(TQ\)\s*=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)", repeats = True),
173 174 175 176 177 178 179 180
                     ]
                ),
                    SM(name = 'CIEnergies',
                    sections = ['x_gaussian_section_ci'],
                    startReStr = r"\s*Configuration Interaction\s*",
                    endReStr = r"\s*Population analysis using the SCF density",
                    forwardMatch = True,
                    subMatchers = [
181
                     SM(r"\s*DE\(CI\)=\s*(?P<x_gaussian_ci_correction_energy__hartree>[-+0-9EeDd.]+)\s*E\(CI\)=\s*(?P<energy_total__hartree>[-+0-9EeDd.]+)", repeats = True),
182 183 184 185 186 187 188 189 190 191
                     ]
                ),
                    SM(name = 'SemiempiricalEnergies',
                    sections = ['x_gaussian_section_semiempirical'],
                    startReStr = r"\s*[-A-Z0-9]+\s*calculation of energy[a-zA-Z,. ]+\s*",
                    endReStr = r"\s*Population analysis using the SCF density",
                    forwardMatch = True,
                    subMatchers = [
                     SM(r"\s*(?P<x_gaussian_semiempirical_method>[-A-Z0-9]+\s*calculation of energy[a-zA-Z,. ]+)"),
                     SM(r"\s*It=\s*[0-9]+\s*PL=\s*[-+0-9EeDd.]+\s*DiagD=[A-Z]\s*ESCF=\s*(?P<x_gaussian_semiempirical_energy>[-+0-9.]+)\s*", repeats = True),
192
                     SM(r"\s*Energy=\s*(?P<energy_total>[-+0-9EeDd.]+)"),
193 194 195 196 197 198 199 200 201
                     ]
                ),
                    SM(name = 'MolecularMechanicsEnergies',
                    sections = ['x_gaussian_section_molmech'],
                    startReStr = r"\s*[-A-Z0-9]+\s*calculation of energy[a-zA-Z,. ]+\s*",
                    forwardMatch = False,
                    repeats = True,
                    subMatchers = [
                     SM(r"\s*(?P<x_gaussian_molmech_method>[a-zA-Z0-9]+\s*calculation of energy[a-z,. ]+)"),
202
                     SM(r"\s*Energy=\s*(?P<energy_total>[-+0-9EeDd.]+)\s*NIter=\s*[0-9.]"),
203 204 205 206 207 208 209 210 211 212
                     ]
                ),
                  SM(name = 'ExcitedStates',
                   sections  = ['x_gaussian_section_excited_initial'],
                   startReStr = r"\s*Excitation energies and oscillator strengths",
                   forwardMatch = False,
                   repeats = True,
                   subMatchers = [
                    SM(name = 'ExcitedStates',
                    sections = ['x_gaussian_section_excited'],
213 214
                    startReStr = r"\s*Excited State",
                    forwardMatch = False,
215 216 217 218 219 220 221 222 223 224 225 226
                    repeats = True,
                    subMatchers = [
                     SM(r"\s*Excited State\s*(?P<x_gaussian_excited_state_number>[0-9]+):\s*[-+0-9A-Za-z.\?]+\s*(?P<x_gaussian_excited_energy__eV>[0-9.]+)\s*eV\s*[0-9.]+\s*nm\s*f=(?P<x_gaussian_excited_oscstrength>[0-9.]+)\s*<[A-Z][*][*][0-9]>=(?P<x_gaussian_excited_spin_squared>[0-9.]+)"),
                     SM(r"\s*(?P<x_gaussian_excited_transition>[0-9A-Z]+\s*->\s*[0-9A-Z]+\s*[-+0-9.]+)", repeats = True),
                     SM(r"\s*This state for optimization|\r?\n"),
                     ]
                    )
                   ]
               ),  
                  SM(name = 'CASSCFStates',
                   sections = ['x_gaussian_section_casscf'],
                   startReStr = r"\s*EIGENVALUES AND\s*",
227
                   forwardMatch = True,
228
                   repeats = False,
229
                   subMatchers = [
230 231 232 233
                    SM(r"\s*EIGENVALUES AND\s*"),
                    SM(r"\s*\(\s*[0-9]+\)\s*EIGENVALUE\s*(?P<x_gaussian_casscf_energy__hartree>[-+0-9.]+)", repeats = True),
                   ]
               ),
234
                  SM(name = 'Geometry_optimization',
235
                  sections  = ['x_gaussian_section_geometry_optimization_info'],
236
                  startReStr = r"\s*Optimization completed.",
237
                  forwardMatch = True,
238
                  subMatchers = [
239
                  SM(r"\s*(?P<x_gaussian_geometry_optimization_converged>Optimization completed)"),
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
                  SM(r"\s*(?P<x_gaussian_geometry_optimization_converged>Optimization stopped)"),
                  SM(r"\s+[0-9]+\s+[0-9]+\s+[0-9]+\s+[-+0-9EeDd.]+\s+[-+0-9EeDd.]+\s+[-+0-9EeDd.]+",repeats = True),
                  SM(r"\s*Distance matrix|\s*Rotational constants|\s*Stoichiometry")
                    ]
               ),
                SM(name = 'Orbital symmetries',
                sections = ['x_gaussian_section_orbital_symmetries'],
                startReStr = r"\s+Population analysis",
                subFlags = SM.SubFlags.Sequenced,
                subMatchers = [
                      SM(r"\s*Orbital symmetries"), 
                      SM(r"\s*Alpha Orbitals"),
                      SM(r"\s*Occupied\s+(?P<x_gaussian_alpha_occ_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_alpha_occ_symmetry_values>\((.+)\)?)", repeats = True),
                      SM(r"\s*Virtual\s+(?P<x_gaussian_alpha_vir_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_alpha_vir_symmetry_values>\((.+)\)?)", repeats = True),
                      SM(r"\s*Beta Orbitals"),
                      SM(r"\s*Occupied\s+(?P<x_gaussian_beta_occ_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_beta_occ_symmetry_values>\((.+)\)?)", repeats = True),
                      SM(r"\s*Virtual\s+(?P<x_gaussian_beta_vir_symmetry_values>\((.+)\))?"),
                      SM(r"\s+(?P<x_gaussian_beta_vir_symmetry_values>\((.+)\)?)", repeats = True),
                      ]
             ),
                SM(name = 'Electronicstatesymmetry',
                sections = ['x_gaussian_section_symmetry'],
                startReStr = r"\s*The electronic state is",
                forwardMatch = True,
                subMatchers = [
268
                      SM(r"\s*The electronic state is\s*(?P<x_gaussian_elstate_symmetry>[A-Z0-9-']+)[.]")
269 270 271
                      ]
             ),
                SM(name = 'Eigenvalues',
272
                sections = ['section_eigenvalues'],
273 274 275 276
                startReStr = r"\s*Alpha  occ. eigenvalues --",
                forwardMatch = True,
                subFlags = SM.SubFlags.Sequenced,
                subMatchers = [
277 278 279 280
                      SM(r"\s*Alpha  occ. eigenvalues --\s+(?P<x_gaussian_alpha_occ_eigenvalues_values>-?[^\s.-]+\s+|(\-?\d*\.\d*)\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?)", repeats = True), 
                      SM(r"\s*Alpha virt. eigenvalues --\s+(?P<x_gaussian_alpha_vir_eigenvalues_values>-?[^\s.-]+\s+|(\-?\d*\.\d*)\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?)", repeats = True),
                      SM(r"\s*Beta  occ. eigenvalues --\s+(?P<x_gaussian_beta_occ_eigenvalues_values>-?[^\s.-]+\s+|(\-?\d*\.\d*)\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?)", repeats = True),
                      SM(r"\s*Beta virt. eigenvalues --\s+(?P<x_gaussian_beta_vir_eigenvalues_values>-?[^\s.-]+\s+|(\-?\d*\.\d*)\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?\s+(\-?\d*\.\d*)?)", repeats = True),
281 282 283
                      SM(r"\s*- Condensed to atoms (all electrons)"),
                      ]
             ),
284 285 286 287 288 289 290 291 292 293
                   SM(name = 'ForcesGaussian',
                   sections  = ['x_gaussian_section_atom_forces'],
                   startReStr = "\s*Center\s+Atomic\s+Forces ",
                   forwardMatch = True,
                   subMatchers = [
                    SM(r"\s*Center\s+Atomic\s+Forces "),
                    SM(r"\s+[0-9]+\s+[0-9]+\s+(?P<x_gaussian_atom_x_force__hartree_bohr_1>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_y_force__hartree_bohr_1>[-+0-9EeDd.]+)\s+(?P<x_gaussian_atom_z_force__hartree_bohr_1>[-+0-9EeDd.]+)",repeats = True),
                    SM(r"\s*Cartesian Forces:\s+")
                    ]
                ),
294 295
                SM(name = 'Multipoles',
                  sections = ['x_gaussian_section_molecular_multipoles'],
296 297
                  startReStr = r"\s*Electronic spatial extent",
                  forwardMatch = False,
298
                  subMatchers = [
299
                      SM(r"\s*Charge=(?P<charge>\s*[-0-9.]+)"),
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
                      SM(r"\s*Dipole moment "), 
                      SM(r"\s+\w+=\s+(?P<dipole_moment_x>[-+0-9EeDd.]+)\s+\w+=\s+(?P<dipole_moment_y>[-+0-9EeDd.]+)\s+\w+=\s+(?P<dipole_moment_z>[-+0-9EeDd.]+)"),
                      SM(r"\s*Quadrupole moment"), 
                      SM(r"\s+\w+=\s+(?P<quadrupole_moment_xx>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_yy>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_zz>[0-9-.]+)"), 
                      SM(r"\s+\w+=\s+(?P<quadrupole_moment_xy>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_xz>[0-9-.]+)\s+\w+=\s+(?P<quadrupole_moment_yz>[0-9-.]+)"),
                      SM(r"\s*Traceless Quadrupole moment"),
                      SM(r"\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+"),
                      SM(r"\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+\s+\w+=\s+[0-9-.]+"),
                      SM(r"\s*Octapole moment"),
                      SM(r"\s+\w+=\s+(?P<octapole_moment_xxx>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_yyy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_zzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xyy>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<octapole_moment_xxy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xxz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_yzz>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<octapole_moment_yyz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<octapole_moment_xyz>[-+0-9EeDd.]+)"),
                      SM(r"\s*Hexadecapole moment"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_xxxx>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyyy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_zzzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_xxxy>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_xxxz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyyx>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyyz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_zzzx>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_zzzy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_xxyy>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_xxzz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyzz>[-+0-9EeDd.]+)"),
                      SM(r"\s+\w+=\s+(?P<hexadecapole_moment_xxyz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_yyxz>[-+0-9EeDd.]+)\s+\w+=\s+(?P<hexadecapole_moment_zzxy>[-+0-9EeDd.]+)")
                      ]
             ),    
319
                SM (name = 'Frequencies',
320
                     sections = ['x_gaussian_section_frequencies'],
321
                     startReStr = r"\s*Frequencies --\s+(?:(?:[-]?[0-9]+\.\d*)\s*(?:[-]?[-0-9]+\.\d*)?\s*(?:[-]?[-0-9]+\.\d*)?)",
322 323
                     endReStr = r"\s*- Thermochemistry -",
                     forwardMatch = True,
324
                     repeats = False,
325
                     subMatchers = [
326 327 328 329 330 331 332 333 334 335 336 337 338
                       SM (name = 'Frequencies',
                         startReStr = r"\s*Frequencies --\s+(?:(?:[-]?[0-9]+\.\d*)\s*(?:[-]?[-0-9]+\.\d*)?\s*(?:[-]?[-0-9]+\.\d*)?)",
                         forwardMatch = True,
                         repeats = True,
                         subFlags = SM.SubFlags.Unordered,
                         subMatchers = [
                           SM(r"\s*Frequencies --\s+(?P<x_gaussian_frequency_values>([-]?[0-9]+\.\d*)\s*([-]?[-0-9]+\.\d*)?\s*([-]?[-0-9]+\.\d*)?)", repeats = True),
                           SM(r"\s*Red. masses --\s+(?P<x_gaussian_reduced_masses>(.+))", repeats = True),
                           SM(r"\s*[0-9]+\s*[0-9]+\s*(?P<x_gaussian_normal_modes>([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+)\s*([-0-9.]+))", repeats = True),
                           SM(r"\s*[0-9]+\s*([0-9]+)?\s*([0-9]+)?"),
                         ])
                     ]
                ),
339 340 341
                SM(name = 'Thermochemistry',
                sections = ['x_gaussian_section_thermochem'],
                startReStr = r"\s*Temperature",
342 343
                forwardMatch = True,
                subMatchers = [
344 345
                      SM(r"\s*Temperature\s*(?P<x_gaussian_temperature>[0-9.]+)\s*Kelvin.\s*Pressure\s*(?P<x_gaussian_pressure__atmosphere>[0-9.]+)\s*Atm."),
                      SM(r"\s*Principal axes and moments of inertia in atomic units:"),
346
                      SM(r"\s*Eigenvalues --\s*(?P<x_gaussian_moment_of_inertia_X__amu_angstrom_angstrom>(\d+\.\d{5}))\s*?(?P<x_gaussian_moment_of_inertia_Y__amu_angstrom_angstrom>(\d+\.\d{5}))\s*?(?P<x_gaussian_moment_of_inertia_Z__amu_angstrom_angstrom>(\d+\.\d{5}))"),
347 348 349 350 351 352 353 354 355 356 357 358
                      SM(r"\s*Zero-point correction=\s*(?P<x_gaussian_zero_point_energy__hartree>[0-9.]+)"),
                      SM(r"\s*Thermal correction to Energy=\s*(?P<x_gaussian_thermal_correction_energy__hartree>[0-9.]+)"),
                      SM(r"\s*Thermal correction to Enthalpy=\s*(?P<x_gaussian_thermal_correction_enthalpy__hartree>[0-9.]+)"),
                      SM(r"\s*Thermal correction to Gibbs Free Energy=\s*(?P<x_gaussian_thermal_correction_free_energy__hartree>[0-9.]+)"), 
                      ]
             ),       
                SM(name = 'Forceconstantmatrix',
                sections = ['x_gaussian_section_force_constant_matrix'],
                startReStr = r"\s*Force constants in Cartesian coordinates",
                forwardMatch = True,
                subMatchers = [
                      SM(r"\s*Force constants in Cartesian coordinates"),
359
                      SM(r"\s*[0-9]+\s*(?P<x_gaussian_force_constants>(-?\d*\.\d*D?\+?\-?\d+)|(\-?\d*\.\d*[-+DE0-9]+)\s*(\-?\d*\.\d*[-+DE0-9]+)?\s*(\-?\d*\.\d*[-+DE0-9]+)?\s*(\-?\d*\.\d*[-+DE0-9]+)?\s*(\-?\d*\.\d*[-+DE0-9]+)?)", repeats = True),
360
                      SM(r"\s*Force constants in internal coordinates")
361
                      ]
362 363 364
             ),
                SM(name = 'CompositeModelEnergies',
                sections = ['x_gaussian_section_models'],
365
                startReStr = r"\s*Temperature=\s*",
366 367 368
                forwardMatch = False,
                repeats = True,
                subMatchers = [
369 370 371 372 373 374 375 376 377 378 379 380 381 382
                 SM(r"\s*G1\(0 K\)=\s*[-+0-9.]+\s*G1 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*G2\(0 K\)=\s*[-+0-9.]+\s*G2 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*G2MP2\(0 K\)=\s*[-+0-9.]+\s*G2MP2 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*G3\(0 K\)=\s*[-+0-9.]+\s*G3 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*G3MP2\(0 K\)=\s*[-+0-9.]+\s*G3MP2 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*G4\(0 K\)=\s*[-+0-9.]+\s*G4 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*G4MP2\(0 K\)=\s*[-+0-9.]+\s*G4MP2 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*CBS-4 \(0 K\)=\s*[-+0-9.]+\s*CBS-4 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*CBS-q \(0 K\)=\s*[-+0-9.]+\s*CBS-q Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*CBS-Q \(0 K\)=\s*[-+0-9.]+\s*CBS-Q Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*CBS-QB3 \(0 K\)=\s*[-+0-9.]+\s*CBS-QB3 Energy=\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*W1U  \(0 K\)=\s*[-+0-9.]+\s*W1U   Electronic Energy\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*W1RO  \(0 K\)=\s*[-+0-9.]+\s*W1RO  Electronic Energy\s*(?P<energy_total__hartree>[-+0-9.]+)"),
                 SM(r"\s*W1BD  \(0 K\)=\s*[-+0-9.]+\s*W1BD  Electronic Energy\s*(?P<energy_total__hartree>[-+0-9.]+)"),
383
                       ]
384 385 386 387 388 389 390 391
             ),
                SM(name = 'run times',
                  sections = ['x_gaussian_section_times'],
                  startReStr = r"\s*Job cpu time:",
                  forwardMatch = True,
                  subMatchers = [
                      SM(r"\s*Job cpu time:\s*(?P<x_gaussian_program_cpu_time>\s*[0-9]+\s*[a-z]+\s*[0-9]+\s*[a-z]+\s*[0-9]+\s*[a-z]+\s*[0-9.]+\s*[a-z]+)"),
                      SM(r"\s*Normal termination of Gaussian\s*[0-9]+\s* at \s*(?P<x_gaussian_program_termination_date>[A-Za-z]+\s*[A-Za-z]+\s*[0-9]+\s*[0-9:]+\s*[0-9]+)"),
392
                      ]
393 394 395 396 397 398
             )
          ])
        ])
      ])
    ])

399 400 401 402 403 404 405 406 407
# loading metadata from nomad-meta-info/meta_info/nomad_meta_info/gaussian.nomadmetainfo.json
metaInfoPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),"../../../../nomad-meta-info/meta_info/nomad_meta_info/gaussian.nomadmetainfo.json"))
metaInfoEnv, warnings = loadJsonFile(filePath = metaInfoPath, dependencyLoader = None, extraArgsHandling = InfoKindEl.ADD_EXTRA_ARGS, uri = None)

parserInfo = {
  "name": "parser_gaussian",
  "version": "1.0"
}

408
class GaussianParserContext(object):
409 410 411 412 413 414 415 416 417 418 419 420
      """Context for parsing Gaussian output file.

        This class keeps tracks of several Gaussian settings to adjust the parsing to them.
        The onClose_ functions allow processing and writing of cached values after a section is closed.
        They take the following arguments:
        backend: Class that takes care of writing and caching of metadata.
        gIndex: Index of the section that is closed.
        section: The cached values and sections that were found in the section that is closed.
      """
      def __init__(self):
        # dictionary of energy values, which are tracked between SCF iterations and written after convergence
        self.totalEnergyList = {
421 422 423
                                'x_gaussian_hf_detect': None,
                                'x_gaussian_energy_scf': None,
                                'x_gaussian_perturbation_energy': None,
424 425 426
                                'x_gaussian_electronic_kinetic_energy': None,
                                'x_gaussian_energy_electrostatic': None,
                                'x_gaussian_energy_error': None,
427
                               }
428

429 430 431 432 433 434
      def initialize_values(self):
        """Initializes the values of certain variables.

        This allows a consistent setting and resetting of the variables,
        when the parsing starts and when a section_run closes.
        """
435 436
        self.secMethodIndex = None
        self.secSystemDescriptionIndex = None
437 438
        # start with -1 since zeroth iteration is the initialization
        self.scfIterNr = -1
439
        self.singleConfCalcs = []
440
        self.scfConvergence = False
441
        self.geoConvergence = False
442
        self.scfenergyconverged = 0.0
443 444 445
        self.scfkineticenergyconverged = 0.0
        self.scfelectrostaticenergy = 0.0
        self.periodicCalc = False
446 447

      def startedParsing(self, path, parser):
448
        self.parser = parser
449 450
        # save metadata
        self.metaInfoEnv = self.parser.parserBuilder.metaInfoEnv
451 452
        # allows to reset values if the same superContext is used to parse different files
        self.initialize_values()
453

454 455 456 457 458 459
      def onClose_section_run(self, backend, gIndex, section):
          """Trigger called when section_run is closed.

          Write convergence of geometry optimization.
          Variables are reset to ensure clean start for new run.
          """
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
460 461
          global sampling_method
          sampling_method = ""
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
          # write geometry optimization convergence
          gIndexTmp = backend.openSection('section_frame_sequence')
          backend.addValue('geometry_optimization_converged', self.geoConvergence)
          backend.closeSection('section_frame_sequence', gIndexTmp)
          # frame sequence
          if self.geoConvergence:
              sampling_method = "geometry_optimization"
          elif len(self.singleConfCalcs) > 1:
              pass # to do
          else:
              return
          samplingGIndex = backend.openSection("section_sampling_method")
          backend.addValue("sampling_method", sampling_method)
          backend.closeSection("section_sampling_method", samplingGIndex)
          frameSequenceGIndex = backend.openSection("section_frame_sequence")
          backend.addValue("frame_sequence_to_sampling_ref", samplingGIndex)
          backend.addArrayValues("frame_sequence_local_frames_ref", np.asarray(self.singleConfCalcs))
          backend.closeSection("section_frame_sequence", frameSequenceGIndex)
          # reset all variables
          self.initialize_values()

483 484 485
      def onClose_x_gaussian_section_geometry(self, backend, gIndex, section):
        xCoord = section["x_gaussian_atom_x_coord"]
        yCoord = section["x_gaussian_atom_y_coord"]
486 487
        zCoord = section["x_gaussian_atom_z_coord"]
        numbers = section["x_gaussian_atomic_number"]
488
        atom_coords = np.zeros((len(xCoord),3), dtype=float)
489
        atom_numbers = np.zeros(len(xCoord), dtype=int)
490
        atomic_symbols = np.empty((len(xCoord)), dtype=object)
491
        for i in range(len(xCoord)):
492 493 494 495 496 497
           atom_coords[i,0] = xCoord[i]
           atom_coords[i,1] = yCoord[i]
           atom_coords[i,2] = zCoord[i]
        for i in range(len(xCoord)):
          atom_numbers[i] = numbers[i]
          atomic_symbols[i] = ase.data.chemical_symbols[atom_numbers[i]]
498 499 500
        gIndexTmp = backend.openSection("section_system")
        backend.addArrayValues("atom_labels", atomic_symbols)
        backend.addArrayValues("atom_positions", atom_coords)
501
        backend.addValue("x_gaussian_number_of_atoms",len(atomic_symbols))
502
        backend.closeSection("section_system", gIndexTmp)
503 504 505 506 507 508 509 510 511 512

      def onClose_x_gaussian_section_atom_forces(self, backend, gIndex, section):
        xForce = section["x_gaussian_atom_x_force"]
        yForce = section["x_gaussian_atom_y_force"]
        zForce = section["x_gaussian_atom_z_force"]
        atom_forces = np.zeros((len(xForce),3), dtype=float)
        for i in range(len(xForce)):
           atom_forces[i,0] = xForce[i]
           atom_forces[i,1] = yForce[i]
           atom_forces[i,2] = zForce[i]
513
        backend.addArrayValues("atom_forces_raw", atom_forces)
514

515 516
      def onOpen_section_single_configuration_calculation(self, backend, gIndex, section):
          self.singleConfCalcs.append(gIndex)
517

518
      def onClose_section_single_configuration_calculation(self, backend, gIndex, section):
519 520 521 522 523
        """Trigger called when section_single_configuration_calculation is closed.
         Write number of SCF iterations and convergence.
         Check for convergence of geometry optimization.
        """
        # write SCF convergence and reset
524
        backend.addValue('single_configuration_calculation_converged', self.scfConvergence)
525 526 527
        self.scfConvergence = False
        # start with -1 since zeroth iteration is the initialization
        self.scfIterNr = -1
528 529 530 531 532 533 534 535 536 537 538
        # write the references to section_method and section_system
        backend.addValue('single_configuration_to_calculation_method_ref', self.secMethodIndex)
        backend.addValue('single_configuration_calculation_to_system_ref', self.secSystemDescriptionIndex)

      def onClose_x_gaussian_section_geometry_optimization_info(self, backend, gIndex, section):
        # check for geometry optimization convergence
        if section['x_gaussian_geometry_optimization_converged'] is not None:
           if section['x_gaussian_geometry_optimization_converged'] == ['Optimization completed']:
              self.geoConvergence = True
           elif section['x_gaussian_geometry_optimization_converged'] == ['Optimization stopped']:
              self.geoConvergence = False
539

540
      def onClose_section_scf_iteration(self, backend, gIndex, section):
541 542 543 544
        # count number of SCF iterations
        self.scfIterNr += 1
        # check for SCF convergence
        if section['x_gaussian_single_configuration_calculation_converged'] is not None:
545
           self.scfConvergence = True
546 547 548 549 550 551 552 553 554 555 556 557 558 559
           if section['x_gaussian_energy_scf']:
               self.scfenergyconverged = float(str(section['x_gaussian_energy_scf']).replace("[","").replace("]","").replace("D","E"))
               self.scfcharacter = section['x_gaussian_hf_detect']
               if (self.scfcharacter != ['RHF'] and self.scfcharacter != ['ROHF'] and self.scfcharacter != ['UHF']):
                  self.energytotal = self.scfenergyconverged
                  backend.addValue('energy_total', self.energytotal)
               else:
                  pass
               if section['x_gaussian_electronic_kinetic_energy']:
                  self.scfkineticenergyconverged = float(str(section['x_gaussian_electronic_kinetic_energy']).replace("[","").replace("]","").replace("D","E"))
                  self.scfelectrostaticenergy = self.scfenergyconverged - self.scfkineticenergyconverged
                  backend.addValue('x_gaussian_energy_electrostatic', self.scfelectrostaticenergy)

      def onClose_section_eigenvalues(self, backend, gIndex, section):
560 561
          eigenenergies = str(section["x_gaussian_alpha_occ_eigenvalues_values"])
          eigenen1 = []
562 563 564 565
          if('*' in eigenenergies):
             energy = [0.0]
          else:
             energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").replace("\\n","").replace("-"," -").split()]
566
          eigenen1 = np.append(eigenen1, energy)
567 568 569 570 571
          if(section["x_gaussian_beta_occ_eigenvalues_values"]):
             occoccupationsalp = np.ones(len(eigenen1), dtype=float)
          else:
             occoccupationsalp = 2.0 * np.ones(len(eigenen1), dtype=float)

572 573
          eigenenergies = str(section["x_gaussian_alpha_vir_eigenvalues_values"])
          eigenen2 = []
574 575 576 577
          if('*' in eigenenergies):
             energy = [0.0]
          else:
             energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").replace("\\n","").replace("-"," -").split()]
578 579
          eigenen2 = np.append(eigenen2, energy)
          viroccupationsalp = np.zeros(len(eigenen2), dtype=float)
580
          leneigenenconalp = len(eigenen1) + len(eigenen2)
581 582 583 584 585 586 587 588 589 590
          eigenenconalp = np.concatenate((eigenen1,eigenen2), axis=0)
          eigenenconalp = convert_unit(eigenenconalp, "hartree", "J")
          occupconalp = np.concatenate((occoccupationsalp, viroccupationsalp), axis=0)
          eigenenconalpnew = np.reshape(eigenenconalp,(1, 1, len(eigenenconalp)))
          occupconalpnew = np.reshape(occupconalp,(1, 1, len(occupconalp)))
          if(section["x_gaussian_beta_occ_eigenvalues_values"]):
             pass
          else:
             backend.addArrayValues("eigenvalues_values", eigenenconalpnew)
             backend.addArrayValues("eigenvalues_occupation", occupconalpnew)
591

592 593 594
          if(section["x_gaussian_beta_occ_eigenvalues_values"]):
             eigenenergies = str(section["x_gaussian_beta_occ_eigenvalues_values"])
             eigenen1 = []
595 596 597 598
             if('*' in eigenenergies):
                energy = [0.0]
             else:
                energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").replace("\\n","").replace("-"," -").split()]
599 600 601 602
             eigenen1 = np.append(eigenen1, energy)
             occoccupationsbet = np.ones(len(eigenen1), dtype=float)
             eigenenergies = str(section["x_gaussian_beta_vir_eigenvalues_values"])
             eigenen2 = []
603 604 605 606
             if('*' in eigenenergies):
                energy = [0.0]
             else:
                energy = [float(f) for f in eigenenergies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").replace(" -."," -0.").replace("\\n","").replace("-"," -").split()]
607 608
             eigenen2 = np.append(eigenen2, energy)
             viroccupationsbet = np.zeros(len(eigenen2), dtype=float)
609
             leneigenenconbet = len(eigenen1) + len(eigenen2)
610 611 612
             eigenenconbet = np.concatenate((eigenen1,eigenen2), axis=0)
             eigenenconbet = convert_unit(eigenenconbet, "hartree", "J")
             occupconbet = np.concatenate((occoccupationsbet, viroccupationsbet), axis=0)
613 614 615 616 617 618 619 620 621 622
             if(leneigenenconalp >= leneigenenconbet):
                 eigenenall = np.zeros(2*leneigenenconalp)
                 occupall = np.zeros(2*leneigenenconalp)
             else:
                 eigenenall = np.zeros(2*leneigenenconbet)
                 occupall = np.zeros(2*leneigenenconbet)
             eigenenall[:len(eigenenconalp) + len(eigenenconbet)] = np.concatenate((eigenenconalp,eigenenconbet), axis=0)
             occupall[:len(occupconalp) + len(occupconbet)] = np.concatenate((occupconalp,occupconbet), axis=0)
             eigenenall = np.reshape(eigenenall,(2, 1, max(len(eigenenconalp),len(eigenenconbet))))
             occupall = np.reshape(occupall,(2, 1, max(len(occupconalp),len(occupconbet))))
623 624
             backend.addArrayValues("eigenvalues_values", eigenenall)
             backend.addArrayValues("eigenvalues_occupation", occupall)
625 626 627 628

      def onClose_x_gaussian_section_orbital_symmetries(self, backend, gIndex, section):
          symoccalpha = str(section["x_gaussian_alpha_occ_symmetry_values"])
          symviralpha = str(section["x_gaussian_alpha_vir_symmetry_values"])
629 630 631 632
          if(section["x_gaussian_beta_occ_symmetry_values"]):
             symoccbeta = str(section["x_gaussian_beta_occ_symmetry_values"])
             symvirbeta = str(section["x_gaussian_beta_vir_symmetry_values"])

633
          symmetry = [str(f) for f in symoccalpha[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("'E","E").replace("G'","G").replace("\"A'\"","A'").split()]
634 635
          sym1 = []
          sym1 = np.append(sym1, symmetry)  
636
          symmetry = [str(f) for f in symviralpha[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("\"A'\"","A'").replace("'E","E").replace("G'","G").split()]
637 638 639 640
          sym2 = []
          sym2 = np.append(sym2, symmetry)
          symmetrycon = np.concatenate((sym1, sym2), axis=0)
          backend.addArrayValues("x_gaussian_alpha_symmetries", symmetrycon) 
641 642

          if(section["x_gaussian_beta_occ_symmetry_values"]):
643
             symmetry = [str(f) for f in symoccbeta[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("\"A'\"","A'").replace("'E","E").replace("G'","G").split()]
644 645
             sym1 = []
             sym1 = np.append(sym1, symmetry)
646
             symmetry = [str(f) for f in symvirbeta[1:].replace(",","").replace("(","").replace(")","").replace("]","").replace("'A","A").replace("\\'","'").replace("A''","A'").replace("\"A'\"","A'").replace("'E","E").replace("G'","G").split()]
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
             sym2 = []
             sym2 = np.append(sym2, symmetry)
             symmetrycon = np.concatenate((sym1, sym2), axis=0)
             backend.addArrayValues("x_gaussian_beta_symmetries", symmetrycon)

      def onClose_x_gaussian_section_molecular_multipoles(self, backend, gIndex, section):
          if(section["quadrupole_moment_xx"]):
             x_gaussian_number_of_lm_molecular_multipoles = 35
          else:
             x_gaussian_number_of_lm_molecular_multipoles = 4

          x_gaussian_molecular_multipole_m_kind = 'polynomial'

          char = str(section["charge"])
          cha = str([char])
          charge = [float(f) for f in cha[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").replace('"','').split()]

Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
664 665 666 667 668 669 670
          if(section["dipole_moment_x"]):
            dipx = section["dipole_moment_x"]
            dipy = section["dipole_moment_y"]
            dipz = section["dipole_moment_z"]
            dip = str([dipx, dipy, dipz])
            dipoles = [float(f) for f in dip[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()]
            dipoles = convert_unit(dipoles, "debye", "coulomb * meter")
671

Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
672 673 674 675 676 677 678 679 680 681
          if(section["quadrupole_moment_xx"]):
            quadxx = section["quadrupole_moment_xx"]
            quadxy = section["quadrupole_moment_xy"]
            quadyy = section["quadrupole_moment_yy"]
            quadxz = section["quadrupole_moment_xz"]
            quadyz = section["quadrupole_moment_yz"]
            quadzz = section["quadrupole_moment_zz"]
            quad = str([quadxx, quadxy, quadyy, quadxz, quadyz, quadzz])
            quadrupoles = [float(f) for f in quad[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()] 
            quadrupoles = convert_unit(quadrupoles, "debye * angstrom", "coulomb * meter**2")
682 683

          if(section["octapole_moment_xxx"]):
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
684 685 686 687 688 689 690 691 692 693 694 695 696
            octaxxx = section["octapole_moment_xxx"]
            octayyy = section["octapole_moment_yyy"]
            octazzz = section["octapole_moment_zzz"]
            octaxyy = section["octapole_moment_xyy"]
            octaxxy = section["octapole_moment_xxy"]
            octaxxz = section["octapole_moment_xxz"]
            octaxzz = section["octapole_moment_xzz"]
            octayzz = section["octapole_moment_yzz"]
            octayyz = section["octapole_moment_yyz"]
            octaxyz = section["octapole_moment_xyz"]
            octa = str([octaxxx, octayyy, octazzz, octaxyy, octaxxy, octaxxz, octaxzz, octayzz, octayyz, octaxyz])
            octapoles = [float(f) for f in octa[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()]
            octapoles = convert_unit(octapoles, "debye * angstrom**2", "coulomb * meter**3")
697 698

          if(section["hexadecapole_moment_xxxx"]):
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
            hexadecaxxxx = section["hexadecapole_moment_xxxx"]
            hexadecayyyy = section["hexadecapole_moment_yyyy"]
            hexadecazzzz = section["hexadecapole_moment_zzzz"]
            hexadecaxxxy = section["hexadecapole_moment_xxxy"]
            hexadecaxxxz = section["hexadecapole_moment_xxxz"]
            hexadecayyyx = section["hexadecapole_moment_yyyx"]
            hexadecayyyz = section["hexadecapole_moment_yyyz"]
            hexadecazzzx = section["hexadecapole_moment_zzzx"]
            hexadecazzzy = section["hexadecapole_moment_zzzy"]
            hexadecaxxyy = section["hexadecapole_moment_xxyy"]
            hexadecaxxzz = section["hexadecapole_moment_xxzz"]
            hexadecayyzz = section["hexadecapole_moment_yyzz"]
            hexadecaxxyz = section["hexadecapole_moment_xxyz"]
            hexadecayyxz = section["hexadecapole_moment_yyxz"]
            hexadecazzxy = section["hexadecapole_moment_zzxy"]
            hexa = str([hexadecaxxxx, hexadecayyyy, hexadecazzzz, hexadecaxxxy, hexadecaxxxz, hexadecayyyx, hexadecayyyz,
            hexadecazzzx, hexadecazzzy, hexadecaxxyy, hexadecaxxzz, hexadecayyzz, hexadecaxxyz, hexadecayyxz, hexadecazzxy])
            hexadecapoles = [float(f) for f in hexa[1:].replace("-."," -0.").replace("'."," 0.").replace("'","").replace("[","").replace("]","").replace(",","").split()]
            hexadecapoles = convert_unit(hexadecapoles, "debye * angstrom**3", "coulomb * meter**4")
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752

          if(section["quadrupole_moment_xx"]):
             multipoles = np.hstack((charge, dipoles, quadrupoles, octapoles, hexadecapoles))
          else:
             multipoles = np.hstack((charge, dipoles)) 

          x_gaussian_molecular_multipole_values = np.resize(multipoles, (x_gaussian_number_of_lm_molecular_multipoles))

          backend.addArrayValues("x_gaussian_molecular_multipole_values", x_gaussian_molecular_multipole_values)
          backend.addValue("x_gaussian_molecular_multipole_m_kind", x_gaussian_molecular_multipole_m_kind)

      def onClose_x_gaussian_section_frequencies(self, backend, gIndex, section):
          frequencies = str(section["x_gaussian_frequency_values"])
          vibfreqs = []
          freqs = [float(f) for f in frequencies[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace("\\n","").replace(" ."," 0.").replace(" -."," -0.").split()]
          vibfreqs = np.append(vibfreqs, freqs)
          vibfreqs = convert_unit(vibfreqs, "inversecm", "J")
          backend.addArrayValues("x_gaussian_frequencies", vibfreqs)

          masses = str(section["x_gaussian_reduced_masses"])
          vibreducedmasses = []
          reduced = [float(f) for f in masses[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace(" ."," 0.").split()]
          vibreducedmasses = np.append(vibreducedmasses, reduced)
          vibreducedmasses = convert_unit(vibreducedmasses, "amu", "kilogram")
          backend.addArrayValues("x_gaussian_red_masses", vibreducedmasses)

          vibnormalmodes = []
          vibdisps = str(section["x_gaussian_normal_modes"])
          disps = [float(s) for s in vibdisps[1:].replace("'","").replace(",","").replace("]","").replace("one","").replace("\\n","").replace(" ."," 0.").replace(" -."," -0.").split()]
          dispsnew = np.zeros(len(disps), dtype = float)

#  Reorder disps 

          if len(vibfreqs) % 3 == 0:
             k = 0
753
             for p in range(0,len(vibfreqs) // 3):
754
                M = int(len(disps)/len(vibfreqs)) * (p+1) 
755
                for m in range(3):
756
                  for n in range(M - int(len(disps) / len(vibfreqs)),M,3):
757 758 759 760 761 762
                    for l in range(3):
                      dispsnew[k] = disps[3*(n + m) + l]
                      k = k + 1
          elif len(vibfreqs) % 3 != 0:
             k = 0
             for p in range(len(vibfreqs)-1,0,-3):
763
                M = (len(disps) - int(len(disps) / len(vibfreqs))) // p
764
                for m in range(3):
765
                  for n in range(M - int(len(disps) / len(vibfreqs)),M,3):
766 767 768
                    for l in range(3):
                      dispsnew[k] = disps[3*(n + m) + l]
                      k = k + 1
769
             for m in range(int(len(disps) / len(vibfreqs))):
770 771 772 773
                   dispsnew[k] = disps[k]
                   k = k + 1

          vibnormalmodes = np.append(vibnormalmodes, dispsnew)
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
774 775 776 777
          if len(vibfreqs) != 0:
            natoms = int(len(disps) / len(vibfreqs) / 3)
            vibnormalmodes = np.reshape(vibnormalmodes,(len(vibfreqs),natoms,3))
            backend.addArrayValues("x_gaussian_normal_mode_values", vibnormalmodes)
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

      def onClose_x_gaussian_section_force_constant_matrix(self, backend, gIndex, section):

          forcecnstvalues = []
          forceconst = str(section["x_gaussian_force_constants"])
          numbers = [float(s) for s in forceconst[1:].replace("'","").replace(",","").replace("]","").replace("\\n","").replace("D","E").replace(" ."," 0.").replace(" -."," -0.").split()]
          length = len(numbers)
          dim = int(((1 + 8 * length)**0.5 - 1) / 2) 
          cartforceconst = np.zeros([dim, dim])
          forcecnstvalues = np.append(forcecnstvalues, numbers) 
          if dim > 6:
             l = 0
             for i in range(0,5):
                for k in range(0,i+1):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(5,dim):
                for k in range(0,5):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(5,dim-2): 
                for k in range(5,i+1):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(dim-2,dim):
                for k in range(5,dim-2):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(dim-2,dim):
                for k in range(i,dim):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
          elif dim == 6:
             l = 0
             for i in range(0,5):
                for k in range(0,i+1):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(5,dim):
                for k in range(0,5):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
             for i in range(dim,dim):
                for k in range(i,dim):
                   l = l + 1
                   cartforceconst[i,k] = forcecnstvalues[l-1]
 
          for i in range(0,dim):
             for k in range(i+1,dim):
                 cartforceconst[i,k] = cartforceconst[k,i]

          cartforceconst = convert_unit(cartforceconst, "forceAu / bohr", "J / (meter**2)")

          backend.addArrayValues("x_gaussian_force_constant_values", cartforceconst) 
832

833 834 835 836
      def onOpen_section_method(self, backend, gIndex, section):
        # keep track of the latest method section
        self.secMethodIndex = gIndex

837
      def onClose_section_method(self, backend, gIndex, section):
838
       # handling of xc functional
839
       # Dictionary for conversion of xc functional name in Gaussian to metadata format.
840
       # The individual x and c components of the functional are given as dictionaries.
841
       # Possible key of such a dictionary is 'name'.
842
        xcDict = {
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
              'S':          [{'name': 'LDA_X'}],
              'XA':	    [{'name': 'X_ALPHA'}],
              'VWN':        [{'name': 'LDA_C_VWN'}],
              'VWN3':       [{'name': 'LDA_C_VWN_3'}],
              'LSDA':       [{'name': 'LDA_X'}, {'name': 'LDA_C_VWN'}], 
              'B':          [{'name': 'GGA_X_B88'}],
              'BLYP':       [{'name': 'GGA_C_LYP'}, {'name': 'GGA_X_B88'}],
              'PBEPBE':     [{'name': 'GGA_C_PBE'}, {'name': 'GGA_X_PBE'}],
              'PBEH':       [{'name': 'GGA_X_PBEH'}],
              'WPBEH':      [{'name': 'GGA_X_WPBEH'}],
              'PW91PW91':   [{'name': 'GGA_C_PW91'}, {'name': 'GGA_X_PW91'}],
              'M06L':       [{'name': 'MGGA_C_M06_L'}, {'name': 'MGGA_X_M06_L'}],
              'M11L':       [{'name': 'MGGA_C_M11_L'}, {'name': 'MGGA_X_M11_L'}],
              'SOGGA11':    [{'name': 'GGA_XC_SOGGA11'}],
              'MN12L':      [{'name': 'GGA_XC_MN12L'}],
              'N12':        [{'name': 'GGA_C_N12'}, {'name': 'GGA_X_N12'}],
              'VSXC':       [{'name': 'MGGA_XC_VSXC'}],
              'HCTH93':     [{'name': 'GGA_XC_HCTH_93'}],
              'HCTH147':    [{'name': 'GGA_XC_HCTH_147'}],
              'HCTH407':    [{'name': 'GGA_XC_HCTH_407'}],
              'HCTH':       [{'name': 'GGA_XC_HCTH_407'}],
              'B97D':       [{'name': 'GGA_XC_B97D'}],
              'B97D3':      [{'name': 'GGA_XC_B97D3'}],
              'MPW':        [{'name': 'GGA_X_MPW'}],
              'G96':        [{'name': 'GGA_X_G96'}],
              'O':          [{'name': 'GGA_X_O'}],
              'BRX':        [{'name': 'GGA_X_BRX'}],
              'PKZB':       [{'name': 'GGA_C_PKZB'}, {'name': 'GGA_X_PKZB'}],
              'PL':         [{'name': 'C_PL'}],
              'P86':        [{'name': 'GGA_C_P86'}],
              'B95':        [{'name': 'MGGA_C_B95'}],
              'KCIS':       [{'name': 'GGA_C_KCIS'}],
              'BRC':        [{'name': 'GGA_C_BRC'}],
              'VP86':       [{'name': 'GGA_C_VP86'}],
              'V5LYP':      [{'name': 'GGA_C_V5LYP'}],
              'THCTH':      [{'name': 'MGGA_XC_TAU_HCTH'}],
              'TPSSTPSS':   [{'name': 'MGGA_C_TPSS'}, {'name': 'MGGA_X_TPSS'}],
              'B3LYP':      [{'name': 'HYB_GGA_XC_B3LYP'}], 
              'B3PW91':     [{'name': 'HYB_GGA_XC_B3PW91'}],
              'B3P86':      [{'name': 'HYB_GGA_XC_B3P86'}], 
              'B1B95':      [{'name': 'HYB_GGA_XC_B1B95'}],
              'MPW1PW91':   [{'name': 'HYB_GGA_XC_MPW1PW91'}],
              'MPW1LYP':    [{'name': 'HYB_GGA_XC_MPW1LYP'}],
              'MPW1PBE':    [{'name': 'HYB_GGA_XC_MPW1PBE'}],
              'MPW3PBE':    [{'name': 'HYB_GGA_XC_MPW3PBE'}],
              'B98':        [{'name': 'HYB_GGA_XC_B98'}],
              'B971':       [{'name': 'HYB_GGA_XC_B971'}],
              'B972':       [{'name': 'HYB_GGA_XC_B972'}],
              'O3LYP':      [{'name': 'HYB_GGA_XC_O3LYP'}], 
              'TPSSH':      [{'name': 'HYB_GGA_XC_TPSSh'}],
              'BMK':        [{'name': 'HYB_MGGA_XC_BMK'}],
              'X3LYP':      [{'name': 'HYB_GGA_XC_X3LYP'}],
              'THCTHHYB':   [{'name': 'HYB_MGGA_XC_THCTHHYB'}],
              'BHANDH':     [{'name': 'HYB_GGA_XC_BHANDH'}],
              'BHANDHLYP':  [{'name': 'HYB_GGA_XC_BHANDHLYP'}],
              'APF':        [{'name': 'HYB_GGA_XC_APF'}],
              'APFD':       [{'name': 'HYB_GGA_XC_APFD'}],
              'B97D':       [{'name': 'HYB_GGA_XC_B97D'}],
              'RHF':        [{'name': 'RHF_X'}],
              'UHF':        [{'name': 'UHF_X'}],
              'ROHF':       [{'name': 'ROHF_X'}],
              'OHSE2PBE':   [{'name': 'HYB_GGA_XC_HSE03'}],
              'HSEH1PBE':   [{'name': 'HYB_GGA_XC_HSE06'}],
              'OHSE1PBE':   [{'name': 'HYB_GGA_XC_HSEOLD'}],
              'PBEH1PBE':   [{'name': 'HYB_GGA_XC_PBEH1PBE'}],
908
              'PBE1PBE':    [{'name': 'HYB_GGA_XC_PBE1PBE'}],
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
              'M05':        [{'name': 'HYB_MGGA_XC_M05'}],
              'M052X':      [{'name': 'HYB_MGGA_XC_M05_2X'}],
              'M06':        [{'name': 'HYB_MGGA_XC_M06'}],
              'M062X':      [{'name': 'HYB_MGGA_XC_M06_2X'}],
              'M06HF':      [{'name': 'HYB_MGGA_XC_M06_HF'}],
              'M11':        [{'name': 'HYB_MGGA_XC_M11'}],
              'SOGGAX11':   [{'name': 'HYB_MGGA_XC_SOGGA11_X'}],
              'MN12SX':     [{'name': 'HYB_MGGA_XC_MN12_SX'}],
              'N12SX':      [{'name': 'HYB_MGGA_XC_N12_SX'}],
              'LC-WPBE':    [{'name': 'LC-WPBE'}],
              'CAM-B3LYP':  [{'name': 'CAM-B3LYP'}],
              'WB97':       [{'name': 'WB97'}],
              'WB97X':      [{'name': 'WB97X'}],
              'WB97XD':     [{'name': 'WB97XD'}],
              'HISSBPBE':   [{'name': 'HISSBPBE'}],
              'B2PLYP':     [{'name': 'B2PLYP'}],
              'MPW2PLYP':   [{'name': 'MPW2PLYP'}],
              'B2PLYPD':    [{'name': 'B2PLYPD'}],
              'MPW2PLYPD':  [{'name': 'MPW2PLYPD'}],
              'B97D3':      [{'name': 'B97D3'}], 
              'B2PLYPD3':   [{'name': 'B2PLYPD3'}],
              'MPW2PLYPD3': [{'name': 'MPW2PLYPD3'}],
              'LC-':        [{'name': 'LONG-RANGE CORRECTED'}],
932 933 934 935 936 937 938 939 940
             }

        methodDict = {
              'AMBER':     [{'name': 'Amber'}],
              'DREIDING':  [{'name': 'Dreiding'}],
              'UFF':       [{'name': 'UFF'}],
              'AM1':       [{'name': 'AM1'}],
              'PM3':       [{'name': 'PM3'}],
              'PM3MM':     [{'name': 'PM3MM'}],
941
              'PM3D3':     [{'name': 'PM3D3'}],
942 943 944 945 946 947 948
              'PM6':       [{'name': 'PM6'}],
              'PDDG':      [{'name': 'PDDG'}],
              'CNDO':      [{'name': 'CNDO'}],
              'INDO':      [{'name': 'INDO'}],
              'MINDO':     [{'name': 'MINDO'}],
              'MINDO3':    [{'name': 'MINDO3'}],
              'ZINDO':     [{'name': 'ZINDO'}],
949 950
              'HUCKEL':    [{'name': 'HUCKEL'}],
              'EXTENDEDHUCKEL':    [{'name': 'HUCKEL'}],
951
              'ONIOM':     [{'name': 'ONIOM'}],
952
              'HF':        [{'name': 'HF'}],
953 954 955 956 957 958 959 960 961
              'RHF':       [{'name': 'RHF'}],
              'UHF':       [{'name': 'UHF'}],
              'ROHF':      [{'name': 'ROHF'}],
              'GVB':       [{'name': 'GVB'}],
              'DFT':       [{'name': 'DFT'}],
              'CID':       [{'name': 'CID'}],
              'CISD':      [{'name': 'CISD'}],
              'CIS':       [{'name': 'CIS'}],
              'BD':        [{'name': 'BD'}],
962
              'BD(T)':     [{'name': 'BD(T)'}],
963 964 965 966
              'CCD':       [{'name': 'CCD'}],
              'CCSD':      [{'name': 'CCSD'}],
              'EOMCCSD':   [{'name': 'EOMCCSD'}],
              'QCISD':     [{'name': 'QCISD'}],
967 968 969
              'CCSD(T)':   [{'name': 'CCSD(T)'}],
              'QCISD(T)':  [{'name': 'QCISD(T)'}],
              'QCISD(TQ)': [{'name': 'QCISD(TQ)'}],
970 971 972
              'MP2':       [{'name': 'MP2'}],
              'MP3':       [{'name': 'MP3'}],
              'MP4':       [{'name': 'MP4'}],
973 974 975 976 977 978
              'MP4DQ':     [{'name': 'MP4DQ'}],
              'MP4(DQ)':   [{'name': 'MP4DQ'}],
              'MP4SDQ':    [{'name': 'MP4SDQ'}],
              'MP4(SDQ)':  [{'name': 'MP4SDQ'}],
              'MP4SDTQ':   [{'name': 'MP4SDTQ'}],
              'MP4(SDTQ)': [{'name': 'MP4SDTQ'}],
979 980 981 982 983 984 985 986 987 988 989 990
              'MP5':       [{'name': 'MP5'}],
              'CAS':       [{'name': 'CASSCF'}],
              'CASSCF':    [{'name': 'CASSCF'}],
              'G1':        [{'name': 'G1'}],
              'G2':        [{'name': 'G2'}],
              'G2MP2':     [{'name': 'G2MP2'}],
              'G3':        [{'name': 'G3'}],
              'G3MP2':     [{'name': 'G3MP2'}],
              'G3B3':      [{'name': 'G3B3'}],
              'G3MP2B3':   [{'name': 'G3MP2B3'}],
              'G4':        [{'name': 'G4'}],
              'G4MP2':     [{'name': 'G4MP2'}],
991 992
              'CBSEXTRAP':   [{'name': 'CBSExtrapolate'}],
              'CBSEXTRAPOLATE':   [{'name': 'CBSExtrapolate'}],
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
              'CBS-4M':    [{'name': 'CBS-4M'}],
              'CBS-4O':    [{'name': 'CBS-4O'}],
              'CBS-QB3':   [{'name': 'CBS-QB3'}],
              'CBS-QB3O':  [{'name': 'CBS-QB3O'}],
              'CBS-APNO':  [{'name': 'CBS-APNO'}],
              'W1U':       [{'name': 'W1U'}],
              'W1BD':      [{'name': 'W1BD'}],
              'W1RO':      [{'name': 'W1RO'}],
             }

        basissetDict = {
              'STO-3G':      [{'name': 'STO-3G'}],
              '3-21G':       [{'name': '3-21G'}],
              '6-21G':       [{'name': '6-21G'}],
              '4-31G':       [{'name': '4-31G'}],
              '6-31G':       [{'name': '6-31G'}],
              '6-311G':      [{'name': '6-311G'}],
              'D95V':        [{'name': 'D95V'}],
              'D95':         [{'name': 'D95'}],
              'CC-PVDZ':     [{'name': 'cc-pVDZ'}],
              'CC-PVTZ':     [{'name': 'cc-pVTZ'}],
              'CC-PVQZ':     [{'name': 'cc-pVQZ'}],
              'CC-PV5Z':     [{'name': 'cc-pV5Z'}],
              'CC-PV6Z':     [{'name': 'cc-pV6Z'}],
              'SV':          [{'name': 'SV'}],
              'SVP':         [{'name': 'SVP'}],
              'TZV':         [{'name': 'TZV'}],
              'TZVP':        [{'name': 'TZVP'}],              
              'DEF2SV':      [{'name': 'Def2SV'}],
              'DEF2SVP':     [{'name': 'Def2SVP'}],
              'DEF2SVPP':    [{'name': 'Def2SVPP'}],
              'DEF2TZV':     [{'name': 'Def2TZV'}],
              'DEF2TZVP':    [{'name': 'Def2TZVP'}],
              'DEF2TZVPP':   [{'name': 'Def2TZVPP'}],
              'DEF2QZV':     [{'name': 'Def2QZV'}],
              'DEF2QZVP':    [{'name': 'Def2QZVP'}],
              'DEF2QZVPP':   [{'name': 'Def2QZVPP'}],
              'QZVP':        [{'name': 'QZVP'}],
              'MIDIX':       [{'name': 'MidiX'}],
              'EPR-II':      [{'name': 'EPR-II'}],
              'EPR-III':     [{'name': 'EPR-III'}],
              'UGBS':        [{'name': 'UGBS'}],     
              'MTSMALL':     [{'name': 'MTSmall'}],
              'DGDZVP':      [{'name': 'DGDZVP'}],
              'DGDZVP2':     [{'name': 'DGDZVP2'}],
              'DGTZVP':      [{'name': 'DGTZVP'}],
              'CBSB3':       [{'name': 'CBSB3'}],  
              'CBSB7':       [{'name': 'CBSB7'}],
              'SHC':         [{'name': 'SHC'}],
              'SEC':         [{'name': 'SHC'}],
              'CEP-4G':      [{'name': 'CEP-4G'}],
              'CEP-31G':     [{'name': 'CEP-31G'}],
              'CEP-121G':    [{'name': 'CEP-121G'}],
              'LANL1':       [{'name': 'LANL1'}],
              'LANL2':       [{'name': 'LANL2'}],
              'SDD':         [{'name': 'SDD'}],
              'OLDSDD':      [{'name': 'OldSDD'}], 
              'SDDALL':      [{'name': 'SDDAll'}],
              'GEN':         [{'name': 'General'}],
1052
              'GENECP':      [{'name': 'General ECP'}],
1053 1054 1055 1056 1057 1058 1059 1060
              'CHKBAS':      [{'name': 'CHKBAS'}],
              'EXTRABASIS':  [{'name': 'ExtraBasis'}],
              'DGA1':        [{'name': 'DGA1'}],
              'DGA2':        [{'name': 'DGA2'}],
              'SVPFIT':      [{'name': 'SVPFit'}],
              'TZVPFIT':     [{'name': 'TZVPFit'}],
              'W06':         [{'name': 'W06'}],
              'CHF':         [{'name': 'CHF'}],
1061 1062
              'FIT':         [{'name': 'FIT'}],
              'AUTO':        [{'name': 'AUTO'}],
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
             }

        global xc, method, basisset, xcWrite, methodWrite, basissetWrite, methodreal, basissetreal, exc, corr, exccorr, methodprefix
        xc = None
        method = None
        basisset = None
        xcWrite = False
        methodWrite = False
        basissetWrite = False
        methodreal = None
        basissetreal = None 
        methodprefix = None
        exc = None
        corr = None
        exccorr = None
1078

1079
        settings = section["x_gaussian_settings"]
1080 1081 1082
        settings1 = str(settings[0]).strip()
        settings2 = str(settings[1]).strip()
        settings = [settings1, settings2]
1083 1084 1085
        settings = [''.join(map(str,settings))]
        settings = str(settings)
        settings = re.sub('[-]{2,}', '', settings)
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
1086
        backend.addValue("x_gaussian_settings_corrected", settings)
1087

Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
1088
        method1 = settings.replace("['#p ","").replace("['#P ","").replace("['#","")
1089 1090 1091 1092
        method1 = method1.upper()

        if 'ONIOM' not in method1: 
          if settings.find("/") >= 0:
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
1093
               method1 = settings.split('/')[0].replace("['#p ","").replace("['#P ","").replace("['#","")
1094 1095 1096
               method1 = method1.upper()
               for x in method1.split():
                  method2 = str(x)
1097
                  if method2 != 'RHF' and method2 != 'UHF' and method2 != 'ROHF' and method2 != 'UFF':
1098 1099 1100 1101 1102 1103
                     if (method2[0] == 'R' and method2[0:2] != 'RO') or method2[0] == 'U':
                        methodprefix = method2[0] 
                        method2 = method2[1:]
                     elif method2[0:2] == 'RO':
                        methodprefix = method2[0:2]
                        method2 = method2[2:]
1104
                  if method2[0:2] == 'SV' or method2[0] == 'B' or method2[0] == 'O':
1105
                     if method2[1] != '2' and method2[1] != '3':
1106 1107 1108 1109 1110 1111
                       if method2[0] in xcDict.keys() and method2[1:] in xcDict.keys():
                         exc = method2[0]
                         corr = method2[1:]
                         excfunc = xcDict[exc][0]['name']
                         corrfunc = xcDict[corr][0]['name']
                         xc = str(excfunc) + "_" + str(corrfunc)
1112
                  if method2[0:3] == 'BRX' or method2[0:3] == 'G96':
1113 1114 1115 1116 1117 1118
                    exc = method2[0:3]
                    corr = method2[3:]
                    if exc in xcDict.keys() and corr in xcDict.keys():
                      excfunc = xcDict[exc][0]['name']
                      corrfunc = xcDict[corr][0]['name']
                      xc = str(excfunc) + "_" + str(corrfunc)
1119
                  if method2[0:5] == 'WPBEH':
1120 1121 1122 1123 1124 1125
                    exc = method2[0:5]
                    corr = method2[6:]
                    if exc in xcDict.keys() and corr in xcDict.keys():
                      excfunc = xcDict[exc][0]['name']
                      corrfunc = xcDict[corr][0]['name']
                      xc = str(excfunc) + "_" + str(corrfunc)
1126 1127 1128 1129 1130 1131 1132
                  if method2[0:3] == 'LC-':
                     exccorr = method2[3:]
                     if exccorr in xcDict.keys():
                        xc = 'LC-' + xcDict.get([exccorr][-1])
                  if method2 in xcDict.keys():
                     xc = method2
                     xcWrite= True
1133
                     methodWrite = True 
1134 1135 1136 1137 1138 1139 1140 1141
                     method = 'DFT'
                  if method2 in methodDict.keys():
                     method = method2
                     methodWrite = True
                     methodreal = method2
                  else:
                     for n in range(2,9):
                        if method2[0:n] in methodDict.keys():
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
                          method = method2[0:n]
                          methodWrite = True
                          methodreal = method2
                        if method2[0:n] in xcDict.keys():
                          xc = method2[0:n]
                          xcWrite = True
                          methodWrite = True
                          method = 'DFT'
                        if method2[0:9] == 'CBSEXTRAP':
                          method = method2[0:9]
                          methodWrite = True
                          methodreal = method2
1154
               rest = settings.split('/')[1].replace("'","").replace("]","")
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
               rest = rest.upper() 
               for x in rest.split():
                  if x in basissetDict.keys():
                     basisset = x
                     basissetWrite = True
                     basissetreal = x
                  if 'D95' in x:
                     method2 = x
                     basisset = method2[0:3]
                     basissetWrite = True
                     basissetreal = method2
                  if 'AUG-' in x:
                     method2 = x
                     basisset = method2[4:]
                     basissetWrite = True
                     basissetreal = method2
                  if 'UGBS' in x:
                     method2 = x
                     basisset = method2[0:4]
                     basissetWrite = True
                     basissetreal = method2
                  if 'CBSB7' in x:
                     method2 = x
                     basisset = method2[0:5]
                     basissetWrite = True
                     basissetreal = method2
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
                  if 'LANL1' in x:
                     method2 = x
                     basisset = method2[0:5]
                     basissetWrite = True
                     basissetreal = method2
                  if 'LANL2' in x:
                     method2 = x
                     basisset = method2[0:5]
                     basissetWrite = True
                     basissetreal = method2
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
                  if '6-31' in x:
                     method2 = x
                     if '6-311' in x:
                        basisset = '6-311G'
                        basissetWrite = True
                        basissetreal = '6-311' + method2[5:]
                     else:
                        basisset = '6-31G'
                        basissetWrite = True
                        basissetreal = '6-31' + method2[4:]
1201 1202 1203 1204 1205 1206 1207 1208
                  slashes = settings.count('/')
                  if slashes > 1:
                    rest2 = settings.split()[1]
                    rest2 = rest2.upper()
                    for z in rest2.split('/'):
                       if z in basissetDict.keys():
                         basisset = z
                    basissetWrite = True
1209 1210 1211 1212 1213 1214 1215
                    if (len(rest2.split('/')) == 2): 
                       if(basisset is not None):
                          basissetreal = rest2.split('/')[1] + '/' + basisset
                       else:
                          basissetreal = rest2.split('/')[1]
                    else:
                       pass
1216 1217 1218 1219 1220
          else:
               method1 = settings.split()
               for x in method1: 
                  method2 = str(x)
                  method2 = method2.upper() 
1221
                  if method2 != 'RHF' and method2 != 'UHF' and method2 != 'ROHF' and method2 != 'UFF':
1222 1223 1224 1225 1226 1227
                    if (method2[0] == 'R' and method2[0:2] != 'RO') or method2[0] == 'U':
                      methodprefix = method2[0] 
                      method2 = method2[1:]
                    elif method2[0:2] == 'RO':
                      methodprefix = method2[0:2] 
                      method2 = method2[2:]
1228 1229
                  if method2[0:2] == 'SV' or method2[0] == 'B' or method2[0] == 'O':
                    if method2[0] in xcDict.keys() and method2[1:] in xcDict.keys():
1230 1231
                      exc = method2[0]
                      corr = method2[1:]
1232 1233 1234
                      excfunc = xcDict[exc][0]['name']
                      corrfunc = xcDict[corr][0]['name']
                      xc = str(excfunc) + "_" + str(corrfunc)
1235
                  if method2[0:3] == 'BRX' or method2[0:3] == 'G96':
1236 1237 1238 1239 1240 1241
                    exc = method2[0:3]
                    corr = method2[3:]
                    if exc in xcDict.keys() and corr in xcDict.keys():
                      excfunc = xcDict[exc][0]['name']
                      corrfunc = xcDict[corr][0]['name']
                      xc = str(excfunc) + "_" + str(corrfunc)
1242 1243 1244 1245
                  if method2[0:5] == 'WPBEH':
                   exc = method2[0:5]
                   corr = method2[6:]
                   if exc in xcDict.keys() and corr in xcDict.keys():
1246 1247 1248
                      excfunc = xcDict[exc][0]['name']
                      corrfunc = xcDict[corr][0]['name']
                      xc = str(excfunc) + "_" + str(corrfunc)
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
                  if method2[0:3] == 'LC-':
                   exccorr = method2[3:]
                   if exccorr in xcDict.keys():
                      xc = 'LC-' + xcDict.get([exccorr][-1])
                  if method2 in xcDict.keys(): 
                   xc = method2
                   xcWrite= True
                   method = 'DFT'
                  if method2 in methodDict.keys():
                   method = method2 
                   methodWrite = True
                   methodreal = method2
                  else:
                   for n in range(2,9):
                      if method2[0:n] in methodDict.keys():
                         method = method2[0:n]
                         methodWrite = True
                         methodreal = method2
                      if method2[0:9] == 'CBSEXTRAP':
                         method = method2[0:9]
                         methodWrite = True
                         methodreal = method2
                  if method2 in basissetDict.keys():
                   basisset = method2
                   basissetWrite = True
                   basissetreal = method2
                  if 'D95' in method2:
                   basisset = method2[0:3]
                   basissetWrite = True
                   basissetreal = method2
                  if 'AUG-' in method2:
                   basisset = method2[4:]
                   basissetWrite = True
                   basissetreal = method2
                  if 'UGBS' in method2:
                   basisset = method2[0:4]
                   basissetWrite = True
                   basissetreal = method2
                  if 'CBSB7' in method2:
                   basisset = method2[0:5]
                   basissetWrite = True
                   basissetreal = method2
                  if '6-31' in method2:
                   if '6-311' in method2:
                      basisset = '6-311G'
                      basissetWrite = True
                      basissetreal = '6-311' + method2[5:]
                   else:
                      basisset = '6-31G'
                      basissetWrite = True
                      basissetreal = '6-31' + method2[4:]

# special options for ONIOM calculations
        else:
          method = 'ONIOM'       
          methodWrite = True
          method1 = settings.split()
          for x in method1:
             method2 = str(x)
             method2 = method2.upper()
             if 'ONIOM' in method2:
                methodreal = method2
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
1311
        
1312 1313
# functionals where hybrid_xc_coeff are written

1314 1315 1316 1317 1318
        if xc is not None:
          # check if only one xc keyword was found in output
          if len([xc]) > 1:
              logger.error("Found %d settings for the xc functional: %s. This leads to an undefined behavior of the calculation and no metadata can be written for xc." % (len(xc), xc))
          else:
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
1319
              backend.superBackend.addValue('x_gaussian_xc', [xc][-1])
1320 1321 1322 1323
              if xcWrite:
              # get list of xc components according to parsed value
                  xcList = xcDict.get([xc][-1])
                  if xcList is not None:
1324
                    # loop over the xc components
1325 1326 1327 1328 1329 1330
                      for xcItem in xcList:
                          xcName = xcItem.get('name')
                          if xcName is not None:
                          # write section and XC_functional_name
                              gIndexTmp = backend.openSection('section_XC_functionals')
                              backend.addValue('XC_functional_name', xcName)
1331 1332
                              # write hybrid_xc_coeff for PBE1PBE into XC_functional_parameters
                              backend.closeSection('section_XC_functionals', gIndexTmp)
1333
                          else:
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
                              logger.error("The dictionary for xc functional '%s' does not have the key 'name'. Please correct the dictionary xcDict in %s." % (xc[-1], os.path.basename(__file__)))
                  else:
                      logger.error("The xc functional '%s' could not be converted for the metadata. Please add it to the dictionary xcDict in %s." % (xc[-1], os.path.basename(__file__)))

# Write electronic structure method to metadata

        if method is not None:
          # check if only one method keyword was found in output
          if len([method]) > 1:
              logger.error("Found %d settings for the method: %s. This leads to an undefined behavior of the calculation and no metadata can be written for the method." % (len(method), method))
          else:
Rosendo Valero Montero's avatar
Rosendo Valero Montero committed
1345
              backend.superBackend.addValue('x_gaussian_method', [method][-1])
1346 1347 1348 1349 1350 1351 1352 1353
          methodList = methodDict.get([method][-1])
          if methodWrite:
               if methodList is not None:
        # loop over the method components
                  for methodItem in methodList:
                        methodName = methodItem.get('name')
                        if methodName is not None:
                 # write section and method name