bec.out 30.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
 Entering Gaussian System, Link 0=g09
 Initial command:
 /usr/local/gaussian/g09.d01.em64t.legacy.linda/g09/l1.exe "/tmp/rdj3/g09-21434/Gau-26733.inp" -scrdir="/tmp/rdj3/g09-21434/"
 Entering Link 1 = /usr/local/gaussian/g09.d01.em64t.legacy.linda/g09/l1.exe PID=     26734.
  
 Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
            Gaussian, Inc.  All Rights Reserved.
  
 This is part of the Gaussian(R) 09 program.  It is based on
 the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
 the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
 the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
 the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
 the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
 the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
 the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
 University), and the Gaussian 82(TM) system (copyright 1983,
 Carnegie Mellon University). Gaussian is a federally registered
 trademark of Gaussian, Inc.
  
 This software contains proprietary and confidential information,
 including trade secrets, belonging to Gaussian, Inc.
  
 This software is provided under written license and may be
 used, copied, transmitted, or stored only in accord with that
 written license.
  
 The following legend is applicable only to US Government
 contracts under FAR:
  
                    RESTRICTED RIGHTS LEGEND
  
 Use, reproduction and disclosure by the US Government is
 subject to restrictions as set forth in subparagraphs (a)
 and (c) of the Commercial Computer Software - Restricted
 Rights clause in FAR 52.227-19.
  
 Gaussian, Inc.
 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
  
  
 ---------------------------------------------------------------
 Warning -- This program may not be used in any manner that
 competes with the business of Gaussian, Inc. or will provide
 assistance to any competitor of Gaussian, Inc.  The licensee
 of this program is prohibited from giving any competitor of
 Gaussian, Inc. access to this program.  By using this program,
 the user acknowledges that Gaussian, Inc. is engaged in the
 business of creating and licensing software in the field of
 computational chemistry and represents and warrants to the
 licensee that it is not a competitor of Gaussian, Inc. and that
 it will not use this program in any manner prohibited above.
 ---------------------------------------------------------------
  

 Cite this work as:
 Gaussian 09, Revision D.01,
 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, 
 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, 
 G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, 
 A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, 
 M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, 
 Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., 
 J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, 
 K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, 
 K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, 
 M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, 
 V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, 
 O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, 
 R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, 
 P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, 
 O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, 
 and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
 
 ******************************************
 Gaussian 09:  EM64L-G09RevD.01 24-Apr-2013
                13-May-2014 
 ******************************************
 %NProc=8
 Will use up to    8 processors via shared memory.
 %mem=424000000
 -----------------------
 #CCSD(T)/6-31G* scf=xqc
 -----------------------
 1/38=1/1;
 2/12=2,17=6,18=5,40=1/2;
 3/5=1,6=6,7=1,11=9,16=1,25=1,30=1/1,2,3;
 4//1;
 5/5=2,8=3,13=1,38=5/2,8;
 8/6=4,9=120000,10=2/1,4;
 9/5=7,14=2/13;
 6/7=2,8=2,9=2,10=2/1;
 99/5=1,9=1/99;
 ----------------------------------------------------------------------
 bec beryllium carbide triplet casno=57788940 state=1 config=1 method=1
 12 basis=1
 ----------------------------------------------------------------------
 Symbolic Z-matrix:
 Charge =  1 Multiplicity = 2
 BE                    0.        0.       -1.00329 
 C                     0.        0.        0.66886 
 
                          Input orientation:                          
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          4           0        0.000000    0.000000   -1.003286
      2          6           0        0.000000    0.000000    0.668857
 ---------------------------------------------------------------------
 Stoichiometry    CBe(1+,2)
 Framework group  C*V[C*(BeC)]
 Deg. of freedom     1
 Full point group                 C*V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C1      NOp   1
                         Standard orientation:                         
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          4           0        0.000000    0.000000   -1.003286
      2          6           0        0.000000    0.000000    0.668857
 ---------------------------------------------------------------------
 Rotational constants (GHZ):      0.0000000     35.1180430     35.1180430
 Standard basis: 6-31G(d) (6D, 7F)
 There are    16 symmetry adapted cartesian basis functions of A1  symmetry.
 There are     2 symmetry adapted cartesian basis functions of A2  symmetry.
 There are     6 symmetry adapted cartesian basis functions of B1  symmetry.
 There are     6 symmetry adapted cartesian basis functions of B2  symmetry.
 There are    16 symmetry adapted basis functions of A1  symmetry.
 There are     2 symmetry adapted basis functions of A2  symmetry.
 There are     6 symmetry adapted basis functions of B1  symmetry.
 There are     6 symmetry adapted basis functions of B2  symmetry.
    30 basis functions,    56 primitive gaussians,    30 cartesian basis functions
     5 alpha electrons        4 beta electrons
       nuclear repulsion energy         7.5951955103 Hartrees.
 NAtoms=    2 NActive=    2 NUniq=    2 SFac= 1.00D+00 NAtFMM=   60 NAOKFM=F Big=F
 Integral buffers will be    131072 words long.
 Raffenetti 2 integral format.
 Two-electron integral symmetry is turned on.
 One-electron integrals computed using PRISM.
 NBasis=    30 RedAO= T EigKep=  2.65D-02  NBF=    16     2     6     6
 NBsUse=    30 1.00D-06 EigRej= -1.00D+00 NBFU=    16     2     6     6
 ExpMin= 8.23D-02 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=2 IRadAn=         4 AccDes= 0.00D+00
 Harris functional with IExCor=  205 and IRadAn=       4 diagonalized for initial guess.
 HarFok:  IExCor=  205 AccDes= 0.00D+00 IRadAn=         4 IDoV= 1 UseB2=F ITyADJ=14
 ICtDFT=  3500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 FoFCou: FMM=F IPFlag=           0 FMFlag=      100000 FMFlg1=           0
         NFxFlg=           0 DoJE=T BraDBF=F KetDBF=T FulRan=T
         wScrn=  0.000000 ICntrl=     500 IOpCl=  0 I1Cent=   200000004 NGrid=           0
         NMat0=    1 NMatS0=      1 NMatT0=    0 NMatD0=    1 NMtDS0=    0 NMtDT0=    0
 Petite list used in FoFCou.
 Initial guess orbital symmetries:
 Alpha Orbitals:
       Occupied  (SG) (SG) (SG) (SG) (PI)
       Virtual   (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG)
                 (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (DLTA)
                 (DLTA) (PI) (PI) (SG) (SG) (SG)
 Beta  Orbitals:
       Occupied  (SG) (SG) (SG) (SG)
       Virtual   (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG)
                 (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG)
                 (DLTA) (DLTA) (PI) (PI) (SG) (SG) (SG)
 Initial guess <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.7500 S= 0.5000
 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=946572.
 Requested convergence on RMS density matrix=1.00D-08 within  64 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Requested convergence on             energy=1.00D-06.
 No special actions if energy rises.
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 >>>>>>>>>> Convergence criterion not met.
 SCF Done:  E(UHF) =  -51.9696612669     A.U. after   65 cycles
            NFock= 64  Conv=0.94D-03     -V/T= 1.9976
 <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.8575 S= 0.5524
 <L.S>= 0.000000000000E+00
 Annihilation of the first spin contaminant:
 S**2 before annihilation     0.8575,   after     0.7510
 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=946330.
 LinEq1:  Iter=  0 NonCon=     1 RMS=1.42D-04 Max=1.48D-03 NDo=     1
 AX will form     1 AO Fock derivatives at one time.
 LinEq1:  Iter=  1 NonCon=     1 RMS=5.43D-05 Max=4.09D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=1.85D-05 Max=1.88D-04 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=2.80D-06 Max=1.69D-05 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=5.39D-07 Max=2.83D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=6.35D-08 Max=4.16D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=8.12D-09 Max=4.66D-08 NDo=     1
 LinEq1:  Iter=  7 NonCon=     0 RMS=9.71D-10 Max=6.01D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     7 iterations.
 LinEq1:  Iter=  0 NonCon=     1 RMS=2.59D-04 Max=3.25D-03 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=6.80D-05 Max=4.10D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=4.38D-05 Max=6.03D-04 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=8.87D-06 Max=9.41D-05 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=1.23D-06 Max=7.61D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=1.28D-07 Max=6.18D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=2.01D-08 Max=1.20D-07 NDo=     1
 LinEq1:  Iter=  7 NonCon=     1 RMS=3.05D-09 Max=2.43D-08 NDo=     1
 LinEq1:  Iter=  8 NonCon=     0 RMS=4.20D-10 Max=2.92D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     8 iterations.
 LinEq1:  Iter=  0 NonCon=     1 RMS=4.55D-04 Max=5.62D-03 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=1.07D-04 Max=6.43D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=6.83D-05 Max=8.59D-04 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=1.61D-05 Max=1.66D-04 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=2.33D-06 Max=1.35D-05 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=2.39D-07 Max=1.01D-06 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=3.25D-08 Max=1.61D-07 NDo=     1
 LinEq1:  Iter=  7 NonCon=     1 RMS=4.93D-09 Max=2.96D-08 NDo=     1
 LinEq1:  Iter=  8 NonCon=     0 RMS=7.59D-10 Max=5.23D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     8 iterations.
 Incorrect curvature in search direction -- initial direction reversed.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  5 DX=  8.43D-02 DF= -5.24D-07 DXR=  3.39D-02 DFR=  1.15D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  2 and  3.
     Minimum is close to point  3 DX= -1.54D-01 DF= -1.48D-06 DXR=  9.97D-02 DFR=  7.94D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -5.46D-02 DF= -6.79D-07 DXR=  3.32D-02 DFR=  2.45D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -5.01D-02 DF= -7.44D-07 DXR=  3.23D-02 DFR=  2.13D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -8.08D-03 DF= -2.56D-08 DXR=  5.07D-03 DFR=  5.97D-05 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  2 DX=  9.61D-02 DF= -1.71D-06 DXR=  5.67D-02 DFR=  3.22D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -9.90D-02 DF= -5.83D-06 DXR=  5.82D-02 DFR=  7.50D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -5.32D-02 DF= -2.62D-06 DXR=  3.44D-02 DFR=  2.39D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -9.04D-03 DF= -8.90D-08 DXR=  5.68D-03 DFR=  7.45D-05 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  2 DX=  9.35D-02 DF= -3.76D-06 DXR=  5.52D-02 DFR=  3.06D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -8.87D-02 DF= -6.28D-06 DXR=  5.18D-02 DFR=  6.04D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -7.15D-02 DF= -2.93D-06 DXR=  4.68D-02 DFR=  4.25D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -4.64D-02 DF= -9.05D-07 DXR=  2.99D-02 DFR=  1.82D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  2 DX=  2.53D-02 DF= -9.12D-08 DXR=  1.66D-02 DFR=  2.74D-04 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
 LinEq1:  Iter=  0 NonCon=     1 RMS=9.21D-04 Max=1.31D-02 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=2.96D-04 Max=1.88D-03 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=1.01D-05 Max=6.32D-05 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=1.96D-06 Max=1.16D-05 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=2.92D-07 Max=2.73D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=4.54D-08 Max=3.27D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=5.42D-09 Max=3.15D-08 NDo=     1
 LinEq1:  Iter=  7 NonCon=     0 RMS=7.63D-10 Max=5.08D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     7 iterations.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -8.27D-02 DF= -2.70D-06 DXR=  9.02D-02 DFR=  8.70D-03 which will be used.
 LinEq1:  Iter=  0 NonCon=     1 RMS=8.52D-05 Max=8.98D-04 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=3.17D-05 Max=3.28D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=5.35D-06 Max=3.86D-05 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=9.96D-07 Max=8.50D-06 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=1.48D-07 Max=1.20D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=1.53D-08 Max=1.38D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=2.14D-09 Max=1.03D-08 NDo=     1
 LinEq1:  Iter=  7 NonCon=     0 RMS=2.45D-10 Max=1.53D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     7 iterations.
     Minimum is close to point  2 DX=  1.71D-02 DF= -1.08D-09 DXR=  1.68D-02 DFR=  2.82D-04 which will be used.
 LinEq1:  Iter=  0 NonCon=     1 RMS=1.11D-06 Max=1.41D-05 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=2.51D-07 Max=1.91D-06 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=5.01D-08 Max=3.41D-07 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=1.10D-08 Max=8.47D-08 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=1.62D-09 Max=1.38D-08 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=1.78D-10 Max=1.89D-09 NDo=     1
 LinEq1:  Iter=  6 NonCon=     0 RMS=2.15D-11 Max=1.09D-10 NDo=     1
 Linear equations converged to 1.010D-10 1.010D-09 after     6 iterations.
 SCF Done:  E(UHF) =  -51.9840874768     a.u. after   28 cycles
            Convg  =    0.4438D-07                    96 Fock formations.
              S**2 =  1.5594                  -V/T =  1.9961
 <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 1.5594 S= 0.8451
 <L.S>= 0.000000000000E+00
 Annihilation of the first spin contaminant:
 S**2 before annihilation     1.5594,   after     0.7583
 ExpMin= 8.23D-02 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn=         5 AccDes= 0.00D+00
 HarFok:  IExCor=  205 AccDes= 0.00D+00 IRadAn=         5 IDoV=-2 UseB2=F ITyADJ=14
 ICtDFT= 12500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 Range of M.O.s used for correlation:     3    30
 NBasis=    30 NAE=     5 NBE=     4 NFC=     2 NFV=     0
 NROrb=     28 NOA=     3 NOB=     2 NVA=    25 NVB=    26
 Semi-Direct transformation.
 ModeAB=           2 MOrb=             3 LenV=     423823991
 LASXX=         7874 LTotXX=        7874 LenRXX=        7874
 LTotAB=        9238 MaxLAS=       39060 LenRXY=       39060
 NonZer=       43596 LenScr=      785920 LnRSAI=           0
 LnScr1=           0 LExtra=           0 Total=       832854
 MaxDsk=          -1 SrtSym=           F ITran=            4
 JobTyp=1 Pass  1:  I=   1 to   3.
 (rs|ai) integrals will be sorted in core.
 ModeAB=           2 MOrb=             2 LenV=     423823991
 LASXX=         5586 LTotXX=        5586 LenRXX=       26040
 LTotAB=        5223 MaxLAS=       26040 LenRXY=        5223
 NonZer=       29064 LenScr=      785920 LnRSAI=           0
 LnScr1=           0 LExtra=           0 Total=       817183
 MaxDsk=          -1 SrtSym=           F ITran=            4
 JobTyp=2 Pass  1:  I=   1 to   2.
 (rs|ai) integrals will be sorted in core.
 Spin components of T(2) and E(2):
     alpha-alpha T2 =       0.3217018251D-02 E2=     -0.9793926968D-02
     alpha-beta  T2 =       0.2154311380D-01 E2=     -0.5210849563D-01
     beta-beta   T2 =       0.1375553225D-02 E2=     -0.2324677345D-02
 ANorm=    0.1012983556D+01
 E2 =    -0.6422709995D-01 EUMP2 =    -0.52048314576769D+02
 (S**2,0)=  0.15594D+01           (S**2,1)=  0.15334D+01
 E(PUHF)=      -0.51992343389D+02        E(PMP2)=      -0.52056438610D+02
 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=931595.
 Iterations=  50 Convergence= 0.100D-06
 Iteration Nr.   1
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 E(PMP3)=      -0.52071818798D+02
 MP4(R+Q)=  0.12014937D-02
 E3=       -0.15714056D-01        EUMP3=      -0.52064028633D+02
 E4(DQ)=   -0.39890085D-02        UMP4(DQ)=   -0.52068017641D+02
 E4(SDQ)=  -0.54491885D-02        UMP4(SDQ)=  -0.52069477821D+02
 DE(Corr)= -0.78769448E-01 E(Corr)=     -52.062856924    
 NORM(A)=   0.10265158D+01
 Iteration Nr.   2
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.85984316E-01 E(CORR)=     -52.070071792     Delta=-7.21D-03
 NORM(A)=   0.10511531D+01
 Iteration Nr.   3
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.91905315E-01 E(CORR)=     -52.075992792     Delta=-5.92D-03
 NORM(A)=   0.11453356D+01
 Iteration Nr.   4
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10173139     E(CORR)=     -52.085818870     Delta=-9.83D-03
 NORM(A)=   0.12052097D+01
 Iteration Nr.   5
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10478861     E(CORR)=     -52.088876082     Delta=-3.06D-03
 NORM(A)=   0.12378521D+01
 Iteration Nr.   6
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10661550     E(CORR)=     -52.090702975     Delta=-1.83D-03
 NORM(A)=   0.12254330D+01
 Iteration Nr.   7
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10576592     E(CORR)=     -52.089853396     Delta= 8.50D-04
 NORM(A)=   0.12647242D+01
 Iteration Nr.   8
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10823790     E(CORR)=     -52.092325381     Delta=-2.47D-03
 NORM(A)=   0.12466909D+01
 Iteration Nr.   9
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10708100     E(CORR)=     -52.091168477     Delta= 1.16D-03
 NORM(A)=   0.12533653D+01
 Iteration Nr.  10
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10744057     E(CORR)=     -52.091528051     Delta=-3.60D-04
 NORM(A)=   0.12501085D+01
 Iteration Nr.  11
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722537     E(CORR)=     -52.091312849     Delta= 2.15D-04
 NORM(A)=   0.12509156D+01
 Iteration Nr.  12
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10725954     E(CORR)=     -52.091347018     Delta=-3.42D-05
 NORM(A)=   0.12505394D+01
 Iteration Nr.  13
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10723462     E(CORR)=     -52.091322097     Delta= 2.49D-05
 NORM(A)=   0.12504877D+01
 Iteration Nr.  14
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722432     E(CORR)=     -52.091311792     Delta= 1.03D-05
 NORM(A)=   0.12504357D+01
 Iteration Nr.  15
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722055     E(CORR)=     -52.091308024     Delta= 3.77D-06
 NORM(A)=   0.12503846D+01
 Iteration Nr.  16
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10721772     E(CORR)=     -52.091305199     Delta= 2.83D-06
 NORM(A)=   0.12504286D+01
 Iteration Nr.  17
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722149     E(CORR)=     -52.091308968     Delta=-3.77D-06
 NORM(A)=   0.12504518D+01
 Iteration Nr.  18
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722280     E(CORR)=     -52.091310273     Delta=-1.30D-06
 NORM(A)=   0.12504723D+01
 Iteration Nr.  19
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722401     E(CORR)=     -52.091311482     Delta=-1.21D-06
 NORM(A)=   0.12504765D+01
 Iteration Nr.  20
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722410     E(CORR)=     -52.091311582     Delta=-9.95D-08
 NORM(A)=   0.12504800D+01
 Dominant configurations:
 ***********************
 Spin Case        I    J    A    B          Value
    AA            4         7           -0.152699D+00
    AA            5         8            0.101575D+00
    BB            4         6           -0.585892D+00
   ABAB           4    4    7    6       0.206761D+00
   ABAB           4    4    6    5       0.139383D+00
   ABAB           5    4    8    6      -0.145709D+00
 Largest amplitude= 5.86D-01
 Time for triples=        1.38 seconds.
 T4(CCSD)= -0.68779261D-02
 T5(CCSD)=  0.14598750D-02
 CCSD(T)= -0.52096729633D+02

 S**2, projected HF & approx projected MPn energies after annihilation of
 unwanted spin states (see manual for definitions):

 spins       (S**2,0) (S**2,1)    PUHF        PMP2        PMP3        PMP4
 annihilated
 s+1         0.74499  0.75044  -51.992343  -52.056439  -52.071819
 s+1,s+2     0.75000  0.75000  -51.991414  -52.055530  -52.070949

 Discarding MO integrals.

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 Orbital symmetries:
 Alpha Orbitals:
       Occupied  (SG) (SG) (SG) (SG) (?A)
       Virtual   (?A) (SG) (?A) (?A) (SG) (PI) (PI) (SG) (SG) (SG)
                 (?A) (?A) (?B) (?B) (?B) (PI) (PI) (SG) (DLTA)
                 (DLTA) (PI) (PI) (SG) (SG) (SG)
 Beta  Orbitals:
       Occupied  (SG) (SG) (SG) (SG)
       Virtual   (?A) (SG) (?A) (?A) (?A) (SG) (PI) (SG) (PI) (SG)
                 (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG)
                 (?B) (?B) (PI) (PI) (?B) (SG) (SG)
 Unable to determine electronic state:  an orbital has unidentified symmetry.
 Alpha  occ. eigenvalues --  -11.69113  -5.02062  -1.19895  -0.83132  -0.77661
 Alpha virt. eigenvalues --   -0.29446  -0.17785  -0.10087  -0.07530   0.00546
 Alpha virt. eigenvalues --    0.19749   0.19911   0.24593   0.32667   0.41420
 Alpha virt. eigenvalues --    0.46540   0.53086   0.77297   0.77298   0.78957
 Alpha virt. eigenvalues --    0.78992   0.79919   1.15567   1.60425   1.60545
 Alpha virt. eigenvalues --    1.81233   1.83067   2.19167   2.58963   4.01796
  Beta  occ. eigenvalues --  -11.64791  -5.04434  -0.99923  -0.56843
  Beta virt. eigenvalues --   -0.27257  -0.23589  -0.23535  -0.10145  -0.06954
  Beta virt. eigenvalues --   -0.00175   0.18241   0.18516   0.18926   0.36969
  Beta virt. eigenvalues --    0.52159   0.55565   0.60385   0.74800   0.74804
  Beta virt. eigenvalues --    0.78971   0.80540   0.84060   1.17739   1.70918
  Beta virt. eigenvalues --    1.70958   1.90155   1.95129   2.28861   2.56461
  Beta virt. eigenvalues --    4.07831
          Condensed to atoms (all electrons):
               1          2
     1  Be   3.155172   0.233637
     2  C    0.233637   5.377555
          Atomic-Atomic Spin Densities.
               1          2
     1  Be  -0.861914   0.126766
     2  C    0.126766   1.608383
 Mulliken charges and spin densities:
               1          2
     1  Be   0.611191  -0.735148
     2  C    0.388809   1.735148
 Sum of Mulliken charges =   1.00000   1.00000
 Mulliken charges and spin densities with hydrogens summed into heavy atoms:
               1          2
     1  Be   0.611191  -0.735148
     2  C    0.388809   1.735148
 Electronic spatial extent (au):  <R**2>=             40.7416
 Charge=              1.0000 electrons
 Dipole moment (field-independent basis, Debye):
    X=              0.0000    Y=              0.0000    Z=             -1.1152  Tot=              1.1152
 Quadrupole moment (field-independent basis, Debye-Ang):
   XX=             -7.1608   YY=             -8.8903   ZZ=             -6.5157
   XY=              0.0000   XZ=              0.0000   YZ=              0.0000
 Traceless Quadrupole moment (field-independent basis, Debye-Ang):
   XX=              0.3615   YY=             -1.3680   ZZ=              1.0066
   XY=              0.0000   XZ=              0.0000   YZ=              0.0000
 Octapole moment (field-independent basis, Debye-Ang**2):
  XXX=              0.0000  YYY=              0.0000  ZZZ=              4.1469  XYY=              0.0000
  XXY=              0.0000  XXZ=              1.6152  XZZ=              0.0000  YZZ=              0.0000
  YYZ=              0.5971  XYZ=              0.0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
 XXXX=             -8.3988 YYYY=            -11.1238 ZZZZ=            -58.8079 XXXY=              0.0000
 XXXZ=              0.0000 YYYX=              0.0000 YYYZ=              0.0000 ZZZX=              0.0000
 ZZZY=              0.0000 XXYY=             -3.2536 XXZZ=            -10.0008 YYZZ=            -11.1399
 XXYZ=              0.0000 YYXZ=              0.0000 ZZXY=              0.0000
 N-N= 7.595195510288D+00 E-N=-1.335685371975D+02  KE= 5.218851364627D+01
 Symmetry A1   KE= 5.087435914252D+01
 Symmetry A2   KE= 3.782067739218D-33
 Symmetry B1   KE= 5.240997109797D-32
 Symmetry B2   KE= 1.314154503743D+00
 1\1\GINC-N358\SP\UCCSD(T)-FC\6-31G(d)\C1Be1(1+,2)\RDJ3\13-May-2014\0\\
 #CCSD(T)/6-31G* scf=xqc\\bec beryllium carbide triplet casno=57788940 
 state=1 config=1 method=112 basis=1\\1,2\Be,0,0.,0.,-1.003286\C,0,0.,0
 .,0.668857\\Version=EM64L-G09RevD.01\HF=-51.9840875\MP2=-52.0483146\MP
 3=-52.0640286\MP4D=-52.0692191\MP4DQ=-52.0680176\PUHF=-51.9923434\PMP2
 -0=-52.0564386\PMP3-0=-52.0718188\MP4SDQ=-52.0694778\CCSD=-52.0913116\
 CCSD(T)=-52.0967296\S2=1.559392\S2-1=1.533374\S2A=0.758334\RMSD=9.382e
 -04\PG=C*V [C*(Be1C1)]\\@


 IF YOU DON'T HAVE THE LAW - ARGUE THE FACTS.
 IF YOU DON'T HAVE THE FACTS - ARGUE THE LAW.
 IF YOU DON'T HAVE EITHER - POUND THE TABLE.
 Job cpu time:       0 days  0 hours  0 minutes 44.2 seconds.
 File lengths (MBytes):  RWF=     13 Int=      0 D2E=      0 Chk=      1 Scr=      1
 Normal termination of Gaussian 09 at Tue May 13 14:34:42 2014.