parser_elk.py 15 KB
Newer Older
1
2
from builtins import object
import setup_paths
3
import numpy as np
4
5
6
from nomadcore.simple_parser import mainFunction, AncillaryParser, CachingLevel
from nomadcore.simple_parser import SimpleMatcher as SM
from nomadcore.local_meta_info import loadJsonFile, InfoKindEl
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
7
8
from nomadcore.unit_conversion import unit_conversion
import os, sys, json, logging
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

class ElkContext(object):
    """context for elk parser"""

    def __init__(self):
        self.parser = None

    def initialize_values(self):
        """allows to reset values if the same superContext is used to parse different files"""
        self.metaInfoEnv = self.parser.parserBuilder.metaInfoEnv

    def startedParsing(self, path, parser):
        """called when parsing starts"""
        self.parser = parser
        # allows to reset values if the same superContext is used to parse different files
        self.initialize_values()

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    def onClose_x_elk_section_lattice_vectors(self, backend, gIndex, section):
      latticeX = section["x_elk_geometry_lattice_vector_x"]
      latticeY = section["x_elk_geometry_lattice_vector_y"]
      latticeZ = section["x_elk_geometry_lattice_vector_z"]
      cell = [[latticeX[0],latticeY[0],latticeZ[0]],
              [latticeX[1],latticeY[1],latticeZ[1]],
              [latticeX[2],latticeY[2],latticeZ[2]]]
      backend.addValue("simulation_cell", cell)

    def onClose_x_elk_section_reciprocal_lattice_vectors(self, backend, gIndex, section):
      recLatticeX = section["x_elk_geometry_reciprocal_lattice_vector_x"]
      recLatticeY = section["x_elk_geometry_reciprocal_lattice_vector_y"]
      recLatticeZ = section["x_elk_geometry_reciprocal_lattice_vector_z"]
      recCell = [[recLatticeX[0],recLatticeY[0],recLatticeZ[0]],
              [recLatticeX[1],recLatticeY[1],recLatticeZ[1]],
              [recLatticeX[2],recLatticeY[2],recLatticeZ[2]]]
      backend.addValue("x_elk_simulation_reciprocal_cell", recCell)

Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
44
45
46
    def onClose_section_single_configuration_calculation(self, backend, gIndex, section):
      dirPath = os.path.dirname(self.parser.fIn.name)
      dosFile = os.path.join(dirPath, "TDOS.OUT")
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
47
      eigvalFile = os.path.join(dirPath, "EIGVAL.OUT")
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
48
      if os.path.exists(dosFile):
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
49
        dosGIndex=backend.openSection("section_dos")
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
50
        with open(dosFile) as f:
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
            dosE=[]
            dosV=[]
            fromH = unit_conversion.convert_unit_function("hartree", "J")
            while True:
                line = f.readline()
                if not line: break
                nrs = list(map(float,line.split()))
                if len(nrs) == 2:
                    dosV.append(nrs[1])
                    dosE.append(fromH(nrs[0]))
                elif len(nrs) != 0:
                    raise Exception("Found more than two values in dos file %s" % dosFile)
            backend.addArrayValues("dos_values", np.asarray(dosV))
            backend.addArrayValues("dos_energies", np.asarray(dosE))
        backend.closeSection("section_dos", dosGIndex)
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
66
67
68
69
      if os.path.exists(eigvalFile):
        eigvalGIndex = backend.openSection("section_eigenvalues")
        with open(eigvalFile) as g:
            eigvalKpoint=[]
70
            eigvalVal=[[],[]]
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
71
            eigvalOcc=[[],[]]
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
72
73
74
75
76
            fromH = unit_conversion.convert_unit_function("hartree", "J")
            while 1:
              s = g.readline()
              if not s: break
              s = s.strip()
77
#              print ("s= ", s)
78
#              print ("len(s)= ", len(s))
79
80
81
82
83
              if len(s) < 20:
                continue
              elif len(s) > 50:
                eigvalVal[0].append([])
                eigvalVal[1].append([])
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
84
85
                eigvalOcc[0].append([])
                eigvalOcc[1].append([])
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
86
                eigvalKpoint.append(list(map(float, s.split()[1:4])))
87
88
89
90
91
92
93
94
#                print ("eigvalKpoint= ", eigvalKpoint)
              else:
                try: int(s[0])
                except ValueError:
                  continue
                else:
                  n, e, occ = s.split()
                  eigvalVal[0][-1].append(int(n))
95
                  eigvalVal[1][-1].append(fromH(float(e)))
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
96
97
98
                  eigvalOcc[0][-1].append(int(n))
                  eigvalOcc[1][-1].append(float(occ))
#                  print ("eigvalOcc= ", eigvalOcc)
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
99
            backend.addArrayValues("eigenvalues_kpoints", np.asarray(eigvalKpoint))
100
            backend.addArrayValues("eigenvalues_values", np.asarray(eigvalVal))
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
101
            backend.addArrayValues("eigenvalues_occupation", np.asarray(eigvalOcc))
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
102
103
104
105

    def onClose_section_system(self, backend, gIndex, section):
      backend.addArrayValues('configuration_periodic_dimensions', np.asarray([True, True, True]))

106
# description of the input
107
108
109
110
111
112
mainFileDescription = \
    SM(name = "root matcher",
       startReStr = "",
       weak = True,
       subMatchers = [
         SM(name = "header",
113
         startReStr = r"\s*\|\s*Elk version\s*(?P<program_version>[-a-zA-Z0-9\.]+)\s*started\s*",
114
115
116
117
         fixedStartValues={'program_name': 'elk', 'program_basis_set_type': '(L)APW+lo' },
            sections = ["section_run", "section_method"],
         subMatchers = [
           SM(name = 'input',
118
119
              startReStr = r"\|\sGround-state run starting from atomic densities\s\|\s",
              endReStr = r"\|\sDensity and potential initialised from atomic data\s",
120
121
              sections = ['section_system'],
              subMatchers = [
122
123
124
125
126
127
128
129
130
131
132
133
                SM(startReStr = r"\s*Lattice vectors :",
                sections = ["x_elk_section_lattice_vectors"],
                subMatchers = [

    SM(startReStr = r"\s*(?P<x_elk_geometry_lattice_vector_x__bohr>[-+0-9.]+)\s+(?P<x_elk_geometry_lattice_vector_y__bohr>[-+0-9.]+)\s+(?P<x_elk_geometry_lattice_vector_z__bohr>[-+0-9.]+)", repeats = True)
                ]),
                SM(startReStr = r"Reciprocal lattice vectors :",
                sections = ["x_elk_section_reciprocal_lattice_vectors"],
                subMatchers = [

    SM(startReStr = r"\s*(?P<x_elk_geometry_reciprocal_lattice_vector_x__bohr_1>[-+0-9.]+)\s+(?P<x_elk_geometry_reciprocal_lattice_vector_y__bohr_1>[-+0-9.]+)\s+(?P<x_elk_geometry_reciprocal_lattice_vector_z__bohr_1>[-+0-9.]+)", repeats = True)
                ]),
134
    SM(r"\s*Unit cell volume\s*:\s*(?P<x_elk_unit_cell_volume__bohr3>[-0-9.]+)"),
Pardini, Lorenzo (lopa)'s avatar
Pardini, Lorenzo (lopa) committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    SM(r"\s*Brillouin zone volume\s*:\s*(?P<x_elk_brillouin_zone_volume__bohr_3>[-0-9.]+)"),
    SM(r"\s*Species\s*:\s*[0-9]\s*\((?P<x_elk_geometry_atom_labels>[-a-zA-Z0-9]+)\)", repeats = True,
       subMatchers = [
    SM(r"\s*muffin-tin radius\s*:\s*(?P<x_elk_muffin_tin_radius__bohr>[-0-9.]+)"),
    SM(r"\s*number of radial points in muffin-tin\s*:\s*(?P<x_elk_muffin_tin_points>[-0-9.]+)"),
    SM(startReStr = r"\s*atomic positions\s*\(lattice\)\, magnetic fields \(Cartesian\)\s*:\s*",
      subMatchers = [
        SM(r"\s*(?P<x_elk_geometry_atom_number>[+0-9]+)\s*:\s*(?P<x_elk_geometry_atom_positions_x__bohr>[-+0-9.]+)\s*(?P<x_elk_geometry_atom_positions_y__bohr>[-+0-9.]+)\s*(?P<x_elk_geometry_atom_positions_z__bohr>[-+0-9.]+)", repeats = True)
      ])
    ]),
    SM(r"\s*k-point grid\s*:\s*(?P<x_elk_number_kpoint_x>[-0-9.]+)\s+(?P<x_elk_number_kpoint_y>[-0-9.]+)\s+(?P<x_elk_number_kpoint_z>[-0-9.]+)"),
    SM(r"\s*k-point offset\s*:\s*(?P<x_elk_kpoint_offset_x>[-0-9.]+)\s+(?P<x_elk_kpoint_offset_y>[-0-9.]+)\s+(?P<x_elk_kpoint_offset_z>[-0-9.]+)"),
    SM(r"\s*Total number of k-points\s*:\s*(?P<x_elk_number_kpoints>[-0-9.]+)"),
    SM(r"\s*Muffin-tin radius times maximum \|G\+k\|\s*:\s*(?P<x_elk_rgkmax__bohr>[-0-9.]+)"),
    SM(r"\s*Maximum \|G\+k\| for APW functions\s*:\s*(?P<x_elk_gkmax__bohr_1>[-0-9.]+)"),
    SM(r"\s*Maximum \|G\| for potential and density\s*:\s*(?P<x_elk_gmaxvr__bohr_1>[-0-9.]+)"),
    SM(r"\s*G-vector grid sizes\s*:\s*(?P<x_elk_gvector_size_x>[-0-9.]+)\s+(?P<x_elk_gvector_size_y>[-0-9.]+)\s+(?P<x_elk_gvector_size_z>[-0-9.]+)"),
    SM(r"\s*Number of G-vectors\s*:\s*(?P<x_elk_gvector_total>[-0-9.]+)"),
    SM(startReStr = r"\s*Maximum angular momentum used for\s*",
        subMatchers = [
          SM(r"\s*APW functions\s*:\s*(?P<x_elk_lmaxapw>[-0-9.]+)")
        ]),
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    SM(r"\s*Total nuclear charge\s*:\s*(?P<x_elk_nuclear_charge>[-0-9.]+)"),
    SM(r"\s*Total core charge\s*:\s*(?P<x_elk_core_charge>[-0-9.]+)"),
    SM(r"\s*Total valence charge\s*:\s*(?P<x_elk_valence_charge>[-0-9.]+)"),
    SM(r"\s*Total electronic charge\s*:\s*(?P<x_elk_electronic_charge>[-0-9.]+)"),
    SM(r"\s*Effective Wigner radius, r_s\s*:\s*(?P<x_elk_wigner_radius>[-0-9.]+)"),
    SM(r"\s*Number of empty states\s*:\s*(?P<x_elk_empty_states>[-0-9.]+)"),
    SM(r"\s*Total number of valence states\s*:\s*(?P<x_elk_valence_states>[-0-9.]+)"),
    SM(r"\s*Total number of core states\s*:\s*(?P<x_elk_core_states>[-0-9.]+)"),
    SM(r"\s*Total number of local-orbitals\s*:\s*(?P<x_elk_lo>[-0-9.]+)"),
    SM(r"\s*Smearing width\s*:\s*(?P<x_elk_smearing_width__hartree>[-0-9.]+)"),
           ]),
            SM(name = "single configuration iteration",
              startReStr = r"\|\s*Self-consistent loop started\s*\|",
              sections = ["section_single_configuration_calculation"],
              repeats = True,
              subMatchers = [
                SM(name = "scfi totE",
                 startReStr =r"\|\s*Loop number\s*:",
                  sections = ["section_scf_iteration"],
                  repeats = True,
                  subMatchers = [
                   SM(r"\s*Fermi\s*:\s*(?P<x_elk_fermi_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*sum of eigenvalues\s*:\s*(?P<energy_sum_eigenvalues_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*electron kinetic\s*:\s*(?P<electronic_kinetic_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*core electron kinetic\s*:\s*(?P<x_elk_core_electron_kinetic_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*Coulomb\s*:\s*(?P<x_elk_coulomb_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*Coulomb potential\s*:\s*(?P<x_elk_coulomb_potential_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*nuclear-nuclear\s*:\s*(?P<x_elk_nuclear_nuclear_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*electron-nuclear\s*:\s*(?P<x_elk_electron_nuclear_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*Hartree\s*:\s*(?P<x_elk_hartree_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*Madelung\s*:\s*(?P<x_elk_madelung_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*xc potential\s*:\s*(?P<energy_XC_potential_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*exchange\s*:\s*(?P<x_elk_exchange_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*correlation\s*:\s*(?P<x_elk_correlation_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*electron entropic\s*:\s*(?P<x_elk_electron_entropic_energy_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*total energy\s*:\s*(?P<energy_total_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*Density of states at Fermi energy\s*:\s*(?P<x_elk_dos_fermi_scf_iteration__hartree_1>[-0-9.]+)"),
                   SM(r"\s*Estimated indirect band gap\s*:\s*(?P<x_elk_indirect_gap_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*Estimated direct band gap\s*:\s*(?P<x_elk_direct_gap_scf_iteration__hartree>[-0-9.]+)"),
                   SM(r"\s*core\s*:\s*(?P<x_elk_core_charge_scf_iteration>[-0-9.]+)"),
                   SM(r"\s*valence\s*:\s*(?P<x_elk_valence_charge_scf_iteration>[-0-9.]+)"),
                   SM(r"\s*interstitial\s*:\s*(?P<x_elk_interstitial_charge_scf_iteration>[-0-9.]+)"),
                  ]),
                SM(name="final_quantities",
                  startReStr = r"\sConvergence targets achieved\s*\+",
                  endReStr = r"\| Self-consistent loop stopped\s*\|\+",
                   subMatchers = [
                   SM(r"\s*Fermi\s*:\s*(?P<x_elk_fermi_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*sum of eigenvalues\s*:\s*(?P<energy_sum_eigenvalues__hartree>[-0-9.]+)"),
                   SM(r"\s*electron kinetic\s*:\s*(?P<electronic_kinetic_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*core electron kinetic\s*:\s*(?P<x_elk_core_electron_kinetic_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*Coulomb\s*:\s*(?P<x_elk_coulomb_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*Coulomb potential\s*:\s*(?P<x_elk_coulomb_potential_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*nuclear-nuclear\s*:\s*(?P<x_elk_nuclear_nuclear_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*electron-nuclear\s*:\s*(?P<x_elk_electron_nuclear_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*Hartree\s*:\s*(?P<x_elk_hartree_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*Madelung\s*:\s*(?P<x_elk_madelung_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*xc potential\s*:\s*(?P<energy_XC_potential__hartree>[-0-9.]+)"),
                   SM(r"\s*exchange\s*:\s*(?P<x_elk_exchange_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*correlation\s*:\s*(?P<x_elk_correlation_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*electron entropic\s*:\s*(?P<x_elk_electron_entropic_energy__hartree>[-0-9.]+)"),
                   SM(r"\s*total energy\s*:\s*(?P<energy_total__hartree>[-0-9.]+)"),
                   SM(r"\s*Density of states at Fermi energy\s*:\s*(?P<x_elk_dos_fermi__hartree_1>[-0-9.]+)"),
                   SM(r"\s*Estimated indirect band gap\s*:\s*(?P<x_elk_indirect_gap__hartree>[-0-9.]+)"),
                   SM(r"\s*Estimated direct band gap\s*:\s*(?P<x_elk_direct_gap__hartree>[-0-9.]+)"),
                   SM(r"\s*core\s*:\s*(?P<x_elk_core_charge_final>[-0-9.]+)"),
                   SM(r"\s*valence\s*:\s*(?P<x_elk_valence_charge_final>[-0-9.]+)"),
                   SM(r"\s*interstitial\s*:\s*(?P<x_elk_interstitial_charge_final>[-0-9.]+)")
                   ])
               ]
            )
228
          ])
229
230
231
232
233
234
235
236
237
    ])

parserInfo = {
  "name": "Elk"
}

metaInfoPath = os.path.normpath(os.path.join(os.path.dirname(os.path.abspath(__file__)),"../../../../nomad-meta-info/meta_info/nomad_meta_info/elk.nomadmetainfo.json"))
metaInfoEnv, warnings = loadJsonFile(filePath = metaInfoPath, dependencyLoader = None, extraArgsHandling = InfoKindEl.ADD_EXTRA_ARGS, uri = None)

238
239
240
241
242
243
244
245
246
247
248
cachingLevelForMetaName = {
                            "x_elk_geometry_lattice_vector_x":CachingLevel.Cache,
                            "x_elk_geometry_lattice_vector_y":CachingLevel.Cache,
                            "x_elk_geometry_lattice_vector_z":CachingLevel.Cache,
                            "x_elk_section_lattice_vectors": CachingLevel.Ignore,
                            "x_elk_geometry_reciprocal_lattice_vector_x":CachingLevel.Cache,
                            "x_elk_geometry_reciprocal_lattice_vector_y":CachingLevel.Cache,
                            "x_elk_geometry_reciprocal_lattice_vector_z":CachingLevel.Cache,
                            "x_elk_section_reciprocal_lattice_vectors": CachingLevel.Ignore
                          }

249
250
251
if __name__ == "__main__":
    superContext = ElkContext()
    mainFunction(mainFileDescription, metaInfoEnv, parserInfo, superContext = superContext)