run_tests.py 41.2 KB
Newer Older
1
2
3
4
"""
This is a module for unit testing the CP2K parser. The unit tests are run with
a custom backend that outputs the results directly into native python object for
easier and faster analysis.
5
6
7
8
9
10
11

Each property that has an enumerable list of different possible options is
assigned a new test class, that should ideally test through all the options.

The properties that can have any value imaginable will be tested only for one
specific case inside a test class that is designed for a certain type of run
(MD, optimization, QM/MM, etc.)
12
13
14
15
16
17
18
19
20
21
"""
import os
import unittest
import logging
import numpy as np
from cp2kparser import CP2KParser
from nomadcore.unit_conversion.unit_conversion import convert_unit


#===============================================================================
22
def get_results(folder, metainfo_to_keep=None):
23
24
25
26
27
28
    """Get the given result from the calculation in the given folder by using
    the Analyzer in the nomadtoolkit package. Tries to optimize the parsing by
    giving the metainfo_to_keep argument.

    Args:
        folder: The folder relative to the directory of this script where the
29
            parsed calculation resides.
30
31
32
        metaname: The quantity to extract.
    """
    dirname = os.path.dirname(__file__)
33
    filename = os.path.join(dirname, folder, "unittest.out")
34
    parser = CP2KParser(filename, None, debug=True, log_level=logging.CRITICAL)
35
    results = parser.parse()
36
37
38
39
    return results


#===============================================================================
40
41
def get_result(folder, metaname, optimize=True):
    if optimize:
42
        results = get_results(folder, None)
43
44
    else:
        results = get_results(folder)
45
    result = results[metaname]
Lauri Himanen's avatar
Lauri Himanen committed
46
    return result
47
48


49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#===============================================================================
class TestErrors(unittest.TestCase):
    """Test misc. error stuations which may occur during the parsing.
    """
    def test_no_file(self):
        self.assertRaises(IOError, get_result, "errors/no_file", "XC_functional")

    def test_invalid_file(self):
        self.assertRaises(RuntimeError, get_result, "errors/invalid_file", "XC_functional")

    def test_invalid_run_type(self):
        self.assertRaises(KeyError, get_result, "errors/invalid_run_type", "XC_functional")

    def test_unknown_version(self):
        get_result("errors/unknown_version", "XC_functional")

65
66
67
68
69
70
71
72
73
    def test_unknown_input_keyword(self):
        get_result("errors/unknown_input_keyword", "XC_functional")

    def test_unknown_input_section(self):
        get_result("errors/unknown_input_section", "XC_functional")

    def test_unknown_input_section_parameter(self):
        get_result("errors/unknown_input_section_parameter", "XC_functional")

74

75
76
#===============================================================================
class TestXCFunctional(unittest.TestCase):
77
78
    """Tests that the XC functionals can be properly parsed.
    """
79
80
81

    def test_pade(self):
        xc = get_result("XC_functional/pade", "XC_functional")
82
        self.assertEqual(xc, "1*LDA_XC_TETER93")
83
84
85

    def test_lda(self):
        xc = get_result("XC_functional/lda", "XC_functional")
86
        self.assertEqual(xc, "1*LDA_XC_TETER93")
87
88
89

    def test_blyp(self):
        xc = get_result("XC_functional/blyp", "XC_functional")
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        self.assertEqual(xc, "1*GGA_C_LYP+1*GGA_X_B88")

    def test_b3lyp(self):
        xc = get_result("XC_functional/b3lyp", "XC_functional")
        self.assertEqual(xc, "1*HYB_GGA_XC_B3LYP")

    def test_olyp(self):
        xc = get_result("XC_functional/olyp", "XC_functional")
        self.assertEqual(xc, "1*GGA_C_LYP+1*GGA_X_OPTX")

    def test_hcth120(self):
        xc = get_result("XC_functional/hcth120", "XC_functional")
        self.assertEqual(xc, "1*GGA_XC_HCTH_120")

    def test_pbe0(self):
        xc = get_result("XC_functional/pbe0", "XC_functional")
        self.assertEqual(xc, "1*HYB_GGA_XC_PBEH")

    def test_pbe(self):
        xc = get_result("XC_functional/pbe", "XC_functional")
        self.assertEqual(xc, "1*GGA_C_PBE+1*GGA_X_PBE")
111
112


113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#===============================================================================
class TestSCFConvergence(unittest.TestCase):
    """Tests whether the convergence status and number of SCF step can be
    parsed correctly.
    """

    def test_converged(self):
        result = get_result("convergence/converged", "single_configuration_calculation_converged")
        self.assertTrue(result)

    def test_non_converged(self):
        result = get_result("convergence/non_converged", "single_configuration_calculation_converged")
        self.assertFalse(result)


128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#===============================================================================
class TestForceFiles(unittest.TestCase):
    """Tests that different force files that can be output, can actually be
    found and parsed.
    """

    def test_single_point(self):

        result = get_result("force_file/single_point", "atom_forces")
        expected_result = convert_unit(
            np.array([
                [0.00000000, 0.00000000, 0.00000000],
                [0.00000000, 0.00000001, 0.00000001],
                [0.00000001, 0.00000001, 0.00000000],
                [0.00000001, 0.00000000, 0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
            ]),
            "forceAu"
        )
        self.assertTrue(np.array_equal(result, expected_result))


153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#===============================================================================
class TestSelfInteractionCorrectionMethod(unittest.TestCase):
    """Tests that the self-interaction correction can be properly parsed.
    """

    def test_no(self):
        sic = get_result("sic/no", "self_interaction_correction_method")
        self.assertEqual(sic, "")

    def test_ad(self):
        sic = get_result("sic/ad", "self_interaction_correction_method")
        self.assertEqual(sic, "SIC_AD")

    def test_explicit_orbitals(self):
        sic = get_result("sic/explicit_orbitals", "self_interaction_correction_method")
        self.assertEqual(sic, "SIC_EXPLICIT_ORBITALS")

    def test_mauri_spz(self):
        sic = get_result("sic/mauri_spz", "self_interaction_correction_method")
        self.assertEqual(sic, "SIC_MAURI_SPZ")

    def test_mauri_us(self):
        sic = get_result("sic/mauri_us", "self_interaction_correction_method")
        self.assertEqual(sic, "SIC_MAURI_US")


179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#===============================================================================
class TestStressTensorMethods(unittest.TestCase):
    """Tests that the stress tensor can be properly parsed for different
    calculation methods.
    """
    def test_none(self):
        get_results("stress_tensor/none", "section_stress_tensor")

    def test_analytical(self):
        results = get_results("stress_tensor/analytical", ["stress_tensor_method", "stress_tensor"])
        method = results["stress_tensor_method"]
        results["stress_tensor"]
        self.assertEqual(method, "Analytical")

    def test_numerical(self):
        results = get_results("stress_tensor/numerical", ["stress_tensor_method", "stress_tensor"])
        method = results["stress_tensor_method"]
        results["stress_tensor"]
        self.assertEqual(method, "Numerical")

    def test_diagonal_analytical(self):
        results = get_results("stress_tensor/diagonal_analytical", ["stress_tensor_method", "stress_tensor"])
        method = results["stress_tensor_method"]
        results["stress_tensor"]
        self.assertEqual(method, "Diagonal analytical")

    def test_diagonal_numerical(self):
        results = get_results("stress_tensor/diagonal_numerical", ["stress_tensor_method", "stress_tensor"])
        method = results["stress_tensor_method"]
        results["stress_tensor"]
        self.assertEqual(method, "Diagonal numerical")


212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#===============================================================================
class TestConfigurationPeriodicDimensions(unittest.TestCase):
    """Tests that the self-interaction correction can be properly parsed.
    """

    def test_default(self):
        result = get_result("configuration_periodic_dimensions/default", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((True, True, True))))

    def test_none(self):
        result = get_result("configuration_periodic_dimensions/none", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((False, False, False))))

    def test_x(self):
        result = get_result("configuration_periodic_dimensions/x", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((True, False, False))))

    def test_y(self):
        result = get_result("configuration_periodic_dimensions/y", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((False, True, False))))

    def test_z(self):
        result = get_result("configuration_periodic_dimensions/z", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((False, False, True))))

    def test_xy(self):
        result = get_result("configuration_periodic_dimensions/xy", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((True, True, False))))

    def test_xyz(self):
        result = get_result("configuration_periodic_dimensions/xyz", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((True, True, True))))

    def test_xz(self):
        result = get_result("configuration_periodic_dimensions/xz", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((True, False, True))))

    def test_yz(self):
        result = get_result("configuration_periodic_dimensions/yz", "configuration_periodic_dimensions")
        self.assertTrue(np.array_equal(result, np.array((False, True, True))))


254
#===============================================================================
255
256
257
class TestEnergyForce(unittest.TestCase):
    """Tests for a CP2K calculation with RUN_TYPE ENERGY_FORCE.
    """
258

259
260
261
    @classmethod
    def setUpClass(cls):
        cls.results = get_results("energy_force", "section_run")
262
        # cls.results.print_summary()
263

264
    def test_energy_total_scf_iteration(self):
265
        result = self.results["energy_total_scf_iteration"]
266
        expected_result = convert_unit(np.array(-32.2320848878), "hartree")
267
        self.assertTrue(np.array_equal(result[0], expected_result))
268

269
270
271
272
273
274
275
276
    def test_program_name(self):
        result = self.results["program_name"]
        self.assertEqual(result, "CP2K")

    def test_program_compilation_host(self):
        result = self.results["program_compilation_host"]
        self.assertEqual(result, "lenovo700")

277
278
279
280
    def test_scf_max_iteration(self):
        result = self.results["scf_max_iteration"]
        self.assertEqual(result, 300)

281
282
283
284
    def test_basis_set(self):
        section_basis_set = self.results["section_basis_set"][0]

        # Basis name
285
        name = section_basis_set["basis_set_name"]
286
287
288
        self.assertEqual(name, "DZVP-GTH-PADE_PW_150.0")

        # Basis kind
289
        kind = section_basis_set["basis_set_kind"]
290
291
292
        self.assertEqual(kind, "wavefunction")

        # Cell dependent basis mapping
293
        cell_basis_mapping = section_basis_set["mapping_section_basis_set_cell_dependent"]
294
295
296
        self.assertEqual(cell_basis_mapping, 0)

        # # Atom centered basis mapping
297
        atom_basis_mapping = section_basis_set["mapping_section_basis_set_atom_centered"]
298
299
        self.assertTrue(np.array_equal(atom_basis_mapping, np.array(8*[0])))

300
301
    def test_scf_threshold_energy_change(self):
        result = self.results["scf_threshold_energy_change"]
302
        self.assertEqual(result, convert_unit(1.00E-07, "hartree"))
303
304
305
306
307

    def test_number_of_spin_channels(self):
        result = self.results["number_of_spin_channels"]
        self.assertEqual(result, 1)

308
309
310
311
    def test_electronic_structure_method(self):
        result = self.results["electronic_structure_method"]
        self.assertEqual(result, "DFT")

312
313
314
315
316
317
318
319
320
321
    def test_energy_change_scf_iteration(self):
        energy_change = self.results["energy_change_scf_iteration"]
        expected_result = convert_unit(np.array(-3.22E+01), "hartree")
        self.assertTrue(np.array_equal(energy_change[0], expected_result))

    def test_energy_XC_scf_iteration(self):
        result = self.results["energy_XC_scf_iteration"]
        expected_result = convert_unit(np.array(-9.4555961214), "hartree")
        self.assertTrue(np.array_equal(result[0], expected_result))

322
    def test_energy_total(self):
323
        result = self.results["energy_total"]
324
        expected_result = convert_unit(np.array(-31.297885372811074), "hartree")
325
        self.assertTrue(np.array_equal(result, expected_result))
326

327
328
    def test_electronic_kinetic_energy(self):
        result = self.results["electronic_kinetic_energy"]
329
        expected_result = convert_unit(np.array(13.31525592466419), "hartree")
330
331
        self.assertTrue(np.array_equal(result, expected_result))

332
    def test_atom_forces(self):
333
        result = self.results["atom_forces"]
334
335
336
337
338
339
340
341
342
343
344
        expected_result = convert_unit(
            np.array([
                [0.00000000, 0.00000000, 0.00000000],
                [0.00000000, 0.00000001, 0.00000001],
                [0.00000001, 0.00000001, 0.00000000],
                [0.00000001, 0.00000000, 0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
                [-0.00000001, -0.00000001, -0.00000001],
            ]),
345
            "forceAu"
346
        )
347
        self.assertTrue(np.array_equal(result, expected_result))
348

349
    def test_atom_label(self):
350
        atom_labels = self.results["atom_labels"]
351
        expected_labels = np.array(8*["Si"])
Lauri Himanen's avatar
Lauri Himanen committed
352
353
354
        self.assertTrue(np.array_equal(atom_labels, expected_labels))

    def test_simulation_cell(self):
Lauri Himanen's avatar
Lauri Himanen committed
355
        cell = self.results["simulation_cell"]
Lauri Himanen's avatar
Lauri Himanen committed
356
357
358
359
360
361
362
363
        n_vectors = cell.shape[0]
        n_dim = cell.shape[1]
        self.assertEqual(n_vectors, 3)
        self.assertEqual(n_dim, 3)
        expected_cell = convert_unit(np.array([[5.431, 0, 0], [0, 5.431, 0], [0, 0, 5.431]]), "angstrom")
        self.assertTrue(np.array_equal(cell, expected_cell))

    def test_number_of_atoms(self):
Lauri Himanen's avatar
Lauri Himanen committed
364
        n_atoms = self.results["number_of_atoms"]
Lauri Himanen's avatar
Lauri Himanen committed
365
366
367
        self.assertEqual(n_atoms, 8)

    def test_atom_position(self):
368
        atom_position = self.results["atom_positions"]
Lauri Himanen's avatar
Lauri Himanen committed
369
370
371
        expected_position = convert_unit(np.array([4.073023, 4.073023, 1.357674]), "angstrom")
        self.assertTrue(np.array_equal(atom_position[-1, :], expected_position))

372
    def test_x_cp2k_filenames(self):
373
        input_filename = self.results["x_cp2k_input_filename"]
374
375
376
        expected_input = "si_bulk8.inp"
        self.assertTrue(input_filename, expected_input)

377
        bs_filename = self.results["x_cp2k_basis_set_filename"]
378
379
380
        expected_bs = "../BASIS_SET"
        self.assertEqual(bs_filename, expected_bs)

381
        geminal_filename = self.results["x_cp2k_geminal_filename"]
382
383
384
        expected_geminal = "BASIS_GEMINAL"
        self.assertEqual(geminal_filename, expected_geminal)

385
        potential_filename = self.results["x_cp2k_potential_filename"]
386
387
388
        expected_potential = "../GTH_POTENTIALS"
        self.assertEqual(potential_filename, expected_potential)

389
        mm_potential_filename = self.results["x_cp2k_mm_potential_filename"]
390
391
392
        expected_mm_potential = "MM_POTENTIAL"
        self.assertEqual(mm_potential_filename, expected_mm_potential)

393
        coordinate_filename = self.results["x_cp2k_coordinate_filename"]
394
395
        expected_coordinate = "__STD_INPUT__"
        self.assertEqual(coordinate_filename, expected_coordinate)
396

397
    def test_target_multiplicity(self):
398
        multiplicity = self.results["spin_target_multiplicity"]
399
400
401
402
403
404
        self.assertEqual(multiplicity, 1)

    def test_total_charge(self):
        charge = self.results["total_charge"]
        self.assertEqual(charge, 0)

405
406
    def test_section_basis_set_atom_centered(self):
        basis = self.results["section_basis_set_atom_centered"][0]
407
408
        name = basis["basis_set_atom_centered_short_name"]
        number = basis["basis_set_atom_number"]
409
410
411
        self.assertEquals(name, "DZVP-GTH-PADE")
        self.assertEquals(number, 14)

Lauri Himanen's avatar
Lauri Himanen committed
412
413
    def test_section_basis_set_cell_dependent(self):
        basis = self.results["section_basis_set_cell_dependent"][0]
414
        cutoff = basis["basis_set_planewave_cutoff"]
Lauri Himanen's avatar
Lauri Himanen committed
415
416
        self.assertEquals(cutoff, convert_unit(300.0, "hartree"))

417
418
    def test_section_method_atom_kind(self):
        kind = self.results["section_method_atom_kind"][0]
419
420
        self.assertEqual(kind["method_atom_kind_atom_number"], 14)
        self.assertEqual(kind["method_atom_kind_label"], "Si")
421
422
423

    def test_section_method_basis_set(self):
        kind = self.results["section_method_basis_set"][0]
424
425
        self.assertEqual(kind["method_basis_set_kind"], "wavefunction")
        self.assertEqual(kind["number_of_basis_sets_atom_centered"], 1)
426
        self.assertTrue(np.array_equal(kind["mapping_section_method_basis_set_atom_centered"], np.array([[0, 0]])))
427

428
429
430
431
432
    def test_single_configuration_calculation_converged(self):
        result = self.results["single_configuration_calculation_converged"]
        self.assertTrue(result)

    def test_scf_dft_number_of_iterations(self):
433
        result = self.results["number_of_scf_iterations"]
434
435
436
437
438
439
440
        self.assertEqual(result, 10)

    def test_single_configuration_to_calculation_method_ref(self):
        result = self.results["single_configuration_to_calculation_method_ref"]
        self.assertEqual(result, 0)

    def test_single_configuration_calculation_to_system_description_ref(self):
441
        result = self.results["single_configuration_calculation_to_system_ref"]
442
443
        self.assertEqual(result, 0)

444
    def test_stress_tensor(self):
445
        result = self.results["stress_tensor"]
446
447
        expected_result = convert_unit(
            np.array([
448
449
450
                [7.77640934, -0.00000098, -0.00000099],
                [-0.00000098, 7.77640935, -0.00000101],
                [-0.00000099, -0.00000101, 7.77640935],
451
452
453
454
455
            ]),
            "GPa"
        )
        self.assertTrue(np.array_equal(result, expected_result))

456
457
    def test_stress_tensor_eigenvalues(self):
        result = self.results["x_cp2k_stress_tensor_eigenvalues"]
458
        expected_result = convert_unit(np.array([7.77640735, 7.77641033, 7.77641036]), "GPa")
459
460
461
462
463
        self.assertTrue(np.array_equal(result, expected_result))

    def test_stress_tensor_eigenvectors(self):
        result = self.results["x_cp2k_stress_tensor_eigenvectors"]
        expected_result = np.array([
464
465
466
            [0.57490332, -0.79965737, -0.17330395],
            [0.57753686, 0.54662171, -0.60634634],
            [0.57960102, 0.24850110, 0.77608624],
467
468
469
470
471
        ])
        self.assertTrue(np.array_equal(result, expected_result))

    def test_stress_tensor_determinant(self):
        result = self.results["x_cp2k_stress_tensor_determinant"]
472
        expected_result = convert_unit(4.70259243E+02, "GPa^3")
473
474
475
476
        self.assertTrue(np.array_equal(result, expected_result))

    def test_stress_tensor_one_third_of_trace(self):
        result = self.results["x_cp2k_stress_tensor_one_third_of_trace"]
477
        expected_result = convert_unit(7.77640934E+00, "GPa")
478
479
        self.assertTrue(np.array_equal(result, expected_result))

480
481
    def test_program_basis_set_type(self):
        result = self.results["program_basis_set_type"]
482
        self.assertEqual(result, "gaussians")
483
484
485
486
487
488


#===============================================================================
class TestPreprocessor(unittest.TestCase):

    def test_include(self):
489
        result = get_result("input_preprocessing/include", "x_cp2k_input_GLOBAL.PRINT_LEVEL", optimize=False)
490
491
492
        self.assertEqual(result, "LOW")

    def test_variable(self):
493
        result = get_result("input_preprocessing/variable", "x_cp2k_input_GLOBAL.PROJECT_NAME", optimize=False)
494
495
        self.assertEqual(result, "variable_test")

496
    def test_variable_multiple(self):
497
        result = get_result("input_preprocessing/variable_multiple", "x_cp2k_input_FORCE_EVAL.DFT.MGRID.CUTOFF", optimize=False)
498
        self.assertEqual(result, "50")
499

Lauri Himanen's avatar
Lauri Himanen committed
500
    def test_comments(self):
501
        result = get_result("input_preprocessing/comments", "x_cp2k_input_FORCE_EVAL.DFT.MGRID.CUTOFF", optimize=False)
502
        self.assertEqual(result, "120")
Lauri Himanen's avatar
Lauri Himanen committed
503

504
    def test_tabseparator(self):
505
        result = get_result("input_preprocessing/tabseparator", "x_cp2k_input_FORCE_EVAL.DFT.MGRID.CUTOFF", optimize=False)
506
        self.assertEqual(result, "120")
507

508

509
510
511
512
513
#===============================================================================
class TestGeoOpt(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
514
        cls.results = get_results("geo_opt/cg", "section_run")
515
516
517
518
519

    def test_geometry_optimization_converged(self):
        result = self.results["geometry_optimization_converged"]
        self.assertTrue(result)

520
    def test_number_of_frames_in_sequence(self):
521
        result = self.results["number_of_frames_in_sequence"]
522
523
        self.assertEqual(result, 7)

524
525
526
527
528
529
    def test_frame_sequence_to_sampling_ref(self):
        result = self.results["frame_sequence_to_sampling_ref"]
        self.assertEqual(result, 0)

    def test_frame_sequence_local_frames_ref(self):
        result = self.results["frame_sequence_local_frames_ref"]
530
        expected_result = np.array([0, 1, 2, 3, 4, 5, 6])
531
532
        self.assertTrue(np.array_equal(result, expected_result))

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    def test_sampling_method(self):
        result = self.results["sampling_method"]
        self.assertEqual(result, "geometry_optimization")

    def test_geometry_optimization_method(self):
        result = self.results["geometry_optimization_method"]
        self.assertEqual(result, "conjugate_gradient")

    def test_geometry_optimization_geometry_change(self):
        result = self.results["geometry_optimization_geometry_change"]
        expected_result = convert_unit(
            0.0010000000,
            "bohr"
        )
        self.assertEqual(result, expected_result)

    def test_geometry_optimization_threshold_force(self):
        result = self.results["geometry_optimization_threshold_force"]
        expected_result = convert_unit(
            0.0010000000,
            "bohr^-1*hartree"
        )
        self.assertEqual(result, expected_result)

    def test_frame_sequence_potential_energy(self):
        result = self.results["frame_sequence_potential_energy"]
        expected_result = convert_unit(
            np.array([
                -17.1534159246,
                -17.1941015290,
                -17.2092321965,
                -17.2097667733,
                -17.2097743028,
                -17.2097743229,
567
                -17.20977820662248,
568
569
570
571
572
            ]),
            "hartree"
        )
        self.assertTrue(np.array_equal(result, expected_result))

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    def test_atom_positions(self):
        result = self.results["atom_positions"]
        expected_start = convert_unit(
            np.array([
                [12.2353220000, 1.3766420000, 10.8698800000],
                [12.4175775999, 2.2362362573, 11.2616216864],
                [11.9271436933, 1.5723516602, 10.0115134757],
            ]),
            "angstrom"
        )

        expected_end = convert_unit(
            np.array([
                [12.2353220000, 1.3766420000, 10.8698800000],
                [12.4958164689, 2.2307248873, 11.3354322515],
                [11.9975558616, 1.5748085240, 10.0062792262],
            ]),
            "angstrom"
        )
592
593
        result_start = result[0, :, :]
        result_end = result[-1, :, :]
594
595
        self.assertTrue(np.array_equal(result_start, expected_start))
        self.assertTrue(np.array_equal(result_end, expected_end))
596
597


598
599
600
601
# ===============================================================================
class TestGeoOptTrajFormats(unittest.TestCase):

    def test_xyz(self):
602

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        result = get_result("geo_opt/geometry_formats/xyz", "atom_positions", optimize=True)
        expected_start = convert_unit(
            np.array([
                [12.2353220000, 1.3766420000, 10.8698800000],
                [12.4175624065, 2.2362390825, 11.2616392180],
                [11.9271777126, 1.5723402996, 10.0115089094],
            ]),
            "angstrom"
        )
        expected_end = convert_unit(
            np.array([
                [12.2353220000, 1.3766420000, 10.8698800000],
                [12.4957995882, 2.2307218433, 11.3354453867],
                [11.9975764125, 1.5747996320, 10.0062529540],
            ]),
            "angstrom"
        )
620
621
        result_start = result[0, :, :]
        result_end = result[-1, :, :]
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        self.assertTrue(np.array_equal(result_start, expected_start))
        self.assertTrue(np.array_equal(result_end, expected_end))

    def test_pdb(self):
        result = get_result("geo_opt/geometry_formats/pdb", "atom_positions", optimize=True)
        expected_start = convert_unit(
            np.array([
                [12.235, 1.377, 10.870],
                [12.418, 2.236, 11.262],
                [11.927, 1.572, 10.012],
            ]),
            "angstrom"
        )
        expected_end = convert_unit(
            np.array([
                [12.235, 1.377, 10.870],
                [12.496, 2.231, 11.335],
                [11.998, 1.575, 10.006],
            ]),
            "angstrom"
        )
643
644
        result_start = result[0, :, :]
        result_end = result[-1, :, :]
645
646
647
648
649
650
651
652
653
        self.assertTrue(np.array_equal(result_start, expected_start))
        self.assertTrue(np.array_equal(result_end, expected_end))

    def test_dcd(self):
        result = get_result("geo_opt/geometry_formats/dcd", "atom_positions", optimize=True)
        frames = result.shape[0]
        self.assertEqual(frames, 7)


654
655
656
657
658
659
660
661
662
663
664
#===============================================================================
class TestGeoOptOptimizers(unittest.TestCase):

    def test_bfgs(self):
        result = get_result("geo_opt/bfgs", "geometry_optimization_method")
        self.assertEqual(result, "bfgs")

    def test_lbfgs(self):
        result = get_result("geo_opt/lbfgs", "geometry_optimization_method")
        self.assertEqual(result, "bfgs")

665
666
667
668
669
670
671
672
673
674
675
676
677
678

#===============================================================================
class TestGeoOptTrajectory(unittest.TestCase):

    def test_each_and_add_last(self):
        """Test that the EACH and ADD_LAST settings affect the parsing
        correctly.
        """
        results = get_results("geo_opt/each")

        single_conf = results["section_single_configuration_calculation"]
        systems = results["section_system"]

        i_conf = 0
679
        for calc in single_conf:
680
            system_index = calc["single_configuration_calculation_to_system_ref"]
681
682
683
            system = systems[system_index]

            if i_conf == 0 or i_conf == 2 or i_conf == 4:
684
                with self.assertRaises(KeyError):
685
                    pos = system["atom_positions"]
686
            else:
687
                pos = system["atom_positions"]
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
                if i_conf == 1:
                    expected_pos = convert_unit(
                        np.array([
                            [12.2353220000, 1.3766420000, 10.8698800000],
                            [12.4618486015, 2.2314871691, 11.3335607388],
                            [11.9990227122, 1.5776813026, 10.0384213366],
                        ]),
                        "angstrom"
                    )
                    self.assertTrue(np.array_equal(pos, expected_pos))
                if i_conf == 3:
                    expected_pos = convert_unit(
                        np.array([
                            [12.2353220000, 1.3766420000, 10.8698800000],
                            [12.4962705528, 2.2308411983, 11.3355758433],
                            [11.9975151486, 1.5746309898, 10.0054430868],
                        ]),
                        "angstrom"
                    )
                    self.assertTrue(np.array_equal(pos, expected_pos))
                if i_conf == 5:
                    expected_pos = convert_unit(
                        np.array([
                            [12.2353220000, 1.3766420000, 10.8698800000],
                            [12.4958168364, 2.2307249171, 11.3354322532],
                            [11.9975556812, 1.5748088251, 10.0062793864],
                        ]),
                        "angstrom"
                    )
                    self.assertTrue(np.array_equal(pos, expected_pos))

                if i_conf == 6:
                    expected_pos = convert_unit(
                        np.array([
                            [12.2353220000, 1.3766420000, 10.8698800000],
                            [12.4958164689, 2.2307248873, 11.3354322515],
                            [11.9975558616, 1.5748085240, 10.0062792262],
                        ]),
                        "angstrom"
                    )
                    self.assertTrue(np.array_equal(pos, expected_pos))

            i_conf += 1

Lauri Himanen's avatar
Lauri Himanen committed
732
733
734
735
736
737
738

#===============================================================================
class TestMD(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        cls.results = get_results("md/nve", "section_run")
Lauri Himanen's avatar
Lauri Himanen committed
739
740
741
742
743
744
745
746
747
        cls.temp = convert_unit(
            np.array([
                300.000000000,
                275.075405378,
                235.091633019,
                202.752506973,
                192.266488819,
                201.629598676,
                218.299664775,
748
                230.324748557,
Lauri Himanen's avatar
Lauri Himanen committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
                232.691881533,
                226.146979313,
                213.165337396,
            ]),
            "K"
        )
        cls.cons = convert_unit(
            np.array([
                -34.323271136,
                -34.323245645,
                -34.323206964,
                -34.323183380,
                -34.323187747,
                -34.323208962,
                -34.323227533,
                -34.323233583,
                -34.323230715,
                -34.323227013,
                -34.323224123,
            ]),
            "hartree"
        )
        cls.pot = convert_unit(
            np.array([
                -34.330396471,
                -34.329778993,
                -34.328790653,
                -34.327998978,
                -34.327754290,
                -34.327997890,
                -34.328412394,
                -34.328704052,
                -34.328757407,
                -34.328598255,
                -34.328287038,
            ]),
            "hartree"
        )
        cls.kin = convert_unit(
            np.array([
                0.007125335,
                0.006533348,
                0.005583688,
                0.004815598,
                0.004566544,
                0.004788928,
                0.005184860,
                0.005470470,
                0.005526692,
                0.005371243,
                0.005062914,
            ]),
            "hartree"
        )
Lauri Himanen's avatar
Lauri Himanen committed
803

804
805
806
807
808
    def test_number_of_atoms(self):
        result = self.results["number_of_atoms"]
        expected_result = np.array(11*[6])
        self.assertTrue(np.array_equal(result, expected_result))

809
810
811
812
813
814
815
816
817
818
819
820
821
    def test_simulation_cell(self):
        result = self.results["simulation_cell"]
        self.assertEqual(len(result), 11)
        expected_start = convert_unit(
            np.array([
                [9.853, 0, 0],
                [0, 9.853, 0],
                [0, 0, 9.853],
            ]),
            "angstrom"
        )
        self.assertTrue(np.array_equal(result[0], expected_start))

Lauri Himanen's avatar
Lauri Himanen committed
822
    def test_ensemble_type(self):
823
        result = self.results["ensemble_type"]
Lauri Himanen's avatar
Lauri Himanen committed
824
825
        self.assertEqual(result, "NVE")

826
827
828
829
    def test_sampling_method(self):
        result = self.results["sampling_method"]
        self.assertEqual(result, "molecular_dynamics")

Lauri Himanen's avatar
Lauri Himanen committed
830
831
832
833
    def test_number_of_frames_in_sequence(self):
        result = self.results["number_of_frames_in_sequence"]
        self.assertEqual(result, 11)

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
    def test_atom_positions(self):
        result = self.results["atom_positions"]
        expected_start = convert_unit(
            np.array([
                [2.2803980000, 9.1465390000, 5.0886960000],
                [1.2517030000, 2.4062610000, 7.7699080000],
                [1.7620190000, 9.8204290000, 5.5284540000],
                [3.0959870000, 9.1070880000, 5.5881860000],
                [0.5541290000, 2.9826340000, 8.0820240000],
                [1.7712570000, 2.9547790000, 7.1821810000],
            ]),
            "angstrom"
        )
        expected_end = convert_unit(
            np.array([
                [2.2916014875, 9.1431763260, 5.0868100688],
                [1.2366834078, 2.4077552776, 7.7630044423],
                [1.6909790671, 9.8235337924, 5.5042564094],
                [3.1130341664, 9.0372111810, 5.6100739746],
                [0.5652070478, 3.0441761067, 8.1734257299],
                [1.8669280879, 2.9877213524, 7.2364955946],
            ]),
            "angstrom"
        )
858
859
        self.assertTrue(np.array_equal(result[0, :], expected_start))
        self.assertTrue(np.array_equal(result[-1, :], expected_end))
860

861
862
863
864
865
866
867
868
869
870
871
    def test_atom_velocities(self):
        result = self.results["atom_velocities"]
        expected_start = convert_unit(
            np.array([
                [0.0000299284, 0.0000082360, -0.0000216368],
                [-0.0001665963, 0.0001143863, -0.0000622640],
                [-0.0005732926, -0.0003112611, -0.0007149779],
                [0.0013083605, -0.0009262219, 0.0006258560],
                [0.0012002313, -0.0003701042, 0.0002810523],
                [0.0002340810, -0.0003388418, 0.0011398583],
            ]),
872
            "bohr*(hbar/hartree)^-1"
873
874
875
876
877
878
879
880
881
882
        )
        expected_end = convert_unit(
            np.array([
                [0.0001600263, -0.0000383308, 0.0000153662],
                [-0.0001269381, -0.0000005151, -0.0000726214],
                [0.0000177093, -0.0003257814, -0.0000257852],
                [-0.0015067045, -0.0001700489, -0.0003651605],
                [0.0000307926, 0.0006886719, 0.0008431321],
                [0.0007424681, 0.0003614127, 0.0005749089],
            ]),
883
            "bohr*(hbar/hartree)^-1"
884
885
        )

886
887
        self.assertTrue(np.array_equal(result[0, :], expected_start))
        self.assertTrue(np.array_equal(result[-1, :], expected_end))
888

889
890
    def test_frame_sequence_potential_energy(self):
        result = self.results["frame_sequence_potential_energy"]
Lauri Himanen's avatar
Lauri Himanen committed
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
        self.assertTrue(np.array_equal(result, self.pot))

    def test_frame_sequence_kinetic_energy(self):
        result = self.results["frame_sequence_kinetic_energy"]
        self.assertTrue(np.array_equal(result, self.kin))

    def test_frame_sequence_conserved_quantity(self):
        result = self.results["frame_sequence_conserved_quantity"]
        self.assertTrue(np.array_equal(result, self.cons))

    def test_frame_sequence_temperature(self):
        result = self.results["frame_sequence_temperature"]
        self.assertTrue(np.array_equal(result, self.temp))

    def test_frame_sequence_time(self):
        result = self.results["frame_sequence_time"]
907
908
        expected_result = convert_unit(
            np.array([
Lauri Himanen's avatar
Lauri Himanen committed
909
910
911
912
913
914
915
916
917
918
919
                0.000000,
                0.500000,
                1.000000,
                1.500000,
                2.000000,
                2.500000,
                3.000000,
                3.500000,
                4.000000,
                4.500000,
                5.000000,
920
            ]),
Lauri Himanen's avatar
Lauri Himanen committed
921
            "fs"
922
923
924
        )
        self.assertTrue(np.array_equal(result, expected_result))

Lauri Himanen's avatar
Lauri Himanen committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
    def test_frame_sequence_potential_energy_stats(self):
        result = self.results["frame_sequence_potential_energy_stats"]
        expected_result = np.array([self.pot.mean(), self.pot.std()])
        self.assertTrue(np.array_equal(result, expected_result))

    def test_frame_sequence_kinetic_energy_stats(self):
        result = self.results["frame_sequence_kinetic_energy_stats"]
        expected_result = np.array([self.kin.mean(), self.kin.std()])
        self.assertTrue(np.array_equal(result, expected_result))

    def test_frame_sequence_conserved_quantity_stats(self):
        result = self.results["frame_sequence_conserved_quantity_stats"]
        expected_result = np.array([self.cons.mean(), self.cons.std()])
        self.assertTrue(np.array_equal(result, expected_result))

    def test_frame_sequence_temperature_stats(self):
        result = self.results["frame_sequence_temperature_stats"]
        expected_result = np.array([self.temp.mean(), self.temp.std()])
        self.assertTrue(np.array_equal(result, expected_result))


#===============================================================================
class TestMDEnsembles(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        cls.pressure = convert_unit(
952
            np.array([
953
954
                -0.192828092559E+04,
                -0.145371071470E+04,
Lauri Himanen's avatar
Lauri Himanen committed
955
                -0.210098903760E+03,
956
957
                0.167260570313E+04,
                0.395562042841E+04,
Lauri Himanen's avatar
Lauri Himanen committed
958
                0.630374855942E+04,
959
960
                0.836906136786E+04,
                0.983216022830E+04,
Lauri Himanen's avatar
Lauri Himanen committed
961
                0.104711540465E+05,
962
                0.102444821550E+05,
Lauri Himanen's avatar
Lauri Himanen committed
963
                0.931695792434E+04,
964
            ]),
Lauri Himanen's avatar
Lauri Himanen committed
965
            "bar"
966
        )
Lauri Himanen's avatar
Lauri Himanen committed
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

    def test_nvt(self):
        results = get_results("md/nvt", "section_run")
        ensemble = results["ensemble_type"]
        self.assertEqual(ensemble, "NVT")

    def test_npt(self):
        results = get_results("md/npt", "section_run")
        ensemble = results["ensemble_type"]
        self.assertEqual(ensemble, "NPT")

        pressure = results["frame_sequence_pressure"]
        self.assertTrue(np.array_equal(pressure, self.pressure))

        pressure_stats = results["frame_sequence_pressure_stats"]
        expected_pressure_stats = np.array([self.pressure.mean(), self.pressure.std()])
        self.assertTrue(np.array_equal(pressure_stats, expected_pressure_stats))
Lauri Himanen's avatar
Lauri Himanen committed
984

985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        simulation_cell = results["simulation_cell"]
        expected_cell_start = convert_unit(
            np.array(
                [[
                    6.0000000000,
                    0.0000000000,
                    0.0000000000,
                ], [
                    0.0000000000,
                    6.0000000000,
                    0.0000000000,
                ], [
                    0.0000000000,
                    0.0000000000,
                    6.0000000000,
                ]]),
            "angstrom"
        )
        expected_cell_end = convert_unit(
            np.array(
                [[
                    5.9960617905,
                    -0.0068118798,
                    -0.0102043036,
                ], [
                    -0.0068116027,
                    6.0225574669,
                    -0.0155044063,
                ], [
                    -0.0102048226,
                    -0.0155046726,
                    6.0083072343,
                ]]),
            "angstrom"
        )
        self.assertEqual(simulation_cell.shape[0], 11)
1021
1022
        self.assertTrue(np.array_equal(expected_cell_start, simulation_cell[0, :, :]))
        self.assertTrue(np.array_equal(expected_cell_end, simulation_cell[-1, :, :]))
Lauri Himanen's avatar
Lauri Himanen committed
1023

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

#===============================================================================
class TestElectronicStructureMethod(unittest.TestCase):

    def test_mp2(self):
        results = get_results("electronic_structure_method/mp2", "section_run")
        result = results["electronic_structure_method"]
        self.assertEqual(result, "MP2")

    def test_dft_plus_u(self):
        results = get_results("electronic_structure_method/dft_plus_u", "section_run")
        result = results["electronic_structure_method"]
        self.assertEqual(result, "DFT+U")

    def test_rpa(self):
        results = get_results("electronic_structure_method/rpa", "section_run")
        result = results["electronic_structure_method"]
        self.assertEqual(result, "RPA")


1044
1045
1046
1047
1048
1049
#===============================================================================
if __name__ == '__main__':
    logger = logging.getLogger("cp2kparser")
    logger.setLevel(logging.ERROR)

    suites = []
1050
1051
1052
1053
1054
1055
1056
1057
1058
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestErrors))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestXCFunctional))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestEnergyForce))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestStressTensorMethods))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestSelfInteractionCorrectionMethod))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestConfigurationPeriodicDimensions))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestSCFConvergence))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestForceFiles))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestPreprocessor))
1059
1060
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestGeoOpt))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestGeoOptTrajFormats))
1061
1062
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestGeoOptOptimizers))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestGeoOptTrajectory))
1063
1064
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestMD))
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestMDEnsembles))
1065
    suites.append(unittest.TestLoader().loadTestsFromTestCase(TestElectronicStructureMethod))
1066
1067
    alltests = unittest.TestSuite(suites)
    unittest.TextTestRunner(verbosity=0).run(alltests)