--- Code logo: "__________________________________ A fast and precise DFT wavelet code | | | | | | | | | | | | BBBB i gggggg |_____|_____|_____|_____|_____| B B g | | : | : | | | B B i g | |-0+--|-0+--| | | B B i g g |_____|__:__|__:__|_____|_____|___ BBBBB i g g | : | | | : | | B B i g g |--+0-| | |-0+--| | B B iiii g g |__:__|_____|_____|__:__|_____| B B i g g | | : | : | | | B BBBB i g g | |-0+--|-0+--| | | B iiiii gggggg |_____|__:__|__:__|_____|_____|__BBBBB | | | | : | | TTTTTTTTT | | | |--+0-| | DDDDDD FFFFF T |_____|_____|_____|__:__|_____| D D F TTTT T | | | | : | |D D F T T | | | |--+0-| |D D FFFF T T |_____|_____|_____|__:__|_____|D___ D F T T | | | : | | |D D F TTTTT | | |--+0-| | | D D F T T |_____|_____|__:__|_____|_____| D F T T | | | | | | D T T | | | | | | DDDDDD F TTTT |_____|_____|_____|_____|_____|______ www.bigdft.org " Reference Paper : The Journal of Chemical Physics 129, 014109 (2008) Version Number : 1.8 Timestamp of this run : 2016-12-02 09:05:18.705 Root process Hostname : lenovo700 Number of MPI tasks : 1 OpenMP parallelization : Yes Maximal OpenMP threads per MPI task : 8 #------------------------------------------------------------------ Code compiling options Compilation options: Configure arguments: " '--prefix' '/home/lauri/bigdft-suite/build/install' 'FC=mpif90' 'FCFLAGS=-O2 -fopenmp' 'CFLAGS=-O2 -fopenmp' 'LIBS=-llapack -lblas -ldl' 'LDFLAGS=-L/home/lauri/bigdft-suite/build/install/lib ' 'C_INCLUDE_PATH=/home/lauri/bigdft-suite/build/install/include' 'PKG_CONFIG_PATH=/home/lauri/bigdft-suite/build/install/lib/pkgconfig:/home/lauri/bigdft -suite/build/install/share/pkgconfig:/usr/lib/x86_64-linux-gnu/pkgconfig:/usr/lib/pkgcon fig:/usr/share/pkgconfig'" Compilers (CC, FC, CXX) : [ gcc, mpif90, g++ ] Compiler flags: CFLAGS : -O2 -fopenmp FCFLAGS : -O2 -fopenmp CXXFLAGS : -g -O2 #------------------------------------------------------------------------ Input parameters radical : null outdir : ./ logfile : No run_from_files : Yes psolver: kernel: screening : 0 # Mu screening parameter isf_order : 16 # Order of the Interpolating Scaling Function family stress_tensor : Yes # Triggers the calculation of the stress tensor environment: cavity : none # Type of the cavity cavitation : Yes # Triggers the evaluation of the extra cavitation terms gammaS : 72.0 # Cavitation term, surface tension of the solvent [dyn/cm] alphaS : -22.0 # Proportionality of repulsion free energy in term of the surface integral [dyn/cm] betaV : -0.35 # Proportionality of dispersion free energy in term of volume integral [GPa] input_guess : Yes # Triggers the input guess procedure of gps_algorithm fd_order : 16 # Order of the Finite-difference derivatives for the GPS solver itermax : 50 # Maximum number of iterations of the GPS outer loop minres : 1.e-8 # Convergence threshold of the loop pb_method : none # Defines the method for the Poisson Boltzmann Equation setup: accel : none # Material Acceleration taskgroup_size : 0 # Size of the taskgroups of the Poisson Solver global_data : No # Charge density and Electrostatic potential are given by global arrays verbose : Yes # Verbosity switch output : none # Quantities to be plotted after the main solver routine dft: hgrids: [0.45, 0.45, 0.45] # Grid spacing in the three directions (bohr) rmult: [5., 8.] # c(f)rmult*radii_cf(:,1(2))=coarse(fine) atom-based radius ixc : 1 # Exchange-correlation parameter (LDA=1,PBE=11) qcharge : 0 # Charge of the system. Can be integer or real. elecfield: [0., 0., 0.] # Electric field (Ex,Ey,Ez) nspin : 1 # Spin polarization treatment mpol : 0 # Total magnetic moment gnrm_cv : 1.e-4 # convergence criterion gradient itermax : 50 # Max. iterations of wfn. opt. steps itermin : 0 # Minimal iterations of wfn. optimzed steps nrepmax : 1 # Max. number of re-diag. runs ncong : 6 # No. of CG it. for preconditioning eq. idsx : 6 # Wfn. diis history dispersion : 0 # Dispersion correction potential (values 1,2,3,4,5), 0=none inputpsiid : 0 # Input guess wavefunctions output_wf : 0 # Output of the support functions output_denspot : 0 # Output of the density or the potential rbuf : 0. # Length of the tail (AU) ncongt : 30 # No. of tail CG iterations norbv : 0 # Davidson subspace dimension (No. virtual orbitals) nvirt : 0 # No. of virtual orbs nplot : 0 # No. of plotted orbs gnrm_cv_virt : 1.e-4 # convergence criterion gradient for virtual orbitals itermax_virt : 50 # Max. iterations of wfn. opt. steps for virtual orbitals disablesym : No # Disable the symmetry detection external_potential: values : __not_a_value__ calculate_strten : Yes # Boolean to activate the calculation of the stress tensor. Might be set to No for # performance reasons plot_mppot_axes: [-1, -1, -1] # Plot the potential generated by the multipoles along axes through this # point. Negative values mean no plot. plot_pot_axes: [-1, -1, -1] # Plot the potential along axes through this point. Negative values mean # no plot. occupancy_control : None # Dictionary of the atomic matrices to be applied for a given iteration number itermax_occ_ctrl : 0 # Number of iterations of occupancy control scheme. Should be between itermin and # itermax output: atomic_density_matrix : None # Dictionary of the atoms for which the atomic density matrix has to be plotted kpt: method : manual # K-point sampling method kpt: # Kpt coordinates - [0., 0., 0.] wkpt: [1.] # Kpt weights bands : No # For doing band structure calculation geopt: method : none # Geometry optimisation method ncount_cluster_x : 1 # Maximum number of force evaluations frac_fluct : 1. # Fraction of force fluctuations. Stop if fmax < forces_fluct*frac_fluct forcemax : 0. # Max forces criterion when stop randdis : 0. # Random displacement amplitude betax : 4. # Stepsize for the geometry optimization beta_stretchx : 5e-1 # Stepsize for steepest descent in stretching mode direction (only if in biomode) md: mdsteps : 0 # Number of MD steps print_frequency : 1 # Printing frequency for energy.dat and Trajectory.xyz files temperature : 300.d0 # Initial temperature in Kelvin timestep : 20.d0 # Time step for integration (in a.u.) no_translation : No # Logical input to set translational correction thermostat : none # Activates a thermostat for MD wavefunction_extrapolation : 0 # Activates the wavefunction extrapolation for MD restart_nose : No # Restart Nose Hoover Chain information from md.restart restart_pos : No # Restart nuclear position information from md.restart restart_vel : No # Restart nuclear velocities information from md.restart mix: iscf : 0 # Mixing parameters itrpmax : 1 # Maximum number of diagonalisation iterations rpnrm_cv : 1.e-4 # Stop criterion on the residue of potential or density norbsempty : 0 # No. of additional bands tel : 0. # Electronic temperature occopt : 1 # Smearing method alphamix : 0. # Multiplying factors for the mixing alphadiis : 2. # Multiplying factors for the electronic DIIS sic: sic_approach : none # SIC (self-interaction correction) method sic_alpha : 0. # SIC downscaling parameter tddft: tddft_approach : none # Time-Dependent DFT method decompose_perturbation : none # Indicate the directory of the perturbation to be decomposed in the basis of empty # states mode: method : dft # Run method of BigDFT call add_coulomb_force : No # Boolean to add coulomb force on top of any of above selected force perf: debug : No # Debug option profiling_depth : -1 # maximum level of the profiling for the tracking of the routines fftcache : 8192 # Cache size for the FFT accel : NO # Acceleration (hardware) ocl_platform : ~ # Chosen OCL platform ocl_devices : ~ # Chosen OCL devices blas : No # CUBLAS acceleration projrad : 15. # Radius of the projector as a function of the maxrad exctxpar : OP2P # Exact exchange parallelisation scheme ig_diag : Yes # Input guess (T=Direct, F=Iterative) diag. of Ham. ig_norbp : 5 # Input guess Orbitals per process for iterative diag. ig_blocks: [300, 800] # Input guess Block sizes for orthonormalisation ig_tol : 1.0e-4 # Input guess Tolerance criterion methortho : 0 # Orthogonalisation rho_commun : DEF # Density communication scheme (DBL, RSC, MIX) unblock_comms : OFF # Overlap Communications of fields (OFF,DEN,POT) linear : OFF # Linear Input Guess approach tolsym : 1.0e-8 # Tolerance for symmetry detection signaling : No # Expose calculation results on Network signaltimeout : 0 # Time out on startup for signal connection (in seconds) domain : ~ # Domain to add to the hostname to find the IP inguess_geopt : 0 # Input guess to be used during the optimization store_index : Yes # Store indices or recalculate them for linear scaling verbosity : 2 # Verbosity of the output psp_onfly : Yes # Calculate pseudopotential projectors on the fly multipole_preserving : No # (EXPERIMENTAL) Preserve the multipole moment of the ionic density mp_isf : 16 # (EXPERIMENTAL) Interpolating scaling function or lifted dual order for the multipole # preserving pdsyev_blocksize : -8 # SCALAPACK linear scaling blocksize pdgemm_blocksize : -8 # SCALAPACK linear scaling blocksize maxproc_pdsyev : 4 # SCALAPACK linear scaling max num procs maxproc_pdgemm : 4 # SCALAPACK linear scaling max num procs ef_interpol_det : 1.e-12 # FOE max determinant of cubic interpolation matrix ef_interpol_chargediff : 1.0 # FOE max charge difference for interpolation mixing_after_inputguess : 1 # Mixing step after linear input guess iterative_orthogonalization : No # Iterative_orthogonalization for input guess orbitals check_sumrho : 1 # Enables linear sumrho check check_overlap : 1 # Enables linear overlap check experimental_mode : No # Activate the experimental mode in linear scaling write_orbitals : 0 # Linear scaling write KS orbitals for cubic restart (might take lot of disk space!) explicit_locregcenters : No # Linear scaling explicitly specify localization centers calculate_KS_residue : Yes # Linear scaling calculate Kohn-Sham residue intermediate_forces : No # Linear scaling calculate intermediate forces kappa_conv : 0.1 # Exit kappa for extended input guess (experimental mode) evbounds_nsatur : 3 # Number of FOE cycles before the eigenvalue bounds are shrinked (linear) evboundsshrink_nsatur : 4 # maximal number of unsuccessful eigenvalue bounds shrinkings calculate_gap : No # linear scaling calculate the HOMO LUMO gap loewdin_charge_analysis : No # linear scaling perform a Loewdin charge analysis at the end of the calculation coeff_weight_analysis : No # linear scaling perform a Loewdin charge analysis of the coefficients for fragment # calculations check_matrix_compression : Yes # linear scaling perform a check of the matrix compression routines correction_co_contra : Yes # linear scaling correction covariant / contravariant gradient fscale_lowerbound : 5.e-3 # linear scaling lower bound for the error function decay length fscale_upperbound : 5.e-2 # linear scaling upper bound for the error function decay length FOE_restart : 0 # Restart method to be used for the FOE method imethod_overlap : 1 # method to calculate the overlap matrices (1=old, 2=new) enable_matrix_taskgroups : True # enable the matrix taskgroups hamapp_radius_incr : 8 # radius enlargement for the Hamiltonian application (in grid points) adjust_kernel_iterations : True # enable the adaptive ajustment of the number of kernel iterations adjust_kernel_threshold : True # enable the adaptive ajustment of the kernel convergence threshold according to the # support function convergence wf_extent_analysis : False # perform an analysis of the extent of the support functions (and possibly KS orbitals) foe_gap : False # Use the FOE method to calculate the HOMO-LUMO gap at the end of a calculation lin_general: hybrid : No # activate the hybrid mode; if activated, only the low accuracy values will be relevant nit: [100, 100] # number of iteration with low/high accuracy rpnrm_cv: [1.e-12, 1.e-12] # convergence criterion for low/high accuracy conf_damping : -0.5 # how the confinement should be decreased, only relevant for hybrid mode; negative -> # automatic taylor_order : 0 # order of the Taylor approximation; 0 -> exact max_inversion_error : 1.d0 # linear scaling maximal error of the Taylor approximations to calculate the inverse of # the overlap matrix output_wf : 0 # output basis functions; 0 no output, 1 formatted output, 2 Fortran bin, 3 ETSF output_mat : 0 # output sparse matrices; 0 no output, 1 formatted sparse, 11 formatted dense, 21 # formatted both output_coeff : 0 # output KS coefficients; 0 no output, 1 formatted output output_fragments : 0 # output support functions, kernel and coeffs; 0 fragments and full system, 1 # fragments only, 2 full system only kernel_restart_mode : 0 # method for restarting kernel; 0 kernel, 1 coefficients, 2 random, 3 diagonal, 4 # support function weights kernel_restart_noise : 0.0d0 # add random noise to kernel or coefficients when restarting frag_num_neighbours : 0 # number of neighbours to output for each fragment frag_neighbour_cutoff : 12.0d0 # number of neighbours to output for each fragment cdft_lag_mult_init : 0.05d0 # CDFT initial value for Lagrange multiplier cdft_conv_crit : 1.e-2 # CDFT convergence threshold for the constrained charge calc_dipole : No # calculate dipole calc_quadrupole : No # calculate quadrupole subspace_diag : No # diagonalization at the end extra_states : 0 # Number of extra states to include in support function and kernel optimization (dmin # only), must be equal to norbsempty calculate_onsite_overlap : No # calculate the onsite overlap matrix (has only an effect if the matrices are all # written to disk) charge_multipoles : 0 # Calculate the atom-centered multipole coefficients; 0 no, 1 old approach Loewdin, 2 # new approach Projector support_function_multipoles : False # Calculate the multipole moments of the support functions plot_locreg_grids : False # plot the scaling function and wavelets grid of each localization region calculate_FOE_eigenvalues: [0, -1] # First and last eigenvalue to be calculated using the FOE procedure precision_FOE_eigenvalues : 5.e-3 # decay length of the error function used to extract the eigenvalues (i.e. something like # the resolution) lin_basis: nit: [4, 5] # maximal number of iterations in the optimization of the # support functions nit_ig : 50 # maximal number of iterations to optimize the support functions in the extended input # guess (experimental mode only) idsx: [6, 6] # DIIS history for optimization of the support functions # (low/high accuracy); 0 -> SD gnrm_cv: [1.e-2, 1.e-4] # convergence criterion for the optimization of the support functions # (low/high accuracy) gnrm_ig : 1.e-3 # convergence criterion for the optimization of the support functions in the extended # input guess (experimental mode only) deltae_cv : 1.e-4 # total relative energy difference to stop the optimization ('experimental_mode' only) gnrm_dyn : 1.e-4 # dynamic convergence criterion ('experimental_mode' only) min_gnrm_for_dynamic : 1.e-3 # minimal gnrm to active the dynamic gnrm criterion alpha_diis : 1.0 # multiplicator for DIIS alpha_sd : 1.0 # initial step size for SD nstep_prec : 5 # number of iterations in the preconditioner fix_basis : 1.e-10 # fix the support functions if the density change is below this threshold correction_orthoconstraint : 1 # correction for the slight non-orthonormality in the orthoconstraint orthogonalize_ao : Yes # Orthogonalize the atomic orbitals used as input guess lin_kernel: nstep: [1, 1] # number of steps taken when updating the coefficients via # direct minimization for each iteration of # the density kernel loop nit: [5, 5] # number of iterations in the (self-consistent) # optimization of the density kernel idsx_coeff: [0, 0] # DIIS history for direct mininimization idsx: [0, 0] # mixing method; 0 -> linear mixing, >=1 -> Pulay mixing alphamix: [0.5, 0.5] # mixing parameter (low/high accuracy) gnrm_cv_coeff: [1.e-5, 1.e-5] # convergence criterion on the gradient for direct minimization rpnrm_cv: [1.e-10, 1.e-10] # convergence criterion (change in density/potential) for the kernel # optimization linear_method : DIAG # method to optimize the density kernel mixing_method : DEN # quantity to be mixed alpha_sd_coeff : 0.2 # initial step size for SD for direct minimization alpha_fit_coeff : No # Update the SD step size by fitting a quadratic polynomial eval_range_foe: [-0.5, 0.5] # Lower and upper bound of the eigenvalue spectrum, will be adjusted # automatically if chosen unproperly fscale_foe : 2.e-2 # decay length of the error function coeff_scaling_factor : 1.0 # factor to scale the gradient in direct minimization pexsi_npoles : 40 # number of poles used by PEXSI pexsi_mumin : -1.0 # Initial guess for the lower bound of the chemical potential used by PEXSI pexsi_mumax : 1.0 # initial guess for the upper bound of the chemical potential used by PEXSI pexsi_mu : 0.5 # initial guess for the chemical potential used by PEXSI pexsi_temperature : 1.e-3 # temperature used by PEXSI pexsi_tol_charge : 1.e-3 # charge tolerance used PEXSI lin_basis_params: nbasis : 4 # Number of support functions per atom ao_confinement : 8.3e-3 # Prefactor for the input guess confining potential confinement: [8.3e-3, 0.0] # Prefactor for the confining potential (low/high accuracy) rloc: [7.0, 7.0] # Localization radius for the support functions rloc_kernel : 9.0 # Localization radius for the density kernel rloc_kernel_foe : 14.0 # cutoff radius for the FOE matrix vector multiplications psppar.N: Pseudopotential type : HGH-K Atomic number : 7 No. of Electrons : 5 Pseudopotential XC : 1 Local Pseudo Potential (HGH convention): Rloc : 0.28917923 Coefficients (c1 .. c4): [-12.23481988, 1.76640728, 0.0, 0.0] NonLocal PSP Parameters: - Channel (l) : 0 Rloc : 0.25660487 h_ij terms: [13.55224272, 0.0, 0.0, 0.0, 0.0, 0.0] - Channel (l) : 1 Rloc : 0.27013369 h_ij terms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] Source : Hard-Coded Radii of active regions (AU): Coarse : 1.370256482166319 Fine : 0.25660487 Coarse PSP : 0.50650066875 Source : Hard-Coded posinp: #---------------------------------------------- Atomic positions (by default bohr units) units : angstroem cell: [ 7.0, 7.0, 7.0] positions: - N: [0.0, 0.0, 0.0] - N: [0.0, 0.0, 1.114989995956421] properties: format : xyz source : posinp.xyz #--------------------------------------------------------------------------------------- | Data Writing directory : ./ #-------------------------------------------------- Input Atomic System (file: posinp.xyz) Atomic System Properties: Number of atomic types : 1 Number of atoms : 2 Types of atoms : [ N ] Boundary Conditions : Periodic #Code: P Box Sizes (AU) : [ 1.32281E+01, 1.32281E+01, 1.32281E+01 ] Number of Symmetries : 16 Space group : P 4/m m m #------------------------------ Geometry optimization Input Parameters (file: input.geopt) Geometry Optimization Parameters: Maximum steps : 1 Algorithm : none Random atomic displacement : 0.0E+00 Fluctuation in forces : 1.0E+00 Maximum in forces : 0.0E+00 Steepest descent step : 4.0E+00 #------------------- K points description (Reduced and Brillouin zone coordinates, Weight) K points: - {Rc: [ 0.0000, 0.0000, 0.0000 ], Bz: [ 0.0000, 0.0000, 0.0000 ], Wgt: 1.0000} # 0001 Material acceleration : No #iproc=0 #------------------------------------------------------------------------ Input parameters DFT parameters: eXchange Correlation: XC ID : &ixc 1 Exchange-Correlation reference : "XC: Teter 93" XC functional implementation : ABINIT Spin polarization : No Basis set definition: Suggested Grid Spacings (a0) : [ 0.45, 0.45, 0.45 ] Coarse and Fine Radii Multipliers : [ 5.0, 8.0 ] Self-Consistent Cycle Parameters: Wavefunction: Gradient Norm Threshold : &gnrm_cv 1.0E-04 CG Steps for Preconditioner : 6 DIIS History length : 6 Max. Wfn Iterations : &itermax 50 Max. Subspace Diagonalizations : 1 Input wavefunction policy : INPUT_PSI_LCAO # 0 Output wavefunction policy : NONE # 0 Output grid policy : NONE # 0 Virtual orbitals : 0 Number of plotted density orbitals: 0 Density/Potential: Max. Iterations : 1 #----------------------------------------------------------------------- System Properties Properties of atoms in the system: - Symbol : N #Type No. 01 No. of Electrons : 5 No. of Atoms : 2 Radii of active regions (AU): Coarse : 1.37026 Fine : 0.25660 Coarse PSP : 0.50650 Source : Hard-Coded Grid Spacing threshold (AU) : 0.64 Pseudopotential type : HGH-K Local Pseudo Potential (HGH convention): Rloc : 0.28918 Coefficients (c1 .. c4) : [ -12.23482, 1.76641, 0.00000, 0.00000 ] NonLocal PSP Parameters: - Channel (l) : 0 Rloc : 0.25660 h_ij matrix: - [ 13.55224, 0.00000, 0.00000 ] - [ 0.00000, 0.00000, 0.00000 ] - [ 0.00000, 0.00000, 0.00000 ] No. of projectors : 1 PSP XC : "XC: Teter 93" #----------------------------------------------- Atom Positions (specified and grid units) Atomic structure: Units : angstroem Cell : [ 7.0, 7.0, 7.0 ] Positions: - N: [ 0.000000000, 0.000000000, 0.000000000] # [ 0.00, 0.00, 0.00 ] 0001 - N: [ 0.000000000, 0.000000000, 1.114989996] # [ 0.00, 0.00, 4.78 ] 0002 Rigid Shift Applied (AU) : [ -0.0000, -0.0000, -0.0000 ] #------------------------------------------------------------------------- Grid properties Box Grid spacings : [ 0.4409, 0.4409, 0.4409 ] Sizes of the simulation domain: AU : [ 13.228, 13.228, 13.228 ] Angstroem : [ 7.0000, 7.0000, 7.0000 ] Grid Spacing Units : [ 29, 29, 29 ] High resolution region boundaries (GU): From : [ 0, 0, 0 ] To : [ 29, 29, 29 ] High Res. box is treated separately : No #------------------------------------------------------------------- Kernel Initialization Poisson Kernel Initialization: #---------------------------------------------------------------------- Input parameters kernel: screening : 0 # Mu screening parameter isf_order : 16 # Order of the Interpolating Scaling Function family stress_tensor : Yes # Triggers the calculation of the stress tensor environment: cavity : none # Type of the cavity cavitation : Yes # Triggers the evaluation of the extra cavitation terms gammaS : 72.0 # Cavitation term, surface tension of the solvent [dyn/cm] alphaS : -22.0 # Proportionality of repulsion free energy in term of the surface integral [dyn/cm] betaV : -0.35 # Proportionality of dispersion free energy in term of volume integral [GPa] input_guess : Yes # Triggers the input guess procedure of gps_algorithm fd_order : 16 # Order of the Finite-difference derivatives for the GPS solver itermax : 50 # Maximum number of iterations of the GPS outer loop minres : 1.e-8 # Convergence threshold of the loop pb_method : none # Defines the method for the Poisson Boltzmann Equation setup: accel : none # Material Acceleration taskgroup_size : 0 # Size of the taskgroups of the Poisson Solver global_data : No # Charge density and Electrostatic potential are given by global arrays verbose : Yes # Verbosity switch output : none # Quantities to be plotted after the main solver routine MPI tasks : 1 OpenMP threads per MPI task : 8 Poisson Kernel Creation: Boundary Conditions : Periodic Memory Requirements per MPI task: Density (MB) : 1.65 Kernel (MB) : 0.23 Full Grid Arrays (MB) : 1.65 #WARNING: The coarse grid does not fill the entire periodic box #Errors due to translational invariance breaking may occur Wavefunctions Descriptors, full simulation domain: Coarse resolution grid: No. of segments : 1552 No. of points : 18320 Fine resolution grid: No. of segments : 222 No. of points : 742 #---------------------------------------------------------------------- Occupation Numbers Total Number of Electrons : 10 Spin treatment : Averaged Orbitals Repartition: MPI tasks 0- 0 : 5 Total Number of Orbitals : 5 Input Occupation Numbers: #Kpt #0001 BZ coord. = [ 0.000000, 0.000000, 0.000000 ] - Occupation Numbers: {Orbitals No. 1-5: 2.0000} Wavefunctions memory occupation for root MPI process: 0 MB 918 KB 528 B NonLocal PSP Projectors Descriptors: Creation strategy : On-the-fly Total number of projectors : 2 Total number of components : 6298 Percent of zero components : 14 Size of workspaces : 25208 Maximum size of masking arrays for a projector: 1980 Cumulative size of masking arrays : 3960 Communication checks: Transpositions : Yes Reverse transpositions : Yes #-------------------------------------------------------- Estimation of Memory Consumption Memory requirements for principal quantities (MiB.KiB): Subspace Matrix : 0.1 # (Number of Orbitals: 5) Single orbital : 0.184 # (Number of Components: 23514) All (distributed) orbitals : 1.814 # (Number of Orbitals per MPI task: 5) Wavefunction storage size : 12.572 # (DIIS/SD workspaces included) Nonlocal Pseudopotential Arrays : 0.50 Full Uncompressed (ISF) grid : 1.664 Workspaces storage size : 0.422 Accumulated memory requirements during principal run stages (MiB.KiB): Kernel calculation : 2.513 Density Construction : 21.75 Poisson Solver : 26.18 Hamiltonian application : 22.739 Orbitals Orthonormalization : 22.739 Estimated Memory Peak (MB) : 26 Ion-Ion interaction energy : 1.24464741081112E+00 #---------------------------------------------------------------- Ionic Potential Creation Total ionic charge : -10.000000000000 Poisson Solver: BC : Periodic Box : [ 60, 60, 60 ] MPI tasks : 1 Interaction energy ions multipoles : 0.0 Interaction energy multipoles multipoles: 0.0 #----------------------------------- Wavefunctions from PSP Atomic Orbitals Initialization Input Hamiltonian: Total No. of Atomic Input Orbitals : 8 Atomic Input Orbital Generation: - {Atom Type: N, Electronic configuration: { s: [ 2.00], p: [ 1.00, 1.00, 1.00]}} Wavelet conversion succeeded : Yes Deviation from normalization : 8.27E-05 GPU acceleration : No Total electronic charge : 10.000108688102 Poisson Solver: BC : Periodic Box : [ 60, 60, 60 ] MPI tasks : 1 Energies: {Ekin: 1.39082914713E+01, Epot: -2.16464328904E+01, Enl: 2.33300692222E+00, EH: 1.69037290061E+01, EXC: -4.69922580474E+00, EvXC: -6.15463313317E+00} EKS : -1.96088087637345616E+01 Input Guess Overlap Matrices: {Calculated: Yes, Diagonalized: Yes} #Eigenvalues and New Occupation Numbers Orbitals: [ {e: -1.018637080551E+00, f: 2.0000}, # 00001 {e: -5.051392511972E-01, f: 2.0000}, # 00002 {e: -4.190691105582E-01, f: 2.0000}, # 00003 {e: -4.190675890907E-01, f: 2.0000}, # 00004 {e: -3.727120217116E-01, f: 2.0000}, # 00005 {e: -7.917083534872E-02, f: 0.0000}, # 00006 {e: -7.917005520217E-02, f: 0.0000}, # 00007 {e: 7.005074703646E-01, f: 0.0000}] # 00008 IG wavefunctions defined : Yes #------------------------------------------------------------------- Self-Consistent Cycle Ground State Optimization: - Hamiltonian Optimization: &itrp001 - Subspace Optimization: &itrep001-01 Wavefunctions Iterations: - { #---------------------------------------------------------------------- iter: 1 GPU acceleration: No, Total electronic charge: 10.000389750991, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.31541024170E+01, Epot: -2.13300849254E+01, Enl: 1.86120107969E+00, EH: 1.59581966845E+01, EXC: -4.58252612643E+00, EvXC: -6.00055667889E+00}, iter: 1, EKS: -1.96103001499933249E+01, gnrm: 3.17E-01, D: -1.49E-03, DIIS weights: [ 1.00E+00, 1.00E+00], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 2 GPU acceleration: No, Total electronic charge: 10.000299182451, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.49500192564E+01, Epot: -2.15440052080E+01, Enl: 1.91065086750E+00, EH: 1.79217165021E+01, EXC: -4.89040031810E+00, EvXC: -6.40694209556E+00}, iter: 2, EKS: -1.98438623979024129E+01, gnrm: 1.02E-01, D: -2.34E-01, DIIS weights: [ 3.47E-01, 6.53E-01, -1.42E-02], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 3 GPU acceleration: No, Total electronic charge: 10.000204591885, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.43177417128E+01, Epot: -2.15250349629E+01, Enl: 1.76258960286E+00, EH: 1.71527215039E+01, EXC: -4.75189129400E+00, EvXC: -6.22430161725E+00}, iter: 3, EKS: -1.98803674170900422E+01, gnrm: 5.02E-02, D: -3.65E-02, DIIS weights: [ 6.77E-02, 1.70E-01, 7.62E-01, -9.74E-04], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 4 GPU acceleration: No, Total electronic charge: 10.000220766542, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45137185665E+01, Epot: -2.15831215565E+01, Enl: 1.77024540614E+00, EH: 1.73106246954E+01, EXC: -4.78099590172E+00, EvXC: -6.26267091351E+00}, iter: 4, EKS: -1.98834598567033893E+01, gnrm: 2.61E-02, D: -3.09E-03, DIIS weights: [-1.13E-02, -2.67E-02, 2.03E-01, 8.35E-01, -9.78E-05], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 5 GPU acceleration: No, Total electronic charge: 10.000205386593, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45242139697E+01, Epot: -2.16145195007E+01, Enl: 1.75966413346E+00, EH: 1.72778167566E+01, EXC: -4.77462231251E+00, EvXC: -6.25428545518E+00}, iter: 5, EKS: -1.98841476007647167E+01, gnrm: 1.14E-02, D: -6.88E-04, DIIS weights: [-8.00E-03, -2.19E-02, -5.36E-02, 1.65E-01, 9.18E-01, -8.27E-06], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 6 GPU acceleration: No, Total electronic charge: 10.000203676683, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45448633546E+01, Epot: -2.16300485058E+01, Enl: 1.75612755724E+00, EH: 1.72795953436E+01, EXC: -4.77485265716E+00, EvXC: -6.25459158576E+00}, iter: 6, EKS: -1.98842665980625846E+01, gnrm: 4.27E-03, D: -1.19E-04, DIIS weights: [ 1.12E-03, 7.25E-03, -1.69E-02, -8.28E-02, 4.32E-02, 1.05E+00, -8.99E-07], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 7 GPU acceleration: No, Total electronic charge: 10.000204908687, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45537287619E+01, Epot: -2.16361252066E+01, Enl: 1.75510640062E+00, EH: 1.72814981072E+01, EXC: -4.77521363112E+00, EvXC: -6.25506783177E+00}, iter: 7, EKS: -1.98842865398945357E+01, gnrm: 1.81E-03, D: -1.99E-05, DIIS weights: [ 5.03E-04, -1.40E-03, -1.48E-02, -5.24E-02, 6.95E-02, 9.99E-01, -2.93E-07], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 8 GPU acceleration: No, Total electronic charge: 10.000205963000, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45569101867E+01, Epot: -2.16386676880E+01, Enl: 1.75456876300E+00, EH: 1.72816257053E+01, EXC: -4.77527859396E+00, EvXC: -6.25515405451E+00}, iter: 8, EKS: -1.98842915721743374E+01, gnrm: 1.12E-03, D: -5.03E-06, DIIS weights: [ 3.94E-03, 6.83E-03, -3.38E-02, -1.64E-01, -8.60E-03, 1.20E+00, -9.85E-08], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 9 GPU acceleration: No, Total electronic charge: 10.000206948045, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45583505268E+01, Epot: -2.16398832182E+01, Enl: 1.75401539351E+00, EH: 1.72812932424E+01, EXC: -4.77525741369E+00, EvXC: -6.25512622748E+00}, iter: 9, EKS: -1.98842943156039631E+01, gnrm: 7.00E-04, D: -2.74E-06, DIIS weights: [ 4.16E-03, 2.35E-02, -2.51E-02, -3.51E-01, -1.99E-01, 1.55E+00, -2.40E-08], Orthogonalization Method: 0} - { #--------------------------------------------------------------------- iter: 10 GPU acceleration: No, Total electronic charge: 10.000207829537, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45594819534E+01, Epot: -2.16405200901E+01, Enl: 1.75360305267E+00, EH: 1.72813947130E+01, EXC: -4.77531316822E+00, EvXC: -6.25519991206E+00}, iter: 10, EKS: -1.98842956423030017E+01, gnrm: 2.95E-04, D: -1.33E-06, DIIS weights: [ 1.13E-02, 2.97E-02, -1.01E-02, -3.40E-01, 1.30E-01, 1.18E+00, -3.18E-09], Orthogonalization Method: 0} - { #--------------------------------------------------------------------- iter: 11 GPU acceleration: No, Total electronic charge: 10.000207999580, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45595032084E+01, Epot: -2.16404949307E+01, Enl: 1.75345166378E+00, EH: 1.72812892357E+01, EXC: -4.77531087125E+00, EvXC: -6.25519693769E+00}, iter: 11, EKS: -1.98842958169594937E+01, gnrm: 9.17E-05, D: -1.75E-07, DIIS weights: [ 7.75E-03, 2.46E-02, -3.45E-02, -1.09E-01, 1.42E-01, 9.69E-01, -4.47E-10], Orthogonalization Method: 0} - &FINAL001 { #---------------------------------------------------------- iter: 12 GPU acceleration: No, Total electronic charge: 10.000207942996, Poisson Solver: {BC: Periodic, Box: [ 60, 60, 60 ], MPI tasks: 1}, Hamiltonian Applied: Yes, iter: 12, EKS: -1.98842958295531673E+01, gnrm: 9.17E-05, D: -1.26E-08, #FINAL Energies: {Ekin: 1.45594714734E+01, Epot: -2.16404640612E+01, Enl: 1.75341675641E+00, EH: 1.72812518007E+01, EXC: -4.77530559676E+00, EvXC: -6.25518998850E+00, Eion: 1.24464741081E+00}, } Non-Hermiticity of Hamiltonian in the Subspace: 2.36E-31 #Eigenvalues and New Occupation Numbers Orbitals: [ {e: -1.010350904622E+00, f: 2.0000}, # 00001 {e: -4.753468810105E-01, f: 2.0000}, # 00002 {e: -4.091925033294E-01, f: 2.0000}, # 00003 {e: -4.091920882458E-01, f: 2.0000}, # 00004 {e: -3.597055384823E-01, f: 2.0000}] # 00005 Last Iteration : *FINAL001 #---------------------------------------------------------------------- Forces Calculation GPU acceleration : No Total electronic charge : 10.000207942996 Poisson Solver: BC : Periodic Box : [ 60, 60, 60 ] MPI tasks : 1 Multipole analysis origin : [ 0.0E+00, 0.000000E+00, 1.053513E+00 ] Electric Dipole Moment (AU): P vector : [ -5.8862E+01, -5.8862E+01, -3.1150E+01 ] norm(P) : 8.888135E+01 Electric Dipole Moment (Debye): P vector : [ -1.4961E+02, -1.4961E+02, -7.9175E+01 ] norm(P) : 2.259138E+02 Quadrupole Moment (AU): Q matrix: - [-3.9219E+02, -1.0388E+03, -5.4943E+02] - [-1.0388E+03, -3.9219E+02, -5.4943E+02] - [-5.4943E+02, -5.4943E+02, 7.8437E+02] trace : -3.65E-11 Calculate local forces : Yes Calculate Non Local forces : Yes Stress Tensor calculated : Yes Stress Tensor: Total stress tensor matrix (Ha/Bohr^3): - [ 3.163880073277E-06, 0.00000000000, -7.888610933001E-31 ] - [ 0.00000000000, 3.163880073278E-06, 0.00000000000 ] - [ -7.888610933001E-31, 0.00000000000, 5.613640065878E-05 ] Pressure: Ha/Bohr^3 : 2.08213869351100E-05 GPa : 0.612586 PV (Ha) : 4.81948214974662E-02 #-------------------------------- Warnings obtained during the run, check their relevance! WARNINGS: - The coarse grid does not fill the entire periodic box #-------------------------------------------------------------------- Timing for root process Timings for root process: CPU time (s) : 29.32 Elapsed time (s) : 4.11 BigDFT infocode : 0 Average noise forces: {x: 2.65895237E-04, y: 2.65895237E-04, z: 7.51945326E-04, total: 8.40727261E-04} Clean forces norm (Ha/Bohr): {maxval: 5.679354138515E-02, fnrm2: 6.331351257208E-03} #------------------------------------------------------------------------------ Atomic Forces Atomic Forces (Ha/Bohr): - {N: [ 0.000000000000E+00, 0.000000000000E+00, 5.626119625775E-02]} # 0001 - {N: [ 0.000000000000E+00, 0.000000000000E+00, -5.626119625775E-02]} # 0002 Energy (Hartree) : -1.98842958295531673E+01 Force Norm (Hartree/Bohr) : 7.95653467830459704E-02 Memory Consumption Report: Tot. No. of Allocations : 1590 Tot. No. of Deallocations : 1590 Remaining Memory (B) : 0 Memory occupation: Peak Value (MB) : 70.631 for the array : wz in the routine : input_wf Memory Peak of process : 66.424 MB Walltime since initialization : 00:00:04.794040984 Max No. of dictionaries used : 4502 #( 1019 still in use) Number of dictionary folders allocated: 1