--- Code logo: "__________________________________ A fast and precise DFT wavelet code | | | | | | | | | | | | BBBB i gggggg |_____|_____|_____|_____|_____| B B g | | : | : | | | B B i g | |-0+--|-0+--| | | B B i g g |_____|__:__|__:__|_____|_____|___ BBBBB i g g | : | | | : | | B B i g g |--+0-| | |-0+--| | B B iiii g g |__:__|_____|_____|__:__|_____| B B i g g | | : | : | | | B BBBB i g g | |-0+--|-0+--| | | B iiiii gggggg |_____|__:__|__:__|_____|_____|__BBBBB | | | | : | | TTTTTTTTT | | | |--+0-| | DDDDDD FFFFF T |_____|_____|_____|__:__|_____| D D F TTTT T | | | | : | |D D F T T | | | |--+0-| |D D FFFF T T |_____|_____|_____|__:__|_____|D___ D F T T | | | : | | |D D F TTTTT | | |--+0-| | | D D F T T |_____|_____|__:__|_____|_____| D F T T | | | | | | D T T | | | | | | DDDDDD F TTTT |_____|_____|_____|_____|_____|______ www.bigdft.org " Reference Paper : The Journal of Chemical Physics 129, 014109 (2008) Version Number : 1.8 Timestamp of this run : 2016-12-02 08:53:38.687 Root process Hostname : lenovo700 Number of MPI tasks : 1 OpenMP parallelization : Yes Maximal OpenMP threads per MPI task : 8 #------------------------------------------------------------------ Code compiling options Compilation options: Configure arguments: " '--prefix' '/home/lauri/bigdft-suite/build/install' 'FC=mpif90' 'FCFLAGS=-O2 -fopenmp' 'CFLAGS=-O2 -fopenmp' 'LIBS=-llapack -lblas -ldl' 'LDFLAGS=-L/home/lauri/bigdft-suite/build/install/lib ' 'C_INCLUDE_PATH=/home/lauri/bigdft-suite/build/install/include' 'PKG_CONFIG_PATH=/home/lauri/bigdft-suite/build/install/lib/pkgconfig:/home/lauri/bigdft -suite/build/install/share/pkgconfig:/usr/lib/x86_64-linux-gnu/pkgconfig:/usr/lib/pkgcon fig:/usr/share/pkgconfig'" Compilers (CC, FC, CXX) : [ gcc, mpif90, g++ ] Compiler flags: CFLAGS : -O2 -fopenmp FCFLAGS : -O2 -fopenmp CXXFLAGS : -g -O2 #------------------------------------------------------------------------ Input parameters radical : null outdir : ./ logfile : No run_from_files : Yes psolver: kernel: screening : 0 # Mu screening parameter isf_order : 16 # Order of the Interpolating Scaling Function family stress_tensor : Yes # Triggers the calculation of the stress tensor environment: cavity : none # Type of the cavity cavitation : Yes # Triggers the evaluation of the extra cavitation terms gammaS : 72.0 # Cavitation term, surface tension of the solvent [dyn/cm] alphaS : -22.0 # Proportionality of repulsion free energy in term of the surface integral [dyn/cm] betaV : -0.35 # Proportionality of dispersion free energy in term of volume integral [GPa] input_guess : Yes # Triggers the input guess procedure of gps_algorithm fd_order : 16 # Order of the Finite-difference derivatives for the GPS solver itermax : 50 # Maximum number of iterations of the GPS outer loop minres : 1.e-8 # Convergence threshold of the loop pb_method : none # Defines the method for the Poisson Boltzmann Equation setup: accel : none # Material Acceleration taskgroup_size : 0 # Size of the taskgroups of the Poisson Solver global_data : No # Charge density and Electrostatic potential are given by global arrays verbose : Yes # Verbosity switch output : none # Quantities to be plotted after the main solver routine dft: hgrids: [0.45, 0.45, 0.45] # Grid spacing in the three directions (bohr) rmult: [5., 8.] # c(f)rmult*radii_cf(:,1(2))=coarse(fine) atom-based radius ixc : 1 # Exchange-correlation parameter (LDA=1,PBE=11) qcharge : 0 # Charge of the system. Can be integer or real. elecfield: [0., 0., 0.] # Electric field (Ex,Ey,Ez) nspin : 1 # Spin polarization treatment mpol : 0 # Total magnetic moment gnrm_cv : 1.e-4 # convergence criterion gradient itermax : 50 # Max. iterations of wfn. opt. steps itermin : 0 # Minimal iterations of wfn. optimzed steps nrepmax : 1 # Max. number of re-diag. runs ncong : 6 # No. of CG it. for preconditioning eq. idsx : 6 # Wfn. diis history dispersion : 0 # Dispersion correction potential (values 1,2,3,4,5), 0=none inputpsiid : 0 # Input guess wavefunctions output_wf : 0 # Output of the support functions output_denspot : 0 # Output of the density or the potential rbuf : 0. # Length of the tail (AU) ncongt : 30 # No. of tail CG iterations norbv : 0 # Davidson subspace dimension (No. virtual orbitals) nvirt : 0 # No. of virtual orbs nplot : 0 # No. of plotted orbs gnrm_cv_virt : 1.e-4 # convergence criterion gradient for virtual orbitals itermax_virt : 50 # Max. iterations of wfn. opt. steps for virtual orbitals disablesym : No # Disable the symmetry detection external_potential: values : __not_a_value__ calculate_strten : Yes # Boolean to activate the calculation of the stress tensor. Might be set to No for # performance reasons plot_mppot_axes: [-1, -1, -1] # Plot the potential generated by the multipoles along axes through this # point. Negative values mean no plot. plot_pot_axes: [-1, -1, -1] # Plot the potential along axes through this point. Negative values mean # no plot. occupancy_control : None # Dictionary of the atomic matrices to be applied for a given iteration number itermax_occ_ctrl : 0 # Number of iterations of occupancy control scheme. Should be between itermin and # itermax output: atomic_density_matrix : None # Dictionary of the atoms for which the atomic density matrix has to be plotted kpt: method : manual # K-point sampling method kpt: # Kpt coordinates - [0., 0., 0.] wkpt: [1.] # Kpt weights bands : No # For doing band structure calculation geopt: method : none # Geometry optimisation method ncount_cluster_x : 1 # Maximum number of force evaluations frac_fluct : 1. # Fraction of force fluctuations. Stop if fmax < forces_fluct*frac_fluct forcemax : 0. # Max forces criterion when stop randdis : 0. # Random displacement amplitude betax : 4. # Stepsize for the geometry optimization beta_stretchx : 5e-1 # Stepsize for steepest descent in stretching mode direction (only if in biomode) md: mdsteps : 0 # Number of MD steps print_frequency : 1 # Printing frequency for energy.dat and Trajectory.xyz files temperature : 300.d0 # Initial temperature in Kelvin timestep : 20.d0 # Time step for integration (in a.u.) no_translation : No # Logical input to set translational correction thermostat : none # Activates a thermostat for MD wavefunction_extrapolation : 0 # Activates the wavefunction extrapolation for MD restart_nose : No # Restart Nose Hoover Chain information from md.restart restart_pos : No # Restart nuclear position information from md.restart restart_vel : No # Restart nuclear velocities information from md.restart mix: iscf : 0 # Mixing parameters itrpmax : 1 # Maximum number of diagonalisation iterations rpnrm_cv : 1.e-4 # Stop criterion on the residue of potential or density norbsempty : 0 # No. of additional bands tel : 0. # Electronic temperature occopt : 1 # Smearing method alphamix : 0. # Multiplying factors for the mixing alphadiis : 2. # Multiplying factors for the electronic DIIS sic: sic_approach : none # SIC (self-interaction correction) method sic_alpha : 0. # SIC downscaling parameter tddft: tddft_approach : none # Time-Dependent DFT method decompose_perturbation : none # Indicate the directory of the perturbation to be decomposed in the basis of empty # states mode: method : dft # Run method of BigDFT call add_coulomb_force : No # Boolean to add coulomb force on top of any of above selected force perf: debug : No # Debug option profiling_depth : -1 # maximum level of the profiling for the tracking of the routines fftcache : 8192 # Cache size for the FFT accel : NO # Acceleration (hardware) ocl_platform : ~ # Chosen OCL platform ocl_devices : ~ # Chosen OCL devices blas : No # CUBLAS acceleration projrad : 15. # Radius of the projector as a function of the maxrad exctxpar : OP2P # Exact exchange parallelisation scheme ig_diag : Yes # Input guess (T=Direct, F=Iterative) diag. of Ham. ig_norbp : 5 # Input guess Orbitals per process for iterative diag. ig_blocks: [300, 800] # Input guess Block sizes for orthonormalisation ig_tol : 1.0e-4 # Input guess Tolerance criterion methortho : 0 # Orthogonalisation rho_commun : DEF # Density communication scheme (DBL, RSC, MIX) unblock_comms : OFF # Overlap Communications of fields (OFF,DEN,POT) linear : OFF # Linear Input Guess approach tolsym : 1.0e-8 # Tolerance for symmetry detection signaling : No # Expose calculation results on Network signaltimeout : 0 # Time out on startup for signal connection (in seconds) domain : ~ # Domain to add to the hostname to find the IP inguess_geopt : 0 # Input guess to be used during the optimization store_index : Yes # Store indices or recalculate them for linear scaling verbosity : 2 # Verbosity of the output psp_onfly : Yes # Calculate pseudopotential projectors on the fly multipole_preserving : No # (EXPERIMENTAL) Preserve the multipole moment of the ionic density mp_isf : 16 # (EXPERIMENTAL) Interpolating scaling function or lifted dual order for the multipole # preserving pdsyev_blocksize : -8 # SCALAPACK linear scaling blocksize pdgemm_blocksize : -8 # SCALAPACK linear scaling blocksize maxproc_pdsyev : 4 # SCALAPACK linear scaling max num procs maxproc_pdgemm : 4 # SCALAPACK linear scaling max num procs ef_interpol_det : 1.e-12 # FOE max determinant of cubic interpolation matrix ef_interpol_chargediff : 1.0 # FOE max charge difference for interpolation mixing_after_inputguess : 1 # Mixing step after linear input guess iterative_orthogonalization : No # Iterative_orthogonalization for input guess orbitals check_sumrho : 1 # Enables linear sumrho check check_overlap : 1 # Enables linear overlap check experimental_mode : No # Activate the experimental mode in linear scaling write_orbitals : 0 # Linear scaling write KS orbitals for cubic restart (might take lot of disk space!) explicit_locregcenters : No # Linear scaling explicitly specify localization centers calculate_KS_residue : Yes # Linear scaling calculate Kohn-Sham residue intermediate_forces : No # Linear scaling calculate intermediate forces kappa_conv : 0.1 # Exit kappa for extended input guess (experimental mode) evbounds_nsatur : 3 # Number of FOE cycles before the eigenvalue bounds are shrinked (linear) evboundsshrink_nsatur : 4 # maximal number of unsuccessful eigenvalue bounds shrinkings calculate_gap : No # linear scaling calculate the HOMO LUMO gap loewdin_charge_analysis : No # linear scaling perform a Loewdin charge analysis at the end of the calculation coeff_weight_analysis : No # linear scaling perform a Loewdin charge analysis of the coefficients for fragment # calculations check_matrix_compression : Yes # linear scaling perform a check of the matrix compression routines correction_co_contra : Yes # linear scaling correction covariant / contravariant gradient fscale_lowerbound : 5.e-3 # linear scaling lower bound for the error function decay length fscale_upperbound : 5.e-2 # linear scaling upper bound for the error function decay length FOE_restart : 0 # Restart method to be used for the FOE method imethod_overlap : 1 # method to calculate the overlap matrices (1=old, 2=new) enable_matrix_taskgroups : True # enable the matrix taskgroups hamapp_radius_incr : 8 # radius enlargement for the Hamiltonian application (in grid points) adjust_kernel_iterations : True # enable the adaptive ajustment of the number of kernel iterations adjust_kernel_threshold : True # enable the adaptive ajustment of the kernel convergence threshold according to the # support function convergence wf_extent_analysis : False # perform an analysis of the extent of the support functions (and possibly KS orbitals) foe_gap : False # Use the FOE method to calculate the HOMO-LUMO gap at the end of a calculation lin_general: hybrid : No # activate the hybrid mode; if activated, only the low accuracy values will be relevant nit: [100, 100] # number of iteration with low/high accuracy rpnrm_cv: [1.e-12, 1.e-12] # convergence criterion for low/high accuracy conf_damping : -0.5 # how the confinement should be decreased, only relevant for hybrid mode; negative -> # automatic taylor_order : 0 # order of the Taylor approximation; 0 -> exact max_inversion_error : 1.d0 # linear scaling maximal error of the Taylor approximations to calculate the inverse of # the overlap matrix output_wf : 0 # output basis functions; 0 no output, 1 formatted output, 2 Fortran bin, 3 ETSF output_mat : 0 # output sparse matrices; 0 no output, 1 formatted sparse, 11 formatted dense, 21 # formatted both output_coeff : 0 # output KS coefficients; 0 no output, 1 formatted output output_fragments : 0 # output support functions, kernel and coeffs; 0 fragments and full system, 1 # fragments only, 2 full system only kernel_restart_mode : 0 # method for restarting kernel; 0 kernel, 1 coefficients, 2 random, 3 diagonal, 4 # support function weights kernel_restart_noise : 0.0d0 # add random noise to kernel or coefficients when restarting frag_num_neighbours : 0 # number of neighbours to output for each fragment frag_neighbour_cutoff : 12.0d0 # number of neighbours to output for each fragment cdft_lag_mult_init : 0.05d0 # CDFT initial value for Lagrange multiplier cdft_conv_crit : 1.e-2 # CDFT convergence threshold for the constrained charge calc_dipole : No # calculate dipole calc_quadrupole : No # calculate quadrupole subspace_diag : No # diagonalization at the end extra_states : 0 # Number of extra states to include in support function and kernel optimization (dmin # only), must be equal to norbsempty calculate_onsite_overlap : No # calculate the onsite overlap matrix (has only an effect if the matrices are all # written to disk) charge_multipoles : 0 # Calculate the atom-centered multipole coefficients; 0 no, 1 old approach Loewdin, 2 # new approach Projector support_function_multipoles : False # Calculate the multipole moments of the support functions plot_locreg_grids : False # plot the scaling function and wavelets grid of each localization region calculate_FOE_eigenvalues: [0, -1] # First and last eigenvalue to be calculated using the FOE procedure precision_FOE_eigenvalues : 5.e-3 # decay length of the error function used to extract the eigenvalues (i.e. something like # the resolution) lin_basis: nit: [4, 5] # maximal number of iterations in the optimization of the # support functions nit_ig : 50 # maximal number of iterations to optimize the support functions in the extended input # guess (experimental mode only) idsx: [6, 6] # DIIS history for optimization of the support functions # (low/high accuracy); 0 -> SD gnrm_cv: [1.e-2, 1.e-4] # convergence criterion for the optimization of the support functions # (low/high accuracy) gnrm_ig : 1.e-3 # convergence criterion for the optimization of the support functions in the extended # input guess (experimental mode only) deltae_cv : 1.e-4 # total relative energy difference to stop the optimization ('experimental_mode' only) gnrm_dyn : 1.e-4 # dynamic convergence criterion ('experimental_mode' only) min_gnrm_for_dynamic : 1.e-3 # minimal gnrm to active the dynamic gnrm criterion alpha_diis : 1.0 # multiplicator for DIIS alpha_sd : 1.0 # initial step size for SD nstep_prec : 5 # number of iterations in the preconditioner fix_basis : 1.e-10 # fix the support functions if the density change is below this threshold correction_orthoconstraint : 1 # correction for the slight non-orthonormality in the orthoconstraint orthogonalize_ao : Yes # Orthogonalize the atomic orbitals used as input guess lin_kernel: nstep: [1, 1] # number of steps taken when updating the coefficients via # direct minimization for each iteration of # the density kernel loop nit: [5, 5] # number of iterations in the (self-consistent) # optimization of the density kernel idsx_coeff: [0, 0] # DIIS history for direct mininimization idsx: [0, 0] # mixing method; 0 -> linear mixing, >=1 -> Pulay mixing alphamix: [0.5, 0.5] # mixing parameter (low/high accuracy) gnrm_cv_coeff: [1.e-5, 1.e-5] # convergence criterion on the gradient for direct minimization rpnrm_cv: [1.e-10, 1.e-10] # convergence criterion (change in density/potential) for the kernel # optimization linear_method : DIAG # method to optimize the density kernel mixing_method : DEN # quantity to be mixed alpha_sd_coeff : 0.2 # initial step size for SD for direct minimization alpha_fit_coeff : No # Update the SD step size by fitting a quadratic polynomial eval_range_foe: [-0.5, 0.5] # Lower and upper bound of the eigenvalue spectrum, will be adjusted # automatically if chosen unproperly fscale_foe : 2.e-2 # decay length of the error function coeff_scaling_factor : 1.0 # factor to scale the gradient in direct minimization pexsi_npoles : 40 # number of poles used by PEXSI pexsi_mumin : -1.0 # Initial guess for the lower bound of the chemical potential used by PEXSI pexsi_mumax : 1.0 # initial guess for the upper bound of the chemical potential used by PEXSI pexsi_mu : 0.5 # initial guess for the chemical potential used by PEXSI pexsi_temperature : 1.e-3 # temperature used by PEXSI pexsi_tol_charge : 1.e-3 # charge tolerance used PEXSI lin_basis_params: nbasis : 4 # Number of support functions per atom ao_confinement : 8.3e-3 # Prefactor for the input guess confining potential confinement: [8.3e-3, 0.0] # Prefactor for the confining potential (low/high accuracy) rloc: [7.0, 7.0] # Localization radius for the support functions rloc_kernel : 9.0 # Localization radius for the density kernel rloc_kernel_foe : 14.0 # cutoff radius for the FOE matrix vector multiplications psppar.N: Pseudopotential type : HGH-K Atomic number : 7 No. of Electrons : 5 Pseudopotential XC : 1 Local Pseudo Potential (HGH convention): Rloc : 0.28917923 Coefficients (c1 .. c4): [-12.23481988, 1.76640728, 0.0, 0.0] NonLocal PSP Parameters: - Channel (l) : 0 Rloc : 0.25660487 h_ij terms: [13.55224272, 0.0, 0.0, 0.0, 0.0, 0.0] - Channel (l) : 1 Rloc : 0.27013369 h_ij terms: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0] Source : Hard-Coded Radii of active regions (AU): Coarse : 1.370256482166319 Fine : 0.25660487 Coarse PSP : 0.50650066875 Source : Hard-Coded posinp: #---------------------------------------------- Atomic positions (by default bohr units) units : angstroem positions: - N: [0.0, 0.0, 0.0] - N: [0.0, 0.0, 1.114989995956421] properties: format : xyz source : posinp.xyz #--------------------------------------------------------------------------------------- | Data Writing directory : ./ #-------------------------------------------------- Input Atomic System (file: posinp.xyz) Atomic System Properties: Number of atomic types : 1 Number of atoms : 2 Types of atoms : [ N ] Boundary Conditions : Free #Code: F Number of Symmetries : 0 Space group : disabled #------------------------------ Geometry optimization Input Parameters (file: input.geopt) Geometry Optimization Parameters: Maximum steps : 1 Algorithm : none Random atomic displacement : 0.0E+00 Fluctuation in forces : 1.0E+00 Maximum in forces : 0.0E+00 Steepest descent step : 4.0E+00 Material acceleration : No #iproc=0 #------------------------------------------------------------------------ Input parameters DFT parameters: eXchange Correlation: XC ID : &ixc 1 Exchange-Correlation reference : "XC: Teter 93" XC functional implementation : ABINIT Spin polarization : No Basis set definition: Suggested Grid Spacings (a0) : [ 0.45, 0.45, 0.45 ] Coarse and Fine Radii Multipliers : [ 5.0, 8.0 ] Self-Consistent Cycle Parameters: Wavefunction: Gradient Norm Threshold : &gnrm_cv 1.0E-04 CG Steps for Preconditioner : 6 DIIS History length : 6 Max. Wfn Iterations : &itermax 50 Max. Subspace Diagonalizations : 1 Input wavefunction policy : INPUT_PSI_LCAO # 0 Output wavefunction policy : NONE # 0 Output grid policy : NONE # 0 Virtual orbitals : 0 Number of plotted density orbitals: 0 Density/Potential: Max. Iterations : 1 Post Optimization Parameters: Finite-Size Effect estimation: Scheduled : No #----------------------------------------------------------------------- System Properties Properties of atoms in the system: - Symbol : N #Type No. 01 No. of Electrons : 5 No. of Atoms : 2 Radii of active regions (AU): Coarse : 1.37026 Fine : 0.25660 Coarse PSP : 0.50650 Source : Hard-Coded Grid Spacing threshold (AU) : 0.64 Pseudopotential type : HGH-K Local Pseudo Potential (HGH convention): Rloc : 0.28918 Coefficients (c1 .. c4) : [ -12.23482, 1.76641, 0.00000, 0.00000 ] NonLocal PSP Parameters: - Channel (l) : 0 Rloc : 0.25660 h_ij matrix: - [ 13.55224, 0.00000, 0.00000 ] - [ 0.00000, 0.00000, 0.00000 ] - [ 0.00000, 0.00000, 0.00000 ] No. of projectors : 1 PSP XC : "XC: Teter 93" #----------------------------------------------- Atom Positions (specified and grid units) Atomic structure: Units : angstroem Positions: - N: [ 3.571946174, 3.571946174, 3.609775538] # [ 15.00, 15.00, 15.16 ] 0001 - N: [ 3.571946174, 3.571946174, 4.724765534] # [ 15.00, 15.00, 19.84 ] 0002 Rigid Shift Applied (AU) : [ 6.7500, 6.7500, 6.8215 ] #------------------------------------------------------------------------- Grid properties Box Grid spacings : [ 0.4500, 0.4500, 0.4500 ] Sizes of the simulation domain: AU : [ 13.500, 13.500, 15.750 ] Angstroem : [ 7.1439, 7.1439, 8.3345 ] Grid Spacing Units : [ 30, 30, 35 ] High resolution region boundaries (GU): From : [ 11, 11, 11 ] To : [ 19, 19, 24 ] High Res. box is treated separately : Yes #------------------------------------------------------------------- Kernel Initialization Poisson Kernel Initialization: #---------------------------------------------------------------------- Input parameters kernel: screening : 0 # Mu screening parameter isf_order : 16 # Order of the Interpolating Scaling Function family stress_tensor : Yes # Triggers the calculation of the stress tensor environment: cavity : none # Type of the cavity cavitation : Yes # Triggers the evaluation of the extra cavitation terms gammaS : 72.0 # Cavitation term, surface tension of the solvent [dyn/cm] alphaS : -22.0 # Proportionality of repulsion free energy in term of the surface integral [dyn/cm] betaV : -0.35 # Proportionality of dispersion free energy in term of volume integral [GPa] input_guess : Yes # Triggers the input guess procedure of gps_algorithm fd_order : 16 # Order of the Finite-difference derivatives for the GPS solver itermax : 50 # Maximum number of iterations of the GPS outer loop minres : 1.e-8 # Convergence threshold of the loop pb_method : none # Defines the method for the Poisson Boltzmann Equation setup: accel : none # Material Acceleration taskgroup_size : 0 # Size of the taskgroups of the Poisson Solver global_data : No # Charge density and Electrostatic potential are given by global arrays verbose : Yes # Verbosity switch output : none # Quantities to be plotted after the main solver routine MPI tasks : 1 OpenMP threads per MPI task : 8 Poisson Kernel Creation: Boundary Conditions : Free Memory Requirements per MPI task: Density (MB) : 7.38 Kernel (MB) : 7.61 Full Grid Arrays (MB) : 6.38 Wavefunctions Descriptors, full simulation domain: Coarse resolution grid: No. of segments : 876 No. of points : 18172 Fine resolution grid: No. of segments : 110 No. of points : 702 #---------------------------------------------------------------------- Occupation Numbers Total Number of Electrons : 10 Spin treatment : Averaged Orbitals Repartition: MPI tasks 0- 0 : 5 Total Number of Orbitals : 5 Input Occupation Numbers: - Occupation Numbers: {Orbitals No. 1-5: 2.0000} Wavefunctions memory occupation for root MPI process: 0 MB 901 KB 816 B NonLocal PSP Projectors Descriptors: Creation strategy : On-the-fly Total number of projectors : 2 Total number of components : 5905 Percent of zero components : 14 Size of workspaces : 23636 Maximum size of masking arrays for a projector: 951 Cumulative size of masking arrays : 1902 Communication checks: Transpositions : Yes Reverse transpositions : Yes #-------------------------------------------------------- Estimation of Memory Consumption Memory requirements for principal quantities (MiB.KiB): Subspace Matrix : 0.1 # (Number of Orbitals: 5) Single orbital : 0.181 # (Number of Components: 23086) All (distributed) orbitals : 1.780 # (Number of Orbitals per MPI task: 5) Wavefunction storage size : 12.338 # (DIIS/SD workspaces included) Nonlocal Pseudopotential Arrays : 0.47 Full Uncompressed (ISF) grid : 6.391 Workspaces storage size : 0.477 Accumulated memory requirements during principal run stages (MiB.KiB): Kernel calculation : 83.719 Density Construction : 51.909 Poisson Solver : 79.48 Hamiltonian application : 52.243 Orbitals Orthonormalization : 52.243 Estimated Memory Peak (MB) : 83 Ion-Ion interaction energy : 1.18650663422787E+01 #---------------------------------------------------------------- Ionic Potential Creation Total ionic charge : -10.000000000000 Poisson Solver: BC : Free Box : [ 91, 91, 101 ] MPI tasks : 1 Interaction energy ions multipoles : 0.0 Interaction energy multipoles multipoles: 0.0 #----------------------------------- Wavefunctions from PSP Atomic Orbitals Initialization Input Hamiltonian: Total No. of Atomic Input Orbitals : 8 Atomic Input Orbital Generation: - {Atom Type: N, Electronic configuration: { s: [ 2.00], p: [ 1.00, 1.00, 1.00]}} Wavelet conversion succeeded : Yes Deviation from normalization : 2.05E-05 GPU acceleration : No Total electronic charge : 9.999998731141 Poisson Solver: BC : Free Box : [ 91, 91, 101 ] MPI tasks : 1 Expected kinetic energy : 13.9048146790 Energies: {Ekin: 1.39077628900E+01, Epot: -2.18665699073E+01, Enl: 2.33310272888E+00, EH: 2.73028082106E+01, EXC: -4.69901727500E+00, EvXC: -6.15435941415E+00} EKS : -1.96081040175154442E+01 Input Guess Overlap Matrices: {Calculated: Yes, Diagonalized: Yes} #Eigenvalues and New Occupation Numbers Orbitals: [ {e: -1.040786533967E+00, f: 2.0000}, # 00001 {e: -5.272089296364E-01, f: 2.0000}, # 00002 {e: -4.411025209214E-01, f: 2.0000}, # 00003 {e: -4.411012163712E-01, f: 2.0000}, # 00004 {e: -3.946499923151E-01, f: 2.0000}, # 00005 {e: -1.011703410493E-01, f: 0.0000}, # 00006 {e: -1.011696286352E-01, f: 0.0000}, # 00007 {e: 6.775799490560E-01, f: 0.0000}] # 00008 IG wavefunctions defined : Yes Accuracy estimation for this run: Energy : 2.95E-03 Convergence Criterion : 5.90E-04 #------------------------------------------------------------------- Self-Consistent Cycle Ground State Optimization: - Hamiltonian Optimization: &itrp001 - Subspace Optimization: &itrep001-01 Wavefunctions Iterations: - { #---------------------------------------------------------------------- iter: 1 GPU acceleration: No, Total electronic charge: 9.999998907187, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.31555268971E+01, Epot: -2.15786908762E+01, Enl: 1.86116449489E+00, EH: 2.63308588225E+01, EXC: -4.58275164847E+00, EvXC: -6.00085488206E+00}, iter: 1, EKS: -1.96096887307935148E+01, gnrm: 3.17E-01, D: -1.58E-03, DIIS weights: [ 1.00E+00, 1.00E+00], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 2 GPU acceleration: No, Total electronic charge: 9.999998911635, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.44508411437E+01, Epot: -2.17197324334E+01, Enl: 1.88603924516E+00, EH: 2.78363997504E+01, EXC: -4.81126269619E+00, EvXC: -6.30251508668E+00}, iter: 2, EKS: -1.98629330621171292E+01, gnrm: 1.01E-01, D: -2.53E-01, DIIS weights: [-3.44E-02, 1.03E+00, -3.69E-03], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 3 GPU acceleration: No, Total electronic charge: 9.999998874101, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.44411869578E+01, Epot: -2.17469810499E+01, Enl: 1.75966471693E+00, EH: 2.76796262320E+01, EXC: -4.77628572993E+00, EvXC: -6.25642597000E+00}, iter: 3, EKS: -1.98805490248799472E+01, gnrm: 4.16E-02, D: -1.76E-02, DIIS weights: [-4.35E-02, -3.03E-01, 1.35E+00, -1.53E-04], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 4 GPU acceleration: No, Total electronic charge: 9.999998826002, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45294911882E+01, Epot: -2.18293843168E+01, Enl: 1.76650692353E+00, EH: 2.76953336562E+01, EXC: -4.77679601676E+00, EvXC: -6.25714802956E+00}, iter: 4, EKS: -1.98833015062267791E+01, gnrm: 1.08E-02, D: -2.75E-03, DIIS weights: [ 8.60E-03, 2.87E-03, -1.93E-01, 1.18E+00, -9.40E-06], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 5 GPU acceleration: No, Total electronic charge: 9.999998813322, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45429965684E+01, Epot: -2.18430956587E+01, Enl: 1.75560375950E+00, EH: 2.76838108599E+01, EXC: -4.77502857050E+00, EvXC: -6.25481901477E+00}, iter: 5, EKS: -1.98834494042030343E+01, gnrm: 3.62E-03, D: -1.48E-04, DIIS weights: [-2.13E-04, 2.09E-02, -6.57E-02, -2.13E-01, 1.26E+00, -9.07E-07], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 6 GPU acceleration: No, Total electronic charge: 9.999998809276, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45534057718E+01, Epot: -2.18517502440E+01, Enl: 1.75534551625E+00, EH: 2.76854781867E+01, EXC: -4.77548415617E+00, EvXC: -6.25542157493E+00}, iter: 6, EKS: -1.98834733816428582E+01, gnrm: 1.79E-03, D: -2.40E-05, DIIS weights: [-6.18E-04, -8.84E-03, 3.93E-02, -1.23E-02, -5.50E-01, 1.53E+00, -1.56E-07], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 7 GPU acceleration: No, Total electronic charge: 9.999998808800, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45574354724E+01, Epot: -2.18545160038E+01, Enl: 1.75424344147E+00, EH: 2.76856816500E+01, EXC: -4.77559071591E+00, EvXC: -6.25556259134E+00}, iter: 7, EKS: -1.98834805221821824E+01, gnrm: 9.80E-04, D: -7.14E-06, DIIS weights: [ 6.35E-04, 2.49E-04, -1.39E-02, 1.30E-01, -7.02E-01, 1.59E+00, -4.82E-08], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 8 GPU acceleration: No, Total electronic charge: 9.999998808955, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45585865976E+01, Epot: -2.18552611953E+01, Enl: 1.75369436303E+00, EH: 2.76855477173E+01, EXC: -4.77561167104E+00, EvXC: -6.25559037882E+00}, iter: 8, EKS: -1.98834829018645323E+01, gnrm: 4.87E-04, D: -2.38E-06, DIIS weights: [-1.25E-03, -2.64E-03, 1.22E-02, 1.50E-01, -1.11E+00, 1.95E+00, -7.65E-09], Orthogonalization Method: 0} - { #---------------------------------------------------------------------- iter: 9 GPU acceleration: No, Total electronic charge: 9.999998809025, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45591635735E+01, Epot: -2.18555567520E+01, Enl: 1.75332018231E+00, EH: 2.76854604236E+01, EXC: -4.77562597888E+00, EvXC: -6.25560937964E+00}, iter: 9, EKS: -1.98834836767451648E+01, gnrm: 1.31E-04, D: -7.75E-07, DIIS weights: [-1.64E-03, -9.38E-03, 7.64E-02, -3.50E-02, -4.11E-01, 1.38E+00, -6.64E-10], Orthogonalization Method: 0} - { #--------------------------------------------------------------------- iter: 10 GPU acceleration: No, Total electronic charge: 9.999998809003, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, Orthoconstraint: Yes, Preconditioning: Yes, Energies: {Ekin: 1.45591939430E+01, Epot: -2.18555654633E+01, Enl: 1.75324569292E+00, EH: 2.76854068846E+01, EXC: -4.77562353252E+00, EvXC: -6.25560617828E+00}, iter: 10, EKS: -1.98834837239079647E+01, gnrm: 3.36E-05, D: -4.72E-08, DIIS weights: [ 2.51E-03, -1.69E-02, 3.31E-02, 5.80E-02, -4.50E-01, 1.37E+00, -6.80E-11], Orthogonalization Method: 0} - &FINAL001 { #---------------------------------------------------------- iter: 11 GPU acceleration: No, Total electronic charge: 9.999998809000, Poisson Solver: {BC: Free, Box: [ 91, 91, 101 ], MPI tasks: 1}, Hamiltonian Applied: Yes, iter: 11, EKS: -1.98834837256869932E+01, gnrm: 3.36E-05, D: -1.78E-09, #FINAL Energies: {Ekin: 1.45591701402E+01, Epot: -2.18555508038E+01, Enl: 1.75324278714E+00, EH: 2.76853941958E+01, EXC: -4.77562153507E+00, EvXC: -6.25560353939E+00, Eion: 1.18650663423E+01}, } Non-Hermiticity of Hamiltonian in the Subspace: 3.24E-31 #Eigenvalues and New Occupation Numbers Orbitals: [ {e: -1.031892602676E+00, f: 2.0000}, # 00001 {e: -4.970106443181E-01, f: 2.0000}, # 00002 {e: -4.307276296665E-01, f: 2.0000}, # 00003 {e: -4.307272896460E-01, f: 2.0000}, # 00004 {e: -3.812107719151E-01, f: 2.0000}] # 00005 Last Iteration : *FINAL001 #---------------------------------------------------------------------- Forces Calculation GPU acceleration : No Total electronic charge : 9.999998809000 Poisson Solver: BC : Free Box : [ 91, 91, 101 ] MPI tasks : 1 Multipole analysis origin : [ 6.75E+00, 6.750000E+00, 7.875000E+00 ] Electric Dipole Moment (AU): P vector : [ -5.2306E-04, -5.2306E-04, -5.6277E-04 ] norm(P) : 9.294589E-04 Electric Dipole Moment (Debye): P vector : [ -1.3295E-03, -1.3295E-03, -1.4304E-03 ] norm(P) : 2.362449E-03 Quadrupole Moment (AU): Q matrix: - [ 1.1003E+00, 1.2565E-04, 3.0382E-04] - [ 1.2565E-04, 1.1003E+00, 3.0382E-04] - [ 3.0382E-04, 3.0382E-04, -2.2005E+00] trace : -1.82E-12 Calculate local forces : Yes Calculate Non Local forces : Yes #-------------------------------------------------------------------- Timing for root process Timings for root process: CPU time (s) : 20.91 Elapsed time (s) : 3.18 BigDFT infocode : 0 Average noise forces: {x: 1.13964092E-05, y: 1.13964092E-05, z: -1.80910187E-04, total: 1.81626683E-04} Clean forces norm (Ha/Bohr): {maxval: 5.670554140677E-02, fnrm2: 6.431036852470E-03} Raw forces norm (Ha/Bohr): {maxval: 5.683346444573E-02, fnrm2: 6.431070377896E-03} #------------------------------------------------------------------------------ Atomic Forces Atomic Forces (Ha/Bohr): - {N: [-1.694065894509E-21, -1.694065894509E-21, 5.670554140677E-02]} # 0001 - {N: [ 1.694065894509E-21, 1.694065894509E-21, -5.670554140677E-02]} # 0002 Energy (Hartree) : -1.98834837256869932E+01 Force Norm (Hartree/Bohr) : 8.01937457191627401E-02 Memory Consumption Report: Tot. No. of Allocations : 3048 Tot. No. of Deallocations : 3048 Remaining Memory (B) : 0 Memory occupation: Peak Value (MB) : 99.892 for the array : wz in the routine : input_wf Memory Peak of process : 121.028 MB Walltime since initialization : 00:00:03.945833943 Max No. of dictionaries used : 4494 #( 1019 still in use) Number of dictionary folders allocated: 1