test tddft

parent c84143f5
......@@ -1867,226 +1867,6 @@
"superNames": [
"section_method"
]
}, {
"description": "If the anomalous Hall conductivity term is included in the calculation of the dielectric tensor [see PRB 86, 125139 (2012)].",
"dtypeStr": "b",
"name": "x_exciting_xs_tddft_anomalous_Hall_conductivity",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "If the anti-resonant part is considered for the calculation of the MBPT-derived xc-kernel",
"dtypeStr": "b",
"name": "x_exciting_xs_tddft_anti_resonant_xc_kernel",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "If the anti-resonant part is considered for the calculation of the dielectric function",
"dtypeStr": "b",
"name": "x_exciting_xs_tddft_anti_resonant_dielectric",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Parameters defining the semiclassical Drude approximation to intraband term. The first value determines the plasma frequency ωp and the second the inverse relaxation time ωτ: χD0=1/ω ωp^2/(ω+iωτ)",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_drude",
"repeats": false,
"shape": [2],
"superNames": [
"section_method"
],
"units": "s_1"
}, {
"description": "Split parameter for degeneracy in energy differences of MBPT derived xc kernels. See A. Marini, Phys. Rev. Lett., 91, (2003) 256402.",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_split_parameter",
"shape": [],
"superNames": [
"section_method"
],
"units": "J"
}, {
"description": "Defines which xc kernel is to be used. Possible choices are: RPA - Random-phase approximation kernel (fxc=0); LRCstatic - Long-range correction kernel (fxc = -alpha/q^2) with alpha given by alphalrcdyn see S. Botti et al., Phys. Rev. B 69, 155112 (2004); LRCdyn - Dynamical long-range correction kernel, with alpha anf beta give by alphalrcdyn and betalrcdyn, respectively, see S. Botti et al., Phys. Rev. B 72, 125203 (2005); ALDA - Adiabatic LDA kernel, with Vxc given by the spin-unpolarised exchange-correlation potential corresponding to the Perdew-Wang parameterisation of Ceperley-Alder's Monte-Carlo data, see Phys. Rev. B 45, 13244 (1992) and Phys. Rev. Lett. 45, 566 (1980); MB1 - BSE derived xc kernel. See L. Reining et al., Phys. Rev. Lett. 88, 066404 (2002) and A. Marini et al., Phys. Rev. Lett. 91, 256402 (2003); BO - Bootstrap kernel, see S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011); BO_SCALAR - Scalar version of the bootstrap kernel; see S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011); RBO - RPA bootstrap kernel; see S. Rigamonti et al., Phys. Rev. Lett. 114, 146402 (2015). ",
"dtypeStr": "C",
"name": "x_exciting_xs_tddft_xc_kernel",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Parameter determining whether the the intraband contribution is included in the calculation for the finite q.",
"dtypeStr": "b",
"name": "x_exciting_xs_tddft_finite_q_intraband_contribution",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "If true, only the diagonal part of xc-kernel is used.",
"dtypeStr": "b",
"name": "x_exciting_xs_tddft_diagonal_xc_kernel",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Angular momentum cutoff for the Rayleigh expansion of the exponential factor for ALDA-kernel",
"dtypeStr": "i",
"name": "x_exciting_xs_tddft_lmax_alda",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of energy intervals (on imaginary axis) for analytic continuation.",
"dtypeStr": "i",
"name": "x_exciting_xs_tddft_analytic_continuation_number_of_intervals",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Treatment of macroscopic dielectric function for the Q-point outside the Brillouin zone. A value of 0 uses the full Q and the (0,0) component of the microscopic dielectric matrix is used. A value of 1 means a decomposition Q=q+Gq and the (Qq,Qq) component of the microscopic dielectric matrix is used.",
"dtypeStr": "i",
"name": "x_exciting_xs_tddft_macroscopic_dielectric_function_q_treatment",
"repeats": false,
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Integration method (tetrahedron) used for the k-space integration in the Kohn-Sham response function.",
"dtypeStr": "b",
"name": "x_exciting_xs_tetra",
"repeats": false,
"shape": [],
"superNames": [
"section_run",
"section_method"
]
}, {
"description": "Number of Q points",
"dtypeStr": "i",
"name": "x_exciting_xs_tddft_number_of_q_points",
"shape": [],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Symmetrized static dielectric tensor ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_dielectric_tensor_sym",
"shape": ["x_exciting_xs_tddft_number_of_q_points",2,3,3],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "No-symmetrized static dielectric tensor ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_dielectric_tensor_no_sym",
"shape": ["x_exciting_xs_tddft_number_of_q_points",2,3,3],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Number of independent components in the dielectric function epsilon",
"dtypeStr": "i",
"name": "x_exciting_xs_tddft_number_of_optical_components",
"repeats": false,
"shape": [],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Value of the independent optical components in the dielectric function epsilon",
"dtypeStr": "C",
"name": "x_exciting_xs_tddft_optical_component",
"repeats": false,
"shape": ["x_exciting_xs_tddft_number_of_optical_components"],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Array containing the set of discrete energy values for the dielectric function epsilon. ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_epsilon_energies",
"shape": [
"x_exciting_xs_tddft_number_of_epsilon_values"
],
"superNames": [
"section_single_configuration_calculation"
],
"units": "J"
}, {
"description": "Dielectric function epsilon without local-field effects ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_dielectric_function_no_local_field",
"shape": [2,"x_exciting_xs_tddft_number_of_q_points","x_exciting_xs_tddft_number_of_components","x_exciting_xs_tddft_number_of_epsilon_values"],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Loss function without local-field effects ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_loss_function_no_local_field",
"shape": ["x_exciting_xs_tddft_number_of_q_points","x_exciting_xs_tddft_number_of_components","x_exciting_xs_tddft_number_of_epsilon_values"],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Loss function including local-field effects ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_loss_function_local_field",
"shape": ["x_exciting_xs_tddft_number_of_q_points","x_exciting_xs_tddft_number_of_components","x_exciting_xs_tddft_number_of_epsilon_values"],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Sigma without local-field effects ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_sigma_no_local_field",
"shape": [2,"x_exciting_xs_tddft_number_of_q_points","x_exciting_xs_tddft_number_of_components","x_exciting_xs_tddft_number_of_epsilon_values"],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Sigma including local-field effects ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_sigma_local_field",
"shape": [2,"x_exciting_xs_tddft_number_of_q_points","x_exciting_xs_tddft_number_of_components","x_exciting_xs_tddft_number_of_epsilon_values"],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Dielectric function epsilon including local-field effects ",
"dtypeStr": "f",
"name": "x_exciting_xs_tddft_dielectric_function_local_field",
"shape": [2,"x_exciting_xs_tddft_number_of_q_points","x_exciting_xs_tddft_number_of_components","x_exciting_xs_tddft_number_of_epsilon_values"],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "Gives the number of energy values for the dielectric function epsilon.",
"dtypeStr": "i",
"kindStr": "type_dimension",
"name": "x_exciting_xs_tddft_number_of_epsilon_values",
"shape": [],
"superNames": [
"section_single_configuration_calculation"
]
}, {
"description": "XC potential final",
"dtypeStr": "f",
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment