diff --git a/meta_info/nomad_meta_info/public.nomadmetainfo.json b/meta_info/nomad_meta_info/public.nomadmetainfo.json index 82118d8f9396ff504a8d678c7b61757b574be378..c117b27b860a64d762ee2a440ad2625764b7e7b2 100644 --- a/meta_info/nomad_meta_info/public.nomadmetainfo.json +++ b/meta_info/nomad_meta_info/public.nomadmetainfo.json @@ -3266,6 +3266,15 @@ "superNames": [ "section_run" ] + }, { + "derived": true, + "description": "Identifier for the Bravais lattice in Pearson notation. The first lowercase letter identifies the crystal family and can be one of the following: a (triclinic), b (monoclinic), o (orthorhombic), t (tetragonal), h (hexagonal) or c (cubic). The second uppercase letter identifies the centring and can be one of the following: P (primitive), S (face centred), I (body centred), R (rhombohedral centring) or F (all faces centred).", + "dtypeStr": "C", + "name": "space_group_3D_bravais_lattice", + "shape": [], + "superNames": [ + "section_system" + ] }, { "derived": true, "description": "String that specifies the centering, origin and basis vector settings of the 3D space group that defines the symmetry group of the simulated physical system (see section_system). Values are as defined by spglib.", @@ -3277,9 +3286,9 @@ ] }, { "derived": true, - "description": "The Hall symbol for this system.", + "description": "Name of the crystal system. Can be one of the following: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal or cubic.", "dtypeStr": "C", - "name": "space_group_3D_hall_symbol", + "name": "space_group_3D_crystal_system", "shape": [], "superNames": [ "section_system" @@ -3293,6 +3302,15 @@ "superNames": [ "section_system" ] + }, { + "derived": true, + "description": "The Hall symbol for this system.", + "dtypeStr": "C", + "name": "space_group_3D_hall_symbol", + "shape": [], + "superNames": [ + "section_system" + ] }, { "derived": true, "description": "Specifies the International Union of Crystallography (IUC) short symbol of the 3D space group of this system", @@ -3313,72 +3331,88 @@ ] }, { "derived": true, - "description": "Symbol of the crystallographic point group in the Hermann-Mauguin notation.", - "dtypeStr": "C", - "name": "space_group_3D_point_group", - "shape": [], + "description": "Vector $\\mathbf{p}$ from the origin of the standardized system to the origin of the original system. Together with the matrix $\\mathbf{P}$, found in space_group_3D_transformation_matrix, the transformation between the standardized coordinates $\\mathbf{x}_s$ and original coordinates $\\mathbf{x}$ is then given by $\\mathbf{x}_s = \\mathbf{P} \\mathbf{x} + \\mathbf{p}$.", + "dtypeStr": "f", + "name": "space_group_3D_origin_shift", + "shape": [ + 3 + ], "superNames": [ "section_system" ] }, { "derived": true, - "description": "Name of the crystal system. Can be one of the following: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal or cubic.", + "description": "Gives a mapping table of atoms to symmetrically independent atoms in the original cell. This is used to find symmetrically equivalent atoms.", + "dtypeStr": "i", + "name": "space_group_3D_original_equivalent_atoms", + "shape": [ + "number_of_atoms" + ], + "superNames": [ + "section_system" + ] + }, { + "derived": true, + "description": "Wyckoff letters for atoms in the original cell.", "dtypeStr": "C", - "name": "space_group_3D_crystal_system", - "shape": [], + "name": "space_group_3D_original_wyckoff_letters", + "shape": [ + "number_of_atoms" + ], "superNames": [ "section_system" ] }, { "derived": true, - "description": "Identifier for the Bravais lattice in Pearson notation. The first lowercase letter identifies the crystal family and can be one of the following: a (triclinic), b (monoclinic), o (orthorhombic), t (tetragonal), h (hexagonal) or c (cubic). The second uppercase letter identifies the centring and can be one of the following: P (primitive), S (face centred), I (body centred), R (rhombohedral centring) or F (all faces centred).", + "description": "Symbol of the crystallographic point group in the Hermann-Mauguin notation.", "dtypeStr": "C", - "name": "space_group_3D_bravais_lattice", + "name": "space_group_3D_point_group", "shape": [], "superNames": [ "section_system" ] }, { "derived": true, - "description": "Vector $\\mathbf{p}$ from the origin of the standardized system to the origin of the original system. Together with the matrix $\\mathbf{P}$, found in space_group_3D_transformation_matrix, the transformation between the standardized coordinates $\\mathbf{x}_s$ and original coordinates $\\mathbf{x}$ is then given by $\\mathbf{x}_s = \\mathbf{P} \\mathbf{x} + \\mathbf{p}$.", - "dtypeStr": "f", - "name": "space_group_3D_origin_shift", - "shape": [3], + "description": "Atomic numbers in the primitive cell.", + "dtypeStr": "i", + "name": "space_group_3D_primitive_atomic_numbers", + "shape": [ + "primitive_number_of_atoms" + ], "superNames": [ "section_system" ] }, { "derived": true, - "description": "Matrix $\\mathbf{P}$ that is used to transform the standardized coordinates to the original coordinates. Together with the vector $\\mathbf{p}$, found in space_group_3D_origin_shift, the transformation between the standardized coordinates $\\mathbf{x}_s$ and original coordinates $\\mathbf{x}$ is then given by $\\mathbf{x}_s = \\mathbf{P} \\mathbf{x} + \\mathbf{p}$.", - "dtypeStr": "f", - "name": "space_group_3D_transformation_matrix", + "description": "Gives a mapping table of atoms to symmetrically independent atoms in the primitive cell. This is used to find symmetrically equivalent atoms.", + "dtypeStr": "i", + "name": "space_group_3D_primitive_equivalent_atoms", "shape": [ - 3, - 3 + "primitive_number_of_atoms" ], "superNames": [ "section_system" ] }, { "derived": true, - "description": "Rotations that together with space_group_3D_translations define the space group operations in reduced units.", + "description": "Primitive lattice vectors. The vectors are the rows of this matrix.", "dtypeStr": "f", - "name": "space_group_3D_rotations", + "name": "space_group_3D_primitive_lattice", "shape": [ - "space_group_3D_number_of_symmetry_operations", 3, 3 ], "superNames": [ "section_system" - ] + ], + "units": "m" }, { "derived": true, - "description": "Translations that together with space_group_3D_rotations define the space group operations in reduced units.", + "description": "Atom positions in the primitive cell in reduced units.", "dtypeStr": "f", - "name": "space_group_3D_translations", + "name": "space_group_3D_primitive_positions", "shape": [ - "space_group_3D_number_of_symmetry_operations", + "primitive_number_of_atoms", 3 ], "superNames": [ @@ -3386,24 +3420,23 @@ ] }, { "derived": true, - "description": "Standardized lattice vectors of the conventional cell chosen as described in https://atztogo.github.io/spglib/definition.html#def-standardized-unit-cell. The vectors are the rows of this matrix.", - "dtypeStr": "f", - "name": "space_group_3D_std_lattice", + "description": "Wyckoff letters for atoms in the primitive cell.", + "dtypeStr": "C", + "name": "space_group_3D_primitive_wyckoff_letters", "shape": [ - 3, - 3 + "primitive_number_of_atoms" ], "superNames": [ "section_system" - ], - "units": "m" + ] }, { "derived": true, - "description": "Standardized atom positions in reduced units.", + "description": "Rotations that together with space_group_3D_translations define the space group operations in reduced units.", "dtypeStr": "f", - "name": "space_group_3D_std_positions", + "name": "space_group_3D_rotations", "shape": [ - "number_of_atoms", + "space_group_3D_number_of_symmetry_operations", + 3, 3 ], "superNames": [ @@ -3420,17 +3453,6 @@ "superNames": [ "section_system" ] - }, { - "derived": true, - "description": "Wyckoff letters for atoms in the standardized cell.", - "dtypeStr": "C", - "name": "space_group_3D_std_wyckoff_letters", - "shape": [ - "std_number_of_atoms" - ], - "superNames": [ - "section_system" - ] }, { "derived": true, "description": "Gives a mapping table of atoms to symmetrically independent atoms in the standardized cell. This is used to find symmetrically equivalent atoms.", @@ -3444,9 +3466,9 @@ ] }, { "derived": true, - "description": "Primitive lattice vectors. The vectors are the rows of this matrix.", + "description": "Standardized lattice vectors of the conventional cell chosen as described in https://atztogo.github.io/spglib/definition.html#def-standardized-unit-cell. The vectors are the rows of this matrix.", "dtypeStr": "f", - "name": "space_group_3D_primitive_lattice", + "name": "space_group_3D_std_lattice", "shape": [ 3, 3 @@ -3457,11 +3479,11 @@ "units": "m" }, { "derived": true, - "description": "Atom positions in the primitive cell in reduced units.", + "description": "Standardized atom positions in reduced units.", "dtypeStr": "f", - "name": "space_group_3D_primitive_positions", + "name": "space_group_3D_std_positions", "shape": [ - "primitive_number_of_atoms", + "number_of_atoms", 3 ], "superNames": [ @@ -3469,55 +3491,35 @@ ] }, { "derived": true, - "description": "Atomic numbers in the primitive cell.", - "dtypeStr": "i", - "name": "space_group_3D_primitive_atomic_numbers", - "shape": [ - "primitive_number_of_atoms" - ], - "superNames": [ - "section_system" - ] - }, { - "derived": true, - "description": "Wyckoff letters for atoms in the primitive cell.", + "description": "Wyckoff letters for atoms in the standardized cell.", "dtypeStr": "C", - "name": "space_group_3D_primitive_wyckoff_letters", - "shape": [ - "primitive_number_of_atoms" - ], - "superNames": [ - "section_system" - ] - }, { - "derived": true, - "description": "Gives a mapping table of atoms to symmetrically independent atoms in the primitive cell. This is used to find symmetrically equivalent atoms.", - "dtypeStr": "i", - "name": "space_group_3D_primitive_equivalent_atoms", + "name": "space_group_3D_std_wyckoff_letters", "shape": [ - "primitive_number_of_atoms" + "std_number_of_atoms" ], "superNames": [ "section_system" ] }, { "derived": true, - "description": "Wyckoff letters for atoms in the original cell.", - "dtypeStr": "C", - "name": "space_group_3D_original_wyckoff_letters", + "description": "Matrix $\\mathbf{P}$ that is used to transform the standardized coordinates to the original coordinates. Together with the vector $\\mathbf{p}$, found in space_group_3D_origin_shift, the transformation between the standardized coordinates $\\mathbf{x}_s$ and original coordinates $\\mathbf{x}$ is then given by $\\mathbf{x}_s = \\mathbf{P} \\mathbf{x} + \\mathbf{p}$.", + "dtypeStr": "f", + "name": "space_group_3D_transformation_matrix", "shape": [ - "number_of_atoms" + 3, + 3 ], "superNames": [ "section_system" ] }, { "derived": true, - "description": "Gives a mapping table of atoms to symmetrically independent atoms in the original cell. This is used to find symmetrically equivalent atoms.", - "dtypeStr": "i", - "name": "space_group_3D_original_equivalent_atoms", + "description": "Translations that together with space_group_3D_rotations define the space group operations in reduced units.", + "dtypeStr": "f", + "name": "space_group_3D_translations", "shape": [ - "number_of_atoms" + "space_group_3D_number_of_symmetry_operations", + 3 ], "superNames": [ "section_system"