"description":"Parameters defining the semiclassical Drude approximation to intraband term. The first value determines the plasma frequency ωp and the second the inverse relaxation time ωτ: χD0=1/ω ωp^2/(ω+iωτ)",
"dtypeStr":"f",
"name":"x_exciting_xs_tddft_drude",
"repeats":false,
"shape":[2],
"superNames":[
"section_method"
],
"units":"s_1"
},{
"description":"Split parameter for degeneracy in energy differences of MBPT derived xc kernels. See A. Marini, Phys. Rev. Lett., 91, (2003) 256402.",
"dtypeStr":"f",
"name":"x_exciting_xs_tddft_split_parameter",
"shape":[],
"superNames":[
"section_method"
],
"units":"J"
},{
"description":"Defines which xc kernel is to be used. Possible choices are: RPA - Random-phase approximation kernel (fxc=0); LRCstatic - Long-range correction kernel (fxc = -alpha/q^2) with alpha given by alphalrcdyn see S. Botti et al., Phys. Rev. B 69, 155112 (2004); LRCdyn - Dynamical long-range correction kernel, with alpha anf beta give by alphalrcdyn and betalrcdyn, respectively, see S. Botti et al., Phys. Rev. B 72, 125203 (2005); ALDA - Adiabatic LDA kernel, with Vxc given by the spin-unpolarised exchange-correlation potential corresponding to the Perdew-Wang parameterisation of Ceperley-Alder's Monte-Carlo data, see Phys. Rev. B 45, 13244 (1992) and Phys. Rev. Lett. 45, 566 (1980); MB1 - BSE derived xc kernel. See L. Reining et al., Phys. Rev. Lett. 88, 066404 (2002) and A. Marini et al., Phys. Rev. Lett. 91, 256402 (2003); BO - Bootstrap kernel, see S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011); BO_SCALAR - Scalar version of the bootstrap kernel; see S. Sharma et al., Phys. Rev. Lett. 107, 186401 (2011); RBO - RPA bootstrap kernel; see S. Rigamonti et al., Phys. Rev. Lett. 114, 146402 (2015). ",
"dtypeStr":"C",
"name":"x_exciting_xs_tddft_xc_kernel",
"repeats":false,
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Parameter determining whether the the intraband contribution is included in the calculation for the finite q.",
"description":"Treatment of macroscopic dielectric function for the Q-point outside the Brillouin zone. A value of 0 uses the full Q and the (0,0) component of the microscopic dielectric matrix is used. A value of 1 means a decomposition Q=q+Gq and the (Qq,Qq) component of the microscopic dielectric matrix is used.",