Commit 3a029b99 authored by Lauri Himanen's avatar Lauri Himanen
Browse files

Merge branch 'master' of gitlab.mpcdf.mpg.de:nomad-lab/nomad-meta-info

parents a59eb01d e22e6e76
......@@ -281,6 +281,239 @@
"energy_value",
"section_excited_states"
]
}, {
"description": "Cutoff type for the calculation of the bare Coulomb potential: none, 0d, 1d, 2d. See Rozzi et al., PRB 73, 205119 (2006)",
"dtypeStr": "C",
"name": "gw_bare_coulomb_cutofftype",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Maximum G for the pw basis for the Coulomb potential.",
"dtypeStr": "f",
"name": "gw_bare_coulomb_gmax",
"shape": [],
"superNames": [
"section_method"
],
"units": "m^-1"
}, {
"description": "Auxillary basis set used for non-local operators: mixed - mixed basis set, Kotani and Schilfgaarde, Solid State Comm. 121, 461 (2002).",
"dtypeStr": "C",
"name": "gw_basis_set",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "It specifies whether the core states are treated in the GW calculation: all - All electron calculation; val - Valence electron only calculation; vab - Core electrons are excluded from the mixed product basis; xal - All electron treatment of the exchange self-energy only",
"dtypeStr": "C",
"name": "gw_core_treatment",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Frequency integration grid type for the correlational self energy: 'eqdis' - equidistant frequencies from 0 to freqmax; 'gaulag' - Gauss-Laguerre quadrature from 0 to infinity; 'gauleg' - Gauss-Legendre quadrature from 0 to freqmax; 'gaule2' (default) - double Gauss-Legendre quadrature from 0 to freqmax and from freqmax to infinity.",
"dtypeStr": "C",
"name": "gw_frequency_grid_type",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Maximum frequency for the calculation of the self energy.",
"dtypeStr": "f",
"name": "gw_max_frequency",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Cut-off parameter for the truncation of the expansion of the plane waves in the interstitial region.",
"dtypeStr": "f",
"name": "gw_mixed_basis_gmax",
"shape": [],
"superNames": [
"section_method"
],
"units": "m^-1"
}, {
"description": "Maximum l value used for the radial functions within the muffin-tin.",
"dtypeStr": "i",
"name": "gw_mixed_basis_lmax",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Eigenvalue threshold below which the egenvectors are discarded in the construction of the radial basis set.",
"dtypeStr": "f",
"name": "gw_mixed_basis_tolerance",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "k/q-point grid size used in the GW calculation.",
"dtypeStr": "i",
"name": "gw_ngridq",
"shape": [
3
],
"superNames": [
"section_method"
]
}, {
"description": "Number of frequency points used in the calculation of the self energy.",
"dtypeStr": "i",
"name": "gw_number_of_frequencies",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of empty states used to compute the polarizability P",
"dtypeStr": "i",
"kindStr": "type_dimension",
"name": "gw_polarizability_number_of_empty_states",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Methods to solve the quasi-particle equation: 'linearization', 'self-consistent'",
"dtypeStr": "C",
"name": "gw_qp_equation_treatment",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Linearization prefactor",
"dtypeStr": "f",
"name": "gw_qp_linearization_prefactor",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_eigenvalues"
]
}, {
"description": "Type of volume averaging for the dynamically screened Coulomb potential: isotropic - Simple averaging along a specified direction using only diagonal components of the dielectric tensor; anisotropic - Anisotropic screening by C. Freysoldt et al., CPC 176, 1-13 (2007)",
"dtypeStr": "C",
"name": "gw_screened_coulomb_volume_average",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Model used to calculate the dinamically-screened Coulomb potential: 'rpa' - Full-frequency random-phase approximation; 'ppm' - Godby-Needs plasmon-pole model Godby and Needs, Phys. Rev. Lett. 62, 1169 (1989); 'ppm_hl' - Hybertsen and Louie, Phys. Rev. B 34, 5390 (1986); 'ppm_lh' - von der Linden and P. Horsh, Phys. Rev. B 37, 8351 (1988); 'ppm_fe' - Farid and Engel, Phys. Rev. B 47,15931 (1993); 'cdm' - Contour deformation method, Phys. Rev. B 67, 155208 (2003).)",
"dtypeStr": "C",
"name": "gw_screened_Coulomb",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Models for the correlation self-energy analytical continuation: 'pade' - Pade's approximant (by H. J. Vidberg and J. W. Serence, J. Low Temp. Phys. 29, 179 (1977)); 'mpf' - Multi-Pole Fitting (by H. N Rojas, R. W. Godby and R. J. Needs, Phys. Rev. Lett. 74, 1827 (1995)); 'cd' - contour deformation; 'ra' - real axis",
"dtypeStr": "C",
"name": "gw_self_energy_c_analytical_continuation",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of empty states to be used to calculate the correlation self energy.",
"dtypeStr": "i",
"name": "gw_self_energy_c_number_of_empty_states",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of poles used in the analytical continuation.",
"dtypeStr": "i",
"kindStr": "type_dimension",
"name": "gw_self_energy_c_number_of_poles",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Diagonal matrix elements of the correlation self-energy",
"dtypeStr": "f",
"name": "gw_self_energy_c",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_single_configuration_calculation"
],
"units": "J"
}, {
"description": "Treatment of the integrable singular terms in the calculation of the self energy. Values: 'mpb' - Auxiliary function method by S. Massidda, M. Posternak, and A. Baldereschi, PRB 48, 5058 (1993); 'crg' - Auxiliary function method by P. Carrier, S. Rohra, and A. Goerling, PRB 75, 205126 (2007).",
"dtypeStr": "C",
"name": "gw_self_energy_singularity_treatment",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Diagonal matrix elements of the exchange self-energy",
"dtypeStr": "f",
"name": "gw_self_energy_x",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_single_configuration_calculation"
],
"units": "J"
}, {
"description": "Exchange-correlation functional of the ground-state calculation. See XC_functional list at https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/XC-functional",
"dtypeStr": "C",
"name": "gw_starting_point",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "GW methodology: exciting test variable",
"dtypeStr": "C",
"name": "gw_type_test",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "GW methodology: G0W0; ev-scGW: (eigenvalues self-consistent GW) – Phys.Rev.B 34, 5390 (1986); qp-scGW: (quasi-particle self-consistent GW) – Phys. Rev. Lett. 96, 226402 (2006) scGW0: (self-consistent G with fixed W0) – Phys.Rev.B 54, 8411 (1996); scG0W: (self-consistent W with fixed G0); scGW: (self-consistent GW) – Phys. Rev. B 88, 075105 (2013)",
"dtypeStr": "C",
"name": "gw_type",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Diagonal matrix elements of the exchange-correlation potential ",
"dtypeStr": "f",
"name": "gw_xc_potential",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_single_configuration_calculation"
],
"units": "J"
}, {
"description": "List of the indexes involved in this interaction. The fist atom has index 1, the last atom index number_of_topology_atoms.",
"dtypeStr": "i",
......@@ -707,12 +940,16 @@
"description": "Some parameters that describe a constraint",
"kindStr": "type_abstract_document_content",
"name": "settings_constraint",
"superNames": []
"superNames": [
"settings_potential_energy_surface"
]
}, {
"description": "Some parameters that describe a bonded interaction.",
"kindStr": "type_abstract_document_content",
"name": "settings_interaction",
"superNames": []
"superNames": [
"settings_potential_energy_surface"
]
}, {
"description": "A meta info whose corresponding data has been shortened",
"dtypeStr": "C",
......@@ -952,238 +1189,5 @@
"superNames": [
"section_excited_states"
]
}, {
"description": "Linearization prefactor",
"dtypeStr": "f",
"name": "gw_qp_linearization_prefactor",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_eigenvalues"
]
}, {
"description": "Diagonal matrix elements of the exchange self-energy",
"dtypeStr": "f",
"name": "gw_self_energy_x",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_single_configuration_calculation"
],
"units": "J"
},{
"description": "Diagonal matrix elements of the exchange-correlation potential ",
"dtypeStr": "f",
"name": "gw_xc_potential",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_single_configuration_calculation"
],
"units": "J"
}, {
"description": "Diagonal matrix elements of the correlation self-energy",
"dtypeStr": "f",
"name": "gw_self_energy_c",
"shape": [
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames": [
"section_single_configuration_calculation"
],
"units": "J"
}, {
"description": "Treatment of the integrable singular terms in the calculation of the self energy. Values: 'mpb' - Auxiliary function method by S. Massidda, M. Posternak, and A. Baldereschi, PRB 48, 5058 (1993); 'crg' - Auxiliary function method by P. Carrier, S. Rohra, and A. Goerling, PRB 75, 205126 (2007).",
"dtypeStr": "C",
"name": "gw_self_energy_singularity_treatment",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Methods to solve the quasi-particle equation: 'linearization', 'self-consistent'",
"dtypeStr": "C",
"name": "gw_qp_equation_treatment",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Models for the correlation self-energy analytical continuation: 'pade' - Pade's approximant (by H. J. Vidberg and J. W. Serence, J. Low Temp. Phys. 29, 179 (1977)); 'mpf' - Multi-Pole Fitting (by H. N Rojas, R. W. Godby and R. J. Needs, Phys. Rev. Lett. 74, 1827 (1995)); 'cd' - contour deformation; 'ra' - real axis",
"dtypeStr": "C",
"name": "gw_self_energy_c_analytical_continuation",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Maximum frequency for the calculation of the self energy.",
"dtypeStr": "f",
"name": "gw_max_frequency",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of frequency points used in the calculation of the self energy.",
"dtypeStr": "i",
"name": "gw_number_of_frequencies",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Frequency integration grid type for the correlational self energy: 'eqdis' - equidistant frequencies from 0 to freqmax; 'gaulag' - Gauss-Laguerre quadrature from 0 to infinity; 'gauleg' - Gauss-Legendre quadrature from 0 to freqmax; 'gaule2' (default) - double Gauss-Legendre quadrature from 0 to freqmax and from freqmax to infinity.",
"dtypeStr": "C",
"name": "gw_frequency_grid_type",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Model used to calculate the dinamically-screened Coulomb potential: 'rpa' - Full-frequency random-phase approximation; 'ppm' - Godby-Needs plasmon-pole model Godby and Needs, Phys. Rev. Lett. 62, 1169 (1989); 'ppm_hl' - Hybertsen and Louie, Phys. Rev. B 34, 5390 (1986); 'ppm_lh' - von der Linden and P. Horsh, Phys. Rev. B 37, 8351 (1988); 'ppm_fe' - Farid and Engel, Phys. Rev. B 47,15931 (1993); 'cdm' - Contour deformation method, Phys. Rev. B 67, 155208 (2003).)",
"dtypeStr": "C",
"name": "gw_screened_Coulomb",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "It specifies whether the core states are treated in the GW calculation: all - All electron calculation; val - Valence electron only calculation; vab - Core electrons are excluded from the mixed product basis; xal - All electron treatment of the exchange self-energy only",
"dtypeStr": "C",
"name": "gw_core_treatment",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Cutoff type for the calculation of the bare Coulomb potential: none, 0d, 1d, 2d. See Rozzi et al., PRB 73, 205119 (2006)",
"dtypeStr": "C",
"name": "gw_bare_coulomb_cutofftype",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Type of volume averaging for the dynamically screened Coulomb potential: isotropic - Simple averaging along a specified direction using only diagonal components of the dielectric tensor; anisotropic - Anisotropic screening by C. Freysoldt et al., CPC 176, 1-13 (2007)",
"dtypeStr": "C",
"name": "gw_screened_coulomb_volume_average",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Exchange-correlation functional of the ground-state calculation. See XC_functional list at https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/XC-functional",
"dtypeStr": "C",
"name": "gw_starting_point",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of poles used in the analytical continuation.",
"dtypeStr": "i",
"kindStr": "type_dimension",
"name": "gw_self_energy_c_number_of_poles",
"shape": [],
"superNames": [
"section_method"
]
},{
"description": "Maximum G for the pw basis for the Coulomb potential.",
"dtypeStr": "f",
"name": "gw_bare_coulomb_gmax",
"shape": [],
"superNames": [
"section_method"
],
"units": "m^-1"
}, {
"description": "Cut-off parameter for the truncation of the expansion of the plane waves in the interstitial region.",
"dtypeStr": "f",
"name": "gw_mixed_basis_gmax",
"shape": [],
"superNames": [
"section_method"
],
"units": "m^-1"
}, {
"description": "Eigenvalue threshold below which the egenvectors are discarded in the construction of the radial basis set.",
"dtypeStr": "f",
"name": "gw_mixed_basis_tolerance",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Maximum l value used for the radial functions within the muffin-tin.",
"dtypeStr": "i",
"name": "gw_mixed_basis_lmax",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Auxillary basis set used for non-local operators: mixed - mixed basis set, Kotani and Schilfgaarde, Solid State Comm. 121, 461 (2002).",
"dtypeStr": "C",
"name": "gw_basis_set",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of empty states to be used to calculate the correlation self energy.",
"dtypeStr": "i",
"name": "gw_self_energy_c_number_of_empty_states",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "Number of empty states used to compute the polarizability P",
"dtypeStr": "i",
"kindStr": "type_dimension",
"name": "gw_polarizability_number_of_empty_states",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "GW methodology: exciting test variable",
"dtypeStr": "C",
"name": "gw_type_test",
"shape": [],
"superNames": [
"section_method"
]
}, {
"description": "k/q-point grid size used in the GW calculation.",
"dtypeStr": "i",
"name": "gw_ngridq",
"shape": [
3
],
"superNames": [
"section_method"
]
}, {
"description": "GW methodology: G0W0; ev-scGW: (eigenvalues self-consistent GW) – Phys.Rev.B 34, 5390 (1986); qp-scGW: (quasi-particle self-consistent GW) – Phys. Rev. Lett. 96, 226402 (2006) scGW0: (self-consistent G with fixed W0) – Phys.Rev.B 54, 8411 (1996); scG0W: (self-consistent W with fixed G0); scGW: (self-consistent GW) – Phys. Rev. B 88, 075105 (2013)",
"dtypeStr": "C",
"name": "gw_type",
"shape": [],
"superNames": [
"section_method"
]
}]
}
......@@ -14,11 +14,11 @@
"superNames": [
"section_method" ]
}, {
"description": "contains the values computed during a calculation performed on a given configuration of the system",
"description": "section collecting the data of the strain diagrams",
"kindStr": "type_section",
"name": "x_elastic_section_single_configuration_calculation",
"name": "x_elastic_section_strain_diagrams",
"superNames": [
"section_run"
"section_single_configuration_calculation"
]
}, {
"description": "number of deformed structures equally spaced in strain, which are generated between the maximum negative strain and the maximum positive one",
......@@ -26,212 +26,78 @@
"name": "x_elastic_number_of_deformations",
"shape": [],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "Values of the strain for which the energy is calculated",
"dtypeStr": "f",
"name": "x_elastic_energy_strain_eta_values",
"shape": [
"x_elastic_number_of_deformations",
"x_elastic_number_of_distorted_structures"
],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "energy values as a function of the strain",
"dtypeStr": "f",
"name": "x_elastic_energy_strain_energy_values",
"shape": [
"x_elastic_number_of_deformations",
"x_elastic_number_of_distorted_structures"
],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "Second order polinomial fit of the derivative of the energy with respect to the lagrangian stress",
"dtypeStr": "f",
"name": "x_elastic_d2E_d2E_values_2nd",
"shape": [
"x_elastic_number_of_deformations",
"x_elastic_d2E_number_of_eta_polinomial_2nd"
],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "Fourth order polinomial fit of the derivative of the energy with respect to the lagrangian stress",
"dtypeStr": "f",
"name": "x_elastic_d2E_d2E_values_4th",
"shape": [
"x_elastic_number_of_deformations",
"x_elastic_d2E_number_of_eta_polinomial_4th"
],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "Sixth order polinomial fit of the derivative of the energy with respect to the lagrangian stress",
"dtypeStr": "f",
"name": "x_elastic_d2E_d2E_values_6th",
"shape": [
"x_elastic_number_of_deformations",
"x_elastic_d2E_number_of_eta_polinomial_6th"
],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "Strain values of the second order polinomial fit of the derivative of the energy with respect to the lagrangian stress",
"dtypeStr": "f",
"name": "x_elastic_d2E_eta_values_2nd",
"shape": [
"x_elastic_number_of_deformations",
"x_elastic_d2E_number_of_eta_polinomial_2nd"
],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "Strain values of the fourth order polinomial fit of the derivative of the energy with respect to the lagrangian stress",
"dtypeStr": "f",
"name": "x_elastic_d2E_eta_values_4th",
"shape": [
"x_elastic_number_of_deformations",
"x_elastic_d2E_number_of_eta_polinomial_4th"
],
"superNames": [
"x_elastic_section_single_configuration_calculation" ]
}, {
"description": "Strain values of the sixth order polinomial fit of the derivative of the energy with respect to the lagrangian stress",
"dtypeStr": "f",
"name": "x_elastic_d2E_eta_values_6th",
"shape": [