to lowercase, public exploded

parent 4f5db678
......@@ -341,6 +341,14 @@
"meta_enum_description":[
"The range is for the euclidean norm of the ",
"value"]
},{
"meta_enum_value":"utf8-length",
"meta_enum_description":[
"The length of the string value using utf-8 encoding"]
},{
"meta_enum_value":"repetitions",
"meta_enum_description":[
"The number of repetitions for a repeating value"]
}]
},{
"meta_name":"meta_range_maximum",
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
{
"metadict_name":"public",
"metadict_description":"Public meta info, not specific to any code",
"metadict_version":"0.1",
"metadict_require":[]
}
{
"meta_name":"accessory_info",
"meta_type":"type-abstract",
"meta_description":[
"Information that *in theory* should not affect the results of the calculations ",
"(e.g., timing)."]
}
{
"meta_name":"archive_context",
"meta_type":"type-section",
"meta_description":"Contains information relating to an archive.",
"meta_repeats":true,
"meta_context_identifier":[],
"contains":[
"calculation_context",
"section_stats"]
}
{
"meta_name":"archive_gid",
"meta_type":"type-value",
"meta_description":"unique identifier of an archive.",
"meta_parent_section":"archive_context",
"meta_data_type":"string"
}
{
"meta_name":"atom_atom_number",
"meta_type":"type-value",
"meta_description":"(deprecated) Atomic number Z of the atom.",
"meta_parent_section":"section_system",
"meta_data_type":"int",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_sites"
}]
}
{
"meta_name":"atom_concentrations",
"meta_type":"type-value",
"meta_description":[
"concentration of the atom species in a variable composition, by default it ",
"should be considered an array of ones. Summing these should give the ",
"number_of_sites"],
"meta_parent_section":"section_system",
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
}]
}
{
"meta_name":"atom_forces",
"meta_type":"type-value",
"meta_description":[
"Forces acting on the atoms, calculated as minus gradient of energy_total, ",
"**including** constraints, if present. The derivatives with respect to ",
"displacements of nuclei are evaluated in Cartesian coordinates. In addition, ",
"these forces are obtained by filtering out the unitary transformations ",
"(center-of-mass translations and rigid rotations for non-periodic systems, see ",
"atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints ",
"such as fixed atoms, distances, angles, dihedrals, etc. are included (see ",
"atom_forces_raw for the unfiltered counterpart)."],
"meta_parent_section":"section_single_configuration_calculation",
"meta_abstract_types":[
"atom_forces_type"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
},{
"meta_dimension_fixed":3
}],
"meta_repeats":true,
"meta_units":"N"
}
{
"meta_name":"atom_forces_free",
"meta_type":"type-value",
"meta_description":[
"Forces acting on the atoms, calculated as minus gradient of energy_free, ",
"**including** constraints, if present. The derivatives with respect to ",
"displacements of the nuclei are evaluated in Cartesian coordinates. The ",
"(electronic) energy_free contains the information on the change in (fractional) ",
"occupation of the electronic eigenstates, which are accounted for in the ",
"derivatives, yielding a truly energy-conserved quantity. In addition, these ",
"forces are obtained by filtering out the unitary transformations ",
"(center-of-mass translations and rigid rotations for non-periodic systems, see ",
"atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints ",
"such as fixed atoms, distances, angles, dihedrals, etc. are included (see ",
"atom_forces_free_raw for the unfiltered counterpart)."],
"meta_parent_section":"section_single_configuration_calculation",
"meta_abstract_types":[
"atom_forces_type"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
},{
"meta_dimension_fixed":3
}],
"meta_repeats":true,
"meta_units":"N"
}
{
"meta_name":"atom_forces_free_raw",
"meta_type":"type-value",
"meta_description":[
"Forces acting on the atoms, calculated as minus gradient of energy_free, ",
"**without** constraints. The derivatives with respect to displacements of ",
"nuclei are evaluated in Cartesian coordinates. The (electronic) energy_free ",
"contains the change in (fractional) occupation of the electronic eigenstates, ",
"which are accounted for in the derivatives, yielding a truly energy-conserved ",
"quantity. These forces may contain unitary transformations (center-of-mass ",
"translations and rigid rotations for non-periodic systems) that are normally ",
"filtered separately (see atom_forces_free for the filtered counterpart). Forces ",
"due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are ",
"also considered separately (see atom_forces_free for the filtered ",
"counterpart)."],
"meta_parent_section":"section_single_configuration_calculation",
"meta_abstract_types":[
"atom_forces_type"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
},{
"meta_dimension_fixed":3
}],
"meta_repeats":true,
"meta_units":"N"
}
{
"meta_name":"atom_forces_raw",
"meta_type":"type-value",
"meta_description":[
"Forces acting on the atoms, calculated as minus gradient of energy_total, ",
"**without** constraints. The derivatives with respect to displacements of the ",
"nuclei are evaluated in Cartesian coordinates. These forces may contain unitary ",
"transformations (center-of-mass translations and rigid rotations for ",
"non-periodic systems) that are normally filtered separately (see atom_forces ",
"for the filtered counterpart). Forces due to constraints such as fixed atoms, ",
"distances, angles, dihedrals, etc. are also considered separately (see ",
"atom_forces for the filtered counterpart)."],
"meta_parent_section":"section_single_configuration_calculation",
"meta_abstract_types":[
"atom_forces_type"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
},{
"meta_dimension_fixed":3
}],
"meta_repeats":true,
"meta_units":"N"
}
{
"meta_name":"atom_forces_t0",
"meta_type":"type-value",
"meta_description":[
"Forces acting on the atoms, calculated as minus gradient of energy_total_t0, ",
"**including** constraints, if present. The derivatives with respect to ",
"displacements of the nuclei are evaluated in Cartesian coordinates. In ",
"addition, these forces are obtained by filtering out the unitary ",
"transformations (center-of-mass translations and rigid rotations for ",
"non-periodic systems, see atom_forces_free_T0_raw for the unfiltered ",
"counterpart). Forces due to constraints such as fixed atoms, distances, angles, ",
"dihedrals, etc. are also included (see atom_forces_free_T0_raw for the ",
"unfiltered counterpart)."],
"meta_parent_section":"section_single_configuration_calculation",
"meta_abstract_types":[
"atom_forces_type"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
},{
"meta_dimension_fixed":3
}],
"meta_repeats":true,
"meta_units":"N"
}
{
"meta_name":"atom_forces_t0_raw",
"meta_type":"type-value",
"meta_description":[
"Forces acting on the atoms, calculated as minus gradient of energy_total_t0, ",
"**without** constraints. The derivatives with respect to displacements of the ",
"nuclei are evaluated in Cartesian coordinates. These forces may contain unitary ",
"transformations (center-of-mass translations and rigid rotations for ",
"non-periodic systems) that are normally filtered separately (see atom_forces_t0 ",
"for the filtered counterpart). Forces due to constraints such as fixed atoms, ",
"distances, angles, dihedrals, etc. are also considered separately (see ",
"atom_forces_t0 for the filtered counterpart)."],
"meta_parent_section":"section_single_configuration_calculation",
"meta_abstract_types":[
"atom_forces_type"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
},{
"meta_dimension_fixed":3
}],
"meta_repeats":true,
"meta_units":"N"
}
{
"meta_name":"atom_forces_type",
"meta_type":"type-abstract",
"meta_description":[
"The types of forces acting on the atoms (i.e., minus derivatives of the ",
"specific type of energy with respect to the atom ",
"position)."]
}
{
"meta_name":"atom_labels",
"meta_type":"type-value",
"meta_description":[
"Labels of the atoms. These strings identify the atom kind and conventionally ",
"start with the symbol of the atomic species, possibly followed by the atomic ",
"number. The same atomic species can be labeled with more than one atom_labels ",
"in order to distinguish, e.g., atoms of the same species assigned to different ",
"atom-centered basis sets or pseudo-potentials, or simply atoms in different ",
"locations in the structure (e.g., bulk and surface). These labels can also be ",
"used for *particles* that do not correspond to physical atoms (e.g., ghost ",
"atoms in some codes using atom-centered basis sets). This metadata defines a ",
"configuration and is therefore required."],
"meta_parent_section":"section_system",
"meta_abstract_types":[
"configuration_core"],
"meta_data_type":"string",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
}]
}
{
"meta_name":"atom_positions",
"meta_type":"type-value",
"meta_description":[
"Positions of all the atoms, in Cartesian coordinates. This metadata defines a ",
"configuration and is therefore required. For alloys where concentrations of ",
"species are given for each site in the unit cell, it stores the position of the ",
"sites."],
"meta_parent_section":"section_system",
"meta_abstract_types":[
"configuration_core"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms"
},{
"meta_dimension_fixed":3
}],
"meta_units":"m"
}
{
"meta_name":"atom_positions_primitive",
"meta_type":"type-value",
"meta_description":[
"Atom positions in the primitive cell in reduced ",
"units."],
"meta_parent_section":"section_primitive_system",
"meta_abstract_types":[
"derived_quantity"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms_primitive"
},{
"meta_dimension_fixed":3
}]
}
{
"meta_name":"atom_positions_std",
"meta_type":"type-value",
"meta_description":"Standardized atom positions in reduced units.",
"meta_parent_section":"section_std_system",
"meta_abstract_types":[
"derived_quantity"],
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atoms_std"
},{
"meta_dimension_fixed":3
}]
}
{
"meta_name":"atom_projected_dos_energies",
"meta_type":"type-value",
"meta_description":[
"Array containing the set of discrete energy values for the atom-projected ",
"density (electronic-energy) of states (DOS)."],
"meta_parent_section":"section_atom_projected_dos",
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_atom_projected_dos_values"
}],
"meta_units":"J"
}
{
"meta_name":"atom_projected_dos_lm",
"meta_type":"type-value",
"meta_description":[
"Tuples of $l$ and $m$ values for which atom_projected_dos_values_lm are given. ",
"For the quantum number $l$ the conventional meaning of azimuthal quantum number ",
"is always adopted. For the integer number $m$, besides the conventional use as ",
"magnetic quantum number ($l+1$ integer values from $-l$ to $l$), a set of ",
"different conventions is accepted (see the [m_kind wiki ",
"page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
". The adopted convention is specified by ",
"atom_projected_dos_m_kind."],
"meta_parent_section":"section_atom_projected_dos",
"meta_data_type":"int",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_lm_atom_projected_dos"
},{
"meta_dimension_fixed":2
}]
}
{
"meta_name":"atom_projected_dos_m_kind",
"meta_type":"type-value",
"meta_description":[
"String describing what the integer numbers of $m$ in atom_projected_dos_lm ",
"mean. The allowed values are listed in the [m_kind wiki ",
"page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
"."],
"meta_parent_section":"section_atom_projected_dos",
"meta_data_type":"string"
}
{
"meta_name":"atom_projected_dos_values_lm",
"meta_type":"type-value",
"meta_description":[
"Values correspond to the number of states for a given energy (the set of ",
"discrete energy values is given in atom_projected_dos_energies) divided into ",
"contributions from each $l,m$ channel for the atom-projected density ",
"(electronic-energy) of states. Here, there are as many atom-projected DOS as ",
"the number_of_atoms, the list of labels of the atoms and their meanings are in ",
"atom_labels."],
"meta_parent_section":"section_atom_projected_dos",
"meta_data_type":"float",
"meta_dimension":[{
"meta_dimension_symbolic":"number_of_lm_atom_projected_dos"
},{
"meta_dimension_symbolic":"number_of_spin_channels"
},{
"meta_dimension_symbolic":"number_of_atoms"
},{