public.meta_dictionary.json 262 KB
Newer Older
1
{
2
  "metadict_name":"public",
3 4 5 6 7
  "metadict_description":"Public meta info, not specific to any code",
  "metadict_version":"0.1",
  "metadict_require":[],
  "meta_info_entry":[{
    "meta_name":"accessory_info",
8
    "meta_type":"type-abstract",
9 10 11 12 13
    "meta_description":[
      "Information that *in theory* should not affect the results of the calculations ",
      "(e.g., timing)."]
  },{
    "meta_name":"archive_context",
14
    "meta_type":"type-section",
15
    "meta_description":"Contains information relating to an archive.",
16
    "meta_repeats":true,
17 18 19 20
    "meta_context_identifier":[],
    "contains":[
      "calculation_context",
      "section_stats"]
21 22
  },{
    "meta_name":"archive_gid",
23
    "meta_type":"type-value",
24 25 26 27 28
    "meta_description":"unique identifier of an archive.",
    "meta_parent_section":"archive_context",
    "meta_data_type":"string"
  },{
    "meta_name":"atom_atom_number",
29
    "meta_type":"type-value",
30
    "meta_description":"(deprecated) Atomic number Z of the atom.",
31 32 33 34 35 36 37
    "meta_parent_section":"section_system",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_sites"
    }]
  },{
    "meta_name":"atom_concentrations",
38
    "meta_type":"type-value",
39 40 41 42 43 44 45 46 47 48 49
    "meta_description":[
      "concentration of the atom species in a variable composition, by default it ",
      "should be considered an array of ones. Summing these should give the ",
      "number_of_sites"],
    "meta_parent_section":"section_system",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    }]
  },{
    "meta_name":"atom_forces",
50
    "meta_type":"type-value",
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
    "meta_description":[
      "Forces acting on the atoms, calculated as minus gradient of energy_total, ",
      "**including** constraints, if present. The derivatives with respect to ",
      "displacements of nuclei are evaluated in Cartesian coordinates. In addition, ",
      "these forces are obtained by filtering out the unitary transformations ",
      "(center-of-mass translations and rigid rotations for non-periodic systems, see ",
      "atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints ",
      "such as fixed atoms, distances, angles, dihedrals, etc. are included (see ",
      "atom_forces_raw for the unfiltered counterpart)."],
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
72
    "meta_name":"atom_forces_free",
73 74
    "meta_type":"type-value",
    "meta_description":[
75
      "Forces acting on the atoms, calculated as minus gradient of energy_free, ",
76
      "**including** constraints, if present. The derivatives with respect to ",
77 78 79 80 81 82 83 84 85
      "displacements of the nuclei are evaluated in Cartesian coordinates. The ",
      "(electronic) energy_free contains the information on the change in (fractional) ",
      "occupation of the electronic eigenstates, which are accounted for in the ",
      "derivatives, yielding a truly energy-conserved quantity. In addition, these ",
      "forces are obtained by filtering out the unitary transformations ",
      "(center-of-mass translations and rigid rotations for non-periodic systems, see ",
      "atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints ",
      "such as fixed atoms, distances, angles, dihedrals, etc. are included (see ",
      "atom_forces_free_raw for the unfiltered counterpart)."],
86 87 88 89 90 91 92 93 94 95 96 97
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
98
    "meta_name":"atom_forces_free_raw",
99 100
    "meta_type":"type-value",
    "meta_description":[
101 102 103 104 105 106 107 108 109 110 111
      "Forces acting on the atoms, calculated as minus gradient of energy_free, ",
      "**without** constraints. The derivatives with respect to displacements of ",
      "nuclei are evaluated in Cartesian coordinates. The (electronic) energy_free ",
      "contains the change in (fractional) occupation of the electronic eigenstates, ",
      "which are accounted for in the derivatives, yielding a truly energy-conserved ",
      "quantity. These forces may contain unitary transformations (center-of-mass ",
      "translations and rigid rotations for non-periodic systems) that are normally ",
      "filtered separately (see atom_forces_free for the filtered counterpart). Forces ",
      "due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are ",
      "also considered separately (see atom_forces_free for the filtered ",
      "counterpart)."],
112 113 114 115 116 117 118 119 120 121 122 123
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
124
    "meta_name":"atom_forces_raw",
125 126
    "meta_type":"type-value",
    "meta_description":[
127 128 129 130 131 132 133 134
      "Forces acting on the atoms, calculated as minus gradient of energy_total, ",
      "**without** constraints. The derivatives with respect to displacements of the ",
      "nuclei are evaluated in Cartesian coordinates. These forces may contain unitary ",
      "transformations (center-of-mass translations and rigid rotations for ",
      "non-periodic systems) that are normally filtered separately (see atom_forces ",
      "for the filtered counterpart). Forces due to constraints such as fixed atoms, ",
      "distances, angles, dihedrals, etc. are also considered separately (see ",
      "atom_forces for the filtered counterpart)."],
135 136 137 138 139 140 141 142 143 144 145 146
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
147
    "meta_name":"atom_forces_t0",
148 149
    "meta_type":"type-value",
    "meta_description":[
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
150
      "Forces acting on the atoms, calculated as minus gradient of energy_total_t0, ",
151 152 153 154 155 156 157 158
      "**including** constraints, if present. The derivatives with respect to ",
      "displacements of the nuclei are evaluated in Cartesian coordinates. In ",
      "addition, these forces are obtained by filtering out the unitary ",
      "transformations (center-of-mass translations and rigid rotations for ",
      "non-periodic systems, see atom_forces_free_T0_raw for the unfiltered ",
      "counterpart). Forces due to constraints such as fixed atoms, distances, angles, ",
      "dihedrals, etc. are also included (see atom_forces_free_T0_raw for the ",
      "unfiltered counterpart)."],
159 160 161 162 163 164 165 166 167 168 169 170
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
171
    "meta_name":"atom_forces_t0_raw",
172 173
    "meta_type":"type-value",
    "meta_description":[
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
174
      "Forces acting on the atoms, calculated as minus gradient of energy_total_t0, ",
175 176 177
      "**without** constraints. The derivatives with respect to displacements of the ",
      "nuclei are evaluated in Cartesian coordinates. These forces may contain unitary ",
      "transformations (center-of-mass translations and rigid rotations for ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
178
      "non-periodic systems) that are normally filtered separately (see atom_forces_t0 ",
179 180
      "for the filtered counterpart). Forces due to constraints such as fixed atoms, ",
      "distances, angles, dihedrals, etc. are also considered separately (see ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
181
      "atom_forces_t0 for the filtered counterpart)."],
182 183 184 185 186 187 188 189 190 191 192 193 194
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
    "meta_name":"atom_forces_type",
195
    "meta_type":"type-abstract",
196 197 198 199 200 201
    "meta_description":[
      "The types of forces acting on the atoms (i.e., minus derivatives of the ",
      "specific type of energy with respect to the atom ",
      "position)."]
  },{
    "meta_name":"atom_labels",
202
    "meta_type":"type-value",
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    "meta_description":[
      "Labels of the atoms. These strings identify the atom kind and conventionally ",
      "start with the symbol of the atomic species, possibly followed by the atomic ",
      "number. The same atomic species can be labeled with more than one atom_labels ",
      "in order to distinguish, e.g., atoms of the same species assigned to different ",
      "atom-centered basis sets or pseudo-potentials, or simply atoms in different ",
      "locations in the structure (e.g., bulk and surface). These labels can also be ",
      "used for *particles* that do not correspond to physical atoms (e.g., ghost ",
      "atoms in some codes using atom-centered basis sets). This metadata defines a ",
      "configuration and is therefore required."],
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"string",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    }]
  },{
    "meta_name":"atom_positions",
222
    "meta_type":"type-value",
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    "meta_description":[
      "Positions of all the atoms, in Cartesian coordinates. This metadata defines a ",
      "configuration and is therefore required. For alloys where concentrations of ",
      "species are given for each site in the unit cell, it stores the position of the ",
      "sites."],
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_units":"m"
  },{
    "meta_name":"atom_positions_primitive",
240
    "meta_type":"type-value",
241 242 243 244 245 246 247 248 249 250 251 252 253 254
    "meta_description":[
      "Atom positions in the primitive cell in reduced ",
      "units."],
    "meta_parent_section":"section_primitive_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_primitive"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"atom_positions_std",
255
    "meta_type":"type-value",
256 257 258 259 260 261 262 263 264 265 266 267
    "meta_description":"Standardized atom positions in reduced units.",
    "meta_parent_section":"section_std_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_std"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"atom_projected_dos_energies",
268
    "meta_type":"type-value",
269 270 271 272 273 274 275 276 277 278 279
    "meta_description":[
      "Array containing the set of discrete energy values for the atom-projected ",
      "density (electronic-energy) of states (DOS)."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atom_projected_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"atom_projected_dos_lm",
280
    "meta_type":"type-value",
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    "meta_description":[
      "Tuples of $l$ and $m$ values for which atom_projected_dos_values_lm are given. ",
      "For the quantum number $l$ the conventional meaning of azimuthal quantum number ",
      "is always adopted. For the integer number $m$, besides the conventional use as ",
      "magnetic quantum number ($l+1$ integer values from $-l$ to $l$), a set of ",
      "different conventions is accepted (see the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      ". The adopted convention is specified by ",
      "atom_projected_dos_m_kind."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atom_projected_dos"
    },{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"atom_projected_dos_m_kind",
299
    "meta_type":"type-value",
300 301 302 303 304 305 306 307 308
    "meta_description":[
      "String describing what the integer numbers of $m$ in atom_projected_dos_lm ",
      "mean. The allowed values are listed in the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      "."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"string"
  },{
    "meta_name":"atom_projected_dos_values_lm",
309
    "meta_type":"type-value",
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    "meta_description":[
      "Values correspond to the number of states for a given energy (the set of ",
      "discrete energy values is given in atom_projected_dos_energies) divided into ",
      "contributions from each $l,m$ channel for the atom-projected density ",
      "(electronic-energy) of states. Here, there are as many atom-projected DOS as ",
      "the number_of_atoms, the list of labels of the atoms and their meanings are in ",
      "atom_labels."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atom_projected_dos"
    },{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_symbolic":"number_of_atom_projected_dos_values"
    }]
  },{
    "meta_name":"atom_projected_dos_values_total",
330
    "meta_type":"type-value",
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    "meta_description":[
      "Values correspond to the number of states for a given energy (the set of ",
      "discrete energy values is given in atom_projected_dos_energies) divided into ",
      "contributions summed up over all $l$ channels for the atom-projected density ",
      "(electronic-energy) of states (DOS). Here, there are as many atom-projected DOS ",
      "as the number_of_atoms, the list of labels of the atoms and their meanings are ",
      "in atom_labels."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_symbolic":"number_of_atom_projected_dos_values"
    }]
  },{
    "meta_name":"atom_velocities",
349
    "meta_type":"type-value",
350 351 352 353 354 355 356 357 358 359 360 361 362 363
    "meta_description":[
      "Velocities of the nuclei, defined as the change in Cartesian coordinates of the ",
      "nuclei with respect to time."],
    "meta_parent_section":"section_system",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"m/s"
  },{
    "meta_name":"atomic_multipole_kind",
364
    "meta_type":"type-value",
365 366 367 368 369 370 371 372 373 374 375
    "meta_description":[
      "String describing the method used to obtain the electrostatic multipoles ",
      "(including the electric charge, dipole, etc.) for each atom. Such multipoles ",
      "require a charge-density partitioning scheme, specified by the value of this ",
      "metadata. Allowed values are listed in the [atomic_multipole_kind wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/atomi",
      "c-multipole-kind)."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_multipole_lm",
376
    "meta_type":"type-value",
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    "meta_description":[
      "Tuples of $l$ and $m$ values for which the atomic multipoles (including the ",
      "electric charge, dipole, etc.) are given. The method used to obtain the ",
      "multipoles is specified by atomic_multipole_kind. The meaning of the integer ",
      "number $l$ is monopole/charge for $l=0$, dipole for $l=1$, quadrupole for ",
      "$l=2$, etc. The meaning of the integer numbers $m$ is specified by ",
      "atomic_multipole_m_kind."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atomic_multipoles"
    },{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"atomic_multipole_m_kind",
393
    "meta_type":"type-value",
394 395 396 397 398 399 400 401 402
    "meta_description":[
      "String describing the definition for each integer number $m$ in ",
      "atomic_multipole_lm. Allowed values are listed in the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      "."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_multipole_values",
403
    "meta_type":"type-value",
404 405 406 407 408 409 410 411 412 413 414 415 416
    "meta_description":[
      "Value of the multipoles (including the monopole/charge for $l$ = 0, the dipole ",
      "for $l$ = 1, etc.) for each atom, calculated as described in ",
      "atomic_multipole_kind."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atomic_multipoles"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    }]
  },{
    "meta_name":"atomic_numbers_primitive",
417
    "meta_type":"type-value",
418 419 420 421 422 423 424 425 426 427
    "meta_description":"Atomic numbers in the primitive cell.",
    "meta_parent_section":"section_primitive_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_primitive"
    }]
  },{
    "meta_name":"atomic_numbers_std",
428
    "meta_type":"type-value",
429 430 431 432 433 434 435 436 437 438 439 440
    "meta_description":[
      "Atomic numbers of the atoms in the standardized ",
      "cell."],
    "meta_parent_section":"section_std_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_std"
    }]
  },{
    "meta_name":"band_energies",
441
    "meta_type":"type-value",
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    "meta_description":[
      "$k$-dependent or $q$-dependent  energies of the electronic or vibrational band ",
      "segment (electronic/vibrational band structure). This is a third-order tensor, ",
      "with one dimension used for the spin channels (1 in case of a vibrational band ",
      "structure), one for the $k$ or $q$ points for each segment, and one for the ",
      "eigenvalue sequence."],
    "meta_parent_section":"section_k_band_segment",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_band_segment_eigenvalues"
    }],
    "meta_units":"J"
  },{
    "meta_name":"band_energies_normalized",
462
    "meta_type":"type-value",
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    "meta_description":[
      "$k$-dependent energies of the electronic band segment (electronic band ",
      "structure) with respect to the top of the valence band. This is a third-order ",
      "tensor, with one dimension used for the spin channels, one for the $k$ points ",
      "for each segment, and one for the eigenvalue ",
      "sequence."],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_normalized_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_normalized_band_segment_eigenvalues"
    }],
    "meta_units":"J"
  },{
    "meta_name":"band_k_points",
483
    "meta_type":"type-value",
484 485 486 487 488 489 490 491 492 493 494 495 496
    "meta_description":[
      "Fractional coordinates of the $k$ or $q$ points (in the basis of the ",
      "reciprocal-lattice vectors) for which the electronic energy are ",
      "given."],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_k_points_per_segment"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_k_points_normalized",
497
    "meta_type":"type-value",
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
    "meta_description":[
      "Fractional coordinates of the $k$ points (in the basis of the ",
      "reciprocal-lattice vectors) for which the normalized electronic energies are ",
      "given."],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_normalized_k_points_per_segment"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_occupations",
513
    "meta_type":"type-value",
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    "meta_description":[
      "Occupation of the $k$-points along the electronic band. The size of the ",
      "dimensions of this third-order tensor are the same as for the tensor in ",
      "band_energies."],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_band_segment_eigenvalues"
    }]
  },{
    "meta_name":"band_occupations_normalized",
529
    "meta_type":"type-value",
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
    "meta_description":[
      "Occupation of the $k$-points along the normalized electronic band. The size of ",
      "the dimensions of this third-order tensor are the same as for the tensor in ",
      "band_energies."],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_normalized_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_normalized_band_segment_eigenvalues"
    }]
  },{
    "meta_name":"band_segm_labels",
547
    "meta_type":"type-value",
548 549 550 551 552 553 554 555 556 557 558 559 560
    "meta_description":[
      "Start and end labels of the points in the segment (one-dimensional pathways) ",
      "sampled in the $k$-space or $q$-space, using the conventional symbols, e.g., ",
      "Gamma, K, L. The coordinates (fractional, in the reciprocal space) of the start ",
      "and end points for each segment are given in ",
      "band_segm_start_end"],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"string",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"band_segm_labels_normalized",
561
    "meta_type":"type-value",
562 563 564 565 566 567 568 569 570 571 572 573 574 575
    "meta_description":[
      "Start and end labels of the points in the segment (one-dimensional pathways) ",
      "sampled in the $k$-space, using the conventional symbols, e.g., Gamma, K, L. ",
      "The coordinates (fractional, in the reciprocal space) of the start and end ",
      "points for each segment are given in band_segm_start_end_normalized"],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"band_segm_start_end",
576
    "meta_type":"type-value",
577 578 579 580 581 582 583 584 585 586 587 588 589 590
    "meta_description":[
      "Fractional coordinates of the start and end point (in the basis of the ",
      "reciprocal lattice vectors) of the segment sampled in the $k$ space. The ",
      "conventional symbols (e.g., Gamma, K, L) of the same points are given in ",
      "band_segm_labels"],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_segm_start_end_normalized",
591
    "meta_type":"type-value",
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    "meta_description":[
      "Fractional coordinates of the start and end point (in the basis of the ",
      "reciprocal lattice vectors) of the segment sampled in the $k$ space. The ",
      "conventional symbols (e.g., Gamma, K, L) of the same points are given in ",
      "band_segm_labels"],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_structure_kind",
608
    "meta_type":"type-value",
609 610 611 612 613 614 615
    "meta_description":[
      "String to specify the kind of band structure (either electronic or ",
      "vibrational)."],
    "meta_parent_section":"section_k_band",
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set",
616
    "meta_type":"type-value",
617 618
    "meta_description":[
      "Unique string identifying the basis set used for the final wavefunctions ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
619
      "calculated with xc_method. It might identify a class of basis sets, often ",
620 621 622 623 624 625 626 627 628
      "matches one of the strings given in any of ",
      "basis_set_name."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
      "settings_numerical_parameter",
      "settings_potential_energy_surface"],
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_atom_centered_ls",
629
    "meta_type":"type-value",
630 631 632 633 634 635 636 637 638 639 640 641 642
    "meta_description":[
      "Azimuthal quantum number ($l$) values (of the angular part given by the ",
      "spherical harmonic $Y_{lm}$) of the atom-centered basis function defined in the ",
      "current section_basis_set_atom_centered."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_kinds_in_basis_set_atom_centered"
    }]
  },{
    "meta_name":"basis_set_atom_centered_radial_functions",
643
    "meta_type":"type-value",
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    "meta_description":[
      "Values of the radial function of the different basis function kinds. The values ",
      "are numerically tabulated on a default 0.01-nm equally spaced grid from 0 to 4 ",
      "nm. The 5 tabulated values are $r$, $f(r)$, $f'(r)$, $f(r) \\cdot r$, ",
      "$\\frac{d}{dr}(f(r) \\cdot r)$."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_kinds_in_basis_set_atom_centered"
    },{
      "meta_dimension_fixed":401
    },{
      "meta_dimension_fixed":5
    }]
  },{
    "meta_name":"basis_set_atom_centered_short_name",
662
    "meta_type":"type-value",
663 664 665 666 667 668 669 670 671 672 673 674 675
    "meta_description":[
      "Code-specific, but explicative, base name for the basis set (not unique). ",
      "Details are explained in the [basis_set_atom_centered_short_name wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis",
      "-set-atom-centered-short-name), this name should not contain the *atom kind* ",
      "(to simplify the use of a single name for multiple ",
      "elements)."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_atom_centered_unique_name",
676
    "meta_type":"type-value",
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
    "meta_description":[
      "Code-specific, but explicative, base name for the basis set (not unique). This ",
      "string starts with basis_set_atom_centered_short_name. If the basis set defined ",
      "in this section_basis_set_atom_centered is not identical to the default ",
      "definition (stored in a database) of the basis set with the same name stored in ",
      "a database, then the string is extended by 10 identifiable characters as ",
      "explained in the [basis_set_atom_centered_name wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis",
      "-set-atom-centered-unique-name). The reason for this procedure is that often ",
      "atom-centered basis sets are obtained by fine tuning basis sets provided by the ",
      "code developers or other sources. Each basis sets, which has normally a ",
      "standard name, often reported in publications, has also several parameters that ",
      "can be tuned. This metadata tries to keep track of the original basis set and ",
      "its modifications. This string here defined should not contain the *atom kind* ",
      "for which this basis set is intended for, in order to simplify the use of a ",
      "single name for multiple *atom kinds* (see atom_labels for the actual meaning ",
      "of *atom kind*)."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_atom_number",
700
    "meta_type":"type-value",
701 702 703 704 705 706 707 708 709 710
    "meta_description":[
      "Atomic number (i.e., number of protons) of the atom for which this basis set is ",
      "constructed (0 means unspecified or a pseudo ",
      "atom)."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"int"
  },{
    "meta_name":"basis_set_cell_dependent_kind",
711
    "meta_type":"type-value",
712 713 714 715 716 717 718 719
    "meta_description":[
      "A string defining the type of the cell-dependent basis set (i.e., non atom ",
      "centered such as plane-waves). Allowed values are listed in the ",
      "[basis_set_cell_dependent_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/",
      "nomad-meta-info/wikis/metainfo/basis-set-cell-dependent-kind)."],
    "meta_parent_section":"section_basis_set_cell_dependent",
    "meta_abstract_types":[
      "basis_set_description"],
720 721
    "meta_data_type":"string",
    "repeat":false
722 723
  },{
    "meta_name":"basis_set_cell_dependent_name",
724
    "meta_type":"type-value",
725 726 727 728 729 730 731 732
    "meta_description":[
      "A label identifying the cell-dependent basis set (i.e., non atom centered such ",
      "as plane-waves). Allowed values are listed in the ",
      "[basis_set_cell_dependent_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/",
      "nomad-meta-info/wikis/metainfo/basis-set-cell-dependent-name)."],
    "meta_parent_section":"section_basis_set_cell_dependent",
    "meta_abstract_types":[
      "basis_set_description"],
733 734
    "meta_data_type":"string",
    "repeat":false
735 736
  },{
    "meta_name":"basis_set_description",
737
    "meta_type":"type-abstract",
738 739 740 741 742
    "meta_description":[
      "One of the parts building the basis set of the system (e.g., some atom-centered ",
      "basis set, plane-waves or both)."]
  },{
    "meta_name":"basis_set_kind",
743
    "meta_type":"type-value",
744 745 746 747 748 749 750 751 752
    "meta_description":[
      "String describing the use of the basis set, i.e, if it used for expanding a ",
      "wave-function or an electron density. Allowed values are listed in the ",
      "[basis_set_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info",
      "/wikis/metainfo/basis-set-kind)."],
    "meta_parent_section":"section_basis_set",
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_name",
753
    "meta_type":"type-value",
754 755 756 757 758 759 760 761 762
    "meta_description":[
      "String identifying the basis set in an unique way. The rules for building this ",
      "string are specified in the [basis_set_name wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis",
      "-set-name)."],
    "meta_parent_section":"section_basis_set",
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_planewave_cutoff",
763
    "meta_type":"type-value",
764 765 766 767 768 769 770 771 772 773 774 775 776
    "meta_description":[
      "Spherical cutoff  in reciprocal space for a plane-wave basis set. It is the ",
      "energy of the highest plan-ewave ($\\frac{\\hbar^2|k+G|^2}{2m_e}$) included in ",
      "the basis set. Note that normally this basis set is used for the wavefunctions, ",
      "and the density would have 4 times the cutoff, but this actually depends on the ",
      "use of the basis set by the method."],
    "meta_parent_section":"section_basis_set_cell_dependent",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"bravais_lattice",
777
    "meta_type":"type-value",
778 779 780 781 782 783 784 785 786 787 788 789 790
    "meta_description":[
      "Identifier for the Bravais lattice in Pearson notation. The first lowercase ",
      "letter identifies the crystal family and can be one of the following: a ",
      "(triclinic), b (monoclinic), o (orthorhombic), t (tetragonal), h (hexagonal) or ",
      "c (cubic). The second uppercase letter identifies the centring and can be one ",
      "of the following: P (primitive), S (face centred), I (body centred), R ",
      "(rhombohedral centring) or F (all faces centred)."],
    "meta_parent_section":"section_symmetry",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_context",
791
    "meta_type":"type-section",
792
    "meta_description":"Contains information relating to a calculation.",
793
    "meta_repeats":true,
794 795 796 797
    "meta_context_identifier":[],
    "contains":[
      "section_run",
      "section_stats"]
798 799
  },{
    "meta_name":"calculation_file_uri",
800
    "meta_type":"type-value",
801 802 803 804 805 806 807 808 809
    "meta_description":[
      "Contains the nomad uri of a raw the data file connected to the current run. ",
      "There should be an value for the main_file_uri and all ancillary ",
      "files."],
    "meta_parent_section":"section_run",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"calculation_gid",
810
    "meta_type":"type-value",
811 812 813 814 815
    "meta_description":"unique identifier of a calculation.",
    "meta_parent_section":"calculation_context",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_method",
816
    "meta_type":"type-value",
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
    "meta_description":[
      "String that uniquely represents the method used to calculate energy_total, If ",
      "the present calculation_method_current is a perturbative method Y that uses ",
      "method X as starting point, this string is automatically created as X@Y, where ",
      "X is taken from calculation_method_current and Y from method_to_method_ref. In ",
      "order to activate this, method_to_method_kind must have the value ",
      "starting_point (see the [method_to_method_kind wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/metho",
      "d-to-method-kind))."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_method_current",
832
    "meta_type":"type-value",
833 834 835 836 837
    "meta_description":[
      "String that represents the method used to calculate the energy_current. If the ",
      "method is perturbative, this string does not describe the starting point ",
      "method, the latter being referenced to by section_method_to_method_refs. For ",
      "self-consistent field (SCF) ab initio calculations, for example, this is ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
838
      "composed by concatenating xc_method_current and basis_set. See ",
839 840 841 842 843 844 845 846 847
      "[calculation_method_current wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nom",
      "ad-meta-info/wikis/metainfo/calculation-method-current) for the ",
      "details."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_method_kind",
848
    "meta_type":"type-value",
849 850 851 852 853 854 855 856 857 858 859
    "meta_description":[
      "Kind of method in calculation_method_current.\n",
      "\n",
      "Accepted values are:\n",
      "\n",
      "- absolute\n",
      "- perturbative."],
    "meta_parent_section":"section_method",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_pid",
860
    "meta_type":"type-value",
861 862 863 864 865
    "meta_description":"repository pid of this calculation",
    "meta_parent_section":"section_calculation_info",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_to_calculation_external_url",
866
    "meta_type":"type-value",
867 868 869 870 871 872 873 874 875 876
    "meta_description":[
      "URL used to reference an externally stored calculation. The kind of ",
      "relationship between the present and the referenced ",
      "section_single_configuration_calculation is specified by ",
      "calculation_to_calculation_kind."],
    "meta_parent_section":"section_calculation_to_calculation_refs",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"calculation_to_calculation_kind",
877
    "meta_type":"type-value",
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
    "meta_description":[
      "String defining the relationship between the referenced ",
      "section_single_configuration_calculation and the present ",
      "section_single_configuration_calculation. Valid values are described in the ",
      "[calculation_to_calculation_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-la",
      "b/nomad-meta-info/wikis/metainfo/calculation-to-calculation-kind). Often ",
      "calculations are connected, for instance, one calculation is a perturbation ",
      "performed using a self-consistent field (SCF) calculation as starting point, or ",
      "a simulated system is partitioned in regions with different but connected ",
      "Hamiltonians (e.g., QM/MM, or a region treated via Kohn-Sham DFT embedded into ",
      "a region treated via orbital-free DFT). Hence, the need of keeping track of ",
      "these connected calculations. The referenced calculation is identified via ",
      "calculation_to_calculation_ref (typically used for a calculation in the same ",
      "section_run) or calculation_to_calculation_external_url."],
    "meta_parent_section":"section_calculation_to_calculation_refs",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_to_calculation_ref",
896
    "meta_type":"type-value",
897 898 899 900 901 902 903 904 905 906
    "meta_description":[
      "Reference to another calculation. If both this and ",
      "calculation_to_calculation_external_url are given, then ",
      "calculation_to_calculation_ref is a local copy of the URL given in ",
      "calculation_to_calculation_external_url. The kind of relationship between the ",
      "present and the referenced section_single_configuration_calculation is ",
      "specified by calculation_to_calculation_kind."],
    "meta_parent_section":"section_calculation_to_calculation_refs",
    "meta_data_type":"reference",
    "meta_repeats":true,
907
    "meta_referenced_section":"section_single_configuration_calculation"
908 909
  },{
    "meta_name":"calculation_to_folder_external_url",
910
    "meta_type":"type-value",
911 912 913 914 915 916 917 918 919 920
    "meta_description":[
      "URL used to reference a folder containing external calculations. The kind of ",
      "relationship between the present and the referenced ",
      "section_single_configuration_calculation is specified by ",
      "calculation_to_folder_kind."],
    "meta_parent_section":"section_calculation_to_folder_refs",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"calculation_to_folder_kind",
921
    "meta_type":"type-value",
922 923 924 925 926 927 928 929
    "meta_description":[
      "String defining the relationship between the referenced ",
      "section_single_configuration_calculation and a folder containing ",
      "calculations."],
    "meta_parent_section":"section_calculation_to_folder_refs",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_upload_date",
930
    "meta_type":"type-value",
931 932 933 934
    "meta_description":[
      "Upload date of the calculation, given as total number of milliseconds is the ",
      "elapsed since the unix epoch (1 January 1970)"],
    "meta_parent_section":"section_calculation_info",
935
    "meta_data_type":"int64",
936 937 938
    "meta_repeats":true
  },{
    "meta_name":"calculation_uploader_name",
939
    "meta_type":"type-value",
940 941 942 943 944 945 946 947
    "meta_description":[
      "Name of the uploader of this calculation, given as lastamen, ",
      "firstname"],
    "meta_parent_section":"section_calculation_info",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"choice",
948
    "meta_type":"type-value",
949 950 951 952 953 954 955 956 957 958 959
    "meta_description":[
      "String that specifies the centering, origin and basis vector settings of the 3D ",
      "space group that defines the symmetry group of the simulated physical system ",
      "(see section_system). Values are as defined by ",
      "spglib."],
    "meta_parent_section":"section_symmetry",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"configuration_core",
960
    "meta_type":"type-abstract",
961 962 963
    "meta_description":"Properties defining the current configuration."
  },{
    "meta_name":"configuration_periodic_dimensions",
964
    "meta_type":"type-value",
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
    "meta_description":[
      "Array labeling which of the lattice vectors use periodic boundary conditions. ",
      "Note for the parser developers: This value is not expected to be given for each ",
      "section_single_configuration_calculation. It is assumed to be valid from the ",
      "section_single_configuration_calculation where it is defined for all subsequent ",
      "section_single_configuration_calculation in section_run, until ",
      "redefined."],
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"boolean",
    "meta_dimension":[{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true
  },{
    "meta_name":"configuration_raw_gid",
982
    "meta_type":"type-value",
983 984 985 986 987 988 989 990
    "meta_description":[
      "checksum of the configuration_core, i.e. the geometry of the system. The values ",
      "are not normalized in any way so equivalent configurations might have different ",
      "values"],
    "meta_parent_section":"section_system",
    "meta_data_type":"string"
  },{
    "meta_name":"conserved_quantity",
991
    "meta_type":"type-value",
992
    "meta_description":[
993 994 995 996 997 998 999 1000
      "The values of a quantity that should be conserved,  along a sequence of frames ",
      "(i.e., a trajectory). A frame is one section_single_configuration_calculation), ",
      "for example the total energy in the NVE ensemble. If not all frames have a ",
      "value the indices of the frames that have a value are stored in ",
      "frame_sequence_conserved_quantity_frames."],
    "meta_parent_section":"section_frame_sequence",
    "meta_data_type":"float",
    "meta_units":"J"
1001 1002
  },{
    "meta_name":"crystal_system",
1003
    "meta_type":"type-value",
1004 1005 1006 1007 1008 1009 1010 1011
    "meta_description":[
      "Name of the crystal system. Can be one of the following: triclinic, monoclinic, ",
      "orthorhombic, tetragonal, trigonal, hexagonal or ",
      "cubic."],
    "meta_parent_section":"section_symmetry",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
1012 1013 1014 1015 1016 1017
  },{
    "meta_name":"derived_quantity",
    "meta_type":"type-abstract",
    "meta_description":[
      "Quantity that is not directly outputted by the parser, but is computed using ",
      "other quantities."]
1018 1019
  },{
    "meta_name":"dos_energies",
1020
    "meta_type":"type-value",
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    "meta_description":[
      "Array containing the set of discrete energy values for the density ",
      "(electronic-energy or vibrational energy) of states (DOS). This is the total ",
      "DOS, see atom_projected_dos_energies and species_projected_dos_energies for ",
      "partial density of states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"dos_energies_normalized",
1034
    "meta_type":"type-value",
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
    "meta_description":[
      "Array containing the set of discrete energy values with respect to the top of ",
      "the valence band for the density (electronic-energy) of states (DOS). This is ",
      "the total DOS, see atom_projected_dos_energies and ",
      "species_projected_dos_energies for partial density of ",
      "states."],
    "meta_parent_section":"section_dos",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"dos_fermi_energy",
1051
    "meta_type":"type-value",
1052 1053 1054 1055 1056 1057 1058
    "meta_description":[
      "Stores the Fermi energy of the density of ",
      "states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float"
  },{
    "meta_name":"dos_integrated_values",
1059
    "meta_type":"type-value",
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
    "meta_description":[
      "Integrated density of states (starting at $-\\infty$), pseudo potential ",
      "calculations should start with the number of core electrons if they cover only ",
      "the active electrons"],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"dos_kind",
1073
    "meta_type":"type-value",
1074 1075 1076 1077 1078 1079 1080
    "meta_description":[
      "String to specify the kind of density of states (either electronic or ",
      "vibrational)."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"string"
  },{
    "meta_name":"dos_lm",
1081
    "meta_type":"type-value",
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
    "meta_description":[
      "Tuples of $l$ and $m$ values for which dos_values_lm are given. For the quantum ",
      "number $l$ the conventional meaning of azimuthal quantum number is always ",
      "adopted. For the integer number $m$, besides the conventional use as magnetic ",
      "quantum number ($l+1$ integer values from $-l$ to $l$), a set of different ",
      "conventions is accepted (see the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      ". The actual adopted convention is specified by ",
      "dos_m_kind."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_lms"
    },{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"dos_m_kind",
1100
    "meta_type":"type-value",
1101 1102 1103 1104 1105 1106 1107 1108
    "meta_description":[
      "String describing what the integer numbers of $m$ in dos_lm mean. The allowed ",
      "values are listed in the [m_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/",
      "nomad-meta-info/wikis/metainfo/m-kind)."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"string"
  },{
    "meta_name":"dos_values",
1109
    "meta_type":"type-value",
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    "meta_description":[
      "Values (number of states for a given energy, the set of discrete energy values ",
      "is given in dos_energies) of density (electronic-energy or vibrational-energy) ",
      "of states. This refers to the simulation cell, i.e. integrating over all ",
      "energies will give the number of electrons in the simulation ",
      "cell."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"dos_values_lm",
1125
    "meta_type":"type-value",
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    "meta_description":[
      "Array containing the density (electronic-energy) of states values projected on ",
      "the various spherical harmonics (integrated on all atoms), see ",
      "atom_projected_dos_values_lm for atom values."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_lms"
    },{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"dos_values_per_atoms",
1144
    "meta_type":"type-value",
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
    "meta_description":[
      "Values (number of states for a given energy divided by the numer of atoms, the ",
      "set of discrete energy values is given in dos_energies) of density ",
      "(electronic-energy or vibrational-energy) of ",
      "states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"dos_values_per_unit_volume",
1159
    "meta_type":"type-value",
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    "meta_description":[
      "Values (number of states for a given energy divided by volume, the set of ",
      "discrete energy values is given in dos_energies) of density (electronic-energy ",
      "or vibrational-energy) of states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"eigenvalues_kind",
1173
    "meta_type":"type-value",
1174 1175 1176 1177 1178
    "meta_description":[
      "A short string describing the kind of eigenvalues, as defined in the ",
      "[eigenvalues_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-in",
      "fo/wikis/metainfo/eigenvalues-kind)."],
    "meta_parent_section":"section_eigenvalues",
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
    "meta_data_type":"string",
    "meta_enum":[{
      "meta_enum_value":"normal",
      "meta_enum_description":"all eigenvalues of the Kohn Sham / Fock operator"
    },{
      "meta_enum_value":"partial",
      "meta_enum_description":[
        "partial eigenvalue spectrum, usually around the HOMO-LOMO. In this case, ",
        "number_of_eigenvalues only refers to the number of stored eigenvalues, not the ",
        "full spectrum."]
    }]
1190 1191
  },{
    "meta_name":"eigenvalues_kpoints",
1192
    "meta_type":"type-value",
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    "meta_description":[
      "Coordinates of the $k$ points (in the basis of the reciprocal lattice vectors) ",
      "used for the evaluation of the eigenvalues tabulated in ",
      "eigenvalues_values."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"eigenvalues_kpoints_multiplicity",
1206
    "meta_type":"type-value",
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    "meta_description":[
      "Multiplicity of the $k$ point (i.e., how many distinct points per cell this ",
      "expands to after applying all symmetries). This defaults to 1. If expansion is ",
      "preformed then each point will have weight ",
      "eigenvalues_kpoints_weights/eigenvalues_kpoints_multiplicity."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    }]
  },{
    "meta_name":"eigenvalues_kpoints_weights",
1219
    "meta_type":"type-value",
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    "meta_description":[
      "Weights of the $k$ points (in the basis of the reciprocal lattice vectors) used ",
      "for the evaluation of the eigenvalues tabulated in eigenvalues_values, should ",
      "account for symmetry too."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    }]
  },{
    "meta_name":"eigenvalues_occupation",
1231
    "meta_type":"type-value",
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    "meta_description":[
      "Occupation of the eigenstates. The corresponding eigenvalues (energy) are given ",
      "in eigenvalues_values. The coordinates in the reciprocal space are defined in ",
      "eigenvalues_kpoints."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues"
    }]
  },{
    "meta_name":"eigenvalues_values",
1247
    "meta_type":"type-value",
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    "meta_description":[
      "Values of the (electronic-energy) eigenvalues. The coordinates of the ",
      "corresponding eigenstates in the reciprocal space are defined in ",
      "eigenvalues_kpoints and their occupations are given in ",
      "eigenvalues_occupation."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues"
    }],
    "meta_units":"J"
  },{
    "meta_name":"electronic_kinetic_energy",
1265
    "meta_type":"type-value",
1266 1267
    "meta_description":[
      "Self-consistent electronic kinetic energy as defined in ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1268
      "xc_method."],
1269 1270 1271 1272 1273 1274 1275
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"electronic_kinetic_energy_scf_iteration",
1276
    "meta_type":"type-value",
1277
    "meta_description":[
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1278
      "Electronic kinetic energy as defined in xc_method during the self-consistent ",
1279 1280 1281 1282 1283 1284 1285 1286 1287
      "field (SCF) iterations."],
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_component",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"electronic_structure_method",
1288
    "meta_type":"type-value",
1289 1290 1291 1292 1293 1294 1295 1296 1297
    "meta_description":[
      "Non-unique string identifying the used electronic structure method. It is not ",
      "unique in the sense that two calculations with the same ",
      "electronic_structure_method string may have not been performed with exactly the ",
      "same method. The allowed strings are given in the [electronic structure method ",
      "wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/",
      "electronic-structure-method)."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1298
      "settings_xc"],
1299 1300 1301
    "meta_data_type":"string"
  },{
    "meta_name":"embedded_system",
1302
    "meta_type":"type-value",
1303 1304 1305 1306 1307 1308
    "meta_description":"Is the system embedded into a host geometry?.",
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"boolean"
  },{
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1309
    "meta_name":"energy_c",
1310
    "meta_type":"type-value",
1311 1312
    "meta_description":[
      "Correlation (C) energy calculated with the method described in ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1313
      "xc_functional."],
1314 1315
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1316
      "energy_type_c"],
1317 1318 1319
    "meta_data_type":"float",
    "meta_units":"J"
  },{
1320
    "meta_name":"energy_change_scf_iteration",
1321 1322
    "meta_type":"type-value",
    "meta_description":[
1323 1324 1325
      "Stores the change of total energy with respect to the previous self-consistent ",
      "field (SCF) iteration."],
    "meta_parent_section":"section_scf_iteration",
1326
    "meta_abstract_types":[
1327 1328 1329
      "energy_value",
      "error_estimate_contribution",
      "scf_info"],
1330 1331
    "meta_data_type":"float",
    "meta_units":"J"
1332
  },{
1333
    "meta_name":"energy_code_independent_kind",
1334 1335
    "meta_type":"type-value",
    "meta_description":[
1336 1337 1338 1339 1340 1341 1342
      "Type of the code-independent total energy (obtained by subtracting a reference ",
      "energy calculated with the same code), created to be comparable among different ",
      "codes and numerical settings. Details can be found on the ",
      "[energy_code_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-",
      "meta-info/wikis/metainfo/energy-code-independent)."],
    "meta_parent_section":"section_energy_code_independent",
    "meta_data_type":"string"
1343
  },{
1344
    "meta_name":"energy_code_independent_value",
1345 1346
    "meta_type":"type-value",
    "meta_description":[
1347 1348 1349 1350 1351 1352
      "Value of the code-independent total energy (obtained by subtracting a reference ",
      "energy calculated with the same code). This value is created to be comparable ",
      "among different codes and numerical settings. Details can be found on the ",
      "[energy_code_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-",
      "meta-info/wikis/metainfo/energy-code-independent)."],
    "meta_parent_section":"section_energy_code_independent",
1353
    "meta_abstract_types":[
1354
      "energy_total_potential"],
1355 1356 1357
    "meta_data_type":"float",
    "meta_units":"J"
  },{
1358 1359
    "meta_name":"energy_component",
    "meta_type":"type-abstract",
1360
    "meta_description":[
1361 1362
      "A value of an energy component, expected to be an extensive ",
      "property."],
1363
    "meta_abstract_types":[
1364
      "energy_value"]
1365
  },{
1366 1367 1368 1369 1370 1371 1372 1373 1374
    "meta_name":"energy_component_per_atom",
    "meta_type":"type-abstract",
    "meta_description":[
      "A value of an energy component per atom, concurring in defining the total ",
      "energy per atom."],
    "meta_abstract_types":[
      "energy_value"]
  },{
    "meta_name":"energy_correction_entropy",
1375 1376
    "meta_type":"type-value",
    "meta_description":[
1377 1378 1379
      "Entropy correction to the potential energy to compensate for the change in ",
      "occupation so that forces at finite T do not need to keep the change of ",
      "occupation in account. Defined consistently with ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1380
      "xc_method."],
1381 1382 1383 1384 1385 1386
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
1387
    "meta_name":"energy_correction_entropy_scf_iteration",
1388 1389
    "meta_type":"type-value",
    "meta_description":[
1390 1391 1392 1393
      "Entropy correction to the potential energy to compensate for the change in ",
      "occupation so that forces at finite T do not need to keep the change of ",
      "occupation in account. The array lists the values of the entropy correction for ",
      "each self-consistent field (SCF) iteration. Defined consistently with ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1394
      "xc_method."],
1395 1396 1397 1398 1399 1400 1401 1402
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_component",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_correction_hartree",
1403
    "meta_type":"type-value",
1404 1405 1406 1407
    "meta_description":[
      "Correction to the density-density electrostatic energy in the sum of ",
      "eigenvalues (that uses the mixed density on one side), and the fully consistent ",
      "density-density electrostatic energy. Defined consistently with ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1408
      "xc_method."],
1409 1410 1411 1412 1413 1414 1415
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_correction_hartree_scf_iteration",
1416
    "meta_type":"type-value",
1417 1418 1419 1420
    "meta_description":[
      "Correction to the density-density electrostatic energy in the sum of ",
      "eigenvalues (that uses the mixed density on one side), and the fully consistent ",
      "density-density electrostatic energy during the self-consistent field (SCF) ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1421
      "iterations. Defined consistently with xc_method."],
1422 1423 1424 1425 1426 1427 1428 1429
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_component",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_current",
1430
    "meta_type":"type-value",
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    "meta_description":[
      "Value of the energy calculated with calculation_method_current. energy_current ",
      "is equal to energy_total for non-perturbative methods. For perturbative ",
      "methods, energy_current is equal to the correction: energy_total minus ",
      "energy_total of the calculation_to_calculation_ref with ",
      "calculation_to_calculation_kind = starting_point (see the ",
      "[method_to_method_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-me",
      "ta-info/wikis/metainfo/method-to-method-kind)). See also [energy_current wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/energ",
      "y-current)."],
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_total_potential"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_electrostatic",
1448
    "meta_type":"type-value",
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
    "meta_description":[
      "Total electrostatic energy (nuclei + electrons), defined consistently with ",
      "calculation_method."],
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_electrostatic_scf_iteration",
1459
    "meta_type":"type-value",
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
    "meta_description":[
      "Total electrostatic energy (nuclei + electrons) during each self-consistent ",
      "field (SCF) iteration."],
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_component",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_free",
1471
    "meta_type":"type-value",
1472 1473 1474
    "meta_description":[
      "Free energy (nuclei + electrons) (whose minimum gives the smeared occupation ",
      "density calculated with smearing_kind) calculated with the method described in ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1475
      "xc_method."],
1476 1477 1478 1479 1480 1481 1482
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_total_potential"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_free_per_atom",
1483
    "meta_type":"type-value",
1484 1485 1486
    "meta_description":[
      "Free energy per atom (whose minimum gives the smeared occupation density ",
      "calculated with smearing_kind) calculated with ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1487
      "xc_method."],
1488 1489 1490 1491 1492 1493 1494 1495
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component_per_atom",
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_free_per_atom_scf_iteration",
1496
    "meta_type":"type-value",
1497 1498
    "meta_description":[
      "Free energy per atom (whose minimum gives the smeared occupation density ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1499
      "calculated with smearing_kind) calculated with xc_method during the ",
1500 1501 1502 1503 1504 1505 1506 1507 1508
      "self-consistent field (SCF) iterations."],
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_component_per_atom",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_free_scf_iteration",
1509
    "meta_type":"type-value",
1510 1511
    "meta_description":[
      "Free energy (whose minimum gives the smeared occupation density calculated with ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1512
      "smearing_kind) calculated with the method described in xc_method during the ",
1513 1514 1515 1516 1517 1518 1519 1520 1521
      "self-consistent field (SCF) iterations."],
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_total_potential",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_hartree_error",
1522
    "meta_type":"type-value",
1523 1524
    "meta_description":[
      "Error in the Hartree (electrostatic) potential energy. Defined consistently ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1525
      "with xc_method."],
1526 1527 1528 1529 1530 1531 1532 1533
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_value",
      "error_estimate_contribution"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_hartree_error_scf_iteration",
1534
    "meta_type":"type-value",
1535 1536 1537
    "meta_description":[
      "Error in the Hartree (electrostatic) potential energy during each ",
      "self-consistent field (SCF) iteration. Defined consistently with ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1538
      "xc_method."],
1539 1540 1541 1542 1543 1544 1545 1546
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_value",
      "error_estimate_contribution",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1547
    "meta_name":"energy_hartree_fock_x",
1548
    "meta_type":"type-value",
1549 1550
    "meta_description":[
      "Converged exact-exchange (Hartree-Fock) energy. Defined consistently with ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1551
      "xc_method."],
1552 1553
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1554
      "energy_type_x"],
1555 1556 1557
    "meta_data_type":"float",
    "meta_units":"J"
  },{
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1558
    "meta_name":"energy_hartree_fock_x_scaled",
1559
    "meta_type":"type-value",
1560 1561 1562 1563 1564 1565
    "meta_description":[
      "Scaled exact-exchange energy that depends on the mixing parameter of the ",
      "functional. For example in hybrid functionals, the exchange energy is given as ",
      "a linear combination of exact-energy and exchange energy of an approximate DFT ",
      "functional; the exact exchange energy multiplied by the mixing coefficient of ",
      "the hybrid functional would be stored in this metadata. Defined consistently ",
Mohamed, Fawzi Roberto (fawzi)'s avatar
Mohamed, Fawzi Roberto (fawzi) committed
1566
      "with xc_method."],
1567 1568 1569 1570 1571 1572 1573
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_method_current",
1574
    "meta_type":"type-value",
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    "meta_description":[
      "Value of the energy calculated with the method calculation_method_current. ",
      "Depending on calculation_method_kind it might be a total energy or only a ",
      "correction."],
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_sum_eigenvalues",
1586
    "meta_type":"type-value",