atomic_data.meta_dictionary.json 20.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
{
  "metadict_name":"atomic_data",
  "metadict_description":[
    "Metadata information for atomic data collections and ",
    "properties."],
  "metadict_version":"0.1",
  "metadict_require":[{
    "metadict_required_name":"../meta_types.nomadmetainfo.json"
  }],
  "meta_info_entry":[{
    "meta_name":"atomic_basis_set",
    "meta_type":"type-value",
    "meta_description":"Basis set used for atomic calculation.",
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_charge",
    "meta_type":"type-value",
    "meta_description":[
      "Charge of the free atom for corresponding atomic ",
      "property."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"C"
  },{
    "meta_name":"atomic_collection_description",
    "meta_type":"type-value",
    "meta_description":[
      "Comprehensive details about an atomic data ",
      "collection."],
    "meta_parent_section":"section_atomic_data_collection",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_collection_name",
    "meta_type":"type-value",
    "meta_description":"The name of the atomic data collection.",
    "meta_parent_section":"section_atomic_data_collection",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_ea_by_energy_difference",
    "meta_type":"type-value",
    "meta_description":[
      "Electron affinity for free atom. This EA is defined as the energy difference ",
      "between the neutral atom and -1 charged atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"EA_delta"
  },{
    "meta_name":"atomic_ea_by_half_charged_homo",
    "meta_type":"type-value",
    "meta_description":[
      "Electron affinity for free atom. This EA is defined as the HOMO energy of +0.5 ",
      "charged atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"EA_half"
  },{
    "meta_name":"atomic_electron_affinity",
    "meta_type":"type-value",
    "meta_description":[
      "Electron affinity for free atom. The electron affinity of an atom is the amount ",
      "of energy released or spent when an electron is added to a neutral atom in the ",
      "gaseous state to form a negative ion."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"EA"
  },{
    "meta_name":"atomic_electronic_binding_energy_dimer",
    "meta_type":"type-value",
    "meta_description":"Binding energy of the dimer.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_b"
  },{
    "meta_name":"atomic_element_symbol",
    "meta_type":"type-value",
    "meta_description":"The element symbol in the periodic table.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_homo",
    "meta_type":"type-value",
    "meta_description":[
      "In electronic structure theory, calculations may be performed for a spectrum ",
      "with many excited energy levels. Molecular orbitals (MOs) are made of fractions ",
      "of atomic orbitals. All atoms in the molecule provide their atomic orbitals for ",
      "construction of MOs, but not all atomic orbitals must participate in all MOs. ",
      "For example, the Hartree-Fock method for atoms or molecules assumes that the ",
      "wave function is a single configuration state function with well-defined ",
      "quantum numbers and that the energy level is not necessarily the ground state. ",
      "The highest occupied molecular orbital state for a system is called as ",
      "HOMO."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_HOMO"
  },{
    "meta_name":"atomic_homo_lumo_diff",
    "meta_type":"type-value",
    "meta_description":[
      "Difference between highest occupied and lowest unoccupied single-particle state ",
      "energy for free atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"deltaE_HL"
  },{
    "meta_name":"atomic_ionization_potential",
    "meta_type":"type-value",
    "meta_description":[
      "Ionization potential for free atom. The ionization potential is qualitatively ",
      "defined as the amount of energy required to remove the most loosely bound ",
      "electron or the valence electron, of an isolated gaseous atom to form a ",
      "cation."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"IP"
  },{
    "meta_name":"atomic_ip_by_energy_difference",
    "meta_type":"type-value",
    "meta_description":[
      "Ionization potential for free atom. This IP is defined as the energy difference ",
      "between the neutral atom and the +1 charged ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"IP_delta"
  },{
    "meta_name":"atomic_ip_by_half_charged_homo",
    "meta_type":"type-value",
    "meta_description":[
      "Ionization potential for free atom. This IP is defined as the HOMO energy of ",
      "-0.5 charged atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"IP_half"
  },{
    "meta_name":"atomic_isotropic_polarizability",
    "meta_type":"type-value",
    "meta_description":[
      "Polarizability is the ability to form instantaneous multipoles. It is a ",
      "property of matter. Polarizabilities determine the dynamical response of a ",
      "bound system to external fields, and provide insight into a materials internal ",
      "structure. Electric polarizability is the relative tendency of a charge ",
      "distribution, like the electron cloud of an atom or molecule, and consequently ",
      "of any material body, to have its charges displaced by any external electric ",
      "field, which in the uniform case is applied typically by a charged ",
      "parallel-plate capacitor. The polarizability in isotropic media is defined as ",
      "the ratio of the induced dipole moment of an atom to the electric field that ",
      "produces this dipole moment. We are often interested only in the spherical ",
      "average (or isotropic component) of the polarizability tensor. The isotropic ",
      "polarizability is defined as average of principal components of the ",
      "polarizability tensor."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m**3"
  },{
    "meta_name":"atomic_isotropic_vdw_coefficient",
    "meta_type":"type-value",
    "meta_description":[
      "The long-range van der Waals energy between two non overlapping fragments $A$ ",
      "and $B$ of the physical system under study can be expressed as a multipolar ",
      "expansion and $C_{n}^{AB}$ are the multipolar vdW coefficients. A widespread ",
      "approach to include long-range vdW interactions in atomistic calculation is to ",
      "truncate multipolar expansion to the dipole-dipole order and keep only the ",
      "leading $C_{6}^{AB} /R^{6}$ term. The vdW $C_{6}$ coefficient can be obtained ",
      "using Casimir-Polder integral over frequency dependent polarizability as ",
      "function of imaginary frequency argument."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J.m**6"
  },{
    "meta_name":"atomic_lumo",
    "meta_type":"type-value",
    "meta_description":[
      "In electronic structure theory, calculations may be performed for a spectrum ",
      "with many excited energy levels. Molecular orbitals (MOs) are made of fractions ",
      "of atomic orbitals.  All atoms in the molecule provide their atomic orbitals ",
      "for construction of MOs, but not all atomic orbitals must participate in all  ",
      "MOs.  For example, the Hartree-Fock method for atoms or molecules assumes that ",
      "the wave function is a single configuration state function with well-defined ",
      "quantum numbers and that the energy level is not necessarily the ground state. ",
      "The lowest unoccupied molecular orbital state for a system is called as ",
      "LUMO."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_LUMO"
  },{
    "meta_name":"atomic_melting_temperature",
    "meta_type":"type-value",
    "meta_description":[
      "The melting temperature is the temperature at which a substance changes from ",
      "solid to liquid state."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"K"
  },{
    "meta_name":"atomic_method",
    "meta_type":"type-value",
    "meta_description":"The method used for atomic calculations.",
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_mulliken_electronegativity",
    "meta_type":"type-value",
    "meta_description":[
      "The Mulliken electronegativity quantitatively defined as the average of the ",
      "values of its first ionization energy and the absolute value of its electron ",
      "affinity."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"atomic_number",
    "meta_type":"type-value",
    "meta_description":"Atomic number $Z$ for atomic species.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"Z"
  },{
    "meta_name":"atomic_number_valence_electrons",
    "meta_type":"type-value",
    "meta_description":[
      "Number of electrons located in the outermost shell (valence shell) of the ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"Z_val"
  },{
    "meta_name":"atomic_pauling_electronegativity",
    "meta_type":"type-value",
    "meta_description":[
      "The Pauling electronegativity is defined as the difference between the measured ",
      "X-Y bond energy with the theoretical X-Y bond energy (computed as the average ",
      "of the X-X bond energy and the Y-Y bond energy)."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":""
  },{
    "meta_name":"atomic_property_source",
    "meta_type":"type-value",
    "meta_description":"Source of atomic property Experiment/ Theory.",
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_property_to_method_ref",
    "meta_type":"type-value",
    "meta_description":[
      "Reference to the method that is used to calculate associated atomic ",
      "property."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"reference",
    "meta_referenced_section":"section_atomic_property_method"
  },{
    "meta_name":"atomic_r_by_2_dimer",
    "meta_type":"type-value",
    "meta_description":[
      "Half of the distance between equilibrium ",
      "homonuclear-dimer."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"d"
  },{
    "meta_name":"atomic_r_covalent",
    "meta_type":"type-value",
    "meta_description":[
      "The covalent radius is a measure of the size of an atom that forms part of one ",
      "covalent bond."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_r_homo",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of the radius $<r>$ of the highest occupied atomic orbital ",
      "for free atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_r_homo_anion",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of the radius $<r>$ of the highest occupied atomic orbital ",
      "for anionic atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_r_homo_cation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of the radius $<r>$ of the highest occupied atomic orbital ",
      "for cationic atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_radius",
    "meta_type":"type-value",
    "meta_description":[
      "The atomic radius of a chemical element is a measure of the size of its atoms, ",
      "usually the mean or typical distance from the center of the nucleus to the ",
      "boundary of the surrounding cloud of electrons. Since the boundary is not a ",
      "well-defined physical entity, there are various non-equivalent definitions of ",
      "atomic radius. Three widely used definitions of atomic radius are: Van der ",
      "Waals radius, ionic radius, and covalent ",
      "radius."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rd_expectation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of $<d>$ radial function for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rd_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $d_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_d"
  },{
    "meta_name":"atomic_rd_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of d orbital. This index is used to indicate the index number ",
      "of d orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_d"
  },{
    "meta_name":"atomic_reference_doi",
    "meta_type":"type-value",
    "meta_description":[
      "Reference for associated atomic property ",
      "calculations."],
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_rf_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $f_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_f"
  },{
    "meta_name":"atomic_rf_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of f orbital. This index is used to indicate the index number ",
      "of f orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_f"
  },{
    "meta_name":"atomic_rp_expectation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of $<p>$ radial function for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rp_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $p_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_p"
  },{
    "meta_name":"atomic_rp_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of p orbital. This index is used to indicate the index number ",
      "of p orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_p"
  },{
    "meta_name":"atomic_rs_expectation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of $<s>$ radial function for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rs_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $s_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_s"
  },{
    "meta_name":"atomic_rs_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of s orbital. This index is used to indicate the index number ",
      "of s orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_s"
  },{
    "meta_name":"atomic_spin_multiplicity",
    "meta_type":"type-value",
    "meta_description":[
      "Atomic spin multiplicity. The multiplicity of an energy level is defined as ",
      "$2S+1$, where S is the total spin angular momentum. States with multiplicity 1, ",
      "2, 3, 4, 5 are respectively called singlets, doublets, triplets, quartets and ",
      "quintets."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":""
  },{
    "meta_name":"atomic_term_symbol",
    "meta_type":"type-value",
    "meta_description":[
      "The term symbol ($^{2S+1}L_{J}$) is an abbreviated description of the (total) ",
      "angular momentum quantum numbers in a multi-electron atom (even a single ",
      "electron can also be described by a term symbol). Each energy level of an atom ",
      "with a given electron configuration is described by not only the electron ",
      "configuration but also its own term symbol, as the energy level also depends on ",
      "the total angular momentum including spin. The usual atomic term symbols assume ",
      "LS coupling (also known as Russell-Saunders coupling or Spin-Orbit coupling). ",
      "The ground state term symbol is predicted by Hund's ",
      "rules."],
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_total_energy",
    "meta_type":"type-value",
    "meta_description":"Total energy per atom.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_Tot"
  },{
    "meta_name":"atomic_valence_p_orbital",
    "meta_type":"type-value",
    "meta_description":[
      "Energy of the valence p orbital for a free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_p"
  },{
    "meta_name":"atomic_valence_s_orbital",
    "meta_type":"type-value",
    "meta_description":[
      "Energy of the valence s orbital for a free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_s"
  },{
    "meta_name":"atomic_vdw_radius",
    "meta_type":"type-value",
    "meta_description":[
      "The van der Waals radius, of an atom or molecule is the radius of an imaginary ",
      "sphere representing the distance of closest approach for another atom(s). The ",
      "vdW radius corresponds to half of the distance between two atoms where the ",
      "Pauli repulsion balances the London dispersion ",
      "attraction."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"section_atomic_data_collection",
    "meta_type":"type-section",
    "meta_description":[
      "Section that holds all atomic properties (section_atomic_property) and methods ",
      "(section_atomic_property_method) of an atomic data ",
      "collection."],
    "meta_repeats":true,
    "meta_context_identifier":[]
  },{
    "meta_name":"section_atomic_property",
    "meta_type":"type-section",
    "meta_description":[
      "Section that contains all atomic properties of an atomic data ",
      "collection."],
    "meta_parent_section":"section_atomic_data_collection",
    "meta_repeats":true,
    "meta_context_identifier":[]
  },{
    "meta_name":"section_atomic_property_method",
    "meta_type":"type-section",
    "meta_description":[
      "Section of atomic properties for a given ",
      "method."],
    "meta_parent_section":"section_atomic_data_collection",
    "meta_repeats":true,
    "meta_context_identifier":[]
  }]
}