public.nomadmetainfo.json 251 KB
Newer Older
1
{
2
  "metadict_name":"public",
3 4 5 6 7
  "metadict_description":"Public meta info, not specific to any code",
  "metadict_version":"0.1",
  "metadict_require":[],
  "meta_info_entry":[{
    "meta_name":"accessory_info",
8
    "meta_type":"type-abstract",
9 10 11 12 13
    "meta_description":[
      "Information that *in theory* should not affect the results of the calculations ",
      "(e.g., timing)."]
  },{
    "meta_name":"archive_context",
14
    "meta_type":"type-section",
15
    "meta_description":"Contains information relating to an archive.",
16 17 18 19
    "meta_context_identifier":[],
    "contains":[
      "calculation_context",
      "section_stats"]
20 21
  },{
    "meta_name":"archive_gid",
22
    "meta_type":"type-value",
23 24 25 26 27
    "meta_description":"unique identifier of an archive.",
    "meta_parent_section":"archive_context",
    "meta_data_type":"string"
  },{
    "meta_name":"atom_atom_number",
28
    "meta_type":"type-value",
29 30 31 32 33 34 35 36
    "meta_description":"Atomic number Z of the atom.",
    "meta_parent_section":"section_system",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_sites"
    }]
  },{
    "meta_name":"atom_concentrations",
37
    "meta_type":"type-value",
38 39 40 41 42 43 44 45 46 47 48
    "meta_description":[
      "concentration of the atom species in a variable composition, by default it ",
      "should be considered an array of ones. Summing these should give the ",
      "number_of_sites"],
    "meta_parent_section":"section_system",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    }]
  },{
    "meta_name":"atom_forces",
49
    "meta_type":"type-value",
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    "meta_description":[
      "Forces acting on the atoms, calculated as minus gradient of energy_total, ",
      "**including** constraints, if present. The derivatives with respect to ",
      "displacements of nuclei are evaluated in Cartesian coordinates. In addition, ",
      "these forces are obtained by filtering out the unitary transformations ",
      "(center-of-mass translations and rigid rotations for non-periodic systems, see ",
      "atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints ",
      "such as fixed atoms, distances, angles, dihedrals, etc. are included (see ",
      "atom_forces_raw for the unfiltered counterpart)."],
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
71
    "meta_name":"atom_forces_free",
72 73
    "meta_type":"type-value",
    "meta_description":[
74
      "Forces acting on the atoms, calculated as minus gradient of energy_free, ",
75
      "**including** constraints, if present. The derivatives with respect to ",
76 77 78 79 80 81 82 83 84
      "displacements of the nuclei are evaluated in Cartesian coordinates. The ",
      "(electronic) energy_free contains the information on the change in (fractional) ",
      "occupation of the electronic eigenstates, which are accounted for in the ",
      "derivatives, yielding a truly energy-conserved quantity. In addition, these ",
      "forces are obtained by filtering out the unitary transformations ",
      "(center-of-mass translations and rigid rotations for non-periodic systems, see ",
      "atom_forces_free_raw for the unfiltered counterpart). Forces due to constraints ",
      "such as fixed atoms, distances, angles, dihedrals, etc. are included (see ",
      "atom_forces_free_raw for the unfiltered counterpart)."],
85 86 87 88 89 90 91 92 93 94 95 96
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
97
    "meta_name":"atom_forces_free_raw",
98 99
    "meta_type":"type-value",
    "meta_description":[
100 101 102 103 104 105 106 107 108 109 110
      "Forces acting on the atoms, calculated as minus gradient of energy_free, ",
      "**without** constraints. The derivatives with respect to displacements of ",
      "nuclei are evaluated in Cartesian coordinates. The (electronic) energy_free ",
      "contains the change in (fractional) occupation of the electronic eigenstates, ",
      "which are accounted for in the derivatives, yielding a truly energy-conserved ",
      "quantity. These forces may contain unitary transformations (center-of-mass ",
      "translations and rigid rotations for non-periodic systems) that are normally ",
      "filtered separately (see atom_forces_free for the filtered counterpart). Forces ",
      "due to constraints such as fixed atoms, distances, angles, dihedrals, etc. are ",
      "also considered separately (see atom_forces_free for the filtered ",
      "counterpart)."],
111 112 113 114 115 116 117 118 119 120 121 122
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
123
    "meta_name":"atom_forces_raw",
124 125
    "meta_type":"type-value",
    "meta_description":[
126 127 128 129 130 131 132 133
      "Forces acting on the atoms, calculated as minus gradient of energy_total, ",
      "**without** constraints. The derivatives with respect to displacements of the ",
      "nuclei are evaluated in Cartesian coordinates. These forces may contain unitary ",
      "transformations (center-of-mass translations and rigid rotations for ",
      "non-periodic systems) that are normally filtered separately (see atom_forces ",
      "for the filtered counterpart). Forces due to constraints such as fixed atoms, ",
      "distances, angles, dihedrals, etc. are also considered separately (see ",
      "atom_forces for the filtered counterpart)."],
134 135 136 137 138 139 140 141 142 143 144 145
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
146
    "meta_name":"atom_forces_t0",
147 148
    "meta_type":"type-value",
    "meta_description":[
149
      "Forces acting on the atoms, calculated as minus gradient of energy_total_t0, ",
150 151 152 153 154 155 156 157
      "**including** constraints, if present. The derivatives with respect to ",
      "displacements of the nuclei are evaluated in Cartesian coordinates. In ",
      "addition, these forces are obtained by filtering out the unitary ",
      "transformations (center-of-mass translations and rigid rotations for ",
      "non-periodic systems, see atom_forces_free_T0_raw for the unfiltered ",
      "counterpart). Forces due to constraints such as fixed atoms, distances, angles, ",
      "dihedrals, etc. are also included (see atom_forces_free_T0_raw for the ",
      "unfiltered counterpart)."],
158 159 160 161 162 163 164 165 166 167 168 169
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
170
    "meta_name":"atom_forces_t0_raw",
171 172
    "meta_type":"type-value",
    "meta_description":[
173
      "Forces acting on the atoms, calculated as minus gradient of energy_total_t0, ",
174 175 176
      "**without** constraints. The derivatives with respect to displacements of the ",
      "nuclei are evaluated in Cartesian coordinates. These forces may contain unitary ",
      "transformations (center-of-mass translations and rigid rotations for ",
177
      "non-periodic systems) that are normally filtered separately (see atom_forces_t0 ",
178 179
      "for the filtered counterpart). Forces due to constraints such as fixed atoms, ",
      "distances, angles, dihedrals, etc. are also considered separately (see ",
180
      "atom_forces_t0 for the filtered counterpart)."],
181 182 183 184 185 186 187 188 189 190 191 192 193
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "atom_forces_type"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"N"
  },{
    "meta_name":"atom_forces_type",
194
    "meta_type":"type-abstract",
195 196 197 198 199 200
    "meta_description":[
      "The types of forces acting on the atoms (i.e., minus derivatives of the ",
      "specific type of energy with respect to the atom ",
      "position)."]
  },{
    "meta_name":"atom_labels",
201
    "meta_type":"type-value",
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    "meta_description":[
      "Labels of the atoms. These strings identify the atom kind and conventionally ",
      "start with the symbol of the atomic species, possibly followed by the atomic ",
      "number. The same atomic species can be labeled with more than one atom_labels ",
      "in order to distinguish, e.g., atoms of the same species assigned to different ",
      "atom-centered basis sets or pseudo-potentials, or simply atoms in different ",
      "locations in the structure (e.g., bulk and surface). These labels can also be ",
      "used for *particles* that do not correspond to physical atoms (e.g., ghost ",
      "atoms in some codes using atom-centered basis sets). This metadata defines a ",
      "configuration and is therefore required."],
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"string",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    }]
  },{
    "meta_name":"atom_positions",
221
    "meta_type":"type-value",
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    "meta_description":[
      "Positions of all the atoms, in Cartesian coordinates. This metadata defines a ",
      "configuration and is therefore required. For alloys where concentrations of ",
      "species are given for each site in the unit cell, it stores the position of the ",
      "sites."],
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_units":"m"
  },{
    "meta_name":"atom_positions_primitive",
239
    "meta_type":"type-value",
240 241 242 243 244 245 246 247 248 249 250 251 252 253
    "meta_description":[
      "Atom positions in the primitive cell in reduced ",
      "units."],
    "meta_parent_section":"section_primitive_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_primitive"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"atom_positions_std",
254
    "meta_type":"type-value",
255 256 257 258 259 260 261 262 263 264 265 266
    "meta_description":"Standardized atom positions in reduced units.",
    "meta_parent_section":"section_std_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_std"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"atom_projected_dos_energies",
267
    "meta_type":"type-value",
268 269 270 271 272 273 274 275 276 277 278
    "meta_description":[
      "Array containing the set of discrete energy values for the atom-projected ",
      "density (electronic-energy) of states (DOS)."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atom_projected_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"atom_projected_dos_lm",
279
    "meta_type":"type-value",
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    "meta_description":[
      "Tuples of $l$ and $m$ values for which atom_projected_dos_values_lm are given. ",
      "For the quantum number $l$ the conventional meaning of azimuthal quantum number ",
      "is always adopted. For the integer number $m$, besides the conventional use as ",
      "magnetic quantum number ($l+1$ integer values from $-l$ to $l$), a set of ",
      "different conventions is accepted (see the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      ". The adopted convention is specified by ",
      "atom_projected_dos_m_kind."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atom_projected_dos"
    },{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"atom_projected_dos_m_kind",
298
    "meta_type":"type-value",
299 300 301 302 303 304 305 306 307
    "meta_description":[
      "String describing what the integer numbers of $m$ in atom_projected_dos_lm ",
      "mean. The allowed values are listed in the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      "."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"string"
  },{
    "meta_name":"atom_projected_dos_values_lm",
308
    "meta_type":"type-value",
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    "meta_description":[
      "Values correspond to the number of states for a given energy (the set of ",
      "discrete energy values is given in atom_projected_dos_energies) divided into ",
      "contributions from each $l,m$ channel for the atom-projected density ",
      "(electronic-energy) of states. Here, there are as many atom-projected DOS as ",
      "the number_of_atoms, the list of labels of the atoms and their meanings are in ",
      "atom_labels."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atom_projected_dos"
    },{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_symbolic":"number_of_atom_projected_dos_values"
    }]
  },{
    "meta_name":"atom_projected_dos_values_total",
329
    "meta_type":"type-value",
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    "meta_description":[
      "Values correspond to the number of states for a given energy (the set of ",
      "discrete energy values is given in atom_projected_dos_energies) divided into ",
      "contributions summed up over all $l$ channels for the atom-projected density ",
      "(electronic-energy) of states (DOS). Here, there are as many atom-projected DOS ",
      "as the number_of_atoms, the list of labels of the atoms and their meanings are ",
      "in atom_labels."],
    "meta_parent_section":"section_atom_projected_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_symbolic":"number_of_atom_projected_dos_values"
    }]
  },{
    "meta_name":"atom_species",
348
    "meta_type":"type-value",
349 350 351 352 353 354 355 356 357 358 359
    "meta_description":[
      "Species of the atom (normally the atomic number Z, 0 or negative for ",
      "unidentifed species or particles that are not ",
      "atoms."],
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"int",
    "meta_repeats":true
  },{
    "meta_name":"atom_velocities",
360
    "meta_type":"type-value",
361 362 363 364 365 366 367 368 369 370 371 372 373 374
    "meta_description":[
      "Velocities of the nuclei, defined as the change in Cartesian coordinates of the ",
      "nuclei with respect to time."],
    "meta_parent_section":"section_system",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true,
    "meta_units":"m/s"
  },{
    "meta_name":"atomic_multipole_kind",
375
    "meta_type":"type-value",
376 377 378 379 380 381 382 383 384 385 386
    "meta_description":[
      "String describing the method used to obtain the electrostatic multipoles ",
      "(including the electric charge, dipole, etc.) for each atom. Such multipoles ",
      "require a charge-density partitioning scheme, specified by the value of this ",
      "metadata. Allowed values are listed in the [atomic_multipole_kind wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/atomi",
      "c-multipole-kind)."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_multipole_lm",
387
    "meta_type":"type-value",
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    "meta_description":[
      "Tuples of $l$ and $m$ values for which the atomic multipoles (including the ",
      "electric charge, dipole, etc.) are given. The method used to obtain the ",
      "multipoles is specified by atomic_multipole_kind. The meaning of the integer ",
      "number $l$ is monopole/charge for $l=0$, dipole for $l=1$, quadrupole for ",
      "$l=2$, etc. The meaning of the integer numbers $m$ is specified by ",
      "atomic_multipole_m_kind."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atomic_multipoles"
    },{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"atomic_multipole_m_kind",
404
    "meta_type":"type-value",
405 406 407 408 409 410 411 412 413
    "meta_description":[
      "String describing the definition for each integer number $m$ in ",
      "atomic_multipole_lm. Allowed values are listed in the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      "."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_multipole_values",
414
    "meta_type":"type-value",
415 416 417 418 419 420 421 422 423 424 425 426 427
    "meta_description":[
      "Value of the multipoles (including the monopole/charge for $l$ = 0, the dipole ",
      "for $l$ = 1, etc.) for each atom, calculated as described in ",
      "atomic_multipole_kind."],
    "meta_parent_section":"section_atomic_multipoles",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_lm_atomic_multipoles"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    }]
  },{
    "meta_name":"atomic_numbers_primitive",
428
    "meta_type":"type-value",
429 430 431 432 433 434 435 436 437 438
    "meta_description":"Atomic numbers in the primitive cell.",
    "meta_parent_section":"section_primitive_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_primitive"
    }]
  },{
    "meta_name":"atomic_numbers_std",
439
    "meta_type":"type-value",
440 441 442 443 444 445 446 447 448 449 450 451
    "meta_description":[
      "Atomic numbers of the atoms in the standardized ",
      "cell."],
    "meta_parent_section":"section_std_system",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_atoms_std"
    }]
  },{
    "meta_name":"band_energies",
452
    "meta_type":"type-value",
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    "meta_description":[
      "$k$-dependent or $q$-dependent  energies of the electronic or vibrational band ",
      "segment (electronic/vibrational band structure). This is a third-order tensor, ",
      "with one dimension used for the spin channels (1 in case of a vibrational band ",
      "structure), one for the $k$ or $q$ points for each segment, and one for the ",
      "eigenvalue sequence."],
    "meta_parent_section":"section_k_band_segment",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_band_segment_eigenvalues"
    }],
    "meta_units":"J"
  },{
    "meta_name":"band_energies_normalized",
473
    "meta_type":"type-value",
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    "meta_description":[
      "$k$-dependent energies of the electronic band segment (electronic band ",
      "structure) with respect to the top of the valence band. This is a third-order ",
      "tensor, with one dimension used for the spin channels, one for the $k$ points ",
      "for each segment, and one for the eigenvalue ",
      "sequence."],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_normalized_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_normalized_band_segment_eigenvalues"
    }],
    "meta_units":"J"
  },{
    "meta_name":"band_k_points",
494
    "meta_type":"type-value",
495 496 497 498 499 500 501 502 503 504 505 506 507
    "meta_description":[
      "Fractional coordinates of the $k$ or $q$ points (in the basis of the ",
      "reciprocal-lattice vectors) for which the electronic energy are ",
      "given."],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_k_points_per_segment"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_k_points_normalized",
508
    "meta_type":"type-value",
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
    "meta_description":[
      "Fractional coordinates of the $k$ points (in the basis of the ",
      "reciprocal-lattice vectors) for which the normalized electronic energies are ",
      "given."],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_normalized_k_points_per_segment"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_occupations",
524
    "meta_type":"type-value",
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
    "meta_description":[
      "Occupation of the $k$-points along the electronic band. The size of the ",
      "dimensions of this third-order tensor are the same as for the tensor in ",
      "band_energies."],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_band_segment_eigenvalues"
    }]
  },{
    "meta_name":"band_occupations_normalized",
540
    "meta_type":"type-value",
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    "meta_description":[
      "Occupation of the $k$-points along the normalized electronic band. The size of ",
      "the dimensions of this third-order tensor are the same as for the tensor in ",
      "band_energies."],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_normalized_k_points_per_segment"
    },{
      "meta_dimension_symbolic":"number_of_normalized_band_segment_eigenvalues"
    }]
  },{
    "meta_name":"band_segm_labels",
558
    "meta_type":"type-value",
559 560 561 562 563 564 565 566 567 568 569 570 571
    "meta_description":[
      "Start and end labels of the points in the segment (one-dimensional pathways) ",
      "sampled in the $k$-space or $q$-space, using the conventional symbols, e.g., ",
      "Gamma, K, L. The coordinates (fractional, in the reciprocal space) of the start ",
      "and end points for each segment are given in ",
      "band_segm_start_end"],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"string",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"band_segm_labels_normalized",
572
    "meta_type":"type-value",
573 574 575 576 577 578 579 580 581 582 583 584 585 586
    "meta_description":[
      "Start and end labels of the points in the segment (one-dimensional pathways) ",
      "sampled in the $k$-space, using the conventional symbols, e.g., Gamma, K, L. ",
      "The coordinates (fractional, in the reciprocal space) of the start and end ",
      "points for each segment are given in band_segm_start_end_normalized"],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"band_segm_start_end",
587
    "meta_type":"type-value",
588 589 590 591 592 593 594 595 596 597 598 599 600 601
    "meta_description":[
      "Fractional coordinates of the start and end point (in the basis of the ",
      "reciprocal lattice vectors) of the segment sampled in the $k$ space. The ",
      "conventional symbols (e.g., Gamma, K, L) of the same points are given in ",
      "band_segm_labels"],
    "meta_parent_section":"section_k_band_segment",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_segm_start_end_normalized",
602
    "meta_type":"type-value",
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
    "meta_description":[
      "Fractional coordinates of the start and end point (in the basis of the ",
      "reciprocal lattice vectors) of the segment sampled in the $k$ space. The ",
      "conventional symbols (e.g., Gamma, K, L) of the same points are given in ",
      "band_segm_labels"],
    "meta_parent_section":"section_k_band_segment_normalized",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_fixed":2
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"band_structure_kind",
619
    "meta_type":"type-value",
620 621 622 623 624 625 626
    "meta_description":[
      "String to specify the kind of band structure (either electronic or ",
      "vibrational)."],
    "meta_parent_section":"section_k_band",
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set",
627
    "meta_type":"type-value",
628 629
    "meta_description":[
      "Unique string identifying the basis set used for the final wavefunctions ",
630
      "calculated with xc_method. It might identify a class of basis sets, often ",
631 632 633 634 635 636 637 638 639
      "matches one of the strings given in any of ",
      "basis_set_name."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
      "settings_numerical_parameter",
      "settings_potential_energy_surface"],
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_atom_centered_ls",
640
    "meta_type":"type-value",
641 642 643 644 645 646 647 648 649 650 651 652 653
    "meta_description":[
      "Azimuthal quantum number ($l$) values (of the angular part given by the ",
      "spherical harmonic $Y_{lm}$) of the atom-centered basis function defined in the ",
      "current section_basis_set_atom_centered."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_kinds_in_basis_set_atom_centered"
    }]
  },{
    "meta_name":"basis_set_atom_centered_radial_functions",
654
    "meta_type":"type-value",
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
    "meta_description":[
      "Values of the radial function of the different basis function kinds. The values ",
      "are numerically tabulated on a default 0.01-nm equally spaced grid from 0 to 4 ",
      "nm. The 5 tabulated values are $r$, $f(r)$, $f'(r)$, $f(r) \\cdot r$, ",
      "$\\frac{d}{dr}(f(r) \\cdot r)$."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_kinds_in_basis_set_atom_centered"
    },{
      "meta_dimension_fixed":401
    },{
      "meta_dimension_fixed":5
    }]
  },{
    "meta_name":"basis_set_atom_centered_short_name",
673
    "meta_type":"type-value",
674 675 676 677 678 679 680 681 682 683 684 685 686
    "meta_description":[
      "Code-specific, but explicative, base name for the basis set (not unique). ",
      "Details are explained in the [basis_set_atom_centered_short_name wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis",
      "-set-atom-centered-short-name), this name should not contain the *atom kind* ",
      "(to simplify the use of a single name for multiple ",
      "elements)."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_atom_centered_unique_name",
687
    "meta_type":"type-value",
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    "meta_description":[
      "Code-specific, but explicative, base name for the basis set (not unique). This ",
      "string starts with basis_set_atom_centered_short_name. If the basis set defined ",
      "in this section_basis_set_atom_centered is not identical to the default ",
      "definition (stored in a database) of the basis set with the same name stored in ",
      "a database, then the string is extended by 10 identifiable characters as ",
      "explained in the [basis_set_atom_centered_name wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis",
      "-set-atom-centered-unique-name). The reason for this procedure is that often ",
      "atom-centered basis sets are obtained by fine tuning basis sets provided by the ",
      "code developers or other sources. Each basis sets, which has normally a ",
      "standard name, often reported in publications, has also several parameters that ",
      "can be tuned. This metadata tries to keep track of the original basis set and ",
      "its modifications. This string here defined should not contain the *atom kind* ",
      "for which this basis set is intended for, in order to simplify the use of a ",
      "single name for multiple *atom kinds* (see atom_labels for the actual meaning ",
      "of *atom kind*)."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_atom_number",
711
    "meta_type":"type-value",
712 713 714 715 716 717 718 719 720 721
    "meta_description":[
      "Atomic number (i.e., number of protons) of the atom for which this basis set is ",
      "constructed (0 means unspecified or a pseudo ",
      "atom)."],
    "meta_parent_section":"section_basis_set_atom_centered",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"int"
  },{
    "meta_name":"basis_set_cell_dependent_kind",
722
    "meta_type":"type-value",
723 724 725 726 727 728 729 730
    "meta_description":[
      "A string defining the type of the cell-dependent basis set (i.e., non atom ",
      "centered such as plane-waves). Allowed values are listed in the ",
      "[basis_set_cell_dependent_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/",
      "nomad-meta-info/wikis/metainfo/basis-set-cell-dependent-kind)."],
    "meta_parent_section":"section_basis_set_cell_dependent",
    "meta_abstract_types":[
      "basis_set_description"],
731 732
    "meta_data_type":"string",
    "repeat":false
733 734
  },{
    "meta_name":"basis_set_cell_dependent_name",
735
    "meta_type":"type-value",
736 737 738 739 740 741 742 743
    "meta_description":[
      "A label identifying the cell-dependent basis set (i.e., non atom centered such ",
      "as plane-waves). Allowed values are listed in the ",
      "[basis_set_cell_dependent_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/",
      "nomad-meta-info/wikis/metainfo/basis-set-cell-dependent-name)."],
    "meta_parent_section":"section_basis_set_cell_dependent",
    "meta_abstract_types":[
      "basis_set_description"],
744 745
    "meta_data_type":"string",
    "repeat":false
746 747
  },{
    "meta_name":"basis_set_description",
748
    "meta_type":"type-abstract",
749 750 751 752 753
    "meta_description":[
      "One of the parts building the basis set of the system (e.g., some atom-centered ",
      "basis set, plane-waves or both)."]
  },{
    "meta_name":"basis_set_kind",
754
    "meta_type":"type-value",
755 756 757 758 759 760 761 762 763
    "meta_description":[
      "String describing the use of the basis set, i.e, if it used for expanding a ",
      "wave-function or an electron density. Allowed values are listed in the ",
      "[basis_set_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info",
      "/wikis/metainfo/basis-set-kind)."],
    "meta_parent_section":"section_basis_set",
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_name",
764
    "meta_type":"type-value",
765 766 767 768 769 770 771 772 773
    "meta_description":[
      "String identifying the basis set in an unique way. The rules for building this ",
      "string are specified in the [basis_set_name wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis",
      "-set-name)."],
    "meta_parent_section":"section_basis_set",
    "meta_data_type":"string"
  },{
    "meta_name":"basis_set_planewave_cutoff",
774
    "meta_type":"type-value",
775 776 777 778 779 780 781 782 783 784 785 786 787
    "meta_description":[
      "Spherical cutoff  in reciprocal space for a plane-wave basis set. It is the ",
      "energy of the highest plan-ewave ($\\frac{\\hbar^2|k+G|^2}{2m_e}$) included in ",
      "the basis set. Note that normally this basis set is used for the wavefunctions, ",
      "and the density would have 4 times the cutoff, but this actually depends on the ",
      "use of the basis set by the method."],
    "meta_parent_section":"section_basis_set_cell_dependent",
    "meta_abstract_types":[
      "basis_set_description"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"bravais_lattice",
788
    "meta_type":"type-value",
789 790 791 792 793 794 795 796 797 798 799 800 801
    "meta_description":[
      "Identifier for the Bravais lattice in Pearson notation. The first lowercase ",
      "letter identifies the crystal family and can be one of the following: a ",
      "(triclinic), b (monoclinic), o (orthorhombic), t (tetragonal), h (hexagonal) or ",
      "c (cubic). The second uppercase letter identifies the centring and can be one ",
      "of the following: P (primitive), S (face centred), I (body centred), R ",
      "(rhombohedral centring) or F (all faces centred)."],
    "meta_parent_section":"section_symmetry",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_context",
802
    "meta_type":"type-section",
803
    "meta_description":"Contains information relating to a calculation.",
804 805 806 807
    "meta_context_identifier":[],
    "contains":[
      "section_run",
      "section_stats"]
808 809
  },{
    "meta_name":"calculation_file_uri",
810
    "meta_type":"type-value",
811 812 813 814 815 816 817 818 819
    "meta_description":[
      "Contains the nomad uri of a raw the data file connected to the current run. ",
      "There should be an value for the main_file_uri and all ancillary ",
      "files."],
    "meta_parent_section":"section_run",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"calculation_gid",
820
    "meta_type":"type-value",
821 822 823 824 825
    "meta_description":"unique identifier of a calculation.",
    "meta_parent_section":"calculation_context",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_method",
826
    "meta_type":"type-value",
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    "meta_description":[
      "String that uniquely represents the method used to calculate energy_total, If ",
      "the present calculation_method_current is a perturbative method Y that uses ",
      "method X as starting point, this string is automatically created as X@Y, where ",
      "X is taken from calculation_method_current and Y from method_to_method_ref. In ",
      "order to activate this, method_to_method_kind must have the value ",
      "starting_point (see the [method_to_method_kind wiki ",
      "page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/metho",
      "d-to-method-kind))."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_method_current",
842
    "meta_type":"type-value",
843 844 845 846 847
    "meta_description":[
      "String that represents the method used to calculate the energy_current. If the ",
      "method is perturbative, this string does not describe the starting point ",
      "method, the latter being referenced to by section_method_to_method_refs. For ",
      "self-consistent field (SCF) ab initio calculations, for example, this is ",
848
      "composed by concatenating xc_method_current and basis_set. See ",
849 850 851 852 853 854 855 856 857
      "[calculation_method_current wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nom",
      "ad-meta-info/wikis/metainfo/calculation-method-current) for the ",
      "details."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_method_kind",
858
    "meta_type":"type-value",
859 860 861 862 863 864 865 866 867 868 869
    "meta_description":[
      "Kind of method in calculation_method_current.\n",
      "\n",
      "Accepted values are:\n",
      "\n",
      "- absolute\n",
      "- perturbative."],
    "meta_parent_section":"section_method",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_pid",
870
    "meta_type":"type-value",
871 872 873 874 875
    "meta_description":"repository pid of this calculation",
    "meta_parent_section":"section_calculation_info",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_to_calculation_external_url",
876
    "meta_type":"type-value",
877 878 879 880 881 882 883 884 885 886
    "meta_description":[
      "URL used to reference an externally stored calculation. The kind of ",
      "relationship between the present and the referenced ",
      "section_single_configuration_calculation is specified by ",
      "calculation_to_calculation_kind."],
    "meta_parent_section":"section_calculation_to_calculation_refs",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"calculation_to_calculation_kind",
887
    "meta_type":"type-value",
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    "meta_description":[
      "String defining the relationship between the referenced ",
      "section_single_configuration_calculation and the present ",
      "section_single_configuration_calculation. Valid values are described in the ",
      "[calculation_to_calculation_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-la",
      "b/nomad-meta-info/wikis/metainfo/calculation-to-calculation-kind). Often ",
      "calculations are connected, for instance, one calculation is a perturbation ",
      "performed using a self-consistent field (SCF) calculation as starting point, or ",
      "a simulated system is partitioned in regions with different but connected ",
      "Hamiltonians (e.g., QM/MM, or a region treated via Kohn-Sham DFT embedded into ",
      "a region treated via orbital-free DFT). Hence, the need of keeping track of ",
      "these connected calculations. The referenced calculation is identified via ",
      "calculation_to_calculation_ref (typically used for a calculation in the same ",
      "section_run) or calculation_to_calculation_external_url."],
    "meta_parent_section":"section_calculation_to_calculation_refs",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_to_calculation_ref",
906
    "meta_type":"type-value",
907 908 909 910 911 912 913 914 915 916
    "meta_description":[
      "Reference to another calculation. If both this and ",
      "calculation_to_calculation_external_url are given, then ",
      "calculation_to_calculation_ref is a local copy of the URL given in ",
      "calculation_to_calculation_external_url. The kind of relationship between the ",
      "present and the referenced section_single_configuration_calculation is ",
      "specified by calculation_to_calculation_kind."],
    "meta_parent_section":"section_calculation_to_calculation_refs",
    "meta_data_type":"reference",
    "meta_repeats":true,
917
    "meta_referenced_section":"section_single_configuration_calculation"
918 919
  },{
    "meta_name":"calculation_to_folder_external_url",
920
    "meta_type":"type-value",
921 922 923 924 925 926 927 928 929 930
    "meta_description":[
      "URL used to reference a folder containing external calculations. The kind of ",
      "relationship between the present and the referenced ",
      "section_single_configuration_calculation is specified by ",
      "calculation_to_folder_kind."],
    "meta_parent_section":"section_calculation_to_folder_refs",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"calculation_to_folder_kind",
931
    "meta_type":"type-value",
932 933 934 935 936 937 938 939
    "meta_description":[
      "String defining the relationship between the referenced ",
      "section_single_configuration_calculation and a folder containing ",
      "calculations."],
    "meta_parent_section":"section_calculation_to_folder_refs",
    "meta_data_type":"string"
  },{
    "meta_name":"calculation_upload_date",
940
    "meta_type":"type-value",
941 942 943 944
    "meta_description":[
      "Upload date of the calculation, given as total number of milliseconds is the ",
      "elapsed since the unix epoch (1 January 1970)"],
    "meta_parent_section":"section_calculation_info",
945
    "meta_data_type":"int64",
946 947 948
    "meta_repeats":true
  },{
    "meta_name":"calculation_uploader_name",
949
    "meta_type":"type-value",
950 951 952 953 954 955 956 957
    "meta_description":[
      "Name of the uploader of this calculation, given as lastamen, ",
      "firstname"],
    "meta_parent_section":"section_calculation_info",
    "meta_data_type":"string",
    "meta_repeats":true
  },{
    "meta_name":"choice",
958
    "meta_type":"type-value",
959 960 961 962 963 964 965 966 967 968 969
    "meta_description":[
      "String that specifies the centering, origin and basis vector settings of the 3D ",
      "space group that defines the symmetry group of the simulated physical system ",
      "(see section_system). Values are as defined by ",
      "spglib."],
    "meta_parent_section":"section_symmetry",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"configuration_core",
970
    "meta_type":"type-abstract",
971 972 973
    "meta_description":"Properties defining the current configuration."
  },{
    "meta_name":"configuration_periodic_dimensions",
974
    "meta_type":"type-value",
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    "meta_description":[
      "Array labeling which of the lattice vectors use periodic boundary conditions. ",
      "Note for the parser developers: This value is not expected to be given for each ",
      "section_single_configuration_calculation. It is assumed to be valid from the ",
      "section_single_configuration_calculation where it is defined for all subsequent ",
      "section_single_configuration_calculation in section_run, until ",
      "redefined."],
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"boolean",
    "meta_dimension":[{
      "meta_dimension_fixed":3
    }],
    "meta_repeats":true
  },{
    "meta_name":"configuration_raw_gid",
992
    "meta_type":"type-value",
993 994 995 996 997 998 999 1000
    "meta_description":[
      "checksum of the configuration_core, i.e. the geometry of the system. The values ",
      "are not normalized in any way so equivalent configurations might have different ",
      "values"],
    "meta_parent_section":"section_system",
    "meta_data_type":"string"
  },{
    "meta_name":"conserved_quantity",
1001
    "meta_type":"type-abstract",
1002 1003 1004 1005 1006
    "meta_description":[
      "A quantity that is preserved during the time propagation (for example, ",
      "kinetic+potential energy during NVE)."]
  },{
    "meta_name":"crystal_system",
1007
    "meta_type":"type-value",
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    "meta_description":[
      "Name of the crystal system. Can be one of the following: triclinic, monoclinic, ",
      "orthorhombic, tetragonal, trigonal, hexagonal or ",
      "cubic."],
    "meta_parent_section":"section_symmetry",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"string"
  },{
    "meta_name":"dos_energies",
1018
    "meta_type":"type-value",
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    "meta_description":[
      "Array containing the set of discrete energy values for the density ",
      "(electronic-energy or vibrational energy) of states (DOS). This is the total ",
      "DOS, see atom_projected_dos_energies and species_projected_dos_energies for ",
      "partial density of states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"dos_energies_normalized",
1032
    "meta_type":"type-value",
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    "meta_description":[
      "Array containing the set of discrete energy values with respect to the top of ",
      "the valence band for the density (electronic-energy) of states (DOS). This is ",
      "the total DOS, see atom_projected_dos_energies and ",
      "species_projected_dos_energies for partial density of ",
      "states."],
    "meta_parent_section":"section_dos",
    "meta_abstract_types":[
      "derived_quantity"],
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"dos_fermi_energy",
1049
    "meta_type":"type-value",
1050 1051 1052 1053 1054 1055 1056
    "meta_description":[
      "Stores the Fermi energy of the density of ",
      "states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float"
  },{
    "meta_name":"dos_integrated_values",
1057
    "meta_type":"type-value",
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
    "meta_description":[
      "Integrated density of states (starting at $-\\infty$), pseudo potential ",
      "calculations should start with the number of core electrons if they cover only ",
      "the active electrons"],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"dos_kind",
1071
    "meta_type":"type-value",
1072 1073 1074 1075 1076 1077 1078
    "meta_description":[
      "String to specify the kind of density of states (either electronic or ",
      "vibrational)."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"string"
  },{
    "meta_name":"dos_lm",
1079
    "meta_type":"type-value",
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    "meta_description":[
      "Tuples of $l$ and $m$ values for which dos_values_lm are given. For the quantum ",
      "number $l$ the conventional meaning of azimuthal quantum number is always ",
      "adopted. For the integer number $m$, besides the conventional use as magnetic ",
      "quantum number ($l+1$ integer values from $-l$ to $l$), a set of different ",
      "conventions is accepted (see the [m_kind wiki ",
      "page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind)",
      ". The actual adopted convention is specified by ",
      "dos_m_kind."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"int",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_lms"
    },{
      "meta_dimension_fixed":2
    }]
  },{
    "meta_name":"dos_m_kind",
1098
    "meta_type":"type-value",
1099 1100 1101 1102 1103 1104 1105 1106
    "meta_description":[
      "String describing what the integer numbers of $m$ in dos_lm mean. The allowed ",
      "values are listed in the [m_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/",
      "nomad-meta-info/wikis/metainfo/m-kind)."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"string"
  },{
    "meta_name":"dos_values",
1107
    "meta_type":"type-value",
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    "meta_description":[
      "Values (number of states for a given energy, the set of discrete energy values ",
      "is given in dos_energies) of density (electronic-energy or vibrational-energy) ",
      "of states. This refers to the simulation cell, i.e. integrating over all ",
      "energies will give the number of electrons in the simulation ",
      "cell."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"dos_values_lm",
1123
    "meta_type":"type-value",
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    "meta_description":[
      "Array containing the density (electronic-energy) of states values projected on ",
      "the various spherical harmonics (integrated on all atoms), see ",
      "atom_projected_dos_values_lm for atom values."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_dos_lms"
    },{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_atoms"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }],
    "meta_units":"J"
  },{
    "meta_name":"dos_values_per_atoms",
1142
    "meta_type":"type-value",
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    "meta_description":[
      "Values (number of states for a given energy divided by the numer of atoms, the ",
      "set of discrete energy values is given in dos_energies) of density ",
      "(electronic-energy or vibrational-energy) of ",
      "states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"dos_values_per_unit_volume",
1157
    "meta_type":"type-value",
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    "meta_description":[
      "Values (number of states for a given energy divided by volume, the set of ",
      "discrete energy values is given in dos_energies) of density (electronic-energy ",
      "or vibrational-energy) of states."],
    "meta_parent_section":"section_dos",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_dos_values"
    }]
  },{
    "meta_name":"eigenvalues_kind",
1171
    "meta_type":"type-value",
1172 1173 1174 1175 1176
    "meta_description":[
      "A short string describing the kind of eigenvalues, as defined in the ",
      "[eigenvalues_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-in",
      "fo/wikis/metainfo/eigenvalues-kind)."],
    "meta_parent_section":"section_eigenvalues",
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    "meta_data_type":"string",
    "meta_enum":[{
      "meta_enum_value":"normal",
      "meta_enum_description":"all eigenvalues of the Kohn Sham / Fock operator"
    },{
      "meta_enum_value":"partial",
      "meta_enum_description":[
        "partial eigenvalue spectrum, usually around the HOMO-LOMO. In this case, ",
        "number_of_eigenvalues only refers to the number of stored eigenvalues, not the ",
        "full spectrum."]
    }]
1188 1189
  },{
    "meta_name":"eigenvalues_kpoints",
1190
    "meta_type":"type-value",
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    "meta_description":[
      "Coordinates of the $k$ points (in the basis of the reciprocal lattice vectors) ",
      "used for the evaluation of the eigenvalues tabulated in ",
      "eigenvalues_values."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    },{
      "meta_dimension_fixed":3
    }]
  },{
    "meta_name":"eigenvalues_kpoints_multiplicity",
1204
    "meta_type":"type-value",
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
    "meta_description":[
      "Multiplicity of the $k$ point (i.e., how many distinct points per cell this ",
      "expands to after applying all symmetries). This defaults to 1. If expansion is ",
      "preformed then each point will have weight ",
      "eigenvalues_kpoints_weights/eigenvalues_kpoints_multiplicity."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    }]
  },{
    "meta_name":"eigenvalues_kpoints_weights",
1217
    "meta_type":"type-value",
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    "meta_description":[
      "Weights of the $k$ points (in the basis of the reciprocal lattice vectors) used ",
      "for the evaluation of the eigenvalues tabulated in eigenvalues_values, should ",
      "account for symmetry too."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    }]
  },{
    "meta_name":"eigenvalues_occupation",
1229
    "meta_type":"type-value",
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
    "meta_description":[
      "Occupation of the eigenstates. The corresponding eigenvalues (energy) are given ",
      "in eigenvalues_values. The coordinates in the reciprocal space are defined in ",
      "eigenvalues_kpoints."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues"
    }]
  },{
    "meta_name":"eigenvalues_values",
1245
    "meta_type":"type-value",
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    "meta_description":[
      "Values of the (electronic-energy) eigenvalues. The coordinates of the ",
      "corresponding eigenstates in the reciprocal space are defined in ",
      "eigenvalues_kpoints and their occupations are given in ",
      "eigenvalues_occupation."],
    "meta_parent_section":"section_eigenvalues",
    "meta_data_type":"float",
    "meta_dimension":[{
      "meta_dimension_symbolic":"number_of_spin_channels"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues_kpoints"
    },{
      "meta_dimension_symbolic":"number_of_eigenvalues"
    }],
    "meta_units":"J"
  },{
    "meta_name":"electronic_kinetic_energy",
1263
    "meta_type":"type-value",
1264 1265
    "meta_description":[
      "Self-consistent electronic kinetic energy as defined in ",
1266
      "xc_method."],
1267 1268 1269 1270 1271 1272 1273
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"electronic_kinetic_energy_scf_iteration",
1274
    "meta_type":"type-value",
1275
    "meta_description":[
1276
      "Electronic kinetic energy as defined in xc_method during the self-consistent ",
1277 1278 1279 1280 1281 1282 1283 1284 1285
      "field (SCF) iterations."],
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_component",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"electronic_structure_method",
1286
    "meta_type":"type-value",
1287 1288 1289 1290 1291 1292 1293 1294 1295
    "meta_description":[
      "Non-unique string identifying the used electronic structure method. It is not ",
      "unique in the sense that two calculations with the same ",
      "electronic_structure_method string may have not been performed with exactly the ",
      "same method. The allowed strings are given in the [electronic structure method ",
      "wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/",
      "electronic-structure-method)."],
    "meta_parent_section":"section_method",
    "meta_abstract_types":[
1296
      "settings_xc"],
1297 1298 1299
    "meta_data_type":"string"
  },{
    "meta_name":"embedded_system",
1300
    "meta_type":"type-value",
1301 1302 1303 1304 1305 1306 1307
    "meta_description":"Is the system embedded into a host geometry?.",
    "meta_parent_section":"section_system",
    "meta_abstract_types":[
      "configuration_core"],
    "meta_data_type":"boolean"
  },{
    "meta_name":"energy_c",
1308
    "meta_type":"type-value",
1309 1310
    "meta_description":[
      "Correlation (C) energy calculated with the method described in ",
1311
      "xc_functional."],
1312 1313
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
1314
      "energy_type_c"],
1315 1316 1317
    "meta_data_type":"float",
    "meta_units":"J"
  },{
1318
    "meta_name":"energy_change_scf_iteration",
1319 1320
    "meta_type":"type-value",
    "meta_description":[
1321 1322 1323
      "Stores the change of total energy with respect to the previous self-consistent ",
      "field (SCF) iteration."],
    "meta_parent_section":"section_scf_iteration",
1324
    "meta_abstract_types":[
1325 1326 1327
      "energy_value",
      "error_estimate_contribution",
      "scf_info"],
1328
    "meta_data_type":"float"
1329
  },{
1330
    "meta_name":"energy_code_independent_kind",
1331 1332
    "meta_type":"type-value",
    "meta_description":[
1333 1334 1335 1336 1337 1338 1339
      "Type of the code-independent total energy (obtained by subtracting a reference ",
      "energy calculated with the same code), created to be comparable among different ",
      "codes and numerical settings. Details can be found on the ",
      "[energy_code_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-",
      "meta-info/wikis/metainfo/energy-code-independent)."],
    "meta_parent_section":"section_energy_code_independent",
    "meta_data_type":"string"
1340
  },{
1341
    "meta_name":"energy_code_independent_value",
1342 1343
    "meta_type":"type-value",
    "meta_description":[
1344 1345 1346 1347 1348 1349
      "Value of the code-independent total energy (obtained by subtracting a reference ",
      "energy calculated with the same code). This value is created to be comparable ",
      "among different codes and numerical settings. Details can be found on the ",
      "[energy_code_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-",
      "meta-info/wikis/metainfo/energy-code-independent)."],
    "meta_parent_section":"section_energy_code_independent",
1350
    "meta_abstract_types":[
1351
      "energy_total_potential"],
1352 1353 1354
    "meta_data_type":"float",
    "meta_units":"J"
  },{
1355 1356
    "meta_name":"energy_component",
    "meta_type":"type-abstract",
1357
    "meta_description":[
1358 1359
      "A value of an energy component, expected to be an extensive ",
      "property."],
1360
    "meta_abstract_types":[
1361
      "energy_value"]
1362
  },{
1363 1364 1365 1366 1367 1368 1369 1370 1371
    "meta_name":"energy_component_per_atom",
    "meta_type":"type-abstract",
    "meta_description":[
      "A value of an energy component per atom, concurring in defining the total ",
      "energy per atom."],
    "meta_abstract_types":[
      "energy_value"]
  },{
    "meta_name":"energy_correction_entropy",
1372 1373
    "meta_type":"type-value",
    "meta_description":[
1374 1375 1376
      "Entropy correction to the potential energy to compensate for the change in ",
      "occupation so that forces at finite T do not need to keep the change of ",
      "occupation in account. Defined consistently with ",
1377
      "xc_method."],
1378 1379 1380 1381 1382 1383
    "meta_parent_section":"section_single_configuration_calculation",
    "meta_abstract_types":[
      "energy_component"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
1384
    "meta_name":"energy_correction_entropy_scf_iteration",
1385 1386
    "meta_type":"type-value",
    "meta_description":[
1387 1388 1389 1390
      "Entropy correction to the potential energy to compensate for the change in ",
      "occupation so that forces at finite T do not need to keep the change of ",
      "occupation in account. The array lists the values of the entropy correction for ",
      "each self-consistent field (SCF) iteration. Defined consistently with ",
1391
      "xc_method."],
1392 1393 1394 1395 1396 1397 1398 1399
    "meta_parent_section":"section_scf_iteration",
    "meta_abstract_types":[
      "energy_component",
      "scf_info"],
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"energy_correction_hartree",
1400
    "meta_type":"type-value",
1401 1402 1403 1404
    "meta_description":[
      "Correction to the density-density electrostatic energy in the sum of ",
      "eigenvalues (that uses the mixed density on one side), and the fully consistent ",
      "density-density electrostatic energy. Defined consistently with ",
1405
      "xc_method."],