public.nomadmetainfo.json 129 KB
Newer Older
1
2
{
  "type": "nomad_meta_info_1_0",
Luca's avatar
Luca committed
3
  "description": "Public meta info, not specific to any code",
4
5
6
7
8
9
  "metaInfos": [ {
      "description": "Information that *in theory* should have no influence on the results.",
      "kindStr": "type_abstract_document_content",
      "name": "accessory_info",
      "superNames": []
    }, {
Luca's avatar
Luca committed
10
      "description": "Forces acting on the atoms, calculated as minus gradient of energy_free, without forces' unitary-transformation (rigid body) filtering and without constraints. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. The (electronic) energy_free contains the information on the change in (fractional) occupation of the electronic eigenstates, which are accounted for in the derivatives, yielding a truly conserved energy quantity. These forces may contain unitary transformations (translations of the center of mass and, when the system is non-periodic, rigid rotations) that are normally filtered separately (in atom_forces_free); forces due to constraints such as fixed atoms, distances, angles, dihedrals, and so on, are also considered separately (in atom_forces_free).",
11
12
13
14
15
16
17
18
19
20
21
22
      "dtypeStr": "f",
      "name": "atom_forces_free_raw",
      "repeats": true,
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "atom_forces_type"
      ],
      "units": "N"
    }, {
Luca's avatar
Luca committed
23
      "description": "Forces acting on the atoms, calculated as minus gradient of energy_free, including forces' unitary-transformation (rigid body) filtering and including constraints, if present. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. The (electronic) energy_free contains the information on the change in (fractional) occupation of the electronic eigenstates, which are accounted for in the derivatives, yielding a truly conserved energy quantity. In addition, these forces are obtained by filtering out the unitary transformations (translations of the center of mass and, when the system is non-periodic, rigid rotations); see atom_forces_free_raw for the unfiltered counterpart. Furthermore, forces due to constraints such as fixed atoms, distances, angles, dihedrals, and so on, are here included (see atom_forces_free_raw for the unfiltered counterpart).",
24
25
26
27
28
29
30
31
32
33
34
35
      "dtypeStr": "f",
      "name": "atom_forces_free",
      "repeats": true,
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "atom_forces_type"
      ],
      "units": "N"
    }, {
Luca's avatar
Luca committed
36
      "description": "Forces acting on the atoms, calculated as minus gradient of energy_total, without forces' unitary-transformation (rigid body) filtering and without constraints. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. These forces may contain unitary transformations (translations of the center of mass and, when the system is non-periodic, rigid rotations) that are normally filtered separately (in atom_forces); forces due to constraints such as fixed atoms, distances, angles, dihedrals, and so on, are also considered separately (in atom_forces).",
37
38
39
40
41
42
43
44
45
46
47
48
      "dtypeStr": "f",
      "name": "atom_forces_raw",
      "repeats": true,
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "atom_forces_type"
      ],
      "units": "N"
    }, {
Luca's avatar
Luca committed
49
      "description": "Forces acting on the atoms, calculated as minus gradient of energy_total_T0, without forces' unitary-transformation (rigid body) filtering and without constraints. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. These forces may contain unitary transformations (translations of the center of mass and, when the system is non-periodic, rigid rotations) that are normally filtered separately (in atom_forces_T0); forces due to constraints such as fixed atoms, distances, angles, dihedrals, and so on, are also considered separately (in atom_forces_T0).",
50
51
52
53
54
55
56
57
58
59
60
61
      "dtypeStr": "f",
      "name": "atom_forces_T0_raw",
      "repeats": true,
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "atom_forces_type"
      ],
      "units": "N"
    }, {
Luca's avatar
Luca committed
62
      "description": "Forces acting on the atoms, calculated as minus gradient of energy_total_T0, including forces' unitary-transformation (rigid body) filtering and including constraints, if present. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. In addition, these forces are obtained by filtering out the unitary transformations (translations of the center of mass and, when the system is non-periodic, rigid rotations); see atom_forces_free_T0_raw for the unfiltered counterpart. Furthermore, forces due to constraints such as fixed atoms, distances, angles, dihedrals, and so on, are here included (see atom_forces_free_T0_raw for the unfiltered counterpart).",
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
      "dtypeStr": "f",
      "name": "atom_forces_T0",
      "repeats": true,
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "atom_forces_type"
      ],
      "units": "N"
    }, {
      "description": "Some forces on the atoms (i.e. minus derivatives of some energy with respect to the atom position).",
      "dtypeStr": "f",
      "kindStr": "type_abstract_document_content",
      "name": "atom_forces_type",
      "repeats": true,
      "superNames": [
        "section_single_configuration_calculation"
      ]
    }, {
Luca's avatar
Luca committed
84
      "description": "Forces acting on the atoms, calculated as minus gradient of energy_total, including forces' unitary-transformation (rigid body) filtering and including constraints, if present. The derivatives with respect to displacements of the nuclei are evaluated in Cartesian coordinates. In addition, these forces are obtained by filtering out the unitary transformations (translations of the center of mass and, when the system is non-periodic, rigid rotations); see atom_forces_raw for the unfiltered counterpart. Furthermore, forces due to constraints such as fixed atoms, distances, angles, dihedrals, and so on, are here included (see atom_forces_raw for the unfiltered counterpart).",
85
86
87
88
89
90
91
92
93
94
95
96
      "dtypeStr": "f",
      "name": "atom_forces",
      "repeats": true,
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "atom_forces_type"
      ],
      "units": "N"
    }, {
Luca's avatar
Luca committed
97
      "description": "Labels of the atoms. These strings identify the atom kind and conventionally start with the symbol of the atomic species, possibly followed by a number. The same atomic species can be labelled with more than one atom_labels in order to distinguish, e.g., atoms of the same species assigned to different atom-centered basis sets or pseudopotentials, or simply atoms in different locations in the structure (e.g., bulk and surface). These labels can also be used for *particles* that do not correspond to physical atoms (e.g., ghost atoms in some codes using atom-centered basis sets). This metadata defines a configuration and is therefore required.",
98
      "dtypeStr": "C",
Luca's avatar
Luca committed
99
      "name": "atom_labels",
100
101
102
103
104
105
106
      "shape": [
        "number_of_atoms"
      ],
      "superNames": [
        "configuration_core"
      ]
    }, {
Luca's avatar
Luca committed
107
      "description": "Positions of all the atoms, in Cartesian coordinates. This metadata defines a configuration and is therefore required.",
108
      "dtypeStr": "f",
Luca's avatar
Luca committed
109
      "name": "atom_positions",
110
111
112
113
114
115
116
117
118
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "configuration_core"
      ],
      "units": "m"
    }, {
Luca's avatar
Luca committed
119
      "description": "Array containing the set of discrete energy values for the atom-projected density of (electronic-energy) states (DOS).",
120
121
122
      "dtypeStr": "f",
      "name": "atom_projected_dos_energies",
      "shape": [
Luca's avatar
Luca committed
123
        "number_of_atom_projected_dos_values"
124
125
126
127
128
129
      ],
      "superNames": [
        "section_atom_projected_dos"
      ],
      "units": "J"
    }, {
130
      "description": "Tuples of $l$ and $m$ values for which atom_projected_dos_values_lm are given. For the quantum number $l$ the conventional meaning of azimuthal quantum number is always adopted. For the integer number $m$, besides the conventional use as magnetic quantum number ($l+1$ integer values from $-l$ to $l$), a set of different conventions is accepted (see the [m\\_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind). The actual adopted convention is specified by atom_projected_dos_m_kind.",
131
132
133
134
135
136
137
138
139
140
      "dtypeStr": "i",
      "name": "atom_projected_dos_lm",
      "shape": [
        "number_of_lm_atom_projected_dos",
        2
      ],
      "superNames": [
        "section_atom_projected_dos"
      ]
    }, {
Luca's avatar
Luca committed
141
      "description": "String describing what the integer numbers of $m$ in atom_projected_dos_lm mean. The allowed values are listed in the [m\\_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind).",
142
143
144
145
146
147
148
      "dtypeStr": "C",
      "name": "atom_projected_dos_m_kind",
      "shape": [],
      "superNames": [
        "section_atom_projected_dos"
      ]
    }, {
Luca's avatar
Luca committed
149
      "description": "Values (number of states for a given energy, the set of discrete energy values is given in atom_projected_dos_energies) of the atom-projected density of (electronic-energy) states, divided into contributions from each $l,m$ channel. Here, there are as many atom-projected DOS as the number_of_atoms, the list of labels of the atoms is in atom_labels, see atom_labels for what it is meant by *atom label*.",
150
151
152
153
154
155
      "dtypeStr": "f",
      "name": "atom_projected_dos_values_lm",
      "shape": [
        "number_of_lm_atom_projected_dos",
        "max_spin_channel",
        "number_of_atoms",
Luca's avatar
Luca committed
156
        "number_of_atom_projected_dos_values"
157
158
159
160
161
      ],
      "superNames": [
        "section_atom_projected_dos"
      ]
    }, {
Luca's avatar
Luca committed
162
      "description": "Values (number of states for a given energy, the set of discrete energy values is given in atom_projected_dos_energies) of the atom-projected density of (electronic-energy) states (DOS), summed up over all $l$ channels. Here, there are as many atom-projected DOS as the number_of_atoms, the list of labels of the atoms is in atom_labels, see atom_labels for what it is meant by *atom label*.",
163
164
165
166
167
      "dtypeStr": "f",
      "name": "atom_projected_dos_values_total",
      "shape": [
        "max_spin_channel",
        "number_of_atoms",
Luca's avatar
Luca committed
168
        "number_of_atom_projected_dos_values"
169
170
171
172
173
      ],
      "superNames": [
        "section_atom_projected_dos"
      ]
    }, {
Luca's avatar
Luca committed
174
      "description": "Velocities of the nuclei, defined as the change in Cartesian coordinates of the nuclei with respect to time.",
175
176
177
178
179
180
181
182
183
184
185
186
      "dtypeStr": "f",
      "name": "atom_velocities",
      "repeats": true,
      "shape": [
        "number_of_atoms",
        3
      ],
      "superNames": [
        "section_system_description"
      ],
      "units": "m/s"
    }, {
Luca's avatar
Luca committed
187
      "description": "String describing the method used to obtain the electrostatic multipoles (including the electric charge, dipole, etc.) for each atom. Such multipoles require a charge-density partitioning scheme, specified by the value of this metadata. Allowed values are listed in the [atomic\\_multipole\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/atomic-multipole-kind).",
188
189
190
191
192
193
194
      "dtypeStr": "C",
      "name": "atomic_multipole_kind",
      "shape": [],
      "superNames": [
        "section_atomic_multipoles"
      ]
    }, {
195
      "description": "Tuples of $l$ and $m$ values for which the atomic multipoles (including the electric charge, dipole, etc.) are given. The method used to obtain the multipoles is specified by atomic_multipole_kind. The meaning of the integer number $l$ is monopole/charge for $l=0$, dipole for $l=1$, quadrupole for $l=2$, etc. The meaning of the integer numbers $m$ is specified by atomic_multipole_m_kind.",
196
197
198
199
200
201
202
203
204
205
      "dtypeStr": "i",
      "name": "atomic_multipole_lm",
      "shape": [
        "number_of_lm_atomic_multipoles",
        2
      ],
      "superNames": [
        "section_atomic_multipoles"
      ]
    }, {
Luca's avatar
Luca committed
206
      "description": "String describing what the integer numbers $m$ in atomic_multipole_lm mean. Allowed values are listed in the [m\\_kind wiki page](https://gitlab.rzg.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/m-kind).",
207
208
209
210
211
212
213
      "dtypeStr": "C",
      "name": "atomic_multipole_m_kind",
      "shape": [],
      "superNames": [
        "section_atomic_multipoles"
      ]
    }, {
Luca's avatar
Luca committed
214
      "description": "Value of the multipoles (including the monopole/charge for $l$ = 0, the dipole for $l$ = 1, etc.) for each atom, calculated as described in atomic_multipole_kind.",
215
      "dtypeStr": "f",
Luca's avatar
Luca committed
216
      "name": "atomic_multipole_values",
217
218
219
220
221
222
223
224
      "shape": [
        "number_of_lm_atomic_multipoles",
        "number_of_atoms"
      ],
      "superNames": [
        "section_atomic_multipoles"
      ]
    }, {
Luca's avatar
Luca committed
225
      "description": "$k$-dependent energies of the electronic bands (electronic band structure). This is a fourth-order tensor, with one dimension used for the spin channels, one for the $k$ point segments (e.g., Gamma-L, the labels are specified in band_segm_labels), one for the $k$ points for each segment, and one for the eigenvalue sequence.",
226
227
228
229
230
      "dtypeStr": "f",
      "name": "band_energies",
      "shape": [
        "number_of_k_point_segments",
        "max_spin_channel",
Luca's avatar
Luca committed
231
232
        "number_of_k_points_per_segment",
        "number_of_eigen_values"
233
234
235
236
237
238
      ],
      "superNames": [
        "section_k_band"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
239
      "description": "Fractional coordinates of the $k$ points (in the basis of the reciprocal-lattice vectors) for which the electronic energy are given.",
240
241
242
243
      "dtypeStr": "f",
      "name": "band_k_points",
      "shape": [
        "number_of_k_point_segments",
Luca's avatar
Luca committed
244
        "number_of_k_points_per_segment",
245
246
247
248
249
250
        3
      ],
      "superNames": [
        "section_k_band"
      ]
    }, {
Luca's avatar
Luca committed
251
      "description": "Occupation of the $k$-points along the electronic band. The size of the dimensions of this fourth-order tensor are the same as for the tensor in band_energies",
252
253
254
255
256
      "dtypeStr": "f",
      "name": "band_occupation",
      "shape": [
        "number_of_k_point_segments",
        "max_spin_channel",
Luca's avatar
Luca committed
257
258
        "number_of_k_points_per_segment",
        "number_of_eigen_values"
259
260
261
262
263
      ],
      "superNames": [
        "section_k_band"
      ]
    }, {
Luca's avatar
Luca committed
264
      "description": "Start and end labels of the points in the segments (one-dimensional pathways) sampled in the $k$-space, using the conventional symbols, e.g., Gamma, K, L. The coordinates (fractional, in the reciprocal space) of the start and end points for each segment are given in band_segm_start_end",
265
266
267
268
269
270
271
272
273
274
      "dtypeStr": "C",
      "name": "band_segm_labels",
      "shape": [
        "number_of_k_point_segments",
        2
      ],
      "superNames": [
        "section_k_band"
      ]
    }, {
Luca's avatar
Luca committed
275
      "description": "Fractional coordinates of the start and end point (in the basis of the reciprocal lattice vectors) of the segments sampled in the $k$ space. The conventional symbols (e.g., Gamma, K, L) of the same points are given in band_segm_labels",
276
277
278
279
280
281
282
283
284
285
286
      "dtypeStr": "f",
      "name": "band_segm_start_end",
      "shape": [
        "number_of_k_point_segments",
        2,
        3
      ],
      "superNames": [
        "section_k_band"
      ]
    }, {
Luca's avatar
Luca committed
287
      "description": "Azimuthal quantum number ($l$) values (of the angular part given by the spherical harmonic $Y_{lm}$) of the atom-centered basis function defined in the current section_basis_set_atom_centered.",
288
289
290
291
292
293
294
295
296
      "dtypeStr": "i",
      "name": "basis_set_atom_centered_ls",
      "shape": [
        "number_of_kinds_in_basis_set_atom_centered"
      ],
      "superNames": [
        "section_basis_set_atom_centered"
      ]
    }, {
297
      "description": "Values of the radial function of the different basis function kinds. The values are numerically tabulated on a default 0.01-nm equispaced grid from 0 to 4 nm. The 5 tabulated values are $r$, $f(r)$, $f'(r)$, $f(r)*r$, $\\frac{d}{dr}(f(r)*r)$.",
298
299
300
301
302
303
304
305
306
307
308
      "dtypeStr": "f",
      "name": "basis_set_atom_centered_radial_functions",
      "shape": [
        "number_of_kinds_in_basis_set_atom_centered",
        401,
        5
      ],
      "superNames": [
        "section_basis_set_atom_centered"
      ]
    }, {
309
      "description": "Code-specific, but explicative, base name of the basis set, not unique. Details are explained in the [basis\\_set\\_atom\\_centered\\_short\\_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-atom-centered-short-name), this name should not contain the atom kind (to simplify the use of a single name for multiple elements).",
310
311
312
313
314
315
316
      "dtypeStr": "C",
      "name": "basis_set_atom_centered_short_name",
      "shape": [],
      "superNames": [
        "section_basis_set_atom_centered"
      ]
    }, {
Luca's avatar
Luca committed
317
      "description": "Code-specific, explicative and unique name of the basis set. This string starts with basis_set_atom_centered_short_name. If the basis set defined in this section_basis_set_atom_centered is not identical to the default definition (stored in a database) of the basis set with the same name stored in a database, then the string is extended by 10 identificative characters as explained in the [basis\\_set\\_atom\\_centered\\_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-atom-centered-unique-name). The reason for this procedure is that often atom-centered basis sets are obtained by fine tuning basis sets provided by the code developers or other sources. Each basis sets, which has normally a standard name, often reported in publications, has also several parameters that can be tuned. This metadata tries to keep track of the original basis set and its modifications. This string here defined should not contain the *atom kind* for which this basis set is intended for, in order to simplify the use of a single name for multiple *atom kinds* (see atom_labels for the actual meaning of *atom kind*).",
318
319
320
321
322
323
324
      "dtypeStr": "C",
      "name": "basis_set_atom_centered_unique_name",
      "shape": [],
      "superNames": [
        "section_basis_set_atom_centered"
      ]
    }, {
Luca's avatar
Luca committed
325
      "description": "Atomic number (i.e., number of protons) of the atom for which this basis set is constructed (0 means unspecified, or a pseudo atom).",
326
327
328
329
330
331
332
      "dtypeStr": "i",
      "name": "basis_set_atom_number",
      "shape": [],
      "superNames": [
        "section_basis_set_atom_centered"
      ]
    }, {
Luca's avatar
Luca committed
333
      "description": "A string defining the type of the cell-associated basis set (i.e., non atom centered, e.g., planewaves). Allowed values are listed in the [basis\\_set\\_cell\\_associated\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-cell-associated-kind).",
334
335
336
337
338
339
340
341
      "dtypeStr": "C",
      "name": "basis_set_cell_associated_kind",
      "repeat": false,
      "shape": [],
      "superNames": [
        "section_basis_set_cell_associated"
      ]
    }, {
Luca's avatar
Luca committed
342
      "description": "A label identifying the cell-associated basis set (i.e., non atom centered, like planewaves). Allowed values are listed in the [basis\\_set\\_cell\\_associated\\_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-cell-associated-name).",
343
344
345
346
347
348
349
350
      "dtypeStr": "C",
      "name": "basis_set_cell_associated_name",
      "repeat": false,
      "shape": [],
      "superNames": [
        "section_basis_set_cell_associated"
      ]
    }, {
Luca's avatar
Luca committed
351
      "description": "One of the parts building the basis set of the system (e.g., some atom-centered basis set and/or planewaves).",
352
353
354
355
356
357
      "kindStr": "type_abstract_document_content",
      "name": "basis_set_description",
      "superNames": [
        "section_run"
      ]
    }, {
Luca's avatar
Luca committed
358
      "description": "String describing the use of the basis set, , i.e, if it used for expanding a wavefunction or an electron density. Allowed values are listed in the [basis\\_set\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-kind).",
359
360
361
362
363
364
365
      "dtypeStr": "C",
      "name": "basis_set_kind",
      "shape": [],
      "superNames": [
        "section_basis_set"
      ]
    }, {
Luca's avatar
Luca committed
366
      "description": "String identifying the basis set in an unique way. The rules for building this string are specified in the [basis\\_set\\_name wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/basis-set-name).",
367
368
369
370
371
372
373
      "dtypeStr": "C",
      "name": "basis_set_name",
      "shape": [],
      "superNames": [
        "section_basis_set"
      ]
    }, {
Luca's avatar
Luca committed
374
      "description": "Spherical cutoff  in reciprocal space for a planewave basis set. It is the energy of the highest planewave ($\\frac{\\hbar^2|k+G|^2}{2m_e}$) included in the basis set. Note that normally this basis set is used for the wavefunctions, and the density would have 4 times the cutoff, but this actually depends on the use of the basis set by the method.",
375
      "dtypeStr": "f",
376
      "name": "basis_set_planewave_cutoff",
377
378
379
380
381
382
      "shape": [],
      "superNames": [
        "section_basis_set_cell_associated"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
383
      "description": "String identifying in an unique way the basis set used for the final wavefunctions calculated with XC_method. It must match one of the strings given in any of basis_set_name.",
384
385
386
387
388
389
390
391
      "dtypeStr": "C",
      "name": "basis_set",
      "shape": [],
      "superNames": [
        "section_single_configuration_calculation"
      ]
    }, {
      "derived": true,
Luca's avatar
Luca committed
392
      "description": "String that represents the method used to calculate the energy_current. If the method is perturbative, this string does not describe the starting point method, the latter being referenced to by section_method_to_method_refs. For self-consistent field (SCF) ab initio calculation, for example, this is composed of XC_method and basis_set and a unique SHA checksum, see [calculation\\_method\\_current wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/calculation-method-current) for the details.",
393
394
395
396
397
398
399
400
      "dtypeStr": "C",
      "name": "calculation_method_current",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
Luca's avatar
Luca committed
401
      "description": "Kind of method in calculation_method_current. Accepted values are: absolute, perturbative.",
402
403
404
405
406
407
408
409
410
      "dtypeStr": "C",
      "name": "calculation_method_kind",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "derived": true,
Luca's avatar
Luca committed
411
      "description": "String that uniquely represents the method used to calculate energy_total, If the present calculation_method_current is a perturbative method Y that uses method X as starting point, this string is automatically created as X@Y, where X is taken from calculation_method_current and Y from method_to_method_ref. In order to activate this, method_to_method_kind must have the value starting\\_point (see the [method\\_to\\_method\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/method-to-method-kind)).",
412
413
414
415
416
417
418
419
      "dtypeStr": "C",
      "name": "calculation_method",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
420
      "description": "URL used to reference an externally stored calculation. The kind of relationship between the present and the referenced section_single_configuration_calculation is specified by calculation_to_calculation_kind.",
421
422
423
424
425
426
427
428
      "dtypeStr": "C",
      "name": "calculation_to_calculation_external_url",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_calculation_to_calculation_refs"
      ]
    }, {
Luca's avatar
Luca committed
429
      "description": "String defining the kind of relationship that the referenced section_single_configuration_calculation has with the present section_single_configuration_calculation. Valid values are described in the [calculation\\_to\\_calculation\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/calculation-to-calculation-kind). Often calculations are connected, for instance, one calculation is a perturbation performed using a self-consistent field (SCF) calculation as starting point, or a simulated system is partitioned in regions with different but connected hamiltonians (e.g., QM/MM, or a region treated via Kohn-Sham DFT embedded into a region treated via orbital-free DFT). Hence, the need of keeping track of these connected calculations. The referenced calculation is identified via calculation_to_calculation_ref (typically used for a calculation in the same section_run) or calculation_to_calculation_external_url.",
430
431
432
433
434
435
436
437
      "dtypeStr": "C",
      "name": "calculation_to_calculation_kind",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_calculation_to_calculation_refs"
      ]
    }, {
438
      "description": "Reference to another calculation. If both this and calculation_to_calculation_external_url are given, then calculation_to_calculation_ref is a local copy of the URL given in calculation_to_calculation_external_url. The kind of relationship between the present and the referenced section_single_configuration_calculation is specified by calculation_to_calculation_kind.",
439
440
441
442
443
444
445
446
447
448
449
      "dtypeStr": "r",
      "name": "calculation_to_calculation_ref",
      "referencedSections": [
        "section_single_configuration_calculation"
      ],
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_calculation_to_calculation_refs"
      ]
    }, {
Luca's avatar
Luca committed
450
      "description": "Properties defining the current configuration.",
451
452
453
454
455
456
457
      "kindStr": "type_abstract_document_content",
      "name": "configuration_core",
      "repeats": false,
      "superNames": [
        "section_system_description"
      ]
    }, {
Luca's avatar
Luca committed
458
      "description": "Array labelling Which of the lattice vectors use periodic boundary conditions. Note for the parser developers: This value is not expected to be given for each section_single_configuration_calculation. It is assumed to be valid from the section_single_configuration_calculation where it is defined for all subsequent section_single_configuration_calculation in section_run, until redefined.",
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
      "dtypeStr": "b",
      "name": "configuration_periodic_dimensions",
      "repeats": true,
      "shape": [
        3
      ],
      "superNames": [
        "configuration_core"
      ]
    }, {
      "description": "A quantity that is preserved during the time propagation (for example, kinetic+potential energy during NVE).",
      "kindStr": "type_abstract_document_content",
      "name": "conserved_quantity",
      "repeats": false,
      "shape": [],
      "superNames": []
    }, {
Luca's avatar
Luca committed
476
      "description": "Array containing the set of discrete energy values for the density of (electronic-energy) states (DOS). This is the total DOS, see atom_projected_dos_energies and species_projected_dos_energies for partial DOS's.",
477
478
479
      "dtypeStr": "f",
      "name": "dos_energies",
      "shape": [
Luca's avatar
Luca committed
480
        "number_of_dos_values"
481
482
483
484
485
486
      ],
      "superNames": [
        "section_dos"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
487
      "description": "Values (number of states for a given energy, the set of discrete energy values is given in dos_energies) of Density of (electronic-energy) states (DOS).",
488
489
490
491
      "dtypeStr": "f",
      "name": "dos_values",
      "shape": [
        "max_spin_channel",
Luca's avatar
Luca committed
492
        "number_of_dos_values"
493
494
495
496
497
      ],
      "superNames": [
        "section_dos"
      ]
    }, {
498
      "description": "Values of the (electronic-energy) eigenvalues. The coordinates of the corresponding eigenstates in the reciprocal space are defined in eigenvalues_kpoints and their occupation are given in eigenvalues_occupation.",
499
500
501
502
503
504
505
506
      "dtypeStr": "f",
      "name": "eigenvalues_eigenvalues",
      "shape": [
        "number_of_eigenvalues_kpoints",
        "number_of_eigenvalues"
      ],
      "superNames": [
        "section_eigenvalues"
507
508
      ],
      "units": "J"
509
510
511
512
513
514
515
516
517
    }, {
      "description": "A short string describing the kind of eigenvalues, as defined in the [eigenvalues\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/eigenvalues-kind).",
      "dtypeStr": "C",
      "name": "eigenvalues_kind",
      "shape": [],
      "superNames": [
        "section_eigenvalues"
      ]
    }, {
518
      "description": "Coordinates of the $k$ points (in the basis of the reciprocal lattice vectors) at which the eigenvalues tabulated in eigenvalues_eigenvalues are evaluated.",
519
520
521
522
523
524
525
526
527
528
      "dtypeStr": "f",
      "name": "eigenvalues_kpoints",
      "shape": [
        "number_of_eigenvalues_kpoints",
        3
      ],
      "superNames": [
        "section_eigenvalues"
      ]
    }, {
529
      "description": "Occupation of the eigenstates whose coordinate in the reciprocal space are defined in eigenvalues_kpoints and whose (energy) eigenvalues are given in eigenvalues_eigenvalues.",
530
531
532
533
534
535
536
537
538
539
      "dtypeStr": "f",
      "name": "eigenvalues_occupation",
      "shape": [
        "number_of_eigenvalues_kpoints",
        "number_of_eigenvalues"
      ],
      "superNames": [
        "section_eigenvalues"
      ]
    }, {
Luca's avatar
Luca committed
540
      "description": "Electronic kinetic energy as defined in XC_method during the self-consistent field (SCF) iterations.",
541
542
543
544
545
546
547
548
549
550
      "dtypeStr": "f",
      "name": "electronic_kinetic_energy_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
551
      "description": "Self-consistent electronic kinetic energy as defined in XC_method.",
552
553
554
555
556
557
558
559
560
561
      "dtypeStr": "f",
      "name": "electronic_kinetic_energy",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
562
      "description": "Correlation (C) energy, using XC_functional.",
563
564
565
566
567
568
569
570
571
      "dtypeStr": "f",
      "name": "energy_C",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_type_C"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
572
      "description": "At each self-consistent field (SCF) iteration, change of total energy with respect to the previous SCF iteration.",
573
574
575
576
577
578
579
580
581
582
583
      "dtypeStr": "f",
      "name": "energy_change_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "error_estimate_partial",
        "section_scf_iteration",
        "energy_value"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
584
      "description": "Type of the code-independent total energy (obtained by subtracting a reference energy calculated with the same code), created to be comparable among different codes and numerical settings. Details can be found on the [energy\\_code\\_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/energy-code-independent).",
585
      "dtypeStr": "C",
Luca's avatar
Luca committed
586
      "name": "energy_code_independent_kind",
587
588
      "shape": [],
      "superNames": [
Luca's avatar
Luca committed
589
        "section_energy_code_independent"
590
591
      ]
    }, {
Luca's avatar
Luca committed
592
      "description": "Value of the code-independent total energy (obtained by subtracting a reference energy calculated with the same code), created to be comparable among different codes and numerical settings. Details can be found on the [energy\\_code\\_independent wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/energy-code-independent).",
593
      "dtypeStr": "f",
Luca's avatar
Luca committed
594
      "name": "energy_code_independent_value",
595
596
597
      "shape": [],
      "superNames": [
        "energy_total_potential",
Luca's avatar
Luca committed
598
        "section_energy_code_independent"
599
600
601
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
602
      "description": "A value of an energy term per atom, concurring in defining the total energy per atom.",
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
      "kindStr": "type_abstract_document_content",
      "name": "energy_component_per_atom",
      "shape": [],
      "superNames": [
        "energy_value"
      ]
    }, {
      "description": "A value of an energy component, expected to be an extensive property. ",
      "kindStr": "type_abstract_document_content",
      "name": "energy_component",
      "shape": [],
      "superNames": [
        "energy_value"
      ]
    }, {
Luca's avatar
Luca committed
618
      "description": "Entropy correction, to have a potential energy that compensates the changes in occupation, so that forces at finite T do not need to keep the change of occupation in account. The array lists the values of the entropy correction for each self-consistent field (SCF) iteration. Defined consistently with XC_method.",
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
      "dtypeStr": "f",
      "name": "energy_correction_entropy_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "description": "Entropy correction, to have a potential energy that compensates the changes in occupation, so that forces at finite T do not need to keep the change of occupation in account. Defined consistently with XC_method.",
      "dtypeStr": "f",
      "name": "energy_correction_entropy",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
640
      "description": "Correction to the density-density electrostatic energy in the sum of eigenvalues (that uses the mixed density on one side), and the fully consistent density-density electrostatic energy during the self-consistent field (SCF) iterations. Defined consistently with XC_method.",
641
642
643
644
645
646
647
648
649
650
      "dtypeStr": "f",
      "name": "energy_correction_hartree_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
651
      "description": "Correction to the density-density electrostatic energy in the sum of eigenvalues (that uses the mixed density on one side), and the fully consistent density-density electrostatic energy. Defined consistently with XC_method.",
652
653
654
655
656
657
658
659
660
661
      "dtypeStr": "f",
      "name": "energy_correction_hartree",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
662
      "description": "Value of the energy calculated with calculation_method_current. energy_current is equal to energy_total for non-perturbative methods. For perturbative methods, energy_current is equal to the correction: energy_total minus energy_total of the calculation_to_calculation_ref with calculation_to_calculation_kind = starting\\_point (see the [method\\_to\\_method\\_kind wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/method-to-method-kind)). See also [energy\\_current wiki page](https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/energy-current).",
663
664
665
666
667
668
669
670
671
672
673
      "dtypeStr": "f",
      "name": "energy_current",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
      "derived": true,
Luca's avatar
Luca committed
674
      "description": "Total electrostatic energy (nuclei + electrons) during the self-consistent field (SCF) itrations.",
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
      "dtypeStr": "f",
      "name": "energy_electrostatic_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "description": "Total electrostatic energy (nuclei + electrons), defined consistently with calculation_method.",
      "dtypeStr": "f",
      "name": "energy_electrostatic",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
696
      "description": "Free energy per atom (whose minimum gives a density with smeared occupation) calculated with XC_method during the self-consistent field (SCF) iterations.",
697
698
699
700
701
702
703
704
705
706
707
      "dtypeStr": "f",
      "name": "energy_free_per_atom_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component_per_atom",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "derived": true,
Luca's avatar
Luca committed
708
      "description": "Free energy per atom (whose minimum gives a density with smeared occupation) calculated with XC_method.",
709
710
711
712
713
714
715
716
717
718
      "dtypeStr": "f",
      "name": "energy_free_per_atom",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component_per_atom",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
719
      "description": "Free energy (nuclei + electrons) (whose minimum gives the smeared occupation density) calculated with the method described in XC_method during the self-consistent field (SCF) iterations.",
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
      "dtypeStr": "f",
      "name": "energy_free_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "description": "Free energy (nuclei + electrons) (whose minimum gives the smeared occupation density calculated with smearing_kind) calculated with the method described in XC_method.",
      "dtypeStr": "f",
      "name": "energy_free",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
741
      "description": "Error in the Hartree (electrostatic) potential energy during the self-consistent field (SCF) iterations. Defined consistently with XC_method.",
742
743
744
745
746
747
748
749
750
751
752
      "dtypeStr": "f",
      "name": "energy_hartree_error_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "error_estimate_partial",
        "section_scf_iteration",
        "energy_value"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
753
      "description": "Error in the Hartree (electrostatic) potential. Defined consistently with XC_method.",
754
755
756
757
758
759
760
761
762
763
764
      "dtypeStr": "f",
      "name": "energy_hartree_error",
      "repeats": false,
      "shape": [],
      "superNames": [
        "error_estimate_partial",
        "section_single_configuration_calculation",
        "energy_value"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
765
      "description": "Scaled exact-exchange energy. It the depends on the mixing parameter of the functional. For instance, for hybrid functionals, the exchange energy is given as a linear combination of exact-energy and exchange energy of an approximate DFT functional; the exact echange energy multiplied by the mixing coefficient of the hybrid functional would be stored in this metadata. Defined consistently with XC_method.",
766
767
768
769
770
771
772
773
774
775
      "dtypeStr": "f",
      "name": "energy_hartree_fock_X_scaled",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
776
      "description": "Converged exact-exchange (Hartree-Fock) energy. Defined consistently with XC_method.",
777
778
779
780
781
782
783
784
785
      "dtypeStr": "f",
      "name": "energy_hartree_fock_X",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_type_X"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
786
      "description": "Value of the energy of the method calculation_method_current. Depending on calculation_method_kind it might be a total energy or only a correction.",
787
788
789
790
791
792
793
794
795
796
797
      "dtypeStr": "f",
      "name": "energy_method_current",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
      "derived": true,
Luca's avatar
Luca committed
798
      "description": "Value of the energy per atom defined as the sum of the eigenvalues of the hamiltonian matrix defined by XC_method, during the self-consistent field (SCF) iterations.",
799
800
801
802
803
804
805
806
807
808
809
      "dtypeStr": "f",
      "name": "energy_sum_eigenvalues_per_atom_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component_per_atom",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "derived": true,
Luca's avatar
Luca committed
810
      "description": "Value of the energy per atom defined as the sum of the eigenvalues of the hamiltonian matrix defined by XC_method.",
811
812
813
814
815
816
817
818
819
820
      "dtypeStr": "f",
      "name": "energy_sum_eigenvalues_per_atom",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component_per_atom",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
821
      "description": "Sum of the eigenvalues of the hamiltonian matrix defined by XC_method, during the self-consistent field (SCF) iterations.",
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
      "dtypeStr": "f",
      "name": "energy_sum_eigenvalues_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "description": "Sum of the eigenvalues of the hamiltonian matrix defined by XC_method.",
      "dtypeStr": "f",
      "name": "energy_sum_eigenvalues",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
843
      "description": "Value of the total energy per atom, calculated using XC_method, extrapolated to $T=0$, based on a free-electron gas argument.",
844
845
846
847
848
849
850
851
852
853
      "dtypeStr": "f",
      "name": "energy_T0_per_atom",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential_per_atom",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
854
      "description": "A value of a total potential energy per atom. Different total energies methods and different numerical implementations (codes) might have different energy zeros, and therefore might not be directly comparable with each other (see section_energy_code_independent for a code-independent definition of the energy).",
855
856
857
858
859
860
861
      "kindStr": "type_abstract_document_content",
      "name": "energy_total_potential_per_atom",
      "shape": [],
      "superNames": [
        "energy_component"
      ]
    }, {
Luca's avatar
Luca committed
862
      "description": "A value of a total potential energy. Different total energies methods and different numerical implementations (codes) might have different energy zeros, and therefore might not be directly comparable with each other (see section_energy_code_independent for a code-independent definition of the energy).",
863
864
865
866
867
868
869
      "kindStr": "type_abstract_document_content",
      "name": "energy_total_potential",
      "shape": [],
      "superNames": [
        "energy_component"
      ]
    }, {
Luca's avatar
Luca committed
870
      "description": "Total electronic energy calculated with XC_method during the self-consistent field (SCF) iterations.",
871
872
873
874
875
876
877
878
879
880
      "dtypeStr": "f",
      "name": "energy_total_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
881
      "description": "Total energy using XC_method per atom extrapolated to $T=0$, based on a free-electron gas argument, during the self-consistent field (SCF) iterations.",
882
883
884
885
886
887
888
889
890
891
892
      "dtypeStr": "f",
      "name": "energy_total_T0_per_atom_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential_per_atom",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "derived": true,
Luca's avatar
Luca committed
893
      "description": "Value of the total energy, calculated using XC_method per atom extrapolated to $T=0$, based on a free-electron gas argument.",
894
895
896
897
898
899
900
901
902
903
      "dtypeStr": "f",
      "name": "energy_total_T0_per_atom",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential_per_atom",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
904
      "description": "Value of the  total energy (or equivalently free energy), calculated with XC_method extrapolated to $T=0$, based on a free-electron gas argument, during the self-consistent field (SCF) iterations.",
905
906
907
908
909
910
911
912
913
914
      "dtypeStr": "f",
      "name": "energy_total_T0_scf_iteration",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
915
      "description": "Value of the total energy (or equivalently free energy), nuclei + electrons, calculated with the method described in XC_method and extrapolated to $T=0$, based on a free-electron gas argument.",
916
917
918
919
920
921
922
923
924
925
      "dtypeStr": "f",
      "name": "energy_total_T0",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
926
      "description": "Value of the total energy (nuclei + electrons), calculated with the method described in calculation_method.",
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
      "dtypeStr": "f",
      "name": "energy_total",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_total_potential",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
      "description": "Some correlation (C) energy.",
      "dtypeStr": "f",
      "kindStr": "type_abstract_document_content",
      "name": "energy_type_C",
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
Luca's avatar
Luca committed
948
      "description": "Some kind of (converged) van der Waals energy.",
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
      "dtypeStr": "f",
      "kindStr": "type_abstract_document_content",
      "name": "energy_type_van_der_Waals",
      "repeats": false,
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ]
    }, {
      "description": "Some exchange-correlation (XC) energy.",
      "dtypeStr": "f",
      "kindStr": "type_abstract_document_content",
      "name": "energy_type_XC",
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
      "description": "Some exchange (X) energy.",
      "dtypeStr": "f",
      "kindStr": "type_abstract_document_content",
      "name": "energy_type_X",
      "shape": [],
      "superNames": [
        "energy_component",
        "section_single_configuration_calculation"
      ],
      "units": "J"
    }, {
      "description": "Some energy value.",
      "kindStr": "type_abstract_document_content",
      "name": "energy_value",
      "shape": [],
      "superNames": []
    }, {
Luca's avatar
Luca committed
987
      "description": "Method used to compute van der Waals energy stored in energy_van_der_Waals_value. This metadata is used when more than one van der Waals method is applied in the same *single configuration calculation* (see section_single_configuration_calculation). The main van der Waals method (the one consistent with energy_current and used, e.g., for evaluating the forces for a relaxation or dynamics), is defined in settings_van_der_Waals.",
988
989
990
991
992
993
994
995
      "dtypeStr": "C",
      "name": "energy_van_der_Waals_kind",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_energy_van_der_Waals"
      ]
    }, {
Luca's avatar
Luca committed
996
      "description": "Value of van der Waals energy as calculated with the method defined in energy_van_der_Waals_kind. This metadata is used when more than one van der Waals method is applied in the same *single configuration calculation* (see section_single_configuration_calculation). The value of the van der Waals energy consistent with energy_current and used, e.g., for evaluating the forces for a relaxation or dynamics, is given in energy_van_der_Waals and defined in settings_van_der_Waals.",
997
998
999
1000
      "dtypeStr": "f",
      "name": "energy_van_der_Waals_value",
      "repeats": false,
      "shape": [],