turbomole.nomadmetainfo.json 19.8 KB
Newer Older
1
2
{
  "type": "nomad_meta_info_1_0",
3
  "description": "meta info used by the TURBOMOLE parser, all names are expected to start with x_turbomole_",
4
5
6
7
8
  "dependencies": [ {
      "relativePath": "common.nomadmetainfo.json"
    }, {
      "relativePath": "meta_types.nomadmetainfo.json"
    }],
9
  "metaInfos": [ {
10
11
12
13
14
15
16
      "description": "CC2 total energies",
      "dtypeStr": "f",
      "name": "x_turbomole_CC2_total_energy_final",
      "repeats": true,
      "shape": [],
      "superNames": [
        "energy_component",
17
        "section_single_configuration_calculation"
18
19
20
21
22
23
24
25
26
27
      ],
      "units": "J"
    }, {
      "description": "CCSD total energies",
      "dtypeStr": "f",
      "name": "x_turbomole_CCSD_total_energy_final",
      "repeats": true,
      "shape": [],
      "superNames": [
        "energy_component",
28
        "section_single_configuration_calculation"
29
30
31
32
33
34
35
36
37
38
      ],
      "units": "J"
    }, {
      "description": "CCSD(T) total energies",
      "dtypeStr": "f",
      "name": "x_turbomole_CCSDparT_total_energy_final",
      "repeats": true,
      "shape": [],
      "superNames": [
        "energy_component",
39
        "section_single_configuration_calculation"
40
41
      ],
      "units": "J"
42
    }, {
43
      "description": "The label of the atoms in the system",
44
      "dtypeStr": "C",
45
      "name": "x_turbomole_controlIn_atom_label",
46
      "repeats": true,
47
48
      "shape": [],
      "superNames": [
49
        "section_method"
50
51
      ]
    }, {
52
      "description": "The number of atoms in the system",
53
      "dtypeStr": "f",
54
      "name": "x_turbomole_controlIn_atom_number",
55
56
57
      "repeats": true,
      "shape": [],
      "superNames": [
58
        "section_method"
59
60
      ]
    }, {
61
62
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
63
      "name": "x_turbomole_controlIn_basis_status",
64
65
66
67
68
69
70
71
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
72
      "name": "x_turbomole_controlIn_cartesian_status",
73
74
75
76
77
78
79
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
80
      "dtypeStr": "f",
81
      "name": "x_turbomole_controlIn_damping_parameter_min",
82
83
84
      "repeats": true,
      "shape": [],
      "superNames": [
85
86
87
88
        "section_method"
      ]
    }, {
      "description": "-",
89
      "dtypeStr": "f",
90
      "name": "x_turbomole_controlIn_damping_parameter_start",
91
92
93
      "repeats": true,
      "shape": [],
      "superNames": [
94
        "section_method"
95
      ]
96
    }, {
97
      "description": "-",
98
      "dtypeStr": "f",
99
      "name": "x_turbomole_controlIn_damping_parameter_step",
100
101
102
      "repeats": true,
      "shape": [],
      "superNames": [
103
        "section_method"
104
105
      ]
    }, {
106
107
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
108
      "name": "x_turbomole_controlIn_dipole_status",
109
110
111
112
113
114
115
116
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
117
      "name": "x_turbomole_controlIn_global_status",
118
119
120
121
122
123
124
125
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
126
      "name": "x_turbomole_controlIn_hessian_status",
127
128
129
130
131
132
133
134
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
135
      "name": "x_turbomole_controlIn_interconversion_status",
136
137
138
139
140
141
142
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
143
      "dtypeStr": "f",
144
      "name": "x_turbomole_controlIn_number_of_integral_stored",
145
146
147
      "repeats": true,
      "shape": [],
      "superNames": [
148
149
        "section_method"
      ]
150
    }, {
151
      "description": "The kind of operating system",
152
      "dtypeStr": "C",
153
      "name": "x_turbomole_controlIn_operating_system",
154
155
156
      "repeats": true,
      "shape": [],
      "superNames": [
157
        "section_method"
158
159
      ]
    }, {
160
      "description": "-",
161
      "dtypeStr": "C",
162
      "name": "x_turbomole_controlIn_pople_kind",
163
164
165
      "repeats": true,
      "shape": [],
      "superNames": [
166
        "section_method"
167
168
      ]
    }, {
169
170
      "description": "-",
      "dtypeStr": "i",
171
      "name": "x_turbomole_controlIn_scf_conv",
172
173
174
175
176
177
178
179
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
180
      "name": "x_turbomole_controlIn_scf_iter_limit",
181
182
183
184
185
186
187
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
188
      "dtypeStr": "C",
189
      "name": "x_turbomole_controlIn_scfintunit_file",
190
191
192
      "repeats": true,
      "shape": [],
      "superNames": [
193
194
195
196
197
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
198
      "name": "x_turbomole_controlIn_scfintunit_size",
199
200
201
202
203
204
205
206
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
207
      "name": "x_turbomole_controlIn_scfintunit_unit",
208
209
210
211
212
213
214
215
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "The given symmetry of the system",
      "dtypeStr": "C",
216
      "name": "x_turbomole_controlIn_symmetry",
217
218
219
220
221
222
223
224
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
225
      "name": "x_turbomole_controlIn_time_for_integral_calc",
226
227
228
229
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
230
231
      ]
    }, {
232
      "description": "type of the used correlation functional",
233
      "dtypeStr": "C",
234
      "name": "x_turbomole_functional_type_correlation",
235
236
      "shape": [],
      "superNames": [
237
        "section_method"
238
239
240
241
      ]
    }, {
      "description": "type of the used exchange functional",
      "dtypeStr": "C",
242
      "name": "x_turbomole_functional_type_exchange",
243
244
      "shape": [],
      "superNames": [
245
        "section_method"
246
      ]
247
248
249
    }, {
      "description": "The integration cells",
      "dtypeStr": "i",
250
      "name": "x_turbomole_controlInOut_grid_integration_cells",
251
252
253
      "repeats": true,
      "shape": [],
      "superNames": [
254
        "x_turbomole_section_functionals"
255
256
257
258
      ]
    }, {
      "description": "type of the used grid integration",
      "dtypeStr": "C",
259
      "name": "x_turbomole_controlInOut_grid_integration",
260
261
262
      "repeats": true,
      "shape": [],
      "superNames": [
263
        "x_turbomole_section_functionals"
264
265
266
267
      ]
    }, {
      "description": "Type of the partition function used",
      "dtypeStr": "C",
268
      "name": "x_turbomole_controlInOut_grid_partition_func",
269
270
271
      "repeats": true,
      "shape": [],
      "superNames": [
272
        "x_turbomole_section_functionals"
273
274
275
276
      ]
    }, {
      "description": "Sharpness of the partition function",
      "dtypeStr": "i",
277
      "name": "x_turbomole_controlInOut_grid_partition_sharpness",
278
279
280
      "repeats": true,
      "shape": [],
      "superNames": [
281
        "x_turbomole_section_functionals"
282
283
284
285
      ]
    }, {
      "description": "Grid points number",
      "dtypeStr": "i",
286
      "name": "x_turbomole_controlInOut_grid_points_number",
287
288
289
      "repeats": true,
      "shape": [],
      "superNames": [
290
        "x_turbomole_section_functionals"
291
292
293
294
      ]
    }, {
      "description": "The size of the radial grid",
      "dtypeStr": "i",
295
      "name": "x_turbomole_controlInOut_grid_radial_grid_size",
296
297
298
      "repeats": true,
      "shape": [],
      "superNames": [
299
        "x_turbomole_section_functionals"
300
301
302
303
      ]
    }, {
      "description": "The radial integration type",
      "dtypeStr": "C",
304
      "name": "x_turbomole_controlInOut_grid_radial_integration",
305
306
307
      "repeats": true,
      "shape": [],
      "superNames": [
308
        "x_turbomole_section_functionals"
309
310
311
312
      ]
    }, {
      "description": "The size of the used grid",
      "dtypeStr": "i",
313
      "name": "x_turbomole_controlInOut_grid_size",
314
315
316
      "repeats": true,
      "shape": [],
      "superNames": [
317
        "x_turbomole_section_functionals"
318
      ]
319
    }, {
320
      "description": "D1 diagnostic of CCSD",
321
      "dtypeStr": "f",
322
      "name": "x_turbomole_D1_diagnostic",
323
324
325
      "repeats": true,
      "shape": [],
      "superNames": [
326
        "energy_component",
327
        "section_single_configuration_calculation"
328
      ]
329
    }, {
330
      "description": "change of the eigenvalues in the current SCF iteration",
331
      "dtypeStr": "f",
332
      "name": "x_turbomole_delta_eigenvalues",
333
334
      "shape": [],
      "superNames": [
335
336
        "energy_component",
        "section_scf_iteration"
337
      ],
338
      "units": "J"
339
340
341
    }, {
      "description": "Correlation energy at a given eigenstate from perturbative GW",
      "dtypeStr": "f",
342
      "name": "x_turbomole_eigenvalue_correlation_perturbativeGW",
343
344
345
      "repeats": true,
      "shape": [],
      "superNames": [
346
        "x_turbomole_section_eigenvalues_GW"
347
348
349
350
351
      ],
      "units": "J"
    }, {
      "description": "Exact exchange energy at given eigenstate from perturbative GW",
      "dtypeStr": "f",
352
      "name": "x_turbomole_eigenvalue_ExactExchange_perturbativeGW",
353
354
355
      "repeats": true,
      "shape": [],
      "superNames": [
356
        "x_turbomole_section_eigenvalues_GW"
357
358
359
360
361
      ],
      "units": "J"
    }, {
      "description": "Self-energy at a given eigenstate from perturbative GW",
      "dtypeStr": "f",
362
      "name": "x_turbomole_eigenvalue_ExchangeCorrelation_perturbativeGW",
363
364
365
      "repeats": true,
      "shape": [],
      "superNames": [
366
        "x_turbomole_section_eigenvalues_GW"
367
368
369
370
371
      ],
      "units": "J"
    }, {
      "description": "KS exchange correlation energy at a given eigenstate needed to calculate the quasi-particle energy in perturbative GW",
      "dtypeStr": "f",
372
      "name": "x_turbomole_eigenvalue_ks_ExchangeCorrelation",
373
374
375
      "repeats": true,
      "shape": [],
      "superNames": [
376
        "x_turbomole_section_eigenvalues_GW"
377
378
379
380
381
      ],
      "units": "J"
    }, {
      "description": "KS ground state energy at a given eigenstate needed in perturbative GW",
      "dtypeStr": "f",
382
      "name": "x_turbomole_eigenvalue_ks_GroundState",
383
384
385
      "repeats": true,
      "shape": [],
      "superNames": [
386
        "x_turbomole_section_eigenvalues_GW"
387
388
389
390
391
      ],
      "units": "J"
    }, {
      "description": "Quasiparticle energy at a given eigenstate from perturbative GW",
      "dtypeStr": "f",
392
      "name": "x_turbomole_eigenvalue_quasiParticle_energy",
393
394
395
      "repeats": true,
      "shape": [],
      "superNames": [
396
        "x_turbomole_section_eigenvalues_GW"
397
398
399
      ],
      "units": "J"
    }, {
400
      "description": "Charges of the point charges in the unit cell used by the PCEEM embedding model",
401
      "dtypeStr": "f",
402
403
404
405
      "name": "x_turbomole_pceem_charges",
      "shape": [
        "number_of_atoms"
      ],
406
      "superNames": [
407
        "section_system"
408
409
      ]
    }, {
410
    "description": "Total energy contribution from one-electron integrals",
411
      "dtypeStr": "f",
412
      "name": "x_turbomole_energy_1electron_scf_iteration",
413
414
415
416
417
418
419
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
420
      "description": "Damping of the two-electron contributions to Fock matrix in the present SCF iteration",
421
      "dtypeStr": "f",
422
      "name": "x_turbomole_damping_scf_iteration",
423
424
425
426
427
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
428
      "description": "Total energy contribution from two-electron integrals",
429
      "dtypeStr": "f",
430
      "name": "x_turbomole_energy_2electron_scf_iteration",
431
432
433
434
435
436
437
438
439
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "description": "TODO:",
      "dtypeStr": "f",
440
      "name": "x_turbomole_ExchangeCorrelation_perturbativeGW_derivation",
441
442
443
      "repeats": true,
      "shape": [],
      "superNames": [
444
        "x_turbomole_section_eigenvalues_GW"
445
      ]
446
447
448
449
450
451
452
    }, {
      "description": "Determines whether a geoemtry optimization is converged.",
      "dtypeStr": "C",
      "name": "x_turbomole_geometry_optimization_converged",
      "repeats": false,
      "shape": [],
      "superNames": [
453
        "section_run"
454
      ]
455
    }, {
456
      "description": "Maximum multipole moment used in the PCEEM embedding",
457
      "dtypeStr": "i",
458
      "name": "x_turbomole_pceem_max_multipole",
459
460
      "shape": [],
      "superNames": [
461
        "section_system"
462
463
      ]
    }, {
464
      "description": "Norm of the DIIS error in an SCF-iteration",
465
      "dtypeStr": "f",
466
      "name": "x_turbomole_norm_diis_scf_iteration",
467
468
469
470
471
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
472
      "description": "Maximal resid. norm for Fia-block in an SCF-iteration",
473
      "dtypeStr": "f",
474
475
476
477
478
479
480
481
482
      "name": "x_turbomole_norm_fia_scf_iteration",
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
      "description": "Maximal resid. fock norm in an SCF-iteration",
      "dtypeStr": "f",
      "name": "x_turbomole_norm_fock_scf_iteration",
483
484
485
486
487
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
488
      "description": "Minimum separation between cells in PCEEM embedding for periodic fast multipole treatment",
489
      "dtypeStr": "f",
490
      "name": "x_turbomole_pceem_min_separation_cells",
491
492
      "shape": [],
      "superNames": [
493
        "section_system"
494
495
      ]
    }, {
496
      "description": "MP2 total energies",
497
      "dtypeStr": "f",
498
499
      "name": "x_turbomole_MP2_total_energy_final",
      "repeats": true,
500
501
      "shape": [],
      "superNames": [
502
        "energy_component",
503
        "section_single_configuration_calculation"
504
505
      ],
      "units": "J"
506
    }, {
507
      "description": "Multipole precision parameter for PCEEM embedding",
508
      "dtypeStr": "f",
509
      "name": "x_turbomole_pceem_multipole_precision",
510
511
      "shape": [],
      "superNames": [
512
        "section_system"
513
      ]
514
    }, {
515
      "description": "compute node",
516
      "dtypeStr": "C",
517
      "name": "x_turbomole_nodename",
518
519
      "shape": [],
      "superNames": [
520
        "section_run"
521
      ]
522
    }, {
523
      "description": "orbital with the largest residual norm for the Fia block in this iteration",
524
      "dtypeStr": "C",
525
      "name": "x_turbomole_norm_fia_orbital_scf_iteration",
526
527
528
529
530
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
531
      "description": "orbital with the largest residual Fock norm in this iteration",
532
      "dtypeStr": "C",
533
      "name": "x_turbomole_norm_fock_orbital_scf_iteration",
534
535
536
537
538
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
539
      "description": "Final potential energy",
540
      "dtypeStr": "f",
541
      "name": "x_turbomole_potential_energy_final",
542
      "repeats": false,
543
544
545
      "shape": [],
      "superNames": [
        "energy_component",
546
        "section_single_configuration_calculation"
547
548
549
      ],
      "units": "J"
    }, {
550
      "description": "section for the eigenvalues of a GW calculation (at present only pertubative G0W0)",
551
      "kindStr": "type_section",
552
      "name": "x_turbomole_section_eigenvalues_GW",
553
      "repeats": true,
554
      "superNames": [
555
        "section_eigenvalues"
556
      ]
557
    }, {
558
559
560
561
562
563
564
565
566
567
568
      "description": "section for one list of XC functionals",
      "kindStr": "type_section",
      "name": "x_turbomole_section_functionals",
      "repeats": true,
      "superNames": ["section_method"]
    }, {
      "description": "XC functional type",
      "dtypeStr": "C",
      "name": "x_turbomole_XC_functional_type",
      "repeats": true,
      "superNames": ["x_turbomole_section_functionals"]
569
570
571
    }, {
      "description": "Type of UHF molecular orbital",
      "dtypeStr": "C",
572
      "name": "x_turbomole_uhfmo_type",
573
574
575
576
577
578
579
580
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Final value from the virial theorem",
      "dtypeStr": "f",
581
      "name": "x_turbomole_virial_theorem",
582
583
      "shape": [],
      "superNames": [
584
        "section_single_configuration_calculation"
585
      ]
586
587
588
    }, {
      "description": "-",
      "dtypeStr": "f",
589
      "name": "x_turbomole_virtual_orbital_shift",
590
591
592
593
594
595
596
597
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ]
    }, {
      "description": "Final Wave Function Norm",
      "dtypeStr": "f",
598
      "name": "x_turbomole_wave_func_norm",
599
600
      "shape": [],
      "superNames": [
601
        "section_single_configuration_calculation"
602
      ]
603
604
605
606
607
608
609
610
    }, {
      "description": "version of the DFT-D3 van-der-Waals correction that is used",
      "dtypeStr": "C",
      "name": "x_turbomole_dft_d3_version",
      "shape": [],
      "superNames": [
        "section_method"
      ]
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    }, {
      "description": "geometry optimization convergence criterion - Root Mean Square of displacements",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_geometry_change_rms",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
    }, {
      "description": "geometry optimization convergence criterion - Root Mean Square of forces",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_threshold_force_rms",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "N"
    }, {
      "description": "geometry optimization trust region - maximum radius",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_trustregion_max",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
    }, {
      "description": "geometry optimization trust region - minimum radius",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_trustregion_min",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
    }, {
      "description": "geometry optimization trust region - initial radius",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_trustregion_initial",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
656
657
658
659
660
661
662
663
664
665
666
667
    }, {
      "description": "Irreducible representation the eigenstates belong to.",
      "dtypeStr": "C",
      "name": "x_turbomole_eigenvalues_irreducible_representation",
      "shape": [
        "number_of_spin_channels",
        "number_of_eigenvalues_kpoints",
        "number_of_eigenvalues"
      ],
      "superNames": [
        "section_eigenvalues"
      ]
668
669
670
    }, {
      "description": "TODO:",
      "dtypeStr": "f",
671
      "name": "x_turbomole_Z_factor",
672
673
674
      "repeats": true,
      "shape": [],
      "superNames": [
675
        "x_turbomole_section_eigenvalues_GW"
676
      ]
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    }, {
      "description": "The employed GW approximation.",
      "dtypeStr": "C",
      "name": "x_turbomole_gw_approximation",
      "shape": [],
      "superNames": [
        "section_method",
        "settings_GW"
      ]
    }, {
      "description": "If true, the pure RPA response function is calculated. Otherwise, the TDDFT response function is calculated and used to screen the coulomb interaction.",
      "dtypeStr": "b",
      "name": "x_turbomole_gw_use_rpa_response",
      "shape": [],
      "superNames": [
        "section_method",
        "settings_GW"
      ]
    }, {
      "description": "[TO BE VERIFIED]Infinitesimal complex energy shift. Negative value switches to calculating at that value but extrapolating to 0 in linear approximation.",
      "dtypeStr": "f",
      "name": "x_turbomole_gw_eta_factor",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_method",
        "settings_GW"
      ],
      "units": "J"
706
    }]
707
}