turbomole.nomadmetainfo.json 20.5 KB
Newer Older
1
2
{
  "type": "nomad_meta_info_1_0",
3
  "description": "meta info used by the TURBOMOLE parser, all names are expected to start with x_turbomole_",
4
5
6
7
8
  "dependencies": [ {
      "relativePath": "common.nomadmetainfo.json"
    }, {
      "relativePath": "meta_types.nomadmetainfo.json"
    }],
9
  "metaInfos": [ {
10
11
12
13
14
15
16
17
      "description": "The name of the Turbomole module used for this single configuration calculation.",
      "dtypeStr": "C",
      "name": "x_turbomole_module",
      "shape": [],
      "superNames": [
        "section_single_configuration_calculation"
      ]
    }, {
18
19
20
21
22
23
24
      "description": "CC2 total energies",
      "dtypeStr": "f",
      "name": "x_turbomole_CC2_total_energy_final",
      "repeats": true,
      "shape": [],
      "superNames": [
        "energy_component",
25
        "section_single_configuration_calculation"
26
27
28
29
30
31
32
33
34
35
      ],
      "units": "J"
    }, {
      "description": "CCSD total energies",
      "dtypeStr": "f",
      "name": "x_turbomole_CCSD_total_energy_final",
      "repeats": true,
      "shape": [],
      "superNames": [
        "energy_component",
36
        "section_single_configuration_calculation"
37
38
39
40
41
42
43
44
45
46
      ],
      "units": "J"
    }, {
      "description": "CCSD(T) total energies",
      "dtypeStr": "f",
      "name": "x_turbomole_CCSDparT_total_energy_final",
      "repeats": true,
      "shape": [],
      "superNames": [
        "energy_component",
47
        "section_single_configuration_calculation"
48
49
      ],
      "units": "J"
50
    }, {
51
      "description": "The label of the atoms in the system",
52
      "dtypeStr": "C",
53
      "name": "x_turbomole_controlIn_atom_label",
54
      "repeats": true,
55
56
      "shape": [],
      "superNames": [
57
        "section_method"
58
59
      ]
    }, {
60
      "description": "The number of atoms in the system",
61
      "dtypeStr": "f",
62
      "name": "x_turbomole_controlIn_atom_number",
63
64
65
      "repeats": true,
      "shape": [],
      "superNames": [
66
        "section_method"
67
68
      ]
    }, {
69
70
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
71
      "name": "x_turbomole_controlIn_basis_status",
72
73
74
75
76
77
78
79
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
80
      "name": "x_turbomole_controlIn_cartesian_status",
81
82
83
84
85
86
87
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
88
      "dtypeStr": "f",
89
      "name": "x_turbomole_controlIn_damping_parameter_min",
90
91
92
      "repeats": true,
      "shape": [],
      "superNames": [
93
94
95
96
        "section_method"
      ]
    }, {
      "description": "-",
97
      "dtypeStr": "f",
98
      "name": "x_turbomole_controlIn_damping_parameter_start",
99
100
101
      "repeats": true,
      "shape": [],
      "superNames": [
102
        "section_method"
103
      ]
104
    }, {
105
      "description": "-",
106
      "dtypeStr": "f",
107
      "name": "x_turbomole_controlIn_damping_parameter_step",
108
109
110
      "repeats": true,
      "shape": [],
      "superNames": [
111
        "section_method"
112
113
      ]
    }, {
114
115
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
116
      "name": "x_turbomole_controlIn_dipole_status",
117
118
119
120
121
122
123
124
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
125
      "name": "x_turbomole_controlIn_global_status",
126
127
128
129
130
131
132
133
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
134
      "name": "x_turbomole_controlIn_hessian_status",
135
136
137
138
139
140
141
142
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Status mean here ON or OFF",
      "dtypeStr": "C",
143
      "name": "x_turbomole_controlIn_interconversion_status",
144
145
146
147
148
149
150
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
151
      "dtypeStr": "f",
152
      "name": "x_turbomole_controlIn_number_of_integral_stored",
153
154
155
      "repeats": true,
      "shape": [],
      "superNames": [
156
157
        "section_method"
      ]
158
    }, {
159
      "description": "The kind of operating system",
160
      "dtypeStr": "C",
161
      "name": "x_turbomole_controlIn_operating_system",
162
163
164
      "repeats": true,
      "shape": [],
      "superNames": [
165
        "section_method"
166
167
      ]
    }, {
168
      "description": "-",
169
      "dtypeStr": "C",
170
      "name": "x_turbomole_controlIn_pople_kind",
171
172
173
      "repeats": true,
      "shape": [],
      "superNames": [
174
        "section_method"
175
176
      ]
    }, {
177
178
      "description": "-",
      "dtypeStr": "i",
179
      "name": "x_turbomole_controlIn_scf_conv",
180
181
182
183
184
185
186
187
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
188
      "name": "x_turbomole_controlIn_scf_iter_limit",
189
190
191
192
193
194
195
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
196
      "dtypeStr": "C",
197
      "name": "x_turbomole_controlIn_scfintunit_file",
198
199
200
      "repeats": true,
      "shape": [],
      "superNames": [
201
202
203
204
205
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
206
      "name": "x_turbomole_controlIn_scfintunit_size",
207
208
209
210
211
212
213
214
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
215
      "name": "x_turbomole_controlIn_scfintunit_unit",
216
217
218
219
220
221
222
223
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "The given symmetry of the system",
      "dtypeStr": "C",
224
      "name": "x_turbomole_controlIn_symmetry",
225
226
227
228
229
230
231
232
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "-",
      "dtypeStr": "i",
233
      "name": "x_turbomole_controlIn_time_for_integral_calc",
234
235
236
237
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
238
239
      ]
    }, {
240
      "description": "type of the used correlation functional",
241
      "dtypeStr": "C",
242
      "name": "x_turbomole_functional_type_correlation",
243
244
      "shape": [],
      "superNames": [
245
        "section_method"
246
247
248
249
      ]
    }, {
      "description": "type of the used exchange functional",
      "dtypeStr": "C",
250
      "name": "x_turbomole_functional_type_exchange",
251
252
      "shape": [],
      "superNames": [
253
        "section_method"
254
      ]
255
256
257
    }, {
      "description": "The integration cells",
      "dtypeStr": "i",
258
      "name": "x_turbomole_controlInOut_grid_integration_cells",
259
260
261
      "repeats": true,
      "shape": [],
      "superNames": [
262
        "x_turbomole_section_functionals"
263
264
265
266
      ]
    }, {
      "description": "type of the used grid integration",
      "dtypeStr": "C",
267
      "name": "x_turbomole_controlInOut_grid_integration",
268
269
270
      "repeats": true,
      "shape": [],
      "superNames": [
271
        "x_turbomole_section_functionals"
272
273
274
275
      ]
    }, {
      "description": "Type of the partition function used",
      "dtypeStr": "C",
276
      "name": "x_turbomole_controlInOut_grid_partition_func",
277
278
279
      "repeats": true,
      "shape": [],
      "superNames": [
280
        "x_turbomole_section_functionals"
281
282
283
284
      ]
    }, {
      "description": "Sharpness of the partition function",
      "dtypeStr": "i",
285
      "name": "x_turbomole_controlInOut_grid_partition_sharpness",
286
287
288
      "repeats": true,
      "shape": [],
      "superNames": [
289
        "x_turbomole_section_functionals"
290
291
292
293
      ]
    }, {
      "description": "Grid points number",
      "dtypeStr": "i",
294
      "name": "x_turbomole_controlInOut_grid_points_number",
295
296
297
      "repeats": true,
      "shape": [],
      "superNames": [
298
        "x_turbomole_section_functionals"
299
300
301
302
      ]
    }, {
      "description": "The size of the radial grid",
      "dtypeStr": "i",
303
      "name": "x_turbomole_controlInOut_grid_radial_grid_size",
304
305
306
      "repeats": true,
      "shape": [],
      "superNames": [
307
        "x_turbomole_section_functionals"
308
309
310
311
      ]
    }, {
      "description": "The radial integration type",
      "dtypeStr": "C",
312
      "name": "x_turbomole_controlInOut_grid_radial_integration",
313
314
315
      "repeats": true,
      "shape": [],
      "superNames": [
316
        "x_turbomole_section_functionals"
317
318
319
320
      ]
    }, {
      "description": "The size of the used grid",
      "dtypeStr": "i",
321
      "name": "x_turbomole_controlInOut_grid_size",
322
323
324
      "repeats": true,
      "shape": [],
      "superNames": [
325
        "x_turbomole_section_functionals"
326
      ]
327
    }, {
328
      "description": "D1 diagnostic of CCSD",
329
      "dtypeStr": "f",
330
      "name": "x_turbomole_D1_diagnostic",
331
332
333
      "repeats": true,
      "shape": [],
      "superNames": [
334
        "energy_component",
335
        "section_single_configuration_calculation"
336
      ]
337
    }, {
338
      "description": "change of the eigenvalues in the current SCF iteration",
339
      "dtypeStr": "f",
340
      "name": "x_turbomole_delta_eigenvalues",
341
342
      "shape": [],
      "superNames": [
343
344
        "energy_component",
        "section_scf_iteration"
345
      ],
346
      "units": "J"
347
348
349
    }, {
      "description": "Correlation energy at a given eigenstate from perturbative GW",
      "dtypeStr": "f",
350
      "name": "x_turbomole_eigenvalue_correlation_perturbativeGW",
351
352
353
      "repeats": true,
      "shape": [],
      "superNames": [
354
        "x_turbomole_section_eigenvalues_GW"
355
356
357
358
359
      ],
      "units": "J"
    }, {
      "description": "Exact exchange energy at given eigenstate from perturbative GW",
      "dtypeStr": "f",
360
      "name": "x_turbomole_eigenvalue_ExactExchange_perturbativeGW",
361
362
363
      "repeats": true,
      "shape": [],
      "superNames": [
364
        "x_turbomole_section_eigenvalues_GW"
365
366
367
368
369
      ],
      "units": "J"
    }, {
      "description": "Self-energy at a given eigenstate from perturbative GW",
      "dtypeStr": "f",
370
      "name": "x_turbomole_eigenvalue_ExchangeCorrelation_perturbativeGW",
371
372
373
      "repeats": true,
      "shape": [],
      "superNames": [
374
        "x_turbomole_section_eigenvalues_GW"
375
376
377
378
379
      ],
      "units": "J"
    }, {
      "description": "KS exchange correlation energy at a given eigenstate needed to calculate the quasi-particle energy in perturbative GW",
      "dtypeStr": "f",
380
      "name": "x_turbomole_eigenvalue_ks_ExchangeCorrelation",
381
382
383
      "repeats": true,
      "shape": [],
      "superNames": [
384
        "x_turbomole_section_eigenvalues_GW"
385
386
387
388
389
      ],
      "units": "J"
    }, {
      "description": "KS ground state energy at a given eigenstate needed in perturbative GW",
      "dtypeStr": "f",
390
      "name": "x_turbomole_eigenvalue_ks_GroundState",
391
392
393
      "repeats": true,
      "shape": [],
      "superNames": [
394
        "x_turbomole_section_eigenvalues_GW"
395
396
397
398
399
      ],
      "units": "J"
    }, {
      "description": "Quasiparticle energy at a given eigenstate from perturbative GW",
      "dtypeStr": "f",
400
      "name": "x_turbomole_eigenvalue_quasiParticle_energy",
401
402
403
      "repeats": true,
      "shape": [],
      "superNames": [
404
        "x_turbomole_section_eigenvalues_GW"
405
406
407
      ],
      "units": "J"
    }, {
408
      "description": "Charges of the point charges in the unit cell used by the PCEEM embedding model",
409
      "dtypeStr": "f",
410
411
412
413
      "name": "x_turbomole_pceem_charges",
      "shape": [
        "number_of_atoms"
      ],
414
      "superNames": [
415
        "section_system"
416
417
      ]
    }, {
418
    "description": "Total energy contribution from one-electron integrals",
419
      "dtypeStr": "f",
420
      "name": "x_turbomole_energy_1electron_scf_iteration",
421
422
423
424
425
426
427
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
428
      "description": "Damping of the two-electron contributions to Fock matrix in the present SCF iteration",
429
      "dtypeStr": "f",
430
      "name": "x_turbomole_damping_scf_iteration",
431
432
433
434
435
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
436
      "description": "Total energy contribution from two-electron integrals",
437
      "dtypeStr": "f",
438
      "name": "x_turbomole_energy_2electron_scf_iteration",
439
440
441
442
443
444
445
446
447
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ],
      "units": "J"
    }, {
      "description": "TODO:",
      "dtypeStr": "f",
448
      "name": "x_turbomole_ExchangeCorrelation_perturbativeGW_derivation",
449
450
451
      "repeats": true,
      "shape": [],
      "superNames": [
452
        "x_turbomole_section_eigenvalues_GW"
453
      ]
454
455
456
457
458
459
460
    }, {
      "description": "Determines whether a geoemtry optimization is converged.",
      "dtypeStr": "C",
      "name": "x_turbomole_geometry_optimization_converged",
      "repeats": false,
      "shape": [],
      "superNames": [
461
        "section_run"
462
      ]
463
    }, {
464
      "description": "Maximum multipole moment used in the PCEEM embedding",
465
      "dtypeStr": "i",
466
      "name": "x_turbomole_pceem_max_multipole",
467
468
      "shape": [],
      "superNames": [
469
        "section_system"
470
471
      ]
    }, {
472
      "description": "Norm of the DIIS error in an SCF-iteration",
473
      "dtypeStr": "f",
474
      "name": "x_turbomole_norm_diis_scf_iteration",
475
476
477
478
479
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
480
      "description": "Maximal resid. norm for Fia-block in an SCF-iteration",
481
      "dtypeStr": "f",
482
483
484
485
486
487
488
489
490
      "name": "x_turbomole_norm_fia_scf_iteration",
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
      "description": "Maximal resid. fock norm in an SCF-iteration",
      "dtypeStr": "f",
      "name": "x_turbomole_norm_fock_scf_iteration",
491
492
493
494
495
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
496
      "description": "Minimum separation between cells in PCEEM embedding for periodic fast multipole treatment",
497
      "dtypeStr": "f",
498
      "name": "x_turbomole_pceem_min_separation_cells",
499
500
      "shape": [],
      "superNames": [
501
        "section_system"
502
503
      ]
    }, {
504
      "description": "MP2 total energies",
505
      "dtypeStr": "f",
506
507
      "name": "x_turbomole_MP2_total_energy_final",
      "repeats": true,
508
509
      "shape": [],
      "superNames": [
510
        "energy_component",
511
        "section_single_configuration_calculation"
512
513
      ],
      "units": "J"
514
    }, {
515
      "description": "Multipole precision parameter for PCEEM embedding",
516
      "dtypeStr": "f",
517
      "name": "x_turbomole_pceem_multipole_precision",
518
519
      "shape": [],
      "superNames": [
520
        "section_system"
521
      ]
522
    }, {
523
      "description": "compute node",
524
      "dtypeStr": "C",
525
      "name": "x_turbomole_nodename",
526
527
      "shape": [],
      "superNames": [
528
        "section_run"
529
      ]
530
    }, {
531
      "description": "orbital with the largest residual norm for the Fia block in this iteration",
532
      "dtypeStr": "C",
533
      "name": "x_turbomole_norm_fia_orbital_scf_iteration",
534
535
536
537
538
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
539
      "description": "orbital with the largest residual Fock norm in this iteration",
540
      "dtypeStr": "C",
541
      "name": "x_turbomole_norm_fock_orbital_scf_iteration",
542
543
544
545
546
      "shape": [],
      "superNames": [
        "section_scf_iteration"
      ]
    }, {
547
      "description": "Final potential energy",
548
      "dtypeStr": "f",
549
      "name": "x_turbomole_potential_energy_final",
550
      "repeats": false,
551
552
553
      "shape": [],
      "superNames": [
        "energy_component",
554
        "section_single_configuration_calculation"
555
556
557
      ],
      "units": "J"
    }, {
558
      "description": "section for the eigenvalues of a GW calculation (at present only pertubative G0W0)",
559
      "kindStr": "type_section",
560
      "name": "x_turbomole_section_eigenvalues_GW",
561
      "repeats": true,
562
      "superNames": [
563
        "section_eigenvalues"
564
      ]
565
    }, {
566
567
568
569
570
571
572
573
574
575
576
      "description": "section for one list of XC functionals",
      "kindStr": "type_section",
      "name": "x_turbomole_section_functionals",
      "repeats": true,
      "superNames": ["section_method"]
    }, {
      "description": "XC functional type",
      "dtypeStr": "C",
      "name": "x_turbomole_XC_functional_type",
      "repeats": true,
      "superNames": ["x_turbomole_section_functionals"]
577
578
579
    }, {
      "description": "Type of UHF molecular orbital",
      "dtypeStr": "C",
580
      "name": "x_turbomole_uhfmo_type",
581
582
583
584
585
586
587
588
      "repeats": true,
      "shape": [],
      "superNames": [
        "section_method"
      ]
    }, {
      "description": "Final value from the virial theorem",
      "dtypeStr": "f",
589
      "name": "x_turbomole_virial_theorem",
590
591
      "shape": [],
      "superNames": [
592
        "section_single_configuration_calculation"
593
      ]
594
595
596
    }, {
      "description": "-",
      "dtypeStr": "f",
597
      "name": "x_turbomole_virtual_orbital_shift",
598
599
600
601
602
603
604
605
      "shape": [],
      "superNames": [
        "energy_component",
        "section_scf_iteration"
      ]
    }, {
      "description": "Final Wave Function Norm",
      "dtypeStr": "f",
606
      "name": "x_turbomole_wave_func_norm",
607
608
      "shape": [],
      "superNames": [
609
        "section_single_configuration_calculation"
610
      ]
611
612
613
614
615
616
617
618
    }, {
      "description": "version of the DFT-D3 van-der-Waals correction that is used",
      "dtypeStr": "C",
      "name": "x_turbomole_dft_d3_version",
      "shape": [],
      "superNames": [
        "section_method"
      ]
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    }, {
      "description": "geometry optimization convergence criterion - Root Mean Square of displacements",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_geometry_change_rms",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
    }, {
      "description": "geometry optimization convergence criterion - Root Mean Square of forces",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_threshold_force_rms",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "N"
    }, {
      "description": "geometry optimization trust region - maximum radius",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_trustregion_max",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
    }, {
      "description": "geometry optimization trust region - minimum radius",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_trustregion_min",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
    }, {
      "description": "geometry optimization trust region - initial radius",
      "dtypeStr": "f",
      "name": "x_turbomole_geometry_optimization_trustregion_initial",
      "shape": [],
      "superNames": [
        "section_sampling_method"
      ],
      "units": "m"
664
665
666
667
668
669
670
671
    }, {
      "description": "By default Turbomole only keeps the output of the final iteration once the geometry has been converged, thus the entire optimization trajectory cannot be rebuild in most cases. Instead, this value contains the optimization cycle index to indicate how many iterations have preceded this one.",
      "dtypeStr": "i",
      "name": "x_turbomole_geometry_optimization_cycle_index",
      "shape": [],
      "superNames": [
        "section_method"
      ]
672
673
674
675
676
677
678
679
680
681
682
683
    }, {
      "description": "Irreducible representation the eigenstates belong to.",
      "dtypeStr": "C",
      "name": "x_turbomole_eigenvalues_irreducible_representation",
      "shape": [
        "number_of_spin_channels",
        "number_of_eigenvalues_kpoints",
        "number_of_eigenvalues"
      ],
      "superNames": [
        "section_eigenvalues"
      ]
684
685
686
    }, {
      "description": "TODO:",
      "dtypeStr": "f",
687
      "name": "x_turbomole_Z_factor",
688
689
690
      "repeats": true,
      "shape": [],
      "superNames": [
691
        "x_turbomole_section_eigenvalues_GW"
692
      ]
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    }, {
      "description": "The employed GW approximation.",
      "dtypeStr": "C",
      "name": "x_turbomole_gw_approximation",
      "shape": [],
      "superNames": [
        "section_method",
        "settings_GW"
      ]
    }, {
      "description": "If true, the pure RPA response function is calculated. Otherwise, the TDDFT response function is calculated and used to screen the coulomb interaction.",
      "dtypeStr": "b",
      "name": "x_turbomole_gw_use_rpa_response",
      "shape": [],
      "superNames": [
        "section_method",
        "settings_GW"
      ]
    }, {
      "description": "[TO BE VERIFIED]Infinitesimal complex energy shift. Negative value switches to calculating at that value but extrapolating to 0 in linear approximation.",
      "dtypeStr": "f",
      "name": "x_turbomole_gw_eta_factor",
      "repeats": false,
      "shape": [],
      "superNames": [
        "section_method",
        "settings_GW"
      ],
      "units": "J"
722
    }]
723
}