atomic_data.meta_dictionary.json 20.7 KB
Newer Older
1 2 3 4 5 6
{
  "metadict_name":"atomic_data",
  "metadict_description":[
    "Metadata information for atomic data collections and ",
    "properties."],
  "metadict_version":"0.1",
7
  "metadict_require":[],
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
  "meta_info_entry":[{
    "meta_name":"atomic_basis_set",
    "meta_type":"type-value",
    "meta_description":"Basis set used for atomic calculation.",
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_charge",
    "meta_type":"type-value",
    "meta_description":[
      "Charge of the free atom for corresponding atomic ",
      "property."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"C"
  },{
    "meta_name":"atomic_collection_description",
    "meta_type":"type-value",
    "meta_description":[
      "Comprehensive details about an atomic data ",
      "collection."],
    "meta_parent_section":"section_atomic_data_collection",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_collection_name",
    "meta_type":"type-value",
    "meta_description":"The name of the atomic data collection.",
    "meta_parent_section":"section_atomic_data_collection",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_ea_by_energy_difference",
    "meta_type":"type-value",
    "meta_description":[
      "Electron affinity for free atom. This EA is defined as the energy difference ",
      "between the neutral atom and -1 charged atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"EA_delta"
  },{
    "meta_name":"atomic_ea_by_half_charged_homo",
    "meta_type":"type-value",
    "meta_description":[
      "Electron affinity for free atom. This EA is defined as the HOMO energy of +0.5 ",
      "charged atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"EA_half"
  },{
    "meta_name":"atomic_electron_affinity",
    "meta_type":"type-value",
    "meta_description":[
      "Electron affinity for free atom. The electron affinity of an atom is the amount ",
      "of energy released or spent when an electron is added to a neutral atom in the ",
      "gaseous state to form a negative ion."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"EA"
  },{
    "meta_name":"atomic_electronic_binding_energy_dimer",
    "meta_type":"type-value",
    "meta_description":"Binding energy of the dimer.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_b"
  },{
    "meta_name":"atomic_element_symbol",
    "meta_type":"type-value",
    "meta_description":"The element symbol in the periodic table.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_homo",
    "meta_type":"type-value",
    "meta_description":[
      "In electronic structure theory, calculations may be performed for a spectrum ",
      "with many excited energy levels. Molecular orbitals (MOs) are made of fractions ",
      "of atomic orbitals. All atoms in the molecule provide their atomic orbitals for ",
      "construction of MOs, but not all atomic orbitals must participate in all MOs. ",
      "For example, the Hartree-Fock method for atoms or molecules assumes that the ",
      "wave function is a single configuration state function with well-defined ",
      "quantum numbers and that the energy level is not necessarily the ground state. ",
      "The highest occupied molecular orbital state for a system is called as ",
      "HOMO."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_HOMO"
  },{
    "meta_name":"atomic_homo_lumo_diff",
    "meta_type":"type-value",
    "meta_description":[
      "Difference between highest occupied and lowest unoccupied single-particle state ",
      "energy for free atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"deltaE_HL"
  },{
    "meta_name":"atomic_ionization_potential",
    "meta_type":"type-value",
    "meta_description":[
      "Ionization potential for free atom. The ionization potential is qualitatively ",
      "defined as the amount of energy required to remove the most loosely bound ",
      "electron or the valence electron, of an isolated gaseous atom to form a ",
      "cation."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"IP"
  },{
    "meta_name":"atomic_ip_by_energy_difference",
    "meta_type":"type-value",
    "meta_description":[
      "Ionization potential for free atom. This IP is defined as the energy difference ",
      "between the neutral atom and the +1 charged ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"IP_delta"
  },{
    "meta_name":"atomic_ip_by_half_charged_homo",
    "meta_type":"type-value",
    "meta_description":[
      "Ionization potential for free atom. This IP is defined as the HOMO energy of ",
      "-0.5 charged atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"IP_half"
  },{
    "meta_name":"atomic_isotropic_polarizability",
    "meta_type":"type-value",
    "meta_description":[
      "Polarizability is the ability to form instantaneous multipoles. It is a ",
      "property of matter. Polarizabilities determine the dynamical response of a ",
      "bound system to external fields, and provide insight into a materials internal ",
      "structure. Electric polarizability is the relative tendency of a charge ",
      "distribution, like the electron cloud of an atom or molecule, and consequently ",
      "of any material body, to have its charges displaced by any external electric ",
      "field, which in the uniform case is applied typically by a charged ",
      "parallel-plate capacitor. The polarizability in isotropic media is defined as ",
      "the ratio of the induced dipole moment of an atom to the electric field that ",
      "produces this dipole moment. We are often interested only in the spherical ",
      "average (or isotropic component) of the polarizability tensor. The isotropic ",
      "polarizability is defined as average of principal components of the ",
      "polarizability tensor."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m**3"
  },{
    "meta_name":"atomic_isotropic_vdw_coefficient",
    "meta_type":"type-value",
    "meta_description":[
      "The long-range van der Waals energy between two non overlapping fragments $A$ ",
      "and $B$ of the physical system under study can be expressed as a multipolar ",
      "expansion and $C_{n}^{AB}$ are the multipolar vdW coefficients. A widespread ",
      "approach to include long-range vdW interactions in atomistic calculation is to ",
      "truncate multipolar expansion to the dipole-dipole order and keep only the ",
      "leading $C_{6}^{AB} /R^{6}$ term. The vdW $C_{6}$ coefficient can be obtained ",
      "using Casimir-Polder integral over frequency dependent polarizability as ",
      "function of imaginary frequency argument."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J.m**6"
  },{
    "meta_name":"atomic_lumo",
    "meta_type":"type-value",
    "meta_description":[
      "In electronic structure theory, calculations may be performed for a spectrum ",
      "with many excited energy levels. Molecular orbitals (MOs) are made of fractions ",
      "of atomic orbitals.  All atoms in the molecule provide their atomic orbitals ",
      "for construction of MOs, but not all atomic orbitals must participate in all  ",
      "MOs.  For example, the Hartree-Fock method for atoms or molecules assumes that ",
      "the wave function is a single configuration state function with well-defined ",
      "quantum numbers and that the energy level is not necessarily the ground state. ",
      "The lowest unoccupied molecular orbital state for a system is called as ",
      "LUMO."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_LUMO"
  },{
    "meta_name":"atomic_melting_temperature",
    "meta_type":"type-value",
    "meta_description":[
      "The melting temperature is the temperature at which a substance changes from ",
      "solid to liquid state."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"K"
  },{
    "meta_name":"atomic_method",
    "meta_type":"type-value",
    "meta_description":"The method used for atomic calculations.",
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string"
  },{
    "meta_name":"atomic_mulliken_electronegativity",
    "meta_type":"type-value",
    "meta_description":[
      "The Mulliken electronegativity quantitatively defined as the average of the ",
      "values of its first ionization energy and the absolute value of its electron ",
      "affinity."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J"
  },{
    "meta_name":"atomic_number",
    "meta_type":"type-value",
    "meta_description":"Atomic number $Z$ for atomic species.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"Z"
  },{
    "meta_name":"atomic_number_valence_electrons",
    "meta_type":"type-value",
    "meta_description":[
      "Number of electrons located in the outermost shell (valence shell) of the ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"Z_val"
  },{
    "meta_name":"atomic_pauling_electronegativity",
    "meta_type":"type-value",
    "meta_description":[
      "The Pauling electronegativity is defined as the difference between the measured ",
      "X-Y bond energy with the theoretical X-Y bond energy (computed as the average ",
      "of the X-X bond energy and the Y-Y bond energy)."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":""
  },{
    "meta_name":"atomic_property_source",
    "meta_type":"type-value",
    "meta_description":"Source of atomic property Experiment/ Theory.",
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_property_to_method_ref",
    "meta_type":"type-value",
    "meta_description":[
      "Reference to the method that is used to calculate associated atomic ",
      "property."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"reference",
    "meta_referenced_section":"section_atomic_property_method"
  },{
    "meta_name":"atomic_r_by_2_dimer",
    "meta_type":"type-value",
    "meta_description":[
      "Half of the distance between equilibrium ",
      "homonuclear-dimer."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"d"
  },{
    "meta_name":"atomic_r_covalent",
    "meta_type":"type-value",
    "meta_description":[
      "The covalent radius is a measure of the size of an atom that forms part of one ",
      "covalent bond."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_r_homo",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of the radius $<r>$ of the highest occupied atomic orbital ",
      "for free atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_r_homo_anion",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of the radius $<r>$ of the highest occupied atomic orbital ",
      "for anionic atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_r_homo_cation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of the radius $<r>$ of the highest occupied atomic orbital ",
      "for cationic atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_radius",
    "meta_type":"type-value",
    "meta_description":[
      "The atomic radius of a chemical element is a measure of the size of its atoms, ",
      "usually the mean or typical distance from the center of the nucleus to the ",
      "boundary of the surrounding cloud of electrons. Since the boundary is not a ",
      "well-defined physical entity, there are various non-equivalent definitions of ",
      "atomic radius. Three widely used definitions of atomic radius are: Van der ",
      "Waals radius, ionic radius, and covalent ",
      "radius."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rd_expectation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of $<d>$ radial function for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rd_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $d_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_d"
  },{
    "meta_name":"atomic_rd_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of d orbital. This index is used to indicate the index number ",
      "of d orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_d"
  },{
    "meta_name":"atomic_reference_doi",
    "meta_type":"type-value",
    "meta_description":[
      "Reference for associated atomic property ",
      "calculations."],
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_rf_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $f_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_f"
  },{
    "meta_name":"atomic_rf_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of f orbital. This index is used to indicate the index number ",
      "of f orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_f"
  },{
    "meta_name":"atomic_rp_expectation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of $<p>$ radial function for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rp_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $p_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_p"
  },{
    "meta_name":"atomic_rp_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of p orbital. This index is used to indicate the index number ",
      "of p orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_p"
  },{
    "meta_name":"atomic_rs_expectation",
    "meta_type":"type-value",
    "meta_description":[
      "Expectation value of $<s>$ radial function for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"atomic_rs_max",
    "meta_type":"type-value",
    "meta_description":[
      "Radius at which $s_{max}$ radial function is maximum for free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m",
    "shortname":"r_s"
  },{
    "meta_name":"atomic_rs_max_orbital_index",
    "meta_type":"type-value",
    "meta_description":[
      "The index number of s orbital. This index is used to indicate the index number ",
      "of s orbital which is used in other properties"],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":"",
    "shortname":"index_s"
  },{
    "meta_name":"atomic_spin_multiplicity",
    "meta_type":"type-value",
    "meta_description":[
      "Atomic spin multiplicity. The multiplicity of an energy level is defined as ",
      "$2S+1$, where S is the total spin angular momentum. States with multiplicity 1, ",
      "2, 3, 4, 5 are respectively called singlets, doublets, triplets, quartets and ",
      "quintets."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"int",
    "meta_units":""
  },{
    "meta_name":"atomic_term_symbol",
    "meta_type":"type-value",
    "meta_description":[
      "The term symbol ($^{2S+1}L_{J}$) is an abbreviated description of the (total) ",
      "angular momentum quantum numbers in a multi-electron atom (even a single ",
      "electron can also be described by a term symbol). Each energy level of an atom ",
      "with a given electron configuration is described by not only the electron ",
      "configuration but also its own term symbol, as the energy level also depends on ",
      "the total angular momentum including spin. The usual atomic term symbols assume ",
      "LS coupling (also known as Russell-Saunders coupling or Spin-Orbit coupling). ",
      "The ground state term symbol is predicted by Hund's ",
      "rules."],
    "meta_parent_section":"section_atomic_property_method",
    "meta_data_type":"string",
    "meta_units":""
  },{
    "meta_name":"atomic_total_energy",
    "meta_type":"type-value",
    "meta_description":"Total energy per atom.",
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_Tot"
  },{
    "meta_name":"atomic_valence_p_orbital",
    "meta_type":"type-value",
    "meta_description":[
      "Energy of the valence p orbital for a free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_p"
  },{
    "meta_name":"atomic_valence_s_orbital",
    "meta_type":"type-value",
    "meta_description":[
      "Energy of the valence s orbital for a free ",
      "atom."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"J",
    "shortname":"E_s"
  },{
    "meta_name":"atomic_vdw_radius",
    "meta_type":"type-value",
    "meta_description":[
      "The van der Waals radius, of an atom or molecule is the radius of an imaginary ",
      "sphere representing the distance of closest approach for another atom(s). The ",
      "vdW radius corresponds to half of the distance between two atoms where the ",
      "Pauli repulsion balances the London dispersion ",
      "attraction."],
    "meta_parent_section":"section_atomic_property",
    "meta_data_type":"float",
    "meta_units":"m"
  },{
    "meta_name":"section_atomic_data_collection",
    "meta_type":"type-section",
    "meta_description":[
      "Section that holds all atomic properties (section_atomic_property) and methods ",
      "(section_atomic_property_method) of an atomic data ",
      "collection."],
    "meta_repeats":true,
    "meta_context_identifier":[]
  },{
    "meta_name":"section_atomic_property",
    "meta_type":"type-section",
    "meta_description":[
      "Section that contains all atomic properties of an atomic data ",
      "collection."],
    "meta_parent_section":"section_atomic_data_collection",
    "meta_repeats":true,
    "meta_context_identifier":[]
  },{
    "meta_name":"section_atomic_property_method",
    "meta_type":"type-section",
    "meta_description":[
      "Section of atomic properties for a given ",
      "method."],
    "meta_parent_section":"section_atomic_data_collection",
    "meta_repeats":true,
    "meta_context_identifier":[]
  }]
}