encyclopedia.py 46.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20
import numpy as np
21

22
23
from flask_restplus import Resource, abort, fields, marshal
from flask import request
24
from elasticsearch_dsl import Search, Q, A
25
from elasticsearch_dsl.utils import AttrDict
26

27
from nomad import config, files
28
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
29
from nomad.atomutils import get_hill_decomposition
30
from nomad.datamodel.datamodel import EntryArchive
31
from .api import api
32

33
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
34
35
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
54
55


56
57
58
59
60
61
62
63
64
65
66
67
def rgetattr(obj, attr_name):
    """Used to perform attribute access based on a (possibly nested) attribute
    name given as string.
    """
    try:
        for attr in attr_name.split("."):
            obj = obj[attr]
    except KeyError:
        return None
    return obj


68
def get_es_doc_values(es_doc, mapping, keys=None):
69
70
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
71
    """
72
73
74
    if keys is None:
        keys = mapping.keys()

75
    result = {}
76
    for key in keys:
77
        es_key = mapping[key]
78
        value = rgetattr(es_doc, es_key)
79
        result[key] = value
80
81
82
83
84

    return result


material_query = api.parser()
85
86
87
88
89
90
91
92
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
93
94
    # General
    "material_id": fields.String,
95
96
    "formula": fields.String,
    "formula_reduced": fields.String,
97
    "system_type": fields.String,
98
    "n_matches": fields.Integer,
99
    # Bulk only
100
    "has_free_wyckoff_parameters": fields.Boolean,
101
    "strukturbericht_designation": fields.String,
102
    "material_name": fields.String,
103
104
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
105
    "point_group": fields.String,
106
107
108
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
109
110
    "structure_type": fields.String,
})
111
112
113
114
115
enc_filter = [
    Q("term", published=True),
    Q("term", with_embargo=False),
    Q("term", encyclopedia__staus="success"),
]
116
117


118
@ns.route("/materials/<string:material_id>")
119
class EncMaterialResource(Resource):
120
121
122
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
123
    @api.expect(material_query)
124
    @api.marshal_with(material_result, skip_none=True)
125
126
127
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
128
129
130
131
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
132
133
            keys = [prop]
            es_keys = [material_prop_map[prop]]
134
135
        else:
            keys = list(material_prop_map.keys())
136
            es_keys = list(material_prop_map.values())
137

138
139
140
141
142
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

143
        # Since we are looking for an exact match, we use filtek context
144
145
146
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
147
            "bool",
148
            filter=enc_filter + [
149
                Q("term", encyclopedia__material__material_id=material_id),
150
151
152
            ]
        )
        s = s.query(query)
153

154
155
156
157
158
159
160
161
        # If a representative calculation is requested, all calculations are
        # returned in order to perform the scoring with a custom loop.
        # Otherwise, only one representative entry is returned.
        s = s.extra(**{
            "_source": {"includes": es_keys},
            "size": 10000,
            "collapse": {"field": "encyclopedia.material.material_id"},
        })
162
163
        response = s.execute()

164
        # No such material
165
        if len(response) == 0:
166
            abort(404, message="There is no material {}".format(material_id))
167

168
        # Add values from ES entry
169
        entry = response[0]
170
        result = get_es_doc_values(entry, material_prop_map, keys)
171

172
173
174
        return result, 200


175
range_query = api.model("range_query", {
176
177
178
    "max": fields.Float,
    "min": fields.Float,
})
179
180
181
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
182
183
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
184
185
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
186
        "element": fields.String,
187
        "page": fields.Integer(default=1),
188
        "after": fields.Nested(materials_after, allow_null=True),
189
190
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
191
        "mode": fields.String(default="aggregation"),
192
    })),
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
208
})
209
210
211
212
213
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
214
    "after": fields.Nested(materials_after),
215
216
})

217
218
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
219
220
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
221
    "es_query": fields.String(allow_null=False),
222
223
224
})


225
@ns.route("/materials")
226
class EncMaterialsResource(Resource):
227
228
229
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
230
    @api.expect(materials_query, validate=False)
231
    @api.marshal_with(materials_result, skip_none=True)
232
    @api.doc("materials")
233
234
235
236
237
238
239
240
241
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

242
        filters = enc_filter
243
244
245
246
247
248
249
250
251
        must_nots = []
        musts = []

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
252
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
297

298
299
        # Create query for elements or formula
        search_by = data["search_by"]
300
        mode = search_by["mode"]
301
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
302
        elements = search_by["element"]
303
304
305
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
306
307
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
308
309
310
311
312
313
314
315
316
317
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
318
319
320
321
322
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
323
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
324
325
326
327
328
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
329
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
330
            query_string = " ".join(query_string)
331
332
333

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
334
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
335
336
337
338
339
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
356
357
                ))

358
359
        page = search_by["page"]
        per_page = search_by["per_page"]
360
        after = search_by["after"]
361
        bool_query = Q(
362
            "bool",
363
364
365
366
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
367

368
        # 1: The paginated approach: No way to know the amount of materials,
369
        # but can return aggregation results in a quick fashion including
370
        # the number of calculation entries per material.
371
        if mode == "aggregation":
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            # The top query filters out entries based on the user query
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)

            # The materials are grouped by using three aggregations:
            # "Composite" to enable scrolling, "Terms" to enable selecting
            # by material_id and "Top Hits" to fetch a single
            # representative material document. Unnecessary fields are
            # filtered to reduce data transfer.
            terms_agg = A("terms", field="encyclopedia.material.material_id")
            composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}
            if after is not None:
                composite_kwargs["after"] = after
            composite_agg = A("composite", **composite_kwargs)
            composite_agg.metric("representative", A(
                "top_hits",
                size=1,
                _source={"includes": list(material_prop_map.values())},
            ))
            s.aggs.bucket("materials", composite_agg)

            # We ignore the top level hits
            s = s.extra(**{
                "size": 0,
            })
398

399
400
401
402
403
            response = s.execute()
            materials = response.aggs.materials.buckets
            if len(materials) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")
            after = response.aggs.materials["after_key"]
404
405
406
407

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
408
            keys = list(material_prop_map.keys())
409
410
            for material in materials:
                representative = material["representative"][0]
411
412
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
413
414
415
416
417
418
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
419
                "after": after,
420
421
            }
        # 2. Collapse approach. Quickly provides a list of materials
422
        # corresponding to the query, offers full pagination, doesn"t include
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        # the number of matches per material.
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
438
                abort(404, message="No materials found for the given search criteria or pagination.")
439
440
441

            # Loop over materials
            result_list = []
442
            keys = list(material_prop_map.keys())
443
            for material in response:
444
                mat_result = get_es_doc_values(material, material_prop_map, keys)
445
446
447
448
449
450
451
452
453
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.hits.total,
            }
454
455
456

        result = {
            "results": result_list,
457
            "pages": pages,
458
        }
459
        return result, 200
460
461


462
groups_result = api.model("groups_result", {
463
464
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
465
466
467
})


468
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
469
class EncGroupsResource(Resource):
470
471
472
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
473
    @api.marshal_with(groups_result)
474
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
475
    def get(self, material_id):
476
477
478
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
479
480
481
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
482
            "bool",
483
            filter=enc_filter + [Q("term", encyclopedia__material__material_id=material_id)],
484
485
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
486
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
487
488
            ],
            should=[
489
490
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
491
492
493
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
494
495

        s = Search(index=config.elastic.index_name)
496
497
498
499
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
567
            filter=enc_filter + [
568
569
570
571
572
573
574
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
575
576
577
578
579

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
580
        # "index.max_inner_result_window" that limits the number of results
581
582
583
584
585
586
587
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
588
        s.aggs.bucket("groups_eos", energy_aggregation)
589

590
591
592
593
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
594

595
        # Collect information for each group from the aggregations
596
        response = s.execute()
597

598
599
600
601
602
603
604
605
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
606
        }
607
608

        return group_dict, 200
609
610


611
612
613
614
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

643
644
645
646
647
648
649
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
650
            filter=enc_filter
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
665
666
667
668
669
670
671
672


calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
673
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
674
675
676
677
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
678
679
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
680
681
682
683
684
685
686
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
687
    "core_electron_treatment": fields.String,
688
689
690
691
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
692
693
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
694
})
695
696
697
698
699
700
representatives_result = api.model("representatives_result", {
    "idealized_structure": fields.String,
    "electronic_band_structure": fields.String,
    "electronic_dos": fields.String,
    "thermodynamical_properties": fields.String,
})
701
702
703
704
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
705
    "representatives": fields.Nested(representatives_result, skip_none=True),
706
707
708
709
})


@ns.route("/materials/<string:material_id>/calculations")
710
class EncCalculationsResource(Resource):
711
712
713
714
715
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_calculations")
    def get(self, material_id):
716
717
718
        """Used to return all calculations related to the given material. Also
        returns a representative calculation for each property shown in the
        overview page.
719
720
721
722
        """
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
723
            filter=enc_filter + [
724
725
726
727
728
729
730
731
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
732
733
734
            "_source": {"includes": list(calc_prop_map.values()) + ["dft.xc_functional"]},
            "size": 10000,
            "from": 0,
735
736
737
738
739
740
741
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
        # Add representative properties. It might be possible to write a custom
        # ES scoring mechanism or aggregation to also perform the selection.
        representatives = {}

        def calc_score(entry):
            """Custom scoring function used to sort results by their
            "quality". Currently built to mimic the scoring that was used
            in the old Encyclopedia GUI.
            """
            score = 0
            functional_score = {
                "GGA": 100
            }
            code_score = {
                "FHI-aims": 3,
                "VASP": 2,
                "Quantum Espresso": 1,
            }
            code_name = entry.dft.code_name
            functional = entry.dft.xc_functional
            has_dos = rgetattr(entry, "encyclopedia.properties.electronic_band_structure") is not None
            has_bs = rgetattr(entry, "encyclopedia.properties.electronic_dos") is not None
            score += functional_score.get(functional, 0)
            score += code_score.get(code_name, 0)
            if has_dos and has_bs:
                score += 10

            return score

        # The calculations are first sorted by "quality"
        sorted_calc = sorted(response, key=lambda x: calc_score(x), reverse=True)

        # Get the requested representative properties
        representatives["idealized_structure"] = sorted_calc[0].calc_id
        thermo_found = False
        bs_found = False
        dos_found = False
        for calc in sorted_calc:
            if rgetattr(calc, "encyclopedia.properties.thermodynamical_properties") is not None:
                representatives["thermodynamical_properties"] = calc.calc_id
                thermo_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_band_structure") is not None:
                representatives["electronic_band_structure"] = calc.calc_id
                bs_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_dos") is not None:
                representatives["electronic_dos"] = calc.calc_id
                dos_found = True
            if thermo_found and bs_found and dos_found:
                break

792
793
794
795
796
        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
797
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
798
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
799
800
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
801
802
803
804
805
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
806
            "representatives": representatives,
807
808
809
810
811
        }

        return result, 200


812
813
814
815
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
816
817
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
818
    "properties": fields.List(fields.String),
819
    "n_histogram_bins": fields.Integer,
820
821
822
823
824
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
825
    "histogram": fields.Nested(histogram, skip_none=True)
826
827
})
statistics_result = api.model("statistics_result", {
828
829
830
831
832
833
834
835
836
837
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
838
})
839
840
841
842
843
844
845
846
847
848
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
849
    "band_gap": "encyclopedia.properties.band_gap",
850
}
851
852
853


@ns.route("/materials/<string:material_id>/statistics")
854
class EncStatisticsResource(Resource):
855
856
857
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
858
859
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
860
861
    @api.doc("enc_statistics")
    def post(self, material_id):
862
863
        """Used to return statistics related to the specified material and
        calculations.
864
        """
865
866
867
868
869
870
871
872
873
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
874
            filter=enc_filter + [
875
876
877
878
879
880
881
882
883
884
885
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

886
887
888
889
890
891
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

892
893
894
895
896
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

897
898
899
900
901
902
903
904
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
905
        n_bins = data["n_histogram_bins"]
906
907
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
908
909
            if stats.count == 0:
                continue
910
            interval = (stats.max * 1.001 - stats.min) / n_bins
911
912
            if interval == 0:
                interval = 1
913
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
914
915
916
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

917
        # Return results
918
919
920
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
921
922
            if stats.count == 0:
                continue
923
924
925
926
927
928
929
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
930
                "histogram": {
931
932
933
                    "occurrences": occurrences,
                    "values": values,
                }
934
            }
935

936
        return result, 200
937
938
939
940
941
942
943
944
945
946
947


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
948
    "variables": fields.List(fields.Nested(wyckoff_variables_result, skip_none=True)),
949
})
950
951
952
953
954
955
956
957
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
958
959
960
961
962
963

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
964
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
965
966
967
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
968
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result, skip_none=True)),
969
970
})

971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
987
988
989
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
990
991
992
993
994
995
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
996
997
998
999
1000
1001
1002
1003
1004
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
1005
1006
1007
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
1008
1009
1010
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
1021
1022
1023
1024
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
1025
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
1026
1027
1028
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
1029
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
1030
})
1031
1032
1033
calculation_property_result = api.model("calculation_property_result", {
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
    "energies": fields.Nested(energies, skip_none=True),
1034
1035
1036
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
1037
    "wyckoff_sets": fields.Nested(wyckoff_set_result, skip_none=True),
1038
    "idealized_structure": fields.Nested(idealized_structure_result, skip_none=True),
1039
1040
1041
    "band_gap": fields.Float,
    "electronic_band_structure": fields.Nested(electronic_band_structure, skip_none=True),
    "electronic_dos": fields.Nested(electronic_dos, skip_none=True),
1042
1043
1044
    "phonon_band_structure": fields.Raw,
    "phonon_dos": fields.Raw,
    "thermodynamical_properties": fields.Raw,
1045
1046
1047
})


1048
1049
1050
1051
1052
@ns.route("/materials/<string:material_id>/calculations/<string:calc_id>")
class EncCalculationResource(Resource):
    @api.response(404, "Material or calculation not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1053
    @api.expect(calculation_property_query, validate=False)
1054
    @api.marshal_with(calculation_property_result, skip_none=True)
1055
    @api.doc("enc_calculation")
1056
1057
1058
1059
    def post(self, material_id, calc_id):
        """Used to return calculation details. Some properties are not
        available in the ES index and are instead read from the Archive
        directly.
1060
        """
1061
1062
1063
1064
1065
1066
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), calculation_property_query)
        except Exception as e:
            abort(400, message=str(e))

1067
1068
1069
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
1070
            filter=enc_filter + [
1071
1072
1073
1074
1075
1076
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", calc_id=calc_id),
            ]
        )
        s = s.query(query)

1077
        # Create dictionaries for requested properties
1078
        references = []
1079
1080
1081
        properties = data["properties"]
        arch_properties = {}
        es_properties = {}
1082
1083
1084
1085
1086
1087
1088
        ref_properties = set((
            "electronic_dos",
            "electronic_band_structure",
            "thermodynamical_properties",
            "phonon_dos",
            "phonon_band_structure",
        ))
1089
1090
1091
1092
        for prop in properties:
            es_source = calculation_property_map[prop].get("es_source")
            if es_source is not None:
                es_properties[prop] = es_source
1093
                if prop in ref_properties:
1094
                    references.append(prop)
1095
1096
1097
1098
            arch_source = calculation_property_map[prop].get("arch_source")
            if arch_source is not None:
                arch_properties[prop] = arch_source

1099
        # The query is filtered already on the ES side so we don't need to
1100
        # transfer so much data.
1101
1102
1103
        sources = [
            "upload_id",
            "calc_id",
1104
            "encyclopedia",
1105
1106
1107
        ]
        sources += list(es_properties.values())

1108
        s = s.extra(**{
1109
            "_source": {"includes": sources},
1110
1111
1112
1113
1114
1115
1116
1117
1118
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {} with calculation {}".format(material_id, calc_id))

1119
1120
1121
        # Add references that are to be read from the archive
        for ref in references:
            arch_path = response[0]
1122
1123
            arch_path = rgetattr(arch_path, es_properties[ref])
            if arch_path is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1124
                arch_properties[ref] = arch_path
1125
1126
            del es_properties[ref]

1127
1128
1129
1130
1131
1132
1133
        # If any of the requested properties require data from the Archive, the
        # file is opened and read.
        result = {}
        if len(arch_properties) != 0:
            entry = response[0]
            upload_id = entry.upload_id
            calc_id = entry.calc_id
1134
            root = read_archive(
1135
1136
1137
1138
1139
                upload_id,
                calc_id,
            )

            # Add results from archive
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
            for key, arch_path in arch_properties.items():
                value = root[arch_path]

                # Save derived properties and turn into dict
                if key == "thermodynamical_properties":
                    specific_heat_capacity = value.specific_heat_capacity.magnitude.tolist()
                    specific_free_energy = value.specific_vibrational_free_energy_at_constant_volume.magnitude.tolist()
                value = value.m_to_dict()
                if key == "thermodynamical_properties":
                    value["specific_heat_capacity"] = specific_heat_capacity
                    value["specific_vibrational_free_energy_at_constant_volume"] = specific_free_energy
1151

1152
                # DOS results are simplified.
1153
                if key == "electronic_dos":
Lauri Himanen's avatar
Lauri Himanen committed
1154
1155
1156
1157
1158
1159
                    if "dos_energies_normalized" in value:
                        value["dos_energies"] = value["dos_energies_normalized"]
                        del value["dos_energies_normalized"]
                    if "dos_values_normalized" in value:
                        value["dos_values"] = value["dos_values_normalized"]
                        del value["dos_values_normalized"]
1160

1161
1162
1163
1164
                # Pre-calculate k-path length to be used as x-coordinate in
                # plots. If the VBM and CBM information is needed later, it
                # can be added as indices along the path. The exact
                # k-points and occupations are removed to save band width.
1165
                if key == "electronic_band_structure" or key == "phonon_band_structure":
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
                    segments = value["section_k_band_segment"]
                    k_path_length = 0
                    for segment in segments:
                        k_points = np.array(segment["band_k_points"])
                        segment_length = np.linalg.norm(k_points[-1, :] - k_points[0, :])
                        k_path_distances = k_path_length + np.linalg.norm(k_points - k_points[0, :], axis=1)
                        k_path_length += segment_length
                        segment["k_path_distances"] = k_path_distances.tolist()
                        del segment["band_k_points"]
                        if "band_occupations" in segment:
                            del segment["band_occupations"]

1178
1179
1180
                result[key] = value

        # Add results from ES
1181
        for prop, es_source in es_properties.items():
1182
1183
            value = rgetattr(response[0], es_source)
            if value is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1184
1185
1186
                if isinstance(value, AttrDict):
                    value = value.to_dict()
                result[prop] = value
1187
1188
1189
1190

        return result, 200


1191
def read_archive(upload_id: str, calc_id: str) -> EntryArchive:
1192
    """Used to read data from the archive.
1193
1194
1195
1196
1197
1198

    Args:
        upload_id: Upload id.
        calc_id: Calculation id.

    Returns:
1199
        MSection: The section_run as MSection
1200
1201
        For each path, a dictionary containing the path as key and the returned
        section as value.
1202
1203
1204
1205
    """
    upload_files = files.UploadFiles.get(upload_id)
    with upload_files.read_archive(calc_id) as archive:
        data = archive[calc_id]
1206
        root = EntryArchive.m_from_dict(data.to_dict())