encyclopedia.py 44.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import numpy as np
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24
from elasticsearch_dsl.utils import AttrDict
25

26
from nomad import config, files
27
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
28
from nomad.atomutils import get_hill_decomposition
29
from nomad.datamodel.datamodel import EntryArchive
30
from .api import api
31

32
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
33
34
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
53
54


55
56
57
58
59
60
61
62
63
64
65
66
def rgetattr(obj, attr_name):
    """Used to perform attribute access based on a (possibly nested) attribute
    name given as string.
    """
    try:
        for attr in attr_name.split("."):
            obj = obj[attr]
    except KeyError:
        return None
    return obj


67
def get_es_doc_values(es_doc, mapping, keys=None):
68
69
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
70
    """
71
72
73
    if keys is None:
        keys = mapping.keys()

74
    result = {}
75
    for key in keys:
76
        es_key = mapping[key]
77
        value = rgetattr(es_doc, es_key)
78
        result[key] = value
79
80
81
82

    return result


83
84
85
86
87
88
89
90
91
92
93
def get_enc_filter():
    """Returns a shared term filter that will leave out unpublished, embargoed
    or invalid entries.
    """
    return [
        Q("term", published=True),
        Q("term", with_embargo=False),
        Q("term", encyclopedia__status="success"),
    ]


94
material_query = api.parser()
95
96
97
98
99
100
101
102
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
103
104
    # General
    "material_id": fields.String,
105
106
    "formula": fields.String,
    "formula_reduced": fields.String,
107
    "system_type": fields.String,
108
    "n_matches": fields.Integer,
109
    # Bulk only
110
    "has_free_wyckoff_parameters": fields.Boolean,
111
    "strukturbericht_designation": fields.String,
112
    "material_name": fields.String,
113
114
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
115
    "point_group": fields.String,
116
117
118
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
119
120
    "structure_type": fields.String,
})
121
122


123
@ns.route("/materials/<string:material_id>")
124
class EncMaterialResource(Resource):
125
126
127
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
128
    @api.expect(material_query)
129
    @api.marshal_with(material_result, skip_none=True)
130
    def get(self, material_id):
131
132
        """Used to retrieve basic information related to the specified
        material.
133
        """
134
135
136
137
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
138
139
            keys = [prop]
            es_keys = [material_prop_map[prop]]
140
141
        else:
            keys = list(material_prop_map.keys())
142
            es_keys = list(material_prop_map.values())
143

144
145
146
147
148
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)
        query = Q(
149
            "bool",
150
            filter=get_enc_filter() + [
151
                Q("term", encyclopedia__material__material_id=material_id),
152
153
154
            ]
        )
        s = s.query(query)
155

156
        # Only one representative entry is returned by collapsing the results.
157
158
        s = s.extra(**{
            "_source": {"includes": es_keys},
159
            "size": 1,
160
161
            "collapse": {"field": "encyclopedia.material.material_id"},
        })
162
163
        response = s.execute()

164
        # No such material
165
        if len(response) == 0:
166
            abort(404, message="There is no material {}".format(material_id))
167

168
        # Add values from ES entry
169
        entry = response[0]
170
        result = get_es_doc_values(entry, material_prop_map, keys)
171

172
173
174
        return result, 200


175
range_query = api.model("range_query", {
176
177
178
    "max": fields.Float,
    "min": fields.Float,
})
179
180
181
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
182
183
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
184
185
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
186
        "element": fields.String,
187
        "page": fields.Integer(default=1),
188
        "after": fields.Nested(materials_after, allow_null=True),
189
190
191
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
    })),
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
207
})
208
209
210
211
212
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
213
    "after": fields.Nested(materials_after),
214
215
})

216
217
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
218
219
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
220
    "es_query": fields.String(allow_null=False),
221
222
223
})


224
@ns.route("/materials")
225
class EncMaterialsResource(Resource):
226
227
228
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
229
    @api.expect(materials_query, validate=False)
230
    @api.marshal_with(materials_result, skip_none=True)
231
    @api.doc("materials")
232
233
234
235
236
237
238
239
240
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

241
        filters = get_enc_filter()
242
243
244
245
246
247
248
249
250
        must_nots = []
        musts = []

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
251
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
296

297
298
299
        # Create query for elements or formula
        search_by = data["search_by"]
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
300
        elements = search_by["element"]
301
302
303
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
304
305
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
306
307
308
309
310
311
312
313
314
315
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
316
317
318
319
320
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
321
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
322
323
324
325
326
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
327
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
328
            query_string = " ".join(query_string)
329
330
331

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
332
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
333
334
335
336
337
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
354
355
                ))

356
357
        page = search_by["page"]
        per_page = search_by["per_page"]
358
        after = search_by["after"]
359
        bool_query = Q(
360
            "bool",
361
362
363
364
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        # The top query filters out entries based on the user query
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)

        # The materials are grouped by using three aggregations:
        # "Composite" to enable scrolling, "Terms" to enable selecting
        # by material_id and "Top Hits" to fetch a single
        # representative material document. Unnecessary fields are
        # filtered to reduce data transfer.
        terms_agg = A("terms", field="encyclopedia.material.material_id")
        composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}

        # The number of matched materials is only requested on the first
        # search, not for each page.
        if after is not None:
            composite_kwargs["after"] = after
        else:
383
            cardinality_agg = A("cardinality", field="encyclopedia.material.material_id", precision_threshold=1000)
384
            s.aggs.metric("n_materials", cardinality_agg)
385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        composite_agg = A("composite", **composite_kwargs)
        composite_agg.metric("representative", A(
            "top_hits",
            size=1,
            _source={"includes": list(material_prop_map.values())},
        ))
        s.aggs.bucket("materials", composite_agg)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        response = s.execute()
        materials = response.aggs.materials.buckets
        if len(materials) == 0:
            abort(404, message="No materials found for the given search criteria or pagination.")
        after_new = response.aggs.materials["after_key"]

        # Gather results from aggregations
        result_list = []
        materials = response.aggs.materials.buckets
        keys = list(material_prop_map.keys())
        for material in materials:
            representative = material["representative"][0]
            mat_dict = get_es_doc_values(representative, material_prop_map, keys)
            mat_dict["n_matches"] = material.doc_count
            result_list.append(mat_dict)

        # Page information is incomplete for aggregations
        pages = {
            "page": page,
            "per_page": per_page,
            "after": after_new,
        }

        if after is None:
            n_materials = response.aggs.n_materials.value
            pages["total"] = n_materials
425
426
427

        result = {
            "results": result_list,
428
            "pages": pages,
429
        }
430
        return result, 200
431
432


433
groups_result = api.model("groups_result", {
434
435
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
436
437
438
})


439
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
440
class EncGroupsResource(Resource):
441
442
443
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
444
    @api.marshal_with(groups_result)
445
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
446
    def get(self, material_id):
447
448
449
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
450
451
452
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
453
            "bool",
454
            filter=get_enc_filter() + [Q("term", encyclopedia__material__material_id=material_id)],
455
456
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
457
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
458
459
            ],
            should=[
460
461
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
462
463
464
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
465
466

        s = Search(index=config.elastic.index_name)
467
468
469
470
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
538
            filter=get_enc_filter() + [
539
540
541
542
543
544
545
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
546
547
548
549
550

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
551
        # "index.max_inner_result_window" that limits the number of results
552
553
554
555
556
557
558
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
559
        s.aggs.bucket("groups_eos", energy_aggregation)
560

561
562
563
564
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
565

566
        # Collect information for each group from the aggregations
567
        response = s.execute()
568

569
570
571
572
573
574
575
576
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
577
        }
578
579

        return group_dict, 200
580
581


582
583
584
585
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

614
615
616
617
618
619
620
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
621
            filter=get_enc_filter()
622
623
624
625
626
627
628
629
630
631
632
633
634
635
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
636
637
638
639
640
641
642
643


calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
644
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
645
646
647
648
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
649
650
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
651
652
653
654
655
656
657
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
658
    "core_electron_treatment": fields.String,
659
660
661
662
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
663
664
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
665
})
666
667
668
669
670
671
representatives_result = api.model("representatives_result", {
    "idealized_structure": fields.String,
    "electronic_band_structure": fields.String,
    "electronic_dos": fields.String,
    "thermodynamical_properties": fields.String,
})
672
673
674
675
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
676
    "representatives": fields.Nested(representatives_result, skip_none=True),
677
678
679
680
})


@ns.route("/materials/<string:material_id>/calculations")
681
class EncCalculationsResource(Resource):
682
683
684
685
686
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_calculations")
    def get(self, material_id):
687
688
689
        """Used to return all calculations related to the given material. Also
        returns a representative calculation for each property shown in the
        overview page.
690
691
692
693
        """
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
694
            filter=get_enc_filter() + [
695
696
697
698
699
700
701
702
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
703
704
705
            "_source": {"includes": list(calc_prop_map.values()) + ["dft.xc_functional"]},
            "size": 10000,
            "from": 0,
706
707
708
709
710
711
712
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
        # Add representative properties. It might be possible to write a custom
        # ES scoring mechanism or aggregation to also perform the selection.
        representatives = {}

        def calc_score(entry):
            """Custom scoring function used to sort results by their
            "quality". Currently built to mimic the scoring that was used
            in the old Encyclopedia GUI.
            """
            score = 0
            functional_score = {
                "GGA": 100
            }
            code_score = {
                "FHI-aims": 3,
                "VASP": 2,
                "Quantum Espresso": 1,
            }
            code_name = entry.dft.code_name
            functional = entry.dft.xc_functional
            has_dos = rgetattr(entry, "encyclopedia.properties.electronic_band_structure") is not None
            has_bs = rgetattr(entry, "encyclopedia.properties.electronic_dos") is not None
            score += functional_score.get(functional, 0)
            score += code_score.get(code_name, 0)
            if has_dos and has_bs:
                score += 10

            return score

        # The calculations are first sorted by "quality"
        sorted_calc = sorted(response, key=lambda x: calc_score(x), reverse=True)

        # Get the requested representative properties
        representatives["idealized_structure"] = sorted_calc[0].calc_id
        thermo_found = False
        bs_found = False
        dos_found = False
        for calc in sorted_calc:
            if rgetattr(calc, "encyclopedia.properties.thermodynamical_properties") is not None:
                representatives["thermodynamical_properties"] = calc.calc_id
                thermo_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_band_structure") is not None:
                representatives["electronic_band_structure"] = calc.calc_id
                bs_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_dos") is not None:
                representatives["electronic_dos"] = calc.calc_id
                dos_found = True
            if thermo_found and bs_found and dos_found:
                break

763
764
765
766
767
        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
768
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
769
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
770
771
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
772
773
774
775
776
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
777
            "representatives": representatives,
778
779
780
781
782
        }

        return result, 200


783
784
785
786
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
787
788
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
789
    "properties": fields.List(fields.String),
790
    "n_histogram_bins": fields.Integer,
791
792
793
794
795
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
796
    "histogram": fields.Nested(histogram, skip_none=True)
797
798
})
statistics_result = api.model("statistics_result", {
799
800
801
802
803
804
805
806
807
808
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
809
})
810
811
812
813
814
815
816
817
818
819
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
820
    "band_gap": "encyclopedia.properties.band_gap",
821
}
822
823
824


@ns.route("/materials/<string:material_id>/statistics")
825
class EncStatisticsResource(Resource):
826
827
828
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
829
830
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
831
832
    @api.doc("enc_statistics")
    def post(self, material_id):
833
834
        """Used to return statistics related to the specified material and
        calculations.
835
        """
836
837
838
839
840
841
842
843
844
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
845
            filter=get_enc_filter() + [
846
847
848
849
850
851
852
853
854
855
856
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

857
858
859
860
861
862
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

863
864
865
866
867
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

868
869
870
871
872
873
874
875
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
876
        n_bins = data["n_histogram_bins"]
877
878
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
879
880
            if stats.count == 0:
                continue
881
            interval = (stats.max * 1.001 - stats.min) / n_bins
882
883
            if interval == 0:
                interval = 1
884
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
885
886
887
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

888
        # Return results
889
890
891
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
892
893
            if stats.count == 0:
                continue
894
895
896
897
898
899
900
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
901
                "histogram": {
902
903
904
                    "occurrences": occurrences,
                    "values": values,
                }
905
            }
906

907
        return result, 200
908
909
910
911
912
913
914
915
916
917
918


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
919
    "variables": fields.Nested(wyckoff_variables_result, skip_none=True),
920
})
921
922
923
924
925
926
927
928
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
929
930
931
932
933
934

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
935
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
936
937
938
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
939
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result, skip_none=True)),
940
941
})

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
958
959
960
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
961
962
963
964
965
966
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
967
968
969
970
971
972
973
974
975
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
976
977
978
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
979
980
981
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
982
983
984
985
986
987
988
989
990
991
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
992
993
994
995
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
996
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
997
998
999
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
1000
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
1001
})
1002
1003
1004
calculation_property_result = api.model("calculation_property_result", {
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
    "energies": fields.Nested(energies, skip_none=True),
1005
1006
1007
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
1008
    "wyckoff_sets": fields.Nested(wyckoff_set_result, skip_none=True),
1009
    "idealized_structure": fields.Nested(idealized_structure_result, skip_none=True),
1010
1011
1012
    "band_gap": fields.Float,
    "electronic_band_structure": fields.Nested(electronic_band_structure, skip_none=True),
    "electronic_dos": fields.Nested(electronic_dos, skip_none=True),
1013
1014
1015
    "phonon_band_structure": fields.Raw,
    "phonon_dos": fields.Raw,
    "thermodynamical_properties": fields.Raw,
1016
1017
1018
})


1019
1020
1021
1022
1023
@ns.route("/materials/<string:material_id>/calculations/<string:calc_id>")
class EncCalculationResource(Resource):
    @api.response(404, "Material or calculation not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1024
    @api.expect(calculation_property_query, validate=False)
1025
    @api.marshal_with(calculation_property_result, skip_none=True)
1026
    @api.doc("enc_calculation")
1027
1028
1029
1030
    def post(self, material_id, calc_id):
        """Used to return calculation details. Some properties are not
        available in the ES index and are instead read from the Archive
        directly.
1031
        """
1032
1033
1034
1035
1036
1037
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), calculation_property_query)
        except Exception as e:
            abort(400, message=str(e))

1038
1039
1040
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
1041
            filter=get_enc_filter() + [
1042
1043
1044
1045
1046
1047
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", calc_id=calc_id),
            ]
        )
        s = s.query(query)

1048
        # Create dictionaries for requested properties
1049
        references = []
1050
1051
1052
        properties = data["properties"]
        arch_properties = {}
        es_properties = {}
1053
1054
1055
1056
1057
1058
1059
        ref_properties = set((
            "electronic_dos",
            "electronic_band_structure",
            "thermodynamical_properties",
            "phonon_dos",
            "phonon_band_structure",
        ))
1060
1061
1062
1063
        for prop in properties:
            es_source = calculation_property_map[prop].get("es_source")
            if es_source is not None:
                es_properties[prop] = es_source
1064
                if prop in ref_properties:
1065
                    references.append(prop)
1066
1067
1068
1069
            arch_source = calculation_property_map[prop].get("arch_source")
            if arch_source is not None:
                arch_properties[prop] = arch_source

1070
        # The query is filtered already on the ES side so we don't need to
1071
        # transfer so much data.
1072
1073
1074
        sources = [
            "upload_id",
            "calc_id",
1075
            "encyclopedia",
1076
1077
1078
        ]
        sources += list(es_properties.values())

1079
        s = s.extra(**{
1080
            "_source": {"includes": sources},
1081
1082
1083
1084
1085
1086
1087
1088
1089
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {} with calculation {}".format(material_id, calc_id))

1090
1091
1092
        # Add references that are to be read from the archive
        for ref in references:
            arch_path = response[0]
1093
1094
            arch_path = rgetattr(arch_path, es_properties[ref])
            if arch_path is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1095
                arch_properties[ref] = arch_path
1096
1097
            del es_properties[ref]

1098
1099
1100
1101
1102
1103
1104
        # If any of the requested properties require data from the Archive, the
        # file is opened and read.
        result = {}
        if len(arch_properties) != 0:
            entry = response[0]
            upload_id = entry.upload_id
            calc_id = entry.calc_id
1105
            root = read_archive(
1106
1107
1108
1109
1110
                upload_id,
                calc_id,
            )

            # Add results from archive
1111
1112
1113
1114
1115
1116
1117
            for key, arch_path in arch_properties.items():
                value = root[arch_path]

                # Save derived properties and turn into dict
                if key == "thermodynamical_properties":
                    specific_heat_capacity = value.specific_heat_capacity.magnitude.tolist()
                    specific_free_energy = value.specific_vibrational_free_energy_at_constant_volume.magnitude.tolist()
1118
1119
1120
1121
                if isinstance(value, list):
                    value = [x.m_to_dict() for x in value]
                else:
                    value = value.m_to_dict()
1122
1123
1124
                if key == "thermodynamical_properties":
                    value["specific_heat_capacity"] = specific_heat_capacity
                    value["specific_vibrational_free_energy_at_constant_volume"] = specific_free_energy
1125

1126
                # DOS results are simplified.
1127
                if key == "electronic_dos":
Lauri Himanen's avatar
Lauri Himanen committed
1128
1129
1130
1131
1132
1133
                    if "dos_energies_normalized" in value:
                        value["dos_energies"] = value["dos_energies_normalized"]
                        del value["dos_energies_normalized"]
                    if "dos_values_normalized" in value:
                        value["dos_values"] = value["dos_values_normalized"]
                        del value["dos_values_normalized"]
1134

1135
1136
1137
1138
                # Pre-calculate k-path length to be used as x-coordinate in
                # plots. If the VBM and CBM information is needed later, it
                # can be added as indices along the path. The exact
                # k-points and occupations are removed to save band width.
1139
                if key == "electronic_band_structure" or key == "phonon_band_structure":
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
                    segments = value["section_k_band_segment"]
                    k_path_length = 0
                    for segment in segments:
                        k_points = np.array(segment["band_k_points"])
                        segment_length = np.linalg.norm(k_points[-1, :] - k_points[0, :])
                        k_path_distances = k_path_length + np.linalg.norm(k_points - k_points[0, :], axis=1)
                        k_path_length += segment_length
                        segment["k_path_distances"] = k_path_distances.tolist()
                        del segment["band_k_points"]
                        if "band_occupations" in segment:
                            del segment["band_occupations"]

1152
1153
1154
                result[key] = value

        # Add results from ES
1155
        for prop, es_source in es_properties.items():
1156
1157
            value = rgetattr(response[0], es_source)
            if value is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1158
1159
1160
                if isinstance(value, AttrDict):
                    value = value.to_dict()
                result[prop] = value
1161
1162
1163
1164

        return result, 200


1165
def read_archive(upload_id: str, calc_id: str) -> EntryArchive:
1166
    """Used to read data from the archive.
1167
1168
1169
1170
1171
1172

    Args:
        upload_id: Upload id.
        calc_id: Calculation id.

    Returns:
1173
        MSection: The section_run as MSection
1174
1175
        For each path, a dictionary containing the path as key and the returned
        section as value.
1176
    """
1177
1178
    upload_files = files.PublicUploadFiles(upload_id)
    with upload_files.read_archive(calc_id, access="public") as archive:
1179
        data = archive[calc_id]
1180
        root = EntryArchive.m_from_dict(data.to_dict())
1181

1182
    return root