encyclopedia.py 41.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20
from typing import List, Dict
21

22
23
from flask_restplus import Resource, abort, fields, marshal
from flask import request
24
from elasticsearch_dsl import Search, Q, A
25
from elasticsearch_dsl.utils import AttrDict
26

27
from nomad import config, files
28
from nomad.archive import ArchiveObject
29
from nomad.units import ureg
30
from nomad.metainfo import MSection
Lauri Himanen's avatar
Lauri Himanen committed
31
from nomad.atomutils import get_hill_decomposition
32
from .api import api
33

34
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
35
36
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
55
56


57
def get_es_doc_values(es_doc, mapping, keys=None):
58
59
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
60
    """
61
62
63
    if keys is None:
        keys = mapping.keys()

64
    result = {}
65
    for key in keys:
66
        es_key = mapping[key]
67
68
69
70
71
72
73
        try:
            value = es_doc
            for part in es_key.split("."):
                value = getattr(value, part)
        except AttributeError:
            value = None
        result[key] = value
74
75
76
77
78

    return result


material_query = api.parser()
79
80
81
82
83
84
85
86
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
87
88
    # General
    "material_id": fields.String,
89
90
    "formula": fields.String,
    "formula_reduced": fields.String,
91
    "system_type": fields.String,
92
    "n_matches": fields.Integer,
93
    # Bulk only
94
    "has_free_wyckoff_parameters": fields.Boolean,
95
    "strukturbericht_designation": fields.String,
96
    "material_name": fields.String,
97
98
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
99
    "point_group": fields.String,
100
101
102
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
103
104
    "structure_type": fields.String,
})
105
106


107
@ns.route("/materials/<string:material_id>")
108
class EncMaterialResource(Resource):
109
110
111
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
112
    @api.expect(material_query)
113
    @api.marshal_with(material_result, skip_none=True)
114
115
116
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
117
118
119
120
121
122
123
124
125
126
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
            keys = [prop]
            es_keys = [material_prop_map[prop]]
        else:
            keys = list(material_prop_map.keys())
            es_keys = list(material_prop_map.values())

127
128
129
130
131
132
133
134
135
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

        # Since we are looking for an exact match, we use filter context
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
136
            "bool",
137
            filter=[
138
139
140
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
141
142
143
            ]
        )
        s = s.query(query)
144

145
        # The query is collapsed already on the ES side so we don"t need to
146
147
148
        # transfer so much data.
        s = s.extra(**{
            "collapse": {"field": "encyclopedia.material.material_id"},
149
            "_source": {"includes": es_keys},
150
151
        })

152
153
        response = s.execute()

154
        # No such material
155
        if len(response) == 0:
156
            abort(404, message="There is no material {}".format(material_id))
157

158
        # Create result JSON
159
        entry = response[0]
160
        result = get_es_doc_values(entry, material_prop_map, keys)
161

162
163
164
        return result, 200


165
range_query = api.model("range_query", {
166
167
168
    "max": fields.Float,
    "min": fields.Float,
})
169
170
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
171
172
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
173
        "element": fields.String,
174
175
176
        "page": fields.Integer(default=1),
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
177
        "mode": fields.String(default="aggregation"),
178
    })),
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
194
})
195
196
197
198
199
200
201
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
})

202
203
204
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
    "results": fields.List(fields.Nested(material_result)),
205
    "pages": fields.Nested(pages_result),
206
    "es_query": fields.String(allow_null=False),
207
208
209
})


210
@ns.route("/materials")
211
class EncMaterialsResource(Resource):
212
213
214
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
215
    @api.expect(materials_query, validate=False)
216
    @api.marshal_with(materials_result, skip_none=True)
217
    @api.doc("materials")
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

        filters = []
        must_nots = []
        musts = []

        # Add term filters
232
233
        filters.append(Q("term", published=True))
        filters.append(Q("term", with_embargo=False))
234
235
236
237
238
239
240

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
241
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
286

287
288
        # Create query for elements or formula
        search_by = data["search_by"]
289
        mode = search_by["mode"]
290
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
291
        elements = search_by["element"]
292
293
294
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
295
296
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
297
298
299
300
301
302
303
304
305
306
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
307
308
309
310
311
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
312
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
313
314
315
316
317
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
318
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
319
            query_string = " ".join(query_string)
320
321
322

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
323
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
324
325
326
327
328
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
345
346
                ))

347
348
349
        page = search_by["page"]
        per_page = search_by["per_page"]
        bool_query = Q(
350
            "bool",
351
352
353
354
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
355

356
357
358
        # 1: The paginated approach: No way to know the amount of matches,
        # but can return aggregation results in a quick fashion including
        # the number of matches entries per material.
359
        if mode == "aggregation":
360
361
362
363
364
365
366
367
368
            after = None
            # The loop is awkward, but emulates the old behaviour until the GUI is adapted.
            for _ in range(page):

                # The top query filters out entries based on the user query
                s = Search(index=config.elastic.index_name)
                s = s.query(bool_query)

                # The materials are grouped by using three aggregations:
369
                # "Composite" to enable scrolling, "Terms" to enable selecting
370
371
372
                # by material_id and "Top Hits" to fetch a single
                # representative material document. Unnecessary fields are
                # filtered to reduce data transfer.
373
374
375
                terms_agg = A("terms", field="encyclopedia.material.material_id")
                composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}
                if after is not None:
376
                    composite_kwargs["after"] = after
377
                composite_agg = A("composite", **composite_kwargs)
378
379
                composite_agg.metric("representative", A(
                    "top_hits",
380
                    size=1,
381
                    _source={"includes": list(material_prop_map.values())},
382
                ))
383
384
385
386
387
388
389
390
391
392
                s.aggs.bucket("materials", composite_agg)

                # We ignore the top level hits
                s = s.extra(**{
                    "size": 0,
                })

                response = s.execute()
                materials = response.aggs.materials.buckets
                if len(materials) == 0:
393
                    abort(404, message="No materials found for the given search criteria or pagination.")
394
395
396
397
398
                after = response.aggs.materials["after_key"]

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
399
            keys = list(material_prop_map.keys())
400
401
            for material in materials:
                representative = material["representative"][0]
402
403
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
404
405
406
407
408
409
410
411
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
            }
        # 2. Collapse approach. Quickly provides a list of materials
412
        # corresponding to the query, offers full pagination, doesn"t include
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
        # the number of matches per material.
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
428
                abort(404, message="No materials found for the given search criteria or pagination.")
429
430
431

            # Loop over materials
            result_list = []
432
            keys = list(material_prop_map.keys())
433
            for material in response:
434
                mat_result = get_es_doc_values(material, material_prop_map, keys)
435
436
437
438
439
440
441
442
443
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.hits.total,
            }
444
445
446

        result = {
            "results": result_list,
447
448
449
            "total_results": len(result_list),
            "es_query": s.to_dict(),
            "pages": pages,
450
        }
451
        return result, 200
452
453


454
group_result = api.model("group_result", {
455
456
457
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
458
459
460
461
    "energy_minimum": fields.Float,
    "group_hash": fields.String,
    "group_type": fields.String,
    "nr_of_calculations": fields.Integer,
462
    "representative_calc_id": fields.String,
463
})
464
465
466
groups_result = api.model("groups_result", {
    "total_groups": fields.Integer(allow_null=False),
    "groups": fields.List(fields.Nested(group_result)),
467
})
468
469
470
471
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
472
        "encyclopedia.material.idealized_structure.cell_volume",
473
474
    ]
}
475
476


477
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
478
class EncGroupsResource(Resource):
479
480
481
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
Lauri Himanen's avatar
Lauri Himanen committed
482
    @api.expect(material_query, validate=False)
483
    @api.marshal_with(groups_result)
484
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
485
486
    def get(self, material_id):

487
488
489
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
490
            "bool",
491
            filter=[
492
493
494
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
495
496
497
            ],
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
498
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
499
500
501
502
503
504
505
            ],
            should=[
                Q("exists", field="encyclopedia.method.group_eos_hash"),
                Q("exists", field="encyclopedia.method.group_parametervariation_hash"),
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
506
507

        s = Search(index=config.elastic.index_name)
508
509
510
511
512
513
514
515
516
517
518
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_hash", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_hash", min_doc_count=2)

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
519
        # "index.max_inner_result_window" that limits the number of results
520
521
522
523
524
525
526
527
528
529
530
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("energies", energy_aggregation)
        group_param_bucket.bucket("energies", energy_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)
531

532
533
534
535
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
536

537
538
        # No hits on the top query level
        response = s.execute()
539
        groups = []
540
541
542
543
544
545
546
547

        # Collect information for each group from the aggregations
        groups_eos = response.aggs.groups_eos.buckets
        groups_param = response.aggs.groups_param.buckets

        def get_group(group, group_type, group_hash):
            hits = group.energies.hits
            calculations = [doc.calc_id for doc in hits]
548
549
            energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
            volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
550
551
552
553
            group_dict = {
                "group_hash": group_hash,
                "group_type": group_type,
                "nr_of_calculations": len(calculations),
554
555
556
557
                "representative_calc_id": hits[0].calc_id,
                "calculations": calculations,
                "energies": energies,
                "volumes": volumes,
558
559
560
                "energy_minimum": hits[0].encyclopedia.properties.energies.energy_total,
            }
            return group_dict
Lauri Himanen's avatar
Lauri Himanen committed
561

562
563
564
565
566
567
568
569
570
571
572
        for group in groups_eos:
            groups.append(get_group(group, "equation of state", group.key))
        for group in groups_param:
            groups.append(get_group(group, "parameter variation", group.key))

        # Return results
        result = {
            "groups": groups,
            "total_groups": len(groups),
        }
        return result, 200
573
574


575
576
577
578
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
            ]
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
632
633


634
635
calcs_query = api.parser()
calcs_query.add_argument(
636
637
638
639
640
641
    "page",
    default=0,
    type=int,
    help="The page number to return.",
    location="args"
)
642
calcs_query.add_argument(
643
644
645
646
647
648
649
650
651
652
653
654
    "per_page",
    default=25,
    type=int,
    help="The number of results per page",
    location="args"
)
calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
655
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
656
657
658
659
660
661
662
663
664
665
666
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
667
    "core_electron_treatment": fields.String,
668
669
670
671
672
673
674
675
676
677
678
679
680
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
})
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
})


@ns.route("/materials/<string:material_id>/calculations")
681
class EncCalculationsResource(Resource):
682
683
684
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
685
    @api.expect(calcs_query, validate=False)
686
687
688
689
    @api.doc("enc_calculations")
    def get(self, material_id):
        """Used to return all calculations related to the given material.
        """
690
        args = calcs_query.parse_args()
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
        page = args["page"]
        per_page = args["per_page"]

        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "_source": {"includes": list(calc_prop_map.values())},
            "size": per_page,
            "from": page,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
            calc_dict["has_band_structure"] = calc_dict["has_dos"] is not None
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
            "pages": {
                "per_page": per_page,
                "page": page,
            }
        }

        return result, 200


740
741
742
743
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
744
745
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
746
    "properties": fields.List(fields.String),
747
    "n_histogram_bins": fields.Integer,
748
749
750
751
752
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
753
    "histogram": fields.Nested(histogram)
754
755
756
})
statistics_result = api.model("statistics_result", {
    "cell_volume": fields.Nested(statistics),
757
758
759
760
761
762
763
764
    "atomic_density": fields.Nested(statistics),
    "mass_density": fields.Nested(statistics),
    "lattice_a": fields.Nested(statistics),
    "lattice_b": fields.Nested(statistics),
    "lattice_c": fields.Nested(statistics),
    "alpha": fields.Nested(statistics),
    "beta": fields.Nested(statistics),
    "gamma": fields.Nested(statistics),
765
})
766
767
768
769
770
771
772
773
774
775
776
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
}
777
778
779


@ns.route("/materials/<string:material_id>/statistics")
780
class EncStatisticsResource(Resource):
781
782
783
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
784
785
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
786
787
    @api.doc("enc_statistics")
    def post(self, material_id):
788
789
        """Used to return statistics related to the specified material and
        calculations.
790
        """
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

814
815
816
817
818
819
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

820
821
822
823
824
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

825
826
827
828
829
830
831
832
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
833
        n_bins = data["n_histogram_bins"]
834
835
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
836
            interval = (stats.max * 1.001 - stats.min) / n_bins
837
838
            if interval == 0:
                interval = 1
839
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
840
841
842
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

843
        # Return results
844
845
846
847
848
849
850
851
852
853
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
854
                "histogram": {
855
856
857
                    "occurrences": occurrences,
                    "values": values,
                }
858
            }
859

860
        return result, 200
861
862
863
864
865
866
867
868
869
870
871
872
873


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
    "variables": fields.List(fields.Nested(wyckoff_variables_result)),
})
874
875
876
877
878
879
880
881
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
882
883
884
885
886
887

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
888
    "lattice_parameters": fields.Nested(lattice_parameters),
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result)),
})


@ns.route("/materials/<string:material_id>/idealized_structure")
class EncIdealizedStructureResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(idealized_structure_result, skip_none=True)
    @api.doc("enc_material_idealized_structure")
    def get(self, material_id):
        """Specialized path for returning a representative idealized structure
        that is displayed in the gui for this material.
        """
        # The representative idealized structure simply comes from the first
        # calculation when the calculations are alphabetically sorted by their
        # calc_id. Coming up with a good way to select the representative one
        # is pretty tricky in general, there are several options:
        # - Lowest energy: This would be most intuitive, but the energy scales
        #   between codes do not match, and the energy may not have been
        #   reported.
        # - Volume that is closest to mean volume: how to calculate volume for
        #   molecules, surfaces, etc...
        # - Random: We would want the representative visualization to be
        #   relatively stable.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "sort": [{"calc_id": {"order": "asc"}}],
            "_source": {"includes": ["upload_id", "calc_id"]},
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Read the idealized_structure from the Archive. The structure can be
        # quite large and no direct search queries are performed against it, so
        # it is not in the ES index.
        entry = response[0]
        upload_id = entry.upload_id
        calc_id = entry.calc_id
949
950
        ideal_struct_path = "section_metadata/encyclopedia/material/idealized_structure"
        idealized_structure = read_archive(upload_id, calc_id, ideal_struct_path)[ideal_struct_path]
951
952
953
954

        return idealized_structure, 200


955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
calculation_property_result = api.model("calculation_query", {
    "lattice_parameters": fields.Nested(lattice_parameters),
    "energies": fields.Nested(energies),
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
    "wyckoff_sets": fields.Nested(wyckoff_set_result),
    # "electronic_band_structure": fields.Nested(electronic_band_structure),
    # "electronic_dos": fields.Nested(electronic_dos),
})