encyclopedia.py 30 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24

25
from nomad import config, files
26
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
27
from nomad.atomutils import get_hill_decomposition
28
from .api import api
29

30
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
31
32
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
51
52


53
def get_es_doc_values(es_doc, mapping, keys=None):
54
55
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
56
    """
57
58
59
    if keys is None:
        keys = mapping.keys()

60
    result = {}
61
    for key in keys:
62
        es_key = mapping[key]
63
64
65
66
67
68
69
        try:
            value = es_doc
            for part in es_key.split("."):
                value = getattr(value, part)
        except AttributeError:
            value = None
        result[key] = value
70
71
72
73
74

    return result


material_query = api.parser()
75
76
77
78
79
80
81
82
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
83
84
    # General
    "material_id": fields.String,
85
86
    "formula": fields.String,
    "formula_reduced": fields.String,
87
    "system_type": fields.String,
88
    "n_matches": fields.Integer,
89
90
91
    # Bulk only
    "has_free_wyckoff_parameters": fields.String,
    "strukturbericht_designation": fields.String,
92
    "material_name": fields.String,
93
94
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
95
    "point_group": fields.String,
96
97
98
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
99
100
    "structure_type": fields.String,
})
101
102


103
@ns.route("/materials/<string:material_id>")
104
class EncMaterialResource(Resource):
105
106
107
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
108
    @api.expect(material_query)
109
    @api.marshal_with(material_result, skip_none=True)
110
111
112
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
113
114
115
116
117
118
119
120
121
122
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
            keys = [prop]
            es_keys = [material_prop_map[prop]]
        else:
            keys = list(material_prop_map.keys())
            es_keys = list(material_prop_map.values())

123
124
125
126
127
128
129
130
131
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

        # Since we are looking for an exact match, we use filter context
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
132
            "bool",
133
            filter=[
134
135
136
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
137
138
139
            ]
        )
        s = s.query(query)
140

141
        # The query is collapsed already on the ES side so we don"t need to
142
143
144
        # transfer so much data.
        s = s.extra(**{
            "collapse": {"field": "encyclopedia.material.material_id"},
145
            "_source": {"includes": es_keys},
146
147
        })

148
149
        response = s.execute()

150
        # No such material
151
        if len(response) == 0:
152
            abort(404, message="There is no material {}".format(material_id))
153

154
        # Create result JSON
155
        entry = response[0]
156
        result = get_es_doc_values(entry, material_prop_map, keys)
157

158
159
160
        return result, 200


161
range_query = api.model("range_query", {
162
163
164
    "max": fields.Float,
    "min": fields.Float,
})
165
166
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
167
168
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
169
        "element": fields.String,
170
171
172
        "page": fields.Integer(default=1),
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
173
        "mode": fields.String(default="aggregation"),
174
    })),
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
190
})
191
192
193
194
195
196
197
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
})

198
199
200
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
    "results": fields.List(fields.Nested(material_result)),
201
    "pages": fields.Nested(pages_result),
202
    "es_query": fields.String(allow_null=False),
203
204
205
})


206
@ns.route("/materials")
207
class EncMaterialsResource(Resource):
208
209
210
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
211
    @api.expect(materials_query, validate=False)
212
    @api.marshal_with(materials_result, skip_none=True)
213
    @api.doc("materials")
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

        filters = []
        must_nots = []
        musts = []

        # Add term filters
228
229
        filters.append(Q("term", published=True))
        filters.append(Q("term", with_embargo=False))
230
231
232
233
234
235
236

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
237
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
282

283
284
        # Create query for elements or formula
        search_by = data["search_by"]
285
        mode = search_by["mode"]
286
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
287
        elements = search_by["element"]
288
289
290
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
291
292
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
293
294
295
296
297
298
299
300
301
302
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
303
304
305
306
307
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
308
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
309
310
311
312
313
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
314
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
315
            query_string = " ".join(query_string)
316
317
318

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
319
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
320
321
322
323
324
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
341
342
                ))

343
344
345
        page = search_by["page"]
        per_page = search_by["per_page"]
        bool_query = Q(
346
            "bool",
347
348
349
350
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
351

352
353
354
        # 1: The paginated approach: No way to know the amount of matches,
        # but can return aggregation results in a quick fashion including
        # the number of matches entries per material.
355
        if mode == "aggregation":
356
357
358
359
360
361
362
363
364
            after = None
            # The loop is awkward, but emulates the old behaviour until the GUI is adapted.
            for _ in range(page):

                # The top query filters out entries based on the user query
                s = Search(index=config.elastic.index_name)
                s = s.query(bool_query)

                # The materials are grouped by using three aggregations:
365
                # "Composite" to enable scrolling, "Terms" to enable selecting
366
367
368
                # by material_id and "Top Hits" to fetch a single
                # representative material document. Unnecessary fields are
                # filtered to reduce data transfer.
369
370
371
                terms_agg = A("terms", field="encyclopedia.material.material_id")
                composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}
                if after is not None:
372
                    composite_kwargs["after"] = after
373
                composite_agg = A("composite", **composite_kwargs)
374
375
                composite_agg.metric("representative", A(
                    "top_hits",
376
                    size=1,
377
                    _source={"includes": list(material_prop_map.values())},
378
                ))
379
380
381
382
383
384
385
386
387
388
                s.aggs.bucket("materials", composite_agg)

                # We ignore the top level hits
                s = s.extra(**{
                    "size": 0,
                })

                response = s.execute()
                materials = response.aggs.materials.buckets
                if len(materials) == 0:
389
                    abort(404, message="No materials found for the given search criteria or pagination.")
390
391
392
393
394
                after = response.aggs.materials["after_key"]

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
395
            keys = list(material_prop_map.keys())
396
397
            for material in materials:
                representative = material["representative"][0]
398
399
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
400
401
402
403
404
405
406
407
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
            }
        # 2. Collapse approach. Quickly provides a list of materials
408
        # corresponding to the query, offers full pagination, doesn"t include
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        # the number of matches per material.
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
424
                abort(404, message="No materials found for the given search criteria or pagination.")
425
426
427

            # Loop over materials
            result_list = []
428
            keys = list(material_prop_map.keys())
429
            for material in response:
430
                mat_result = get_es_doc_values(material, material_prop_map, keys)
431
432
433
434
435
436
437
438
439
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.hits.total,
            }
440
441
442

        result = {
            "results": result_list,
443
444
445
            "total_results": len(result_list),
            "es_query": s.to_dict(),
            "pages": pages,
446
        }
447
        return result, 200
448
449


450
group_result = api.model("group_result", {
451
    "calculations_list": fields.List(fields.String),
452
453
454
455
456
457
    "energy_minimum": fields.Float,
    "group_hash": fields.String,
    "group_type": fields.String,
    "nr_of_calculations": fields.Integer,
    "representative_calculation_id": fields.String,
})
458
459
460
groups_result = api.model("groups_result", {
    "total_groups": fields.Integer(allow_null=False),
    "groups": fields.List(fields.Nested(group_result)),
461
})
462
463
464
465
466
467
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
    ]
}
468
469


470
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
471
class EncGroupsResource(Resource):
472
473
474
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
Lauri Himanen's avatar
Lauri Himanen committed
475
    @api.expect(material_query, validate=False)
476
    @api.marshal_with(groups_result)
477
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
478
479
    def get(self, material_id):

480
481
482
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
483
            "bool",
484
            filter=[
485
486
487
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
488
489
490
491
492
493
494
495
496
497
            ],
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
            ],
            should=[
                Q("exists", field="encyclopedia.method.group_eos_hash"),
                Q("exists", field="encyclopedia.method.group_parametervariation_hash"),
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
498
499

        s = Search(index=config.elastic.index_name)
500
501
502
503
504
505
506
507
508
509
510
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_hash", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_hash", min_doc_count=2)

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
511
        # "index.max_inner_result_window" that limits the number of results
512
513
514
515
516
517
518
519
520
521
522
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("energies", energy_aggregation)
        group_param_bucket.bucket("energies", energy_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)
523

524
525
526
527
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
528

529
530
        # No hits on the top query level
        response = s.execute()
531
        groups = []
532
533
534
535
536
537
538
539
540
541
542
543
544

        # Collect information for each group from the aggregations
        groups_eos = response.aggs.groups_eos.buckets
        groups_param = response.aggs.groups_param.buckets

        def get_group(group, group_type, group_hash):
            hits = group.energies.hits
            calculations = [doc.calc_id for doc in hits]
            group_dict = {
                "group_hash": group_hash,
                "group_type": group_type,
                "nr_of_calculations": len(calculations),
                "representative_calculation_id": hits[0].calc_id,
545
                "calculations_list": calculations,
546
547
548
                "energy_minimum": hits[0].encyclopedia.properties.energies.energy_total,
            }
            return group_dict
Lauri Himanen's avatar
Lauri Himanen committed
549

550
551
552
553
554
555
556
557
558
559
560
        for group in groups_eos:
            groups.append(get_group(group, "equation of state", group.key))
        for group in groups_param:
            groups.append(get_group(group, "parameter variation", group.key))

        # Return results
        result = {
            "groups": groups,
            "total_groups": len(groups),
        }
        return result, 200
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807


suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

        return {prop: []}, 200


calc_query = api.parser()
calc_query.add_argument(
    "page",
    default=0,
    type=int,
    help="The page number to return.",
    location="args"
)
calc_query.add_argument(
    "per_page",
    default=25,
    type=int,
    help="The number of results per page",
    location="args"
)
calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
})
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
})


@ns.route("/materials/<string:material_id>/calculations")
class EncCalculationResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(calc_query, validate=False)
    @api.doc("enc_calculations")
    def get(self, material_id):
        """Used to return all calculations related to the given material.
        """
        args = calc_query.parse_args()
        page = args["page"]
        per_page = args["per_page"]

        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "_source": {"includes": list(calc_prop_map.values())},
            "size": per_page,
            "from": page,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
            calc_dict["has_band_structure"] = calc_dict["has_dos"] is not None
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
            "pages": {
                "per_page": per_page,
                "page": page,
            }
        }

        return result, 200


@ns.route("/materials/<string:material_id>/cells")
class EncCellsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_cells")
    def get(self, material_id):
        """Used to return cell information related to the given material.
        """
        return {"results": []}, 200


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})

wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
    "variables": fields.List(fields.Nested(wyckoff_variables_result)),
})

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
    "lattice_parameters": fields.List(fields.Float),
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result)),
})


@ns.route("/materials/<string:material_id>/idealized_structure")
class EncIdealizedStructureResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(idealized_structure_result, skip_none=True)
    @api.doc("enc_material_idealized_structure")
    def get(self, material_id):
        """Specialized path for returning a representative idealized structure
        that is displayed in the gui for this material.
        """
        # The representative idealized structure simply comes from the first
        # calculation when the calculations are alphabetically sorted by their
        # calc_id. Coming up with a good way to select the representative one
        # is pretty tricky in general, there are several options:
        # - Lowest energy: This would be most intuitive, but the energy scales
        #   between codes do not match, and the energy may not have been
        #   reported.
        # - Volume that is closest to mean volume: how to calculate volume for
        #   molecules, surfaces, etc...
        # - Random: We would want the representative visualization to be
        #   relatively stable.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "sort": [{"calc_id": {"order": "asc"}}],
            "_source": {"includes": ["upload_id", "calc_id"]},
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Read the idealized_structure from the Archive. The structure can be
        # quite large and no direct search queries are performed against it, so
        # it is not in the ES index.
        entry = response[0]
        upload_id = entry.upload_id
        calc_id = entry.calc_id
        idealized_structure = read_archive(upload_id, calc_id, 'section_metadata/encyclopedia/material/idealized_structure')

        return idealized_structure, 200


def read_archive(upload_id, calc_id, path):
    """Used to read data from the archive.
    """
    upload_files = files.UploadFiles.get(upload_id)
    # upload_files_cache[upload_id] = upload_files
    with upload_files.read_archive(calc_id) as archive:
        data = archive[calc_id]
        parts = path.split("/")
        for part in parts:
            data = data[part]
        if not isinstance(data, dict):
            data = data.to_dict()

    return data