metainfo.py 30.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
16
17
18
"""
The NOMAD meta-info allows to define physics data quantities. These definitions are
necessary for all computer representations of respective data (e.g. in Python,
search engines, data-bases, and files).
19

20
This modules provides various Python interfaces for
21

22
23
24
- defining meta-info data
- to create and manipulate data that follows these definitions
- to (de-)serialize meta-info data in JSON (i.e. represent data in JSON formatted files)
25

26
27
28
29
30
31
32
33
34
35
36
37
38
Here is a simple example that demonstrates the definition of System related quantities:

.. code-block:: python

    class Run(MObject):
        pass

    class System(MObject):
        \"\"\"
        A system section includes all quantities that describe a single a simulated
        system (a.k.a. geometry).
        \"\"\"

39
        m_section = Section(repeats=True, parent=Run)
40

41
42
43
44
        n_atoms = Quantity(
            type=int, description='''
            A Defines the number of atoms in the system.
            ''')
45

46
47
48
49
        atom_labels = Quantity(type=Enum(ase.data.chemical_symbols), shape['n_atoms'])
        atom_positions = Quantity(type=float, shape=['n_atoms', 3], unit=Units.m)
        simulation_cell = Quantity(type=float, shape=[3, 3], unit=Units.m)
        pbc = Quantity(type=bool, shape=[3])
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
Here, we define a `section` called ``System``. The section mechanism allows to organize
related data into, well, sections. Sections form containment hierarchies. Here
containment is a parent-child (whole-part) relationship. In this example many ``Systems``,
are part of one ``Run``. Each ``System`` can contain values for the defined quantities:
``n_atoms``, ``atom_labels``, ``atom_positions``, ``simulation_cell``, and ``pbc``.
Quantities allow to state type, shape, and physics unit to specify possible quantity
values.

Here is an example, were we use the above definition to create, read, and manipulate
data that follows these definitions:

.. code-bock:: python

    run = Run()
    system = run.m_create(System)
    system.n_atoms = 3
    system.atom_labels = ['H', 'H', 'O']

    print(system.atom_labels)
    print(run.m_to_json(ident=2))

This last statement, will produce the following JSON:

.. code-block:: JSON

    {
        "m_section" = "Run",
        "System": [
            {
                "m_section" = "System",
                "m_parent_index" = 0,
                "n_atoms" = 3,
                "atom_labels" = [
                    "H",
                    "H",
                    "O"
                ]
            }
        ]
    }

This is the JSON representation, a serialized version of the Python representation in
the example above.

Sections can be extended with new quantities outside the original section definition.
This provides the key mechanism to extend commonly defined parts with (code) specific
quantities:

.. code-block:: Python

    class Method(nomad.metainfo.common.Method):
        x_vasp_incar_ALGO=Quantity(
            type=Enum(['Normal', 'VeryFast', ...]),
            links=['https://cms.mpi.univie.ac.at/wiki/index.php/ALGO'])
        \"\"\"
        A convenient option to specify the electronic minimisation algorithm (as of VASP.4.5)
        and/or to select the type of GW calculations.
        \"\"\"


All meta-info definitions and classes for meta-info data objects (i.e. section instances)
inherit from :class:` MObject`. This base-class provides common functions and attributes
for all meta-info data objects. Names of these common parts are prefixed with ``m_``
to distinguish them from user defined quantities. This also constitute's the `reflection`
interface (in addition to Python's build in ``getattr``, ``setattr``) that allows to
create and manipulate meta-info data, without prior program time knowledge of the underlying
definitions.

.. autoclass:: MObject

The following classes can be used to define and structure meta-info data:

- sections are defined by sub-classes :class:`MObject` and using :class:`Section` to
  populate the classattribute `m_section`
- quantities are defined by assigning classattributes of a section with :class:`Quantity`
  instances
- references (from one section to another) can be defined with quantities that use
  section definitions as type
- dimensions can use defined by simply using quantity names in shapes
- categories (former `abstract type definitions`) can be given in quantity definitions
  to assign quantities to additional specialization-generalization hierarchies

See the reference of classes :class:`Section` and :class:`Quantities` for details.

.. autoclass:: Section
.. autoclass:: Quantity
137
138
"""

139
140
141
142
# TODO validation
# TODO serialization/deserialization
# TODO packages

143
144
from typing import Type, TypeVar, Union, Tuple, Iterable, List, Any, Dict, cast
import sys
145
import inspect
146
147
import re

148
149
from pint.unit import _Unit
from pint import UnitRegistry
150
import inflection
151
152
153
154

__module__ = sys.modules[__name__]
MObjectBound = TypeVar('MObjectBound', bound='MObject')

155

156
# Reflection
157

158
class Enum(list):
159
    """ Allows to define str types with values limited to a pre-set list of possible values. """
160
161
162
    pass


163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
class DataType:
    """
    Allows to define custom data types that can be used in the meta-info.

    The metainfo supports most types out of the box. These includes the python build-in
    primitive types (int, bool, str, float, ...), references to sections, and enums.
    However, in some occasions you need to add custom data types.
    """
    def check_type(self, value):
        pass

    def normalize(self, value):
        return value

    def to_json_serializable(self, value):
        return value

    def from_json_serializable(self, value):
        return value


class Dimension(DataType):
    def check_type(self, value):
        if isinstance(value, int):
            return

        if isinstance(value, str):
            if value.isidentifier():
                return
            if re.match(r'(\d)\.\.(\d|\*)', value):
                return

        if isinstance(value, Section):
            return

        if isinstance(value, type) and hasattr(value, 'm_section'):
            return

        raise TypeError('%s is not a valid dimension' % str(value))
    # TODO


# TODO class Unit(DataType)
# TODO class MetainfoType(DataType)
# TODO class Datetime(DataType)


210
class MObjectMeta(type):
211

212
213
214
215
216
217
    def __new__(self, cls_name, bases, dct):
        cls = super().__new__(self, cls_name, bases, dct)
        init = getattr(cls, '__init_section_cls__')
        if init is not None:
            init()
        return cls
218
219


220
Content = Tuple[MObjectBound, Union[List[MObjectBound], MObjectBound], str, MObjectBound]
221
SectionDef = Union[str, 'Section', Type[MObjectBound]]
222
223


224
class MObject(metaclass=MObjectMeta):
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    """Base class for all section objects on all meta-info levels.

    All metainfo objects instantiate classes that inherit from ``MObject``. Each
    section or quantity definition is an ``MObject``, each actual (meta-)data carrying
    section is an ``MObject``. This class consitutes the reflection interface of the
    meta-info, since it allows to manipulate sections (and therefore all meta-info data)
    without having to know the specific sub-class.

    It also carries all the data for each section. All sub-classes only define specific
    sections in terms of possible sub-sections and quantities. The data is managed here.

    The reflection insterface for reading and manipulating quantity values consists of
    Pythons build in ``getattr``, ``setattr``, and ``del``, as well as member functions
    :func:`m_add_value`, and :func:`m_add_values`.

    Sub-sections and parent sections can be read and manipulated with :data:`m_parent`,
    :func:`m_sub_section`, :func:`m_create`.

243
244
245
246
247
    .. code-block:: python

        system = run.m_create(System)
        assert system.m_parent == run
        assert run.m_sub_section(System, system.m_parent_index) == system
248
249
250
251
252
253
254
255
256
257
258
259
260
261

    Attributes:
        m_section: The section definition that defines this sections, its possible
            sub-sections and quantities.
        m_parent: The parent section instance that this section is a sub-section of.
        m_parent_index: For repeatable sections, parent keep a list of sub-sections for
            each section definition. This is the index of this section in the respective
            parent sub-section list.
        m_data: The dictionary that holds all data of this section. It keeps the quantity
            values and sub-section. It should only be read directly (and never manipulated)
            if you are know what you are doing. You should always use the reflection interface
            if possible.
    """

262
263
    m_section: 'Section' = None

264
    def __init__(self, m_section: 'Section' = None, m_parent: 'MObject' = None, _bs: bool = False, **kwargs):
265
266
267
        self.m_section: 'Section' = m_section
        self.m_parent: 'MObject' = m_parent
        self.m_parent_index = -1
268

269
        cls = self.__class__
270
        if self.m_section is None:
271
272
273
274
            self.m_section = cls.m_section

        if cls.m_section is not None:
            assert self.m_section == cls.m_section, \
275
276
                'Section class and section definition must match'

277
278
279
280
281
282
283
284
        self.m_data = dict(**kwargs)
        # TODO
        # self.m_data = {}
        # if _bs:
        #     self.m_data.update(**kwargs)
        # else:
        #     self.m_update(**kwargs)

285
286
    @classmethod
    def __init_section_cls__(cls):
287
288
        # only works after bootstrapping, since functionality is still missing
        if not all([hasattr(__module__, cls) for cls in ['Quantity', 'Section', 'sub_section']]):
289
            return
290

291
        # ensure that the m_section is defined
292
293
        m_section = cls.m_section
        if m_section is None and cls != MObject:
294
295
            m_section = Section()
            setattr(cls, 'm_section', m_section)
296

297
        # transfer name and description to m_section
298
        m_section.name = cls.__name__
299
300
        if cls.__doc__ is not None:
            m_section.description = inspect.cleandoc(cls.__doc__)
301
        m_section.section_cls = cls
302

303
304
305
306
307
        # add sub_section to parent section
        if m_section.parent is not None:
            sub_section_name = inflection.underscore(m_section.name)
            setattr(m_section.parent.section_cls, sub_section_name, sub_section(m_section))

308
        for name, attr in cls.__dict__.items():
309
            # transfer names and descriptions for quantities
310
311
            if isinstance(attr, Quantity):
                attr.name = name
312
313
314
                if attr.description is not None:
                    attr.description = inspect.cleandoc(attr.description)
                    attr.__doc__ = attr.description
315
                # manual manipulation of m_data due to bootstrapping
316
                m_section.m_data.setdefault('Quantity', []).append(attr)
317

318
319
320
321
322
323
            # set names and parent on sub-sections
            elif isinstance(attr, sub_section):
                attr.section_def.parent = m_section
                if attr.section_def.name is None:
                    attr.section_def.name = inflection.camelize(name)

324
    @staticmethod
325
    def m_type_check(definition: 'Quantity', value: Any, check_item: bool = False):
326
        """Checks if the value fits the given quantity in type and shape; raises
327
328
329
330
331
        TypeError if not."""

        if value is None and not check_item and definition.default is None:
            # Allow the default None value even if it would violate the type
            return
332
333
334
335

        def check_value(value):
            if isinstance(definition.type, Enum):
                if value not in definition.type:
336
                    raise TypeError('Not one of the enum values.')
337
338
339

            elif isinstance(definition.type, type):
                if not isinstance(value, definition.type):
340
                    raise TypeError('Value has wrong type.')
341
342
343

            elif isinstance(definition.type, Section):
                if not isinstance(value, MObject) or value.m_section != definition.type:
344
                    raise TypeError('The value is not a section of wrong section definition')
345
346

            else:
347
348
349
                # TODO
                # raise Exception('Invalid quantity type: %s' % str(definition.type))
                pass
350
351
352
353
354
355
356
357
358
359
360
361

        shape = None
        try:
            shape = definition.shape
        except KeyError:
            pass

        if shape is None or len(shape) == 0 or check_item:
            check_value(value)

        elif len(shape) == 1:
            if not isinstance(value, list):
362
                raise TypeError('Wrong shape')
363
364
365
366
367
368
369
370
371
372

            for item in value:
                check_value(item)

        else:
            # TODO
            raise Exception('Higher shapes not implemented')

        # TODO check dimension

373
    def _resolve_section(self, definition: SectionDef) -> 'Section':
374
375
376
377
378
379
380
381
382
383
384
385
386
        """Resolves and checks the given section definition. """
        if isinstance(definition, str):
            section = self.m_section.sub_sections[definition]

        else:
            if isinstance(definition, type):
                section = getattr(definition, 'm_section')
            else:
                section = definition
            if section.name not in self.m_section.sub_sections:
                raise KeyError('Not a sub section.')

        return section
387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    def m_sub_section(self, definition: SectionDef, parent_index: int = -1) -> MObjectBound:
        """Returns the sub section for the given section definition and possible
           parent_index (for repeatable sections).

        Args:
            definition: The definition of the section.
            parent_index: The index of the desired section. This can be omitted for non
                repeatable sections. If omitted for repeatable sections a exception
                will be raised, if more then one sub-section exists. Likewise, if the given
                index is out of range.
        Raises:
            KeyError: If the definition is not for a sub section
            IndexError: If the given index is wrong, or if an index is given for a non
                repeatable section
        """
403
        section_def = self._resolve_section(definition)
404

405
406
407
408
409
410
411
        m_data_value = self.m_data.get(section_def.name, None)

        if m_data_value is None:
            if section_def.repeats:
                m_data_value = []
            else:
                m_data_value = None
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

        if isinstance(m_data_value, list):
            m_data_values = m_data_value
            if parent_index == -1:
                if len(m_data_values) == 1:
                    return m_data_values[0]
                else:
                    raise IndexError()
            else:
                return m_data_values[parent_index]
        else:
            if parent_index != -1:
                raise IndexError('Not a repeatable sub section.')
            else:
                return m_data_value

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    def m_add_sub_section(self, sub_section: MObjectBound) -> MObjectBound:
        """Adds the given section instance as a sub section to this section."""

        section_def = sub_section.m_section

        if section_def.repeats:
            m_data_sections = self.m_data.setdefault(section_def.name, [])
            section_index = len(m_data_sections)
            m_data_sections.append(sub_section)
            sub_section.m_parent_index = section_index
        else:
            self.m_data[section_def.name] = sub_section

        return sub_section

    def m_create(self, definition: SectionDef, **kwargs) -> 'MObject':
444
        """Creates a subsection and adds it this this section
445

446
447
448
449
        Args:
            section: The section definition of the subsection. It is either the
                definition itself, or the python class representing the section definition.
            **kwargs: Are used to initialize the subsection.
450

451
452
        Returns:
            The created subsection
453

454
        Raises:
455
            KeyError: If the given section is not a subsection of this section.
456
        """
457
        section_def: 'Section' = self._resolve_section(definition)
458

459
        section_cls = section_def.section_cls
460
        section_instance = section_cls(m_section=section_def, m_parent=self, **kwargs)
461

462
        return self.m_add_sub_section(section_instance)
463

464
465
466
467
    def __resolve_quantity(self, definition: Union[str, 'Quantity']) -> 'Quantity':
        """Resolves and checks the given quantity definition. """
        if isinstance(definition, str):
            quantity = self.m_section.quantities[definition]
468

469
470
471
472
473
474
475
476
477
        else:
            if definition.m_parent != self.m_section:
                raise KeyError('Quantity is not a quantity of this section.')
            quantity = definition

        return quantity

    def m_add(self, definition: Union[str, 'Quantity'], value: Any):
        """Adds the given value to the given quantity."""
478

479
480
        quantity = self.__resolve_quantity(definition)

481
        MObject.m_type_check(quantity, value, check_item=True)
482
483
484
485
486
487
488
489
490
491

        m_data_values = self.m_data.setdefault(quantity.name, [])
        m_data_values.append(value)

    def m_add_values(self, definition: Union[str, 'Quantity'], values: Iterable[Any]):
        """Adds the given values to the given quantity."""

        quantity = self.__resolve_quantity(definition)

        for value in values:
492
            MObject.m_type_check(quantity, value, check_item=True)
493
494
495
496
497

        m_data_values = self.m_data.setdefault(quantity.name, [])
        for value in values:
            m_data_values.append(value)

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
    def m_update(self, **kwargs):
        """ Updates all quantities and sub-sections with the given arguments. """
        for name, value in kwargs.items():
            attribute = self.m_section.attributes.get(name, None)
            if attribute is None:
                raise KeyError('%s is not an attribute of this section' % name)

            if isinstance(attribute, Section):
                if attribute.repeats:
                    if isinstance(value, List):
                        for item in value:
                            self.m_add_sub_section(item)
                    else:
                        raise TypeError('Sub section %s repeats, but no list was given' % attribute.name)
                else:
                    self.m_add_sub_section(item)

            else:
                setattr(self, name, value)

518
519
    def m_to_dict(self) -> Dict[str, Any]:
        """Returns the data of this section as a json serializeable dictionary. """
520
        pass
521

522
    def m_to_json(self):
523
        """Returns the data of this section as a json string. """
524
        pass
525

526
    def m_all_contents(self) -> Iterable[Content]:
527
        """Returns an iterable over all sub and sub subs sections. """
528
529
530
        for content in self.m_contents():
            for sub_content in content[0].m_all_contents():
                yield sub_content
531

532
            yield content
533

534
    def m_contents(self) -> Iterable[Content]:
535
        """Returns an iterable over all direct subs sections. """
536
537
538
539
540
        for name, attr in self.m_data.items():
            if isinstance(attr, list):
                for value in attr:
                    if isinstance(value, MObject):
                        yield value, attr, name, self
541

542
543
            elif isinstance(attr, MObject):
                yield value, value, name, self
544

545
546
547
548
549
550
551
    def __repr__(self):
        m_section_name = self.m_section.name
        name = ''
        if 'name' in self.m_data:
            name = self.m_data['name']

        return '%s:%s' % (name, m_section_name)
552
553


554
555
556
557
558
559
560
# M3, the definitions that are used to write definitions. These are the section definitions
# for sections Section and Quantity.They define themselves; i.e. the section definition
# for Section is the same section definition.
# Due to this circular nature (hen-egg-problem), the classes for sections Section and
# Quantity do only contain placeholder for their own section and quantity definitions.
# These placeholder are replaced, once the necessary classes are defined. This process
# is referred to as 'bootstrapping'.
561

562
563
564
565
566
567
568
class Definition(MObject):
    name: 'Quantity' = None
    description: 'Quantity' = None
    links: 'Quantity' = None


class Quantity(Definition):
569
570
571
572
573
574
575
576
577
578
579
    """Used to define quantities that store a certain piece of (meta-)data.

    Quantities are the basic building block with meta-info data. The Quantity class is
    used to define quantities within sections. A quantity definition
    is a (physics) quantity with name, type, shape, and potentially a unit.

    In Python terms, quantities are descriptors. Descriptors define how to get, set, and
    delete values for a object attribute. Meta-info descriptors ensure that
    type and shape fit the set values.
    """

580
581
    type: 'Quantity' = None
    shape: 'Quantity' = None
582
583
    unit: 'Quantity' = None
    default: 'Quantity' = None
584
585
586
587
588
589
590

    # TODO section = Quantity(type=Section), the section it belongs to
    # TODO synonym_for = Quantity(type=Quantity)
    # TODO derived_from = Quantity(type=Quantity, shape=['0..*'])
    # TODO categories = Quantity(type=Category, shape=['0..*'])
    # TODO converter = Quantity(type=Converter), a class with set of functions for
    #      normalizing, (de-)serializing values.
591
592
593
594
595
596

    # Some quantities of Quantity cannot be read as normal quantities due to bootstraping.
    # Those can be accessed internally through the following replacement properties that
    # read directly from m_data.
    __name = property(lambda self: self.m_data['name'])
    __default = property(lambda self: self.m_data.get('default', None))
597

598
    def __get__(self, obj, type=None):
599
600
601
602
603
604
605
606
607
        if obj is None:
            # class (def) attribute case
            return self

        # object (instance) attribute case
        try:
            return obj.m_data[self.__name]
        except KeyError:
            return self.__default
608

609
    def __set__(self, obj, value):
610
611
612
613
614
615
        if obj is None:
            # class (def) case
            raise KeyError('Cannot overwrite quantity definition. Only values can be set.')

        # object (instance) case
        MObject.m_type_check(self, value)
616
        obj.m_data[self.__name] = value
617

618
    def __delete__(self, obj):
619
620
621
622
623
        if obj is None:
            # class (def) case
            raise KeyError('Cannot delete quantity definition. Only values can be deleted.')

        # object (instance) case
624
        del obj.m_data[self.__name]
625
626


627
class Section(Definition):
628
629
630
631
632
633
634
635
636
637
638
639
640
    """Used to define section that organize meta-info data into containment hierarchies.

    Section definitions determine what quantities and sub-sections can appear in a section
    instance. A section instance itself can appear potentially many times in its parent
    section. See :data:`repeats` and :data:`parent`.

    In Python terms, sections are classes. Sub-sections and quantities are attribute of
    respective instantiating objects. For each section class there is a corresponding
    :class:`Section` instance that describes this class as a section. This instance
    is referred to as 'section definition' in contrast to the Python class that we call
    'section class'.
    """

641
    section_cls: Type[MObject] = None
642
643
    """ The section class that corresponse to this section definition. """

644
645
    repeats: 'Quantity' = None
    parent: 'Quantity' = None
646

647
648
649
650
    # TODO super = Quantity(type=Section, shape=['0..*']), inherit all quantity definition
    #      from the given sections, derived from Python base classes
    # TODO extends = Quantity(type=bool), denotes this section as a container for
    #      new quantities that belong to the base-class section definitions
651

652
    __all_instances: List['Section'] = []
653

654
655
656
657
    def __init__(self, **kwargs):
        # The mechanism that produces default values, depends on parent. Without setting
        # the parent default manually, an endless recursion will occur.
        kwargs.setdefault('parent', None)
658

659
660
        super().__init__(**kwargs)
        Section.__all_instances.append(self)
661

662
663
664
665
    # TODO cache
    @property
    def attributes(self) -> Dict[str, Union['Section', Quantity]]:
        """ All attribute (sub section and quantity) definitions. """
666

667
668
669
        attributes: Dict[str, Union[Section, Quantity]] = dict(**self.quantities)
        attributes.update(**self.sub_sections)
        return attributes
670

671
672
673
674
    # TODO cache
    @property
    def quantities(self) -> Dict[str, Quantity]:
        """ All quantity definition in the given section definition. """
675

676
677
678
        return {
            quantity.name: quantity
            for quantity in self.m_data.get('Quantity', [])}
679

680
681
682
683
    # TODO cache
    @property
    def sub_sections(self) -> Dict[str, 'Section']:
        """ All sub section definitions for this section definition. """
684

685
686
687
688
        return {
            sub_section.name: sub_section
            for sub_section in Section.__all_instances
            if sub_section.parent == self}
689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    def add_quantity(self, quantity: Quantity):
        """
        Adds the given quantity to this section.

        Allows to add a quantity to a section definition outside the corresponding
        section class.

        .. code-block:: Python

        class System(MObject):
            pass

        System.m_section.add_quantity(Quantity(name='n_atoms', type=int))

        This will add the quantity definition to this section definition,
        and add the respective Python descriptor as an attribute to this class.
        """
        quantities = self.m_data.setdefault('Quantity', [])
        quantities.append(quantity)

        setattr(self.section_cls, quantity.name, quantity)

712

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
class Package(Definition):
    name: 'Quantity' = None
    """ The name of the package. """

    description: 'Quantity' = None
    """ A human readable description of this package. """


class sub_section:
    """ Allows to assign a section class as a sub-section to another section class. """

    def __init__(self, section: SectionDef, **kwargs):
        if isinstance(section, type):
            self.section_def = cast(MObject, section).m_section
        else:
            self.section_def = cast(Section, section)

    def __get__(self, obj: MObject, type=None) -> Union[MObject, Section]:
        if obj is None:
            # the class attribute case
            return self.section_def

        else:
            # the object attribute case
            m_data_value = obj.m_data.get(self.section_def.name, None)
            if m_data_value is None:
                if self.section_def.repeats:
                    m_data_value = []

            return m_data_value

    def __set__(self, obj: MObject, value: Union[MObject, List[MObject]]):
        raise NotImplementedError('Sub sections cannot be set directly. Use m_create.')

    def __delete__(self, obj):
        raise NotImplementedError('Sub sections cannot be deleted directly.')


# TODO Category(MObject), a definition kind for "abstract type declarations" and a
#      separate generalization/specialization/is-a hierarchy.


Section.m_section = Section(repeats=True, name='Section', _bs=True)
756
Section.m_section.m_section = Section.m_section
757
Section.m_section.section_cls = Section
758

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
Quantity.m_section = Section(repeats=True, parent=Section.m_section, name='Quantity', _bs=True)

Definition.name = Quantity(
    type=str, name='name', _bs=True, description='''
    The name of the quantity. Must be unique within a section.
    ''')
Definition.description = Quantity(
    type=str, name='description', _bs=True, description='''
    An optional human readable description.
    ''')
Definition.links = Quantity(
    type=str, shape=['0..*'], name='links', _bs=True, description='''
    A list of URLs to external resource that describe this definition.
    ''')

Section.repeats = Quantity(
    type=bool, name='repeats', default=False, _bs=True,
    description='''
    Wether instances of this section can occur repeatedly in the parent section.
    ''')
Section.parent = Quantity(
    type=Section.m_section, name='parent', _bs=True, description='''
    The section definition of parent sections. Only section instances of this definition
    can contain section instances of this definition.
    ''')
784

785
Quantity.m_section.section_cls = Quantity
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
Quantity.type = Quantity(
    type=Union[type, Enum, Section], name='type', _bs=True, description='''
    The type of the quantity.

    Can be one of the following:

    - none to support any value
    - a build-in primitive Python type, e.g. ``int``, ``str``
    - an instance of :class:`Enum`, e.g. ``Enum(['one', 'two', 'three'])
    - a instance of Section, i.e. a section definition. This will define a reference
    - a custom meta-info DataType

    In the NOMAD CoE meta-info this was basically the ``dTypeStr``.
    ''')
Quantity.shape = Quantity(
    type=Dimension, shape=['0..*'], name='shape', _bs=True, description='''
    The shape of the quantity that defines its dimensionality.
803

804
805
806
807
808
809
810
811
812
813
814
    A shape is a list, where each item defines a dimension. Each dimension can be:

    - an integer that defines the exact size of the dimension, e.g. ``[3]`` is the
      shape of a spacial vector
    - the name of an int typed quantity in the same section
    - a range specification as string build from a lower bound (i.e. int number),
      and an upper bound (int or ``*`` denoting arbitrary large), e.g. ``'0..*'``, ``'1..3'``
    ''')
Quantity.unit = Quantity(
    type=_Unit, _bs=True, description='''
    The optional physics unit for this quantity.
815

816
817
818
819
820
821
822
823
    Units are given in `pint` units. Pint is a Python package that defines units and
    their algebra. There is a default registry :data:`units` that you can use.
    Example units are: ``units.m``, ``units.m / units.s ** 2``.
    ''')
Quantity.default = Quantity(
    type=None, _bs=True, default=None, description='''
    The default value for this quantity.
    ''')
824

825
826
Package.m_section = Section(repeats=True, name='Package', _bs=True)
Package.m_section.parent = Package.m_section
827

828
Section.m_section.parent = Package.m_section
829

830
831
832
833
834
Package.__init_section_cls__()
Section.__init_section_cls__()
Quantity.__init_section_cls__()


835
836
units = UnitRegistry()
""" The default pint unit registry that should be used to give units to quantity definitions. """