encyclopedia.py 44.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24
from elasticsearch_dsl.utils import AttrDict
25

26
from nomad import config, files
27
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
28
from nomad.atomutils import get_hill_decomposition
29
from nomad.datamodel.datamodel import EntryArchive
30
from .api import api
31

32
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
33
34
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
53
54


55
def get_es_doc_values(es_doc, mapping, keys=None):
56
57
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
58
    """
59
60
61
    if keys is None:
        keys = mapping.keys()

62
    result = {}
63
    for key in keys:
64
        es_key = mapping[key]
65
66
67
68
69
70
71
        try:
            value = es_doc
            for part in es_key.split("."):
                value = getattr(value, part)
        except AttributeError:
            value = None
        result[key] = value
72
73
74
75
76

    return result


material_query = api.parser()
77
78
79
80
81
82
83
84
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
85
86
    # General
    "material_id": fields.String,
87
88
    "formula": fields.String,
    "formula_reduced": fields.String,
89
    "system_type": fields.String,
90
    "n_matches": fields.Integer,
91
92
    # Representative properties shown on overview page
    "representative_structure": fields.String,
93
    # Bulk only
94
    "has_free_wyckoff_parameters": fields.Boolean,
95
    "strukturbericht_designation": fields.String,
96
    "material_name": fields.String,
97
98
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
99
    "point_group": fields.String,
100
101
102
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
103
104
    "structure_type": fields.String,
})
105
106


107
@ns.route("/materials/<string:material_id>")
108
class EncMaterialResource(Resource):
109
110
111
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
112
    @api.expect(material_query)
113
    @api.marshal_with(material_result, skip_none=True)
114
115
116
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
117
118
119
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
120
        repr_keys = set(["representative_structure"])
121
        if prop is not None:
122
123
124
125
126
127
            if prop in repr_keys:
                es_keys = ["calc_id"]
                repr_keys = set([prop])
            else:
                keys = [prop]
                es_keys = [material_prop_map[prop]]
128
129
        else:
            keys = list(material_prop_map.keys())
130
            es_keys = list(material_prop_map.values()) + ["calc_id"]
131

132
133
134
135
136
137
138
139
140
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

        # Since we are looking for an exact match, we use filter context
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
141
            "bool",
142
            filter=[
143
144
145
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
146
147
148
            ]
        )
        s = s.query(query)
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        # The representative idealized structure simply comes from the first
        # calculation when the calculations are alphabetically sorted by their
        # calc_id. Thus we sort the results here if the representative
        # structure is requested. Coming up with a good way to select the
        # representative one is pretty tricky in general, there are several
        # options:
        # - Lowest energy: This would be most intuitive, but the energy scales
        #   between codes do not match, and the energy may not have been
        #   reported.
        # - Volume that is closest to mean volume: how to calculate volume for
        #   molecules, surfaces, etc...
        # - Random: We would want the representative visualization to be
        #   relatively stable.
        if "representative_structure" in repr_keys:
            s = s.extra(**{
                "sort": [{"calc_id": {"order": "asc"}}],
                "_source": {"includes": es_keys},
                "size": 1,
            })
        else:
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "_source": {"includes": es_keys},
            })
174

175
176
        response = s.execute()

177
        # No such material
178
        if len(response) == 0:
179
            abort(404, message="There is no material {}".format(material_id))
180

181
        # Add values from ES entry
182
        entry = response[0]
183
        result = get_es_doc_values(entry, material_prop_map, keys)
184

185
186
187
188
        # Add representative properties
        if "representative_structure" in repr_keys:
            result["representative_structure"] = entry.calc_id

189
190
191
        return result, 200


192
range_query = api.model("range_query", {
193
194
195
    "max": fields.Float,
    "min": fields.Float,
})
196
197
198
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
199
200
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
201
202
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
203
        "element": fields.String,
204
        "page": fields.Integer(default=1),
205
        "after": fields.Nested(materials_after, allow_null=True),
206
207
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
208
        "mode": fields.String(default="aggregation"),
209
    })),
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
225
})
226
227
228
229
230
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
231
    "after": fields.Nested(materials_after),
232
233
})

234
235
236
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
    "results": fields.List(fields.Nested(material_result)),
237
    "pages": fields.Nested(pages_result),
238
    "es_query": fields.String(allow_null=False),
239
240
241
})


242
@ns.route("/materials")
243
class EncMaterialsResource(Resource):
244
245
246
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
247
    @api.expect(materials_query, validate=False)
248
    @api.marshal_with(materials_result, skip_none=True)
249
    @api.doc("materials")
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

        filters = []
        must_nots = []
        musts = []

        # Add term filters
264
265
        filters.append(Q("term", published=True))
        filters.append(Q("term", with_embargo=False))
266
267
268
269
270
271
272

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
273
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
318

319
320
        # Create query for elements or formula
        search_by = data["search_by"]
321
        mode = search_by["mode"]
322
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
323
        elements = search_by["element"]
324
325
326
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
327
328
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
329
330
331
332
333
334
335
336
337
338
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
339
340
341
342
343
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
344
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
345
346
347
348
349
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
350
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
351
            query_string = " ".join(query_string)
352
353
354

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
355
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
356
357
358
359
360
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
377
378
                ))

379
380
        page = search_by["page"]
        per_page = search_by["per_page"]
381
        after = search_by["after"]
382
        bool_query = Q(
383
            "bool",
384
385
386
387
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
388

389
390
391
        # 1: The paginated approach: No way to know the amount of matches,
        # but can return aggregation results in a quick fashion including
        # the number of matches entries per material.
392
        if mode == "aggregation":
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
            # The top query filters out entries based on the user query
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)

            # The materials are grouped by using three aggregations:
            # "Composite" to enable scrolling, "Terms" to enable selecting
            # by material_id and "Top Hits" to fetch a single
            # representative material document. Unnecessary fields are
            # filtered to reduce data transfer.
            terms_agg = A("terms", field="encyclopedia.material.material_id")
            composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}
            if after is not None:
                composite_kwargs["after"] = after
            composite_agg = A("composite", **composite_kwargs)
            composite_agg.metric("representative", A(
                "top_hits",
                size=1,
                _source={"includes": list(material_prop_map.values())},
            ))
            s.aggs.bucket("materials", composite_agg)

            # We ignore the top level hits
            s = s.extra(**{
                "size": 0,
            })
419

420
421
422
423
424
            response = s.execute()
            materials = response.aggs.materials.buckets
            if len(materials) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")
            after = response.aggs.materials["after_key"]
425
426
427
428

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
429
            keys = list(material_prop_map.keys())
430
431
            for material in materials:
                representative = material["representative"][0]
432
433
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
434
435
436
437
438
439
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
440
                "after": after,
441
442
            }
        # 2. Collapse approach. Quickly provides a list of materials
443
        # corresponding to the query, offers full pagination, doesn"t include
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        # the number of matches per material.
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
459
                abort(404, message="No materials found for the given search criteria or pagination.")
460
461
462

            # Loop over materials
            result_list = []
463
            keys = list(material_prop_map.keys())
464
            for material in response:
465
                mat_result = get_es_doc_values(material, material_prop_map, keys)
466
467
468
469
470
471
472
473
474
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.hits.total,
            }
475
476
477

        result = {
            "results": result_list,
478
            "pages": pages,
479
        }
480
        return result, 200
481
482


483
groups_result = api.model("groups_result", {
484
485
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
486
487
488
})


489
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
490
class EncGroupsResource(Resource):
491
492
493
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
494
    @api.marshal_with(groups_result)
495
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
496
    def get(self, material_id):
497
498
499
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
500
501
502
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
503
            "bool",
504
            filter=[
505
506
507
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
508
509
510
            ],
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
511
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
512
513
            ],
            should=[
514
515
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
516
517
518
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
519
520

        s = Search(index=config.elastic.index_name)
521
522
523
524
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
602
603
604
605
606

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
607
        # "index.max_inner_result_window" that limits the number of results
608
609
610
611
612
613
614
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
615
        s.aggs.bucket("groups_eos", energy_aggregation)
616

617
618
619
620
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
621

622
        # Collect information for each group from the aggregations
623
        response = s.execute()
624

625
626
627
628
629
630
631
632
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
633
        }
634
635

        return group_dict, 200
636
637


638
639
640
641
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
            ]
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
695
696


697
698
calcs_query = api.parser()
calcs_query.add_argument(
699
700
701
702
703
704
    "page",
    default=0,
    type=int,
    help="The page number to return.",
    location="args"
)
705
calcs_query.add_argument(
706
707
708
709
710
711
712
713
714
715
716
717
    "per_page",
    default=25,
    type=int,
    help="The number of results per page",
    location="args"
)
calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
718
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
719
720
721
722
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
723
724
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
725
726
727
728
729
730
731
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
732
    "core_electron_treatment": fields.String,
733
734
735
736
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
737
738
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
739
740
741
742
743
744
745
746
747
})
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
})


@ns.route("/materials/<string:material_id>/calculations")
748
class EncCalculationsResource(Resource):
749
750
751
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
752
    @api.expect(calcs_query, validate=False)
753
754
755
756
    @api.doc("enc_calculations")
    def get(self, material_id):
        """Used to return all calculations related to the given material.
        """
757
        args = calcs_query.parse_args()
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        page = args["page"]
        per_page = args["per_page"]

        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "_source": {"includes": list(calc_prop_map.values())},
            "size": per_page,
            "from": page,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
791
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
792
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
793
794
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
795
796
797
798
799
800
801
802
803
804
805
806
807
808
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
            "pages": {
                "per_page": per_page,
                "page": page,
            }
        }

        return result, 200


809
810
811
812
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
813
814
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
815
    "properties": fields.List(fields.String),
816
    "n_histogram_bins": fields.Integer,
817
818
819
820
821
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
822
    "histogram": fields.Nested(histogram, skip_none=True)
823
824
})
statistics_result = api.model("statistics_result", {
825
826
827
828
829
830
831
832
833
834
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
835
})
836
837
838
839
840
841
842
843
844
845
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
846
    "band_gap": "encyclopedia.properties.band_gap",
847
}
848
849
850


@ns.route("/materials/<string:material_id>/statistics")
851
class EncStatisticsResource(Resource):
852
853
854
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
855
856
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
857
858
    @api.doc("enc_statistics")
    def post(self, material_id):
859
860
        """Used to return statistics related to the specified material and
        calculations.
861
        """
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

885
886
887
888
889
890
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

891
892
893
894
895
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

896
897
898
899
900
901
902
903
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
904
        n_bins = data["n_histogram_bins"]
905
906
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
907
908
            if stats.count == 0:
                continue
909
            interval = (stats.max * 1.001 - stats.min) / n_bins
910
911
            if interval == 0:
                interval = 1
912
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
913
914
915
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

916
        # Return results
917
918
919
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
920
921
            if stats.count == 0:
                continue
922
923
924
925
926
927
928
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
929
                "histogram": {
930
931
932
                    "occurrences": occurrences,
                    "values": values,
                }
933
            }
934

935
        return result, 200
936
937
938
939
940
941
942
943
944
945
946


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
947
    "variables": fields.List(fields.Nested(wyckoff_variables_result, skip_none=True)),
948
})
949
950
951
952
953
954
955
956
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
957
958
959
960
961
962

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
963
    "lattice_parameters": fields.Nested(lattice_parameters),
964
965
966
967
968
969
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result)),
})

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
986
987
988
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
989
990
991
992
993
994
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
995
996
997
998
999
1000
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },