encyclopedia.py 53.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20
import numpy as np
21

22
from flask_restplus import Resource, abort, fields, marshal
23
from flask import request, g
24
from elasticsearch_dsl import Search, Q, A
25
from elasticsearch_dsl.utils import AttrDict
26

27
28
from nomad import config, infrastructure, search
from nomad.files import UploadFiles
29
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
30
from nomad.atomutils import get_hill_decomposition
31
from nomad.datamodel.datamodel import EntryArchive
32
from .api import api
33
from .auth import authenticate, create_authorization_predicate
34

35
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
36
37
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
56
57


58
59
60
61
62
63
64
65
66
67
68
69
def rgetattr(obj, attr_name):
    """Used to perform attribute access based on a (possibly nested) attribute
    name given as string.
    """
    try:
        for attr in attr_name.split("."):
            obj = obj[attr]
    except KeyError:
        return None
    return obj


70
def get_es_doc_values(es_doc, mapping, keys=None):
71
72
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
73
    """
74
75
76
    if keys is None:
        keys = mapping.keys()

77
    result = {}
78
    for key in keys:
79
        es_key = mapping[key]
80
        value = rgetattr(es_doc, es_key)
81
        result[key] = value
82
83
84
85

    return result


86
def get_enc_filter():
87
88
    """Returns a shared term filter that will leave out unpublished (of other
    users), embargoed or invalid entries.
89
    """
90
91
92
93
94
95
    # Handle authentication
    s = search.SearchRequest()
    if g.user is not None:
        s.owner('visible', user_id=g.user.user_id)
    else:
        s.owner('public')
96
    return [
97
        s.q,
98
99
100
101
        Q("term", encyclopedia__status="success"),
    ]


102
material_query = api.parser()
103
104
105
106
107
108
109
110
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
111
112
    # General
    "material_id": fields.String,
113
114
    "formula": fields.String,
    "formula_reduced": fields.String,
115
    "system_type": fields.String,
116
    "n_matches": fields.Integer,
117
    # Bulk only
118
    "has_free_wyckoff_parameters": fields.Boolean,
119
    "strukturbericht_designation": fields.String,
120
    "material_name": fields.String,
121
122
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
123
    "point_group": fields.String,
124
125
126
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
127
128
    "structure_type": fields.String,
})
129
130


131
@ns.route("/materials/<string:material_id>")
132
class EncMaterialResource(Resource):
133
134
135
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
136
    @api.expect(material_query)
137
    @api.marshal_with(material_result, skip_none=True)
138
    @authenticate()
139
    def get(self, material_id):
140
141
        """Used to retrieve basic information related to the specified
        material.
142
        """
143
144
145
146
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
147
148
            keys = [prop]
            es_keys = [material_prop_map[prop]]
149
150
        else:
            keys = list(material_prop_map.keys())
151
            es_keys = list(material_prop_map.values())
152

153
154
155
156
157
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)
        query = Q(
158
            "bool",
159
            filter=get_enc_filter() + [
160
                Q("term", encyclopedia__material__material_id=material_id),
161
162
163
            ]
        )
        s = s.query(query)
164

165
        # Only one representative entry is returned by collapsing the results.
166
167
        s = s.extra(**{
            "_source": {"includes": es_keys},
168
            "size": 1,
169
170
            "collapse": {"field": "encyclopedia.material.material_id"},
        })
171
172
        response = s.execute()

173
        # No such material
174
        if len(response) == 0:
175
            abort(404, message="There is no material {}".format(material_id))
176

177
        # Add values from ES entry
178
        entry = response[0]
179
        result = get_es_doc_values(entry, material_prop_map, keys)
180

181
182
183
        return result, 200


184
range_query = api.model("range_query", {
185
186
187
    "max": fields.Float,
    "min": fields.Float,
})
188
189
190
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
191
192
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
193
194
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
195
        "element": fields.String,
196
        "page": fields.Integer(default=1),
197
        "after": fields.Nested(materials_after, allow_null=True),
198
199
200
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
    })),
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
216
})
217
218
219
220
221
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
222
    "after": fields.Nested(materials_after),
223
224
})

225
226
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
227
228
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
229
    "es_query": fields.String(allow_null=False),
230
231
232
})


233
@ns.route("/materials")
234
class EncMaterialsResource(Resource):
235
236
237
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
238
    @api.expect(materials_query, validate=False)
239
    @api.marshal_with(materials_result, skip_none=True)
240
    @api.doc("materials")
241
    @authenticate()
242
243
244
245
246
247
248
249
250
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        # The queries that correspond to AND queries typically need to access
        # multiple calculations at once to find the material ids that
        # correspond to the query. To implement this behaviour we need to run
        # an initial aggregation that checks that the requested properties are
        # present for a material. This is a a very crude solution that does not
        # scale to complex queries, but I'm not sure we can do much better
        # until we have a separate index for materials.
        property_map = {
            "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
            "has_band_structure": "encyclopedia.properties.electronic_band_structure",
            "has_dos": "encyclopedia.properties.electronic_dos",
            "has_fermi_surface": "encyclopedia.properties.fermi_surface",
        }
        requested_properties = []
        # The size is set very large because all the results need to be
        # returned. We cannot get the results in a paginated way with composite
        # aggregation, because pipeline aggregations are not compatible with
        # them.
        agg_parent = A("terms", field="encyclopedia.material.material_id", size=5000000)
        for key, value in property_map.items():
            if data[key] is True:
                agg = A("filter", exists={"field": value})
                agg_parent.bucket(key, agg)
                requested_properties.append(key)
        if len(requested_properties) > 1:
            bool_query = Q(
                "bool",
                filter=get_enc_filter(),
            )
280
281

            # s = Search(index=config.elastic.index_name)
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            s = s.query(bool_query)
            s.aggs.bucket("materials", agg_parent)
            buckets_path = {x: "{}._count".format(x) for x in requested_properties}
            script = " && ".join(["params.{} > 0".format(x) for x in requested_properties])
            agg_parent.pipeline("selector", A(
                "bucket_selector",
                buckets_path=buckets_path,
                script=script,
            ))
            s = s.extra(**{
                "size": 0,
            })
            response = s.execute()
            material_ids = [x["key"] for x in response.aggs.materials.buckets]
            if len(material_ids) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")

        # After finding the material ids that fill the AND conditions, continue
        # with a simple OR query.
301
        filters = get_enc_filter()
302
303
304
305
        must_nots = []
        musts = []

        def add_terms_filter(source, target, query_type="terms"):
306
            if data[source] is not None:
307
308
                filters.append(Q(query_type, **{target: data[source]}))

309
310
        if len(requested_properties) > 1:
            filters.append(Q("terms", encyclopedia__material__material_id=material_ids))
311
312
        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
313
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
314
315
316
317
318
319
320
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

321
322
        # Add exists filters if only one property was requested. The initial
        # aggregation will handlei multiple simultaneous properties.
323
324
325
326
327
328
329
330
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)
331
332
333
        if len(requested_properties) == 1:
            prop_name = requested_properties[0]
            add_exists_filter(prop_name, property_map[prop_name])
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
357

358
359
360
        # Create query for elements or formula
        search_by = data["search_by"]
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
361
        elements = search_by["element"]
362
363
364
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
365
366
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
367
368
369
370
371
372
373
374
375
376
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
377
378
379
380
381
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
382
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
383
384
385
386
387
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
388
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
389
            query_string = " ".join(query_string)
390
391
392

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
393
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
394
395
396
397
398
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
415
416
                ))

417
418
        page = search_by["page"]
        per_page = search_by["per_page"]
419
        after = search_by["after"]
420
        bool_query = Q(
421
            "bool",
422
423
424
425
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
426

427
428
429
430
        # The top query filters out entries based on the user query
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        # 1: The paginated approach: No way to know the amount of materials,
        # but can return aggregation results in a quick fashion including
        # the number of calculation entries per material.
        mode = "collapse"
        if mode == "aggregation":
            # The materials are grouped by using three aggregations:
            # "Composite" to enable scrolling, "Terms" to enable selecting
            # by material_id and "Top Hits" to fetch a single
            # representative material document. Unnecessary fields are
            # filtered to reduce data transfer.
            terms_agg = A("terms", field="encyclopedia.material.material_id")
            composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}

            # The number of matched materials is only requested on the first
            # search, not for each page.
            if after is not None:
                composite_kwargs["after"] = after
            else:
                cardinality_agg = A("cardinality", field="encyclopedia.material.material_id", precision_threshold=1000)
                s.aggs.metric("n_materials", cardinality_agg)

            composite_agg = A("composite", **composite_kwargs)
            composite_agg.metric("representative", A(
                "top_hits",
                size=1,
                _source={"includes": list(material_prop_map.values())},
            ))
            s.aggs.bucket("materials", composite_agg)

            # We ignore the top level hits and sort by reduced material formula.
            s = s.extra(**{
                "size": 0,
            })

            response = s.execute()
            materials = response.aggs.materials.buckets
            if len(materials) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")
            after_new = response.aggs.materials["after_key"]

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
            keys = list(material_prop_map.keys())
            for material in materials:
                representative = material["representative"][0]
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
                "after": after_new,
            }
            if after is None:
                n_materials = response.aggs.n_materials.value
                pages["total"] = n_materials

        # 2. Collapse approach. Quickly provides a list of materials
492
493
        # corresponding to the query, offers full pagination, the number of
        # matches per material needs to be requested with a separate query.
494
495
496
497
498
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)

            # Add cardinality aggregation that gives out the total number of materials
499
            cardinality_agg = A("cardinality", field="encyclopedia.material.material_id", precision_threshold=1000)
500
            s.aggs.metric("n_materials", cardinality_agg)
501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
                "sort": [{"encyclopedia.material.formula_reduced": {"order": "asc"}}],
                "explain": True,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")

            # Gather number of entries per material with a separate query
            material_ids = [x.encyclopedia.material.material_id for x in response]
            s = Search(index=config.elastic.index_name)
            bool_query = Q(
                "bool",
                filter=Q("terms", encyclopedia__material__material_id=material_ids),
            )
            s2 = s.query(bool_query)
            s2.aggs.bucket("n_matches", A("terms", field="encyclopedia.material.material_id"))
            response2 = s2.execute()
            matmap = {x.key: x.doc_count for x in response2.aggs.n_matches}
528

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            # Loop over materials
            result_list = []
            keys = list(material_prop_map.keys())
            for material in response:
                # Get values from the collapsed doc
                mat_result = get_es_doc_values(material, material_prop_map, keys)
                mat_id = material.encyclopedia.material.material_id
                mat_result["n_matches"] = matmap[mat_id]
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.aggs.n_materials.value,
            }
546
547
548

        result = {
            "results": result_list,
549
            "pages": pages,
550
        }
551
        return result, 200
552
553


554
groups_result = api.model("groups_result", {
555
556
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
557
558
559
})


560
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
561
class EncGroupsResource(Resource):
562
563
564
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
565
    @api.marshal_with(groups_result)
566
    @api.doc("enc_materials")
567
    @authenticate()
Lauri Himanen's avatar
Lauri Himanen committed
568
    def get(self, material_id):
569
570
571
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
572
573
574
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
575
            "bool",
576
            filter=get_enc_filter() + [Q("term", encyclopedia__material__material_id=material_id)],
577
578
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
579
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
580
581
            ],
            should=[
582
583
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
584
585
586
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
587
588

        s = Search(index=config.elastic.index_name)
589
590
591
592
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
646
    @authenticate()
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
661
            filter=get_enc_filter() + [
662
663
664
665
666
667
668
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
669
670
671
672
673

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
674
        # "index.max_inner_result_window" that limits the number of results
675
676
677
678
679
680
681
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
682
        s.aggs.bucket("groups_eos", energy_aggregation)
683

684
685
686
687
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
688

689
        # Collect information for each group from the aggregations
690
        response = s.execute()
691

692
693
694
695
696
697
698
699
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
700
        }
701
702

        return group_dict, 200
703
704


705
706
707
708
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
731
    @authenticate()
732
733
734
735
736
737
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

738
739
740
741
742
743
744
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
745
            filter=get_enc_filter()
746
747
748
749
750
751
752
753
754
755
756
757
758
759
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
760
761
762
763


calc_prop_map = {
    "calc_id": "calc_id",
764
    "upload_id": "upload_id",
765
766
767
768
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
769
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
770
771
772
773
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
774
775
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
776
777
778
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
779
    "upload_id": fields.String,
780
781
782
783
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
784
    "core_electron_treatment": fields.String,
785
786
787
788
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
789
790
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
791
})
792
793
794
795
796
797
representatives_result = api.model("representatives_result", {
    "idealized_structure": fields.String,
    "electronic_band_structure": fields.String,
    "electronic_dos": fields.String,
    "thermodynamical_properties": fields.String,
})
798
799
800
801
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
802
    "representatives": fields.Nested(representatives_result, skip_none=True),
803
804
805
806
})


@ns.route("/materials/<string:material_id>/calculations")
807
class EncCalculationsResource(Resource):
808
809
810
811
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_calculations")
812
    @authenticate()
813
    def get(self, material_id):
814
815
816
        """Used to return all calculations related to the given material. Also
        returns a representative calculation for each property shown in the
        overview page.
817
818
819
820
        """
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
821
            filter=get_enc_filter() + [
822
823
824
825
826
827
828
829
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
830
831
832
            "_source": {"includes": list(calc_prop_map.values()) + ["dft.xc_functional"]},
            "size": 10000,
            "from": 0,
833
834
835
836
837
838
839
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

840
841
842
843
844
845
846
        # Add representative properties. It might be possible to write a custom
        # ES scoring mechanism or aggregation to also perform the selection.
        representatives = {}

        def calc_score(entry):
            """Custom scoring function used to sort results by their
            "quality". Currently built to mimic the scoring that was used
847
848
849
            in the old Encyclopedia GUI. Primarily sorts by quality measure,
            ties are broken by alphabetic sorting of entry_id in order to
            return consistent results.
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
            """
            score = 0
            functional_score = {
                "GGA": 100
            }
            code_score = {
                "FHI-aims": 3,
                "VASP": 2,
                "Quantum Espresso": 1,
            }
            code_name = entry.dft.code_name
            functional = entry.dft.xc_functional
            has_dos = rgetattr(entry, "encyclopedia.properties.electronic_band_structure") is not None
            has_bs = rgetattr(entry, "encyclopedia.properties.electronic_dos") is not None
            score += functional_score.get(functional, 0)
            score += code_score.get(code_name, 0)
            if has_dos and has_bs:
                score += 10

869
            return (score, entry["calc_id"])
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

        # The calculations are first sorted by "quality"
        sorted_calc = sorted(response, key=lambda x: calc_score(x), reverse=True)

        # Get the requested representative properties
        representatives["idealized_structure"] = sorted_calc[0].calc_id
        thermo_found = False
        bs_found = False
        dos_found = False
        for calc in sorted_calc:
            if rgetattr(calc, "encyclopedia.properties.thermodynamical_properties") is not None:
                representatives["thermodynamical_properties"] = calc.calc_id
                thermo_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_band_structure") is not None:
                representatives["electronic_band_structure"] = calc.calc_id
                bs_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_dos") is not None:
                representatives["electronic_dos"] = calc.calc_id
                dos_found = True
            if thermo_found and bs_found and dos_found:
                break

892
893
894
895
896
        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
897
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
898
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
899
900
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
901
902
903
904
905
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
906
            "representatives": representatives,
907
908
909
910
911
        }

        return result, 200


912
913
914
915
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
916
917
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
918
    "properties": fields.List(fields.String),
919
    "n_histogram_bins": fields.Integer,
920
921
922
923
924
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
925
    "histogram": fields.Nested(histogram, skip_none=True)
926
927
})
statistics_result = api.model("statistics_result", {
928
929
930
931
932
933
934
935
936
937
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
938
})
939
940
941
942
943
944
945
946
947
948
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
949
    "band_gap": "encyclopedia.properties.band_gap",
950
}
951
952
953


@ns.route("/materials/<string:material_id>/statistics")
954
class EncStatisticsResource(Resource):
955
956
957
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
958
959
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
960
    @api.doc("enc_statistics")
961
    @authenticate()
962
    def post(self, material_id):
963
964
        """Used to return statistics related to the specified material and
        calculations.
965
        """
966
967
968
969
970
971
972
973
974
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
975
            filter=get_enc_filter() + [
976
977
978
979
980
981
982
983
984
985
986
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

987
988
989
990
991
992
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

993
994
995
996
997
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

998
999
1000
1001
1002
1003
1004
1005
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
1006
        n_bins = data["n_histogram_bins"]
1007
1008
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
1009
1010
            if stats.count == 0:
                continue
1011
            interval = (stats.max * 1.001 - stats.min) / n_bins
1012
1013
            if interval == 0:
                interval = 1
1014
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
1015
1016
1017
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

1018
        # Return results
1019
1020
1021
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
1022
1023
            if stats.count == 0:
                continue
1024
1025
1026
1027
1028
1029
1030
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
1031
                "histogram": {
1032
1033
1034
                    "occurrences": occurrences,
                    "values": values,
                }
1035
            }
1036

1037
        return result, 200
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
1049
    "variables": fields.Nested(wyckoff_variables_result, skip_none=True),
1050
})
1051
1052
1053
1054
1055
1056
1057
1058
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
1059
1060
1061
1062
1063
1064

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
1065
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
1066
1067
1068
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
1069
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result, skip_none=True)),
1070
1071
})

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
1088
1089
1090
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
1091
1092
1093
1094
1095
1096
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
1097
1098
1099
1100
1101
1102
1103
1104
1105
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
1106
1107
1108
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
1109
1110
1111
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
1122
1123
1124
1125
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
1126
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
1127
1128
1129
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
1130
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
1131
})
1132
1133
1134
calculation_property_result = api.model("calculation_property_result", {
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
    "energies": fields.Nested(energies, skip_none=True),
1135
1136
1137
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
1138
    "wyckoff_sets": fields.Nested(wyckoff_set_result, skip_none=True),
1139
    "idealized_structure": fields.Nested(idealized_structure_result, skip_none=True),
1140
1141
1142
    "band_gap": fields.Float,
    "electronic_band_structure": fields.Nested(electronic_band_structure, skip_none=True),
    "electronic_dos": fields.Nested(electronic_dos, skip_none=True),
1143
1144
1145
    "phonon_band_structure": fields.Raw,
    "phonon_dos": fields.Raw,
    "thermodynamical_properties": fields.Raw,
1146
1147
1148
})


1149
1150
1151
1152
1153
@ns.route("/materials/<string:material_id>/calculations/<string:calc_id>")
class EncCalculationResource(Resource):
    @api.response(404, "Material or calculation not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1154
    @api.expect(calculation_property_query, validate=False)
1155
    @api.marshal_with(calculation_property_result, skip_none=True)
1156
    @api.doc("enc_calculation")
1157
    @authenticate()
1158
1159
1160
1161
    def post(self, material_id, calc_id):
        """Used to return calculation details. Some properties are not
        available in the ES index and are instead read from the Archive
        directly.
1162
        """
1163
1164
1165
1166
1167
1168
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), calculation_property_query)
        except Exception as e:
            abort(400, message=str(e))

1169
1170
1171
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
1172
            filter=get_enc_filter() + [
1173
1174
1175
1176
1177
1178
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", calc_id=calc_id),
            ]
        )
        s = s.query(query)

1179
        # Create dictionaries for requested properties
1180
        references = []
1181
1182
1183
        properties = data["properties"]
        arch_properties = {}
        es_properties = {}
1184
1185
1186
1187
1188
1189
1190
        ref_properties = set((
            "electronic_dos",
            "electronic_band_structure",
            "thermodynamical_properties",
            "phonon_dos",
            "phonon_band_structure",
        ))
1191
1192
1193
1194
        for prop in properties:
            es_source = calculation_property_map[prop].get("es_source")
            if es_source is not None:
                es_properties[prop] = es_source
1195
                if prop in ref_properties:
1196
                    references.append(prop)
1197
1198
1199
1200
            arch_source = calculation_property_map[prop].get("arch_source")
            if arch_source is not None:
                arch_properties[prop] = arch_source

1201
        # The query is filtered already on the ES side so we don't need to
1202
        # transfer so much data.
1203
1204
1205
        sources = [
            "upload_id",
            "calc_id",
1206
            "encyclopedia",
1207
1208
1209
        ]
        sources += list(es_properties.values())

1210
        s = s.extra(**{
1211
            "_source": {"includes": sources},
1212