encyclopedia.py 44.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24
from elasticsearch_dsl.utils import AttrDict
25

26
from nomad import config, files
27
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
28
from nomad.atomutils import get_hill_decomposition
29
from nomad.datamodel.datamodel import EntryArchive
30
from .api import api
31

32
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
33
34
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
53
54


55
def get_es_doc_values(es_doc, mapping, keys=None):
56
57
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
58
    """
59
60
61
    if keys is None:
        keys = mapping.keys()

62
    result = {}
63
    for key in keys:
64
        es_key = mapping[key]
65
66
67
68
69
70
71
        try:
            value = es_doc
            for part in es_key.split("."):
                value = getattr(value, part)
        except AttributeError:
            value = None
        result[key] = value
72
73
74
75
76

    return result


material_query = api.parser()
77
78
79
80
81
82
83
84
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
85
86
    # General
    "material_id": fields.String,
87
88
    "formula": fields.String,
    "formula_reduced": fields.String,
89
    "system_type": fields.String,
90
    "n_matches": fields.Integer,
91
92
    # Representative properties shown on overview page
    "representative_structure": fields.String,
93
    # Bulk only
94
    "has_free_wyckoff_parameters": fields.Boolean,
95
    "strukturbericht_designation": fields.String,
96
    "material_name": fields.String,
97
98
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
99
    "point_group": fields.String,
100
101
102
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
103
104
    "structure_type": fields.String,
})
105
106


107
@ns.route("/materials/<string:material_id>")
108
class EncMaterialResource(Resource):
109
110
111
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
112
    @api.expect(material_query)
113
    @api.marshal_with(material_result, skip_none=True)
114
115
116
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
117
118
119
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
120
        repr_keys = set(["representative_structure"])
121
        if prop is not None:
122
123
124
125
126
127
            if prop in repr_keys:
                es_keys = ["calc_id"]
                repr_keys = set([prop])
            else:
                keys = [prop]
                es_keys = [material_prop_map[prop]]
128
129
        else:
            keys = list(material_prop_map.keys())
130
            es_keys = list(material_prop_map.values()) + ["calc_id"]
131

132
133
134
135
136
137
138
139
140
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

        # Since we are looking for an exact match, we use filter context
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
141
            "bool",
142
            filter=[
143
144
145
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
146
147
148
            ]
        )
        s = s.query(query)
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        # The representative idealized structure simply comes from the first
        # calculation when the calculations are alphabetically sorted by their
        # calc_id. Thus we sort the results here if the representative
        # structure is requested. Coming up with a good way to select the
        # representative one is pretty tricky in general, there are several
        # options:
        # - Lowest energy: This would be most intuitive, but the energy scales
        #   between codes do not match, and the energy may not have been
        #   reported.
        # - Volume that is closest to mean volume: how to calculate volume for
        #   molecules, surfaces, etc...
        # - Random: We would want the representative visualization to be
        #   relatively stable.
        if "representative_structure" in repr_keys:
            s = s.extra(**{
                "sort": [{"calc_id": {"order": "asc"}}],
                "_source": {"includes": es_keys},
                "size": 1,
            })
        else:
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "_source": {"includes": es_keys},
            })
174

175
176
        response = s.execute()

177
        # No such material
178
        if len(response) == 0:
179
            abort(404, message="There is no material {}".format(material_id))
180

181
        # Add values from ES entry
182
        entry = response[0]
183
        result = get_es_doc_values(entry, material_prop_map, keys)
184

185
186
187
188
        # Add representative properties
        if "representative_structure" in repr_keys:
            result["representative_structure"] = entry.calc_id

189
190
191
        return result, 200


192
range_query = api.model("range_query", {
193
194
195
    "max": fields.Float,
    "min": fields.Float,
})
196
197
198
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
199
200
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
201
202
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
203
        "element": fields.String,
204
        "page": fields.Integer(default=1),
205
        "after": fields.Nested(materials_after, allow_null=True),
206
207
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
208
        "mode": fields.String(default="aggregation"),
209
    })),
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
225
})
226
227
228
229
230
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
231
    "after": fields.Nested(materials_after),
232
233
})

234
235
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
236
237
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
238
    "es_query": fields.String(allow_null=False),
239
240
241
})


242
@ns.route("/materials")
243
class EncMaterialsResource(Resource):
244
245
246
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
247
    @api.expect(materials_query, validate=False)
248
    @api.marshal_with(materials_result, skip_none=True)
249
    @api.doc("materials")
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

        filters = []
        must_nots = []
        musts = []

        # Add term filters
264
265
        filters.append(Q("term", published=True))
        filters.append(Q("term", with_embargo=False))
266
267
268
269
270
271
272

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
273
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
318

319
320
        # Create query for elements or formula
        search_by = data["search_by"]
321
        mode = search_by["mode"]
322
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
323
        elements = search_by["element"]
324
325
326
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
327
328
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
329
330
331
332
333
334
335
336
337
338
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
339
340
341
342
343
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
344
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
345
346
347
348
349
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
350
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
351
            query_string = " ".join(query_string)
352
353
354

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
355
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
356
357
358
359
360
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
377
378
                ))

379
380
        page = search_by["page"]
        per_page = search_by["per_page"]
381
        after = search_by["after"]
382
        bool_query = Q(
383
            "bool",
384
385
386
387
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
388

389
        # 1: The paginated approach: No way to know the amount of materials,
390
        # but can return aggregation results in a quick fashion including
391
        # the number of calculation entries per material.
392
        if mode == "aggregation":
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
            # The top query filters out entries based on the user query
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)

            # The materials are grouped by using three aggregations:
            # "Composite" to enable scrolling, "Terms" to enable selecting
            # by material_id and "Top Hits" to fetch a single
            # representative material document. Unnecessary fields are
            # filtered to reduce data transfer.
            terms_agg = A("terms", field="encyclopedia.material.material_id")
            composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}
            if after is not None:
                composite_kwargs["after"] = after
            composite_agg = A("composite", **composite_kwargs)
            composite_agg.metric("representative", A(
                "top_hits",
                size=1,
                _source={"includes": list(material_prop_map.values())},
            ))
            s.aggs.bucket("materials", composite_agg)

            # We ignore the top level hits
            s = s.extra(**{
                "size": 0,
            })
419

420
421
422
423
424
            response = s.execute()
            materials = response.aggs.materials.buckets
            if len(materials) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")
            after = response.aggs.materials["after_key"]
425
426
427
428

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
429
            keys = list(material_prop_map.keys())
430
431
            for material in materials:
                representative = material["representative"][0]
432
433
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
434
435
436
437
438
439
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
440
                "after": after,
441
442
            }
        # 2. Collapse approach. Quickly provides a list of materials
443
        # corresponding to the query, offers full pagination, doesn"t include
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        # the number of matches per material.
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
459
                abort(404, message="No materials found for the given search criteria or pagination.")
460
461
462

            # Loop over materials
            result_list = []
463
            keys = list(material_prop_map.keys())
464
            for material in response:
465
                mat_result = get_es_doc_values(material, material_prop_map, keys)
466
467
468
469
470
471
472
473
474
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.hits.total,
            }
475
476
477

        result = {
            "results": result_list,
478
            "pages": pages,
479
        }
480
        return result, 200
481
482


483
groups_result = api.model("groups_result", {
484
485
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
486
487
488
})


489
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
490
class EncGroupsResource(Resource):
491
492
493
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
494
    @api.marshal_with(groups_result)
495
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
496
    def get(self, material_id):
497
498
499
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
500
501
502
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
503
            "bool",
504
            filter=[
505
506
507
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
508
509
510
            ],
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
511
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
512
513
            ],
            should=[
514
515
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
516
517
518
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
519
520

        s = Search(index=config.elastic.index_name)
521
522
523
524
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
602
603
604
605
606

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
607
        # "index.max_inner_result_window" that limits the number of results
608
609
610
611
612
613
614
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
615
        s.aggs.bucket("groups_eos", energy_aggregation)
616

617
618
619
620
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
621

622
        # Collect information for each group from the aggregations
623
        response = s.execute()
624

625
626
627
628
629
630
631
632
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
633
        }
634
635

        return group_dict, 200
636
637


638
639
640
641
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
            ]
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
695
696


697
698
calcs_query = api.parser()
calcs_query.add_argument(
699
700
701
702
703
704
    "page",
    default=0,
    type=int,
    help="The page number to return.",
    location="args"
)
705
calcs_query.add_argument(
706
    "per_page",
707
    default=10000,
708
709
710
711
712
713
714
715
716
717
    type=int,
    help="The number of results per page",
    location="args"
)
calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
718
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
719
720
721
722
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
723
724
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
725
726
727
728
729
730
731
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
732
    "core_electron_treatment": fields.String,
733
734
735
736
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
737
738
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
739
740
741
742
743
744
745
746
747
})
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
})


@ns.route("/materials/<string:material_id>/calculations")
748
class EncCalculationsResource(Resource):
749
750
751
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
752
    @api.expect(calcs_query, validate=False)
753
754
755
756
    @api.doc("enc_calculations")
    def get(self, material_id):
        """Used to return all calculations related to the given material.
        """
757
        args = calcs_query.parse_args()
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        page = args["page"]
        per_page = args["per_page"]

        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "_source": {"includes": list(calc_prop_map.values())},
            "size": per_page,
            "from": page,
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
790
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
791
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
792
793
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
794
795
796
797
798
799
800
801
802
803
804
805
806
807
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
            "pages": {
                "per_page": per_page,
                "page": page,
            }
        }

        return result, 200


808
809
810
811
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
812
813
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
814
    "properties": fields.List(fields.String),
815
    "n_histogram_bins": fields.Integer,
816
817
818
819
820
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
821
    "histogram": fields.Nested(histogram, skip_none=True)
822
823
})
statistics_result = api.model("statistics_result", {
824
825
826
827
828
829
830
831
832
833
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
834
})
835
836
837
838
839
840
841
842
843
844
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
845
    "band_gap": "encyclopedia.properties.band_gap",
846
}
847
848
849


@ns.route("/materials/<string:material_id>/statistics")
850
class EncStatisticsResource(Resource):
851
852
853
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
854
855
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
856
857
    @api.doc("enc_statistics")
    def post(self, material_id):
858
859
        """Used to return statistics related to the specified material and
        calculations.
860
        """
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

884
885
886
887
888
889
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

890
891
892
893
894
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

895
896
897
898
899
900
901
902
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
903
        n_bins = data["n_histogram_bins"]
904
905
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
906
907
            if stats.count == 0:
                continue
908
            interval = (stats.max * 1.001 - stats.min) / n_bins
909
910
            if interval == 0:
                interval = 1
911
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
912
913
914
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

915
        # Return results
916
917
918
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
919
920
            if stats.count == 0:
                continue
921
922
923
924
925
926
927
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
928
                "histogram": {
929
930
931
                    "occurrences": occurrences,
                    "values": values,
                }
932
            }
933

934
        return result, 200
935
936
937
938
939
940
941
942
943
944
945


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
946
    "variables": fields.List(fields.Nested(wyckoff_variables_result, skip_none=True)),
947
})
948
949
950
951
952
953
954
955
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
956
957
958
959
960
961

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
962
    "lattice_parameters": fields.Nested(lattice_parameters),
963
964
965
966
967
968
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result)),
})

969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
985
986
987
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
988
989
990
991
992
993
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
994
995
996
997
998
999
1000
1001
1002
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
1003
1004
1005
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
1006
1007
1008
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
1019
1020
1021
1022
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
1023
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
1024
1025
1026
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
1027
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
1028
})
1029
1030
1031
calculation_property_result = api.model("calculation_property_result", {
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
    "energies": fields.Nested(energies, skip_none=True),
1032
1033
1034
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
1035
    "wyckoff_sets": fields.Nested(wyckoff_set_result, skip_none=True),
1036
    "idealized_structure": fields.Nested(idealized_structure_result, skip_none=True),
1037
1038
1039
    "band_gap": fields.Float,
    "electronic_band_structure": fields.Nested(electronic_band_structure, skip_none=True),
    "electronic_dos": fields.Nested(electronic_dos, skip_none=True),
1040
1041
1042
    "phonon_band_structure": fields.Raw,
    "phonon_dos": fields.Raw,
    "thermodynamical_properties": fields.Raw,
1043
1044
1045
})


1046
1047
1048
1049
1050
@ns.route("/materials/<string:material_id>/calculations/<string:calc_id>")
class EncCalculationResource(Resource):
    @api.response(404, "Material or calculation not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1051
    @api.expect(calculation_property_query, validate=False)
1052
    @api.marshal_with(calculation_property_result, skip_none=True)
1053
    @api.doc("enc_calculation")
1054
1055
1056
1057
    def post(self, material_id, calc_id):
        """Used to return calculation details. Some properties are not
        available in the ES index and are instead read from the Archive
        directly.
1058
        """
1059
1060
1061
1062
1063
1064
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), calculation_property_query)
        except Exception as e:
            abort(400, message=str(e))

1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", calc_id=calc_id),
            ]
        )
        s = s.query(query)

1077
        # Create dictionaries for requested properties
1078
        references = []
1079
1080
1081
        properties = data["properties"]
        arch_properties = {}
        es_properties = {}
1082
1083
1084
1085
1086
1087
1088
        ref_properties = set((
            "electronic_dos",
            "electronic_band_structure",
            "thermodynamical_properties",
            "phonon_dos",
            "phonon_band_structure",
        ))
1089
1090
1091
1092
        for prop in properties:
            es_source = calculation_property_map[prop].get("es_source")
            if es_source is not None:
                es_properties[prop] = es_source
1093
                if prop in ref_properties:
1094
                    references.append(prop)
1095
1096
1097
1098
            arch_source = calculation_property_map[prop].get("arch_source")
            if arch_source is not None:
                arch_properties[prop] = arch_source

1099
        # The query is filtered already on the ES side so we don't need to
1100
        # transfer so much data.
1101
1102
1103
        sources = [
            "upload_id",
            "calc_id",
1104
            "encyclopedia",
1105
1106
1107
        ]
        sources += list(es_properties.values())

1108
        s = s.extra(**{
1109
            "_source": {"includes": sources},
1110
1111
1112
1113
1114
1115
1116
1117
1118
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {} with calculation {}".format(material_id, calc_id))

1119
1120
1121
        # Add references that are to be read from the archive
        for ref in references:
            arch_path = response[0]
Lauri Himanen's avatar
Lauri Himanen committed
1122
1123
1124
1125
1126
1127
1128
            try:
                for attr in es_properties[ref].split("."):
                    arch_path = arch_path[attr]
            except KeyError:
                pass
            else:
                arch_properties[ref] = arch_path
1129
1130
            del es_properties[ref]

1131
1132
1133
1134
1135
1136
1137
        # If any of the requested properties require data from the Archive, the
        # file is opened and read.
        result = {}
        if len(arch_properties) != 0:
            entry = response[0]
            upload_id = entry.upload_id
            calc_id = entry.calc_id
1138
            root = read_archive(
1139
1140
1141
1142
1143
                upload_id,
                calc_id,
            )

            # Add results from archive
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
            for key, arch_path in arch_properties.items():
                value = root[arch_path]

                # Save derived properties and turn into dict
                if key == "thermodynamical_properties":
                    specific_heat_capacity = value.specific_heat_capacity.magnitude.tolist()
                    specific_free_energy = value.specific_vibrational_free_energy_at_constant_volume.magnitude.tolist()
                value = value.m_to_dict()
                if key == "thermodynamical_properties":
                    value["specific_heat_capacity"] = specific_heat_capacity
                    value["specific_vibrational_free_energy_at_constant_volume"] = specific_free_energy
1155

1156
                # DOS results are simplified.
1157
                if key == "electronic_dos":
Lauri Himanen's avatar
Lauri Himanen committed
1158
1159
1160
1161
1162
1163
                    if "dos_energies_normalized" in value:
                        value["dos_energies"] = value["dos_energies_normalized"]
                        del value["dos_energies_normalized"]
                    if "dos_values_normalized" in value:
                        value["dos_values"] = value["dos_values_normalized"]
                        del value["dos_values_normalized"]
1164

1165
1166
1167
                result[key] = value

        # Add results from ES
1168
1169
        for prop, es_source in es_properties.items():
            value = response[0]
Lauri Himanen's avatar
Lauri Himanen committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
            try:
                for attr in es_source.split("."):
                    value = value[attr]
            except KeyError:
                pass
            else:
                if isinstance(value, AttrDict):
                    value = value.to_dict()
                result[prop] = value
1179
1180
1181
1182

        return result, 200


1183
def read_archive(upload_id: str, calc_id: str) -> EntryArchive:
1184
    """Used to read data from the archive.
1185
1186
1187
1188
1189
1190

    Args:
        upload_id: Upload id.
        calc_id: Calculation id.

    Returns:
1191
        MSection: The section_run as MSection
1192
1193
        For each path, a dictionary containing the path as key and the returned
        section as value.
1194
1195
1196
1197
    """
    upload_files = files.UploadFiles.get(upload_id)
    with upload_files.read_archive(calc_id) as archive:
        data = archive[calc_id]
1198
        root = EntryArchive.m_from_dict(data.to_dict())
1199

1200
    return root