encyclopedia.py 44.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import numpy as np
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24
from elasticsearch_dsl.utils import AttrDict
25

26
from nomad import config, files
27
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
28
from nomad.atomutils import get_hill_decomposition
29
from nomad.datamodel.datamodel import EntryArchive
30
from .api import api
31

32
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
33
34
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
53
54


55
56
57
58
59
60
61
62
63
64
65
66
def rgetattr(obj, attr_name):
    """Used to perform attribute access based on a (possibly nested) attribute
    name given as string.
    """
    try:
        for attr in attr_name.split("."):
            obj = obj[attr]
    except KeyError:
        return None
    return obj


67
def get_es_doc_values(es_doc, mapping, keys=None):
68
69
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
70
    """
71
72
73
    if keys is None:
        keys = mapping.keys()

74
    result = {}
75
    for key in keys:
76
        es_key = mapping[key]
77
        value = rgetattr(es_doc, es_key)
78
        result[key] = value
79
80
81
82
83

    return result


material_query = api.parser()
84
85
86
87
88
89
90
91
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
92
93
    # General
    "material_id": fields.String,
94
95
    "formula": fields.String,
    "formula_reduced": fields.String,
96
    "system_type": fields.String,
97
    "n_matches": fields.Integer,
98
    # Bulk only
99
    "has_free_wyckoff_parameters": fields.Boolean,
100
    "strukturbericht_designation": fields.String,
101
    "material_name": fields.String,
102
103
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
104
    "point_group": fields.String,
105
106
107
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
108
109
    "structure_type": fields.String,
})
110
111
112
enc_filter = [
    Q("term", published=True),
    Q("term", with_embargo=False),
113
    Q("term", encyclopedia__status="success"),
114
]
115
116


117
@ns.route("/materials/<string:material_id>")
118
class EncMaterialResource(Resource):
119
120
121
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
122
    @api.expect(material_query)
123
    @api.marshal_with(material_result, skip_none=True)
124
125
126
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
127
128
129
130
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
131
132
            keys = [prop]
            es_keys = [material_prop_map[prop]]
133
134
        else:
            keys = list(material_prop_map.keys())
135
            es_keys = list(material_prop_map.values())
136

137
138
139
140
141
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

142
        # Since we are looking for an exact match, we use filtek context
143
144
145
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
146
            "bool",
147
            filter=enc_filter + [
148
                Q("term", encyclopedia__material__material_id=material_id),
149
150
151
            ]
        )
        s = s.query(query)
152

153
154
155
156
157
158
159
160
        # If a representative calculation is requested, all calculations are
        # returned in order to perform the scoring with a custom loop.
        # Otherwise, only one representative entry is returned.
        s = s.extra(**{
            "_source": {"includes": es_keys},
            "size": 10000,
            "collapse": {"field": "encyclopedia.material.material_id"},
        })
161
162
        response = s.execute()

163
        # No such material
164
        if len(response) == 0:
165
            abort(404, message="There is no material {}".format(material_id))
166

167
        # Add values from ES entry
168
        entry = response[0]
169
        result = get_es_doc_values(entry, material_prop_map, keys)
170

171
172
173
        return result, 200


174
range_query = api.model("range_query", {
175
176
177
    "max": fields.Float,
    "min": fields.Float,
})
178
179
180
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
181
182
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
183
184
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
185
        "element": fields.String,
186
        "page": fields.Integer(default=1),
187
        "after": fields.Nested(materials_after, allow_null=True),
188
189
190
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
    })),
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
206
})
207
208
209
210
211
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
212
    "after": fields.Nested(materials_after),
213
214
})

215
216
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
217
218
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
219
    "es_query": fields.String(allow_null=False),
220
221
222
})


223
@ns.route("/materials")
224
class EncMaterialsResource(Resource):
225
226
227
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
228
    @api.expect(materials_query, validate=False)
229
    @api.marshal_with(materials_result, skip_none=True)
230
    @api.doc("materials")
231
232
233
234
235
236
237
238
239
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

240
        filters = enc_filter
241
242
243
244
245
246
247
248
249
        must_nots = []
        musts = []

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
250
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
295

296
297
298
        # Create query for elements or formula
        search_by = data["search_by"]
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
299
        elements = search_by["element"]
300
301
302
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
303
304
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
305
306
307
308
309
310
311
312
313
314
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
315
316
317
318
319
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
320
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
321
322
323
324
325
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
326
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
327
            query_string = " ".join(query_string)
328
329
330

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
331
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
332
333
334
335
336
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
353
354
                ))

355
356
        page = search_by["page"]
        per_page = search_by["per_page"]
357
        after = search_by["after"]
358
        bool_query = Q(
359
            "bool",
360
361
362
363
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        # The top query filters out entries based on the user query
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)

        # The materials are grouped by using three aggregations:
        # "Composite" to enable scrolling, "Terms" to enable selecting
        # by material_id and "Top Hits" to fetch a single
        # representative material document. Unnecessary fields are
        # filtered to reduce data transfer.
        terms_agg = A("terms", field="encyclopedia.material.material_id")
        composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}

        # The number of matched materials is only requested on the first
        # search, not for each page.
        if after is not None:
            composite_kwargs["after"] = after
        else:
            cardinality_agg = A("cardinality", field="encyclopedia.material.material_id")
            s.aggs.metric("n_materials", cardinality_agg)
        composite_agg = A("composite", **composite_kwargs)
        composite_agg.metric("representative", A(
            "top_hits",
            size=1,
            _source={"includes": list(material_prop_map.values())},
        ))
        s.aggs.bucket("materials", composite_agg)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        response = s.execute()
        materials = response.aggs.materials.buckets
        if len(materials) == 0:
            abort(404, message="No materials found for the given search criteria or pagination.")
        after_new = response.aggs.materials["after_key"]

        # Gather results from aggregations
        result_list = []
        materials = response.aggs.materials.buckets
        keys = list(material_prop_map.keys())
        for material in materials:
            representative = material["representative"][0]
            mat_dict = get_es_doc_values(representative, material_prop_map, keys)
            mat_dict["n_matches"] = material.doc_count
            result_list.append(mat_dict)

        # Page information is incomplete for aggregations
        pages = {
            "page": page,
            "per_page": per_page,
            "after": after_new,
        }

        if after is None:
            n_materials = response.aggs.n_materials.value
            pages["total"] = n_materials
423
424
425

        result = {
            "results": result_list,
426
            "pages": pages,
427
        }
428
        return result, 200
429
430


431
groups_result = api.model("groups_result", {
432
433
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
434
435
436
})


437
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
438
class EncGroupsResource(Resource):
439
440
441
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
442
    @api.marshal_with(groups_result)
443
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
444
    def get(self, material_id):
445
446
447
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
448
449
450
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
451
            "bool",
452
            filter=enc_filter + [Q("term", encyclopedia__material__material_id=material_id)],
453
454
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
455
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
456
457
            ],
            should=[
458
459
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
460
461
462
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
463
464

        s = Search(index=config.elastic.index_name)
465
466
467
468
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
536
            filter=enc_filter + [
537
538
539
540
541
542
543
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
544
545
546
547
548

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
549
        # "index.max_inner_result_window" that limits the number of results
550
551
552
553
554
555
556
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
557
        s.aggs.bucket("groups_eos", energy_aggregation)
558

559
560
561
562
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
563

564
        # Collect information for each group from the aggregations
565
        response = s.execute()
566

567
568
569
570
571
572
573
574
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
575
        }
576
577

        return group_dict, 200
578
579


580
581
582
583
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

612
613
614
615
616
617
618
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
619
            filter=enc_filter
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
634
635
636
637
638
639
640
641


calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
642
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
643
644
645
646
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
647
648
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
649
650
651
652
653
654
655
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
656
    "core_electron_treatment": fields.String,
657
658
659
660
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
661
662
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
663
})
664
665
666
667
668
669
representatives_result = api.model("representatives_result", {
    "idealized_structure": fields.String,
    "electronic_band_structure": fields.String,
    "electronic_dos": fields.String,
    "thermodynamical_properties": fields.String,
})
670
671
672
673
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
674
    "representatives": fields.Nested(representatives_result, skip_none=True),
675
676
677
678
})


@ns.route("/materials/<string:material_id>/calculations")
679
class EncCalculationsResource(Resource):
680
681
682
683
684
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_calculations")
    def get(self, material_id):
685
686
687
        """Used to return all calculations related to the given material. Also
        returns a representative calculation for each property shown in the
        overview page.
688
689
690
691
        """
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
692
            filter=enc_filter + [
693
694
695
696
697
698
699
700
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
701
702
703
            "_source": {"includes": list(calc_prop_map.values()) + ["dft.xc_functional"]},
            "size": 10000,
            "from": 0,
704
705
706
707
708
709
710
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
        # Add representative properties. It might be possible to write a custom
        # ES scoring mechanism or aggregation to also perform the selection.
        representatives = {}

        def calc_score(entry):
            """Custom scoring function used to sort results by their
            "quality". Currently built to mimic the scoring that was used
            in the old Encyclopedia GUI.
            """
            score = 0
            functional_score = {
                "GGA": 100
            }
            code_score = {
                "FHI-aims": 3,
                "VASP": 2,
                "Quantum Espresso": 1,
            }
            code_name = entry.dft.code_name
            functional = entry.dft.xc_functional
            has_dos = rgetattr(entry, "encyclopedia.properties.electronic_band_structure") is not None
            has_bs = rgetattr(entry, "encyclopedia.properties.electronic_dos") is not None
            score += functional_score.get(functional, 0)
            score += code_score.get(code_name, 0)
            if has_dos and has_bs:
                score += 10

            return score

        # The calculations are first sorted by "quality"
        sorted_calc = sorted(response, key=lambda x: calc_score(x), reverse=True)

        # Get the requested representative properties
        representatives["idealized_structure"] = sorted_calc[0].calc_id
        thermo_found = False
        bs_found = False
        dos_found = False
        for calc in sorted_calc:
            if rgetattr(calc, "encyclopedia.properties.thermodynamical_properties") is not None:
                representatives["thermodynamical_properties"] = calc.calc_id
                thermo_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_band_structure") is not None:
                representatives["electronic_band_structure"] = calc.calc_id
                bs_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_dos") is not None:
                representatives["electronic_dos"] = calc.calc_id
                dos_found = True
            if thermo_found and bs_found and dos_found:
                break

761
762
763
764
765
        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
766
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
767
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
768
769
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
770
771
772
773
774
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
775
            "representatives": representatives,
776
777
778
779
780
        }

        return result, 200


781
782
783
784
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
785
786
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
787
    "properties": fields.List(fields.String),
788
    "n_histogram_bins": fields.Integer,
789
790
791
792
793
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
794
    "histogram": fields.Nested(histogram, skip_none=True)
795
796
})
statistics_result = api.model("statistics_result", {
797
798
799
800
801
802
803
804
805
806
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
807
})
808
809
810
811
812
813
814
815
816
817
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
818
    "band_gap": "encyclopedia.properties.band_gap",
819
}
820
821
822


@ns.route("/materials/<string:material_id>/statistics")
823
class EncStatisticsResource(Resource):
824
825
826
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
827
828
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
829
830
    @api.doc("enc_statistics")
    def post(self, material_id):
831
832
        """Used to return statistics related to the specified material and
        calculations.
833
        """
834
835
836
837
838
839
840
841
842
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
843
            filter=enc_filter + [
844
845
846
847
848
849
850
851
852
853
854
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

855
856
857
858
859
860
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

861
862
863
864
865
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

866
867
868
869
870
871
872
873
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
874
        n_bins = data["n_histogram_bins"]
875
876
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
877
878
            if stats.count == 0:
                continue
879
            interval = (stats.max * 1.001 - stats.min) / n_bins
880
881
            if interval == 0:
                interval = 1
882
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
883
884
885
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

886
        # Return results
887
888
889
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
890
891
            if stats.count == 0:
                continue
892
893
894
895
896
897
898
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
899
                "histogram": {
900
901
902
                    "occurrences": occurrences,
                    "values": values,
                }
903
            }
904

905
        return result, 200
906
907
908
909
910
911
912
913
914
915
916


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
917
    "variables": fields.List(fields.Nested(wyckoff_variables_result, skip_none=True)),
918
})
919
920
921
922
923
924
925
926
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
927
928
929
930
931
932

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
933
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
934
935
936
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
937
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result, skip_none=True)),
938
939
})

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
956
957
958
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
959
960
961
962
963
964
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
965
966
967
968
969
970
971
972
973
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
974
975
976
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
977
978
979
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
980
981
982
983
984
985
986
987
988
989
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
990
991
992
993
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
994
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
995
996
997
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
998
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
999
})
1000
1001
1002
calculation_property_result = api.model("calculation_property_result", {
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
    "energies": fields.Nested(energies, skip_none=True),
1003
1004
1005
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
1006
    "wyckoff_sets": fields.Nested(wyckoff_set_result, skip_none=True),
1007
    "idealized_structure": fields.Nested(idealized_structure_result, skip_none=True),
1008
1009
1010
    "band_gap": fields.Float,
    "electronic_band_structure": fields.Nested(electronic_band_structure, skip_none=True),
    "electronic_dos": fields.Nested(electronic_dos, skip_none=True),
1011
1012
1013
    "phonon_band_structure": fields.Raw,
    "phonon_dos": fields.Raw,
    "thermodynamical_properties": fields.Raw,
1014
1015
1016
})


1017
1018
1019
1020
1021
@ns.route("/materials/<string:material_id>/calculations/<string:calc_id>")
class EncCalculationResource(Resource):
    @api.response(404, "Material or calculation not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1022
    @api.expect(calculation_property_query, validate=False)
1023
    @api.marshal_with(calculation_property_result, skip_none=True)
1024
    @api.doc("enc_calculation")
1025
1026
1027
1028
    def post(self, material_id, calc_id):
        """Used to return calculation details. Some properties are not
        available in the ES index and are instead read from the Archive
        directly.
1029
        """
1030
1031
1032
1033
1034
1035
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), calculation_property_query)
        except Exception as e:
            abort(400, message=str(e))

1036
1037
1038
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
1039
            filter=enc_filter + [
1040
1041
1042
1043
1044
1045
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", calc_id=calc_id),
            ]
        )
        s = s.query(query)

1046
        # Create dictionaries for requested properties
1047
        references = []
1048
1049
1050
        properties = data["properties"]
        arch_properties = {}
        es_properties = {}
1051
1052
1053
1054
1055
1056
1057
        ref_properties = set((
            "electronic_dos",
            "electronic_band_structure",
            "thermodynamical_properties",
            "phonon_dos",
            "phonon_band_structure",
        ))
1058
1059
1060
1061
        for prop in properties:
            es_source = calculation_property_map[prop].get("es_source")
            if es_source is not None:
                es_properties[prop] = es_source
1062
                if prop in ref_properties:
1063
                    references.append(prop)
1064
1065
1066
1067
            arch_source = calculation_property_map[prop].get("arch_source")
            if arch_source is not None:
                arch_properties[prop] = arch_source

1068
        # The query is filtered already on the ES side so we don't need to
1069
        # transfer so much data.
1070
1071
1072
        sources = [
            "upload_id",
            "calc_id",
1073
            "encyclopedia",
1074
1075
1076
        ]
        sources += list(es_properties.values())

1077
        s = s.extra(**{
1078
            "_source": {"includes": sources},
1079
1080
1081
1082
1083
1084
1085
1086
1087
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {} with calculation {}".format(material_id, calc_id))

1088
1089
1090
        # Add references that are to be read from the archive
        for ref in references:
            arch_path = response[0]
1091
1092
            arch_path = rgetattr(arch_path, es_properties[ref])
            if arch_path is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1093
                arch_properties[ref] = arch_path
1094
1095
            del es_properties[ref]

1096
1097
1098
1099
1100
1101
1102
        # If any of the requested properties require data from the Archive, the
        # file is opened and read.
        result = {}
        if len(arch_properties) != 0:
            entry = response[0]
            upload_id = entry.upload_id
            calc_id = entry.calc_id
1103
            root = read_archive(
1104
1105
1106
1107
1108
                upload_id,
                calc_id,
            )

            # Add results from archive
1109
1110
1111
1112
1113
1114
1115
            for key, arch_path in arch_properties.items():
                value = root[arch_path]

                # Save derived properties and turn into dict
                if key == "thermodynamical_properties":
                    specific_heat_capacity = value.specific_heat_capacity.magnitude.tolist()
                    specific_free_energy = value.specific_vibrational_free_energy_at_constant_volume.magnitude.tolist()
1116
1117
1118
1119
                if isinstance(value, list):
                    value = [x.m_to_dict() for x in value]
                else:
                    value = value.m_to_dict()
1120
1121
1122
                if key == "thermodynamical_properties":
                    value["specific_heat_capacity"] = specific_heat_capacity
                    value["specific_vibrational_free_energy_at_constant_volume"] = specific_free_energy
1123

1124
                # DOS results are simplified.
1125
                if key == "electronic_dos":
Lauri Himanen's avatar
Lauri Himanen committed
1126
1127
1128
1129
1130
1131
                    if "dos_energies_normalized" in value:
                        value["dos_energies"] = value["dos_energies_normalized"]
                        del value["dos_energies_normalized"]
                    if "dos_values_normalized" in value:
                        value["dos_values"] = value["dos_values_normalized"]
                        del value["dos_values_normalized"]
1132

1133
1134
1135
1136
                # Pre-calculate k-path length to be used as x-coordinate in
                # plots. If the VBM and CBM information is needed later, it
                # can be added as indices along the path. The exact
                # k-points and occupations are removed to save band width.
1137
                if key == "electronic_band_structure" or key == "phonon_band_structure":
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
                    segments = value["section_k_band_segment"]
                    k_path_length = 0
                    for segment in segments:
                        k_points = np.array(segment["band_k_points"])
                        segment_length = np.linalg.norm(k_points[-1, :] - k_points[0, :])
                        k_path_distances = k_path_length + np.linalg.norm(k_points - k_points[0, :], axis=1)
                        k_path_length += segment_length
                        segment["k_path_distances"] = k_path_distances.tolist()
                        del segment["band_k_points"]
                        if "band_occupations" in segment:
                            del segment["band_occupations"]

1150
1151
1152
                result[key] = value

        # Add results from ES
1153
        for prop, es_source in es_properties.items():
1154
1155
            value = rgetattr(response[0], es_source)
            if value is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1156
1157
1158
                if isinstance(value, AttrDict):
                    value = value.to_dict()
                result[prop] = value
1159
1160
1161
1162

        return result, 200


1163
def read_archive(upload_id: str, calc_id: str) -> EntryArchive:
1164
    """Used to read data from the archive.
1165
1166
1167
1168
1169
1170

    Args:
        upload_id: Upload id.
        calc_id: Calculation id.

    Returns:
1171
        MSection: The section_run as MSection
1172
1173
        For each path, a dictionary containing the path as key and the returned
        section as value.
1174
    """
1175
1176
    upload_files = files.PublicUploadFiles(upload_id)
    with upload_files.read_archive(calc_id, access="public") as archive:
1177
        data = archive[calc_id]
1178
        root = EntryArchive.m_from_dict(data.to_dict())
1179

1180
    return root