encyclopedia.py 55.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20
import numpy as np
21

22
from flask_restplus import Resource, abort, fields, marshal
23
from flask import request, g
24
from elasticsearch_dsl import Search, Q, A
25
from elasticsearch_dsl.utils import AttrDict
26

27
28
from nomad import config, infrastructure, search
from nomad.files import UploadFiles
29
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
30
from nomad.atomutils import get_hill_decomposition
31
from nomad.datamodel.datamodel import EntryArchive
32
from nomad.datamodel.material import Material
33
from .api import api
34
from .auth import authenticate, create_authorization_predicate
35

36
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
37
38
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
57
58


59
60
61
62
63
64
65
66
67
68
69
70
def rgetattr(obj, attr_name):
    """Used to perform attribute access based on a (possibly nested) attribute
    name given as string.
    """
    try:
        for attr in attr_name.split("."):
            obj = obj[attr]
    except KeyError:
        return None
    return obj


71
def get_es_doc_values(es_doc, mapping, keys=None):
72
73
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
74
    """
75
76
77
    if keys is None:
        keys = mapping.keys()

78
    result = {}
79
    for key in keys:
80
        es_key = mapping[key]
81
        value = rgetattr(es_doc, es_key)
82
        result[key] = value
83
84
85
86

    return result


87
def get_enc_filter():
88
89
    """Returns a shared term filter that will leave out unpublished (of other
    users), embargoed or invalid entries.
90
    """
91
92
93
94
95
96
    # Handle authentication
    s = search.SearchRequest()
    if g.user is not None:
        s.owner('visible', user_id=g.user.user_id)
    else:
        s.owner('public')
97
    return [
98
        s.q,
99
100
101
102
        Q("term", encyclopedia__status="success"),
    ]


103
104
105
106
107
108
109
similarity = api.model("similarity", {
    # General
    "material_id": fields.String,
    "value": fields.Float,
    "formula": fields.String,
    "space_group_number": fields.Integer,
})
110
material_query = api.parser()
111
112
113
114
115
116
117
118
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
119
120
    # General
    "material_id": fields.String,
121
122
    "formula": fields.String,
    "formula_reduced": fields.String,
123
    "system_type": fields.String,
124
    "n_matches": fields.Integer,
125
    # Bulk only
126
    "has_free_wyckoff_parameters": fields.Boolean,
127
    "strukturbericht_designation": fields.String,
128
    "material_name": fields.String,
129
130
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
131
    "point_group": fields.String,
132
133
134
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
135
    "structure_type": fields.String,
136
    "similarity": fields.List(fields.Nested(similarity, skip_none=True), skip_none=True),
137
})
138
139


140
@ns.route("/materials/<string:material_id>")
141
class EncMaterialResource(Resource):
142
143
144
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
145
    @api.expect(material_query)
146
    @api.marshal_with(material_result, skip_none=True)
147
    @authenticate()
148
    def get(self, material_id):
149
150
        """Used to retrieve basic information related to the specified
        material.
151
        """
152
153
154
155
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
156
157
            keys = [prop]
            es_keys = [material_prop_map[prop]]
158
159
        else:
            keys = list(material_prop_map.keys())
160
            es_keys = list(material_prop_map.values())
161

162
163
164
165
166
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)
        query = Q(
167
            "bool",
168
            filter=get_enc_filter() + [
169
                Q("term", encyclopedia__material__material_id=material_id),
170
171
172
            ]
        )
        s = s.query(query)
173

174
        # Only one representative entry is returned by collapsing the results.
175
176
        s = s.extra(**{
            "_source": {"includes": es_keys},
177
            "size": 1,
178
179
            "collapse": {"field": "encyclopedia.material.material_id"},
        })
180
181
        response = s.execute()

182
        # No such material
183
        if len(response) == 0:
184
            abort(404, message="There is no material {}".format(material_id))
185

186
        # Add values from ES entry
187
        entry = response[0]
188
        result = get_es_doc_values(entry, material_prop_map, keys)
189

190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        # Add similarity data that is currently stored in MongoDB. In the
        # future a lot of the data will be accessed here.
        try:
            material = Material.m_def.a_mongo.get(material_id=material_id)
            dos_similarity = material.similarity.electronic_dos
        except KeyError:
            # No similarity data for this material
            pass
        else:
            # Only include similarity for materials that exist on the current
            # deployment to avoid dead links.
            similar_ids = dos_similarity.material_ids
            id_value_map = {key: value for key, value in zip(dos_similarity.material_ids, dos_similarity.values)}
            bool_query = Q(
                "bool",
                filter=get_enc_filter() + [Q("terms", encyclopedia__material__material_id=similar_ids)],
            )
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)
            s = s.extra(**{
                "_source": {"includes": [
                    "encyclopedia.material.material_id",
                    "encyclopedia.material.formula_reduced",
                    "encyclopedia.material.bulk.space_group_number",
                ]},
                "size": 5,
                "collapse": {"field": "encyclopedia.material.material_id"},
            })
            response = s.execute()
            similarity = []
            for hit in response.hits:
                try:
                    similarity.append({
                        "material_id": hit.encyclopedia.material.material_id,
                        "value": id_value_map[hit.encyclopedia.material.material_id],
                        "formula": hit.encyclopedia.material.formula_reduced,
                        "space_group_number": hit.encyclopedia.material.bulk.space_group_number,
                    })
                except AttributeError:
                    pass
            if similarity:
                result["similarity"] = similarity

233
234
235
        return result, 200


236
range_query = api.model("range_query", {
237
238
239
    "max": fields.Float,
    "min": fields.Float,
})
240
241
242
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
243
244
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
245
246
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
247
        "element": fields.String,
248
        "page": fields.Integer(default=1),
249
        "after": fields.Nested(materials_after, allow_null=True),
250
251
252
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
    })),
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
268
})
269
270
271
272
273
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
274
    "after": fields.Nested(materials_after),
275
276
})

277
278
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
279
280
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
281
    "es_query": fields.String(allow_null=False),
282
283
284
})


285
@ns.route("/materials")
286
class EncMaterialsResource(Resource):
287
288
289
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
290
    @api.expect(materials_query, validate=False)
291
    @api.marshal_with(materials_result, skip_none=True)
292
    @api.doc("materials")
293
    @authenticate()
294
295
296
297
298
299
300
301
302
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        # The queries that correspond to AND queries typically need to access
        # multiple calculations at once to find the material ids that
        # correspond to the query. To implement this behaviour we need to run
        # an initial aggregation that checks that the requested properties are
        # present for a material. This is a a very crude solution that does not
        # scale to complex queries, but I'm not sure we can do much better
        # until we have a separate index for materials.
        property_map = {
            "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
            "has_band_structure": "encyclopedia.properties.electronic_band_structure",
            "has_dos": "encyclopedia.properties.electronic_dos",
            "has_fermi_surface": "encyclopedia.properties.fermi_surface",
        }
        requested_properties = []
        # The size is set very large because all the results need to be
        # returned. We cannot get the results in a paginated way with composite
        # aggregation, because pipeline aggregations are not compatible with
        # them.
        agg_parent = A("terms", field="encyclopedia.material.material_id", size=5000000)
        for key, value in property_map.items():
            if data[key] is True:
                agg = A("filter", exists={"field": value})
                agg_parent.bucket(key, agg)
                requested_properties.append(key)
        if len(requested_properties) > 1:
            bool_query = Q(
                "bool",
                filter=get_enc_filter(),
            )
332
333

            # s = Search(index=config.elastic.index_name)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
            s = s.query(bool_query)
            s.aggs.bucket("materials", agg_parent)
            buckets_path = {x: "{}._count".format(x) for x in requested_properties}
            script = " && ".join(["params.{} > 0".format(x) for x in requested_properties])
            agg_parent.pipeline("selector", A(
                "bucket_selector",
                buckets_path=buckets_path,
                script=script,
            ))
            s = s.extra(**{
                "size": 0,
            })
            response = s.execute()
            material_ids = [x["key"] for x in response.aggs.materials.buckets]
            if len(material_ids) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")

        # After finding the material ids that fill the AND conditions, continue
        # with a simple OR query.
353
        filters = get_enc_filter()
354
355
356
357
        must_nots = []
        musts = []

        def add_terms_filter(source, target, query_type="terms"):
358
            if data[source] is not None:
359
360
                filters.append(Q(query_type, **{target: data[source]}))

361
362
        if len(requested_properties) > 1:
            filters.append(Q("terms", encyclopedia__material__material_id=material_ids))
363
364
        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
365
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
366
367
368
369
370
371
372
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

373
374
        # Add exists filters if only one property was requested. The initial
        # aggregation will handlei multiple simultaneous properties.
375
376
377
378
379
380
381
382
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)
383
384
385
        if len(requested_properties) == 1:
            prop_name = requested_properties[0]
            add_exists_filter(prop_name, property_map[prop_name])
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
409

410
411
412
        # Create query for elements or formula
        search_by = data["search_by"]
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
413
        elements = search_by["element"]
414
415
416
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
417
418
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
419
420
421
422
423
424
425
426
427
428
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
429
430
431
432
433
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
434
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
435
436
437
438
439
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
440
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
441
            query_string = " ".join(query_string)
442
443
444

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
445
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
446
447
448
449
450
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
467
468
                ))

469
470
        page = search_by["page"]
        per_page = search_by["per_page"]
471
        after = search_by["after"]
472
        bool_query = Q(
473
            "bool",
474
475
476
477
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
478

479
480
481
482
        # The top query filters out entries based on the user query
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
        # 1: The paginated approach: No way to know the amount of materials,
        # but can return aggregation results in a quick fashion including
        # the number of calculation entries per material.
        mode = "collapse"
        if mode == "aggregation":
            # The materials are grouped by using three aggregations:
            # "Composite" to enable scrolling, "Terms" to enable selecting
            # by material_id and "Top Hits" to fetch a single
            # representative material document. Unnecessary fields are
            # filtered to reduce data transfer.
            terms_agg = A("terms", field="encyclopedia.material.material_id")
            composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}

            # The number of matched materials is only requested on the first
            # search, not for each page.
            if after is not None:
                composite_kwargs["after"] = after
            else:
                cardinality_agg = A("cardinality", field="encyclopedia.material.material_id", precision_threshold=1000)
                s.aggs.metric("n_materials", cardinality_agg)

            composite_agg = A("composite", **composite_kwargs)
            composite_agg.metric("representative", A(
                "top_hits",
                size=1,
                _source={"includes": list(material_prop_map.values())},
            ))
            s.aggs.bucket("materials", composite_agg)

            # We ignore the top level hits and sort by reduced material formula.
            s = s.extra(**{
                "size": 0,
            })

            response = s.execute()
            materials = response.aggs.materials.buckets
            if len(materials) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")
            after_new = response.aggs.materials["after_key"]

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
            keys = list(material_prop_map.keys())
            for material in materials:
                representative = material["representative"][0]
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
                "after": after_new,
            }
            if after is None:
                n_materials = response.aggs.n_materials.value
                pages["total"] = n_materials

        # 2. Collapse approach. Quickly provides a list of materials
544
545
        # corresponding to the query, offers full pagination, the number of
        # matches per material needs to be requested with a separate query.
546
547
548
549
550
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)

            # Add cardinality aggregation that gives out the total number of materials
551
            cardinality_agg = A("cardinality", field="encyclopedia.material.material_id", precision_threshold=1000)
552
            s.aggs.metric("n_materials", cardinality_agg)
553

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
                "sort": [{"encyclopedia.material.formula_reduced": {"order": "asc"}}],
                "explain": True,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")

            # Gather number of entries per material with a separate query
            material_ids = [x.encyclopedia.material.material_id for x in response]
            s = Search(index=config.elastic.index_name)
            bool_query = Q(
                "bool",
                filter=Q("terms", encyclopedia__material__material_id=material_ids),
            )
            s2 = s.query(bool_query)
            s2.aggs.bucket("n_matches", A("terms", field="encyclopedia.material.material_id"))
            response2 = s2.execute()
            matmap = {x.key: x.doc_count for x in response2.aggs.n_matches}
580

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
            # Loop over materials
            result_list = []
            keys = list(material_prop_map.keys())
            for material in response:
                # Get values from the collapsed doc
                mat_result = get_es_doc_values(material, material_prop_map, keys)
                mat_id = material.encyclopedia.material.material_id
                mat_result["n_matches"] = matmap[mat_id]
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.aggs.n_materials.value,
            }
598
599
600

        result = {
            "results": result_list,
601
            "pages": pages,
602
        }
603
        return result, 200
604
605


606
groups_result = api.model("groups_result", {
607
608
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
609
610
611
})


612
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
613
class EncGroupsResource(Resource):
614
615
616
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
617
    @api.marshal_with(groups_result)
618
    @api.doc("enc_materials")
619
    @authenticate()
Lauri Himanen's avatar
Lauri Himanen committed
620
    def get(self, material_id):
621
622
623
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
624
625
626
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
627
            "bool",
628
            filter=get_enc_filter() + [Q("term", encyclopedia__material__material_id=material_id)],
629
630
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
631
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
632
633
            ],
            should=[
634
635
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
636
637
638
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
639
640

        s = Search(index=config.elastic.index_name)
641
642
643
644
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
698
    @authenticate()
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
713
            filter=get_enc_filter() + [
714
715
716
717
718
719
720
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
721
722
723
724
725

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
726
        # "index.max_inner_result_window" that limits the number of results
727
728
729
730
731
732
733
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
734
        s.aggs.bucket("groups_eos", energy_aggregation)
735

736
737
738
739
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
740

741
        # Collect information for each group from the aggregations
742
        response = s.execute()
743

744
745
746
747
748
749
750
751
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
752
        }
753
754

        return group_dict, 200
755
756


757
758
759
760
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
783
    @authenticate()
784
785
786
787
788
789
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

790
791
792
793
794
795
796
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
797
            filter=get_enc_filter()
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
812
813
814
815


calc_prop_map = {
    "calc_id": "calc_id",
816
    "upload_id": "upload_id",
817
818
819
820
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
821
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
822
823
824
825
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
826
827
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
828
829
830
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
831
    "upload_id": fields.String,
832
833
834
835
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
836
    "core_electron_treatment": fields.String,
837
838
839
840
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
841
842
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
843
})
844
845
846
847
848
849
representatives_result = api.model("representatives_result", {
    "idealized_structure": fields.String,
    "electronic_band_structure": fields.String,
    "electronic_dos": fields.String,
    "thermodynamical_properties": fields.String,
})
850
851
852
853
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
854
    "representatives": fields.Nested(representatives_result, skip_none=True),
855
856
857
858
})


@ns.route("/materials/<string:material_id>/calculations")
859
class EncCalculationsResource(Resource):
860
861
862
863
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_calculations")
864
    @authenticate()
865
    def get(self, material_id):
866
867
868
        """Used to return all calculations related to the given material. Also
        returns a representative calculation for each property shown in the
        overview page.
869
870
871
872
        """
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
873
            filter=get_enc_filter() + [
874
875
876
877
878
879
880
881
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
882
883
884
            "_source": {"includes": list(calc_prop_map.values()) + ["dft.xc_functional"]},
            "size": 10000,
            "from": 0,
885
886
887
888
889
890
891
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

892
893
894
895
896
897
898
        # Add representative properties. It might be possible to write a custom
        # ES scoring mechanism or aggregation to also perform the selection.
        representatives = {}

        def calc_score(entry):
            """Custom scoring function used to sort results by their
            "quality". Currently built to mimic the scoring that was used
899
900
901
            in the old Encyclopedia GUI. Primarily sorts by quality measure,
            ties are broken by alphabetic sorting of entry_id in order to
            return consistent results.
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
            """
            score = 0
            functional_score = {
                "GGA": 100
            }
            code_score = {
                "FHI-aims": 3,
                "VASP": 2,
                "Quantum Espresso": 1,
            }
            code_name = entry.dft.code_name
            functional = entry.dft.xc_functional
            has_dos = rgetattr(entry, "encyclopedia.properties.electronic_band_structure") is not None
            has_bs = rgetattr(entry, "encyclopedia.properties.electronic_dos") is not None
            score += functional_score.get(functional, 0)
            score += code_score.get(code_name, 0)
            if has_dos and has_bs:
                score += 10

921
            return (score, entry["calc_id"])
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

        # The calculations are first sorted by "quality"
        sorted_calc = sorted(response, key=lambda x: calc_score(x), reverse=True)

        # Get the requested representative properties
        representatives["idealized_structure"] = sorted_calc[0].calc_id
        thermo_found = False
        bs_found = False
        dos_found = False
        for calc in sorted_calc:
            if rgetattr(calc, "encyclopedia.properties.thermodynamical_properties") is not None:
                representatives["thermodynamical_properties"] = calc.calc_id
                thermo_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_band_structure") is not None:
                representatives["electronic_band_structure"] = calc.calc_id
                bs_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_dos") is not None:
                representatives["electronic_dos"] = calc.calc_id
                dos_found = True
            if thermo_found and bs_found and dos_found:
                break

944
945
946
947
948
        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
949
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
950
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
951
952
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
953
954
955
956
957
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
958
            "representatives": representatives,
959
960
961
962
963
        }

        return result, 200


964
965
966
967
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
968
969
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
970
    "properties": fields.List(fields.String),
971
    "n_histogram_bins": fields.Integer,
972
973
974
975
976
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
977
    "histogram": fields.Nested(histogram, skip_none=True)
978
979
})
statistics_result = api.model("statistics_result", {
980
981
982
983
984
985
986
987
988
989
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
990
})
991
992
993
994
995
996
997
998
999
1000
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
1001
    "band_gap": "encyclopedia.properties.band_gap",
1002
}
1003
1004
1005


@ns.route("/materials/<string:material_id>/statistics")
1006
class EncStatisticsResource(Resource):
1007
1008
1009
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1010
1011
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
1012
    @api.doc("enc_statistics")
1013
    @authenticate()
1014
    def post(self, material_id):
1015
1016
        """Used to return statistics related to the specified material and
        calculations.
1017
        """
1018
1019
1020
1021
1022
1023
1024
1025
1026
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
1027
            filter=get_enc_filter() + [
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

1039
1040
1041
1042
1043
1044
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

1045
1046
1047
1048
1049
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

1050
1051
1052
1053
1054
1055
1056
1057
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
1058
        n_bins = data["n_histogram_bins"]
1059
1060
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
1061
1062
            if stats.count == 0:
                continue
1063
            interval = (stats.max * 1.001 - stats.min) / n_bins
1064
1065
            if interval == 0:
                interval = 1
1066
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
1067
1068
1069
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

1070
        # Return results
1071
1072
1073
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
1074
1075
            if stats.count == 0:
                continue
1076
1077
1078
1079
1080
1081
1082
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
1083
                "histogram": {
1084
1085
1086
                    "occurrences": occurrences,
                    "values": values,
                }
1087
            }
1088

1089
        return result, 200
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
1101
    "variables": fields.Nested(wyckoff_variables_result, skip_none=True),
1102
})
1103
1104
1105
1106
1107
1108
1109
1110
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
1111
1112
1113
1114
1115
1116

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
1117
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
1118
1119
1120
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
1121
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result, skip_none=True)),
1122
1123
})

1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
1140
1141
1142
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
1143
1144
1145
1146
1147
1148
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
1149
1150
1151
1152
1153
1154
1155
1156
1157
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
1158
1159
1160
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
1161
1162
1163
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
1174
1175
1176
1177
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
1178
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
1179
1180
1181
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
1182
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
1183
})
1184
1185
1186
calculation_property_result = api.model("calculation_property_result", {
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
    "energies": fields.Nested(energies, skip_none=True),
1187
1188
1189
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
1190
    "wyckoff_sets": fields.Nested(wyckoff_set_result, skip_none=True),
1191
    "idealized_structure": fields.Nested(idealized_structure_result, skip_none=True),
1192
1193
1194
    "band_gap": fields.Float,
    "electronic_band_structure": fields.Nested(electronic_band_structure, skip_none=True),
    "electronic_dos": fields.Nested(electronic_dos, skip_none=True),
1195
1196
1197
    "phonon_band_structure": fields.Raw,
    "phonon_dos": fields.Raw,
    "thermodynamical_properties": fields.Raw,
1198
1199
1200
})


1201
1202
1203
1204
1205
@ns.route("/materials/<string:material_id>/calculations/<string:calc_id>")
class EncCalculationResource(Resource):
    @api.response(404, "Material or calculation not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1206
    @api.expect(calculation_property_query, validate=False)
1207
    @api.marshal_with(calculation_property_result, skip_none=True)
1208
    @api.doc("enc_calculation")
1209
    @authenticate()
1210
1211
1212
1213
    def post(self, material_id, calc_id):
        """Used to return calculation details. Some properties are not
        available in the ES index and are instead read from the Archive
        directly.
1214
        """
1215
1216
1217
1218
1219
1220
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), calculation_property_query)
        except Exception as e:
            abort(400, message=str(e))

1221
1222
1223
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
1224
            filter=get_enc_filter() + [
1225
1226
1227
1228
1229
1230
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", calc_id=calc_id),
            ]
        )
        s = s.query(query)

1231
        # Create dictionaries for requested properties
1232
        references = []
1233
1234
1235
        properties = data["properties"]
        arch_properties = {}
        es_properties = {}
1236
1237