encyclopedia.py 44.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import numpy as np
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24
from elasticsearch_dsl.utils import AttrDict
25

26
from nomad import config, files
27
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
28
from nomad.atomutils import get_hill_decomposition
29
from nomad.datamodel.datamodel import EntryArchive
30
from .api import api
31

32
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
33
34
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
53
54


55
56
57
58
59
60
61
62
63
64
65
66
def rgetattr(obj, attr_name):
    """Used to perform attribute access based on a (possibly nested) attribute
    name given as string.
    """
    try:
        for attr in attr_name.split("."):
            obj = obj[attr]
    except KeyError:
        return None
    return obj


67
def get_es_doc_values(es_doc, mapping, keys=None):
68
69
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
70
    """
71
72
73
    if keys is None:
        keys = mapping.keys()

74
    result = {}
75
    for key in keys:
76
        es_key = mapping[key]
77
        value = rgetattr(es_doc, es_key)
78
        result[key] = value
79
80
81
82
83

    return result


material_query = api.parser()
84
85
86
87
88
89
90
91
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
92
93
    # General
    "material_id": fields.String,
94
95
    "formula": fields.String,
    "formula_reduced": fields.String,
96
    "system_type": fields.String,
97
    "n_matches": fields.Integer,
98
    # Bulk only
99
    "has_free_wyckoff_parameters": fields.Boolean,
100
    "strukturbericht_designation": fields.String,
101
    "material_name": fields.String,
102
103
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
104
    "point_group": fields.String,
105
106
107
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
108
109
    "structure_type": fields.String,
})
110
111
112
enc_filter = [
    Q("term", published=True),
    Q("term", with_embargo=False),
113
    Q("term", encyclopedia__status="success"),
114
]
115
116


117
@ns.route("/materials/<string:material_id>")
118
class EncMaterialResource(Resource):
119
120
121
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
122
    @api.expect(material_query)
123
    @api.marshal_with(material_result, skip_none=True)
124
    def get(self, material_id):
125
126
        """Used to retrieve basic information related to the specified
        material.
127
        """
128
129
130
131
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
132
133
            keys = [prop]
            es_keys = [material_prop_map[prop]]
134
135
        else:
            keys = list(material_prop_map.keys())
136
            es_keys = list(material_prop_map.values())
137

138
139
140
141
142
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)
        query = Q(
143
            "bool",
144
            filter=enc_filter + [
145
                Q("term", encyclopedia__material__material_id=material_id),
146
147
148
            ]
        )
        s = s.query(query)
149

150
        # Only one representative entry is returned by collapsing the results.
151
152
        s = s.extra(**{
            "_source": {"includes": es_keys},
153
            "size": 1,
154
155
            "collapse": {"field": "encyclopedia.material.material_id"},
        })
156
157
        print("================= M QUERY ==================")
        print(s.to_dict())
158
159
        response = s.execute()

160
        # No such material
161
        if len(response) == 0:
162
            abort(404, message="There is no material {}".format(material_id))
163

164
        # Add values from ES entry
165
        entry = response[0]
166
        result = get_es_doc_values(entry, material_prop_map, keys)
167

168
169
170
        return result, 200


171
range_query = api.model("range_query", {
172
173
174
    "max": fields.Float,
    "min": fields.Float,
})
175
176
177
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
178
179
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
180
181
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
182
        "element": fields.String,
183
        "page": fields.Integer(default=1),
184
        "after": fields.Nested(materials_after, allow_null=True),
185
186
187
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
    })),
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
203
})
204
205
206
207
208
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
209
    "after": fields.Nested(materials_after),
210
211
})

212
213
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
214
215
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
216
    "es_query": fields.String(allow_null=False),
217
218
219
})


220
@ns.route("/materials")
221
class EncMaterialsResource(Resource):
222
223
224
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
225
    @api.expect(materials_query, validate=False)
226
    @api.marshal_with(materials_result, skip_none=True)
227
    @api.doc("materials")
228
229
230
231
232
233
234
235
236
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

237
        filters = enc_filter
238
239
240
241
242
243
244
245
246
        must_nots = []
        musts = []

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
247
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
292

293
294
295
        # Create query for elements or formula
        search_by = data["search_by"]
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
296
        elements = search_by["element"]
297
298
299
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
300
301
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
302
303
304
305
306
307
308
309
310
311
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
312
313
314
315
316
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
317
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
318
319
320
321
322
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
323
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
324
            query_string = " ".join(query_string)
325
326
327

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
328
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
329
330
331
332
333
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
350
351
                ))

352
353
        page = search_by["page"]
        per_page = search_by["per_page"]
354
        after = search_by["after"]
355
        bool_query = Q(
356
            "bool",
357
358
359
360
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        # The top query filters out entries based on the user query
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)

        # The materials are grouped by using three aggregations:
        # "Composite" to enable scrolling, "Terms" to enable selecting
        # by material_id and "Top Hits" to fetch a single
        # representative material document. Unnecessary fields are
        # filtered to reduce data transfer.
        terms_agg = A("terms", field="encyclopedia.material.material_id")
        composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}

        # The number of matched materials is only requested on the first
        # search, not for each page.
        if after is not None:
            composite_kwargs["after"] = after
        else:
379
            cardinality_agg = A("cardinality", field="encyclopedia.material.material_id", precision_threshold=1000)
380
            s.aggs.metric("n_materials", cardinality_agg)
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        composite_agg = A("composite", **composite_kwargs)
        composite_agg.metric("representative", A(
            "top_hits",
            size=1,
            _source={"includes": list(material_prop_map.values())},
        ))
        s.aggs.bucket("materials", composite_agg)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        response = s.execute()
        materials = response.aggs.materials.buckets
        if len(materials) == 0:
            abort(404, message="No materials found for the given search criteria or pagination.")
        after_new = response.aggs.materials["after_key"]

        # Gather results from aggregations
        result_list = []
        materials = response.aggs.materials.buckets
        keys = list(material_prop_map.keys())
        for material in materials:
            representative = material["representative"][0]
            mat_dict = get_es_doc_values(representative, material_prop_map, keys)
            mat_dict["n_matches"] = material.doc_count
            result_list.append(mat_dict)

        # Page information is incomplete for aggregations
        pages = {
            "page": page,
            "per_page": per_page,
            "after": after_new,
        }

        if after is None:
            n_materials = response.aggs.n_materials.value
            pages["total"] = n_materials
421
422
423

        result = {
            "results": result_list,
424
            "pages": pages,
425
        }
426
        return result, 200
427
428


429
groups_result = api.model("groups_result", {
430
431
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
432
433
434
})


435
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
436
class EncGroupsResource(Resource):
437
438
439
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
440
    @api.marshal_with(groups_result)
441
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
442
    def get(self, material_id):
443
444
445
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
446
447
448
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
449
            "bool",
450
            filter=enc_filter + [Q("term", encyclopedia__material__material_id=material_id)],
451
452
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
453
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
454
455
            ],
            should=[
456
457
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
458
459
460
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
461
462

        s = Search(index=config.elastic.index_name)
463
464
465
466
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
534
            filter=enc_filter + [
535
536
537
538
539
540
541
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
542
543
544
545
546

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
547
        # "index.max_inner_result_window" that limits the number of results
548
549
550
551
552
553
554
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
555
        s.aggs.bucket("groups_eos", energy_aggregation)
556

557
558
559
560
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
561

562
        # Collect information for each group from the aggregations
563
        response = s.execute()
564

565
566
567
568
569
570
571
572
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
573
        }
574
575

        return group_dict, 200
576
577


578
579
580
581
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

610
611
612
613
614
615
616
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
617
            filter=enc_filter
618
619
620
621
622
623
624
625
626
627
628
629
630
631
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
632
633
634
635
636
637
638
639


calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
640
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
641
642
643
644
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
645
646
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
647
648
649
650
651
652
653
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
654
    "core_electron_treatment": fields.String,
655
656
657
658
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
659
660
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
661
})
662
663
664
665
666
667
representatives_result = api.model("representatives_result", {
    "idealized_structure": fields.String,
    "electronic_band_structure": fields.String,
    "electronic_dos": fields.String,
    "thermodynamical_properties": fields.String,
})
668
669
670
671
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
672
    "representatives": fields.Nested(representatives_result, skip_none=True),
673
674
675
676
})


@ns.route("/materials/<string:material_id>/calculations")
677
class EncCalculationsResource(Resource):
678
679
680
681
682
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_calculations")
    def get(self, material_id):
683
684
685
        """Used to return all calculations related to the given material. Also
        returns a representative calculation for each property shown in the
        overview page.
686
687
688
689
        """
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
690
            filter=enc_filter + [
691
692
693
694
695
696
697
698
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
699
700
701
            "_source": {"includes": list(calc_prop_map.values()) + ["dft.xc_functional"]},
            "size": 10000,
            "from": 0,
702
703
704
705
706
707
708
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        # Add representative properties. It might be possible to write a custom
        # ES scoring mechanism or aggregation to also perform the selection.
        representatives = {}

        def calc_score(entry):
            """Custom scoring function used to sort results by their
            "quality". Currently built to mimic the scoring that was used
            in the old Encyclopedia GUI.
            """
            score = 0
            functional_score = {
                "GGA": 100
            }
            code_score = {
                "FHI-aims": 3,
                "VASP": 2,
                "Quantum Espresso": 1,
            }
            code_name = entry.dft.code_name
            functional = entry.dft.xc_functional
            has_dos = rgetattr(entry, "encyclopedia.properties.electronic_band_structure") is not None
            has_bs = rgetattr(entry, "encyclopedia.properties.electronic_dos") is not None
            score += functional_score.get(functional, 0)
            score += code_score.get(code_name, 0)
            if has_dos and has_bs:
                score += 10

            return score

        # The calculations are first sorted by "quality"
        sorted_calc = sorted(response, key=lambda x: calc_score(x), reverse=True)

        # Get the requested representative properties
        representatives["idealized_structure"] = sorted_calc[0].calc_id
        thermo_found = False
        bs_found = False
        dos_found = False
        for calc in sorted_calc:
            if rgetattr(calc, "encyclopedia.properties.thermodynamical_properties") is not None:
                representatives["thermodynamical_properties"] = calc.calc_id
                thermo_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_band_structure") is not None:
                representatives["electronic_band_structure"] = calc.calc_id
                bs_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_dos") is not None:
                representatives["electronic_dos"] = calc.calc_id
                dos_found = True
            if thermo_found and bs_found and dos_found:
                break

759
760
761
762
763
        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
764
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
765
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
766
767
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
768
769
770
771
772
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
773
            "representatives": representatives,
774
775
776
777
778
        }

        return result, 200


779
780
781
782
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
783
784
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
785
    "properties": fields.List(fields.String),
786
    "n_histogram_bins": fields.Integer,
787
788
789
790
791
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
792
    "histogram": fields.Nested(histogram, skip_none=True)
793
794
})
statistics_result = api.model("statistics_result", {
795
796
797
798
799
800
801
802
803
804
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
805
})
806
807
808
809
810
811
812
813
814
815
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
816
    "band_gap": "encyclopedia.properties.band_gap",
817
}
818
819
820


@ns.route("/materials/<string:material_id>/statistics")
821
class EncStatisticsResource(Resource):
822
823
824
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
825
826
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
827
828
    @api.doc("enc_statistics")
    def post(self, material_id):
829
830
        """Used to return statistics related to the specified material and
        calculations.
831
        """
832
833
834
835
836
837
838
839
840
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
841
            filter=enc_filter + [
842
843
844
845
846
847
848
849
850
851
852
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

853
854
855
856
857
858
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

859
860
861
862
863
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

864
865
866
867
868
869
870
871
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
872
        n_bins = data["n_histogram_bins"]
873
874
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
875
876
            if stats.count == 0:
                continue
877
            interval = (stats.max * 1.001 - stats.min) / n_bins
878
879
            if interval == 0:
                interval = 1
880
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
881
882
883
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

884
        # Return results
885
886
887
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
888
889
            if stats.count == 0:
                continue
890
891
892
893
894
895
896
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
897
                "histogram": {
898
899
900
                    "occurrences": occurrences,
                    "values": values,
                }
901
            }
902

903
        return result, 200
904
905
906
907
908
909
910
911
912
913
914


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
915
    "variables": fields.Nested(wyckoff_variables_result, skip_none=True),
916
})
917
918
919
920
921
922
923
924
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
925
926
927
928
929
930

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
931
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
932
933
934
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
935
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result, skip_none=True)),
936
937
})

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
954
955
956
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
957
958
959
960
961
962
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
963
964
965
966
967
968
969
970
971
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
972
973
974
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
975
976
977
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
978
979
980
981
982
983
984
985
986
987
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
988
989
990
991
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
992
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
993
994
995
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
996
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
997
})
998
999
1000
calculation_property_result = api.model("calculation_property_result", {
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
    "energies": fields.Nested(energies, skip_none=True),
1001
1002
1003
    "mass_density": fields.Float,
    "atomic_density": fields.Float,
    "cell_volume": fields.Float,
1004
    "wyckoff_sets": fields.Nested(wyckoff_set_result, skip_none=True),
1005
    "idealized_structure": fields.Nested(idealized_structure_result, skip_none=True),
1006
1007
1008
    "band_gap": fields.Float,
    "electronic_band_structure": fields.Nested(electronic_band_structure, skip_none=True),
    "electronic_dos": fields.Nested(electronic_dos, skip_none=True),
1009
1010
1011
    "phonon_band_structure": fields.Raw,
    "phonon_dos": fields.Raw,
    "thermodynamical_properties": fields.Raw,
1012
1013
1014
})


1015
1016
1017
1018
1019
@ns.route("/materials/<string:material_id>/calculations/<string:calc_id>")
class EncCalculationResource(Resource):
    @api.response(404, "Material or calculation not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
1020
    @api.expect(calculation_property_query, validate=False)
1021
    @api.marshal_with(calculation_property_result, skip_none=True)
1022
    @api.doc("enc_calculation")
1023
1024
1025
1026
    def post(self, material_id, calc_id):
        """Used to return calculation details. Some properties are not
        available in the ES index and are instead read from the Archive
        directly.
1027
        """
1028
1029
1030
1031
1032
1033
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), calculation_property_query)
        except Exception as e:
            abort(400, message=str(e))

1034
1035
1036
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
1037
            filter=enc_filter + [
1038
1039
1040
1041
1042
1043
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", calc_id=calc_id),
            ]
        )
        s = s.query(query)

1044
        # Create dictionaries for requested properties
1045
        references = []
1046
1047
1048
        properties = data["properties"]
        arch_properties = {}
        es_properties = {}
1049
1050
1051
1052
1053
1054
1055
        ref_properties = set((
            "electronic_dos",
            "electronic_band_structure",
            "thermodynamical_properties",
            "phonon_dos",
            "phonon_band_structure",
        ))
1056
1057
1058
1059
        for prop in properties:
            es_source = calculation_property_map[prop].get("es_source")
            if es_source is not None:
                es_properties[prop] = es_source
1060
                if prop in ref_properties:
1061
                    references.append(prop)
1062
1063
1064
1065
            arch_source = calculation_property_map[prop].get("arch_source")
            if arch_source is not None:
                arch_properties[prop] = arch_source

1066
        # The query is filtered already on the ES side so we don't need to
1067
        # transfer so much data.
1068
1069
1070
        sources = [
            "upload_id",
            "calc_id",
1071
            "encyclopedia",
1072
1073
1074
        ]
        sources += list(es_properties.values())

1075
        s = s.extra(**{
1076
            "_source": {"includes": sources},
1077
1078
1079
1080
1081
1082
1083
1084
1085
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {} with calculation {}".format(material_id, calc_id))

1086
1087
1088
        # Add references that are to be read from the archive
        for ref in references:
            arch_path = response[0]
1089
1090
            arch_path = rgetattr(arch_path, es_properties[ref])
            if arch_path is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1091
                arch_properties[ref] = arch_path
1092
1093
            del es_properties[ref]

1094
1095
1096
1097
1098
1099
1100
        # If any of the requested properties require data from the Archive, the
        # file is opened and read.
        result = {}
        if len(arch_properties) != 0:
            entry = response[0]
            upload_id = entry.upload_id
            calc_id = entry.calc_id
1101
            root = read_archive(
1102
1103
1104
1105
1106
                upload_id,
                calc_id,
            )

            # Add results from archive
1107
1108
1109
1110
1111
1112
1113
            for key, arch_path in arch_properties.items():
                value = root[arch_path]

                # Save derived properties and turn into dict
                if key == "thermodynamical_properties":
                    specific_heat_capacity = value.specific_heat_capacity.magnitude.tolist()
                    specific_free_energy = value.specific_vibrational_free_energy_at_constant_volume.magnitude.tolist()
1114
1115
1116
1117
                if isinstance(value, list):
                    value = [x.m_to_dict() for x in value]
                else:
                    value = value.m_to_dict()
1118
1119
1120
                if key == "thermodynamical_properties":
                    value["specific_heat_capacity"] = specific_heat_capacity
                    value["specific_vibrational_free_energy_at_constant_volume"] = specific_free_energy
1121

1122
                # DOS results are simplified.
1123
                if key == "electronic_dos":
Lauri Himanen's avatar
Lauri Himanen committed
1124
1125
1126
1127
1128
1129
                    if "dos_energies_normalized" in value:
                        value["dos_energies"] = value["dos_energies_normalized"]
                        del value["dos_energies_normalized"]
                    if "dos_values_normalized" in value:
                        value["dos_values"] = value["dos_values_normalized"]
                        del value["dos_values_normalized"]
1130

1131
1132
1133
1134
                # Pre-calculate k-path length to be used as x-coordinate in
                # plots. If the VBM and CBM information is needed later, it
                # can be added as indices along the path. The exact
                # k-points and occupations are removed to save band width.
1135
                if key == "electronic_band_structure" or key == "phonon_band_structure":
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
                    segments = value["section_k_band_segment"]
                    k_path_length = 0
                    for segment in segments:
                        k_points = np.array(segment["band_k_points"])
                        segment_length = np.linalg.norm(k_points[-1, :] - k_points[0, :])
                        k_path_distances = k_path_length + np.linalg.norm(k_points - k_points[0, :], axis=1)
                        k_path_length += segment_length
                        segment["k_path_distances"] = k_path_distances.tolist()
                        del segment["band_k_points"]
                        if "band_occupations" in segment:
                            del segment["band_occupations"]

1148
1149
1150
                result[key] = value

        # Add results from ES
1151
        for prop, es_source in es_properties.items():
1152
1153
            value = rgetattr(response[0], es_source)
            if value is not None:
Lauri Himanen's avatar
Lauri Himanen committed
1154
1155
1156
                if isinstance(value, AttrDict):
                    value = value.to_dict()
                result[prop] = value
1157
1158
1159
1160

        return result, 200


1161
def read_archive(upload_id: str, calc_id: str) -> EntryArchive:
1162
    """Used to read data from the archive.
1163
1164
1165
1166
1167
1168

    Args:
        upload_id: Upload id.
        calc_id: Calculation id.

    Returns:
1169
        MSection: The section_run as MSection
1170
1171
        For each path, a dictionary containing the path as key and the returned
        section as value.
1172
    """
1173
1174
    upload_files = files.PublicUploadFiles(upload_id)
    with upload_files.read_archive(calc_id, access="public") as archive:
1175
        data = archive[calc_id]
1176
        root = EntryArchive.m_from_dict(data.to_dict())
1177

1178
    return root