encyclopedia.py 45.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import math
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24
from elasticsearch_dsl.utils import AttrDict
25

26
from nomad import config, files
27
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
28
from nomad.atomutils import get_hill_decomposition
29
from nomad.datamodel.datamodel import EntryArchive
30
from .api import api
31

32
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
33
34
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
53
54


55
def get_es_doc_values(es_doc, mapping, keys=None):
56
57
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
58
    """
59
60
61
    if keys is None:
        keys = mapping.keys()

62
    result = {}
63
    for key in keys:
64
        es_key = mapping[key]
65
66
67
68
69
70
71
        try:
            value = es_doc
            for part in es_key.split("."):
                value = getattr(value, part)
        except AttributeError:
            value = None
        result[key] = value
72
73
74
75
76

    return result


material_query = api.parser()
77
78
79
80
81
82
83
84
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
85
86
    # General
    "material_id": fields.String,
87
88
    "formula": fields.String,
    "formula_reduced": fields.String,
89
    "system_type": fields.String,
90
    "n_matches": fields.Integer,
91
    # Bulk only
92
    "has_free_wyckoff_parameters": fields.Boolean,
93
    "strukturbericht_designation": fields.String,
94
    "material_name": fields.String,
95
96
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
97
    "point_group": fields.String,
98
99
100
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
101
102
    "structure_type": fields.String,
})
103
104


105
@ns.route("/materials/<string:material_id>")
106
class EncMaterialResource(Resource):
107
108
109
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
110
    @api.expect(material_query)
111
    @api.marshal_with(material_result, skip_none=True)
112
113
114
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
115
116
117
118
119
120
121
122
123
124
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
            keys = [prop]
            es_keys = [material_prop_map[prop]]
        else:
            keys = list(material_prop_map.keys())
            es_keys = list(material_prop_map.values())

125
126
127
128
129
130
131
132
133
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

        # Since we are looking for an exact match, we use filter context
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
134
            "bool",
135
            filter=[
136
137
138
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
139
140
141
            ]
        )
        s = s.query(query)
142

143
        # The query is collapsed already on the ES side so we don"t need to
144
145
146
        # transfer so much data.
        s = s.extra(**{
            "collapse": {"field": "encyclopedia.material.material_id"},
147
            "_source": {"includes": es_keys},
148
149
        })

150
151
        response = s.execute()

152
        # No such material
153
        if len(response) == 0:
154
            abort(404, message="There is no material {}".format(material_id))
155

156
        # Create result JSON
157
        entry = response[0]
158
        result = get_es_doc_values(entry, material_prop_map, keys)
159

160
161
162
        return result, 200


163
range_query = api.model("range_query", {
164
165
166
    "max": fields.Float,
    "min": fields.Float,
})
167
168
169
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
170
171
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
172
173
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
174
        "element": fields.String,
175
        "page": fields.Integer(default=1),
176
        "after": fields.Nested(materials_after, allow_null=True),
177
178
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
179
        "mode": fields.String(default="aggregation"),
180
    })),
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
196
})
197
198
199
200
201
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
202
    "after": fields.Nested(materials_after),
203
204
})

205
206
207
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
    "results": fields.List(fields.Nested(material_result)),
208
    "pages": fields.Nested(pages_result),
209
    "es_query": fields.String(allow_null=False),
210
211
212
})


213
@ns.route("/materials")
214
class EncMaterialsResource(Resource):
215
216
217
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
218
    @api.expect(materials_query, validate=False)
219
    @api.marshal_with(materials_result, skip_none=True)
220
    @api.doc("materials")
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

        filters = []
        must_nots = []
        musts = []

        # Add term filters
235
236
        filters.append(Q("term", published=True))
        filters.append(Q("term", with_embargo=False))
237
238
239
240
241
242
243

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
244
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
289

290
291
        # Create query for elements or formula
        search_by = data["search_by"]
292
        mode = search_by["mode"]
293
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
294
        elements = search_by["element"]
295
296
297
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
298
299
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
300
301
302
303
304
305
306
307
308
309
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
310
311
312
313
314
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
315
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
316
317
318
319
320
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
321
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
322
            query_string = " ".join(query_string)
323
324
325

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
326
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
327
328
329
330
331
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
348
349
                ))

350
351
        page = search_by["page"]
        per_page = search_by["per_page"]
352
        after = search_by["after"]
353
        bool_query = Q(
354
            "bool",
355
356
357
358
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
359

360
361
362
        # 1: The paginated approach: No way to know the amount of matches,
        # but can return aggregation results in a quick fashion including
        # the number of matches entries per material.
363
        if mode == "aggregation":
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
            # The top query filters out entries based on the user query
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)

            # The materials are grouped by using three aggregations:
            # "Composite" to enable scrolling, "Terms" to enable selecting
            # by material_id and "Top Hits" to fetch a single
            # representative material document. Unnecessary fields are
            # filtered to reduce data transfer.
            terms_agg = A("terms", field="encyclopedia.material.material_id")
            composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}
            if after is not None:
                composite_kwargs["after"] = after
            composite_agg = A("composite", **composite_kwargs)
            composite_agg.metric("representative", A(
                "top_hits",
                size=1,
                _source={"includes": list(material_prop_map.values())},
            ))
            s.aggs.bucket("materials", composite_agg)

            # We ignore the top level hits
            s = s.extra(**{
                "size": 0,
            })
390

391
392
393
394
395
            response = s.execute()
            materials = response.aggs.materials.buckets
            if len(materials) == 0:
                abort(404, message="No materials found for the given search criteria or pagination.")
            after = response.aggs.materials["after_key"]
396
397
398
399

            # Gather results from aggregations
            result_list = []
            materials = response.aggs.materials.buckets
400
            keys = list(material_prop_map.keys())
401
402
            for material in materials:
                representative = material["representative"][0]
403
404
                mat_dict = get_es_doc_values(representative, material_prop_map, keys)
                mat_dict["n_matches"] = material.doc_count
405
406
407
408
409
410
                result_list.append(mat_dict)

            # Page information is incomplete for aggregations
            pages = {
                "page": page,
                "per_page": per_page,
411
                "after": after,
412
413
            }
        # 2. Collapse approach. Quickly provides a list of materials
414
        # corresponding to the query, offers full pagination, doesn"t include
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        # the number of matches per material.
        elif mode == "collapse":
            s = Search(index=config.elastic.index_name)
            s = s.query(bool_query)
            s = s.extra(**{
                "collapse": {"field": "encyclopedia.material.material_id"},
                "size": per_page,
                "from": (page - 1) * per_page,
            })

            # Execute query
            response = s.execute()

            # No matches
            if len(response) == 0:
430
                abort(404, message="No materials found for the given search criteria or pagination.")
431
432
433

            # Loop over materials
            result_list = []
434
            keys = list(material_prop_map.keys())
435
            for material in response:
436
                mat_result = get_es_doc_values(material, material_prop_map, keys)
437
438
439
440
441
442
443
444
445
                result_list.append(mat_result)

            # Full page information available for collapse
            pages = {
                "page": page,
                "per_page": per_page,
                "pages": math.ceil(response.hits.total / per_page),
                "total": response.hits.total,
            }
446
447
448

        result = {
            "results": result_list,
449
            "pages": pages,
450
        }
451
        return result, 200
452
453


454
groups_result = api.model("groups_result", {
455
456
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
457
458
459
})


460
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
461
class EncGroupsResource(Resource):
462
463
464
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
465
    @api.marshal_with(groups_result)
466
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
467
    def get(self, material_id):
468
469
470
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
471
472
473
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
474
            "bool",
475
            filter=[
476
477
478
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
479
480
481
            ],
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
482
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
483
484
            ],
            should=[
485
486
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
487
488
489
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
490
491

        s = Search(index=config.elastic.index_name)
492
493
494
495
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
573
574
575
576
577

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
578
        # "index.max_inner_result_window" that limits the number of results
579
580
581
582
583
584
585
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
586
        s.aggs.bucket("groups_eos", energy_aggregation)
587

588
589
590
591
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
592

593
        # Collect information for each group from the aggregations
594
        response = s.execute()
595

596
597
598
599
600
601
602
603
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
604
        }
605
606

        return group_dict, 200
607
608


609
610
611
612
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
            ]
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
666
667


668
669
calcs_query = api.parser()
calcs_query.add_argument(
670
671
672
673
674
675
    "page",
    default=0,
    type=int,
    help="The page number to return.",
    location="args"
)
676
calcs_query.add_argument(
677
678
679
680
681
682
683
684
685
686
687
688
    "per_page",
    default=25,
    type=int,
    help="The number of results per page",
    location="args"
)
calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
689
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
690
691
692
693
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
694
695
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
696
697
698
699
700
701
702
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
703
    "core_electron_treatment": fields.String,
704
705
706
707
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
708
709
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
710
711
712
713
714
715
716
717
718
})
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
})


@ns.route("/materials/<string:material_id>/calculations")
719
class EncCalculationsResource(Resource):
720
721
722
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
723
    @api.expect(calcs_query, validate=False)
724
725
726
727
    @api.doc("enc_calculations")
    def get(self, material_id):
        """Used to return all calculations related to the given material.
        """
728
        args = calcs_query.parse_args()
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        page = args["page"]
        per_page = args["per_page"]

        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "_source": {"includes": list(calc_prop_map.values())},
            "size": per_page,
            "from": page,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
762
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
763
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
764
765
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
766
767
768
769
770
771
772
773
774
775
776
777
778
779
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
            "pages": {
                "per_page": per_page,
                "page": page,
            }
        }

        return result, 200


780
781
782
783
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
784
785
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
786
    "properties": fields.List(fields.String),
787
    "n_histogram_bins": fields.Integer,
788
789
790
791
792
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
793
    "histogram": fields.Nested(histogram)
794
795
})
statistics_result = api.model("statistics_result", {
796
797
798
799
800
801
802
803
804
805
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
806
})
807
808
809
810
811
812
813
814
815
816
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
817
    "band_gap": "encyclopedia.properties.band_gap",
818
}
819
820
821


@ns.route("/materials/<string:material_id>/statistics")
822
class EncStatisticsResource(Resource):
823
824
825
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
826
827
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
828
829
    @api.doc("enc_statistics")
    def post(self, material_id):
830
831
        """Used to return statistics related to the specified material and
        calculations.
832
        """
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

856
857
858
859
860
861
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

862
863
864
865
866
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

867
868
869
870
871
872
873
874
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
875
        n_bins = data["n_histogram_bins"]
876
877
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
878
            interval = (stats.max * 1.001 - stats.min) / n_bins
879
880
            if interval == 0:
                interval = 1
881
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
882
883
884
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

885
        # Return results
886
887
888
889
890
891
892
893
894
895
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
896
                "histogram": {
897
898
899
                    "occurrences": occurrences,
                    "values": values,
                }
900
            }
901

902
        return result, 200
903
904
905
906
907
908
909
910
911
912
913


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
914
    "variables": fields.List(fields.Nested(wyckoff_variables_result, skip_none=True)),
915
})
916
917
918
919
920
921
922
923
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
924
925
926
927
928
929

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
930
    "lattice_parameters": fields.Nested(lattice_parameters),
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result)),
})


@ns.route("/materials/<string:material_id>/idealized_structure")
class EncIdealizedStructureResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(idealized_structure_result, skip_none=True)
    @api.doc("enc_material_idealized_structure")
    def get(self, material_id):
        """Specialized path for returning a representative idealized structure
        that is displayed in the gui for this material.
        """
        # The representative idealized structure simply comes from the first
        # calculation when the calculations are alphabetically sorted by their
        # calc_id. Coming up with a good way to select the representative one
        # is pretty tricky in general, there are several options:
        # - Lowest energy: This would be most intuitive, but the energy scales
        #   between codes do not match, and the energy may not have been
        #   reported.
        # - Volume that is closest to mean volume: how to calculate volume for
        #   molecules, surfaces, etc...
        # - Random: We would want the representative visualization to be
        #   relatively stable.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
            filter=[
                Q("term", published=True),
                Q("term", with_embargo=False),
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
            "sort": [{"calc_id": {"order": "asc"}}],
            "_source": {"includes": ["upload_id", "calc_id"]},
            "size": 1,
        })

        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

        # Read the idealized_structure from the Archive. The structure can be
        # quite large and no direct search queries are performed against it, so
        # it is not in the ES index.
        entry = response[0]
        upload_id = entry.upload_id
        calc_id = entry.calc_id
991
        ideal_struct_path = "section_metadata/encyclopedia/material/idealized_structure"
992
993
        root = read_archive(upload_id, calc_id)
        idealized_structure = root[ideal_struct_path].m_to_dict()
994
995
996
997

        return idealized_structure, 200


998
999
1000
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"