encyclopedia.py 44.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 Markus Scheidgen
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an"AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
"""
16
The encyclopedia API of the nomad@FAIRDI APIs.
17
"""
18
import re
19
import numpy as np
20

21
22
from flask_restplus import Resource, abort, fields, marshal
from flask import request
23
from elasticsearch_dsl import Search, Q, A
24
from elasticsearch_dsl.utils import AttrDict
25

26
from nomad import config, files
27
from nomad.units import ureg
Lauri Himanen's avatar
Lauri Himanen committed
28
from nomad.atomutils import get_hill_decomposition
29
from nomad.datamodel.datamodel import EntryArchive
30
from .api import api
31

32
ns = api.namespace("encyclopedia", description="Access encyclopedia metadata.")
33
34
re_formula = re.compile(r"([A-Z][a-z]?)(\d*)")

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
material_prop_map = {
    # General
    "material_id": "encyclopedia.material.material_id",
    "formula": "encyclopedia.material.formula",
    "formula_reduced": "encyclopedia.material.formula_reduced",
    "system_type": "encyclopedia.material.material_type",
    # Bulk only
    "has_free_wyckoff_parameters": "encyclopedia.material.bulk.has_free_wyckoff_parameters",
    "strukturbericht_designation": "encyclopedia.material.bulk.strukturbericht_designation",
    "material_name": "encyclopedia.material.material_name",
    "bravais_lattice": "encyclopedia.material.bulk.bravais_lattice",
    "crystal_system": "encyclopedia.material.bulk.crystal_system",
    "point_group": "encyclopedia.material.bulk.point_group",
    "space_group_number": "encyclopedia.material.bulk.space_group_number",
    "space_group_international_short_symbol": "encyclopedia.material.bulk.space_group_international_short_symbol",
    "structure_prototype": "encyclopedia.material.bulk.structure_prototype",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
53
54


55
56
57
58
59
60
61
62
63
64
65
66
def rgetattr(obj, attr_name):
    """Used to perform attribute access based on a (possibly nested) attribute
    name given as string.
    """
    try:
        for attr in attr_name.split("."):
            obj = obj[attr]
    except KeyError:
        return None
    return obj


67
def get_es_doc_values(es_doc, mapping, keys=None):
68
69
    """Used to form a material definition for "materials/<material_id>" from
    the given ElasticSearch root document.
70
    """
71
72
73
    if keys is None:
        keys = mapping.keys()

74
    result = {}
75
    for key in keys:
76
        es_key = mapping[key]
77
        value = rgetattr(es_doc, es_key)
78
        result[key] = value
79
80
81
82
83

    return result


material_query = api.parser()
84
85
86
87
88
89
90
91
material_query.add_argument(
    "property",
    type=str,
    choices=tuple(material_prop_map.keys()),
    help="Optional single property to retrieve for the given material. If not specified, all properties will be returned.",
    location="args"
)
material_result = api.model("material_result", {
92
93
    # General
    "material_id": fields.String,
94
95
    "formula": fields.String,
    "formula_reduced": fields.String,
96
    "system_type": fields.String,
97
    "n_matches": fields.Integer,
98
    # Bulk only
99
    "has_free_wyckoff_parameters": fields.Boolean,
100
    "strukturbericht_designation": fields.String,
101
    "material_name": fields.String,
102
103
    "bravais_lattice": fields.String,
    "crystal_system": fields.String,
104
    "point_group": fields.String,
105
106
107
    "space_group_number": fields.Integer,
    "space_group_international_short_symbol": fields.String,
    "structure_prototype": fields.String,
108
109
    "structure_type": fields.String,
})
110
111
112
enc_filter = [
    Q("term", published=True),
    Q("term", with_embargo=False),
113
    Q("term", encyclopedia__status="success"),
114
]
115
116


117
@ns.route("/materials/<string:material_id>")
118
class EncMaterialResource(Resource):
119
120
121
    @api.response(404, "The material does not exist")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("material/<material_id>")
122
    @api.expect(material_query)
123
    @api.marshal_with(material_result, skip_none=True)
124
125
126
    def get(self, material_id):
        """Used to retrive basic information related to the specified material.
        """
127
128
129
130
        # Parse request arguments
        args = material_query.parse_args()
        prop = args.get("property", None)
        if prop is not None:
131
132
            keys = [prop]
            es_keys = [material_prop_map[prop]]
133
134
        else:
            keys = list(material_prop_map.keys())
135
            es_keys = list(material_prop_map.values())
136

137
138
139
140
141
        # Find the first public entry with this material id and take
        # information from there. In principle all other entries should have
        # the same information.
        s = Search(index=config.elastic.index_name)

142
        # Since we are looking for an exact match, we use filtek context
143
144
145
        # together with term search for speed (instead of query context and
        # match search)
        query = Q(
146
            "bool",
147
            filter=enc_filter + [
148
                Q("term", encyclopedia__material__material_id=material_id),
149
150
151
            ]
        )
        s = s.query(query)
152

153
154
155
156
157
158
159
160
        # If a representative calculation is requested, all calculations are
        # returned in order to perform the scoring with a custom loop.
        # Otherwise, only one representative entry is returned.
        s = s.extra(**{
            "_source": {"includes": es_keys},
            "size": 10000,
            "collapse": {"field": "encyclopedia.material.material_id"},
        })
161
162
        response = s.execute()

163
        # No such material
164
        if len(response) == 0:
165
            abort(404, message="There is no material {}".format(material_id))
166

167
        # Add values from ES entry
168
        entry = response[0]
169
        result = get_es_doc_values(entry, material_prop_map, keys)
170

171
172
173
        return result, 200


174
range_query = api.model("range_query", {
175
176
177
    "max": fields.Float,
    "min": fields.Float,
})
178
179
180
materials_after = api.model("materials_after", {
    "materials": fields.String,
})
181
182
materials_query = api.model("materials_input", {
    "search_by": fields.Nested(api.model("search_query", {
183
184
        "exclusive": fields.Boolean(default=False),
        "formula": fields.String,
Lauri Himanen's avatar
Lauri Himanen committed
185
        "element": fields.String,
186
        "page": fields.Integer(default=1),
187
        "after": fields.Nested(materials_after, allow_null=True),
188
189
190
        "per_page": fields.Integer(default=25),
        "pagination": fields.Boolean,
    })),
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    "material_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
    "space_group_number": fields.List(fields.Integer),
    "system_type": fields.List(fields.String),
    "crystal_system": fields.List(fields.String),
    "band_gap": fields.Nested(range_query, description="Band gap range in eV."),
    "band_gap_direct": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_dos": fields.Boolean,
    "has_fermi_surface": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
    "functional_type": fields.List(fields.String),
    "basis_set_type": fields.List(fields.String),
    "code_name": fields.List(fields.String),
    "mass_density": fields.Nested(range_query, description="Mass density range in kg / m ** 3."),
206
})
207
208
209
210
211
pages_result = api.model("page_info", {
    "per_page": fields.Integer,
    "total": fields.Integer,
    "page": fields.Integer,
    "pages": fields.Integer,
212
    "after": fields.Nested(materials_after),
213
214
})

215
216
materials_result = api.model("materials_result", {
    "total_results": fields.Integer(allow_null=False),
217
218
    "results": fields.List(fields.Nested(material_result, skip_none=True)),
    "pages": fields.Nested(pages_result, skip_none=True),
219
    "es_query": fields.String(allow_null=False),
220
221
222
})


223
@ns.route("/materials")
224
class EncMaterialsResource(Resource):
225
226
227
    @api.response(404, "No materials found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
228
    @api.expect(materials_query, validate=False)
229
    @api.marshal_with(materials_result, skip_none=True)
230
    @api.doc("materials")
231
232
233
234
235
236
237
238
239
    def post(self):
        """Used to query a list of materials with the given search options.
        """
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), materials_query)
        except Exception as e:
            abort(400, message=str(e))

240
        filters = enc_filter
241
242
243
244
245
246
247
248
249
        must_nots = []
        musts = []

        def add_terms_filter(source, target, query_type="terms"):
            if data[source]:
                filters.append(Q(query_type, **{target: data[source]}))

        add_terms_filter("material_name", "encyclopedia.material.material_name")
        add_terms_filter("structure_type", "encyclopedia.material.bulk.structure_type")
250
        add_terms_filter("space_group_number", "encyclopedia.material.bulk.space_group_number")
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        add_terms_filter("system_type", "encyclopedia.material.material_type")
        add_terms_filter("crystal_system", "encyclopedia.material.bulk.crystal_system")
        add_terms_filter("band_gap_direct", "encyclopedia.properties.band_gap_direct", query_type="term")
        add_terms_filter("functional_type", "encyclopedia.method.functional_type")
        add_terms_filter("basis_set_type", "dft.basis_set")
        add_terms_filter("code_name", "dft.code_name")

        # Add exists filters
        def add_exists_filter(source, target):
            param = data[source]
            if param is not None:
                query = Q("exists", field=target)
                if param is True:
                    filters.append(query)
                elif param is False:
                    must_nots.append(query)

        add_exists_filter("has_thermal_properties", "encyclopedia.properties.thermodynamical_properties")
        add_exists_filter("has_band_structure", "encyclopedia.properties.electronic_band_structure")
        add_exists_filter("has_dos", "encyclopedia.properties.electronic_dos")
        add_exists_filter("has_fermi_surface", "encyclopedia.properties.fermi_surface")

        # Add range filters
        def add_range_filter(source, target, source_unit=None, target_unit=None):
            param = data[source]
            query_dict = {}
            if param["min"] is not None:
                if source_unit is None and target_unit is None:
                    gte = param["min"]
                else:
                    gte = (param["min"] * source_unit).to(target_unit).magnitude
                query_dict["gte"] = gte
            if param["max"] is not None:
                if source_unit is None and target_unit is None:
                    lte = param["max"]
                else:
                    lte = (param["max"] * source_unit).to(target_unit).magnitude
                query_dict["lte"] = lte
            if len(query_dict) != 0:
                query = Q("range", **{target: query_dict})
                filters.append(query)

        add_range_filter("band_gap", "encyclopedia.properties.band_gap", ureg.eV, ureg.J)
        add_range_filter("mass_density", "encyclopedia.properties.mass_density")
295

296
297
298
        # Create query for elements or formula
        search_by = data["search_by"]
        formula = search_by["formula"]
Lauri Himanen's avatar
Lauri Himanen committed
299
        elements = search_by["element"]
300
301
302
        exclusive = search_by["exclusive"]

        if formula is not None:
Lauri Himanen's avatar
Lauri Himanen committed
303
304
            # Here we determine a list of atom types. The types may occur
            # multiple times and at multiple places.
305
306
307
308
309
310
311
312
313
314
            element_list = []
            matches = re_formula.finditer(formula)
            for match in matches:
                groups = match.groups()
                symbol = groups[0]
                count = groups[1]
                if symbol != "":
                    if count == "":
                        element_list.append(symbol)
                    else:
Lauri Himanen's avatar
Lauri Himanen committed
315
316
317
318
319
                        element_list += [symbol] * int(count)

            # The given list of species is reformatted with the Hill system
            # into a query string. The counts are reduced by the greatest
            # common divisor.
320
            names, reduced_counts = get_hill_decomposition(element_list, reduced=True)
Lauri Himanen's avatar
Lauri Himanen committed
321
322
323
324
325
            query_string = []
            for name, count in zip(names, reduced_counts):
                if count == 1:
                    query_string.append(name)
                else:
326
                    query_string.append("{}{}".format(name, int(count)))
Lauri Himanen's avatar
Lauri Himanen committed
327
            query_string = " ".join(query_string)
328
329
330

            # With exclusive search we look for exact match
            if exclusive:
Lauri Himanen's avatar
Lauri Himanen committed
331
                filters.append(Q("term", **{"encyclopedia.material.species_and_counts.keyword": query_string}))
332
333
334
335
336
            # With non-exclusive search we look for match that includes at
            # least all parts of the formula, possibly even more.
            else:
                musts.append(Q(
                    "match",
Lauri Himanen's avatar
Lauri Himanen committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
                    encyclopedia__material__species_and_counts={"query": query_string, "operator": "and"}
                ))
        elif elements is not None:
            # The given list of species is reformatted with the Hill system into a query string
            species, _ = get_hill_decomposition(elements.split(","))
            query_string = " ".join(species)

            # With exclusive search we look for exact match
            if exclusive:
                filters.append(Q("term", **{"encyclopedia.material.species.keyword": query_string}))
            # With non-exclusive search we look for match that includes at
            # least all species, possibly even more.
            else:
                musts.append(Q(
                    "match",
                    encyclopedia__material__species={"query": query_string, "operator": "and"}
353
354
                ))

355
356
        page = search_by["page"]
        per_page = search_by["per_page"]
357
        after = search_by["after"]
358
        bool_query = Q(
359
            "bool",
360
361
362
363
            filter=filters,
            must_not=must_nots,
            must=musts,
        )
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        # The top query filters out entries based on the user query
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)

        # The materials are grouped by using three aggregations:
        # "Composite" to enable scrolling, "Terms" to enable selecting
        # by material_id and "Top Hits" to fetch a single
        # representative material document. Unnecessary fields are
        # filtered to reduce data transfer.
        terms_agg = A("terms", field="encyclopedia.material.material_id")
        composite_kwargs = {"sources": {"materials": terms_agg}, "size": per_page}

        # The number of matched materials is only requested on the first
        # search, not for each page.
        if after is not None:
            composite_kwargs["after"] = after
        else:
382
            cardinality_agg = A("cardinality", field="encyclopedia.material.material_id", precision_threshold=1000)
383
            s.aggs.metric("n_materials", cardinality_agg)
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        composite_agg = A("composite", **composite_kwargs)
        composite_agg.metric("representative", A(
            "top_hits",
            size=1,
            _source={"includes": list(material_prop_map.values())},
        ))
        s.aggs.bucket("materials", composite_agg)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        response = s.execute()
        materials = response.aggs.materials.buckets
        if len(materials) == 0:
            abort(404, message="No materials found for the given search criteria or pagination.")
        after_new = response.aggs.materials["after_key"]

        # Gather results from aggregations
        result_list = []
        materials = response.aggs.materials.buckets
        keys = list(material_prop_map.keys())
        for material in materials:
            representative = material["representative"][0]
            mat_dict = get_es_doc_values(representative, material_prop_map, keys)
            mat_dict["n_matches"] = material.doc_count
            result_list.append(mat_dict)

        # Page information is incomplete for aggregations
        pages = {
            "page": page,
            "per_page": per_page,
            "after": after_new,
        }

        if after is None:
            n_materials = response.aggs.n_materials.value
            pages["total"] = n_materials
424
425
426

        result = {
            "results": result_list,
427
            "pages": pages,
428
        }
429
        return result, 200
430
431


432
groups_result = api.model("groups_result", {
433
434
    "groups_eos": fields.Raw,
    "groups_par": fields.Raw,
435
436
437
})


438
@ns.route("/materials/<string:material_id>/groups")
Lauri Himanen's avatar
Lauri Himanen committed
439
class EncGroupsResource(Resource):
440
441
442
    @api.response(404, "Material not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
443
    @api.marshal_with(groups_result)
444
    @api.doc("enc_materials")
Lauri Himanen's avatar
Lauri Himanen committed
445
    def get(self, material_id):
446
447
448
        """Returns a summary of the calculation groups that were identified for
        this material.
        """
449
450
451
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        bool_query = Q(
452
            "bool",
453
            filter=enc_filter + [Q("term", encyclopedia__material__material_id=material_id)],
454
455
            must=[
                Q("exists", field="encyclopedia.properties.energies.energy_total"),
456
                Q("exists", field="encyclopedia.material.idealized_structure.cell_volume"),
457
458
            ],
            should=[
459
460
                Q("exists", field="encyclopedia.method.group_eos_id"),
                Q("exists", field="encyclopedia.method.group_parametervariation_id"),
461
462
463
            ],
            minimum_should_match=1,  # At least one of the should query must match
        )
Lauri Himanen's avatar
Lauri Himanen committed
464
465

        s = Search(index=config.elastic.index_name)
466
467
468
469
        s = s.query(bool_query)

        # Bucket the calculations by the group hashes. Only create a bucket if an
        # above-minimum number of documents are found.
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
        group_eos_bucket = A("terms", field="encyclopedia.method.group_eos_id", min_doc_count=4)
        group_param_bucket = A("terms", field="encyclopedia.method.group_parametervariation_id", min_doc_count=2)
        calc_aggregation = A(
            "top_hits",
            _source={"includes": ["calc_id"]},
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
        group_eos_bucket.bucket("calculations", calc_aggregation)
        group_param_bucket.bucket("calculations", calc_aggregation)
        s.aggs.bucket("groups_eos", group_eos_bucket)
        s.aggs.bucket("groups_param", group_param_bucket)

        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })

        # Collect information for each group from the aggregations
        response = s.execute()
        groups_eos = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_eos.buckets}
        groups_param = {group.key: [calc.calc_id for calc in group.calculations.hits] for group in response.aggs.groups_param.buckets}

        # Return results
        result = {
            "groups_eos": groups_eos,
            "groups_par": groups_param,
        }

        return result, 200


group_result = api.model("group_result", {
    "calculations": fields.List(fields.String),
    "energies": fields.List(fields.Float),
    "volumes": fields.List(fields.Float),
})
group_source = {
    "includes": [
        "calc_id",
        "encyclopedia.properties.energies.energy_total",
        "encyclopedia.material.idealized_structure.cell_volume",
    ]
}


@ns.route("/materials/<string:material_id>/groups/<string:group_type>/<string:group_id>")
class EncGroupResource(Resource):
    @api.response(404, "Group not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.marshal_with(group_result)
    @api.doc("enc_group")
    def get(self, material_id, group_type, group_id):
        """Used to query detailed information for a specific calculation group.
        """
        # Find entries for the given material, which have EOS or parameter
        # variation hashes set.
        if group_type == "eos":
            group_id_source = "encyclopedia.method.group_eos_id"
        elif group_type == "par":
            group_id_source = "encyclopedia.method.group_parametervariation_id"
        else:
            abort(400, message="Unsupported group type.")

        bool_query = Q(
            "bool",
537
            filter=enc_filter + [
538
539
540
541
542
543
544
                Q("term", encyclopedia__material__material_id=material_id),
                Q("term", **{group_id_source: group_id}),
            ],
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
545
546
547
548
549

        # calc_id and energy should be extracted for each matched document. The
        # documents are sorted by energy so that the minimum energy one can be
        # easily extracted. A maximum request size is set in order to limit the
        # result size. ES also has an index-level property
550
        # "index.max_inner_result_window" that limits the number of results
551
552
553
554
555
556
557
        # that an inner result can contain.
        energy_aggregation = A(
            "top_hits",
            _source=group_source,
            sort=[{"encyclopedia.properties.energies.energy_total": {"order": "asc"}}],
            size=100,
        )
558
        s.aggs.bucket("groups_eos", energy_aggregation)
559

560
561
562
563
        # We ignore the top level hits
        s = s.extra(**{
            "size": 0,
        })
564

565
        # Collect information for each group from the aggregations
566
        response = s.execute()
567

568
569
570
571
572
573
574
575
        hits = response.aggs.groups_eos.hits
        calculations = [doc.calc_id for doc in hits]
        energies = [doc.encyclopedia.properties.energies.energy_total for doc in hits]
        volumes = [doc.encyclopedia.material.idealized_structure.cell_volume for doc in hits]
        group_dict = {
            "calculations": calculations,
            "energies": energies,
            "volumes": volumes,
576
        }
577
578

        return group_dict, 200
579
580


581
582
583
584
suggestions_map = {
    "code_name": "dft.code_name",
    "structure_type": "encyclopedia.material.bulk.structure_type",
}
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
suggestions_query = api.parser()
suggestions_query.add_argument(
    "property",
    type=str,
    choices=("code_name", "structure_type"),
    help="The property name for which suggestions are returned.",
    location="args"
)
suggestions_result = api.model("suggestions_result", {
    "code_name": fields.List(fields.String),
    "structure_type": fields.List(fields.String),
})


@ns.route("/suggestions")
class EncSuggestionsResource(Resource):
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.expect(suggestions_query, validate=False)
    @api.marshal_with(suggestions_result, skip_none=True)
    @api.doc("enc_suggestions")
    def get(self):

        # Parse request arguments
        args = suggestions_query.parse_args()
        prop = args.get("property", None)

613
614
615
616
617
618
619
        # Use aggregation to return all unique terms for the requested field.
        # Without using composite aggregations there is a size limit for the
        # number of aggregation buckets. This should, however, not be a problem
        # since the number of unique values is low for all supported properties.
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
620
            filter=enc_filter
621
622
623
624
625
626
627
628
629
630
631
632
633
634
        )
        s = s.query(query)
        s = s.extra(**{
            "size": 0,
        })

        terms_agg = A("terms", field=suggestions_map[prop])
        s.aggs.bucket("suggestions", terms_agg)

        # Gather unique values into a list
        response = s.execute()
        suggestions = [x.key for x in response.aggs.suggestions.buckets]

        return {prop: suggestions}, 200
635
636
637
638
639
640
641
642


calc_prop_map = {
    "calc_id": "calc_id",
    "code_name": "dft.code_name",
    "code_version": "dft.code_version",
    "functional_type": "encyclopedia.method.functional_type",
    "basis_set_type": "dft.basis_set",
643
    "core_electron_treatment": "encyclopedia.method.core_electron_treatment",
644
645
646
647
    "run_type": "encyclopedia.calculation.calculation_type",
    "has_dos": "encyclopedia.properties.electronic_dos",
    "has_band_structure": "encyclopedia.properties.electronic_band_structure",
    "has_thermal_properties": "encyclopedia.properties.thermodynamical_properties",
648
649
    "has_phonon_dos": "encyclopedia.properties.phonon_dos",
    "has_phonon_band_structure": "encyclopedia.properties.phonon_band_structure",
650
651
652
653
654
655
656
}
calculation_result = api.model("calculation_result", {
    "calc_id": fields.String,
    "code_name": fields.String,
    "code_version": fields.String,
    "functional_type": fields.String,
    "basis_set_type": fields.String,
657
    "core_electron_treatment": fields.String,
658
659
660
661
    "run_type": fields.String,
    "has_dos": fields.Boolean,
    "has_band_structure": fields.Boolean,
    "has_thermal_properties": fields.Boolean,
662
663
    "has_phonon_dos": fields.Boolean,
    "has_phonon_band_structure": fields.Boolean,
664
})
665
666
667
668
669
670
representatives_result = api.model("representatives_result", {
    "idealized_structure": fields.String,
    "electronic_band_structure": fields.String,
    "electronic_dos": fields.String,
    "thermodynamical_properties": fields.String,
})
671
672
673
674
calculations_result = api.model("calculations_result", {
    "total_results": fields.Integer,
    "pages": fields.Nested(pages_result),
    "results": fields.List(fields.Nested(calculation_result)),
675
    "representatives": fields.Nested(representatives_result, skip_none=True),
676
677
678
679
})


@ns.route("/materials/<string:material_id>/calculations")
680
class EncCalculationsResource(Resource):
681
682
683
684
685
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
    @api.doc("enc_calculations")
    def get(self, material_id):
686
687
688
        """Used to return all calculations related to the given material. Also
        returns a representative calculation for each property shown in the
        overview page.
689
690
691
692
        """
        s = Search(index=config.elastic.index_name)
        query = Q(
            "bool",
693
            filter=enc_filter + [
694
695
696
697
698
699
700
701
                Q("term", encyclopedia__material__material_id=material_id),
            ]
        )
        s = s.query(query)

        # The query is filtered already on the ES side so we don"t need to
        # transfer so much data.
        s = s.extra(**{
702
703
704
            "_source": {"includes": list(calc_prop_map.values()) + ["dft.xc_functional"]},
            "size": 10000,
            "from": 0,
705
706
707
708
709
710
711
        })
        response = s.execute()

        # No such material
        if len(response) == 0:
            abort(404, message="There is no material {}".format(material_id))

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
        # Add representative properties. It might be possible to write a custom
        # ES scoring mechanism or aggregation to also perform the selection.
        representatives = {}

        def calc_score(entry):
            """Custom scoring function used to sort results by their
            "quality". Currently built to mimic the scoring that was used
            in the old Encyclopedia GUI.
            """
            score = 0
            functional_score = {
                "GGA": 100
            }
            code_score = {
                "FHI-aims": 3,
                "VASP": 2,
                "Quantum Espresso": 1,
            }
            code_name = entry.dft.code_name
            functional = entry.dft.xc_functional
            has_dos = rgetattr(entry, "encyclopedia.properties.electronic_band_structure") is not None
            has_bs = rgetattr(entry, "encyclopedia.properties.electronic_dos") is not None
            score += functional_score.get(functional, 0)
            score += code_score.get(code_name, 0)
            if has_dos and has_bs:
                score += 10

            return score

        # The calculations are first sorted by "quality"
        sorted_calc = sorted(response, key=lambda x: calc_score(x), reverse=True)

        # Get the requested representative properties
        representatives["idealized_structure"] = sorted_calc[0].calc_id
        thermo_found = False
        bs_found = False
        dos_found = False
        for calc in sorted_calc:
            if rgetattr(calc, "encyclopedia.properties.thermodynamical_properties") is not None:
                representatives["thermodynamical_properties"] = calc.calc_id
                thermo_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_band_structure") is not None:
                representatives["electronic_band_structure"] = calc.calc_id
                bs_found = True
            if rgetattr(calc, "encyclopedia.properties.electronic_dos") is not None:
                representatives["electronic_dos"] = calc.calc_id
                dos_found = True
            if thermo_found and bs_found and dos_found:
                break

762
763
764
765
766
        # Create result JSON
        results = []
        for entry in response:
            calc_dict = get_es_doc_values(entry, calc_prop_map)
            calc_dict["has_dos"] = calc_dict["has_dos"] is not None
767
            calc_dict["has_band_structure"] = calc_dict["has_band_structure"] is not None
768
            calc_dict["has_thermal_properties"] = calc_dict["has_thermal_properties"] is not None
769
770
            calc_dict["has_phonon_dos"] = calc_dict["has_phonon_dos"] is not None
            calc_dict["has_phonon_band_structure"] = calc_dict["has_phonon_band_structure"] is not None
771
772
773
774
775
            results.append(calc_dict)

        result = {
            "total_results": len(results),
            "results": results,
776
            "representatives": representatives,
777
778
779
780
781
        }

        return result, 200


782
783
784
785
histogram = api.model("histogram", {
    "occurrences": fields.List(fields.Integer),
    "values": fields.List(fields.Float),
})
786
787
statistics_query = api.model("statistics_query", {
    "calculations": fields.List(fields.String),
788
    "properties": fields.List(fields.String),
789
    "n_histogram_bins": fields.Integer,
790
791
792
793
794
})
statistics = api.model("statistics", {
    "min": fields.Float,
    "max": fields.Float,
    "avg": fields.Float,
795
    "histogram": fields.Nested(histogram, skip_none=True)
796
797
})
statistics_result = api.model("statistics_result", {
798
799
800
801
802
803
804
805
806
807
    "cell_volume": fields.Nested(statistics, skip_none=True),
    "atomic_density": fields.Nested(statistics, skip_none=True),
    "mass_density": fields.Nested(statistics, skip_none=True),
    "lattice_a": fields.Nested(statistics, skip_none=True),
    "lattice_b": fields.Nested(statistics, skip_none=True),
    "lattice_c": fields.Nested(statistics, skip_none=True),
    "alpha": fields.Nested(statistics, skip_none=True),
    "beta": fields.Nested(statistics, skip_none=True),
    "gamma": fields.Nested(statistics, skip_none=True),
    "band_gap": fields.Nested(statistics, skip_none=True),
808
})
809
810
811
812
813
814
815
816
817
818
property_map = {
    "cell_volume": "encyclopedia.material.idealized_structure.cell_volume",
    "atomic_density": "encyclopedia.properties.atomic_density",
    "mass_density": "encyclopedia.properties.mass_density",
    "lattice_a": "encyclopedia.material.idealized_structure.lattice_parameters.a",
    "lattice_b": "encyclopedia.material.idealized_structure.lattice_parameters.b",
    "lattice_c": "encyclopedia.material.idealized_structure.lattice_parameters.c",
    "alpha": "encyclopedia.material.idealized_structure.lattice_parameters.alpha",
    "beta": "encyclopedia.material.idealized_structure.lattice_parameters.beta",
    "gamma": "encyclopedia.material.idealized_structure.lattice_parameters.gamma",
Lauri Himanen's avatar
Lauri Himanen committed
819
    "band_gap": "encyclopedia.properties.band_gap",
820
}
821
822
823


@ns.route("/materials/<string:material_id>/statistics")
824
class EncStatisticsResource(Resource):
825
826
827
    @api.response(404, "Suggestion not found")
    @api.response(400, "Bad request")
    @api.response(200, "Metadata send", fields.Raw)
828
829
    @api.expect(statistics_query, validate=False)
    @api.marshal_with(statistics_result, skip_none=True)
830
831
    @api.doc("enc_statistics")
    def post(self, material_id):
832
833
        """Used to return statistics related to the specified material and
        calculations.
834
        """
835
836
837
838
839
840
841
842
843
        # Get query parameters as json
        try:
            data = marshal(request.get_json(), statistics_query)
        except Exception as e:
            abort(400, message=str(e))

        # Find entries for the given material.
        bool_query = Q(
            "bool",
844
            filter=enc_filter + [
845
846
847
848
849
850
851
852
853
854
855
                Q("term", encyclopedia__material__material_id=material_id),
                Q("terms", calc_id=data["calculations"]),
            ]
        )

        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })

856
857
858
859
860
861
        # Add statistics aggregations for each requested property
        properties = data["properties"]
        for prop in properties:
            stats_agg = A("stats", field=property_map[prop])
            s.aggs.bucket("{}_stats".format(prop), stats_agg)

862
863
864
865
866
        # No hits on the top query level
        response = s.execute()
        if response.hits.total == 0:
            abort(404, message="Could not find matching calculations.")

867
868
869
870
871
872
873
874
        # Run a second query that creates histograms with fixed size buckets
        # based on the min and max from previous query. Might make more sense
        # to use the mean and sigma to define the range?
        s = Search(index=config.elastic.index_name)
        s = s.query(bool_query)
        s = s.extra(**{
            "size": 0,
        })
875
        n_bins = data["n_histogram_bins"]
876
877
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
878
879
            if stats.count == 0:
                continue
880
            interval = (stats.max * 1.001 - stats.min) / n_bins
881
882
            if interval == 0:
                interval = 1
883
            hist_agg = A("histogram", field=property_map[prop], interval=interval, offset=stats.min, min_doc_count=0)
884
885
886
            s.aggs.bucket("{}_hist".format(prop), hist_agg)
        response_hist = s.execute()

887
        # Return results
888
889
890
        result = {}
        for prop in properties:
            stats = getattr(response.aggs, "{}_stats".format(prop))
891
892
            if stats.count == 0:
                continue
893
894
895
896
897
898
899
            hist = getattr(response_hist.aggs, "{}_hist".format(prop))
            occurrences = [x.doc_count for x in hist.buckets]
            values = [x.key for x in hist.buckets]
            result[prop] = {
                "min": stats.min,
                "max": stats.max,
                "avg": stats.avg,
900
                "histogram": {
901
902
903
                    "occurrences": occurrences,
                    "values": values,
                }
904
            }
905

906
        return result, 200
907
908
909
910
911
912
913
914
915
916
917


wyckoff_variables_result = api.model("wyckoff_variables_result", {
    "x": fields.Float,
    "y": fields.Float,
    "z": fields.Float,
})
wyckoff_set_result = api.model("wyckoff_set_result", {
    "wyckoff_letter": fields.String,
    "indices": fields.List(fields.Integer),
    "element": fields.String,
918
    "variables": fields.Nested(wyckoff_variables_result, skip_none=True),
919
})
920
921
922
923
924
925
926
927
lattice_parameters = api.model("lattice_parameters", {
    "a": fields.Float,
    "b": fields.Float,
    "c": fields.Float,
    "alpha": fields.Float,
    "beta": fields.Float,
    "gamma": fields.Float,
})
928
929
930
931
932
933

idealized_structure_result = api.model("idealized_structure_result", {
    "atom_labels": fields.List(fields.String),
    "atom_positions": fields.List(fields.List(fields.Float)),
    "lattice_vectors": fields.List(fields.List(fields.Float)),
    "lattice_vectors_primitive": fields.List(fields.List(fields.Float)),
934
    "lattice_parameters": fields.Nested(lattice_parameters, skip_none=True),
935
936
937
    "periodicity": fields.List(fields.Boolean),
    "number_of_atoms": fields.Integer,
    "cell_volume": fields.Float,
938
    "wyckoff_sets": fields.List(fields.Nested(wyckoff_set_result, skip_none=True)),
939
940
})

941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
calculation_property_map = {
    "lattice_parameters": {
        "es_source": "encyclopedia.material.idealized_structure.lattice_parameters"
    },
    "energies": {
        "es_source": "encyclopedia.properties.energies",
    },
    "mass_density": {
        "es_source": "encyclopedia.properties.mass_density",
    },
    "atomic_density": {
        "es_source": "encyclopedia.properties.atomic_density",
    },
    "cell_volume": {
        "es_source": "encyclopedia.material.idealized_structure.cell_volume"
    },
Lauri Himanen's avatar
Lauri Himanen committed
957
958
959
    "band_gap": {
        "es_source": "encyclopedia.properties.band_gap"
    },
960
961
962
963
964
965
    "electronic_band_structure": {
        "es_source": "encyclopedia.properties.electronic_band_structure"
    },
    "electronic_dos": {
        "es_source": "encyclopedia.properties.electronic_dos"
    },
966
967
968
969
970
971
972
973
974
    "phonon_band_structure": {
        "es_source": "encyclopedia.properties.phonon_band_structure"
    },
    "phonon_dos": {
        "es_source": "encyclopedia.properties.phonon_dos"
    },
    "thermodynamical_properties": {
        "es_source": "encyclopedia.properties.thermodynamical_properties"
    },
975
976
977
    "wyckoff_sets": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure/wyckoff_sets"
    },
978
979
980
    "idealized_structure": {
        "arch_source": "section_metadata/encyclopedia/material/idealized_structure"
    },
981
982
983
984
985
986
987
988
989
990
}

calculation_property_query = api.model("calculation_query", {
    "properties": fields.List(fields.String),
})
energies = api.model("energies", {
    "energy_total": fields.Float,
    "energy_total_T0": fields.Float,
    "energy_free": fields.Float,
})
Lauri Himanen's avatar
Lauri Himanen committed
991
992
993
994
electronic_band_structure = api.model("electronic_band_structure", {
    "reciprocal_cell": fields.List(fields.List(fields.Float)),
    "brillouin_zone": fields.Raw,
    "section_k_band_segment": fields.Raw,
995
    "section_band_gap": fields.Raw,
Lauri Himanen's avatar
Lauri Himanen committed
996
997
998
})
electronic_dos = api.model("electronic_dos", {
    "dos_energies": fields.List(fields.Float),
999
    "dos_values": fields.List(fields.List(fields.Float)),
Lauri Himanen's avatar
Lauri Himanen committed
1000
})