diff --git a/src/loss_function/LossFunctionPearsonRMSE.cpp b/src/loss_function/LossFunctionPearsonRMSE.cpp index 3860eb22103f294c395677693ae7defea3f8327e..820b48ac8545cf993b49cb18147b1e61acf1a4e6 100644 --- a/src/loss_function/LossFunctionPearsonRMSE.cpp +++ b/src/loss_function/LossFunctionPearsonRMSE.cpp @@ -48,7 +48,7 @@ void LossFunctionPearsonRMSE::set_nfeat(int n_feat) void LossFunctionPearsonRMSE::reset_projection_prop(const std::vector<std::vector<model_node_ptr>>& models) { - + _n_project_prop = models.size(); _projection_prop.resize(_n_samp * _n_project_prop); for(int mm = 0; mm < _n_project_prop; ++mm) { @@ -57,7 +57,6 @@ void LossFunctionPearsonRMSE::reset_projection_prop(const std::vector<std::vecto } set_nfeat(models.back().size() + 1); - _n_project_prop = models.size(); prepare_project(); } @@ -116,6 +115,7 @@ double LossFunctionPearsonRMSE::project(const node_ptr& feat) double LossFunctionPearsonRMSE::calc_max_pearson(double* feat_val_ptr) { + std::cout << "TEST IN" << std::endl; int start = 0; for(int tt = 0; tt < _task_sizes_train.size(); ++tt) { @@ -145,6 +145,7 @@ double LossFunctionPearsonRMSE::calc_max_pearson(double* feat_val_ptr) start += _task_sizes_train[tt]; } + std::cout << "TEST OUT" << std::endl; return *std::max_element(_scores.begin(), _scores.end()) / static_cast<double>(-1 * _n_task); }