diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 535ccf1e04384f2b30239749b1d7373dcbfb2318..d811775a0c9aba923d5d12dadcc51cecb21d4c1c 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -16,8 +16,8 @@ build-intel-base:
     - export MKLROOT=/home/runner/intel/oneapi/mkl/latest/
     - export LD_LIBRARY_PATH=$I_MPI_ROOT/lib/:$I_MPI_ROOT/lib/release:$MKLROOT/lib/intel64:$INTEL_COMP_ROOT/lib/:$INTEL_COMP_ROOT/compiler/lib/intel64/:$LD_LIBRARY_PATH:$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7
     - export PATH=$INTEL_COMP_ROOT/bin/:$INTEL_COMP_ROOT/bin/intel64:$I_MPI_ROOT/bin:$PATH
-    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILE=icc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=ON -DBUILD_PARAMS=OFF -DBUILD_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=../intel_base/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=ON -DBUILD_PARAMS=OFF -DBUILD_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=../intel_base/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -39,8 +39,8 @@ build-intel-py:
     - export LD_LIBRARY_PATH=$I_MPI_ROOT/lib/:$I_MPI_ROOT/lib/release:$MKLROOT/lib/intel64:$INTEL_COMP_ROOT/lib/:$INTEL_COMP_ROOT/compiler/lib/intel64/:$LD_LIBRARY_PATH:$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7
     - export PYTHONPATH=$HOME/intel/oneapi/intelpython/latest/lib/python3.7/site-packages/:cpp_sisso_env_intel_py/lib/python3.7/site-packages/
     - export PATH=$INTEL_COMP_ROOT/bin/:$INTEL_COMP_ROOT/bin/intel64:$I_MPI_ROOT/bin:$PATH
-    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILE=icc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=OFF -DBUILD_PARAMS=OFF -DBUILD_PYTHON=ON -DCMAKE_INSTALL_PREFIX=../intel_py/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=OFF -DBUILD_PARAMS=OFF -DBUILD_PYTHON=ON -DCMAKE_INSTALL_PREFIX=../intel_py/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -60,8 +60,8 @@ build-intel-param:
     - export MKLROOT=/home/runner/intel/oneapi/mkl/latest/
     - export LD_LIBRARY_PATH=$I_MPI_ROOT/lib/:$I_MPI_ROOT/lib/release:$MKLROOT/lib/intel64:$INTEL_COMP_ROOT/lib/:$INTEL_COMP_ROOT/compiler/lib/intel64/:$LD_LIBRARY_PATH:$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7
     - export PATH=$INTEL_COMP_ROOT/bin/:$INTEL_COMP_ROOT/bin/intel64:$I_MPI_ROOT/bin:$PATH
-    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILE=icc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=../intel_param/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=OFF -DCMAKE_INSTALL_PREFIX=../intel_param/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -83,8 +83,8 @@ build-intel-param-py:
     - export LD_LIBRARY_PATH=$I_MPI_ROOT/lib/:$I_MPI_ROOT/lib/release:$MKLROOT/lib/intel64:$INTEL_COMP_ROOT/lib/:$INTEL_COMP_ROOT/compiler/lib/intel64/:$LD_LIBRARY_PATH:$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7
     - export PYTHONPATH=$HOME/intel/oneapi/intelpython/latest/lib/python3.7/site-packages/:cpp_sisso_env_intel_param_py/lib/python3.7/site-packages/
     - export PATH=$INTEL_COMP_ROOT/bin/:$INTEL_COMP_ROOT/bin/intel64:$I_MPI_ROOT/bin:$PATH
-    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILE=icc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=OFF -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON -DCMAKE_INSTALL_PREFIX=../intel_param_py/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=OFF -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON -DCMAKE_INSTALL_PREFIX=../intel_param_py/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -98,6 +98,7 @@ test-intel-pytest-py:
   stage: unit_test
   dependencies:
     - build-intel-py
+  needs: ["build-intel-py"]
   script:
     - source cpp_sisso_env_intel_py/bin/activate
     - export I_MPI_ROOT=/home/runner/intel/oneapi/mpi/latest/
@@ -114,6 +115,7 @@ test-intel-pytest-param-py:
   stage: unit_test
   dependencies:
     - build-intel-param-py
+  needs: ["build-intel-param-py"]
   script:
     - source cpp_sisso_env_intel_param_py/bin/activate
     - export I_MPI_ROOT=/home/runner/intel/oneapi/mpi/latest/
@@ -130,6 +132,7 @@ test-intel-base-googletest:
   stage: unit_test
   dependencies:
     - build-intel-base
+  needs: ["build-intel-base"]
   script:
     - export I_MPI_ROOT=/home/runner/intel/oneapi/mpi/latest/
     - export INTEL_COMP_ROOT=/home/runner/intel/oneapi/compiler/latest/linux/
@@ -145,6 +148,7 @@ test-intel-param-googletest:
   stage: unit_test
   dependencies:
     - build-intel-param
+  needs: ["build-intel-param"]
   script:
     - export I_MPI_ROOT=/home/runner/intel/oneapi/mpi/latest/
     - export INTEL_COMP_ROOT=/home/runner/intel/oneapi/compiler/latest/linux/
@@ -160,6 +164,7 @@ test-intel-bin-param:
   stage: bin_test
   dependencies:
     - build-intel-param-py
+  needs: ["build-intel-param-py"]
   script:
     - source cpp_sisso_env_intel_param_py/bin/activate
     - export I_MPI_ROOT=/home/runner/intel/oneapi/mpi/latest/
@@ -177,6 +182,7 @@ test-intel-bin-base:
   stage: bin_test
   dependencies:
     - build-intel-py
+  needs: ["build-intel-py"]
   script:
     - source cpp_sisso_env_intel_py/bin/activate
     - export I_MPI_ROOT=/home/runner/intel/oneapi/mpi/latest/
@@ -196,8 +202,8 @@ build-gnu-base:
     - export LD_LIBRARY_PATH=$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7:$LD_LIBRARY_PATH
     - mkdir build_gnu_base/
     - cd build_gnu_base/
-    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILE=gcc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=ON -DBUILD_PARAMS=OFF -DBUILD_PYTHON=OFF  -DCMAKE_INSTALL_PREFIX=../gnu_base/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=ON -DBUILD_PARAMS=OFF -DBUILD_PYTHON=OFF  -DCMAKE_INSTALL_PREFIX=../gnu_base/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -211,8 +217,8 @@ build-gnu-param:
     - export LD_LIBRARY_PATH=$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7:$LD_LIBRARY_PATH
     - mkdir build_gnu_param/
     - cd build_gnu_param/
-    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILE=gcc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=OFF  -DCMAKE_INSTALL_PREFIX=../gnu_param/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=OFF  -DCMAKE_INSTALL_PREFIX=../gnu_param/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -229,8 +235,8 @@ build-gnu-py:
     - export PYTHONPATH=$HOME/intel/oneapi/intelpython/latest/lib/python3.7/site-packages/:cpp_sisso_gnu_py_env/lib/python3.7/site-packages/
     - mkdir build_py/
     - cd build_py/
-    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILE=gcc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=OFF -DBUILD_PARAMS=OFF -DBUILD_PYTHON=ON  -DCMAKE_INSTALL_PREFIX=../gnu_py/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=OFF -DBUILD_PARAMS=OFF -DBUILD_PYTHON=ON  -DCMAKE_INSTALL_PREFIX=../gnu_py/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -248,8 +254,8 @@ build-gnu-param-py:
     - export PYTHONPATH=$HOME/intel/oneapi/intelpython/latest/lib/python3.7/site-packages/:cpp_sisso_gnu_param_py_env/lib/python3.7/site-packages/
     - mkdir build_param_py/
     - cd build_param_py/
-    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILE=gcc -DCMAKE_CXX_FLAGS="-O3" -DBUILD_TESTS=OFF -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON  -DCMAKE_INSTALL_PREFIX=../gnu_param_py/ ../
-    - make
+    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_FLAGS="-O3" -DEXTERNAL_BUILD_N_PROCS=4 -DBUILD_TESTS=OFF -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON  -DCMAKE_INSTALL_PREFIX=../gnu_param_py/ ../
+    - make -j4
     - make install
     - cd ../
   artifacts:
@@ -262,6 +268,7 @@ test-gnu-pytest-py:
   stage: unit_test
   dependencies:
     - build-gnu-py
+  needs: ["build-gnu-py"]
   script:
     - source cpp_sisso_gnu_py_env/bin/activate
     - export LD_LIBRARY_PATH=$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7:$LD_LIBRARY_PATH
@@ -274,6 +281,7 @@ test-gnu-pytest-param-py:
   stage: unit_test
   dependencies:
     - build-gnu-param-py
+  needs: ["build-gnu-param-py"]
   script:
     - source cpp_sisso_gnu_param_py_env/bin/activate
     - export LD_LIBRARY_PATH=$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7:$LD_LIBRARY_PATH
@@ -286,6 +294,7 @@ test-gnu-base-googletest:
   stage: unit_test
   dependencies:
     - build-gnu-base
+  needs: ["build-gnu-base"]
   script:
     - export OMP_NUM_THREADS=2
     - export OMP_PLACES=cores
@@ -296,6 +305,7 @@ test-gnu-param-googletest:
   stage: unit_test
   dependencies:
     - build-gnu-param
+  needs: ["build-gnu-param"]
   script:
     - export OMP_NUM_THREADS=2
     - export OMP_PLACES=cores
@@ -306,6 +316,7 @@ test-gnu-bin-param:
   stage: bin_test
   dependencies:
     - build-gnu-param-py
+  needs: ["build-gnu-param-py"]
   script:
     - source cpp_sisso_gnu_param_py_env/bin/activate
     - export LD_LIBRARY_PATH=$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7:$LD_LIBRARY_PATH
@@ -319,6 +330,7 @@ test-gnu-bin-base:
   stage: bin_test
   dependencies:
     - build-gnu-py
+  needs: ["build-gnu-py"]
   script:
     - source cpp_sisso_gnu_py_env/bin/activate
     - export LD_LIBRARY_PATH=$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7:$LD_LIBRARY_PATH
@@ -337,7 +349,7 @@ build-gnu-gcov:
     - export PYTHONPATH=$HOME/intel/oneapi/intelpython/latest/lib/python3.7/site-packages/:`pwd`/cpp_sisso_gnu_gcov_env/lib/python3.7/site-packages/
     - mkdir build_gcov/
     - cd build_gcov/
-    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILE=gcc -DCMAKE_BUILD_TYPE="Coverage" -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON  -DCMAKE_INSTALL_PREFIX=../gnu_gcov/ ../
+    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_BUILD_TYPE="Coverage" -DMPIEXEC_EXECUTABLE=/usr/bin/mpiexec -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON  -DCMAKE_INSTALL_PREFIX=../gnu_gcov/ ../
     - make install
     - make coverage
     - cd ../
@@ -357,7 +369,7 @@ build-gnu-lcov:
     - export PYTHONPATH=$HOME/intel/oneapi/intelpython/latest/lib/python3.7/site-packages/:`pwd`/cpp_sisso_gnu_lcov_env/lib/python3.7/site-packages/
     - mkdir build_lcov/
     - cd build_lcov/
-    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILE=gcc -DCMAKE_BUILD_TYPE="Coverage" -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON -DCMAKE_INSTALL_PREFIX=../gnu_lcov/ ../
+    - cmake -DCMAKE_CXX_COMPILER=g++ -DCMAKE_C_COMPILER=gcc -DCMAKE_BUILD_TYPE="Coverage" -DMPIEXEC_EXECUTABLE=/usr/bin/mpiexec -DBUILD_TESTS=ON -DBUILD_PARAMS=ON -DBUILD_PYTHON=ON -DCMAKE_INSTALL_PREFIX=../gnu_lcov/ ../
     - make install
     - make coverage_html
     - cd ../
@@ -372,6 +384,7 @@ pages:
   stage: doc_builds
   dependencies:
     - build-gnu-lcov
+  needs: ["build-gnu-lcov"]
   script:
     - source cpp_sisso_gnu_lcov_env/bin/activate
     - export LD_LIBRARY_PATH=$HOME/intel/oneapi/intelpython/latest/lib/:$HOME/intel/oneapi/intelpython/latest/lib/python3.7/:$LD_LIBRARY_PATH
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 4e4c7b99b01c25ec7f5cdb175679466f329274e1..f0a2125b67d083e2eead75d5fffba45100fe7075 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -30,6 +30,10 @@ option(BUILD_PYTHON "Whether to compile with python binding support" ON)
 option(BUILD_PARAMS "If true use non-linear parameterization" OFF)
 option(BUILD_TESTS "Whether to compile with python binding support" OFF)
 
+if(NOT ${EXTERNAL_BUILD_N_PROCS})
+    set(EXTERNAL_BUILD_N_PROCS "1")
+endif()
+
 if(BUILD_PARAMS)
     message(STATUS "BUILD_PARAMS True")
     set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DPARAMETERIZE")
@@ -59,14 +63,15 @@ if(EXTERNAL_BOOST)
     message(STATUS "Using external boost")
     set(EXTERNAL_BOOST TRUE)
 else(EXTERNAL_BOOST)
-    if(NOT DEFINED BOOST_BUILD_N_PROCS)
-        set(BOOST_BUILD_N_PROCS 1 CACHE STRING "Number of processes to use when building Boost")
-    endif()
-    message(STATUS "Building boost wth ${BOOST_BUILD_N_PROCS} process(es)")
+    message(STATUS "Building boost wth ${EXTERNAL_BUILD_N_PROCS} process(es)")
     include( ExternalProject )
     set(EXTERNAL_BOOST FALSE)
 endif()
 
+if(NOT DEFINED EXTERNAL_BUILD_N_PROCS)
+    set(EXTERNAL_BUILD_N_PROCS 1 CACHE STRING "Number of processes to use when building Boost")
+endif()
+
 # Check for FindOpenMP
 find_package(OpenMP REQUIRED)
 if (OPENMP_FOUND)
@@ -134,6 +139,19 @@ if(BUILD_PYTHON)
         OUTPUT_STRIP_TRAILING_WHITESPACE
     )
 
+    execute_process(
+        COMMAND ${PYTHON_EXECUTABLE}
+        -c "import numpy; print(numpy.__version__)"
+        OUTPUT_VARIABLE NUMPY_VERSION
+        OUTPUT_STRIP_TRAILING_WHITESPACE
+    )
+    string(LENGTH "${NUMPY_VERSION}" NPV_LEN)
+    if(NPV_LEN EQUAL "0")
+        message(FATAL_ERROR "numpy must be installed")
+    else()
+        message(STATUS "numpy version ${NUMPY_VERSION} ${NPV_LEN} found")
+    endif()
+
     message(STATUS "PYTHON_LIBDIR = ${PYTHON_LIBDIR}")
     message(STATUS "PYTHON_INSTDIR = ${PYTHON_INSTDIR}")
 
@@ -263,8 +281,8 @@ else(EXTERNAL_BOOST)
         BUILD_IN_SOURCE 1
         CONFIGURE_COMMAND ${Boost_CONFIGURE_COMMAND}
         BUILD_COMMAND
-    	./b2 -j ${BOOST_BUILD_N_PROCS}
-    	INSTALL_COMMAND ./b2 -j ${BOOST_BUILD_N_PROCS} install
+    	./b2 -j ${EXTERNAL_BUILD_N_PROCS}
+    	INSTALL_COMMAND ./b2 -j ${EXTERNAL_BUILD_N_PROCS} install
         INSTALL_DIR ${Boost_INSTALL_DIR}
     )
 
@@ -272,42 +290,11 @@ else(EXTERNAL_BOOST)
     set( Boost_LIBRARY_SUFFIX .so )
     set( Boost_LIBRARY_PREFIX lib )
 
-    add_library( boost::mpi SHARED IMPORTED )
-    set_property( TARGET boost::mpi PROPERTY IMPORTED_LOCATION ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_mpi${Boost_LIBRARY_SUFFIX} )
-    set_property( TARGET boost::mpi PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${Boost_INCLUDE_DIRS} )
-    add_dependencies(boost::mpi  external_boost)
-
-    add_library( boost::serialization SHARED IMPORTED )
-    set_property( TARGET boost::serialization PROPERTY IMPORTED_LOCATION ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_serialization${Boost_LIBRARY_SUFFIX} )
-    set_property( TARGET boost::serialization PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${Boost_INCLUDE_DIRS} )
-    add_dependencies(boost::serialization  external_boost)
-
-    add_library( boost::system SHARED IMPORTED )
-    set_property( TARGET boost::system PROPERTY IMPORTED_LOCATION ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_system${Boost_LIBRARY_SUFFIX} )
-    set_property( TARGET boost::system PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${Boost_INCLUDE_DIRS} )
-    add_dependencies(boost::system  external_boost)
-
-    add_library( boost::filesystem SHARED IMPORTED )
-    set_property( TARGET boost::filesystem PROPERTY IMPORTED_LOCATION ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_filesystem${Boost_LIBRARY_SUFFIX} )
-    set_property( TARGET boost::filesystem PROPERTY INTERFACE_LINK_LIBRARIES boost::system )
-    set_property( TARGET boost::filesystem PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${Boost_INCLUDE_DIRS} )
-    add_dependencies(boost::filesystem  external_boost)
-
     set(Boost_LIBRARIES ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_mpi${Boost_LIBRARY_SUFFIX})
     list(APPEND Boost_LIBRARIES ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_serialization${Boost_LIBRARY_SUFFIX})
     list(APPEND Boost_LIBRARIES ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_system${Boost_LIBRARY_SUFFIX})
     list(APPEND Boost_LIBRARIES ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_filesystem${Boost_LIBRARY_SUFFIX})
     if(BUILD_PYTHON)
-        add_library( boost::python${BOOST_PYTHON_VERSION} SHARED IMPORTED )
-        set_property( TARGET boost::python${BOOST_PYTHON_VERSION} PROPERTY IMPORTED_LOCATION ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_python${BOOST_PYTHON_VERSION}${Boost_LIBRARY_SUFFIX} )
-        set_property( TARGET boost::python${BOOST_PYTHON_VERSION} PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${Boost_INCLUDE_DIRS} )
-        add_dependencies(boost::python${BOOST_PYTHON_VERSION}  external_boost)
-
-        add_library( boost::numpy${BOOST_PYTHON_VERSION} SHARED IMPORTED )
-        set_property( TARGET boost::numpy${BOOST_PYTHON_VERSION} PROPERTY IMPORTED_LOCATION ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_numpy${BOOST_PYTHON_VERSION}${Boost_LIBRARY_SUFFIX} )
-        set_property( TARGET boost::numpy${BOOST_PYTHON_VERSION} PROPERTY INTERFACE_LINK_LIBRARIES boost::system )
-        set_property( TARGET boost::numpy${BOOST_PYTHON_VERSION} PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${Boost_INCLUDE_DIRS} )
-        add_dependencies(boost::numpy${BOOST_PYTHON_VERSION}  external_boost)
         set(Boost_PYTHON_LIBRARIES ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_python${BOOST_PYTHON_VERSION}${Boost_LIBRARY_SUFFIX})
         list(APPEND Boost_PYTHON_LIBRARIES ${Boost_LIBRARY_DIRS}/${Boost_LIBRARY_PREFIX}boost_numpy${BOOST_PYTHON_VERSION}${Boost_LIBRARY_SUFFIX})
     endif()
@@ -390,8 +377,8 @@ message(STATUS "COIN_CLP_BLAS_LAPACK_LIBS = ${COIN_CLP_BLAS_LAPACK_LIBS}")
 set(COIN_CLP_CONFIGURE_COMMAND bash ${CMAKE_CURRENT_LIST_DIR}/cmake/coin-Clp/clp_configure.sh ${COIN_CLP_INSTALL_DIR} ${COIN_CLP_BLAS_LAPACK_LIBS} ${COIN_CLP_CXX} ${COIN_CLP_LIBRARY_DIRS}  "${COIN_UTILS_LIBRARY_DIRS}/libCoinUtils.so" ${COIN_UTILS_INCLUDE_DIRS})
 set(COIN_UTILS_CONFIGURE_COMMAND bash ${CMAKE_CURRENT_LIST_DIR}/cmake/CoinUtils/coin_utils_configure.sh ${COIN_UTILS_INSTALL_DIR} ${COIN_CLP_BLAS_LAPACK_LIBS} ${COIN_CLP_CXX} ${COIN_CLP_LIBRARY_DIRS})
 
-set(COIN_UTILS_MAKE_INSTALL_COMMAND bash ${CMAKE_CURRENT_LIST_DIR}/cmake/CoinUtils/coin_utils_make_install.sh ${COIN_UTILS_LIBRARY_DIRS}/libCoinUtils.so)
-set(COIN_CLP_MAKE_INSTALL_COMMAND bash ${CMAKE_CURRENT_LIST_DIR}/cmake/coin-Clp/clp_make_install.sh ${COIN_CLP_LIBRARY_DIRS}/libClp.so)
+set(COIN_UTILS_MAKE_INSTALL_COMMAND bash ${CMAKE_CURRENT_LIST_DIR}/cmake/CoinUtils/coin_utils_make_install.sh ${COIN_UTILS_LIBRARY_DIRS}/libCoinUtils.so ${COIN_UTILS_INCLUDE_DIRS})
+set(COIN_CLP_MAKE_INSTALL_COMMAND bash ${CMAKE_CURRENT_LIST_DIR}/cmake/coin-Clp/clp_make_install.sh ${COIN_CLP_LIBRARY_DIRS}/libClp.so ${COIN_CLP_INCLUDE_DIRS})
 
 ExternalProject_Add(
     external_CoinUtils
@@ -399,7 +386,7 @@ ExternalProject_Add(
     GIT_REPOSITORY "https://github.com/coin-or/CoinUtils.git"
     GIT_TAG "releases/2.11.4"
     CONFIGURE_COMMAND "${COIN_UTILS_CONFIGURE_COMMAND}"
-    BUILD_COMMAND make -j ${BOOST_BUILD_N_PROCS}
+    BUILD_COMMAND make -j ${EXTERNAL_BUILD_N_PROCS}
     INSTALL_COMMAND "${COIN_UTILS_MAKE_INSTALL_COMMAND}"
     BINARY_DIR "${COIN_UTILS_BUILD_DIR}"
     INSTALL_DIR "${COIN_UTILS_INSTALL_DIR}"
@@ -411,12 +398,12 @@ ExternalProject_Add(
     GIT_REPOSITORY "https://github.com/coin-or/Clp.git"
     GIT_TAG "releases/1.17.6"
     CONFIGURE_COMMAND "${COIN_CLP_CONFIGURE_COMMAND}"
-    BUILD_COMMAND make -j ${BOOST_BUILD_N_PROCS}
+    BUILD_COMMAND make -j ${EXTERNAL_BUILD_N_PROCS}
     INSTALL_COMMAND ${COIN_CLP_MAKE_INSTALL_COMMAND}
     BINARY_DIR "${COIN_CLP_BUILD_DIR}"
     INSTALL_DIR "${COIN_CLP_INSTALL_DIR}"
 )
-add_dependencies(external_Clp external_CoinUtils)
+ExternalProject_Add_StepDependencies(external_Clp build external_CoinUtils)
 
 set(COIN_CLP_LIBRARIES "${COIN_CLP_LIBRARY_DIRS}/libClp.so;${COIN_CLP_LIBRARY_DIRS}/libCoinUtils.so")
 include_directories(${COIN_CLP_INCLUDE_DIRS})
@@ -524,16 +511,22 @@ if (CMAKE_BUILD_TYPE STREQUAL "Coverage")
             EXECUTABLE make test
             DEPENDENCIES ${COV_DEPS}
             BASE_DIRECTORY "${CMAKE_SOURCE_DIR}/"
-            EXCLUDE "${CMAKE_BINARY_DIR}/" "src/external/*" "src/mpi_interface/*" "/usr/*" "${PYTHON_INCLUDE_PATH}/*" "${MPI_CXX_INCLUDE_DIRS}/*" "src/utils/mkl_*" "tests/*"
+            EXCLUDE "${CMAKE_BINARY_DIR}/" "src/external/*" "/usr/*" "${PYTHON_INCLUDE_PATH}/*" "${MPI_CXX_INCLUDE_DIRS}/*" "src/utils/mkl_*" "tests/*"
         )
         setup_target_for_coverage_gcovr_html(
             NAME "coverage-gcov-html"
             EXECUTABLE make test
             DEPENDENCIES ${COV_DEPS}
             BASE_DIRECTORY "${CMAKE_SOURCE_DIR}/"
-            EXCLUDE "${CMAKE_BINARY_DIR}/" "src/external/*" "src/mpi_interface/*" "/usr/*" "${PYTHON_INCLUDE_PATH}/*" "${MPI_CXX_INCLUDE_DIRS}/*" "src/utils/mkl_*" "tests/*"
+            EXCLUDE "${CMAKE_BINARY_DIR}/" "src/external/*" "/usr/*" "${PYTHON_INCLUDE_PATH}/*" "${MPI_CXX_INCLUDE_DIRS}/*" "src/utils/mkl_*" "tests/*"
         )
     else()
         message(STATUS "Unable to build coverage target for the current compiler ${CMAKE_CXX_COMPILER_ID}")
     endif()
 endif() #CMAKE_BUILD_TYPE STREQUAL "Coverage"
+
+if(${CMAKE_VERSION} VERSION_LESS "3.15")
+    set_property(DIRECTORY APPEND PROPERTY ADDITIONAL_MAKE_CLEAN_FILES "${CMAKE_INSTALL_PREFIX}/bin/" "${CMAKE_INSTALL_PREFIX}/lib/" "${CMAKE_INSTALL_PREFIX}/tests/"  "${NLOPT_INSTALL_DIR}" "${COIN_UTILS_INSTALL_DIR}" "${COIN_CLP_INSTALL_DIR}" "${GTEST_INSTALL_DIR}" "${FMT_INSTALL_DIR}")
+else()
+    set_property(DIRECTORY APPEND PROPERTY ADDITIONAL_CLEAN_FILES "${CMAKE_INSTALL_PREFIX}/bin/" "${CMAKE_INSTALL_PREFIX}/lib/" "${CMAKE_INSTALL_PREFIX}/tests/"  "${NLOPT_INSTALL_DIR}" "${COIN_UTILS_INSTALL_DIR}" "${COIN_CLP_INSTALL_DIR}" "${GTEST_INSTALL_DIR}" "${FMT_INSTALL_DIR}")
+endif()
diff --git a/cmake/CoinUtils/coin_utils_make_install.sh b/cmake/CoinUtils/coin_utils_make_install.sh
index d6a6573e9be91218fcb8f3d4052644ceaac17bb1..4e4aa55e90dcc80577353d9f1382efd40646e403 100644
--- a/cmake/CoinUtils/coin_utils_make_install.sh
+++ b/cmake/CoinUtils/coin_utils_make_install.sh
@@ -1,2 +1,2 @@
 #! /usr/bin/bash
-if [ ! -f $1 ]; then make install; fi
+if [ ! -f $1 ] || [ ! -d $2 ]; then make install; fi
diff --git a/cmake/coin-Clp/clp_make_install.sh b/cmake/coin-Clp/clp_make_install.sh
index d6a6573e9be91218fcb8f3d4052644ceaac17bb1..4e4aa55e90dcc80577353d9f1382efd40646e403 100644
--- a/cmake/coin-Clp/clp_make_install.sh
+++ b/cmake/coin-Clp/clp_make_install.sh
@@ -1,2 +1,2 @@
 #! /usr/bin/bash
-if [ ! -f $1 ]; then make install; fi
+if [ ! -f $1 ] || [ ! -d $2 ]; then make install; fi
diff --git a/codemeta.json b/codemeta.json
new file mode 100644
index 0000000000000000000000000000000000000000..9368b1e0a2de6c71ae38bdda3e6fbd966448d8fa
--- /dev/null
+++ b/codemeta.json
@@ -0,0 +1,43 @@
+{
+  "@context": "https://raw.githubusercontent.com/codemeta/codemeta/master/codemeta.jsonld",
+  "@type": "Code",
+  "author": [
+    {
+      "@id": "http://orcid.org/0000-0003-4564-7206",
+      "@type": "Person",
+      "email": "purcell@fhi-berlin.mpg.de",
+      "name": "Thomas A. R. Purcell",
+      "affiliation": "Fritz-Haber-Institute"
+    },
+    {
+      "@id": "http://orcid.org/0000-0001-5099-3029",
+      "@type": "Person",
+      "email": "luca@fhi-berlin.mpg.de",
+      "name": "Luca M. Ghiringhelli",
+      "affiliation": "Fritz-Haber-Institute"
+    },
+    {
+      "@id": "http://orcid.org/0000-0003-0635-8364",
+      "@type": "Person",
+      "email": "christian.carbogno@fhi-berlin.mpg.de",
+      "name": "Christian Carbogno",
+      "affiliation": "Fritz-Haber-Institute"
+    },
+    {
+      "@type": "Person",
+      "email": "scheffler@fhi-berlin.mpg.de",
+      "name": "Matthias Scheffler",
+      "affiliation": "Fritz-Haber-Institute"
+    }
+  ],
+  "identifier": "",
+  "codeRepository": "https://gitlab.com/sissopp_developers/sissopp",
+  "datePublished": "2021-09-02",
+  "dateModified": "2021-09-02",
+  "dateCreated": "2021-09-02",
+  "description": "A C++ implementation of SISSO with python bindings",
+  "keywords": "SISSO, Symbolic Regression, C++, python",
+  "license": "Apache 2.0",
+  "title": "SISSO++",
+  "version": "v1.0.0"
+}
diff --git a/docs/cpp_api/FeatureCreation.rst b/docs/cpp_api/FeatureCreation.rst
index 8e15e24f786887be52fa49feb4e253b0b4108a2f..19a40d4f088511d516083314163f55fdbac55a69 100644
--- a/docs/cpp_api/FeatureCreation.rst
+++ b/docs/cpp_api/FeatureCreation.rst
@@ -13,6 +13,13 @@ Features
     node
     node_utils
 
+Non-Linearly Optimized Features
+-------------------------------
+.. toctree::
+    :maxdepth: 3
+
+    param_node
+
 Feature Space
 -------------
 .. toctree::
diff --git a/docs/cpp_api/node.rst b/docs/cpp_api/node.rst
index 11a71f4e8697351b391841543d57ab9098240e94..515a6b73fa6114cff2e58da0b418de3df9833251 100644
--- a/docs/cpp_api/node.rst
+++ b/docs/cpp_api/node.rst
@@ -110,89 +110,3 @@ AbsNode
 -------
 .. doxygenfile:: absolute_value.hpp
    :project: SISSO++
-
-AddParamNode
-------------
-.. doxygenfile:: parameterized_add.hpp
-   :project: SISSO++
-
-SubParamNode
-------------
-.. doxygenfile:: parameterized_subtract.hpp
-   :project: SISSO++
-
-AbsDiffParamNode
-----------------
-.. doxygenfile:: parameterized_absolute_difference.hpp
-   :project: SISSO++
-
-MultParamNode
--------------
-.. doxygenfile:: parameterized_multiply.hpp
-   :project: SISSO++
-
-DivParamNode
-------------
-.. doxygenfile:: parameterized_divide.hpp
-   :project: SISSO++
-
-InvParamNode
-------------
-.. doxygenfile:: parameterized_inverse.hpp
-   :project: SISSO++
-
-SqParamNode
------------
-.. doxygenfile:: parameterized_square.hpp
-   :project: SISSO++
-
-CbParamNode
------------
-.. doxygenfile:: parameterized_cube.hpp
-   :project: SISSO++
-
-SixPowParamNode
----------------
-.. doxygenfile:: parameterized_sixth_power.hpp
-   :project: SISSO++
-
-SqrtParamNode
--------------
-.. doxygenfile:: parameterized_square_root.hpp
-   :project: SISSO++
-
-CbrtParamNode
--------------
-.. doxygenfile:: parameterized_cube_root.hpp
-   :project: SISSO++
-
-ExpParamNode
-------------
-.. doxygenfile:: parameterized_exponential.hpp
-   :project: SISSO++
-
-NegExpParamNode
----------------
-.. doxygenfile:: parameterized_negative_exponential.hpp
-   :project: SISSO++
-
-LogParamNode
-------------
-.. doxygenfile:: parameterized_log.hpp
-   :project: SISSO++
-
-SinParamNode
-------------
-.. doxygenfile:: parameterized_sin.hpp
-   :project: SISSO++
-
-CosParamNode
-------------
-.. doxygenfile:: parameterized_cos.hpp
-   :project: SISSO++
-
-AbsParamNode
-------------
-.. doxygenfile:: parameterized_absolute_value.hpp
-   :project: SISSO++
-
diff --git a/docs/quick_start/Installation.md b/docs/quick_start/Installation.md
index cc8428cf7f74e2936bde443c163092bc97fc6cf9..53f44e09e9f71240b02823f5c20e8bff2af228ce 100644
--- a/docs/quick_start/Installation.md
+++ b/docs/quick_start/Installation.md
@@ -1,43 +1,39 @@
 Installation
 ---
 The package uses a CMake build system, and compatible all versions of the C++ standard library after C++ 14.
+You can access the code [here](https://gitlab.mpcdf.mpg.de/tpurcell/cpp_sisso/-/archive/master/cpp_sisso-master.tar.gz)
 
 ### Prerequisites
-To install the sisso++ the following packages are needed:
+To install `SISSO++` the following packages are needed:
 
 - CMake version 3.10 and up
-- A C++ complier (compatible with C++ 14 and later)
+- A C++ compiler (compatible with C++ 14 and later, e.g. gcc 5.0+ or icpc 17.0+)
 - BLAS/LAPACK
 - MPI
 
-Additionally the following packages will be installed if not currently and needed by SISSO++
+Additionally the following packages needed by SISSO++ will be installed (if they are not installed already/if they cannot be found in $PATH)
 
   - [Boost](https://www.boost) (mpi, serialization, system, filesystem, and python libraries)
   - [GTest](https://github.com/google/googletest)
   - [Coin-Clp](https://github.com/coin-or/Clp)
   - [NLopt](https://github.com/stevengj/nlopt)
+  - [{fmt}](https://fmt.dev/latest/index.html) (Used for the C++ 20 [std::format](https://en.cppreference.com/w/cpp/utility/format/format) library)
 
-To build the optional python bindings the following are also needed:
+To build and use the optional python bindings the following are also needed:
 
-- Python 3.6 or greater
+- [Python 3.6 or greater](https://www.python.org/)
+- [numpy](https://numpy.org/)
+- [pandas](https://pandas.pydata.org/)
+- [scipy](https://www.scipy.org/)
+- [seaborn](https://seaborn.pydata.org/)
+- [sklearn](https://scikit-learn.org/stable/index.html)
+- [toml](https://pypi.org/project/toml/)
 
-### Installation Settings
-
-#### `BUILD_PARAMS`
-
-If `BUILD_PARAMS` is ON then build the operators with non-linearly optimized scale and shift parameters, and the relevant optimization files
-
-#### `BUILD_PYTHON`
+The setup of the python environment can be done using anaconda with
 
-If `BUILD_PYTHON` is ON then build the python bindings
-
-#### `BUILD_TESTS`
-
-If `BULD_TESTS` is ON then build GTest based tests
-
-#### `EXTERNAL_BOOST`
-
-If `EXTERNAL_BOOST` is ON then use the pre-built Boost Libraries currently in your path or in `$ENV{BOOST_ROOT}`
+```bash
+conda create -n sissopp_env python=3.9 numpy pandas scipy seaborn scikit-learn toml
+```
 
 ### Installing `SISSO++`
 
@@ -51,6 +47,7 @@ For example, here is `initial_config.cmake` file used to construct `SISSO++` and
 set(CMAKE_CXX_COMPILER g++ CACHE STRING "")
 set(CMAKE_C_COMPILER gcc CACHE STRING "")
 set(CMAKE_CXX_FLAGS "-O3 -march=native" CACHE STRING "")
+set(CMAKE_C_FLAGS "-O3 -march=native" CACHE STRING "")
 
 #################
 # Feature Flags #
@@ -59,24 +56,21 @@ set(BUILD_PYTHON ON CACHE BOOL "")
 set(BUILD_PARAMS ON CACHE BOOL "")
 ```
 
-Here the `-O3` flag is for optimizations, it is recommended to stay as `-O3` or `-O2`, but it can be changed to match compiler requirements.
-
-When building Boost from source (`EXTERNAL_BOOST OFF`) the number of processes used when building Boost may be set using the
-`BOOST_BUILD_N_PROCS` flag in CMake.  For example, to build Boost using 4 processes, the following flag should be included in the
-`initial_config.cmake` file:
+Because we want to build with the python bindings in this example and assuming there is no preexisting python environment, we need to first create/activate it.
+For this example we will use `conda`, but standard python installations or virtual environments are also possible.
 
-```
-#set(BOOST_BUILD_N_PROCS 4 CACHE STRING "")
+```bash
+conda create -n sissopp_env python=3.9 numpy pandas scipy seaborn scikit-learn toml
+conda activate sissopp_env
 ```
 
-This flag will have no effect when linking against external boost, i.e. `EXTERNAL_BOOST ON`.
+Now we can install `SISSO++` using `initial_config.cmake` and the following commands (this assumes gnu compiler and MKL are used, if you are using a different compiler/BLAS library change the flags to the relevant directories)
 
-To install `SISSO++` using `initial_config.cmake` run the following commands (this assumes gnu compiler and MKL are used, if you are using a different compiler/BLAS library change the flags to the relevant directories)
-```
+```bash
 export MKLROOT=/path/to/mkl/
 export BOOST_ROOT=/path/to/boost
 
-cd ~/SISSO++/main directory
+cd ~/cpp_sisso/
 mkdir build/;
 cd build/;
 
@@ -87,6 +81,118 @@ make install
 
 Once all the commands are run `SISSO++` should be in the `~/SISSO++/main directory/bin/` directory.
 
-### Install the Binary Without the Python Bindings
+#### Install the Binary Without the Python Bindings
+
 To install only the `SISSO++` executable repeat the same commands as above but set `USE_PYTHON` in `initial_config.cmake` to `OFF`.
 
+#### Testing the Compilation
+
+To test the compilation of `SISSO++` run `make test` and you should get the following output
+```
+Test project /home/purcell/git/cpp_sisso/build
+      Start  1: Classification
+ 1/17 Test  #1: Classification ...........................................   Passed    1.74 sec
+      Start  2: Classification_Max_Correlation_NE_One
+ 2/17 Test  #2: Classification_Max_Correlation_NE_One ....................   Passed    0.55 sec
+      Start  3: Classification_Generate_Project
+ 3/17 Test  #3: Classification_Generate_Project ..........................   Passed    0.55 sec
+      Start  4: Classification_Max_Correlation_NE_One_Generate_Project
+ 4/17 Test  #4: Classification_Max_Correlation_NE_One_Generate_Project ...   Passed    0.54 sec
+      Start  5: Regression
+ 5/17 Test  #5: Regression ...............................................   Passed    0.38 sec
+      Start  6: Generate_Project
+ 6/17 Test  #6: Generate_Project .........................................   Passed    0.38 sec
+      Start  7: Maximum_Correlation_NE_One
+ 7/17 Test  #7: Maximum_Correlation_NE_One ...............................   Passed    0.43 sec
+      Start  8: Maximum_Correlation_NE_One_Generate_Project
+ 8/17 Test  #8: Maximum_Correlation_NE_One_Generate_Project ..............   Passed    0.39 sec
+      Start  9: Log_Regression
+ 9/17 Test  #9: Log_Regression ...........................................   Passed    0.37 sec
+      Start 10: Log_Regression_Max_Correlation_NE_One
+10/17 Test #10: Log_Regression_Max_Correlation_NE_One ....................   Passed    0.37 sec
+      Start 11: Log_Regression_Generate_Project
+11/17 Test #11: Log_Regression_Generate_Project ..........................   Passed    0.39 sec
+      Start 12: Log_Regression_Max_Correlation_NE_One_Generate_Project
+12/17 Test #12: Log_Regression_Max_Correlation_NE_One_Generate_Project ...   Passed    0.40 sec
+      Start 13: NL_Optimization
+13/17 Test #13: NL_Optimization ..........................................   Passed    3.06 sec
+      Start 14: NL_Optimization_Residuals
+14/17 Test #14: NL_Optimization_Residuals ................................   Passed    9.66 sec
+      Start 15: NL_Optimization_Residuals_Generate_Project
+15/17 Test #15: NL_Optimization_Residuals_Generate_Project ...............   Passed    3.04 sec
+      Start 16: Python_Bindings
+16/17 Test #16: Python_Bindings ..........................................   Passed   12.49 sec
+      Start 17: CPP_Unit_Tests
+17/17 Test #17: CPP_Unit_Tests ...........................................   Passed   12.13 sec
+
+100% tests passed, 0 tests failed out of 17
+
+Total Test time (real) =  46.87 sec
+```
+
+Note the total test time may vary based on optimizations and computational resources used
+
+#### Cleaning up Installation Files
+
+To remove all previously built library and executable files run `make clean` in the build directory. If a compilation error occurs because of issues with one of the external libraries, then clean the build and recompile.
+
+### Installation Settings for Basic Flags
+
+Terms highlighted in red should always be set, and terms highlighted in blue should be set based on what you want to do.
+
+#### <span style="color:red"> CMAKE_CXX_COMPILER </span>
+
+The C++ compiler used to compile the code
+
+#### CMAKE_C_COMPILER
+
+The C compiler used to compile external dependencies (GTest and {fmt})
+
+#### <span style="color:red"> CMAKE_CXX_FLAGS </span>
+
+Define the flags used by the compiler to build the C++ source files. It is recommended to use `-O2` or `-O3` level of optimizations, but it can be changed to match the compiler.
+
+#### CMAKE_C_FLAGS
+
+Define the flags used by the compiler to build the C source files (GTest and {fmt}). It is recommended to use `-O2` or `-O3` level of optimizations, but it can be changed to match the compiler.
+
+#### <span style="color:blue"> CMAKE_INSTALL_PREFIX </span>
+
+*Default: SISSO++ Source Directory*
+
+Path to where the final library and executable files will be placed
+
+### Installation Settings
+
+#### <span style="color:blue"> BUILD_PARAMS </span>
+
+*Default: OFF*
+
+If `BUILD_PARAMS` is ON then build the operators with non-linearly optimized scale and shift parameters, and the relevant optimization files. With this flag on `NLopt`, [the parameterized operators](../cpp_api/param_node), and [the non-linear optimization](../cpp_api/nl_opt) classes will be built.
+
+#### <span style="color:blue"> BUILD_PYTHON </span>
+
+*Default: ON*
+
+If `BUILD_PYTHON` is ON then build the python bindings
+
+#### BUILD_TESTS
+
+*Default: OFF*
+
+If `BULD_TESTS` is ON then build GTest based tests
+
+#### EXTERNAL_BOOST
+
+*Default: OFF*
+
+If `EXTERNAL_BOOST` is ON then use the pre-built Boost Libraries currently in your path or in `$ENV{BOOST_ROOT}`
+Here the `-O3` flag is for optimizations, it is recommended to stay as `-O3` or `-O2`, but it can be changed to match compiler requirements.
+
+We recommend to use `-DEXTERNAL_BOOST=OFF` if you are building the python bindings with an anaconda environment or if you are using non-standard C++ or MPI libraries. If the boost libraries have already been built with the same C++ compiler, MPI library, and Python environment, then `EXTERNAL_BOOST=ON` can be used.
+
+#### EXTERNAL_BUILD_N_PROCS
+
+*Default: 1*
+
+The number of processes passed to make when building external libraries.
diff --git a/docs/quick_start/code_ref.md b/docs/quick_start/code_ref.md
index 50b60f332bb1a9a2718e6da729f9c27f8856891c..41d1c788ce64216c386c48ec67b90689b7f7b375 100644
--- a/docs/quick_start/code_ref.md
+++ b/docs/quick_start/code_ref.md
@@ -1,9 +1,10 @@
-Running the code
+Running the Code
 ---
 
-### Input Files
+## Input Files
 
-To see a sample of the input files look in `~/sisso++/main directory/test/exec_test`
+To see a sample of the input files look in `~/sisso++/main directory/tests/exec_test`.
+In this directory there are multiple subdirectories for different types of calculations, but the `default/` directory would be the most common application.
 
 To use the code two files are necessary: `sisso.json` and `data.csv`.
 `data.csv` stores all of the data for the calculation in a `csv` file.
@@ -13,132 +14,317 @@ The first column of the file are sample labels for all of the other rows, and is
 
 The input parameters are stored in `sisso.json`, here is a list of all possible variables that can be set in `sisso.json`
 
-#### `data_file`
+### `data.csv`
+The data file contains all relevant data and metadata to describe the individual features and samples.
+The first row of the file corresponds to the features metadata and has the following format `expression (Unit)` or `expression`.
+For the cases where no `(Unit)` is included in the header then the feature is considered to be dimensionless.
+For example if one of the primary features used in the set is the lattice constant of a material the header would be `lat_param (AA)`, but the number of species in the material would be `n_species` because it is a dimensionless number.
+
+
+The first column provide the labels for each sample in the data file, and is used to set the sample ids in the output files.
+In the simplest case, this can be just a running index.
+The data describing the property vector is defined in the column with an `expression` matching the `property_key` filed in the `sisso.json` file, and will not be included in the feature space.
+Additionally, an optional `Task` column whose header matches the `task_key` field in the sisso.json file can also be included in the data file.
+This column maps each sample to a respective task with a label defined in the task column.
+Below in a minimal example of the data file used to learn a model for a materials volume.
+
+```csv
+material, Structure_Type, Volume (AA^3), lat_param (AA)
+C, diamond, 45.64, 3.57
+Si, diamond, 163.55, 5.47
+Ge, diamond, 191.39, 5.76
+Sn, diamond, 293.58, 6.65
+Pb, diamond, 353.84, 7.07.757
+LiF, rock_salt, 67.94, 4.08
+NaF, rock_salt, 103.39, 4.69
+KF, rock_salt, 159.00, 5.42
+RbF, rock_salt, 189.01, 5.74
+CsF, rock_salt, 228.33, 6.11
+```
+
+### `sisso.json`
+
+All input parameters that can not be extracted from the data file are defined in the `sisso.json` file.
+
+Here is a complete example of a `sisso.json` file where the property and task keys match those in the above data file example.
+
+```json
+{
+    "data_file": "data.csv",
+    "property_key": "Volume",
+    "task_key": "Structure_Type",
+    "opset": ["add", "sub", "mult", "div", "sq", "cb", "cbrt", "sqrt"],
+    "param_opset": [],
+    "calc_type": "regression",
+    "desc_dim": 2,
+    "n_sis_select": 5,
+    "max_rung": 2,
+    "n_residual": 1,
+    "n_models_store": 1,
+    "n_rung_store": 1,
+    "n_rung_generate": 0,
+    "min_abs_feat_val": 1e-5,
+    "max_abs_feat_val": 1e8,
+    "leave_out_inds": [0, 5],
+    "leave_out_frac": 0.25,
+    "fix_intercept": false,
+    "max_feat_cross_correlation": 1.0,
+    "nlopt_seed": 13,
+    "global_param_opt": false,
+    "reparam_residual": true
+}
+```
+
+A description of all fields is listed below. Anything highlighted in red should be in all `sisso.json` files, while anything highlighted in blue highlighted terms should be defined depending on the circumstances.
+
+#### <span style="color:red">data_file</span>
+
+*Default: "data.csv"*
 
-The name of the csv file where the data is stored. (Default: "data.csv")
+The name of the csv file where the data is stored.
 
-#### `property_key`
+#### <span style="color:red">property_key</span>
 
-The expression of the column where the property to be modeled is stored. (Default: "prop")
+*Default: "prop"*
 
-#### `task_key`
+The expression of the column where the property to be modeled is stored.
 
-The expression of the column where the task identification is stored. (Default: "task")
+#### <span style="color:red">task_key</span>
 
-#### `opset`
+*Default: "task"*
+
+The expression of the column where the task identification is stored.
+
+#### <span style="color:red">opset</span>
 
 A list containing the set of all operators that will be used during the feature creation step of SISSO. (If empty use all available features)
 
-#### `param_opset`
+#### <span style="color:blue">param_opset</span>
 
 A list containing the set of all operators, for which the non-linear scale and bias terms will be optimized, that will be used during the feature creation step of SISSO. (If empty none of the available features are used)
 
-#### `calc_type`
+#### <span style="color:red">calc_type</span>
+
+*Default: "regression"*
 
-The type of calculation to run either regression, log regression, or classification (Default: regression)
+The type of calculation to run either regression, log regression, or classification
 
-#### `desc_dim`
+#### <span style="color:red">desc_dim</span>
 
 The maximum dimension of the model to be created (no default value)
 
-#### `n_sis_select`
+#### <span style="color:red">n_sis_select</span>
 
 The number of features that SIS selects over each iteration (no default value)
 
-#### `max_rung`
+#### <span style="color:red">max_rung</span>
 
 The maximum rung of the feature (height of the tallest possible binary expression tree - 1) (no default value)
 
-#### `n_residual`
+#### <span style="color:red">n_residual</span>
+
+*Default: 1*
+
+Number of residuals to used to select the next subset of materials in the iteration. (Affects SIS after the 1D model)
+
+#### n_models_store
 
-Number of residuals to used to select the next subset of materials in the iteration. (Affects SIS after the 1D model) (Default: 1)
+*Default: `n_residual`*
 
-#### `n_models_store`
+Number of models to output as file for each dimension
 
-Number of models to output as file for each dimension (Default: n_residual)
+#### n_rung_store
 
-#### `n_rung_store`
+*Default: `max_rung` - 1*
 
-The number of rungs where all of the training/testing data of the materials are stored in memory. (Default: `max_rung` - 1)
+The number of rungs where all of the training/testing data of the materials are stored in memory.
 
-#### `n_rung_generate`
+#### <span style="color:blue">n_rung_generate</span>
 
-The number of rungs to generate on the fly during each SIS step. Must be 1 or 0. (Default: 0)
+*Default: 0*
 
-#### `min_abs_feat_val`
+The number of rungs to generate on the fly during each SIS step. Must be 1 or 0.
 
-Minimum absolute value allowed in the feature's training data (Default: 1e-50)
+#### min_abs_feat_val
 
-#### `max_abs_feat_val`
+*Default: 1e-50*
 
-Maximum absolute value allowed in the feature's training data (Default: 1e50)
+Minimum absolute value allowed in the feature's training data
 
-#### `leave_out_inds`
+#### max_abs_feat_val
+
+*Default: 1e50*
+
+Maximum absolute value allowed in the feature's training data
+
+#### leave_out_inds
 
 The list of indexes from the data set to use as the test set. If empty and `leave_out_frac > 0` the selection will be random
 
-#### `leave_out_frac`
+#### <span style="color:blue">leave_out_frac</span>
+
+*Default: 0.0*
+
+Fraction (in decimal form) of the data to use as a test set. This is not used if `leave_out_inds` is set.
+
+#### <span style="color:blue">fix_intercept</span>
 
-Fraction (in decimal form) of the data to use as a test set (Default: 0.0 if `leave_out_inds` is empty, otherwise `len(leave_out_inds)) / Number of rows in data file`
+*Default: false*
 
-#### `fix_intercept`
+If true set the bias term for regression models to 0.0. For classification problems this must be
 
-If true set the bias term for regression models to 0.0 (Default: false)
+#### <span style="color:blue">max_feat_cross_correlation</span>
 
-This does not work for classification
+*Default: 1.0*
 
-#### `max_feat_cross_correlation`
+The maximum Pearson correlation allowed between selected features
 
-The maximum Pearson correlation allowed between selected features (Default: 1.0)
+#### nlopt_seed
 
-#### `nlopt_seed`
+*Default: 42*
 
-The random seed used for seeding the pseudo-random number generator for NLopt (Default: 42)
+The random seed used for seeding the pseudo-random number generator for NLopt
 
-#### `global_param_opt`
+#### <span style="color:blue">global_param_opt</span>
 
-If true then attempt to globally optimize the non-linear scale/bias terms for the operators in `param_opset` (Default: false)
+*Default: false*
 
-#### `reparam_residual`
+If true then attempt to globally optimize the non-linear scale/bias terms for the operators in `param_opset`
 
-If true then reparameterize features based on the residuals (default false)
+#### <span style="color:blue">reparam_residual</span>
 
-### Perform the Calculation
+*Default: false*
+
+If true then reparameterize features based on the residuals
+
+## Perform the Calculation
 Once the input files are made the code can be run using the following command
 
 ```
 mpiexec -n 2 ~/sisso++/main directory/bin/sisso++ sisso.json
 ```
 
-### Analyzing the Results
+which will give the following output for the simple problem defined above
+
+```text
+time input_parsing: 0.000721931 s
+time to generate feat sapce: 0.00288105 s
+Projection time: 0.00304198 s
+Time to get best features on rank : 1.09673e-05 s
+Complete final combination/selection from all ranks: 0.00282502 s
+Time for SIS: 0.00595999 s
+Time for l0-norm: 0.00260496 s
+Projection time: 0.000118971 s
+Time to get best features on rank : 1.38283e-05 s
+Complete final combination/selection from all ranks: 0.00240111 s
+Time for SIS: 0.00276804 s
+Time for l0-norm: 0.000256062 s
+Train RMSE: 0.293788 AA^3; Test RMSE: 0.186616 AA^3
+c0 + a0 * (lat_param^3)
+
+Train RMSE: 0.0936332 AA^3; Test RMSE: 15.8298 AA^3
+c0 + a0 * ((lat_param^3)^2) + a1 * (sqrt(lat_param)^3)
+
+```
+## Analyzing the Results
 
 Once the calculations are done, two sets of output files are generated.
-A list of all selected features is stored in: `feature_space/selected_features.txt` and every model used as a residual for SIS is stored in `models/`.
+Two files that summarize the results from SIS in a computer and human readable manner are stored in: `feature_space/` and every model used as a residual for SIS is stored in `models/`.
+The human readable file describing the selected feature space is `feature_space/SIS_summary.txt` which contains the projection score (The Pearson correlation to the target property or model residual).
+```
+# FEAT_ID     Score                   Feature Expression
+0             0.99997909235669924     (lat_param^3)
+1             0.999036700010245471    ((lat_param^2)^2)
+2             0.998534266139345261    (lat_param^2)
+3             0.996929900301868899    (sqrt(lat_param)^3)
+4             0.994755117666830335    lat_param
+#-----------------------------------------------------------------------
+5             0.0318376000648976157   ((lat_param^3)^3)
+6             0.00846237838476477863  ((lat_param^3)^2)
+7             0.00742498801557322716  cbrt(cbrt(lat_param))
+8             0.00715447033658055554  cbrt(sqrt(lat_param))
+9             0.00675695980092700429  sqrt(sqrt(lat_param))
+#---------------------------------------------------------------------
+```
+The computer readable file file is `feature_space/selected_features.txt` and contains a the list of selected features represented by an alphanumeric code where the integers are the index of the feature in the primary feature space and strings represent the operators.
+The order of each term in these expressions is the same as the order it would appear using postfix (reverse polish) notation.
+```
+# FEAT_ID     Feature Postfix Expression (RPN)
+0             0|cb
+1             0|sq|sq
+2             0|sq
+3             0|sqrt|cb
+4             0
+#-----------------------------------------------------------------------
+5             0|cb|cb
+6             0|cb|sq
+7             0|cbrt|cbrt
+8             0|sqrt|cbrt
+9             0|sqrt|sqrt
+#-----------------------------------------------------------------------
+```
+
 The model output files are split into train/test files sorted by the dimensionality of the model and by the train RMSE.
 The model with the lowest RMSE is stored in the lowest numbered file.
-For example `train_dim_2_model_0.dat` will have the best 2D model, `train_dim_2_model_1.dat` would have the second best, etc.
+For example `train_dim_2_model_0.dat` will have the best 2D model, `train_dim_2_model_1.dat` would have the second best, etc., whereas `train_dim_1_model_0.dat` will have the best 1D model.
 Each model file has a large header containing information about the features selected and model generated
 ```
-# c0 + a0 * ((E_LUMO_A + E_HOMO_A) * cos(r_sigma)) + a1 * (cos(r_p_B) / (r_p_A^2))
-# Property Label: $E_{RS} - E_{ZB}$; Unit of the Property: eV
-# RMSE: 0.0825250613234847; Max AE: 0.310809109469674
+# c0 + a0 * (lat_param^3)
+# Property Label: $Volume$; Unit of the Property: AA^3
+# RMSE: 0.293787533962641; Max AE: 0.56084644346538
+# Coefficients
+# Task       a0                      c0
+#  diamond,  1.000735616997855e+00, -1.551085274074442e-01,
+#  rock_salt,  9.998140372873336e-01,  6.405707194855371e-02,
+# Feature Rung, Units, and Expressions
+# 0;  1; AA^3;                                             0|cb; (lat_param^3); $\left(lat_{param}^3\right)$; (lat_param).^3; lat_param
+# Number of Samples Per Task
+# Task    , n_mats_train
+#  diamond, 4
+#  rock_salt, 4
+```
+The first section of the header summarizes the model by providing a string representation of the model, defines the property's label and unit, and summarizes the error of the model.
+```
+# c0 + a0 * (lat_param^3)
+# Property Label: $Volume$; Unit of the Property: AA^3
+# RMSE: 0.293787533962641; Max AE: 0.56084644346538
+```
+Next the linear coefficients (as shown in the first line) for each task is listed.
+```
 # Coefficients
-# Task   a0                      a1                      c0
-# all , -3.923248458003308e-02,  1.367351808604120e+00, -2.453863254932724e-01,
+# Task       a0                      c0
+#  diamond,  1.000735616997855e+00, -1.551085274074442e-01,
+#  rock_salt,  9.998140372873336e-01,  6.405707194855371e-02,
+```
+Then a description of each feature in the model is listed, including units and various expressions.
+```
 # Feature Rung, Units, and Expressions
-# 0;  2; eV;                                               10|8|add|18|cos|mult; ((E_LUMO_A + E_HOMO_A) * cos(r_sigma)); $\left(\left(E_{LUMO, A} + E_{HOMO, A}\right) \left(\cos{ r_{sigma} }\right)\right)$; ((E_LUMO_A + E_HOMO_A) .* cos(r_sigma)); E_LUMO_A,E_HOMO_A,r_sigma
-# 1;  2; Unitless;                                         15|cos|14|sq|div; (cos(r_p_B) / (r_p_A^2)); $\left(\frac{ \left(\cos{ r_{p, B} }\right) }{ \left(r_{p, A}^2\right) } \right)$; (cos(r_p_B) ./ (r_p_A).^2); r_p_B,r_p_A
+# 0;  1; AA^3;                                             0|cb; (lat_param^3); $\left(lat_{param}^3\right)$; (lat_param).^3; lat_param
+```
+Finally information about the number of samples in each task is given
+```
 # Number of Samples Per Task
-# Task, n_mats_train
-# all , 82
+# Task    , n_mats_train
+#  diamond, 4
+#  rock_salt, 4
 ```
-After this header the following data is stored in the file:
+
+The header for the test data files contain the same information as the training file, with an additional line at the end to list all indexes included in the test set:
 ```
-# Sample ID , Property Value        ,  Property Value (EST) ,  Feature 0 Value      ,  Feature 1 Value
+# Test Indexes: [ 0, 5 ]
 ```
-With this file the model can be perfectly reconstructed using the python binding.
+These indexes can be used to reproduce the results by setting `leave_out_inds` to those listed on this line.
+
+After this header in both file the following data is stored in the file:
+
+```
+# Sample ID , Property Value        ,  Property Value (EST) ,  Feature 0 Value
+```
+With this data, one can plot and analyzed the model, e.g., by using the python binding.
+
+
 
-### Using the Python Library
-To see how the python interface can be used refer to the [tutorials](../tutorial)
+## Using the Python Library
+To see how the python interface can be used refer to the [tutorials](../tutorial/2_python.md).
 If you get an error about not being able to load MKL libraries, you may have to run `conda install numpy` to get proper linking.
 
diff --git a/docs/tutorial/0_intro.md b/docs/tutorial/0_intro.md
index ee76cd06d75fdb21b9751352b0707c1ba0e5c6d9..0f2a9acc3b5cbf8a06cad3dcd5012b2b6fd67329 100644
--- a/docs/tutorial/0_intro.md
+++ b/docs/tutorial/0_intro.md
@@ -6,12 +6,17 @@ In particular we will use SISSO to predict the crystal structure (rock-salt or z
 The tutorial will be split into three parts: 1) explaining how to use the executable to perform the calculations and the python utilities to analyze the results and 2) How to use only python to run, analyze, and demonstrate results 3) How to perform classification problems using SISSO.
 
 ## Outline
-The following tutorials are available:
+The tutorials are split between solving regression problems:
 
 - [Using the Command Line Interface](1_command_line.md)
 - [Using the Python Interface](2_python.md)
+
+And classification:
+
 - [Classification](3_classification.md)
 
+For several large and independent calculations using the command-line interface will be best; however, the python interface does provide a good way of performing initial tests and demonstrating the final results.
+
 All tutorials use the octet binary dataset first described in [PRL-2015](http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.10550) with the goal of predicting whether a material will crystallize in a rock-salt or zinc-blende phase.
 For all applications of SISSO a data set has to be passed via a standard `csv` file where the first row represents the feature and property label and the first column are the index-label for each sample for example
 ```
@@ -27,7 +32,7 @@ The feature labels have an optional term in () that represents the units of the
 If no unit is passed then the feature is assumed to be unitless.
 
 <details>
-    <summary>Here is the full data.csv file for the calculation</summary>
+    <summary>Here is the full data.csv file for the calculation. The features describe the nuclear charge (Z); ionization potential (IP); electron affinity (EA); HOMO and LUMO energies (E_HOMO and E_LUMO); and radii of the atomic s, p and d-orbitals (r_s, r_p, and r_d) of the cation (A) and anion(B) of the materials. Additionally the radii of the \sigma and \pi orbitals of the dimer for each material is included.</summary>
 
     ```
     # Material,E_RS - E_ZB (eV),Z_A (nuc_charge) ,Z_B (nuc_charge) ,period_A,period_B,IP_A (eV_IP) ,IP_B (eV_IP) ,EA_A (eV_IP),EA_B (eV_IP) ,E_HOMO_A (eV) ,E_HOMO_B (eV) ,E_LUMO_A (eV),E_LUMO_B (eV) , r_s_A (AA) , r_s_B (AA) , r_p_A (AA) , r_p_B (AA) , r_d_A (AA) , r_d_B (AA), r_sigma (AA) , r_pi (AA)
diff --git a/docs/tutorial/1_command_line.md b/docs/tutorial/1_command_line.md
index 8e0890723e9dcaa77789399bec4d07fb49b8d5d9..60b9675ab2b70f7a6a3fbee08e8931a632c18c04 100644
--- a/docs/tutorial/1_command_line.md
+++ b/docs/tutorial/1_command_line.md
@@ -20,6 +20,8 @@ As an example here is the `sisso.json` file we will initially use for this syste
     "opset": ["add", "sub", "abs_diff", "mult", "div", "inv", "abs", "exp", "log", "sin", "cos", "sq", "cb", "six_pow", "sqrt", "cbrt", "neg_exp"]
 }
 ```
+Of these parameters `n_sis_select`,  `n_residual`,  `max_rung`, and `desc_dim` are the hyperparameters that must be optimized for each calculation.
+Additionally `property_key` and `task_key` both must be columns headers in the `data_file` (Here we are only using one task so `task_key` is not included).
 With this input file and the provided `data.csv` file we are now able to perform SISSO with the following command
 ```
 mpiexec -n 2 sisso++ sisso.json
@@ -61,8 +63,14 @@ Train RMSE: 0.0588116 eV
 c0 + a0 * ((E_LUMO_A / EA_A) / (r_p_B^6)) + a1 * ((|period_B - period_A|) / (r_pi * EA_B)) + a2 * ((EA_B - IP_A) * (|r_sigma - r_s_B|)) + a3 * ((E_HOMO_B / r_p_A) / (r_sigma + r_p_B))
 ```
 The standard output provides information about what step the calculation just finished and how long it took to complete so you can see where a job failed or ran out of time.
-When all calculations are complete the code prints out a summary of the best 1D, 2D, ..., {desc_dim}D models with their training RMSE/Testing RMSE (Only training if there is no test set provided).
-Additionally, two additional output files are stored in `feature_space/`: `SIS_summary.txt` and `selected_features.txt`.
+If this:
+```
+Train RMSE: 0.0588116 eV
+c0 + a0 * ((E_LUMO_A / EA_A) / (r_p_B^6)) + a1 * ((|period_B - period_A|) / (r_pi * EA_B)) + a2 * ((EA_B - IP_A) * (|r_sigma - r_s_B|)) + a3 * ((E_HOMO_B / r_p_A) / (r_sigma + r_p_B))
+```
+is not shown at the bottom of standard output then the calculation did not complete successfully.
+When all calculations are complete the code prints out a summary of the best 1D, 2D, ..., {desc_dim}D models with their training RMSE/Testing RMSE (Only training if there is no test set provided as in this case).
+We also see that, two additional output files are stored in `feature_space/`: `SIS_summary.txt` and `selected_features.txt`.
 These files represent a human readable (`SIS_summary.txt`) and computer readable (`selected_features.txt`) summary of the selected feature space from SIS.
 Below are reconstructions of both files for this calculation (To see the file click the triangle)
 
@@ -115,6 +123,9 @@ Below are reconstructions of both files for this calculation (To see the file cl
     39            0.253659279222423484    ((E_LUMO_A / r_p_B) * (E_LUMO_B * E_LUMO_A))
     #-----------------------------------------------------------------------
 </details>
+This file contains the index of the selected feature space, a projection score, and a string representation of the feature.
+For regression problems the score represents the Pearson correlation between the feature and target property (all feature above the first dashed line) or the highest Pearson correlation between the feature and the residual of the best `n_residual` models of the previous dimension.
+
 <details>
     <summary>feature_space/selected_features.txt</summary>
 
@@ -165,6 +176,9 @@ Below are reconstructions of both files for this calculation (To see the file cl
     #-----------------------------------------------------------------------
 
 </details>
+This files is a computer readable file used to reconstruct the selected feature space.
+In these files each feature is displayed an alphanumeric string where the integers represent an index of the primary feature space, and the strings represent operations.
+The order of each term matches the order of terms if the equation is written in postfix (reverse polish) notation.
 In both files the change in rung is represented by the commented out dashed (--) line.
 
 The `models/` directory is used to store the output files representing the models for each dimension:
@@ -174,7 +188,9 @@ train_dim_1_model_0.dat  train_dim_2_model_0.dat  train_dim_3_model_0.dat  train
 ```
 Each of these files represents one of the {`n_models_store`} model stored for each dimension, and can be used to reconstruct the models within python.
 The file has a header that provides metadata associated with the selected features, coefficients, modeled property, and the task sizes for the calculations.
-After the header the value of the property, estimated property, and feature value for each sample is listed wit the same label used in `data.csv`.
+The first six lines of the header are the most important because it defines what the model is, what the error is, and the coefficients for each task.
+After the header the value of the property, estimated property, and feature value for each sample is listed with the same label used in `data.csv`.
+For a line by line description of the header refer to the [quick-start guide](../quick_start/code_ref.md).
 An example of these files is provided here:
 
 <details>
@@ -276,16 +292,20 @@ An example of these files is provided here:
     SZn         ,  2.758133256065780e-01,  2.143486874814196e-01,  2.332991532953503e+00, -2.400270322363168e+00
     SeZn        ,  2.631368992806530e-01,  2.463580576975095e-01,  7.384497385908948e-01, -2.320488278555971e+00
     TeZn        ,  2.450012951740060e-01,  1.776248032825628e-01,  2.763715059556858e+00, -2.304848319397327e+00
-
 </details>
 
 
-
 ## Determining the Ideal Model Complexity with Cross-Validation
 While the training error always decreases with descriptor dimensionality for a given application, over-fitting can reduce the general applicability of the models outside of the training set.
 In order to determine the optimal dimensionality of a model and optimize the hyperparameters associated with SISSO, we need to perform cross-validation.
+The goal of cross-validation is to test how generalizable a given model is with respect to new data.
+In practice, we perform cross-validation by randomly splitting the data-set into separate train/test sets and evaluate the performance of the model on the test set.
+
 As an example we will discuss how to perform leave-out 10% using the command line.
-To do this we have to modify the `sisso.json` file to automatically leave out a random sample of the training data and use that as a test set by changing `"leave_out_frac": 0.0,` do `"leave_out_frac": 0.10,`.
+To do this we have to modify the `sisso.json` file to automatically leave out a random sample of the training data and use that as a test set by changing `"leave_out_frac": 0.0` to `"leave_out_frac": 0.10`,
+i.e. in this case SISSO will ignore 8 materials (10% of all data) during training.
+In each run, this 8 materials are chosen randomly, so each SISSO run will
+differ from one another.
 
 <details>
     <summary> updated sisso.json file</summary>
@@ -309,26 +329,23 @@ To do this we have to modify the `sisso.json` file to automatically leave out a
 </details>
 
 Now lets make ten cross validation directories in the working directory and copy the `data.csv` and `sisso.json` into them and run separate calculations for each run.
+Note the decision to begin with ten iterations is arbitrary, and not connected to the amount of data excluded from the test set.
 ```bash
-for ii in `seq -f "%02g" 0 9`; do
+for ii in `seq -f "%03g" 0 9`; do
     mkdir cv_$ii;
     cp sisso.json data.csv cv_$ii;
     cd cv_$ii;
-    sisso++;
+    mpiexec -n 2 sisso++;
     cd ../;
 done
 ```
-Each of these directories has the same output files as the non-cross-validation calculations, with the testing and training data defined in separate files in  `cv_$ii/models/`
+Each of these directories has the same kind of output files as the non-cross-validation calculations, with the testing and training data defined in separate files in  `cv_$ii/models/`
 ```
 ls cv_00/models/
 test_dim_1_model_0.dat  test_dim_3_model_0.dat  train_dim_1_model_0.dat  train_dim_3_model_0.dat
 test_dim_2_model_0.dat  test_dim_4_model_0.dat  train_dim_2_model_0.dat  train_dim_4_model_0.dat
 ```
-The new files have the same information as the training data files, but with an additional line to show which samples were left out of the training set to allow for easy reproducibility:
-```
-# Test Indexes: [ 2, 19, 41, 42, 50, 59, 60, 69 ]
-```
-To rerun these exact calculations simply change the `"leave_out_inds": [],` line in the `sisso.json` file to `"leave_out_inds": [ 1, 13, 46, 5 ]`.
+
 A full example of the testing set output file is reproduced below:
 <details>
     <summary>The test data file cv_0/models/test_dim_2_model_0.dat</summary>
@@ -358,10 +375,13 @@ A full example of the testing set output file is reproduced below:
 
 </details>
 
-## Analyzing the Results with python
+## Analyzing the Results with Python
+*Note to do this part of the tutorial the python binding must also be built*
+
 Once all of the calculations are completed the python interface provides some useful post-processing tools to easily analyze the results.
 The `jackknife_cv_conv_est` tools provides a way to reasonably check the convergence of the cross-validation results with respect to the number number of calculations performed.
 This tool uses [jackknife resampling](https://en.wikipedia.org/wiki/Jackknife_resampling) to calculate the mean and variance of the validation RMSEs across all cross-validation runs.
+This technique essentially calculates the mean and standard error of all validation RMSEs for the system.
 This data can then be used to estimate the overall validation RMSE for a given problem/set of hyper-parameters and the standard error associated with the random sampling of the test indexes.
 It is important to mention that the error bars are based on the standard error of the mean of the validation RMSE, which assumes the sampling error follows a normal distribution.
 Because the data set may not represent a uniform sampling of materials space, the standard error of the mean may only be a rough estimate of the true sampling error.
@@ -385,13 +405,17 @@ Here is an example of the `plot_validation_rmse` output:
 
 </details>
 
-These initial results, particularly the high standard error of the mean for the 1D and 3D models, indicate that more cross-validation samples are needed (Note: you will have different values as the random samples will be different), so lets increase the total number of samples to 100, and redo the analysis
+These initial results suggest that we need to run more cross-validation samples in order to get converged results.
+Using these results, we can only clearly state that the there is a significant decrease in the validation error when going from a one-dimensional model to a two-dimensional one.
+However, because of the large error bars, it is impossible to determine which of the two, three, or four dimensional model is best.
+To solve this lets increase the total number of samples to 100, and redo the analysis
+
 ```bash
-for ii in `seq -f "%02g" 10 99`; do
+for ii in `seq -f "%03g" 10 99`; do
     mkdir cv_$ii;
     cp sisso.json data.csv cv_$ii;
     cd cv_$ii;
-    sisso++;
+    mpiexec -n 2 sisso++;
     cd ../;
 done
 ```
@@ -406,7 +430,10 @@ done
 [0.0051855  0.00571521 0.00398963 0.00473639]
 >>> plot_validation_rmse("cv*", "cv_100._error.png").show()
 ```
-As can be seen from the standard error measurements the results are now reasonably converged, which can be easily seen by looking at this plot
+With the additional calculations we now have relatively well converged results.
+The key used in determining this is the relative size of the error bars when compared against the mean value.
+For this example the estimate of the validation RMSEs for all dimensions up to the third dimension is outside the error bars of the other error bars, meaning that we can confidently say that the three-dimensional model is better than both the one and two-dimensional models.
+Because the validation error for the three and four dimensional models are within each others error bars and the standard error increases when going to the fourth dimension, we can then conclude that the three-dimensional model has the ideal complexity.
 
 <details>
     <summary> Converged cross-validation results </summary>
@@ -415,7 +442,6 @@ As can be seen from the standard error measurements the results are now reasonab
 
 </details>
 
-Because the validation error for the three and four dimensional models are within each others error bars and the standard error increases when going to the fourth dimension, we conclude that the three-dimensional model has the ideal complexity.
 
 ## Visualizing the Cross Validation Error
 The previous section illustrated how to plot the validation RMSE for each dimension of the model, but the RMSE does not give a complete picture of the model performance.
@@ -432,6 +458,7 @@ To see the distributions for this system we run
 
 </details>
 
+These plots show the histogram of the error for each dimension with the total area normalized to one.
 One thing that stands out in the plot is the large error seen in a single point for both the one and two dimensional models.
 By looking at the validation errors, we find that the point with the largest error is diamond for all model dimensions, which is by far the most stable zinc-blende structure in the data set.
 As a note for this setup there is a 0.22\% chance that one of the samples is never in the validation set so if `max_error_ind != 21` check if that sample is in one of the validation sets.
@@ -451,7 +478,8 @@ Index(['C2', 'C2', 'C2', 'C2'], dtype='object', name='# Material')
 
 ## Optimizing the hyper-parameters of SISSO
 As discussed in the previous example `desc_dim` is one of the four hyperparameters used in `SISSO++` with the others being: `n_sis_select`, `max_rung`, and `n_residual`.
-Due to the factorial increase in both computational time and required memory associated with `max_rung` only `desc_dim`, `n_sis_select`, and `n_residual` will be optimized in this exercise.
+Of these `n_sis_select` and `n_residual` need to be optimized together while `desc_dim` and `max_rung` can be optimized independently.
+Due to the factorial increase in both computational time and required memory associated with `max_rung` only `desc_dim`, `n_sis_select`, and `n_residual` will be optimized in this exercise, but for production purposes this will also have to be studied.
 Additionally the exercise will only use use relatively small SIS subspace sizes and only go up to a 3D model in order to reduce the computational time for the exercise.
 The first step of this process will be setting up nine directories for each combination `n_residual` (1, 5, and 10) and `n_sis_select` (10, 50, 100) and modify the base `sisso.json` to match these new parameters (Note: the dimension of the final model will be determined in the same way as the previous example).
 Here is the new base `sisso.json file`:
@@ -552,16 +580,16 @@ ns:  10; nr:  1; [0.15680869 0.17389737 0.16029643] [0.00646652 0.04735888 0.044
 ns:  10; nr:  5; [0.15625644 0.12419926 0.15115378] [0.00663913 0.00631875 0.04471696]
 ns:  10; nr: 10; [0.15597268 0.12273297 0.10921321] [0.0051855  0.00571521 0.00398963]
 ns:  50; nr:  1; [0.15192553 0.12373729 0.13507366] [0.00513279 0.00523007 0.01695709]
-ns:  50; nr:  5; [0.23435624 0.16147891 0.14203905] [0.06109923 0.03514775 0.0337021 ]
+ns:  50; nr:  5; [0.15262692 0.12672067 0.11011062] [0.00491465 0.00522488 0.00407753]
 ns:  50; nr: 10; [0.15119692 0.13040251 0.10993919] [0.00487215 0.00506964 0.00464264]
 ns: 100; nr:  1; [0.15835654 0.13728706 0.12849654] [0.00557331 0.00606579 0.01114889]
-ns: 100; nr:  5; [0.21091421 0.20396324 0.19513139] [0.05358098 0.0642375  0.06550557]
-ns: 100; nr: 10; [0.15075894 0.13881415 0.115574  ] [0.00511985 0.00873076 0.01049183]
+ns: 100; nr:  5; [0.15502757 0.14002783 0.12102758] [0.00489507 0.00546934 0.00612467]
+ns: 100; nr: 10; [0.14996602 0.13248817 0.1070521 ] [0.00495617 0.0051647  0.00432492]
 ```
-These results indicate that for the small SIS subspace sizes used here the validation error is stable relative to both the number of residuals and SIS subspace size.
+These results indicate that for the small SIS subspace sizes used here the validation error is stable relative to both the number of residuals and SIS subspace size, given the simliarity
 However it is important to note that this will not always be the case, particularly for for larger values of `n_sis_select` .
-The data also illustrates how the standard error of the mean is only an approximation to the true sampling error as the validation error of the 1D models have a broader than expected distribution of values.
 For finding the best model over all an `n_sis_select` of 100 and `n_residual` of 10 will be used.
+This choice was made because it has the lowest validation RMSE of 0.107, but all calculations that use 10 residuals will have equivalent performance (at least for the small SIS subspace size).
 
 ## Final Training Data
 To get the final models we will perform the same calculation we started off the tutorial with, but with the following `sisso.json` file based on the results from the previous steps:
diff --git a/docs/tutorial/2_python.md b/docs/tutorial/2_python.md
index c013299f41ce107465a53221b2b5ed75ac2f38e6..f5b8e3ac5386d87547e2f5019140632c37bf3913 100644
--- a/docs/tutorial/2_python.md
+++ b/docs/tutorial/2_python.md
@@ -1,7 +1,11 @@
-# The python Interface
+# The Python Interface
 
 ## Running `SISSO++` through the python interface
 An alternative approach to using the command line is to run `SISSO++` entirely through the python interface.
+This tutorial will introduce the user to how to perform SISSO calculations using the python interface, but we will not go over the postprocessing steps demonstrated in [the command line interface tutorial](../1_command_line.md).
+The biggest advantage to using the python bindings is that you can run and analyze the calculations within the same session; however, for larger jobs on supercomputers the command line interface is likely to be more practical.
+Despite this understanding how to use the python interface is important because it allows you to test/demonstrate results in a straightforward manner.
+
 The first step in using the python interface is creating an `Inputs` object that will then be used to construct the `FeatureSpace` and `SISSOSolver` objects.
 To construct the `Inputs` object you can use the input file approach as before
 ```python
@@ -173,3 +177,38 @@ After the calculations are finished we can then run the same analysis as we did
 >>> plot_validation_rmse(models, "cv_50_error.pdf").show()
 ```
 It is important to note here that, while it is not necessary to setup separate directories when using the python bindings, if you don't all output files will be overwritten reducing the reproducibility of the code.
+
+## Using the Python Interface to Reproduce Previous Calculations
+The final goal of this tutorial will be to discuss how to use the python interface to reproduce previous calculations easily.
+As previous examples illustrated how the Model output files can be used to interact and extract information from the models generated by `SISSO++`, but these alone can not be used to recreate a calculation.
+To increase the reproducibility of the code `SISSO++` can construct a `FeatureSpace` using a text file, which can be generated using the `phi_out_file` option in the `Inputs` object.
+Depending on what we want to study there are two ways of constructing a feature space form either the `phi.txt` file or `selected_features.txt` As show below for using `selected_features.txt`
+
+```python
+from sissopp import phi_selected_from_file, read_csv, FeatureSpace
+
+inputs = read_csv("data.csv", prop_key="E_RS - E_ZB", max_rung=0, leave_out_frac=0.0)
+phi_sel = phi_selected_from_file("feature_space/selected_features.txt", inputs.phi_0)
+inputs.phi_0 = phi_sel
+feature_space = FeatureSpace(inputs)
+```
+
+and for using `phi.txt`
+
+```python
+from sissopp import phi_selected_from_file, read_csv, FeatureSpace
+
+inputs = read_csv("data.csv", prop_key="E_RS - E_ZB", max_rung=0, leave_out_frac=0.0)
+
+feature_space = FeatureSpace(
+    "phi.txt",
+    inputs.phi_0,
+    inputs.prop_train,
+    [82],
+    project_type='regression',
+    cross_corr_max=1.0,
+    n_sis_select=100
+)
+```
+
+From here calculations can continue as was done in the earlier examples.
diff --git a/docs/tutorial/3_classification.md b/docs/tutorial/3_classification.md
index cdfe924041825bfed776211273d881a257c1379e..e46f161d488b5f7fff13fe07415e28bfed67c605 100644
--- a/docs/tutorial/3_classification.md
+++ b/docs/tutorial/3_classification.md
@@ -1,6 +1,7 @@
 # Performing Classification with SISSO++
 
-inally, besides regression problems, `SISSO++` can be used to solve classification problems.
+Finally, besides regression problems, `SISSO++` can be used to solve classification problems.
+While we have already that this problem could solved with regression, `SISSO++` can also solve problems that can't be treated as a regression problem.
 As an example of this we will adapt the previous example by replacing the property with the identifier of if the material favors the rock-salt or zinc-blende structure, and change the calculation type to be `classification`.
 It is important to note that while this problem only has two classes, multi-class classification is also possible.
 
@@ -99,6 +100,7 @@ Here is the updated data file, with the property `E_RS - E_ZB (eV)` replaced wit
 ## Running `SISSO++` for Classification problems
 For settings file the only difference between solving classification and regression is the `calc_type` key which is now `classification` instead of `regression` and we are reducing `max_rung` to be 1.
 Changing `max_rung` is not a necessary step; however, if rung 2 features are included here then a one-dimensional descriptor will perfectly separate the classes.
+Normally this would be a good thing, but because we also want to illustrate two-dimensional visualization tools we will restrict ourselves to a single rung.
 Additionally to make it easier to visualize the model we will restrict the calculation to two dimensions, but higher dimensional models are also possible.
 ```json
 {
@@ -123,23 +125,23 @@ mpiexec -n 2 sisso++ sisso.json
 ```
 and get the following on screen output
 ```
-time input_parsing: 0.000935793 s
-time to generate feat sapce: 0.00244188 s
-Projection time: 0.000730991 s
-Time to get best features on rank : 0.000519991 s
-Complete final combination/selection from all ranks: 0.00114894 s
-Time for SIS: 0.0025301 s
-Time for l0-norm: 0.215944 s
-Projection time: 0.000841856 s
-Time to get best features on rank : 0.00506878 s
-Complete final combination/selection from all ranks: 0.00351715 s
-Time for SIS: 0.00997591 s
-Time for l0-norm: 0.951096 s
+time input_parsing: 0.00104308 s
+time to generate feat sapce: 0.00736403 s
+Projection time: 0.0013411 s
+Time to get best features on rank : 0.000585079 s
+Complete final combination/selection from all ranks: 0.000355005 s
+Time for SIS: 0.00245714 s
+Time for l0-norm: 0.105334 s
+Projection time: 0.00138497 s
+Time to get best features on rank : 0.00287414 s
+Complete final combination/selection from all ranks: 0.000135899 s
+Time for SIS: 0.00476503 s
+Time for l0-norm: 2.79099 s
 Percent of training data in the convex overlap region: 2.43902%
 [(r_sigma + r_p_B)]
 
 Percent of training data in the convex overlap region: 0%
-[(Z_B / EA_A), (r_sigma + r_s_B)]
+[(EA_A * Z_B), (r_sigma + r_p_B)]
 ```
 As with the regression problems, the standard output provides information about what step the calculation just finished and how long it took to complete so you can see where a job failed or ran out of time.
 However, the final summary now provides the list of features that best separate out the classes with fewest number of points inside the overlap region of the convex hulls of each class.
@@ -149,8 +151,8 @@ The two output files stored in `feature_space/` are also very similar, with the
 
     # FEAT_ID     Score                   Feature Expression
     0             2.00218777423865069     (r_sigma + r_p_B)
-    1             2.0108802733799549      (r_pi - r_p_A)
-    2             2.0108802733799549      (|r_pi - r_p_A|)
+    1             2.0108802733799549      (|r_pi - r_p_A|)
+    2             2.0108802733799549      (r_pi - r_p_A)
     3             3.00521883927864941     (r_pi * r_sigma)
     4             6.0271211617331506      (r_sigma / IP_B)
     5             6.02820376741344255     (r_sigma + r_s_B)
@@ -178,19 +180,20 @@ The two output files stored in `feature_space/` are also very similar, with the
     26            -0.999999978575254467   (Z_B * Z_A)
     27            -0.999999973721653945   (EA_B^6)
     28            -0.999999961553741268   (E_HOMO_A^6)
-    29            -0.999999902601353075   (IP_B * Z_A)
-    30            -0.999999878198415182   (r_d_A^6)
-    31            -0.999999858299492561   (IP_A * Z_A)
-    32            -0.99999985529594615    (Z_B / E_LUMO_B)
-    33            -0.999999850065982798   (E_HOMO_B * Z_A)
-    34            -0.999999771428597528   (period_B * Z_A)
-    35            -0.999999756076769386   (E_HOMO_A * Z_A)
-    36            -0.999999699570055189   (EA_B * Z_A)
-    37            -0.99999967830096359    (EA_A * Z_B)
-    38            -0.999999633027590651   (period_A * Z_B)
-    39            -0.999999625788926316   (Z_B / EA_A)
+    29            -0.99999991416031242    (IP_B^3)
+    30            -0.999999902601353075   (IP_B * Z_A)
+    31            -0.999999878198415182   (r_d_A^6)
+    32            -0.999999858299492561   (IP_A * Z_A)
+    33            -0.99999985529594615    (Z_B / E_LUMO_B)
+    34            -0.999999850065982798   (E_HOMO_B * Z_A)
+    35            -0.999999771428597528   (period_B * Z_A)
+    36            -0.999999756076769386   (E_HOMO_A * Z_A)
+    37            -0.999999734902030979   (E_HOMO_B^3)
+    38            -0.999999699570055189   (EA_B * Z_A)
+    39            -0.99999967830096359    (EA_A * Z_B)
     #-----------------------------------------------------------------------
 
+
 </details>
 
 Additionally the model files change to better represent the classifier.
@@ -199,124 +202,137 @@ The estimated property vector in this case refers to the predicted class from SV
 <details>
     <summary>models/train_dim_2_model_0.dat</summary>
 
-    # [(EA_B * Z_A), (r_sigma + r_p_B)]
-    # Property Label: $$Class$$; Unit of the Property: Unitless
+    # [(EA_A * Z_B), (r_sigma + r_p_B)]
+    # Property Label: $Class$; Unit of the Property: Unitless
     # # Samples in Convex Hull Overlap Region: 0;# Samples SVM Misclassified: 0
     # Decision Boundaries
-    # Task    w0                      w1                      b
-    # # all_0, -1.218479788468588e-03, -1.840577490326880e+00,  4.197450511898939e+00,
+    # Task     w0                      w1                      b
+    # all__0.0_1.0, -1.213391554552964e-02, -1.090594288515569e+01,  2.501183842953395e+01,
     # Feature Rung, Units, and Expressions
-    # 0;  1; eV_IP * nuc_charge;                               7|0|mult; (EA_B * Z_A); $\left(EA_{B} Z_{A}\right)$; (EA_B .* Z_A); EA_B,Z_A
+    # 0;  1; eV_IP * nuc_charge;                               6|1|mult; (EA_A * Z_B); $\left(EA_{A} Z_{B}\right)$; (EA_A .* Z_B); EA_A,Z_B
     # 1;  1; Unitless;                                         18|15|add; (r_sigma + r_p_B); $\left(r_{sigma} + r_{p, B}\right)$; (r_sigma + r_p_B); r_sigma,r_p_B
     # Number of Samples Per Task
     # Task, n_mats_train
-    # # all, 82
+    # all , 82
 
     # Sample ID , Property Value        ,  Property Value (EST) ,  Feature 0 Value      ,  Feature 1 Value
-    AgBr        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.757471005917300e+02,  2.450000047680000e+00
-    AgCl        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.866275963781800e+02,  2.520000040527000e+00
-    AgF         ,  0.000000000000000e+00,  0.000000000000000e+00, -2.008544983864900e+02,  2.790000051256000e+00
-    AgI         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.651344988344000e+02,  2.300000071522000e+00
-    AlAs        ,  1.000000000000000e+00,  1.000000000000000e+00, -2.390960025792000e+01,  1.629999995228000e+00
-    AlN         ,  1.000000000000000e+00,  1.000000000000000e+00, -2.427749931815000e+01,  1.939999997612000e+00
-    AlP         ,  1.000000000000000e+00,  1.000000000000000e+00, -2.495999944204000e+01,  1.650000035759000e+00
-    AlSb        ,  1.000000000000000e+00,  1.000000000000000e+00, -2.400709939004000e+01,  1.480000019070000e+00
-    AsGa        ,  1.000000000000000e+00,  1.000000000000000e+00, -5.701520061504000e+01,  1.470000028615000e+00
-    AsB         ,  1.000000000000000e+00,  1.000000000000000e+00, -9.196000099200001e+00,  1.289999961847000e+00
-    BN          ,  1.000000000000000e+00,  1.000000000000000e+00, -9.337499737750001e+00,  1.099999964237000e+00
-    BP          ,  1.000000000000000e+00,  1.000000000000000e+00, -9.599999785400000e+00,  1.130000054836000e+00
-    BSb         ,  1.000000000000000e+00,  1.000000000000000e+00, -9.233499765400000e+00,  1.820000052445000e+00
-    BaO         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.683303947449600e+02,  4.320000201465000e+00
-    BaS         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.593143939973600e+02,  4.040000200273000e+00
-    BaSe        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.540559959411200e+02,  3.980000197889000e+00
-    BaTe        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.492959938047200e+02,  3.840000212194000e+00
-    BeO         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.202359962464000e+01,  1.830000072725000e+00
-    BeS         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.137959957124000e+01,  1.550000071533000e+00
-    BeSe        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.100399971008000e+01,  1.490000069149000e+00
-    BeTe        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.066399955748000e+01,  1.350000083454000e+00
+    AgBr        ,  0.000000000000000e+00,  0.000000000000000e+00, -5.833099961290000e+01,  2.450000047680000e+00
+    AgCl        ,  0.000000000000000e+00,  0.000000000000000e+00, -2.833219981198000e+01,  2.520000040527000e+00
+    AgF         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.499939990046000e+01,  2.790000051256000e+00
+    AgI         ,  1.000000000000000e+00,  1.000000000000000e+00, -8.832979941382000e+01,  2.300000071522000e+00
+    AlAs        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.031250000000000e+01,  1.629999995228000e+00
+    AlN         ,  1.000000000000000e+00,  1.000000000000000e+00, -2.187500000000000e+00,  1.939999997612000e+00
+    AlP         ,  1.000000000000000e+00,  1.000000000000000e+00, -4.687500000000000e+00,  1.650000035759000e+00
+    AlSb        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.593750000000000e+01,  1.480000019070000e+00
+    AsGa        ,  1.000000000000000e+00,  1.000000000000000e+00, -3.567299902452000e+00,  1.470000028615000e+00
+    AsB         ,  1.000000000000000e+00,  1.000000000000000e+00, -3.544200003135000e+00,  1.289999961847000e+00
+    BN          ,  1.000000000000000e+00,  1.000000000000000e+00, -7.518000006650001e-01,  1.099999964237000e+00
+    BP          ,  1.000000000000000e+00,  1.000000000000000e+00, -1.611000001425000e+00,  1.130000054836000e+00
+    BSb         ,  1.000000000000000e+00,  1.000000000000000e+00, -5.477400004845000e+00,  1.820000052445000e+00
+    BaO         ,  0.000000000000000e+00,  0.000000000000000e+00,  2.223999977112000e+00,  4.320000201465000e+00
+    BaS         ,  0.000000000000000e+00,  0.000000000000000e+00,  4.447999954224000e+00,  4.040000200273000e+00
+    BaSe        ,  0.000000000000000e+00,  0.000000000000000e+00,  9.451999902726000e+00,  3.980000197889000e+00
+    BaTe        ,  0.000000000000000e+00,  0.000000000000000e+00,  1.445599985122800e+01,  3.840000212194000e+00
+    BeO         ,  1.000000000000000e+00,  1.000000000000000e+00,  5.044000148776000e+00,  1.830000072725000e+00
+    BeS         ,  1.000000000000000e+00,  1.000000000000000e+00,  1.008800029755200e+01,  1.550000071533000e+00
+    BeSe        ,  1.000000000000000e+00,  1.000000000000000e+00,  2.143700063229800e+01,  1.490000069149000e+00
+    BeTe        ,  1.000000000000000e+00,  1.000000000000000e+00,  3.278600096704400e+01,  1.350000083454000e+00
     C2          ,  1.000000000000000e+00,  1.000000000000000e+00, -5.234399914740000e+00,  6.299999952320000e-01
-    CaO         ,  0.000000000000000e+00,  0.000000000000000e+00, -6.011799812320000e+01,  3.619999915355000e+00
-    CaS         ,  0.000000000000000e+00,  0.000000000000000e+00, -5.689799785620000e+01,  3.339999914163000e+00
-    CaSe        ,  0.000000000000000e+00,  0.000000000000000e+00, -5.501999855040000e+01,  3.279999911779000e+00
-    CaTe        ,  0.000000000000000e+00,  0.000000000000000e+00, -5.331999778740000e+01,  3.139999926084000e+00
-    CdO         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.442831954956800e+02,  2.510000020265000e+00
-    CdS         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.365551948548800e+02,  2.230000019073000e+00
-    CdSe        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.320479965209600e+02,  2.170000016689000e+00
-    CdTe        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.279679946897600e+02,  2.030000030994000e+00
-    BrCs        ,  0.000000000000000e+00,  0.000000000000000e+00, -2.056615006924500e+02,  4.870000123980000e+00
-    ClCs        ,  0.000000000000000e+00,  0.000000000000000e+00, -2.183939957617000e+02,  4.940000116827000e+00
-    CsF         ,  0.000000000000000e+00,  0.000000000000000e+00, -2.350424981118500e+02,  5.210000127556000e+00
-    CsI         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.932424986360000e+02,  4.720000147822000e+00
-    BrCu        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.084397003651100e+02,  2.129999995230000e+00
-    ClCu        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.151531977652600e+02,  2.199999988077000e+00
-    CuF         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.239314990044300e+02,  2.469999998806000e+00
-    CuI         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.018914992808000e+02,  1.980000019072000e+00
-    GaN         ,  1.000000000000000e+00,  1.000000000000000e+00, -5.789249837405000e+01,  1.780000030999000e+00
-    GaP         ,  1.000000000000000e+00,  1.000000000000000e+00, -5.951999866948000e+01,  1.490000069146000e+00
-    GaSb        ,  1.000000000000000e+00,  1.000000000000000e+00, -5.724769854548000e+01,  1.320000052457000e+00
+    CaO         ,  0.000000000000000e+00,  0.000000000000000e+00,  2.431200027464000e+00,  3.619999915355000e+00
+    CaS         ,  0.000000000000000e+00,  0.000000000000000e+00,  4.862400054928000e+00,  3.339999914163000e+00
+    CaSe        ,  0.000000000000000e+00,  0.000000000000000e+00,  1.033260011672200e+01,  3.279999911779000e+00
+    CaTe        ,  0.000000000000000e+00,  0.000000000000000e+00,  1.580280017851600e+01,  3.139999926084000e+00
+    CdO         ,  0.000000000000000e+00,  0.000000000000000e+00,  6.709599971768000e+00,  2.510000020265000e+00
+    CdS         ,  1.000000000000000e+00,  1.000000000000000e+00,  1.341919994353600e+01,  2.230000019073000e+00
+    CdSe        ,  1.000000000000000e+00,  1.000000000000000e+00,  2.851579988001400e+01,  2.170000016689000e+00
+    CdTe        ,  1.000000000000000e+00,  1.000000000000000e+00,  4.361239981649200e+01,  2.030000030994000e+00
+    BrCs        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.993599951266000e+01,  4.870000123980000e+00
+    ClCs        ,  0.000000000000000e+00,  0.000000000000000e+00, -9.683199763292000e+00,  4.940000116827000e+00
+    CsF         ,  0.000000000000000e+00,  0.000000000000000e+00, -5.126399874684000e+00,  5.210000127556000e+00
+    CsI         ,  0.000000000000000e+00,  0.000000000000000e+00, -3.018879926202800e+01,  4.720000147822000e+00
+    BrCu        ,  1.000000000000000e+00,  1.000000000000000e+00, -5.734749913200000e+01,  2.129999995230000e+00
+    ClCu        ,  1.000000000000000e+00,  1.000000000000000e+00, -2.785449957840000e+01,  2.199999988077000e+00
+    CuF         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.474649977680000e+01,  2.469999998806000e+00
+    CuI         ,  1.000000000000000e+00,  1.000000000000000e+00, -8.684049868560000e+01,  1.980000019072000e+00
+    GaN         ,  1.000000000000000e+00,  1.000000000000000e+00, -7.566999793080000e-01,  1.780000030999000e+00
+    GaP         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.621499955660000e+00,  1.490000069146000e+00
+    GaSb        ,  1.000000000000000e+00,  1.000000000000000e+00, -5.513099849244000e+00,  1.320000052457000e+00
     Ge2         ,  1.000000000000000e+00,  1.000000000000000e+00, -3.036800003052800e+01,  1.159999966620000e+00
-    CGe         ,  1.000000000000000e+00,  1.000000000000000e+00, -2.791679954528000e+01,  1.439999997614000e+00
-    GeSi        ,  1.000000000000000e+00,  1.000000000000000e+00, -3.177599906921600e+01,  1.139999985693000e+00
-    AsIn        ,  1.000000000000000e+00,  1.000000000000000e+00, -9.012080097216000e+01,  1.779999971388000e+00
-    InN         ,  1.000000000000000e+00,  1.000000000000000e+00, -9.150749742995001e+01,  2.089999973772000e+00
-    InP         ,  1.000000000000000e+00,  1.000000000000000e+00, -9.407999789691999e+01,  1.800000011919000e+00
-    InSb        ,  1.000000000000000e+00,  1.000000000000000e+00, -9.048829770092000e+01,  1.629999995230000e+00
-    BrK         ,  0.000000000000000e+00,  0.000000000000000e+00, -7.104670023921000e+01,  3.820000171660000e+00
-    ClK         ,  0.000000000000000e+00,  0.000000000000000e+00, -7.544519853586000e+01,  3.890000164507000e+00
-    FK          ,  0.000000000000000e+00,  0.000000000000000e+00, -8.119649934773000e+01,  4.160000175236000e+00
-    IK          ,  0.000000000000000e+00,  0.000000000000000e+00, -6.675649952879999e+01,  3.670000195502000e+00
-    BrLi        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.121790003777000e+01,  2.899999976160000e+00
-    ClLi        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.191239976882000e+01,  2.969999969007000e+00
-    FLi         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.282049989701000e+01,  3.239999979736000e+00
-    ILi         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.054049992560000e+01,  2.750000000002000e+00
-    MgO         ,  0.000000000000000e+00,  0.000000000000000e+00, -3.607079887392000e+01,  2.770000010735000e+00
-    MgS         ,  0.000000000000000e+00,  0.000000000000000e+00, -3.413879871372000e+01,  2.490000009543000e+00
-    MgSe        ,  0.000000000000000e+00,  0.000000000000000e+00, -3.301199913024000e+01,  2.430000007159000e+00
-    MgTe        ,  0.000000000000000e+00,  0.000000000000000e+00, -3.199199867244000e+01,  2.290000021464000e+00
-    BrNa        ,  0.000000000000000e+00,  0.000000000000000e+00, -4.113230013849000e+01,  3.559999942780000e+00
-    ClNa        ,  0.000000000000000e+00,  0.000000000000000e+00, -4.367879915234000e+01,  3.629999935627000e+00
-    FNa         ,  0.000000000000000e+00,  0.000000000000000e+00, -4.700849962237000e+01,  3.899999946356000e+00
-    INa         ,  0.000000000000000e+00,  0.000000000000000e+00, -3.864849972720000e+01,  3.409999966622000e+00
-    BrRb        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.383541004658300e+02,  4.690000057220000e+00
-    ClRb        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.469195971487800e+02,  4.760000050067000e+00
-    FRb         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.581194987297900e+02,  5.030000060796000e+00
-    IRb         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.299994990824000e+02,  4.540000081062000e+00
+    CGe         ,  1.000000000000000e+00,  1.000000000000000e+00, -5.694000005724000e+00,  1.439999997614000e+00
+    GeSi        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.328600001335600e+01,  1.139999985693000e+00
+    AsIn        ,  1.000000000000000e+00,  1.000000000000000e+00, -8.457900077121000e+00,  1.779999971388000e+00
+    InN         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.794100016359000e+00,  2.089999973772000e+00
+    InP         ,  1.000000000000000e+00,  1.000000000000000e+00, -3.844500035055000e+00,  1.800000011919000e+00
+    InSb        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.307130011918700e+01,  1.629999995230000e+00
+    BrK         ,  0.000000000000000e+00,  0.000000000000000e+00, -2.174549937248500e+01,  3.820000171660000e+00
+    ClK         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.056209969520700e+01,  3.890000164507000e+00
+    FK          ,  0.000000000000000e+00,  0.000000000000000e+00, -5.591699838639000e+00,  4.160000175236000e+00
+    IK          ,  0.000000000000000e+00,  0.000000000000000e+00, -3.292889904976300e+01,  3.670000195502000e+00
+    BrLi        ,  0.000000000000000e+00,  0.000000000000000e+00, -2.443349897863000e+01,  2.899999976160000e+00
+    ClLi        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.186769950390600e+01,  2.969999969007000e+00
+    FLi         ,  0.000000000000000e+00,  0.000000000000000e+00, -6.282899737362000e+00,  3.239999979736000e+00
+    ILi         ,  0.000000000000000e+00,  0.000000000000000e+00, -3.699929845335400e+01,  2.750000000002000e+00
+    MgO         ,  0.000000000000000e+00,  0.000000000000000e+00,  5.539999961856000e+00,  2.770000010735000e+00
+    MgS         ,  0.000000000000000e+00,  0.000000000000000e+00,  1.107999992371200e+01,  2.490000009543000e+00
+    MgSe        ,  0.000000000000000e+00,  0.000000000000000e+00,  2.354499983788800e+01,  2.430000007159000e+00
+    MgTe        ,  0.000000000000000e+00,  0.000000000000000e+00,  3.600999975206400e+01,  2.290000021464000e+00
+    BrNa        ,  0.000000000000000e+00,  0.000000000000000e+00, -2.504949897527000e+01,  3.559999942780000e+00
+    ClNa        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.216689950227400e+01,  3.629999935627000e+00
+    FNa         ,  0.000000000000000e+00,  0.000000000000000e+00, -6.441299736497999e+00,  3.899999946356000e+00
+    INa         ,  0.000000000000000e+00,  0.000000000000000e+00, -3.793209844826600e+01,  3.409999966622000e+00
+    BrRb        ,  0.000000000000000e+00,  0.000000000000000e+00, -2.066399931907500e+01,  4.690000057220000e+00
+    ClRb        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.003679966926500e+01,  4.760000050067000e+00
+    FRb         ,  0.000000000000000e+00,  0.000000000000000e+00, -5.313599824904999e+00,  5.030000060796000e+00
+    IRb         ,  0.000000000000000e+00,  0.000000000000000e+00, -3.129119896888500e+01,  4.540000081062000e+00
     Si2         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.390199959278200e+01,  1.129999995230000e+00
-    CSi         ,  1.000000000000000e+00,  1.000000000000000e+00, -1.221359980106000e+01,  1.430000007151000e+00
+    CSi         ,  1.000000000000000e+00,  1.000000000000000e+00, -5.957999825478000e+00,  1.430000007151000e+00
     Sn2         ,  1.000000000000000e+00,  1.000000000000000e+00, -5.195999741550001e+01,  1.340000033380000e+00
-    CSn         ,  1.000000000000000e+00,  1.000000000000000e+00, -4.361999928950000e+01,  1.759999990465000e+00
-    GeSn        ,  1.000000000000000e+00,  1.000000000000000e+00, -4.745000004769999e+01,  1.479999959471000e+00
-    SiSn        ,  1.000000000000000e+00,  1.000000000000000e+00, -4.964999854565000e+01,  1.459999978544000e+00
-    OSr         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.142241964340800e+02,  3.999999910595000e+00
-    SSr         ,  0.000000000000000e+00,  0.000000000000000e+00, -1.081061959267800e+02,  3.719999909403000e+00
-    SeSr        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.045379972457600e+02,  3.659999907019000e+00
-    SrTe        ,  0.000000000000000e+00,  0.000000000000000e+00, -1.013079957960600e+02,  3.519999921324000e+00
-    OZn         ,  1.000000000000000e+00,  1.000000000000000e+00, -9.017699718480000e+01,  2.189999967815000e+00
-    SZn         ,  1.000000000000000e+00,  1.000000000000000e+00, -8.534699678430000e+01,  1.909999966623000e+00
-    SeZn        ,  1.000000000000000e+00,  1.000000000000000e+00, -8.252999782560001e+01,  1.849999964239000e+00
-    TeZn        ,  1.000000000000000e+00,  1.000000000000000e+00, -7.997999668110000e+01,  1.709999978544000e+00
+    CSn         ,  1.000000000000000e+00,  1.000000000000000e+00, -6.235199689860000e+00,  1.759999990465000e+00
+    GeSn        ,  1.000000000000000e+00,  1.000000000000000e+00, -3.325439834592000e+01,  1.479999959471000e+00
+    SiSn        ,  1.000000000000000e+00,  1.000000000000000e+00, -1.454879927634000e+01,  1.459999978544000e+00
+    OSr         ,  0.000000000000000e+00,  0.000000000000000e+00,  2.744800090792000e+00,  3.999999910595000e+00
+    SSr         ,  0.000000000000000e+00,  0.000000000000000e+00,  5.489600181584000e+00,  3.719999909403000e+00
+    SeSr        ,  0.000000000000000e+00,  0.000000000000000e+00,  1.166540038586600e+01,  3.659999907019000e+00
+    SrTe        ,  0.000000000000000e+00,  0.000000000000000e+00,  1.784120059014800e+01,  3.519999921324000e+00
+    OZn         ,  1.000000000000000e+00,  1.000000000000000e+00,  8.645600318880000e+00,  2.189999967815000e+00
+    SZn         ,  1.000000000000000e+00,  1.000000000000000e+00,  1.729120063776000e+01,  1.909999966623000e+00
+    SeZn        ,  1.000000000000000e+00,  1.000000000000000e+00,  3.674380135524000e+01,  1.849999964239000e+00
+    TeZn        ,  1.000000000000000e+00,  1.000000000000000e+00,  5.619640207272000e+01,  1.709999978544000e+00
+
 
 </details>
 
+## Cross-Validation
+
+While we won't do it here, cross-validation should also be performed for classification problems.
+For those calculations the number of miscalssified points in the test set is the most important measure of the error.
+
 ## Updating the SVM Model Using `sklearn`
+
+The final decision boundary listed in the classification model is found via [linear support vector machine (SVM) model](https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf).
+The objective function for SVM (equation 1 in the linked pdf) balances the size of the margin (distance between the points and the decision boundary) and the number of points miscalssified.
+In `libsvm` the trade-off between these two components is controlled by the cost parameter, `c`, where a larger `c` prioritizes the number of miscalssified points over the margin size.
 Because the basis of the classification algorithm is based on the overlap region of the convex hull, the `c` value for the SVM model is set at a fairly high value of 1000.0.
-This will prioritize reducing the number of misclassified points, but does make the model more susceptible to being over fit.
+While within the scope of the SISSO algorithm this choice makes sense, it may not the best one for all models.
+
 To account for this the python interface has the ability to refit the Linear SVM using the `svm` module of `sklearn`.
-To do this in python we need to run and store the updated models into separate files
-```
+Using this functionality we can modify the `c` parameter from 1.0 to 1000.0 on a log-scale and evaluate how well each model is performing.
+Importantly we could also use `sklearn` to perform cross-validation on the SVM models to help quantify that performance (we will not do that here since the data is linearly separable and a hard margin is appropriate).
+To update the SVM models in python we need to run and store the updated models into separate files as shown below
+```python
 >>> from sissopp.postprocess.classification import update_model_svm
 >>> model_1 = update_model_svm("models/train_dim_2_model_0.dat", 1.0, 100000, filename="models/train_dim_2_model_0_c_1.dat")
 The updated coefficient for the decision boundaries:
-[array([[-2.94570042e-04, -8.09254771e-01,  1.91416311e+00]])]
+[array([[ 7.34341190e-04, -8.31373991e-01,  2.06766275e+00]])]
 >>> model_10 = update_model_svm("models/train_dim_2_model_0.dat", 10.0, 100000, filename="models/train_dim_2_model_0_c_10.dat")
 The updated coefficient for the decision boundaries:
-[array([[-9.37486903e-04, -1.73634223e+00,  3.94114178e+00]])]
+[array([[-2.33513390e-03, -1.83281827e+00,  4.27591385e+00]])]
 >>> model_100 = update_model_svm("models/train_dim_2_model_0.dat", 100.0, 100000, filename="models/train_dim_2_model_0_c_100.dat")
 The updated coefficient for the decision boundaries:
-[array([[-8.00966318e-03, -3.83350338e+00,  8.58806106e+00]])]
+[array([[-5.91833282e-03, -4.40795646e+00,  1.01687678e+01]])]
 >>> model_1000 = update_model_svm("models/train_dim_2_model_0.dat", 1000.0, 100000, filename="models/train_dim_2_model_0_c_1000.dat")
 The updated coefficient for the decision boundaries:
-[array([[-0.01834904, -7.01118464, 15.7364891 ]])]
+[array([[-1.10004264e-02, -9.01866680e+00,  2.07093411e+01]])]
 ```
 Comparing the final `c=1000.0` results to the ones found by `SISSO++` we see that the coefficients for the decision are slightly different.
 These changes are a result of different SVM libraries leading to slightly different results; however, if we plot both of these models, we see that the boundaries are fairly close to each other suggesting that the changes are minor.
@@ -326,7 +342,7 @@ These changes are a result of different SVM libraries leading to slightly differ
 >>> plot_classification("models/train_dim_2_model_0_c_1000.dat", filename="c_1000.png", fig_settings={"size":{"width": 5.0, "height": 5.0}}).show()
 ```
 <details>
-<summary> `SISSO++` Classification </summary>
+<summary> SISSO++ Classification </summary>
 
 ![image](./classification/sissopp.png)
 
@@ -338,7 +354,8 @@ These changes are a result of different SVM libraries leading to slightly differ
 ![image](./classification/c_1000.png)
 
 </details>
-However as we decrease the value of `c` an increasing number of points becomes miss classified, suggesting the model is potentially over-fitting the data .
+
+However as we decrease the value of `c` an increasing number of points becomes miss classified, suggesting the model is potentially over-fitting the data and would not properly classify new data points.
 
 ```python
 >>> from sissopp.postprocess.plot.classification import plot_classification
@@ -349,31 +366,32 @@ However as we decrease the value of `c` an increasing number of points becomes m
 >>> plot_classification("models/train_dim_2_model_0_c_1000.dat", filename="c_1000.png", fig_settings={"size":{"width": 5.0, "height": 5.0}}).show()
 ```
 
+<details>
+<summary> sklearn SVM c=1.0 </summary>
 
+![image](./classification/c_1.png)
 
+</details>
 
+<details>
+<summary> sklearn SVM c=10.0 </summary>
 
+![image](./classification/c_10.png)
 
+</details>
 
+<details>
+<summary> sklearn SVM c=100.0 </summary>
 
+![image](./classification/c_100.png)
 
+</details>
 
+<details>
+<summary> sklearn SVM c=1000.0 </summary>
 
+![image](./classification/c_1000.png)
 
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+</details>
 
 
diff --git a/docs/tutorial/classification/c_1.png b/docs/tutorial/classification/c_1.png
index c9fc99b3f1352edf3caf8ae5f8f0ee4e5bcfd1ad..73a0387f48ad8a6507c50596a5919730491c3834 100644
Binary files a/docs/tutorial/classification/c_1.png and b/docs/tutorial/classification/c_1.png differ
diff --git a/docs/tutorial/classification/c_10.png b/docs/tutorial/classification/c_10.png
new file mode 100644
index 0000000000000000000000000000000000000000..ca9ebfdcc559456828092c83b41cc3bfc06e6fbf
Binary files /dev/null and b/docs/tutorial/classification/c_10.png differ
diff --git a/docs/tutorial/classification/c_100.png b/docs/tutorial/classification/c_100.png
new file mode 100644
index 0000000000000000000000000000000000000000..0d0ab65392fb88869fe38a0de95b6949dedc73d5
Binary files /dev/null and b/docs/tutorial/classification/c_100.png differ
diff --git a/docs/tutorial/classification/c_1000.png b/docs/tutorial/classification/c_1000.png
index bc3241c49bab364f0b8d0a8f114256896deb180b..8f4c47a69ef58a7c730981a06e22f15369ca8f7e 100644
Binary files a/docs/tutorial/classification/c_1000.png and b/docs/tutorial/classification/c_1000.png differ
diff --git a/docs/tutorial/classification/data_class.csv b/docs/tutorial/classification/data_class.csv
index 765d0063fb53e2b582a8674a516c2d11f01653f6..e9c961824feabd8046b9b8927a922948bc5e576d 100644
--- a/docs/tutorial/classification/data_class.csv
+++ b/docs/tutorial/classification/data_class.csv
@@ -1,153 +1,83 @@
-compound,z_A,z_B,z_L,z_M,z_N,x_A,x_B,x_L,x_M,x_N,l_A,l_B,l_L,l_M,l_N,Class
-Sb_Sb_Te_Te_Te,51.0,51.0,52.0,52.0,52.0,2.05,2.05,2.12,2.12,2.12,0.4,0.4,0.49,0.49,0.49,0.0
-As_Bi_Te_Te_S,33.0,83.0,52.0,52.0,16.0,2.18,2.02,2.12,2.12,2.58,0.19,1.25,0.49,0.49,0.05,0.0
-Bi_Bi_Te_Se_Se,83.0,83.0,52.0,34.0,34.0,2.02,2.02,2.12,2.55,2.55,1.25,1.25,0.49,0.22,0.22,0.0
-Bi_Sb_Te_S_Te,83.0,51.0,52.0,16.0,52.0,2.02,2.05,2.12,2.58,2.12,1.25,0.4,0.49,0.05,0.49,0.0
-Bi_As_Te_Se_Te,83.0,33.0,52.0,34.0,52.0,2.02,2.18,2.12,2.55,2.12,1.25,0.19,0.49,0.22,0.49,0.0
-Bi_Sb_Se_Te_Se,83.0,51.0,34.0,52.0,34.0,2.02,2.05,2.55,2.12,2.55,1.25,0.4,0.22,0.49,0.22,0.0
-As_Sb_Te_Te_Te,33.0,51.0,52.0,52.0,52.0,2.18,2.05,2.12,2.12,2.12,0.19,0.4,0.49,0.49,0.49,0.0
-Sb_Bi_Se_Se_Se,51.0,83.0,34.0,34.0,34.0,2.05,2.02,2.55,2.55,2.55,0.4,1.25,0.22,0.22,0.22,0.0
-Bi_Sb_Se_Te_S,83.0,51.0,34.0,52.0,16.0,2.02,2.05,2.55,2.12,2.58,1.25,0.4,0.22,0.49,0.05,0.0
-Sb_Bi_Te_Se_Te,51.0,83.0,52.0,34.0,52.0,2.05,2.02,2.12,2.55,2.12,0.4,1.25,0.49,0.22,0.49,0.0
-Bi_Bi_S_Te_Te,83.0,83.0,16.0,52.0,52.0,2.02,2.02,2.58,2.12,2.12,1.25,1.25,0.05,0.49,0.49,0.0
-Bi_Bi_Se_Te_S,83.0,83.0,34.0,52.0,16.0,2.02,2.02,2.55,2.12,2.58,1.25,1.25,0.22,0.49,0.05,0.0
-Sb_Sb_Te_Se_Te,51.0,51.0,52.0,34.0,52.0,2.05,2.05,2.12,2.55,2.12,0.4,0.4,0.49,0.22,0.49,0.0
-Sb_Sb_Se_Te_Te,51.0,51.0,34.0,52.0,52.0,2.05,2.05,2.55,2.12,2.12,0.4,0.4,0.22,0.49,0.49,0.0
-Bi_Sb_Se_Te_Te,83.0,51.0,34.0,52.0,52.0,2.02,2.05,2.55,2.12,2.12,1.25,0.4,0.22,0.49,0.49,0.0
-Sb_Bi_Se_Te_Te,51.0,83.0,34.0,52.0,52.0,2.05,2.02,2.55,2.12,2.12,0.4,1.25,0.22,0.49,0.49,0.0
-Bi_Sb_Se_Se_S,83.0,51.0,34.0,34.0,16.0,2.02,2.05,2.55,2.55,2.58,1.25,0.4,0.22,0.22,0.05,0.0
-Sb_Bi_Se_Te_S,51.0,83.0,34.0,52.0,16.0,2.05,2.02,2.55,2.12,2.58,0.4,1.25,0.22,0.49,0.05,0.0
-Bi_Bi_Te_Se_S,83.0,83.0,52.0,34.0,16.0,2.02,2.02,2.12,2.55,2.58,1.25,1.25,0.49,0.22,0.05,0.0
-As_Bi_Te_Te_Te,33.0,83.0,52.0,52.0,52.0,2.18,2.02,2.12,2.12,2.12,0.19,1.25,0.49,0.49,0.49,0.0
-Sb_As_Te_Se_Te,51.0,33.0,52.0,34.0,52.0,2.05,2.18,2.12,2.55,2.12,0.4,0.19,0.49,0.22,0.49,0.0
-Bi_Sb_Te_Te_Te,83.0,51.0,52.0,52.0,52.0,2.02,2.05,2.12,2.12,2.12,1.25,0.4,0.49,0.49,0.49,0.0
-As_Bi_Se_Te_S,33.0,83.0,34.0,52.0,16.0,2.18,2.02,2.55,2.12,2.58,0.19,1.25,0.22,0.49,0.05,0.0
-Sb_Sb_Te_Te_S,51.0,51.0,52.0,52.0,16.0,2.05,2.05,2.12,2.12,2.58,0.4,0.4,0.49,0.49,0.05,0.0
-Sb_Bi_Te_Te_Te,51.0,83.0,52.0,52.0,52.0,2.05,2.02,2.12,2.12,2.12,0.4,1.25,0.49,0.49,0.49,0.0
-Sb_Bi_Te_Te_S,51.0,83.0,52.0,52.0,16.0,2.05,2.02,2.12,2.12,2.58,0.4,1.25,0.49,0.49,0.05,0.0
-Bi_Bi_Se_Se_Te,83.0,83.0,34.0,34.0,52.0,2.02,2.02,2.55,2.55,2.12,1.25,1.25,0.22,0.22,0.49,0.0
-Bi_Bi_Te_Se_Te,83.0,83.0,52.0,34.0,52.0,2.02,2.02,2.12,2.55,2.12,1.25,1.25,0.49,0.22,0.49,0.0
-Bi_Bi_Se_Se_S,83.0,83.0,34.0,34.0,16.0,2.02,2.02,2.55,2.55,2.58,1.25,1.25,0.22,0.22,0.05,0.0
-Bi_Sb_Te_Se_Te,83.0,51.0,52.0,34.0,52.0,2.02,2.05,2.12,2.55,2.12,1.25,0.4,0.49,0.22,0.49,0.0
-Sb_Bi_S_Te_Te,51.0,83.0,16.0,52.0,52.0,2.05,2.02,2.58,2.12,2.12,0.4,1.25,0.05,0.49,0.49,0.0
-As_Bi_Se_Te_Se,33.0,83.0,34.0,52.0,34.0,2.18,2.02,2.55,2.12,2.55,0.19,1.25,0.22,0.49,0.22,0.0
-Sb_As_Te_Se_Se,51.0,33.0,52.0,34.0,34.0,2.05,2.18,2.12,2.55,2.55,0.4,0.19,0.49,0.22,0.22,0.0
-Sb_Bi_Se_Se_S,51.0,83.0,34.0,34.0,16.0,2.05,2.02,2.55,2.55,2.58,0.4,1.25,0.22,0.22,0.05,0.0
-Bi_As_Te_Se_S,83.0,33.0,52.0,34.0,16.0,2.02,2.18,2.12,2.55,2.58,1.25,0.19,0.49,0.22,0.05,0.0
-Bi_As_Te_Se_Se,83.0,33.0,52.0,34.0,34.0,2.02,2.18,2.12,2.55,2.55,1.25,0.19,0.49,0.22,0.22,0.0
-Bi_As_Te_Te_Te,83.0,33.0,52.0,52.0,52.0,2.02,2.18,2.12,2.12,2.12,1.25,0.19,0.49,0.49,0.49,0.0
-Bi_Bi_S_Se_Se,83.0,83.0,16.0,34.0,34.0,2.02,2.02,2.58,2.55,2.55,1.25,1.25,0.05,0.22,0.22,0.0
-As_Bi_Te_Te_Se,33.0,83.0,52.0,52.0,34.0,2.18,2.02,2.12,2.12,2.55,0.19,1.25,0.49,0.49,0.22,0.0
-As_Sb_Se_Te_Te,33.0,51.0,34.0,52.0,52.0,2.18,2.05,2.55,2.12,2.12,0.19,0.4,0.22,0.49,0.49,0.0
-As_Sb_Se_Te_Se,33.0,51.0,34.0,52.0,34.0,2.18,2.05,2.55,2.12,2.55,0.19,0.4,0.22,0.49,0.22,0.0
-Bi_Bi_Te_S_S,83.0,83.0,52.0,16.0,16.0,2.02,2.02,2.12,2.58,2.58,1.25,1.25,0.49,0.05,0.05,0.0
-Sb_Bi_Te_Te_Se,51.0,83.0,52.0,52.0,34.0,2.05,2.02,2.12,2.12,2.55,0.4,1.25,0.49,0.49,0.22,0.0
-Bi_Sb_Se_Se_Se,83.0,51.0,34.0,34.0,34.0,2.02,2.05,2.55,2.55,2.55,1.25,0.4,0.22,0.22,0.22,0.0
-Bi_Sb_Te_Se_Se,83.0,51.0,52.0,34.0,34.0,2.02,2.05,2.12,2.55,2.55,1.25,0.4,0.49,0.22,0.22,0.0
-Bi_Bi_Te_Te_Te,83.0,83.0,52.0,52.0,52.0,2.02,2.02,2.12,2.12,2.12,1.25,1.25,0.49,0.49,0.49,0.0
-Bi_Bi_S_Te_S,83.0,83.0,16.0,52.0,16.0,2.02,2.02,2.58,2.12,2.58,1.25,1.25,0.05,0.49,0.05,0.0
-Bi_Sb_Te_Te_Se,83.0,51.0,52.0,52.0,34.0,2.02,2.05,2.12,2.12,2.55,1.25,0.4,0.49,0.49,0.22,0.0
-Bi_As_Te_Te_S,83.0,33.0,52.0,52.0,16.0,2.02,2.18,2.12,2.12,2.58,1.25,0.19,0.49,0.49,0.05,0.0
-Sb_Sb_Se_Se_S,51.0,51.0,34.0,34.0,16.0,2.05,2.05,2.55,2.55,2.58,0.4,0.4,0.22,0.22,0.05,0.0
-Bi_Sb_Te_Se_S,83.0,51.0,52.0,34.0,16.0,2.02,2.05,2.12,2.55,2.58,1.25,0.4,0.49,0.22,0.05,0.0
-Sb_Bi_Se_Te_Se,51.0,83.0,34.0,52.0,34.0,2.05,2.02,2.55,2.12,2.55,0.4,1.25,0.22,0.49,0.22,0.0
-Bi_Sb_Te_Te_S,83.0,51.0,52.0,52.0,16.0,2.02,2.05,2.12,2.12,2.58,1.25,0.4,0.49,0.49,0.05,0.0
-Sb_As_Te_Te_Te,51.0,33.0,52.0,52.0,52.0,2.05,2.18,2.12,2.12,2.12,0.4,0.19,0.49,0.49,0.49,0.0
-Bi_Bi_Se_Te_Te,83.0,83.0,34.0,52.0,52.0,2.02,2.02,2.55,2.12,2.12,1.25,1.25,0.22,0.49,0.49,0.0
-Sb_Bi_Te_Se_S,51.0,83.0,52.0,34.0,16.0,2.05,2.02,2.12,2.55,2.58,0.4,1.25,0.49,0.22,0.05,0.0
-Bi_As_Te_Te_Se,83.0,33.0,52.0,52.0,34.0,2.02,2.18,2.12,2.12,2.55,1.25,0.19,0.49,0.49,0.22,0.0
-As_Bi_Se_Te_Te,33.0,83.0,34.0,52.0,52.0,2.18,2.02,2.55,2.12,2.12,0.19,1.25,0.22,0.49,0.49,0.0
-Sb_Bi_Te_Se_Se,51.0,83.0,52.0,34.0,34.0,2.05,2.02,2.12,2.55,2.55,0.4,1.25,0.49,0.22,0.22,0.0
-Bi_Bi_Se_Se_Se,83.0,83.0,34.0,34.0,34.0,2.02,2.02,2.55,2.55,2.55,1.25,1.25,0.22,0.22,0.22,0.0
-Sb_Sb_Te_Te_Se,51.0,51.0,52.0,52.0,34.0,2.05,2.05,2.12,2.12,2.55,0.4,0.4,0.49,0.49,0.22,0.0
-Bi_Bi_Se_S_Se,83.0,83.0,34.0,16.0,34.0,2.02,2.02,2.55,2.58,2.55,1.25,1.25,0.22,0.05,0.22,0.0
-Bi_Bi_Te_Te_Se,83.0,83.0,52.0,52.0,34.0,2.02,2.02,2.12,2.12,2.55,1.25,1.25,0.49,0.49,0.22,0.0
-Bi_Bi_Te_Te_S,83.0,83.0,52.0,52.0,16.0,2.02,2.02,2.12,2.12,2.58,1.25,1.25,0.49,0.49,0.05,0.0
-Bi_Bi_Te_S_Te,83.0,83.0,52.0,16.0,52.0,2.02,2.02,2.12,2.58,2.12,1.25,1.25,0.49,0.05,0.49,0.0
-Sb_Sb_Se_Se_Se,51.0,51.0,34.0,34.0,34.0,2.05,2.05,2.55,2.55,2.55,0.4,0.4,0.22,0.22,0.22,0.0
-Bi_Bi_Se_Te_Se,83.0,83.0,34.0,52.0,34.0,2.02,2.02,2.55,2.12,2.55,1.25,1.25,0.22,0.49,0.22,0.0
-As_Sb_S_Te_Te,33.0,51.0,16.0,52.0,52.0,2.18,2.05,2.58,2.12,2.12,0.19,0.4,0.05,0.49,0.49,1.0
-As_Sb_Se_Se_Se,33.0,51.0,34.0,34.0,34.0,2.18,2.05,2.55,2.55,2.55,0.19,0.4,0.22,0.22,0.22,1.0
-Bi_As_Se_S_S,83.0,33.0,34.0,16.0,16.0,2.02,2.18,2.55,2.58,2.58,1.25,0.19,0.22,0.05,0.05,1.0
-Sb_Sb_S_Se_S,51.0,51.0,16.0,34.0,16.0,2.05,2.05,2.58,2.55,2.58,0.4,0.4,0.05,0.22,0.05,1.0
-Sb_Sb_S_Te_Te,51.0,51.0,16.0,52.0,52.0,2.05,2.05,2.58,2.12,2.12,0.4,0.4,0.05,0.49,0.49,1.0
-Sb_Sb_S_Se_Te,51.0,51.0,16.0,34.0,52.0,2.05,2.05,2.58,2.55,2.12,0.4,0.4,0.05,0.22,0.49,1.0
-As_Sb_Te_Se_S,33.0,51.0,52.0,34.0,16.0,2.18,2.05,2.12,2.55,2.58,0.19,0.4,0.49,0.22,0.05,1.0
-Sb_Bi_S_Se_Te,51.0,83.0,16.0,34.0,52.0,2.05,2.02,2.58,2.55,2.12,0.4,1.25,0.05,0.22,0.49,1.0
-Bi_Bi_Se_S_Te,83.0,83.0,34.0,16.0,52.0,2.02,2.02,2.55,2.58,2.12,1.25,1.25,0.22,0.05,0.49,1.0
-As_Bi_S_Se_S,33.0,83.0,16.0,34.0,16.0,2.18,2.02,2.58,2.55,2.58,0.19,1.25,0.05,0.22,0.05,1.0
-As_Sb_Se_Se_S,33.0,51.0,34.0,34.0,16.0,2.18,2.05,2.55,2.55,2.58,0.19,0.4,0.22,0.22,0.05,1.0
-Bi_Sb_S_S_S,83.0,51.0,16.0,16.0,16.0,2.02,2.05,2.58,2.58,2.58,1.25,0.4,0.05,0.05,0.05,1.0
-Sb_Bi_Te_S_Se,51.0,83.0,52.0,16.0,34.0,2.05,2.02,2.12,2.58,2.55,0.4,1.25,0.49,0.05,0.22,1.0
-Bi_Sb_S_Se_Te,83.0,51.0,16.0,34.0,52.0,2.02,2.05,2.58,2.55,2.12,1.25,0.4,0.05,0.22,0.49,1.0
-Bi_Sb_S_Se_Se,83.0,51.0,16.0,34.0,34.0,2.02,2.05,2.58,2.55,2.55,1.25,0.4,0.05,0.22,0.22,1.0
-As_Sb_Te_Se_Se,33.0,51.0,52.0,34.0,34.0,2.18,2.05,2.12,2.55,2.55,0.19,0.4,0.49,0.22,0.22,1.0
-Sb_Bi_S_S_S,51.0,83.0,16.0,16.0,16.0,2.05,2.02,2.58,2.58,2.58,0.4,1.25,0.05,0.05,0.05,1.0
-Sb_Sb_S_Te_S,51.0,51.0,16.0,52.0,16.0,2.05,2.05,2.58,2.12,2.58,0.4,0.4,0.05,0.49,0.05,1.0
-Bi_Sb_Te_S_S,83.0,51.0,52.0,16.0,16.0,2.02,2.05,2.12,2.58,2.58,1.25,0.4,0.49,0.05,0.05,1.0
-Bi_Sb_S_Te_Se,83.0,51.0,16.0,52.0,34.0,2.02,2.05,2.58,2.12,2.55,1.25,0.4,0.05,0.49,0.22,1.0
-Sb_Sb_Se_S_Te,51.0,51.0,34.0,16.0,52.0,2.05,2.05,2.55,2.58,2.12,0.4,0.4,0.22,0.05,0.49,1.0
-Sb_As_Se_Te_Se,51.0,33.0,34.0,52.0,34.0,2.05,2.18,2.55,2.12,2.55,0.4,0.19,0.22,0.49,0.22,1.0
-Bi_Bi_S_S_Se,83.0,83.0,16.0,16.0,34.0,2.02,2.02,2.58,2.58,2.55,1.25,1.25,0.05,0.05,0.22,1.0
-Sb_Sb_Te_S_Se,51.0,51.0,52.0,16.0,34.0,2.05,2.05,2.12,2.58,2.55,0.4,0.4,0.49,0.05,0.22,1.0
-Sb_As_Te_S_Te,51.0,33.0,52.0,16.0,52.0,2.05,2.18,2.12,2.58,2.12,0.4,0.19,0.49,0.05,0.49,1.0
-As_Sb_S_Te_Se,33.0,51.0,16.0,52.0,34.0,2.18,2.05,2.58,2.12,2.55,0.19,0.4,0.05,0.49,0.22,1.0
-As_As_Se_Te_S,33.0,33.0,34.0,52.0,16.0,2.18,2.18,2.55,2.12,2.58,0.19,0.19,0.22,0.49,0.05,1.0
-As_Bi_Se_Se_Te,33.0,83.0,34.0,34.0,52.0,2.18,2.02,2.55,2.55,2.12,0.19,1.25,0.22,0.22,0.49,1.0
-As_As_Se_Se_Se,33.0,33.0,34.0,34.0,34.0,2.18,2.18,2.55,2.55,2.55,0.19,0.19,0.22,0.22,0.22,1.0
-As_As_Se_Te_Se,33.0,33.0,34.0,52.0,34.0,2.18,2.18,2.55,2.12,2.55,0.19,0.19,0.22,0.49,0.22,1.0
-Bi_As_Se_S_Se,83.0,33.0,34.0,16.0,34.0,2.02,2.18,2.55,2.58,2.55,1.25,0.19,0.22,0.05,0.22,1.0
-Bi_As_Se_Se_Te,83.0,33.0,34.0,34.0,52.0,2.02,2.18,2.55,2.55,2.12,1.25,0.19,0.22,0.22,0.49,1.0
-Bi_Bi_S_S_Te,83.0,83.0,16.0,16.0,52.0,2.02,2.02,2.58,2.58,2.12,1.25,1.25,0.05,0.05,0.49,1.0
-As_As_Te_Se_Se,33.0,33.0,52.0,34.0,34.0,2.18,2.18,2.12,2.55,2.55,0.19,0.19,0.49,0.22,0.22,1.0
-Sb_Bi_S_Te_S,51.0,83.0,16.0,52.0,16.0,2.05,2.02,2.58,2.12,2.58,0.4,1.25,0.05,0.49,0.05,1.0
-Bi_As_Se_S_Te,83.0,33.0,34.0,16.0,52.0,2.02,2.18,2.55,2.58,2.12,1.25,0.19,0.22,0.05,0.49,1.0
-Sb_As_Se_S_Se,51.0,33.0,34.0,16.0,34.0,2.05,2.18,2.55,2.58,2.55,0.4,0.19,0.22,0.05,0.22,1.0
-Bi_Bi_Se_S_S,83.0,83.0,34.0,16.0,16.0,2.02,2.02,2.55,2.58,2.58,1.25,1.25,0.22,0.05,0.05,1.0
-Sb_Sb_Te_S_S,51.0,51.0,52.0,16.0,16.0,2.05,2.05,2.12,2.58,2.58,0.4,0.4,0.49,0.05,0.05,1.0
-Sb_As_Se_Se_S,51.0,33.0,34.0,34.0,16.0,2.05,2.18,2.55,2.55,2.58,0.4,0.19,0.22,0.22,0.05,1.0
-Bi_Sb_Se_S_Te,83.0,51.0,34.0,16.0,52.0,2.02,2.05,2.55,2.58,2.12,1.25,0.4,0.22,0.05,0.49,1.0
-Sb_As_Se_Te_S,51.0,33.0,34.0,52.0,16.0,2.05,2.18,2.55,2.12,2.58,0.4,0.19,0.22,0.49,0.05,1.0
-Bi_Bi_S_Se_S,83.0,83.0,16.0,34.0,16.0,2.02,2.02,2.58,2.55,2.58,1.25,1.25,0.05,0.22,0.05,1.0
-Sb_Bi_S_Se_S,51.0,83.0,16.0,34.0,16.0,2.05,2.02,2.58,2.55,2.58,0.4,1.25,0.05,0.22,0.05,1.0
-Sb_Sb_S_Se_Se,51.0,51.0,16.0,34.0,34.0,2.05,2.05,2.58,2.55,2.55,0.4,0.4,0.05,0.22,0.22,1.0
-Sb_Bi_S_S_Se,51.0,83.0,16.0,16.0,34.0,2.05,2.02,2.58,2.58,2.55,0.4,1.25,0.05,0.05,0.22,1.0
-Bi_As_Se_Se_S,83.0,33.0,34.0,34.0,16.0,2.02,2.18,2.55,2.55,2.58,1.25,0.19,0.22,0.22,0.05,1.0
-Bi_Sb_S_S_Te,83.0,51.0,16.0,16.0,52.0,2.02,2.05,2.58,2.58,2.12,1.25,0.4,0.05,0.05,0.49,1.0
-Sb_Sb_Te_S_Te,51.0,51.0,52.0,16.0,52.0,2.05,2.05,2.12,2.58,2.12,0.4,0.4,0.49,0.05,0.49,1.0
-As_Bi_Se_Se_Se,33.0,83.0,34.0,34.0,34.0,2.18,2.02,2.55,2.55,2.55,0.19,1.25,0.22,0.22,0.22,1.0
-Sb_Sb_Se_Se_Te,51.0,51.0,34.0,34.0,52.0,2.05,2.05,2.55,2.55,2.12,0.4,0.4,0.22,0.22,0.49,1.0
-Sb_As_Te_S_Se,51.0,33.0,52.0,16.0,34.0,2.05,2.18,2.12,2.58,2.55,0.4,0.19,0.49,0.05,0.22,1.0
-As_Sb_S_Te_S,33.0,51.0,16.0,52.0,16.0,2.18,2.05,2.58,2.12,2.58,0.19,0.4,0.05,0.49,0.05,1.0
-Bi_Bi_S_Se_Te,83.0,83.0,16.0,34.0,52.0,2.02,2.02,2.58,2.55,2.12,1.25,1.25,0.05,0.22,0.49,1.0
-As_Bi_Se_Se_S,33.0,83.0,34.0,34.0,16.0,2.18,2.02,2.55,2.55,2.58,0.19,1.25,0.22,0.22,0.05,1.0
-As_Sb_S_Se_Se,33.0,51.0,16.0,34.0,34.0,2.18,2.05,2.58,2.55,2.55,0.19,0.4,0.05,0.22,0.22,1.0
-As_Bi_S_Se_Te,33.0,83.0,16.0,34.0,52.0,2.18,2.02,2.58,2.55,2.12,0.19,1.25,0.05,0.22,0.49,1.0
-As_Sb_S_Se_S,33.0,51.0,16.0,34.0,16.0,2.18,2.05,2.58,2.55,2.58,0.19,0.4,0.05,0.22,0.05,1.0
-As_As_Te_Te_S,33.0,33.0,52.0,52.0,16.0,2.18,2.18,2.12,2.12,2.58,0.19,0.19,0.49,0.49,0.05,1.0
-As_Bi_S_Te_S,33.0,83.0,16.0,52.0,16.0,2.18,2.02,2.58,2.12,2.58,0.19,1.25,0.05,0.49,0.05,1.0
-Sb_As_Se_Se_Se,51.0,33.0,34.0,34.0,34.0,2.05,2.18,2.55,2.55,2.55,0.4,0.19,0.22,0.22,0.22,1.0
-Sb_Sb_S_Te_Se,51.0,51.0,16.0,52.0,34.0,2.05,2.05,2.58,2.12,2.55,0.4,0.4,0.05,0.49,0.22,1.0
-Sb_Bi_S_S_Te,51.0,83.0,16.0,16.0,52.0,2.05,2.02,2.58,2.58,2.12,0.4,1.25,0.05,0.05,0.49,1.0
-Sb_As_Te_Te_S,51.0,33.0,52.0,52.0,16.0,2.05,2.18,2.12,2.12,2.58,0.4,0.19,0.49,0.49,0.05,1.0
-Bi_As_Se_Se_Se,83.0,33.0,34.0,34.0,34.0,2.02,2.18,2.55,2.55,2.55,1.25,0.19,0.22,0.22,0.22,1.0
-Sb_Sb_Se_S_S,51.0,51.0,34.0,16.0,16.0,2.05,2.05,2.55,2.58,2.58,0.4,0.4,0.22,0.05,0.05,1.0
-As_As_Se_Se_S,33.0,33.0,34.0,34.0,16.0,2.18,2.18,2.55,2.55,2.58,0.19,0.19,0.22,0.22,0.05,1.0
-Sb_As_Se_S_S,51.0,33.0,34.0,16.0,16.0,2.05,2.18,2.55,2.58,2.58,0.4,0.19,0.22,0.05,0.05,1.0
-Sb_Bi_Se_S_Se,51.0,83.0,34.0,16.0,34.0,2.05,2.02,2.55,2.58,2.55,0.4,1.25,0.22,0.05,0.22,1.0
-Sb_Bi_Se_S_S,51.0,83.0,34.0,16.0,16.0,2.05,2.02,2.55,2.58,2.58,0.4,1.25,0.22,0.05,0.05,1.0
-Sb_Sb_S_S_S,51.0,51.0,16.0,16.0,16.0,2.05,2.05,2.58,2.58,2.58,0.4,0.4,0.05,0.05,0.05,1.0
-Bi_Sb_S_Se_S,83.0,51.0,16.0,34.0,16.0,2.02,2.05,2.58,2.55,2.58,1.25,0.4,0.05,0.22,0.05,1.0
-Bi_As_Te_S_S,83.0,33.0,52.0,16.0,16.0,2.02,2.18,2.12,2.58,2.58,1.25,0.19,0.49,0.05,0.05,1.0
-Sb_Sb_Se_S_Se,51.0,51.0,34.0,16.0,34.0,2.05,2.05,2.55,2.58,2.55,0.4,0.4,0.22,0.05,0.22,1.0
-Sb_Bi_Se_S_Te,51.0,83.0,34.0,16.0,52.0,2.05,2.02,2.55,2.58,2.12,0.4,1.25,0.22,0.05,0.49,1.0
-Sb_As_Te_S_S,51.0,33.0,52.0,16.0,16.0,2.05,2.18,2.12,2.58,2.58,0.4,0.19,0.49,0.05,0.05,1.0
-As_Bi_S_Se_Se,33.0,83.0,16.0,34.0,34.0,2.18,2.02,2.58,2.55,2.55,0.19,1.25,0.05,0.22,0.22,1.0
-Bi_Sb_Se_S_S,83.0,51.0,34.0,16.0,16.0,2.02,2.05,2.55,2.58,2.58,1.25,0.4,0.22,0.05,0.05,1.0
-As_As_Te_Se_S,33.0,33.0,52.0,34.0,16.0,2.18,2.18,2.12,2.55,2.58,0.19,0.19,0.49,0.22,0.05,1.0
-As_Sb_Te_Te_S,33.0,51.0,52.0,52.0,16.0,2.18,2.05,2.12,2.12,2.58,0.19,0.4,0.49,0.49,0.05,1.0
-Bi_Sb_S_S_Se,83.0,51.0,16.0,16.0,34.0,2.02,2.05,2.58,2.58,2.55,1.25,0.4,0.05,0.05,0.22,1.0
-Sb_Sb_Te_Se_S,51.0,51.0,52.0,34.0,16.0,2.05,2.05,2.12,2.55,2.58,0.4,0.4,0.49,0.22,0.05,1.0
-Sb_Sb_Se_Te_S,51.0,51.0,34.0,52.0,16.0,2.05,2.05,2.55,2.12,2.58,0.4,0.4,0.22,0.49,0.05,1.0
-Bi_Bi_S_S_S,83.0,83.0,16.0,16.0,16.0,2.02,2.02,2.58,2.58,2.58,1.25,1.25,0.05,0.05,0.05,1.0
-As_As_Te_Te_Se,33.0,33.0,52.0,52.0,34.0,2.18,2.18,2.12,2.12,2.55,0.19,0.19,0.49,0.49,0.22,1.0
+# Material,Class,Z_A (nuc_charge) ,Z_B (nuc_charge) ,period_A,period_B,IP_A (eV_IP) ,IP_B (eV_IP) ,EA_A (eV_IP),EA_B (eV_IP) ,E_HOMO_A (eV) ,E_HOMO_B (eV) ,E_LUMO_A (eV),E_LUMO_B (eV) ,r_s_A ,r_s_B ,r_p_A ,r_p_B ,r_d_A ,r_d_B,r_sigma ,r_pi
+AgBr,0,47,35,5,4,-8.0580997467,-12.649600029,-1.66659998894,-3.73930001259,-4.71000003815,-8.00100040436,-0.479000002146,0.708000004292,1.32000005245,0.75,1.87999999523,0.879999995232,2.97000002861,1.87000000477,1.570000052448,0.689999938012
+AgCl,0,47,17,5,3,-8.0580997467,-13.9018001556,-1.66659998894,-3.97079992294,-4.71000003815,-8.69999980927,-0.479000002146,0.574000000954,1.32000005245,0.680000007153,1.87999999523,0.759999990463,2.97000002861,1.66999995708,1.760000050064,0.63999992609
+AgF,0,47,9,5,2,-8.0580997467,-19.4043006897,-1.66659998894,-4.27349996567,-4.71000003815,-11.2939996719,-0.479000002146,1.25100004673,1.32000005245,0.409999996424,1.87999999523,0.370000004768,2.97000002861,1.42999994755,2.420000046488,0.599999934436
+AgI,1,47,53,5,5,-8.0580997467,-11.2571001053,-1.66659998894,-3.5134999752,-4.71000003815,-7.23600006104,-0.479000002146,0.212999999523,1.32000005245,0.899999976158,1.87999999523,1.07000005245,2.97000002861,1.72000002861,1.230000019072,0.730000019072
+AlAs,1,13,33,3,4,-5.78049993515,-9.26189994812,-0.3125,-1.83920001984,-2.78399991989,-5.34100008011,0.694999992847,0.0640000030398,1.09000003338,0.850000023842,1.38999998569,1.03999996185,1.94000005722,2.01999998093,0.590000033378,0.489999890318
+AlN,1,13,7,3,2,-5.78049993515,-13.5852003098,-0.3125,-1.86749994755,-2.78399991989,-7.2389998436,0.694999992847,3.0569999218,1.09000003338,0.540000021458,1.38999998569,0.509999990463,1.94000005722,1.53999996185,1.430000007149,0.329999983305
+AlP,1,13,15,3,3,-5.78049993515,-9.75059986115,-0.3125,-1.91999995708,-2.78399991989,-5.59600019455,0.694999992847,0.182999998331,1.09000003338,0.829999983311,1.38999998569,0.97000002861,1.94000005722,1.76999998093,0.680000007149,0.439999997609
+AlSb,1,13,51,3,5,-5.78049993515,-8.46829986572,-0.3125,-1.84669995308,-2.78399991989,-4.99100017548,0.694999992847,0.104999996722,1.09000003338,1,1.38999998569,1.23000001907,1.94000005722,2.05999994278,0.25,0.52999997138
+AsGa,1,31,33,4,4,-5.81820011139,-9.26189994812,-0.108099997044,-1.83920001984,-2.73200011253,-5.34100008011,0.129999995232,0.0640000030398,0.990000009537,0.850000023842,1.33000004292,1.03999996185,2.16000008583,2.01999998093,0.430000066765,0.529999971391
+AsB,1,5,33,2,4,-8.18999958038,-9.26189994812,-0.107400000095,-1.83920001984,-3.71499991417,-5.34100008011,2.24799990654,0.0640000030398,0.810000002384,0.850000023842,0.829999983311,1.03999996185,1.95000004768,2.01999998093,0.249999999997,0.209999918935
+BN,1,5,7,2,2,-8.18999958038,-13.5852003098,-0.107400000095,-1.86749994755,-3.71499991417,-7.2389998436,2.24799990654,3.0569999218,0.810000002384,0.540000021458,0.829999983311,0.509999990463,1.95000004768,1.53999996185,0.589999973774,0.050000011922
+BP,1,5,15,2,3,-8.18999958038,-9.75059986115,-0.107400000095,-1.91999995708,-3.71499991417,-5.59600019455,2.24799990654,0.182999998331,0.810000002384,0.829999983311,0.829999983311,0.97000002861,1.95000004768,1.76999998093,0.160000026226,0.160000026226
+BSb,1,5,51,2,5,-8.18999958038,-8.46829986572,-0.107400000095,-1.84669995308,-3.71499991417,-4.99100017548,2.24799990654,0.104999996722,0.810000002384,1,0.829999983311,1.23000001907,1.95000004768,2.05999994278,0.590000033375,0.249999999997
+BaO,0,56,8,6,2,-5.51569986343,-16.4332008362,0.277999997139,-3.00589990616,-3.34599995613,-9.19699954987,-2.1289999485,2.54099988937,2.15000009537,0.460000008345,2.63000011444,0.430000007153,1.35000002384,2.22000002861,3.890000194312,0.510000020262
+BaS,0,56,16,6,3,-5.51569986343,-11.7951002121,0.277999997139,-2.84489989281,-3.34599995613,-7.10599994659,-2.1289999485,0.64200001955,2.15000009537,0.740000009537,2.63000011444,0.850000023842,1.35000002384,2.36999988556,3.190000176431,0.590000033375
+BaSe,0,56,34,6,4,-5.51569986343,-10.9460000992,0.277999997139,-2.75099992752,-3.34599995613,-6.65399980545,-2.1289999485,1.31599998474,2.15000009537,0.800000011921,2.63000011444,0.949999988079,1.35000002384,2.18000006676,3.03000020981,0.629999995228
+BaTe,0,56,52,6,5,-5.51569986343,-9.86670017242,0.277999997139,-2.66599988937,-3.34599995613,-6.10900020599,-2.1289999485,0.0989999994636,2.15000009537,0.939999997616,2.63000011444,1.13999998569,1.35000002384,1.83000004292,2.700000226504,0.680000007144
+BeO,1,4,8,2,2,-9.459400177,-16.4332008362,0.630500018597,-3.00589990616,-5.59999990463,-9.19699954987,-2.09800004959,2.54099988937,1.08000004292,0.460000008345,1.21000003815,0.430000007153,2.88000011444,2.22000002861,1.400000065572,0.159999996422
+BeS,1,4,16,2,3,-9.459400177,-11.7951002121,0.630500018597,-2.84489989281,-5.59999990463,-7.10599994659,-2.09800004959,0.64200001955,1.08000004292,0.740000009537,1.21000003815,0.850000023842,2.88000011444,2.36999988556,0.700000047691,0.240000009535
+BeSe,1,4,34,2,4,-9.459400177,-10.9460000992,0.630500018597,-2.75099992752,-5.59999990463,-6.65399980545,-2.09800004959,1.31599998474,1.08000004292,0.800000011921,1.21000003815,0.949999988079,2.88000011444,2.18000006676,0.54000008107,0.279999971388
+BeTe,1,4,52,2,5,-9.459400177,-9.86670017242,0.630500018597,-2.66599988937,-5.59999990463,-6.10900020599,-2.09800004959,0.0989999994636,1.08000004292,0.939999997616,1.21000003815,1.13999998569,2.88000011444,1.83000004292,0.210000097764,0.329999983304
+C2,1,6,6,2,2,-10.8516998291,-10.8516998291,-0.87239998579,-0.87239998579,-5.41599988937,-5.41599988937,1.99199998379,1.99199998379,0.639999985695,0.639999985695,0.629999995232,0.629999995232,1.62999999523,1.62999999523,0,0.019999980926
+CaO,0,20,8,4,2,-6.4279999733,-16.4332008362,0.303900003433,-3.00589990616,-3.86400008202,-9.19699954987,-2.132999897,2.54099988937,1.75999999046,0.460000008345,2.31999993324,0.430000007153,0.680000007153,2.22000002861,3.189999908202,0.589999943972
+CaS,0,20,16,4,3,-6.4279999733,-11.7951002121,0.303900003433,-2.84489989281,-3.86400008202,-7.10599994659,-2.132999897,0.64200001955,1.75999999046,0.740000009537,2.31999993324,0.850000023842,0.680000007153,2.36999988556,2.489999890321,0.669999957085
+CaSe,0,20,34,4,4,-6.4279999733,-10.9460000992,0.303900003433,-2.75099992752,-3.86400008202,-6.65399980545,-2.132999897,1.31599998474,1.75999999046,0.800000011921,2.31999993324,0.949999988079,0.680000007153,2.18000006676,2.3299999237,0.709999918938
+CaTe,0,20,52,4,5,-6.4279999733,-9.86670017242,0.303900003433,-2.66599988937,-3.86400008202,-6.10900020599,-2.132999897,0.0989999994636,1.75999999046,0.939999997616,2.31999993324,1.13999998569,0.680000007153,1.83000004292,1.999999940394,0.759999930854
+CdO,0,48,8,5,2,-9.5813999176,-16.4332008362,0.838699996471,-3.00589990616,-5.95200014114,-9.19699954987,-1.30900001526,2.54099988937,1.23000001907,0.460000008345,1.74000000954,0.430000007153,2.59999990463,2.22000002861,2.080000013112,0.539999991662
+CdS,1,48,16,5,3,-9.5813999176,-11.7951002121,0.838699996471,-2.84489989281,-5.95200014114,-7.10599994659,-1.30900001526,0.64200001955,1.23000001907,0.740000009537,1.74000000954,0.850000023842,2.59999990463,2.36999988556,1.379999995231,0.620000004775
+CdSe,1,48,34,5,4,-9.5813999176,-10.9460000992,0.838699996471,-2.75099992752,-5.95200014114,-6.65399980545,-1.30900001526,1.31599998474,1.23000001907,0.800000011921,1.74000000954,0.949999988079,2.59999990463,2.18000006676,1.22000002861,0.659999966628
+CdTe,1,48,52,5,5,-9.5813999176,-9.86670017242,0.838699996471,-2.66599988937,-5.95200014114,-6.10900020599,-1.30900001526,0.0989999994636,1.23000001907,0.939999997616,1.74000000954,1.13999998569,2.59999990463,1.83000004292,0.890000045304,0.709999978544
+BrCs,0,55,35,6,4,-4.00619983673,-12.649600029,-0.569599986076,-3.73930001259,-2.22000002861,-8.00100040436,-0.547999978065,0.708000004292,2.46000003815,0.75,3.16000008583,0.879999995232,1.97000002861,1.87000000477,3.990000128748,0.830000042912
+ClCs,0,55,17,6,3,-4.00619983673,-13.9018001556,-0.569599986076,-3.97079992294,-2.22000002861,-8.69999980927,-0.547999978065,0.574000000954,2.46000003815,0.680000007153,3.16000008583,0.759999990463,1.97000002861,1.66999995708,4.180000126364,0.78000003099
+CsF,0,55,9,6,2,-4.00619983673,-19.4043006897,-0.569599986076,-4.27349996567,-2.22000002861,-11.2939996719,-0.547999978065,1.25100004673,2.46000003815,0.409999996424,3.16000008583,0.370000004768,1.97000002861,1.42999994755,4.840000122788,0.740000039336
+CsI,0,55,53,6,5,-4.00619983673,-11.2571001053,-0.569599986076,-3.5134999752,-2.22000002861,-7.23600006104,-0.547999978065,0.212999999523,2.46000003815,0.899999976158,3.16000008583,1.07000005245,1.97000002861,1.72000002861,3.650000095372,0.870000123972
+BrCu,1,29,35,4,4,-8.38879966736,-12.649600029,-1.6384999752,-3.73930001259,-4.85599994659,-8.00100040436,-0.64099997282,0.708000004292,1.20000004768,0.75,1.67999994755,0.879999995232,2.57999992371,1.87000000477,1.249999999998,0.609999895102
+ClCu,1,29,17,4,3,-8.38879966736,-13.9018001556,-1.6384999752,-3.97079992294,-4.85599994659,-8.69999980927,-0.64099997282,0.574000000954,1.20000004768,0.680000007153,1.67999994755,0.759999990463,2.57999992371,1.66999995708,1.439999997614,0.55999988318
+CuF,0,29,9,4,2,-8.38879966736,-19.4043006897,-1.6384999752,-4.27349996567,-4.85599994659,-11.2939996719,-0.64099997282,1.25100004673,1.20000004768,0.409999996424,1.67999994755,0.370000004768,2.57999992371,1.42999994755,2.099999994038,0.519999891526
+CuI,1,29,53,4,5,-8.38879966736,-11.2571001053,-1.6384999752,-3.5134999752,-4.85599994659,-7.23600006104,-0.64099997282,0.212999999523,1.20000004768,0.899999976158,1.67999994755,1.07000005245,2.57999992371,1.72000002861,0.909999966622,0.649999976162
+GaN,1,31,7,4,2,-5.81820011139,-13.5852003098,-0.108099997044,-1.86749994755,-2.73200011253,-7.2389998436,0.129999995232,3.0569999218,0.990000009537,0.540000021458,1.33000004292,0.509999990463,2.16000008583,1.53999996185,1.270000040536,0.370000064378
+GaP,1,31,15,4,3,-5.81820011139,-9.75059986115,-0.108099997044,-1.91999995708,-2.73200011253,-5.59600019455,0.129999995232,0.182999998331,0.990000009537,0.829999983311,1.33000004292,0.97000002861,2.16000008583,1.76999998093,0.520000040536,0.480000078682
+GaSb,1,31,51,4,5,-5.81820011139,-8.46829986572,-0.108099997044,-1.84669995308,-2.73200011253,-4.99100017548,0.129999995232,0.104999996722,0.990000009537,1,1.33000004292,1.23000001907,2.16000008583,2.05999994278,0.090000033387,0.570000052453
+Ge2,1,32,32,4,4,-7.56699991226,-7.56699991226,-0.949000000954,-0.949000000954,-4.04600000381,-4.04600000381,2.17499995232,2.17499995232,0.920000016689,0.920000016689,1.15999996662,1.15999996662,2.36999988556,2.36999988556,0,0.479999899862
+CGe,1,32,6,4,2,-7.56699991226,-10.8516998291,-0.949000000954,-0.87239998579,-4.04600000381,-5.41599988937,2.17499995232,1.99199998379,0.920000016689,0.639999985695,1.15999996662,0.629999995232,2.36999988556,1.62999999523,0.810000002382,0.249999940394
+GeSi,1,32,14,4,3,-7.56699991226,-7.75769996643,-0.949000000954,-0.992999970913,-4.04600000381,-4.16300010681,2.17499995232,0.439999997616,0.920000016689,0.939999997616,1.15999996662,1.12999999523,2.36999988556,1.88999998569,0.009999990463,0.429999947545
+AsIn,1,49,33,5,4,-5.53739976883,-9.26189994812,-0.256300002337,-1.83920001984,-2.6970000267,-5.34100008011,0.368000000715,0.0640000030398,1.12999999523,0.850000023842,1.5,1.03999996185,3.1099998951,2.01999998093,0.740000009538,0.559999942778
+InN,1,49,7,5,2,-5.53739976883,-13.5852003098,-0.256300002337,-1.86749994755,-2.6970000267,-7.2389998436,0.368000000715,3.0569999218,1.12999999523,0.540000021458,1.5,0.509999990463,3.1099998951,1.53999996185,1.579999983309,0.400000035765
+InP,1,49,15,5,3,-5.53739976883,-9.75059986115,-0.256300002337,-1.91999995708,-2.6970000267,-5.59600019455,0.368000000715,0.182999998331,1.12999999523,0.829999983311,1.5,0.97000002861,3.1099998951,1.76999998093,0.829999983309,0.510000050069
+InSb,1,49,51,5,5,-5.53739976883,-8.46829986572,-0.256300002337,-1.84669995308,-2.6970000267,-4.99100017548,0.368000000715,0.104999996722,1.12999999523,1,1.5,1.23000001907,3.1099998951,2.05999994278,0.39999997616,0.60000002384
+BrK,0,19,35,4,4,-4.43319988251,-12.649600029,-0.621299982071,-3.73930001259,-2.42600011826,-8.00100040436,-0.697000026703,0.708000004292,2.13000011444,0.75,2.44000005722,0.879999995232,1.78999996185,1.87000000477,2.940000176428,0.439999938012
+ClK,0,19,17,4,3,-4.43319988251,-13.9018001556,-0.621299982071,-3.97079992294,-2.42600011826,-8.69999980927,-0.697000026703,0.574000000954,2.13000011444,0.680000007153,2.44000005722,0.759999990463,1.78999996185,1.66999995708,3.130000174044,0.38999992609
+FK,0,19,9,4,2,-4.43319988251,-19.4043006897,-0.621299982071,-4.27349996567,-2.42600011826,-11.2939996719,-0.697000026703,1.25100004673,2.13000011444,0.409999996424,2.44000005722,0.370000004768,1.78999996185,1.42999994755,3.790000170468,0.349999934436
+IK,0,19,53,4,5,-4.43319988251,-11.2571001053,-0.621299982071,-3.5134999752,-2.42600011826,-7.23600006104,-0.697000026703,0.212999999523,2.13000011444,0.899999976158,2.44000005722,1.07000005245,1.78999996185,1.72000002861,2.600000143052,0.480000019072
+BrLi,0,3,35,2,4,-5.32910013199,-12.649600029,-0.698099970818,-3.73930001259,-2.87400007248,-8.00100040436,-0.977999985218,0.708000004292,1.64999997616,0.75,2,0.879999995232,6.92999982834,1.87000000477,2.019999980928,0.480000019072
+ClLi,0,3,17,2,3,-5.32910013199,-13.9018001556,-0.698099970818,-3.97079992294,-2.87400007248,-8.69999980927,-0.977999985218,0.574000000954,1.64999997616,0.680000007153,2,0.759999990463,6.92999982834,1.66999995708,2.209999978544,0.43000000715
+FLi,0,3,9,2,2,-5.32910013199,-19.4043006897,-0.698099970818,-4.27349996567,-2.87400007248,-11.2939996719,-0.977999985218,1.25100004673,1.64999997616,0.409999996424,2,0.370000004768,6.92999982834,1.42999994755,2.869999974968,0.390000015496
+ILi,0,3,53,2,5,-5.32910013199,-11.2571001053,-0.698099970818,-3.5134999752,-2.87400007248,-7.23600006104,-0.977999985218,0.212999999523,1.64999997616,0.899999976158,2,1.07000005245,6.92999982834,1.72000002861,1.679999947552,0.520000100132
+MgO,0,12,8,3,2,-8.03709983826,-16.4332008362,0.692499995232,-3.00589990616,-4.78200006485,-9.19699954987,-1.35800004005,2.54099988937,1.33000004292,0.460000008345,1.89999997616,0.430000007153,3.17000007629,2.22000002861,2.340000003582,0.599999934432
+MgS,0,12,16,3,3,-8.03709983826,-11.7951002121,0.692499995232,-2.84489989281,-4.78200006485,-7.10599994659,-1.35800004005,0.64200001955,1.33000004292,0.740000009537,1.89999997616,0.850000023842,3.17000007629,2.36999988556,1.639999985701,0.679999947545
+MgSe,0,12,34,3,4,-8.03709983826,-10.9460000992,0.692499995232,-2.75099992752,-4.78200006485,-6.65399980545,-1.35800004005,1.31599998474,1.33000004292,0.800000011921,1.89999997616,0.949999988079,3.17000007629,2.18000006676,1.48000001908,0.719999909398
+MgTe,0,12,52,3,5,-8.03709983826,-9.86670017242,0.692499995232,-2.66599988937,-4.78200006485,-6.10900020599,-1.35800004005,0.0989999994636,1.33000004292,0.939999997616,1.89999997616,1.13999998569,3.17000007629,1.83000004292,1.150000035774,0.769999921314
+BrNa,0,11,35,3,4,-5.22310018539,-12.649600029,-0.715699970722,-3.73930001259,-2.81900000572,-8.00100040436,-0.717999994755,0.708000004292,1.71000003815,0.75,2.59999990463,0.879999995232,6.57000017166,1.87000000477,2.679999947548,1.019999861712
+ClNa,0,11,17,3,3,-5.22310018539,-13.9018001556,-0.715699970722,-3.97079992294,-2.81900000572,-8.69999980927,-0.717999994755,0.574000000954,1.71000003815,0.680000007153,2.59999990463,0.759999990463,6.57000017166,1.66999995708,2.869999945164,0.96999984979
+FNa,0,11,9,3,2,-5.22310018539,-19.4043006897,-0.715699970722,-4.27349996567,-2.81900000572,-11.2939996719,-0.717999994755,1.25100004673,1.71000003815,0.409999996424,2.59999990463,0.370000004768,6.57000017166,1.42999994755,3.529999941588,0.929999858136
+INa,0,11,53,3,5,-5.22310018539,-11.2571001053,-0.715699970722,-3.5134999752,-2.81900000572,-7.23600006104,-0.717999994755,0.212999999523,1.71000003815,0.899999976158,2.59999990463,1.07000005245,6.57000017166,1.72000002861,2.339999914172,1.059999942772
+BrRb,0,37,35,5,4,-4.28889989853,-12.649600029,-0.590399980545,-3.73930001259,-2.3599998951,-8.00100040436,-0.704999983311,0.708000004292,2.24000000954,0.75,3.20000004768,0.879999995232,1.96000003815,1.87000000477,3.810000061988,1.090000033372
+ClRb,0,37,17,5,3,-4.28889989853,-13.9018001556,-0.590399980545,-3.97079992294,-2.3599998951,-8.69999980927,-0.704999983311,0.574000000954,2.24000000954,0.680000007153,3.20000004768,0.759999990463,1.96000003815,1.66999995708,4.000000059604,1.04000002145
+FRb,0,37,9,5,2,-4.28889989853,-19.4043006897,-0.590399980545,-4.27349996567,-2.3599998951,-11.2939996719,-0.704999983311,1.25100004673,2.24000000954,0.409999996424,3.20000004768,0.370000004768,1.96000003815,1.42999994755,4.660000056028,1.000000029796
+IRb,0,37,53,5,5,-4.28889989853,-11.2571001053,-0.590399980545,-3.5134999752,-2.3599998951,-7.23600006104,-0.704999983311,0.212999999523,2.24000000954,0.899999976158,3.20000004768,1.07000005245,1.96000003815,1.72000002861,3.470000028612,1.130000114432
+Si2,1,14,14,3,3,-7.75769996643,-7.75769996643,-0.992999970913,-0.992999970913,-4.16300010681,-4.16300010681,0.439999997616,0.439999997616,0.939999997616,0.939999997616,1.12999999523,1.12999999523,1.88999998569,1.88999998569,0,0.379999995228
+CSi,1,14,6,3,2,-7.75769996643,-10.8516998291,-0.992999970913,-0.87239998579,-4.16300010681,-5.41599988937,0.439999997616,1.99199998379,0.939999997616,0.639999985695,1.12999999523,0.629999995232,1.88999998569,1.62999999523,0.800000011919,0.199999988077
+Sn2,1,50,50,5,5,-7.04279994965,-7.04279994965,-1.03919994831,-1.03919994831,-3.86599993706,-3.86599993706,0.00800000037998,0.00800000037998,1.05999994278,1.05999994278,1.34000003338,1.34000003338,2.02999997139,2.02999997139,0,0.5600001812
+CSn,1,50,6,5,2,-7.04279994965,-10.8516998291,-1.03919994831,-0.87239998579,-3.86599993706,-5.41599988937,0.00800000037998,1.99199998379,1.05999994278,0.639999985695,1.34000003338,0.629999995232,2.02999997139,1.62999999523,1.129999995233,0.290000081063
+GeSn,1,50,32,5,4,-7.04279994965,-7.56699991226,-1.03919994831,-0.949000000954,-3.86599993706,-4.04600000381,0.00800000037998,2.17499995232,1.05999994278,0.920000016689,1.34000003338,1.15999996662,2.02999997139,2.36999988556,0.319999992851,0.520000040531
+SiSn,1,50,14,5,3,-7.04279994965,-7.75769996643,-1.03919994831,-0.992999970913,-3.86599993706,-4.16300010681,0.00800000037998,0.439999997616,1.05999994278,0.939999997616,1.34000003338,1.12999999523,2.02999997139,1.88999998569,0.329999983314,0.470000088214
+OSr,0,38,8,5,2,-6.03159999847,-16.4332008362,0.343100011349,-3.00589990616,-3.64100003242,-9.19699954987,-1.3789999485,2.54099988937,1.90999996662,0.460000008345,2.54999995232,0.430000007153,1.20000004768,2.22000002861,3.569999903442,0.669999986892
+SSr,0,38,16,5,3,-6.03159999847,-11.7951002121,0.343100011349,-2.84489989281,-3.64100003242,-7.10599994659,-1.3789999485,0.64200001955,1.90999996662,0.740000009537,2.54999995232,0.850000023842,1.20000004768,2.36999988556,2.869999885561,0.750000000005
+SeSr,0,38,34,5,4,-6.03159999847,-10.9460000992,0.343100011349,-2.75099992752,-3.64100003242,-6.65399980545,-1.3789999485,1.31599998474,1.90999996662,0.800000011921,2.54999995232,0.949999988079,1.20000004768,2.18000006676,2.70999991894,0.789999961858
+SrTe,0,38,52,5,5,-6.03159999847,-9.86670017242,0.343100011349,-2.66599988937,-3.64100003242,-6.10900020599,-1.3789999485,0.0989999994636,1.90999996662,0.939999997616,2.54999995232,1.13999998569,1.20000004768,1.83000004292,2.379999935634,0.839999973773999
+OZn,1,30,8,4,2,-10.1354999542,-16.4332008362,1.08070003986,-3.00589990616,-6.21700000763,-9.19699954987,-1.19400000572,2.54099988937,1.10000002384,0.460000008345,1.54999995232,0.430000007153,2.25,2.22000002861,1.759999960662,0.479999929672
+SZn,1,30,16,4,3,-10.1354999542,-11.7951002121,1.08070003986,-2.84489989281,-6.21700000763,-7.10599994659,-1.19400000572,0.64200001955,1.10000002384,0.740000009537,1.54999995232,0.850000023842,2.25,2.36999988556,1.059999942781,0.559999942785
+SeZn,1,30,34,4,4,-10.1354999542,-10.9460000992,1.08070003986,-2.75099992752,-6.21700000763,-6.65399980545,-1.19400000572,1.31599998474,1.10000002384,0.800000011921,1.54999995232,0.949999988079,2.25,2.18000006676,0.89999997616,0.599999904638
+TeZn,1,30,52,4,5,-10.1354999542,-9.86670017242,1.08070003986,-2.66599988937,-6.21700000763,-6.10900020599,-1.19400000572,0.0989999994636,1.10000002384,0.939999997616,1.54999995232,1.13999998569,2.25,1.83000004292,0.569999992854,0.649999916554
diff --git a/docs/tutorial/classification/sisso.json b/docs/tutorial/classification/sisso.json
index be0bd599a440548ccb5668b923239ffd31f58cc9..d7bba5e1bf5cb8271e32a4cfa9ae4854d91c92e6 100644
--- a/docs/tutorial/classification/sisso.json
+++ b/docs/tutorial/classification/sisso.json
@@ -1,5 +1,5 @@
 {
-    "data_file": "data.csv",
+    "data_file": "data_class.csv",
     "property_key": "Class",
     "desc_dim": 2,
     "n_sis_select": 20,
diff --git a/docs/tutorial/classification/sissopp.png b/docs/tutorial/classification/sissopp.png
index 2cacf0e1018fad349ddab4c235930940cfc2f9ba..f9dad995091882e80b55fba1cd8580a4a189e284 100644
Binary files a/docs/tutorial/classification/sissopp.png and b/docs/tutorial/classification/sissopp.png differ
diff --git a/joss/paper.bib b/joss/paper.bib
new file mode 100644
index 0000000000000000000000000000000000000000..5c8f3cbd620b70c379a76c9fcceb281a136d1caa
--- /dev/null
+++ b/joss/paper.bib
@@ -0,0 +1,264 @@
+Automatically generated by Mendeley Desktop 1.19.8
+Any changes to this file will be lost if it is regenerated by Mendeley.
+
+BibTeX export options can be customized via Options -> BibTeX in Mendeley Desktop
+
+@misc{Xu,
+author = {Xu, Chuanqi},
+title = {{chuanqixu/SISSOkit: Modules for cross validation, evaluation and plot of SISSO}},
+url = {https://github.com/chuanqixu/SISSOkit},
+urldate = {2021-09-15}
+}
+@misc{Waroquiers,
+author = {Waroquiers, David},
+title = {{Matgenix/pysisso: Python interface to the SISSO (Sure Independence Screening and Sparsifying Operator) method.}},
+url = {https://github.com/Matgenix/pysisso},
+urldate = {2021-09-15}
+}
+@misc{Ouyang,
+author = {Ouyang, Runhai},
+title = {{GitHub - rouyang2017/SISSO: A data-driven method combining symbolic regression and compressed sensing toward accurate {\&} interpretable models}},
+url = {https://github.com/rouyang2017/SISSO},
+urldate = {2021-09-02}
+}
+@article{Ouyang2019a,
+abstract = {The identification of descriptors of materials properties and functions that capture the underlying physical mechanisms is a critical goal in data-driven materials science. Only such descriptors will enable a trustful and efficient scanning of materials spaces and possibly the discovery of new materials. Recently, the sure-independence screening and sparsifying operator (SISSO) has been introduced and was successfully applied to a number of materials-science problems. SISSO is a compressed-sensing based methodology yielding predictive models that are expressed in form of analytical formulas, built from simple physical properties. These formulas are systematically selected from an immense number (billions or more) of candidates. In this work, we describe a powerful extension of the methodology to a 'multi-task learning' approach, which identifies a single descriptor capturing multiple target materials properties at the same time. This approach is specifically suited for a heterogeneous materials database with scarce or partial data, e.g., in which not all properties are reported for all materials in the training set. As showcase examples, we address the construction of materials-properties maps for the relative stability of octet-binary compounds, considering several crystal phases simultaneously, and the metal/insulator classification of binary materials distributed over many crystal-prototypes.},
+archivePrefix = {arXiv},
+arxivId = {1901.00948},
+author = {Ouyang, Runhai and Ahmetcik, Emre and Carbogno, Christian and Scheffler, Matthias and Ghiringhelli, Luca M.},
+doi = {10.1088/2515-7639/ab077b},
+eprint = {1901.00948},
+file = {:home/purcell/Documents/Mendeley Desktop/Ouyang et al. - Journal of Physics Materials - 2019.pdf:pdf},
+issn = {2515-7639},
+journal = {J. Phys. Mater.},
+keywords = {artificial intelligence,compressed sensing,crystal structure prediction,metal/nonmetal classification},
+month = {mar},
+number = {2},
+pages = {024002},
+publisher = {arXiv},
+title = {{Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO}},
+url = {https://doi.org/10.1088/2515-7639/ab077b https://iopscience.iop.org/article/10.1088/2515-7639/ab077b},
+volume = {2},
+year = {2019}
+}
+@article{Ouyang2017,
+abstract = {The lack of reliable methods for identifying descriptors - the sets of parameters capturing the underlying mechanisms of a materials property - is one of the key factors hindering efficient materials development. Here, we propose a systematic approach for discovering descriptors for materials properties, within the framework of compressed-sensing based dimensionality reduction. SISSO (sure independence screening and sparsifying operator) tackles immense and correlated features spaces, and converges to the optimal solution from a combination of features relevant to the materials' property of interest. In addition, SISSO gives stable results also with small training sets. The methodology is benchmarked with the quantitative prediction of the ground-state enthalpies of octet binary materials (using ab initio data) and applied to the showcase example of predicting the metal/insulator classification of binaries (with experimental data). Accurate, predictive models are found in both cases. For the metal-insulator classification model, the predictive capability are tested beyond the training data: It rediscovers the available pressure-induced insulator-{\textgreater}metal transitions and it allows for the prediction of yet unknown transition candidates, ripe for experimental validation. As a step forward with respect to previous model-identification methods, SISSO can become an effective tool for automatic materials development.},
+archivePrefix = {arXiv},
+arxivId = {1710.03319},
+author = {Ouyang, Runhai and Curtarolo, Stefano and Ahmetcik, Emre and Scheffler, Matthias and Ghiringhelli, Luca M},
+doi = {10.1103/PhysRevMaterials.2.083802},
+eprint = {1710.03319},
+file = {:home/purcell/Documents/Mendeley Desktop/Ouyang et al. - Physical Review Materials - 2018.pdf:pdf},
+issn = {2475-9953},
+journal = {Phys. Rev. Mater.},
+month = {aug},
+number = {8},
+pages = {083802},
+title = {{SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates}},
+url = {https://arxiv.org/pdf/1710.03319.pdf http://arxiv.org/abs/1710.03319 http://dx.doi.org/10.1103/PhysRevMaterials.2.083802 https://link.aps.org/doi/10.1103/PhysRevMaterials.2.083802},
+volume = {2},
+year = {2018}
+}
+@article{Wang2019a,
+abstract = {The authors showcase the potential of symbolic regression as an analytic method for use in materials research. First, the authors briefly describe the current state-of-the-art method, genetic programming-based symbolic regression (GPSR), and recent advances in symbolic regression techniques. Next, the authors discuss industrial applications of symbolic regression and its potential applications in materials science. The authors then present two GPSR use-cases: formulating a transformation kinetics law and showing the learning scheme discovers the well-known Johnson-Mehl-Avrami-Kolmogorov form, and learning the Landau free energy functional form for the displacive tilt transition in perovskite LaNiO3. Finally, the authors propose that symbolic regression techniques should be considered by materials scientists as an alternative to other machine learning-based regression models for learning from data.},
+archivePrefix = {arXiv},
+arxivId = {1901.04136},
+author = {Wang, Yiqun and Wagner, Nicholas and Rondinelli, James M.},
+doi = {10.1557/mrc.2019.85},
+eprint = {1901.04136},
+issn = {21596867},
+journal = {MRS Commun.},
+month = {sep},
+number = {3},
+pages = {793--805},
+publisher = {Cambridge University Press},
+title = {{Symbolic regression in materials science}},
+url = {https://www.cambridge.org/core/journals/mrs-communications/article/symbolic-regression-in-materials-science/A5836F4AF5E9395A9B27541C5042A7F3},
+volume = {9},
+year = {2019}
+}
+@article{Neumann2020,
+abstract = {A modification to the mixed-integer nonlinear programming (MINLP) formulation for symbolic regression was proposed with the aim of identification of physical models from noisy experimental data. In the proposed formulation, a binary tree in which equations are represented as directed, acyclic graphs, is fully constructed for a pre-defined number of layers. The introduced modification results in the reduction in the number of required binary variables and removal of redundancy due to possible symmetry of the tree formulation. The formulation was tested using numerical models and was found to be more efficient than the previous literature example with respect to the numbers of predictor variables and training data points. The globally optimal search was extended to identify physical models and to cope with noise in the experimental data predictor variable. The methodology was proven to be successful in identifying the correct physical models describing the relationship between shear stress and shear rate for both Newtonian and non-Newtonian fluids, and simple kinetic laws of chemical reactions. Future work will focus on addressing the limitations of the present formulation and solver to enable extension of target problems to larger, more complex physical models.},
+author = {Neumann, Pascal and Cao, Liwei and Russo, Danilo and Vassiliadis, Vassilios S. and Lapkin, Alexei A.},
+doi = {10.1016/j.cej.2019.123412},
+issn = {13858947},
+journal = {Chem. Eng. J.},
+keywords = {Automated model construction,Chemical process development,Global optimization,Mixed-integer nonlinear programming (MINLP),Model identification,Symbolic regression},
+month = {may},
+pages = {123412},
+publisher = {Elsevier},
+title = {{A new formulation for symbolic regression to identify physico-chemical laws from experimental data}},
+volume = {387},
+year = {2020}
+}
+
+@article{Udrescu2020a,
+abstract = {A core challenge for both physics and artificial intelligence (AI) is symbolic regression: Finding a symbolic expression that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network fitting with a suite of physics-inspired techniques. We apply it to 100 equations from the Feynman Lectures on Physics, and it discovers all of them, while previous publicly available software cracks only 71; for a more difficult physics-based test set, we improve the state-of-the-art success rate from 15 to 90{\%}.},
+archivePrefix = {arXiv},
+arxivId = {1905.11481},
+author = {Udrescu, Silviu Marian and Tegmark, Max},
+doi = {10.1126/sciadv.aay2631},
+eprint = {1905.11481},
+file = {:home/purcell/Documents/Mendeley Desktop/Udrescu, Tegmark - Science Advances - 2020(3).pdf:pdf},
+issn = {23752548},
+journal = {Sci. Adv.},
+month = {apr},
+number = {16},
+pmid = {32426452},
+publisher = {American Association for the Advancement of Science},
+title = {{AI Feynman: A physics-inspired method for symbolic regression}},
+volume = {6},
+year = {2020}
+}
+@article{Bartel2018a,
+abstract = {The Gibbs energy, G, determines the equilibrium conditions of chemical reactions and materials stability. Despite this fundamental and ubiquitous role, G has been tabulated for only a small fraction of known inorganic compounds, impeding a comprehensive perspective on the effects of temperature and composition on materials stability and synthesizability. Here, we use the SISSO (sure independence screening and sparsifying operator) approach to identify a simple and accurate descriptor to predict G for stoichiometric inorganic compounds with {\~{}}50 meV atom−1 ({\~{}}1 kcal mol−1) resolution, and with minimal computational cost, for temperatures ranging from 300–1800 K. We then apply this descriptor to {\~{}}30,000 known materials curated from the Inorganic Crystal Structure Database (ICSD). Using the resulting predicted thermochemical data, we generate thousands of temperature-dependent phase diagrams to provide insights into the effects of temperature and composition on materials synthesizability and stability and to establish the temperature-dependent scale of metastability for inorganic compounds.},
+archivePrefix = {arXiv},
+arxivId = {1805.08155},
+author = {Bartel, Christopher J. and Millican, Samantha L. and Deml, Ann M. and Rumptz, John R. and Tumas, William and Weimer, Alan W. and Lany, Stephan and Stevanovi{\'{c}}, Vladan and Musgrave, Charles B. and Holder, Aaron M.},
+doi = {10.1038/s41467-018-06682-4},
+eprint = {1805.08155},
+file = {:home/purcell/Documents/Mendeley Desktop/Bartel et al. - Nature Communications - 2018.pdf:pdf},
+issn = {20411723},
+journal = {Nat. Commun.},
+keywords = {Statistics,Theory and computation},
+month = {oct},
+number = {1},
+pages = {1--10},
+pmid = {30301890},
+publisher = {Nature Publishing Group},
+title = {{Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry}},
+url = {https://www.nature.com/articles/s41467-018-06682-4},
+volume = {9},
+year = {2018}
+}
+@article{Schleder2020,
+abstract = {The increasing interest and research on two-dimensional (2D) materials has not yet translated into a reality of diverse materials applications. To go beyond graphene and transition metal dichalcogenides for several applications, suitable candidates with desirable properties must be proposed. Here we use machine learning techniques to identify thermodynamically stable 2D materials, which is the first essential requirement for any application. According to the formation energy and energy above the convex hull, we classify materials as having low, medium, or high stability. The proposed approach enables the stability evaluation of novel 2D compounds for further detailed investigation of promising candidates, using only composition properties and structural symmetry, without the need for information about atomic positions. We demonstrate the usefulness of the model generating more than a thousand novel compounds, corroborating with DFT calculations the classification for five of these materials. To illustrate the applicability of the stable materials, we then perform a screening of electronic materials suitable for photoelectrocatalytic water splitting, identifying the potential candidate Sn2SeTe generated by our model, and also PbTe, both not yet reported for this application.},
+author = {Schleder, Gabriel R. and Acosta, Carlos Mera and Fazzio, Adalberto},
+doi = {10.1021/acsami.9b14530},
+issn = {19448252},
+journal = {ACS Appl. Mater. Interfaces},
+keywords = {big data,density functional theory (DFT),high throughput screening,machine learning,two-dimensional materials},
+month = {may},
+number = {18},
+pages = {20149--20157},
+pmid = {31692336},
+publisher = {American Chemical Society},
+title = {{Exploring Two-Dimensional Materials Thermodynamic Stability via Machine Learning}},
+url = {https://pubs.acs.org/doi/full/10.1021/acsami.9b14530},
+volume = {12},
+year = {2020}
+}
+@article{Han2021,
+abstract = {Single-atom-alloy catalysts (SAACs) have recently become a frontier in catalysis research. Simultaneous optimization of reactants' facile dissociation and a balanced strength of intermediates' binding make them highly efficient catalysts for several industrially important reactions. However, discovery of new SAACs is hindered by lack of fast yet reliable prediction of catalytic properties of the large number of candidates. We address this problem by applying a compressed-sensing data-analytics approach parameterized with density-functional inputs. Besides consistently predicting efficiency of the experimentally studied SAACs, we identify more than 200 yet unreported promising candidates. Some of these candidates are more stable and efficient than the reported ones. We have also introduced a novel approach to a qualitative analysis of complex symbolic regression models based on the data-mining method subgroup discovery. Our study demonstrates the importance of data analytics for avoiding bias in catalysis design, and provides a recipe for finding best SAACs for various applications.},
+author = {Han, Zhong Kang and Sarker, Debalaya and Ouyang, Runhai and Mazheika, Aliaksei and Gao, Yi and Levchenko, Sergey V.},
+doi = {10.1038/s41467-021-22048-9},
+file = {:home/purcell/Documents/Mendeley Desktop/Han et al. - Nature Communications - 2021.pdf:pdf},
+issn = {20411723},
+journal = {Nat. Commun.},
+keywords = {Computational chemistry,Materials for energy and catalysis,Theory and computation},
+month = {mar},
+number = {1},
+pages = {1--9},
+pmid = {33758170},
+publisher = {Nature Publishing Group},
+title = {{Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence}},
+url = {https://www.nature.com/articles/s41467-021-22048-9},
+volume = {12},
+year = {2021}
+}
+@article{Andersen2021,
+abstract = {ConspectusHeterogeneous catalysts are rather complex materials that come in many classes (e.g., metals, oxides, carbides) and shapes. At the same time, the interaction of the catalyst surface with even a relatively simple gas-phase environment such as syngas (CO and H2) may already produce a wide variety of reaction intermediates ranging from atoms to complex molecules. The starting point for creating predictive maps of, e.g., surface coverages or chemical activities of potential catalyst materials is the reliable prediction of adsorption enthalpies of all of these intermediates. For simple systems, direct density functional theory (DFT) calculations are currently the method of choice. However, a wider exploration of complex materials and reaction networks generally requires enthalpy predictions at lower computational cost.The use of machine learning (ML) and related techniques to make accurate and low-cost predictions of quantum-mechanical calculations has gained increasing attention lately. The employed approaches span from physically motivated models over hybrid physics-$\Delta$ML approaches to complete black-box methods such as deep neural networks. In recent works we have explored the possibilities for using a compressed sensing method (Sure Independence Screening and Sparsifying Operator, SISSO) to identify sparse (low-dimensional) descriptors for the prediction of adsorption enthalpies at various active-site motifs of metals and oxides. We start from a set of physically motivated primary features such as atomic acid/base properties, coordination numbers, or band moments and let the data and the compressed sensing method find the best algebraic combination of these features. Here we take this work as a starting point to categorize and compare recent ML-based approaches with a particular focus on model sparsity, data efficiency, and the level of physical insight that one can obtain from the model.Looking ahead, while many works to date have focused only on the mere prediction of databases of, e.g., adsorption enthalpies, there is also an emerging interest in our field to start using ML predictions to answer fundamental science questions about the functioning of heterogeneous catalysts or perhaps even to design better catalysts than we know today. This task is significantly simplified in works that make use of scaling-relation-based models (volcano curves), where the model outcome is determined by only one or two adsorption enthalpies and which consequently become the sole target for ML-based high-throughput screening or design. However, the availability of cheap ML energetics also allows going beyond scaling relations. On the basis of our own work in this direction, we will discuss the additional physical insight that can be achieved by integrating ML-based predictions with traditional catalysis modeling techniques from thermal and electrocatalysis, such as the computational hydrogen electrode and microkinetic modeling, as well as the challenges that lie ahead.},
+author = {Andersen, Mie and Reuter, Karsten},
+doi = {10.1021/acs.accounts.1c00153},
+file = {:home/purcell/Documents/Mendeley Desktop/Andersen, Reuter - Accounts of Chemical Research - 2021.pdf:pdf},
+issn = {0001-4842},
+journal = {Acc. Chem. Res.},
+month = {jun},
+number = {12},
+pages = {2741--2749},
+pmid = {34080415},
+publisher = {American Chemical Society},
+title = {{Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors}},
+url = {https://pubs.acs.org/doi/abs/10.1021/acs.accounts.1c00153},
+volume = {54},
+year = {2021}
+}
+@article{Xu2020,
+abstract = {Computational screening of metal oxide catalysts is challenging due to their more localized and intricate electronic structure as compared to metal catalysts and the resulting lack of suitable activity descriptors to replace expensive density functional theory (DFT) calculations. By using a compressed sensing approach, we here identify descriptors in the form of algebraic expressions of surface-derived features for predicting adsorption enthalpies of oxygen evolution reaction (OER) intermediates at doped RuO2 and IrO2 electrocatalysts. Our descriptors significantly outperform previously highlighted single descriptors both in terms of accuracy and computational cost. Compared to standard scaling relations that employ the oxygen adsorption enthalpy as a unique reactivity descriptor, our analysis reveals that the consideration of features related to the local charge transfer leads to significantly improved refined scaling relations. These allow us to screen for improved OER electrocatalysts with an uncertainty in the theoretical overpotential similar to the expected intrinsic DFT error of 0.2 V.},
+author = {Xu, Wenbin and Andersen, Mie and Reuter, Karsten},
+doi = {10.1021/acscatal.0c04170},
+file = {:home/purcell/Documents/Mendeley Desktop/Xu, Andersen, Reuter - ACS Catalysis - 2021.pdf:pdf},
+issn = {21555435},
+journal = {ACS Catal.},
+keywords = {ab initio calculation,compressed sensing,computational screening,heterogeneous catalysis,machine learning,oxygen evolution reaction,transition metal oxides},
+month = {jan},
+number = {2},
+pages = {734--742},
+publisher = {American Chemical Society},
+title = {{Data-Driven Descriptor Engineering and Refined Scaling Relations for Predicting Transition Metal Oxide Reactivity}},
+url = {https://pubs.acs.org/doi/full/10.1021/acscatal.0c04170},
+volume = {11},
+year = {2021}
+}
+@article{Pilania2019,
+abstract = {Polyhydroxyalkanoate-based polymers - being ecofriendly, biosynthesizable, and economically viable and possessing a broad range of tunable properties - are currently being actively pursued as promising alternatives for petroleum-based plastics. The vast chemical complexity accessible within this class of polymers gives rise to challenges in the rational discovery of novel polymer chemistries for specific applications. The burgeoning field of polymer informatics addresses this challenge via providing tools and strategies for accelerated property prediction and materials design via surrogate machine-learning models built on reliable past data. In this contribution, we use glass transition temperature Tg as an example target property to demonstrate promise of the data-enabled route to accelerated learning of accurate structure-property mappings in PHA-based polymers. Our analysis uses a data set of experimentally measured Tg values, polymer molecular weights, and a polydispersity index for PHA-based homo- and copolymers that was carefully assembled from the literature. A fingerprinting scheme that captures key properties based on topology, shape, and charge/polarity of specific chemical units or motifs forming the polymer backbone was devised to numerically represent the polymers. A validated statistical learning model is then developed to allow for a mapping of the polymer fingerprints onto the property space in a physically meaningful and reliable manner. Once developed, the model can not only rapidly predict the property of new PHA polymers but also provide uncertainties underlying the predictions. The model is further combined with an evolutionary-algorithm-based search strategy to efficiently identify multicomponent polymer compositions with a prespecified Tg. While the present contribution is focused specifically on Tg, the surrogate model development approach put forward here is general and can, in principle, be extended to a range of other properties.},
+author = {Pilania, Ghanshyam and Iverson, Carl N. and Lookman, Turab and Marrone, Babetta L.},
+doi = {10.1021/acs.jcim.9b00807},
+file = {:home/purcell/Documents/Mendeley Desktop/Pilania et al. - Journal of Chemical Information and Modeling - 2019.pdf:pdf},
+issn = {15205142},
+journal = {J. Chem. Inf. Model.},
+month = {dec},
+number = {12},
+pages = {5013--5025},
+pmid = {31697891},
+publisher = {American Chemical Society},
+title = {{Machine-Learning-Based Predictive Modeling of Glass Transition Temperatures: A Case of Polyhydroxyalkanoate Homopolymers and Copolymers}},
+url = {https://pubs.acs.org/doi/full/10.1021/acs.jcim.9b00807},
+volume = {59},
+year = {2019}
+}
+@article{Bartel2019a,
+abstract = {Predicting the stability of the perovskite structure remains a long-standing challenge for the discovery of new functional materials for many applications including photovoltaics and electrocatalysts. We developed an accurate, physically interpretable, and one-dimensional tolerance factor, t, that correctly predicts 92{\%} of compounds as perovskite or nonperovskite for an experimental dataset of 576 ABX 3 materials (X = O 2− , F − , Cl − , Br − , I − ) using a novel data analytics approach based on SISSO (sure independence screening and sparsifying operator). t is shown to generalize outside the training set for 1034 experimentally realized single and double perovskites (91{\%} accuracy) and is applied to identify 23,314 new double perovskites (A 2 BB′X 6 ) ranked by their probability of being stable as perovskite. This work guides experimentalists and theorists toward which perovskites are most likely to be successfully synthesized and demonstrates an approach to descriptor identification that can be extended to arbitrary applications beyond perovskite stability predictions.},
+archivePrefix = {arXiv},
+arxivId = {1801.07700},
+author = {Bartel, Christopher J. and Sutton, Christopher and Goldsmith, Bryan R. and Ouyang, Runhai and Musgrave, Charles B. and Ghiringhelli, Luca M. and Scheffler, Matthias},
+doi = {10.1126/sciadv.aav0693},
+eprint = {1801.07700},
+issn = {23752548},
+journal = {Sci. Adv.},
+month = {feb},
+number = {2},
+pmid = {30783625},
+publisher = {American Association for the Advancement of Science},
+title = {{New tolerance factor to predict the stability of perovskite oxides and halides}},
+volume = {5},
+year = {2019}
+}
+@article{Cao2020,
+abstract = {Significant advances have been made in predicting new topological materials using high-throughput empirical descriptors or symmetry-based indicators. To date, these approaches have been applied to materials in existing databases, and are severely limited to systems with well-defined symmetries, leaving a much larger materials space unexplored. Using tetradymites as a prototypical class of examples, we uncover a two-dimensional descriptor by applying an artificial intelligence (AI)-based approach for fast and reliable identification of the topological characters of a drastically expanded range of materials, without prior determination of their specific symmetries and detailed band structures. By leveraging this descriptor that contains only the atomic number and electronegativity of the constituent species, we have readily scanned a huge number of alloys in the tetradymite family. Strikingly, nearly half of them are identified to be topological insulators, revealing a much larger territory of the topological materials world. The present work also attests to the increasingly important role of such AI-based approaches in modern materials discovery.},
+author = {Cao, Guohua and Ouyang, Runhai and Ghiringhelli, Luca M. and Scheffler, Matthias and Liu, Huijun and Carbogno, Christian and Zhang, Zhenyu},
+doi = {10.1103/PhysRevMaterials.4.034204},
+file = {:home/purcell/Documents/Mendeley Desktop/Cao et al. - Physical Review Materials - 2020.pdf:pdf},
+issn = {24759953},
+journal = {Phys. Rev. Mater.},
+keywords = {doi:10.1103/PhysRevMaterials.4.034204 url:https://},
+month = {mar},
+number = {3},
+pages = {034204},
+publisher = {American Physical Society},
+title = {{Artificial intelligence for high-throughput discovery of topological insulators: The example of alloyed tetradymites}},
+url = {https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.4.034204},
+volume = {4},
+year = {2020}
+}
+@article{scikit-learn,
+ title={Scikit-learn: Machine Learning in {P}ython},
+ author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
+         and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
+         and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
+         Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
+ journal={Journal of Machine Learning Research},
+ volume={12},
+ pages={2825--2830},
+ year={2011}
+}
diff --git a/joss/paper.md b/joss/paper.md
new file mode 100644
index 0000000000000000000000000000000000000000..cbb03013ecdc4e6a8c1d10d3b008f28d72b2f4b6
--- /dev/null
+++ b/joss/paper.md
@@ -0,0 +1,74 @@
+---
+title: 'SISSO++: A C++ Implementation of the Sure Independence Screening and Sparisifying Operator'
+tags:
+  - SISSO
+  - Symbolic Regression
+  - Physics
+  - C++
+  - Python
+authors:
+  - name: Thomas A. R. Purcell
+    orcid: 0000-0003-4564-7206
+    affiliation: 1
+  - name: Matthias Scheffler
+    affiliation: 1
+  - name: Christian Carbogno
+    orcid: 0000-0003-0635-8364
+    affiliation: 1
+  - name: Luca M. Ghiringhelli
+    orcid: 0000-0001-5099-3029
+    affiliation: 1
+affiliations:
+ - name: NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society and Humboldt University, Berlin, Germany
+   index: 1
+date: September 2021
+bibliography: paper.bib
+---
+
+# Summary
+The sure-independence screening and sparsifying operator (SISSO) method [@Ouyang2017] is an algorithm belonging to the field of artificial intelligence and more specifically supervised machine learning.
+As a symbolic-regression technique, SISSO is used to identify low-dimensional, analytic functions, the so called descriptors, that best predict the labels of a target data set.
+SISSO is introduced for both regression and classification tasks.
+In practice, SISSO first constructs a large and exhaustive feature space of trillions of potential descriptors by taking in a set of user-provided *primary features*, and then iteratively applying a set of unary and binary operators, e.g., addition, multiplication, exponentiation, and squaring.
+From this exhaustive pool of candidate descriptors, the best ones are identified via sure-independence screening, from which the best low-dimensional linear models are found via an $\ell_0$ regularization.
+
+Because symbolic regression generates an interpretable equation, it has become an increasingly popular method across scientific disciplines [@Wang2019a], [@Neumann2020], [@Udrescu2020a].
+A particular advantage of these approaches are their capability to model complex phenomena using relatively simple descriptors.
+Because of this, SISSO has been used successfully in the past to model, explore, and predict important material properties, including: the stability of different phases [@Bartel2018a], [@Schleder2020], the catalytic activity and reactivity [@Han2021], [@Xu2020], [@Andersen2021], and glass transition temperatures [@Pilania2019].
+Beyond regression problems, SISSO has also been used successfully to classify materials into different crystal prototypes [@Ouyang2019a], or whether a material crystallizes in its ground state as a perovskite [@Bartel2019a], or to determine if a material is a topological insulator or not [@Cao2020].
+
+The SISSO++ package is a modular and extensible C++ implementation of the SISSO method with python bindings.
+Specifically, SISSO++ applies this methodology for regression, log regression, and classification problems.
+Additionally the library include multiple python functions to facilitate the post-processing, analyzing, and visualizing the resulting models.
+
+# Statement of need
+The main goal of the SISSO++ package is to provide a user-friendly, easily extendable version of the SISSO method for the scientific community.
+The code can be used both on high-performance architectures for data production and on personal computing devices for analyzing and visualizing the results.
+For this reason, all computational-intensive task are written in C++ and support parallelization via MPI and openMP.
+Additionally, the Python bindings allow one to easily incorporate the methods into computational workflows and postprocess results.
+Furthermore, this can facilitate the future integration of SISSO into existing machine-learning frameworks, e.g. scikit-learn [@scikit-learn]
+The code is designed in a modular fashion, which simplifies the process of extending the code for other applications.
+Finally the project's extensive documentation and tutorials provide a good access point for new-users of the method.
+
+# Features
+The following features are implemented in SISSO++:
+
+  - A C++ library for using SISSO to find analytical models for a given problem
+
+  - Python bindings to be able to interface with the C++ objects in a Python environment
+
+  - Postprocessing tools for visualizing models and analyzing results using Matplotlib
+
+  - Access to solve an *n*-dimensional classification model using a combination of calculating the convex-hull overlap and a linear-SVM solver
+
+  - Features with better defined non-linearaities of the models by automatically optimizing the scale and bias terms to all operations using non-linear optimization
+
+  - Complete API defining all functions of the code
+
+  - Tutorials and Quick-Start Guides describing the basic functionality of the code to users
+
+
+# Acknowledgements
+The authors would like to thank Markus Rampp and Meisam Tabriz of the MPCDF for technical support. We would also like to thank Lucas Foppa, Jingkai Quan, Aakash Naik, and Luigi Sbailò for testing and providing valuable feedback. T.P. would like to thank the Alexander von Humboldt Foundation for their support through the Alexander von Humboldt Postdoctoral Fellowship Program. This project was supported by TEC1p (the European Research Council (ERC) Horizon 2020 research and innovation programme, grant agreement No. 740233), BiGmax (the Max Planck Society’s Research Network on Big-Data-Driven Materials-Science), and the NOMAD pillar of the FAIR-DI e.V. association.
+
+# References
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
index fe0a33642609e3da3af624f391af0e63ea92516f..bd0ea6867e129fe737f7939925ffcba30e1554ac 100644
--- a/src/CMakeLists.txt
+++ b/src/CMakeLists.txt
@@ -35,6 +35,14 @@ set_target_properties(libsisso
 
 target_link_libraries(libsisso ${LAPACK_LIBRARIES} ${MPI_LIBRARIES} -Wl,--rpath=${Boost_LIB_DIR} -Wl,--rpath=${LAPACK_DIR} ${Boost_LIBRARIES} ${COIN_CLP_LIBRARIES} ${OPENMP_LIBRARIES} ${FMT_LIBRARIES})
 install(TARGETS libsisso DESTINATION ${CMAKE_INSTALL_PREFIX}/lib/)
+add_dependencies(libsisso external_fmt external_CoinUtils external_Clp)
+if(BUILD_PARAMS)
+    add_dependencies(libsisso external_nlopt)
+endif()
+
+if(NOT EXTERNAL_BOOST)
+    add_dependencies(libsisso external_boost)
+endif()
 
 add_executable(sisso++ ${CMAKE_CURRENT_LIST_DIR}/main.cpp)
 set_target_properties(sisso++
@@ -43,6 +51,7 @@ set_target_properties(sisso++
     LIBRARY_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/lib"
     RUNTIME_OUTPUT_DIRECTORY "${CMAKE_BINARY_DIR}/bin"
 )
+add_dependencies(sisso++ libsisso)
 
 target_link_libraries(sisso++ libsisso ${LAPACK_LIBRARIES} ${MPI_LIBRARIES} -Wl,--rpath=${Boost_LIB_DIR} -Wl,--rpath=${LAPACK_DIR} ${Boost_LIBRARIES} ${COIN_CLP_LIBRARIES} ${NLOPT_LIBRARIES} ${OPENMP_LIBRARIES} ${FMT_LIBRARIES})
 install(TARGETS sisso++ DESTINATION ${CMAKE_INSTALL_PREFIX}/bin/)
@@ -128,6 +137,7 @@ if(BUILD_PYTHON)
     # set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DPY_BINDINGS")
     add_library(_sisso SHARED ${SISSOLIB_SOURCES})
     configure_file(${CMAKE_CURRENT_SOURCE_DIR}/python/__init__.py ${CMAKE_CURRENT_LIST_DIR}/python/__init__.py COPYONLY)
+    add_dependencies(_sisso libsisso)
 
     set_target_properties(_sisso
         PROPERTIES
diff --git a/src/classification/ConvexHull1D.cpp b/src/classification/ConvexHull1D.cpp
index 67623e00dc6467fcf2c6f13d4a68813e2cce5746..32395b1632fcc69d9263cff0cb47646493086fbd 100644
--- a/src/classification/ConvexHull1D.cpp
+++ b/src/classification/ConvexHull1D.cpp
@@ -29,7 +29,8 @@ ConvexHull1D::ConvexHull1D() :
     _cls_start(),
     _cls_sz(),
     _n_task(0),
-    _n_class(0)
+    _n_class(0),
+    _exclude_cl_ind(-1)
 {}
 
 ConvexHull1D::ConvexHull1D(std::vector<int> task_sizes, const double* prop) :
@@ -40,7 +41,8 @@ ConvexHull1D::ConvexHull1D(std::vector<int> task_sizes, const double* prop) :
     _cls_start(),
     _cls_sz(),
     _n_task(task_sizes.size()),
-    _n_class(0)
+    _n_class(0),
+    _exclude_cl_ind(-1)
 {
     initialize_prop(task_sizes, prop);
 }
@@ -85,8 +87,12 @@ void ConvexHull1D::initialize_prop(std::vector<int> task_sizes, const double* pr
         cl_ind[unique_prop_vals[cc]] = cc;
     }
 
-    int start = 0;
+    if(cl_ind.count(-1.0) > 0)
+    {
+        _exclude_cl_ind = cl_ind[-1.0];
+    }
 
+    int start = 0;
     for(int tt = 0; tt < task_sizes.size(); ++tt)
     {
         util_funcs::argsort<double>(
@@ -105,6 +111,11 @@ void ConvexHull1D::initialize_prop(std::vector<int> task_sizes, const double* pr
             _cls_start[tt * _n_class + cc] = start;
             start += _cls_sz[tt * _n_class + cc];
         }
+
+        if(_exclude_cl_ind >= 0)
+        {
+            _cls_sz[tt * _n_class + _exclude_cl_ind] = 0;
+        }
     }
 }
 
@@ -136,8 +147,8 @@ double ConvexHull1D::overlap_1d(double* value, double width)
     for(int tt = 0; tt < _n_task; ++tt)
     {
         double cls_norm = 1.0 / (
-            static_cast<double>(_n_class) *
-            static_cast<double>(_n_class - 1) *
+            static_cast<double>(_n_class - (_exclude_cl_ind >= 0)) *
+            static_cast<double>(_n_class - (_exclude_cl_ind >= 0) - 1) *
             static_cast<double>(_n_task)
         );
         for(int c1 = 0; c1 < _n_class; ++c1)
diff --git a/src/classification/ConvexHull1D.hpp b/src/classification/ConvexHull1D.hpp
index 7069dce107bf1dfdd490c0b27977e30b88af8064..5405c7cb854e78bcdd853f8954a709dd0fb98524 100644
--- a/src/classification/ConvexHull1D.hpp
+++ b/src/classification/ConvexHull1D.hpp
@@ -46,6 +46,7 @@ protected :
 
     int _n_class; //!< Number of classes
     int _n_task; //!< Number of tasks
+    int _exclude_cl_ind; //!< Ind corresponding to a class number of -1.0
 
 public:
     /**
diff --git a/src/classification/SVMWrapper.cpp b/src/classification/SVMWrapper.cpp
index 7a0c98a86ca49bfcd2ebcfc9180218130ea2785d..58e5644542da0fac40807657d420476f8e89c0c4 100644
--- a/src/classification/SVMWrapper.cpp
+++ b/src/classification/SVMWrapper.cpp
@@ -64,6 +64,31 @@ SVMWrapper::SVMWrapper(const double C, const int n_class, const int n_dim, const
     SVMWrapper(C, n_class, n_dim, prop.size(), prop.data())
 {}
 
+SVMWrapper::SVMWrapper(const SVMWrapper& o):
+    _model(nullptr),
+    _y(o._y),
+    _y_est(o._y_est),
+    _x_space(o._n_samp * (o._n_dim + 1)),
+    _x(o._n_samp),
+    _coefs(o._coefs),
+    _intercept(o._intercept),
+    _w_remap(o._w_remap),
+    _b_remap(o._b_remap),
+    _map_prop_vals(o._map_prop_vals),
+    _C(o._C),
+    _n_dim(o._n_dim),
+    _n_samp(o._n_samp),
+    _n_class(o._n_class),
+    _n_misclassified(o._n_misclassified)
+{
+    setup_parameter_obj(_C);
+    setup_x_space();
+
+    _prob.l = _n_samp;
+    _prob.y = _y.data();
+    _prob.x = _x.data();
+}
+
 SVMWrapper::~SVMWrapper()
 {
     svm_destroy_param(&_param);
diff --git a/src/classification/SVMWrapper.hpp b/src/classification/SVMWrapper.hpp
index 8f412797b51625c2d954182fe192e0025162c150..9f013659321724cf473d8990a0ffd80045b1e6b8 100644
--- a/src/classification/SVMWrapper.hpp
+++ b/src/classification/SVMWrapper.hpp
@@ -106,7 +106,7 @@ public:
      *
      * @param o The object to be copied
      */
-    SVMWrapper(const SVMWrapper& o) = default;
+    SVMWrapper(const SVMWrapper& o);
 
     /**
      * @brief The move constructor
diff --git a/src/descriptor_identifier/solver/SISSOClassifier.cpp b/src/descriptor_identifier/solver/SISSOClassifier.cpp
index 2c17f4d015ef94fb5578a247cf8969c18744f579..cb3f18136f10e5aab529850477a61789d1e10197 100644
--- a/src/descriptor_identifier/solver/SISSOClassifier.cpp
+++ b/src/descriptor_identifier/solver/SISSOClassifier.cpp
@@ -34,6 +34,13 @@ SISSOClassifier::SISSOClassifier(
         _fix_intercept = false;
     }
     setup_d_mat_transfer();
+
+    int start = 0;
+    for(int tt = 0; tt < _n_task; ++tt)
+    {
+        _svm_vec.push_back(SVMWrapper(_c, _loss->n_class(tt), _n_dim, _task_sizes_train[tt], _loss->prop_pointer() + start));
+        start += _task_sizes_train[tt];
+    }
 }
 
 void SISSOClassifier::setup_d_mat_transfer()
@@ -57,6 +64,21 @@ void SISSOClassifier::setup_d_mat_transfer()
     }
 }
 
+void SISSOClassifier::transfer_d_mat_to_sorted() const
+{
+    prop_sorted_d_mat::resize_sorted_d_matrix_arr(node_value_arrs::N_SELECTED);
+    for(auto& el : _sample_inds_to_sorted_dmat_inds)
+    {
+        dcopy_(
+            node_value_arrs::N_SELECTED,
+            &node_value_arrs::D_MATRIX[el.first],
+            node_value_arrs::N_SAMPLES,
+            &prop_sorted_d_mat::SORTED_D_MATRIX[el.second],
+            prop_sorted_d_mat::N_SAMPLES
+        );
+    }
+}
+
 std::array<double, 2> SISSOClassifier::svm_error(std::vector<SVMWrapper>& svm, const std::vector<int>& feat_inds) const
 {
     double error = 0.0;
@@ -74,271 +96,83 @@ std::array<double, 2> SISSOClassifier::svm_error(std::vector<SVMWrapper>& svm, c
     return {error, dist_error};
 }
 
-int SISSOClassifier::get_max_error_ind(
-    const int n_models, const int* n_convex_overlap, const double* svm_score, const double* svm_margin, double* scores
-) const
+void SISSOClassifier::update_min_inds_scores(
+    const std::vector<int>& inds,
+    double score,
+    int max_error_ind,
+    std::vector<int>& min_inds_private,
+    std::vector<double>& min_scores_private
+)
 {
-    std::transform(
-        n_convex_overlap,
-        n_convex_overlap + n_models,
-        svm_score,
-        scores,
-        [this](int n_overlap, double score){return static_cast<double>(n_overlap * _n_samp * _n_class) + score;}
-    );
-    double max_dist = std::abs(*std::max_element(svm_margin, svm_margin + n_models, [](double v1, double v2){return std::abs(v1) < std::abs(v2);})) + 0.01;
-    std::transform(
-        svm_margin,
-        svm_margin + n_models,
-        scores,
-        scores,
-        [&max_dist](double margin, double score){return score + (1.0 - margin / max_dist);}
-    );
-
-    return std::max_element(scores, scores + n_models) - scores;
-}
+    // Make a copy of the SVM
+    std::vector<SVMWrapper> svm_vec(_svm_vec);
+    std::array<double, 2> svm_err = svm_error(svm_vec, inds);
+    score += svm_err[0] + svm_err[1] / static_cast<double>(_n_samp);
 
-void SISSOClassifier::transfer_d_mat_to_sorted() const
-{
-    prop_sorted_d_mat::resize_sorted_d_matrix_arr(node_value_arrs::N_SELECTED);
-    for(auto& el : _sample_inds_to_sorted_dmat_inds)
+    if(score < min_scores_private[max_error_ind])
     {
-        dcopy_(
-            node_value_arrs::N_SELECTED,
-            &node_value_arrs::D_MATRIX[el.first],
-            node_value_arrs::N_SAMPLES,
-            &prop_sorted_d_mat::SORTED_D_MATRIX[el.second],
-            prop_sorted_d_mat::N_SAMPLES
-        );
+        min_scores_private[max_error_ind] = score;
+        std::copy_n(inds.begin(), inds.size(), min_inds_private.begin() + max_error_ind * inds.size());
     }
 }
 
-void SISSOClassifier::l0_regularization(const int n_dim)
+void SISSOClassifier::add_models(const std::vector<std::vector<int>> indexes)
 {
-    const int  n_get_models = std::max(_n_residual, _n_models_store);
-    std::vector<double> coefs(n_dim + 1, 0.0);
-
-    std::vector<int> inds(n_dim, 0);
-
-    std::vector<int> min_inds(n_get_models * n_dim, -1);
-    std::vector<int> min_n_convex_overlap(n_get_models, _n_samp * _n_class * _n_class);
-    std::vector<double> min_svm_score(n_get_models, _n_samp * _n_class * _n_class);
-    std::vector<double> min_svm_margin(n_get_models, -1.0);
-
-    unsigned long long int n_interactions = 1;
-    int n_dim_fact = 1;
-    for(int rr = 0; rr < n_dim; ++rr)
-    {
-        inds[rr] = _feat_space->phi_selected().size() - 1 - rr;
-        n_interactions *= inds[rr] + 1;
-        n_dim_fact *= (rr + 1);
-    }
-    n_interactions /= n_dim_fact;
-
-    int max_error_ind = 0;
-
-    transfer_d_mat_to_sorted();
-
-    if(inds.back() >= 0)
-    {
-        #pragma omp parallel firstprivate(max_error_ind, inds) shared(_loss)
-        {
-            std::shared_ptr<LossFunction> loss_copy;
-            #pragma omp critical
-            {
-                loss_copy = std::make_shared<LossFunctionConvexHull>(_loss);
-            }
+    _models.push_back({});
+    std::vector<std::vector<model_node_ptr>> min_nodes;
 
-            std::vector<int> min_inds_private(min_inds);
-            std::vector<int> min_n_convex_overlap_private(min_n_convex_overlap);
-            std::vector<double> min_svm_score_private(min_svm_score);
-            std::vector<double> min_svm_margin_private(min_svm_margin);
-            std::array<double, 2> temp_svm_error;
-
-            std::vector<double> scores(n_get_models);
-
-            std::vector<SVMWrapper> svm_vec;
-            int start = 0;
-            for(int tt = 0; tt < _n_task; ++tt)
-            {
-                svm_vec.push_back(SVMWrapper(_c, _loss->n_class(tt), _n_dim, _task_sizes_train[tt], loss_copy->prop_pointer() + start));
-                start += _task_sizes_train[tt];
-            }
-
-            unsigned long long int ii_prev = 0;
-
-            #ifdef OMP45
-            #pragma omp for schedule(monotonic: dynamic)
-            #else
-            #pragma omp for schedule(dynamic)
-            #endif
-            for(unsigned long long int ii = _mpi_comm->rank(); ii < n_interactions; ii += static_cast<unsigned long long int>(_mpi_comm->size()))
-            {
-                util_funcs::iterate(inds, inds.size(), ii - ii_prev);
-                ii_prev = ii;
-                int n_convex_overlap = (*loss_copy)(inds);
-
-                if(n_convex_overlap <= min_n_convex_overlap_private[max_error_ind])
-                {
-                    temp_svm_error = svm_error(svm_vec, inds);
-
-                    if(
-                        (n_convex_overlap < min_n_convex_overlap_private[max_error_ind]) ||
-                        (temp_svm_error[0] < min_svm_score_private[max_error_ind]) ||
-                        ((temp_svm_error[0] == min_svm_score_private[max_error_ind]) && (temp_svm_error[1] > min_svm_margin_private[max_error_ind]))
-                    )
-                    {
-                        min_n_convex_overlap_private[max_error_ind] = n_convex_overlap;
-                        min_svm_score_private[max_error_ind] = temp_svm_error[0];
-                        min_svm_margin_private[max_error_ind] = temp_svm_error[1];
-                        std::copy_n(inds.begin(), n_dim, min_inds_private.begin() + max_error_ind * n_dim);
-
-                        max_error_ind = get_max_error_ind(
-                            n_get_models,
-                            min_n_convex_overlap_private.data(),
-                            min_svm_score_private.data(),
-                            min_svm_margin_private.data(),
-                            scores.data()
-                        );
-                    }
-                }
-            }
-
-            #pragma omp critical
-            {
-                max_error_ind  = get_max_error_ind(
-                    n_get_models,
-                    min_n_convex_overlap.data(),
-                    min_svm_score.data(),
-                    min_svm_margin.data(),
-                    scores.data()
-                );
-                for(int ee = 0; ee < min_n_convex_overlap.size(); ++ee)
-                {
-                    if(
-                        (min_n_convex_overlap_private[ee] < min_n_convex_overlap[max_error_ind]) ||
-                        ((min_n_convex_overlap_private[ee] == min_n_convex_overlap[max_error_ind]) && (min_svm_score_private[ee] < min_svm_score[max_error_ind])) ||
-                        ((min_n_convex_overlap_private[ee] == min_n_convex_overlap[max_error_ind]) && (min_svm_score_private[ee] == min_svm_score[max_error_ind]) && (min_svm_margin_private[ee] > min_svm_margin[max_error_ind]))
-                    )
-                    {
-                        min_n_convex_overlap[max_error_ind] = min_n_convex_overlap_private[ee];
-                        min_svm_score[max_error_ind] = min_svm_score_private[ee];
-                        min_svm_margin[max_error_ind] = min_svm_margin_private[ee];
-                        std::copy_n(min_inds_private.begin() + ee * n_dim, n_dim, min_inds.begin() + max_error_ind * n_dim);
-
-                        max_error_ind = get_max_error_ind(
-                            n_get_models,
-                            min_n_convex_overlap.data(),
-                            min_svm_score.data(),
-                            min_svm_margin.data(),
-                            scores.data()
-                        );
-                    }
-                }
-            }
-        }
-    }
-
-    std::vector<int> all_min_n_convex_overlap(_mpi_comm->size() * n_get_models);
-    std::vector<double> all_min_svm_score(_mpi_comm->size() * n_get_models);
-    std::vector<double> all_min_svm_margin(_mpi_comm->size() * n_get_models);
-    std::vector<int> all_min_inds(_mpi_comm->size() * n_get_models * n_dim);
-
-    mpi::all_gather(*_mpi_comm, min_n_convex_overlap.data(), n_get_models, all_min_n_convex_overlap);
-    mpi::all_gather(*_mpi_comm, min_svm_score.data(), n_get_models, all_min_svm_score);
-    mpi::all_gather(*_mpi_comm, min_svm_margin.data(), n_get_models, all_min_svm_margin);
-    mpi::all_gather(*_mpi_comm, min_inds.data(), n_get_models * n_dim, all_min_inds);
-
-    std::vector<double> scores(all_min_svm_score);
-    std::transform(
-        scores.begin(),
-        scores.end(),
-        all_min_n_convex_overlap.begin(),
-        scores.begin(),
-        [this](double score, int n_overlap){return score + n_overlap * _n_samp;}
-    );
-
-    double max_dist = *std::max_element(all_min_svm_margin.begin(), all_min_svm_margin.end()) + 0.01;
-    std::transform(
-        all_min_svm_margin.begin(),
-        all_min_svm_margin.end(),
-        scores.begin(),
-        scores.begin(),
-        [&max_dist](double margin, double score){return score + (1.0 - margin / max_dist);}
-    );
-
-    inds = util_funcs::argsort<double>(scores);
-    std::vector<std::vector<model_node_ptr>> min_nodes(n_get_models, std::vector<model_node_ptr>(n_dim));
-    std::vector<ModelClassifier> models;
-
-    for(int rr = 0; rr < n_get_models; ++rr)
+    for(auto& inds: indexes)
     {
-        node_value_arrs::clear_temp_test_reg();
-        for(int ii = 0; ii < n_dim; ++ii)
+        min_nodes.push_back(std::vector<model_node_ptr>(inds.size()));
+        for(int ii = 0; ii < inds.size(); ++ii)
         {
-            int index = all_min_inds[inds[rr] * n_dim + ii];
-            min_nodes[rr][ii] = std::make_shared<ModelNode>(_feat_space->phi_selected()[index]);
+            int index = inds[ii];
+            min_nodes.back()[ii] = std::make_shared<ModelNode>(_feat_space->phi_selected()[index]);
         }
-        models.push_back(
-            ModelClassifier(
-                _prop_label,
-                _prop_unit,
-                loss_function_util::copy(_loss),
-                min_nodes[rr],
-                _leave_out_inds,
-                _sample_ids_train,
-                _sample_ids_test,
-                _task_names
-            )
+        ModelClassifier model(
+            _prop_label,
+            _prop_unit,
+            loss_function_util::copy(_loss),
+            min_nodes.back(),
+            _leave_out_inds,
+            _sample_ids_train,
+            _sample_ids_test,
+            _task_names
         );
+        _models.back().push_back(model);
     }
-
-    _models.push_back(models);
-
     min_nodes.resize(_n_residual);
     _loss->reset_projection_prop(min_nodes);
 }
 
-void SISSOClassifier::fit()
+void SISSOClassifier::output_models()
 {
-    int dd = 1;
-    while(
-        (dd <= _n_dim) &&
-        (*std::max_element(_loss->prop_project_pointer(), _loss->prop_project_pointer() + _loss->n_prop_project() * _n_samp) > 0.0)
-    )
+    if(_mpi_comm->rank() == 0)
     {
-
-        double start = omp_get_wtime();
-        _feat_space->sis(_loss);
-
-        _mpi_comm->barrier();
-        double duration = omp_get_wtime() - start;
-        if(_mpi_comm->rank() == 0)
+        for(int rr = 0; rr < _n_models_store; ++rr)
         {
-            std::cout << "Time for SIS: " << duration << " s" << std::endl;
-        }
-
-        start = omp_get_wtime();
-        l0_regularization(dd);
-
-        _mpi_comm->barrier();
-        duration = omp_get_wtime() - start;
-        if(_mpi_comm->rank() == 0)
-        {
-            std::cout << "Time for l0-norm: " << duration << " s" << std::endl;
-            for(int rr = 0; rr < _n_models_store; ++rr)
+            _models.back()[rr].to_file("models/train_dim_" + std::to_string(_models.size()) + "_model_" + std::to_string(rr) + ".dat");
+            if(_leave_out_inds.size() > 0)
             {
-                _models.back()[rr].to_file("models/train_dim_" + std::to_string(dd) + "_model_" + std::to_string(rr) + ".dat");
-                if(_leave_out_inds.size() > 0)
-                {
-                    _models.back()[rr].to_file("models/test_dim_" + std::to_string(dd) + "_model_" + std::to_string(rr) + ".dat", false);
-                }
+                _models.back()[rr].to_file(
+                    "models/test_dim_" + std::to_string(_models.size()) + "_model_" + std::to_string(rr) + ".dat", false
+                );
             }
         }
-        ++dd;
     }
-    if(dd <= _n_dim)
+}
+
+bool SISSOClassifier::continue_calc(int dd)
+{
+    bool cont = (
+        (dd <= _n_dim) &&
+        (*std::max_element(_loss->prop_project_pointer(), _loss->prop_project_pointer() + _loss->n_prop_project() * _n_samp) > 0.0)
+    );
+
+    if(!cont && (dd <= _n_dim))
     {
         std::cerr << "WARNING: All points sperated before reaching the requested dimension." << std::endl;
     }
-}
 
+    return cont;
+}
diff --git a/src/descriptor_identifier/solver/SISSOClassifier.hpp b/src/descriptor_identifier/solver/SISSOClassifier.hpp
index 4becb807f8ea69a6c5342f84ac27fd86fe4d1655..5632fd3dd2e78d06b67b533fefc22288f7e91b1f 100644
--- a/src/descriptor_identifier/solver/SISSOClassifier.hpp
+++ b/src/descriptor_identifier/solver/SISSOClassifier.hpp
@@ -42,6 +42,7 @@ class SISSOClassifier: public SISSOSolver
 {
 protected:
     std::vector<std::vector<ModelClassifier>> _models; //!< List of models
+    std::vector<SVMWrapper> _svm_vec; //!< Vector storing the SVMWrappers for the problem
 
     std::map<int, int> _sample_inds_to_sorted_dmat_inds; //!< map from input sample inds to the SORTED_D_MATRIX_INDS
 
@@ -79,34 +80,54 @@ public:
     std::array<double, 2> svm_error(std::vector<SVMWrapper>& svm, const std::vector<int>& feat_inds) const;
 
     /**
-     * @brief Gets the max error index for the classification problem
+     * @brief Sort the property vector by class and store the mapped indexes to _sample_inds_to_sorted_dmat_inds
+     */
+    void setup_d_mat_transfer();
+
+    /**
+     * @brief If true calculate the model for the dimension dd
      *
-     * @param n_models number of models to be stored
-     * @param n_convex_overlap number of points in the overlapping convex hull regions (in all models)
-     * @param svm_score the number of points misclassified by SVM (in all models)
-     * @param svm_margin The margin of the SVM model (in all models)
-     * @param scores the pointer to the scores array
-     * @return The index with the maximum error
+     * @param dd Dimension of the model to train
+     * @return true if the requested dimension should be calculated.
      */
-    int get_max_error_ind(const int n_models, const int* n_convex_overlap, const double* svm_score, const double* svm_margin, double* scores) const;
+    inline bool continue_calc(int dd);
 
     /**
-     * @brief Sort the property vector by class and store the mapped indexes to _sample_inds_to_sorted_dmat_inds
+     * @brief Output the models to files and copy the residuals
      */
-    void setup_d_mat_transfer();
+    void output_models();
+
+    /**
+     * @brief Perform any steps that need to be done to initialize the regularization
+     */
+    inline void setup_regulairzation()
+    {
+        transfer_d_mat_to_sorted();
+    }
 
     /**
-     * @brief Preform an l0-Regularization to find the best n_dim dimensional model
+     * @brief Set the min_scores and min_inds vectors given a score and max_error_ind
      *
-     * @param n_dim The number of features to use in the linear model
+     * @param inds The current set of indexes
+     * @param score The score for the current set of indexes
+     * @param max_error_ind The current index of the maximum score among the best models
+     * @param min_inds_private Current list of feature indexes for the best models
+     * @param min_scores_private Current list of the socres of the best models
      */
-    void l0_regularization(const int n_dim);
+    void update_min_inds_scores(
+        const std::vector<int>& inds,
+        double score,
+        int max_error_ind,
+        std::vector<int>& min_inds_private,
+        std::vector<double>& min_scores_private
+    );
 
-    // DocString: sisso_class_fit
     /**
-     * @brief Iteratively run SISSO on the FeatureSpace an Property vector until the maximum dimenisonality is reached
+     * @brief Create a Model for a given set of features and store them in _models
+     *
+     * @param indexes Vector storing all of the indexes of features in _feat_space->phi_selected() to use for the model
      */
-    void fit();
+    virtual void add_models(const std::vector<std::vector<int>> indexes);
 
     /**
      * @brief The selected models (n_dim, n_models_store)
diff --git a/src/descriptor_identifier/solver/SISSOLogRegressor.cpp b/src/descriptor_identifier/solver/SISSOLogRegressor.cpp
index de3e7b274679393427c3cf69213ffcdf5cb42dbf..29f673afaa323ce52a7e4cfbc1c9f4552e6d2fc3 100644
--- a/src/descriptor_identifier/solver/SISSOLogRegressor.cpp
+++ b/src/descriptor_identifier/solver/SISSOLogRegressor.cpp
@@ -87,106 +87,3 @@ void SISSOLogRegressor::add_models(const std::vector<std::vector<int>> indexes)
     min_nodes.resize(_n_residual);
     _loss->reset_projection_prop(min_nodes);
 }
-
-void SISSOLogRegressor::l0_regularization(const int n_dim)
-{
-    int  n_get_models = std::max(_n_residual, _n_models_store);
-
-    std::vector<int> inds(n_dim, 0);
-    std::vector<int> min_inds(n_get_models * n_dim, -1);
-    std::vector<double> min_errors(n_get_models, util_funcs::norm(_loss->prop_pointer(), _n_samp));
-
-    unsigned long long int n_interactions = 1;
-    int n_dim_fact = 1;
-    for(int rr = 0; rr < n_dim; ++rr)
-    {
-        inds[rr] = _feat_space->phi_selected().size() - 1 - rr;
-        n_interactions *= inds[rr] + 1;
-        n_dim_fact *= (rr + 1);
-    }
-    n_interactions /= n_dim_fact;
-
-    if(inds.back() >= 0)
-    {
-        #pragma omp parallel shared(min_inds, min_errors, n_interactions, n_get_models) firstprivate(inds)
-        {
-            std::shared_ptr<LossFunction> loss_copy;
-            #pragma omp critical
-            {
-                loss_copy = std::make_shared<LossFunctionLogPearsonRMSE>(_loss);
-            }
-            int max_error_ind = 0;
-            std::vector<int> min_inds_private(min_inds);
-            std::vector<double> min_errors_private(min_errors);
-
-            unsigned long long int ii_prev = 0;
-
-#ifdef OMP45
-            #pragma omp for schedule(monotonic: dynamic)
-#else
-            #pragma omp for schedule(dynamic)
-#endif
-            for(unsigned long long int ii = _mpi_comm->rank(); ii < n_interactions; ii += static_cast<unsigned long long int>(_mpi_comm->size()))
-            {
-                util_funcs::iterate(inds, inds.size(), ii - ii_prev);
-                double loss = (*loss_copy)(inds);
-                if(loss < -1.0)
-                {
-                    std::string err_msg = "A parameter passed to dgels was invalid. This is likely from a NaN in the descriptor matrix. The features that caused this are: ";
-                    for(auto& ind : inds)
-                    {
-                        err_msg += std::to_string(ind) + ": " + _feat_space->phi_selected()[ind]->expr() + ", ";
-                    }
-                    throw std::logic_error(err_msg.substr(0, err_msg.size() - 2) + ".");
-                }
-                else if(loss < 0.0)
-                {
-                    std::string err_msg = "Descriptor matrix is not full-rank. The features that caused this are: ";
-                    for(auto& ind : inds)
-                    {
-                        err_msg += std::to_string(ind) + ": " + _feat_space->phi_selected()[ind]->expr() + ", ";
-                    }
-                    std::cerr << err_msg.substr(0, err_msg.size() - 2) << "." << std::endl;
-                }
-                else if(loss < min_errors_private[max_error_ind])
-                {
-                    min_errors_private[max_error_ind] = loss;
-                    std::copy_n(inds.begin(), inds.size(), min_inds_private.begin() + max_error_ind * n_dim);
-                    max_error_ind = std::max_element(min_errors_private.begin(), min_errors_private.end()) - min_errors_private.begin();
-                }
-                ii_prev = ii;
-            }
-
-            #pragma omp critical
-            {
-                max_error_ind = std::max_element(min_errors.begin(), min_errors.end()) - min_errors.begin();
-                for(int ee = 0; ee < n_get_models; ++ee)
-                {
-                    if(min_errors_private[ee] < min_errors[max_error_ind])
-                    {
-                        min_errors[max_error_ind] = min_errors_private[ee];
-                        std::copy_n(min_inds_private.begin() + ee * n_dim, n_dim, min_inds.begin() + max_error_ind * n_dim);
-                        max_error_ind = std::max_element(min_errors.begin(), min_errors.end()) - min_errors.begin();
-                    }
-                }
-            }
-        }
-    }
-    std::vector<double> all_min_error(_mpi_comm->size() * n_get_models);
-    std::vector<int> all_min_inds(_mpi_comm->size() * n_get_models * n_dim);
-
-    mpi::all_gather(*_mpi_comm, min_errors.data(), n_get_models, all_min_error);
-    mpi::all_gather(*_mpi_comm, min_inds.data(), n_get_models * n_dim, all_min_inds);
-
-    inds = util_funcs::argsort<double>(all_min_error);
-    std::vector<std::vector<int>> indexes(n_get_models, std::vector<int>(n_dim));
-    for(int rr = 0; rr < n_get_models; ++rr)
-    {
-        node_value_arrs::clear_temp_test_reg();
-        for(int ii = 0; ii < n_dim; ++ii)
-        {
-            indexes[rr][ii] = all_min_inds[inds[rr] * n_dim + ii];
-        }
-    }
-    add_models(indexes);
-}
diff --git a/src/descriptor_identifier/solver/SISSOLogRegressor.hpp b/src/descriptor_identifier/solver/SISSOLogRegressor.hpp
index 21ab986d7676340910796e7306f34734156c1a6b..d496a5c3ef108c2f04e1b8f40a5685b5a0f71cf3 100644
--- a/src/descriptor_identifier/solver/SISSOLogRegressor.hpp
+++ b/src/descriptor_identifier/solver/SISSOLogRegressor.hpp
@@ -66,13 +66,6 @@ public:
      */
     void output_models();
 
-    /**
-     * @brief Preform an l0-Regularization to find the best n_dim dimensional model
-     *
-     * @param n_dim The number of features to use in the linear model
-     */
-    void l0_regularization(const int n_dim);
-
     /**
      * @brief The selected models (n_dim, n_models_store)
      */
diff --git a/src/descriptor_identifier/solver/SISSORegressor.cpp b/src/descriptor_identifier/solver/SISSORegressor.cpp
index 8ce5ea0582f9f041fc9725a991ddd4dfc9b79671..0f153053642ad60cf2cfb70d24f1081c8bfd4748 100644
--- a/src/descriptor_identifier/solver/SISSORegressor.cpp
+++ b/src/descriptor_identifier/solver/SISSORegressor.cpp
@@ -73,136 +73,35 @@ void SISSORegressor::output_models()
     }
 }
 
-void SISSORegressor::l0_regularization(const int n_dim)
+void SISSORegressor::update_min_inds_scores(
+    const std::vector<int>& inds,
+    double score,
+    int max_error_ind,
+    std::vector<int>& min_inds_private,
+    std::vector<double>& min_scores_private
+)
 {
-    int  n_get_models = std::max(_n_residual, _n_models_store);
-    std::vector<double> coefs(n_dim + 1, 0.0);
-
-    std::vector<int> inds(n_dim, 0);
-    std::vector<int> min_inds(n_get_models * n_dim, -1);
-
-    std::vector<double> min_errors(n_get_models, util_funcs::norm(_loss->prop_pointer(), _n_samp));
-
-    unsigned long long int n_interactions = 1;
-    int n_dim_fact = 1;
-    for(int rr = 0; rr < n_dim; ++rr)
-    {
-        inds[rr] = _feat_space->phi_selected().size() - 1 - rr;
-        n_interactions *= inds[rr] + 1;
-        n_dim_fact *= (rr + 1);
-    }
-    n_interactions /= n_dim_fact;
-
-    if(inds.back() >= 0)
+    if(score < -1.0)
     {
-        #pragma omp parallel shared(min_inds, min_errors, n_interactions, n_get_models) firstprivate(inds, coefs)
+        std::string err_msg = "A parameter passed to dgels was invalid. This is likely from a NaN in the descriptor matrix. The features that caused this are: ";
+        for(auto& ind : inds)
         {
-            std::shared_ptr<LossFunction> loss_copy;
-            #pragma omp critical
-            {
-                loss_copy = std::make_shared<LossFunctionPearsonRMSE>(_loss);
-            }
-
-            int max_error_ind = 0;
-            std::vector<int> min_inds_private(min_inds);
-            std::vector<double> min_errors_private(min_errors);
-
-            unsigned long long int ii_prev = 0;
-
-#ifdef OMP45
-            #pragma omp for schedule(monotonic: dynamic)
-#else
-            #pragma omp for schedule(dynamic)
-#endif
-            for(unsigned long long int ii = _mpi_comm->rank(); ii < n_interactions; ii += static_cast<unsigned long long int>(_mpi_comm->size()))
-            {
-                util_funcs::iterate(inds, inds.size(), ii - ii_prev);
-                double loss = (*loss_copy)(inds);
-                if(loss < -1.0)
-                {
-                    std::string err_msg = "A parameter passed to dgels was invalid. This is likely from a NaN in the descriptor matrix. The features that caused this are: ";
-                    for(auto& ind : inds)
-                    {
-                        err_msg += std::to_string(ind) + ": " + _feat_space->phi_selected()[ind]->expr() + ", ";
-                    }
-                    throw std::logic_error(err_msg.substr(0, err_msg.size() - 2) + ".");
-                }
-                else if(loss < 0.0)
-                {
-                    std::string err_msg = "Descriptor matrix is not full-rank. The features that caused this are: ";
-                    for(auto& ind : inds)
-                    {
-                        err_msg += std::to_string(ind) + ": " + _feat_space->phi_selected()[ind]->expr() + ", ";
-                    }
-                    std::cerr << err_msg.substr(0, err_msg.size() - 2) << "." << std::endl;
-                }
-                else if(loss < min_errors_private[max_error_ind])
-                {
-                    min_errors_private[max_error_ind] = loss;
-                    std::copy_n(inds.begin(), inds.size(), min_inds_private.begin() + max_error_ind * n_dim);
-                    max_error_ind = std::max_element(min_errors_private.begin(), min_errors_private.end()) - min_errors_private.begin();
-                }
-
-                ii_prev = ii;
-            }
-            #pragma omp critical
-            {
-                max_error_ind = std::max_element(min_errors.begin(), min_errors.end()) - min_errors.begin();
-                for(int ee = 0; ee < n_get_models; ++ee)
-                {
-                    if(min_errors_private[ee] < min_errors[max_error_ind])
-                    {
-                        min_errors[max_error_ind] = min_errors_private[ee];
-                        std::copy_n(min_inds_private.begin() + ee * n_dim, n_dim, min_inds.begin() + max_error_ind * n_dim);
-                        max_error_ind = std::max_element(min_errors.begin(), min_errors.end()) - min_errors.begin();
-                    }
-                }
-            }
+            err_msg += std::to_string(ind) + ": " + _feat_space->phi_selected()[ind]->expr() + ", ";
         }
+        throw std::logic_error(err_msg.substr(0, err_msg.size() - 2) + ".");
     }
-    std::vector<double> all_min_error(_mpi_comm->size() * n_get_models);
-    std::vector<int> all_min_inds(_mpi_comm->size() * n_get_models * n_dim);
-
-    mpi::all_gather(*_mpi_comm, min_errors.data(), n_get_models, all_min_error);
-    mpi::all_gather(*_mpi_comm, min_inds.data(), n_get_models * n_dim, all_min_inds);
-
-    inds = util_funcs::argsort<double>(all_min_error);
-    std::vector<std::vector<int>> indexes(n_get_models, std::vector<int>(n_dim));
-    for(int rr = 0; rr < n_get_models; ++rr)
+    else if(score < 0.0)
     {
-        node_value_arrs::clear_temp_test_reg();
-        for(int ii = 0; ii < n_dim; ++ii)
+        std::string err_msg = "Descriptor matrix is not full-rank. The features that caused this are: ";
+        for(auto& ind : inds)
         {
-            indexes[rr][ii] = all_min_inds[inds[rr] * n_dim + ii];
+            err_msg += std::to_string(ind) + ": " + _feat_space->phi_selected()[ind]->expr() + ", ";
         }
+        std::cerr << err_msg.substr(0, err_msg.size() - 2) << "." << std::endl;
     }
-    add_models(indexes);
-}
-
-void SISSORegressor::fit()
-{
-    for(int dd = 1; dd <= _n_dim; ++dd)
+    else if(score < min_scores_private[max_error_ind])
     {
-        double start = omp_get_wtime();
-        _feat_space->sis(_loss);
-
-        _mpi_comm->barrier();
-        double duration = omp_get_wtime() - start;
-        if(_mpi_comm->rank() == 0)
-        {
-            std::cout << "Time for SIS: " << duration  << " s" << std::endl;
-        }
-
-        start = omp_get_wtime();
-        l0_regularization(dd);
-
-        _mpi_comm->barrier();
-        duration = omp_get_wtime() - start;
-
-        if(_mpi_comm->rank() == 0)
-        {
-            std::cout << "Time for l0-norm: " << duration << " s"  << std::endl;
-        }
-        output_models();
+        min_scores_private[max_error_ind] = score;
+        std::copy_n(inds.begin(), inds.size(), min_inds_private.begin() + max_error_ind * inds.size());
     }
 }
diff --git a/src/descriptor_identifier/solver/SISSORegressor.hpp b/src/descriptor_identifier/solver/SISSORegressor.hpp
index eb18bc837e5a7d1cf548b2f0f7f4842f2f9e79bc..9fa65f295f7a0a4f332ca0b9a4becfbfbcd666f8 100644
--- a/src/descriptor_identifier/solver/SISSORegressor.hpp
+++ b/src/descriptor_identifier/solver/SISSORegressor.hpp
@@ -66,17 +66,21 @@ public:
     virtual void output_models();
 
     /**
-     * @brief Preform an l0-Regularization to find the best n_dim dimensional model
+     * @brief Set the min_scores and min_inds vectors given a score and max_error_ind
      *
-     * @param n_dim The number of features to use in the linear model
+     * @param inds The current set of indexes
+     * @param score The score for the current set of indexes
+     * @param max_error_ind The current index of the maximum score among the best models
+     * @param min_inds_private Current list of feature indexes for the best models
+     * @param min_scores_private Current list of the socres of the best models
      */
-    virtual void l0_regularization(const int n_dim);
-
-    // DocString: sisso_reg_fit
-    /**
-     * @brief Iteratively run SISSO on the FeatureSpace an Property vector until the maximum dimenisonality is reached
-     */
-    virtual void fit();
+    void update_min_inds_scores(
+        const std::vector<int>& inds,
+        double score,
+        int max_error_ind,
+        std::vector<int>& min_inds_private,
+        std::vector<double>& min_scores_private
+    );
 
     /**
      * @brief The selected models (n_dim, n_models_store)
diff --git a/src/descriptor_identifier/solver/SISSOSolver.cpp b/src/descriptor_identifier/solver/SISSOSolver.cpp
index d664e90b8be2c926ef7348b0c865603bf9f7f3f0..f77a3ba7514be9ecb7edcc7b7330679c31aebd6c 100644
--- a/src/descriptor_identifier/solver/SISSOSolver.cpp
+++ b/src/descriptor_identifier/solver/SISSOSolver.cpp
@@ -55,3 +55,130 @@ SISSOSolver::SISSOSolver(
         _fix_intercept
     );
 }
+
+void SISSOSolver::l0_regularization(const int n_dim)
+{
+    const int  n_get_models = std::max(_n_residual, _n_models_store);
+
+    std::vector<int> inds(n_dim, 0);
+
+    std::vector<int> min_inds(n_get_models * n_dim, -1);
+    std::vector<double> min_scores(n_get_models, std::numeric_limits<double>::infinity());
+
+    unsigned long long int n_interactions = 1;
+    int n_dim_fact = 1;
+    for(int rr = 0; rr < n_dim; ++rr)
+    {
+        inds[rr] = _feat_space->phi_selected().size() - 1 - rr;
+        n_interactions *= inds[rr] + 1;
+        n_dim_fact *= (rr + 1);
+    }
+    n_interactions /= n_dim_fact;
+    setup_regulairzation();
+
+    if(inds.back() >= 0)
+    {
+        #pragma omp parallel firstprivate(inds) shared(_loss)
+        {
+            std::shared_ptr<LossFunction> loss_copy;
+            #pragma omp critical
+            {
+                loss_copy = loss_function_util::copy(_loss);
+            }
+
+            int max_error_ind = 0;
+            std::vector<int> min_inds_private(min_inds);
+            std::vector<double> min_scores_private(min_scores);
+
+
+            unsigned long long int ii_prev = 0;
+
+            #ifdef OMP45
+            #pragma omp for schedule(monotonic: dynamic)
+            #else
+            #pragma omp for schedule(dynamic)
+            #endif
+            for(unsigned long long int ii = _mpi_comm->rank(); ii < n_interactions; ii += static_cast<unsigned long long int>(_mpi_comm->size()))
+            {
+                util_funcs::iterate(inds, inds.size(), ii - ii_prev);
+                ii_prev = ii;
+                double score = (*loss_copy)(inds);
+
+                if(score <= min_scores_private[max_error_ind])
+                {
+                    update_min_inds_scores(
+                        inds,
+                        score,
+                        max_error_ind,
+                        min_inds_private,
+                        min_scores_private
+                    );
+                    max_error_ind  = std::max_element(min_scores_private.begin(), min_scores_private.end()) - min_scores_private.begin();
+                }
+            }
+
+            #pragma omp critical
+            {
+                max_error_ind  = std::max_element(min_scores.begin(), min_scores.end()) - min_scores.begin();
+                for(int ee = 0; ee < min_scores_private.size(); ++ee)
+                {
+                    if(min_scores_private[ee] < min_scores[max_error_ind])
+                    {
+                        min_scores[max_error_ind] = min_scores_private[ee];
+                        std::copy_n(min_inds_private.begin() + ee * n_dim, n_dim, min_inds.begin() + max_error_ind * n_dim);
+
+                        max_error_ind  = std::max_element(min_scores.begin(), min_scores.end()) - min_scores.begin();
+                    }
+                }
+            }
+        }
+    }
+
+    std::vector<int> all_min_inds(_mpi_comm->size() * n_get_models * n_dim);
+    std::vector<double> all_min_scores(_mpi_comm->size() * n_get_models);
+
+    mpi::all_gather(*_mpi_comm, min_scores.data(), n_get_models, all_min_scores);
+    mpi::all_gather(*_mpi_comm, min_inds.data(), n_get_models * n_dim, all_min_inds);
+
+    inds = util_funcs::argsort<double>(all_min_scores);
+    std::vector<std::vector<int>> indexes(n_get_models, std::vector<int>(n_dim));
+    for(int rr = 0; rr < n_get_models; ++rr)
+    {
+        node_value_arrs::clear_temp_test_reg();
+        for(int ii = 0; ii < n_dim; ++ii)
+        {
+            indexes[rr][ii] = all_min_inds[inds[rr] * n_dim + ii];
+        }
+    }
+    add_models(indexes);
+}
+
+void SISSOSolver::fit()
+{
+    int dd = 1;
+    while(continue_calc(dd))
+    {
+        double start = omp_get_wtime();
+        _feat_space->sis(_loss);
+
+        _mpi_comm->barrier();
+        double duration = omp_get_wtime() - start;
+        if(_mpi_comm->rank() == 0)
+        {
+            std::cout << "Time for SIS: " << duration  << " s" << std::endl;
+        }
+
+        start = omp_get_wtime();
+        l0_regularization(dd);
+
+        _mpi_comm->barrier();
+        duration = omp_get_wtime() - start;
+
+        if(_mpi_comm->rank() == 0)
+        {
+            std::cout << "Time for l0-norm: " << duration << " s"  << std::endl;
+        }
+        output_models();
+        ++dd;
+    }
+}
diff --git a/src/descriptor_identifier/solver/SISSOSolver.hpp b/src/descriptor_identifier/solver/SISSOSolver.hpp
index 7c4bddd09e3a407d7c9b3035ba15b06113136168..e37b3be6f1ba679c57fe65919692f3bde2a614d7 100644
--- a/src/descriptor_identifier/solver/SISSOSolver.hpp
+++ b/src/descriptor_identifier/solver/SISSOSolver.hpp
@@ -72,17 +72,59 @@ public:
         const std::shared_ptr<FeatureSpace> feat_space
     );
 
+    /**
+     * @brief If true calculate the model for the dimension dd
+     *
+     * @param dd Dimension of the model to train
+     * @return true if the requested dimension should be calculated.
+     */
+    virtual inline bool continue_calc(int dd){return dd <= _n_dim;}
+
+    /**
+     * @brief Output the models to files and copy the residuals
+     */
+    virtual void output_models() = 0;
+
+    /**
+     * @brief Perform any steps that need to be done to initialize the regularization
+     */
+    virtual inline void setup_regulairzation(){}
+
+    /**
+     * @brief Set the min_scores and min_inds vectors given a score and max_error_ind
+     *
+     * @param inds The current set of indexes
+     * @param score The score for the current set of indexes
+     * @param max_error_ind The current index of the maximum score among the best models
+     * @param min_inds_private Current list of feature indexes for the best models
+     * @param min_scores_private Current list of the socres of the best models
+     */
+    virtual void update_min_inds_scores(
+        const std::vector<int>& inds,
+        double score,
+        int max_error_ind,
+        std::vector<int>& min_inds_private,
+        std::vector<double>& min_scores_private
+    ) = 0;
+
+    /**
+     * @brief Create a Model for a given set of features and store them in _models
+     *
+     * @param indexes Vector storing all of the indexes of features in _feat_space->phi_selected() to use for the model
+     */
+    virtual void add_models(const std::vector<std::vector<int>> indexes) = 0;
+
     /**
      * @brief Iteratively run SISSO on the FeatureSpace an Property vector until the maximum dimenisonality is reached
      */
-    virtual void fit() = 0;
+    void fit();
 
     /**
      * @brief Preform an l0-Regularization to find the best n_dim dimensional model
      *
      * @param n_dim The number of features to use in the linear model
      */
-    virtual void l0_regularization(const int n_dim) = 0;
+    void l0_regularization(const int n_dim);
 
     /**
      * @brief The FeatureSpace object associated with this solver
diff --git a/src/feature_creation/feature_space/FeatureSpace.cpp b/src/feature_creation/feature_space/FeatureSpace.cpp
index 0c0333230f4b75f5a4b4704e02ad994ea6cd47af..10d3022f4c2c01a1844fd158166a2302d27b0419 100644
--- a/src/feature_creation/feature_space/FeatureSpace.cpp
+++ b/src/feature_creation/feature_space/FeatureSpace.cpp
@@ -71,6 +71,7 @@ FeatureSpace::FeatureSpace(InputParser inputs):
     _project_type(inputs.calc_type()),
     _feature_space_file("feature_space/selected_features.txt"),
     _feature_space_summary_file("feature_space/SIS_summary.txt"),
+    _phi_out_file(inputs.phi_out_file()),
     _mpi_comm(inputs.mpi_comm()),
     _cross_cor_max(inputs.cross_cor_max()),
     _l_bound(inputs.l_bound()),
@@ -169,6 +170,13 @@ FeatureSpace::FeatureSpace(InputParser inputs):
 
     double start = omp_get_wtime();
     generate_feature_space(_phi, _start_rung, _prop_train);
+    _n_feat = _phi.size();
+
+    if(_phi_out_file.size() > 0)
+    {
+        output_phi();
+    }
+
     _mpi_comm->barrier();
     double duration = omp_get_wtime() - start;
     if(_mpi_comm->rank() == 0)
@@ -236,9 +244,11 @@ FeatureSpace::FeatureSpace(
     _n_feat = phi_temp.size();
     _phi.resize(_n_feat);
     std::vector<int> rungs(_n_feat, 0);
+    std::vector<unsigned int> sort_scores(_n_feat, 0);
     for(int ff = 0; ff < _n_feat; ++ff)
     {
         rungs[ff] = phi_temp[ff]->rung();
+        sort_scores[ff] = phi_temp[ff]->rung() * _n_feat + phi_temp[ff]->arr_ind();
         if(phi_temp[ff]->type() == NODE_TYPE::FEAT)
         {
             continue;
@@ -281,7 +291,6 @@ FeatureSpace::FeatureSpace(
         }
     }
 
-    std::vector<int> rung_inds = util_funcs::argsort<int>(rungs);
     _max_rung = *std::max_element(rungs.begin(), rungs.end());
     #ifdef PARAMETERIZE
     node_value_arrs::set_max_rung(_max_rung, _allowed_param_ops.size() > 0);
@@ -289,6 +298,7 @@ FeatureSpace::FeatureSpace(
     node_value_arrs::set_max_rung(_max_rung);
     #endif
 
+    std::vector<int> rung_inds = util_funcs::argsort<unsigned int>(sort_scores);
     _phi[0] = phi_temp[rung_inds[0]];
     for(int ff = 1; ff < _n_feat; ++ff)
     {
@@ -563,6 +573,110 @@ void FeatureSpace::generate_non_param_feats(
     }
 }
 
+#ifdef PARAMETERIZE
+int FeatureSpace::reorder_by_n_params(std::vector<node_ptr>& feat_set, int start)
+{
+    std::vector<int> feat_n_params(feat_set.size() - start);
+    std::transform(
+        feat_set.begin() + start,
+        feat_set.end(),
+        feat_n_params.begin(),
+        [](node_ptr feat){return feat->n_params();}
+    );
+    std::vector<int> inds = util_funcs::argsort<int>(feat_n_params);
+    std::vector<node_ptr> feat_set_copy(feat_n_params.size());
+    std::copy_n(feat_set.begin() + start, feat_n_params.size(), feat_set_copy.begin());
+
+    std::transform(
+        inds.begin(),
+        inds.end(),
+        feat_set.begin() + start,
+        [&feat_set_copy](int ind){return feat_set_copy[ind];}
+    );
+
+    for(int ff = start; ff < feat_set.size(); ++ff)
+    {
+        feat_set[ff]->reindex(ff);
+    }
+
+    // Set how many features have no parameters
+    return start + std::count_if(
+        feat_n_params.begin(),
+        feat_n_params.end(),
+        [](int n_param){return n_param == 0;}
+    );
+}
+#endif
+void FeatureSpace::remove_duplicate_features(std::vector<node_ptr>& feat_set, int start)
+{
+    std::vector<double> scores(feat_set.size(), 0.0);
+    project_funcs::project_r(_prop_train.data(), scores.data(), feat_set, _task_sizes_train, 1);
+
+    scores.erase(scores.begin(), scores.begin() + start);
+    if(scores.size() == 0)
+    {
+        throw std::logic_error("No features created during this rung (" + std::to_string(feat_set.back()->rung() + 1) + ")");
+    }
+    std::vector<int> inds = util_funcs::argsort<double>(scores);
+
+    std::vector<int> del_inds;
+    node_value_arrs::clear_temp_reg();
+    for(int sc = 0; sc < scores.size() - 1; ++sc)
+    {
+        #ifdef PARAMETERIZE
+        if(feat_set[inds[sc] + start]->n_params() > 0)
+        {
+            continue;
+        }
+        #endif
+
+        double* val_ptr = feat_set[start + inds[sc]]->stand_value_ptr();
+        double base_val = std::abs(
+            std::inner_product(
+                val_ptr,
+                val_ptr + _n_samp_train,
+                val_ptr,
+                0.0
+            )
+        );
+
+        int sc2 = sc + 1;
+        while((sc2 < scores.size()) && (scores[inds[sc2]] - scores[inds[sc]] < 1e-7))
+        {
+            double comp = std::abs(
+                base_val -
+                std::abs(
+                    std::inner_product(
+                        val_ptr,
+                        val_ptr + _n_samp_train,
+                        feat_set[start + inds[sc2]]->stand_value_ptr(true),
+                        0.0
+                    )
+                )
+            );
+
+            if(comp / static_cast<double>(_n_samp_train) < 1e-10)
+            {
+                del_inds.push_back(-1 * (inds[sc] + start));
+                break;
+            }
+            ++sc2;
+        }
+    }
+
+    inds = util_funcs::argsort<int>(del_inds);
+    for(int ii = 0; ii < inds.size(); ++ii)
+    {
+        feat_set.erase(feat_set.begin() - del_inds[inds[ii]]);
+    }
+
+    // Reindex
+    for(int ff = start; ff < feat_set.size(); ++ff)
+    {
+        feat_set[ff]->reindex(ff);
+    }
+}
+
 void FeatureSpace::generate_feature_space(
     std::vector<node_ptr>& feat_set,
     std::vector<int>& start_rung,
@@ -659,7 +773,6 @@ void FeatureSpace::generate_feature_space(
         if((nn < _max_rung) || (nn <= _n_rung_store) || (_mpi_comm->size() == 1))
         {
             int new_phi_size;
-            int phi_size_start = feat_set.size();
             if(_mpi_comm->rank() == 0)
             {
                 std::vector<std::vector<node_ptr>> next_phi_gathered;
@@ -669,7 +782,6 @@ void FeatureSpace::generate_feature_space(
                 {
                     feat_set.insert(feat_set.end(), next_phi_vec.begin(), next_phi_vec.end());
                 }
-                new_phi_size = feat_set.size();
 
                 // Sort the features to ensure consistent feature spaces for all MPI/OpenMP configurations
                 std::sort(
@@ -684,118 +796,44 @@ void FeatureSpace::generate_feature_space(
                     feat_set.end(),
                     [&feat_ind](node_ptr n){n->reindex(feat_ind); ++feat_ind;}
                 );
-
-                mpi::broadcast(*_mpi_comm, new_phi_size, 0);
-
-                for(int bb = 0; bb <= (new_phi_size - phi_size_start) / 10000; ++bb)
+                if(nn < _max_rung)
                 {
-                    mpi::broadcast(*_mpi_comm, &feat_set[phi_size_start + bb * 10000], std::min(10000, new_phi_size - phi_size_start - bb * 10000), 0);
+                    remove_duplicate_features(feat_set, start_rung.back());
                 }
+                #ifdef PARAMETERIZE
+                if(!reparam)
+                {
+                    int no_param_sz = reorder_by_n_params(feat_set, start_rung.back());
+                    mpi::broadcast(*_mpi_comm, no_param_sz, 0);
+                    _end_no_params.push_back(no_param_sz);
+                }
+                #endif
+                new_phi_size = feat_set.size();
+                mpi::broadcast(*_mpi_comm, new_phi_size, 0);
+                mpi::broadcast(*_mpi_comm, &feat_set[start_rung.back()], new_phi_size - start_rung.back(), 0);
             }
             else
             {
                 mpi::gather(*_mpi_comm, next_phi, 0);
-                mpi::broadcast(*_mpi_comm, new_phi_size, 0);
-                feat_set.resize(new_phi_size);
 
-                for(int bb = 0; bb <= (new_phi_size - phi_size_start) / 10000; ++bb)
+                #ifdef PARAMETERIZE
+                if(!reparam)
                 {
-                    mpi::broadcast(*_mpi_comm, &feat_set[phi_size_start + bb * 10000], std::min(10000, new_phi_size - phi_size_start - bb * 10000), 0);
+                    int no_param_sz;
+                    mpi::broadcast(*_mpi_comm, no_param_sz, 0);
+                    _end_no_params.push_back(no_param_sz);
                 }
-            }
+                #endif
 
-            if(phi_size_start == new_phi_size)
+                mpi::broadcast(*_mpi_comm, new_phi_size, 0);
+                feat_set.resize(new_phi_size);
+                mpi::broadcast(*_mpi_comm, &feat_set[start_rung.back()], new_phi_size - start_rung.back(), 0);
+            }
+            if(start_rung.back() == feat_set.size())
             {
                 throw std::logic_error("No features created during this rung (" + std::to_string(nn) + ")");
             }
 
-            node_value_arrs::clear_temp_reg();
-            if(nn < _max_rung)
-            {
-                // Remove identical features
-                _scores.resize(feat_set.size());
-                _mpi_comm->barrier();
-                project_funcs::project_r(_prop_train.data(), _scores.data(), feat_set, _task_sizes_train, 1);
-                _scores.erase(_scores.begin(), _scores.begin() + start_rung[start_rung.size() - 1]);
-                inds = util_funcs::argsort<double>(_scores);
-
-                std::vector<int> del_inds;
-
-                _mpi_comm->barrier();
-                node_value_arrs::clear_temp_reg();
-                for(int sc = 0; sc < _scores.size() - 1; ++sc)
-                {
-                    #ifdef PARAMETERIZE
-                    if(feat_set[inds[sc] + start_rung.back()]->n_params() > 0)
-                    {
-                        continue;
-                    }
-                    #endif
-
-                    if(_scores[inds[sc]] > -1e-10)
-                    {
-                        double base_val = std::abs(
-                            util_funcs::r(
-                                feat_set[start_rung.back() + inds[sc]]->value_ptr(),
-                                feat_set[start_rung.back() + inds[sc]]->value_ptr(),
-                                _n_samp_train
-                            )
-                        );
-                        for(int sc2 = sc + 1; sc2 < _scores.size(); ++sc2)
-                        {
-                            double comp = std::abs(
-                                base_val - std::abs(
-                                    util_funcs::r(
-                                        feat_set[start_rung.back() + inds[sc]]->value_ptr(),
-                                        feat_set[start_rung.back() + inds[sc2]]->value_ptr(0, true),
-                                        _n_samp_train
-                                    )
-                                )
-                            );
-                            if(comp < 1e-10)
-                            {
-                                del_inds.push_back(-1 * (inds[sc] + start_rung.back()));
-                                break;
-                            }
-                        }
-                    }
-                    else if(_scores[inds[sc + 1]] - _scores[inds[sc]] < 1e-10)
-                    {
-                        double base_val = std::abs(
-                            util_funcs::r(
-                                feat_set[start_rung.back() + inds[sc]]->value_ptr(),
-                                feat_set[start_rung.back() + inds[sc]]->value_ptr(),
-                                _n_samp_train
-                            )
-                        );
-                        double comp = std::abs(
-                            base_val - std::abs(
-                                util_funcs::r(
-                                    feat_set[start_rung.back() + inds[sc]]->value_ptr(),
-                                    feat_set[start_rung.back() + inds[sc + 1]]->value_ptr(0, true),
-                                    _n_samp_train
-                                )
-                            )
-                        );
-                        if(comp < 1e-10)
-                        {
-                            del_inds.push_back(-1 * (inds[sc] + start_rung.back()));
-                        }
-                    }
-                }
-
-                inds = util_funcs::argsort<int>(del_inds);
-                for(int ii = 0; ii < inds.size(); ++ii)
-                {
-                    feat_set.erase(feat_set.begin() - del_inds[inds[ii]]);
-                }
-
-                // Reindex
-                for(int ff = start_rung.back(); ff < feat_set.size(); ++ff)
-                {
-                    feat_set[ff]->reindex(ff);
-                }
-            }
             node_value_arrs::clear_temp_reg();
             if(!reparam)
             {
@@ -950,53 +988,19 @@ void FeatureSpace::generate_feature_space(
                     }
                 }
             }
-
-            #pragma omp parallel for
             for(int ff = start_rung.back(); ff < feat_set.size(); ++ff)
             {
                 feat_set[ff]->reindex(ff + n_feat_below_rank, ff);
-                feat_set[ff]->set_value();
-                feat_set[ff]->set_test_value();
             }
-        }
 
-        #ifdef PARAMETERIZE
-        if(!reparam)
-        {
-            // Reorder features based on the number of parameters they have (none goes first)
-            std::vector<int> feat_n_params(feat_set.size() - start_rung.back());
-            std::transform(
-                feat_set.begin() + start_rung.back(),
-                feat_set.end(),
-                feat_n_params.begin(),
-                [](node_ptr feat){return feat->n_params();}
-            );
-            inds = util_funcs::argsort<int>(feat_n_params);
-            next_phi.resize(feat_n_params.size());
-            std::copy_n(feat_set.begin() + start_rung.back(), feat_n_params.size(), next_phi.begin());
-            std::transform(
-                inds.begin(),
-                inds.end(),
-                feat_set.begin() + start_rung.back(),
-                [&next_phi](int ind){return next_phi[ind];}
-            );
-            for(int ff = start_rung.back(); ff < feat_set.size(); ++ff)
+            #ifdef PARAMETERIZE
+            if(!reparam)
             {
-                feat_set[ff]->reindex(ff);
-                feat_set[ff]->set_value();
+                int no_param_sz = reorder_by_n_params(feat_set, start_rung.back());
+                _end_no_params.push_back(no_param_sz);
             }
-
-            // Set how many features have no parameters
-            _end_no_params.push_back(
-                start_rung.back() +
-                std::count_if(feat_n_params.begin(), feat_n_params.end(), [](int n_param){return n_param == 0;})
-            );
+            #endif
         }
-        #endif
-    }
-    if(!reparam)
-    {
-        _n_feat = feat_set.size();
     }
 }
 
@@ -1013,12 +1017,14 @@ void FeatureSpace::generate_and_project(std::shared_ptr<LossFunction> loss, std:
     int worst_score_ind = std::max_element(scores_sel.begin(), scores_sel.end()) - scores_sel.begin();
     double worst_score = scores_sel[worst_score_ind];
 
+    int num_valid_feats = phi_sel.size();
     #pragma omp parallel firstprivate(worst_score, worst_score_ind, scores_sel_all)
     {
         std::shared_ptr<LossFunction> loss_copy = loss_function_util::copy(loss);
         std::vector<node_ptr> phi_sel_private(phi_sel);
         std::vector<double> scores_sel_private(scores_sel);
-        int index_base = _phi.size() + _n_sis_select * (omp_get_thread_num() + _mpi_comm->size());
+        int index_base = _phi.size() + 2 * _n_sis_select * (omp_get_thread_num() + _mpi_comm->size());
+        int num_valid_feats_private = num_valid_feats;
 
         #ifdef PARAMETERIZE
         std::shared_ptr<NLOptimizer> optimizer;
@@ -1038,14 +1044,15 @@ void FeatureSpace::generate_and_project(std::shared_ptr<LossFunction> loss, std:
         }
         #endif
 
+        auto start =  _phi.begin() + _start_rung.back() + _mpi_comm->rank();
         #ifdef OMP45
         #pragma omp for schedule(monotonic: dynamic)
         #else
         #pragma omp for schedule(dynamic)
         #endif
-        for(auto feat = _phi.begin() + _start_rung.back() + _mpi_comm->rank(); feat < _phi.end(); feat += _mpi_comm->size())
+        for(auto feat = start; feat < _phi.end(); feat += _mpi_comm->size())
         {
-            unsigned long int feat_ind = _phi.size() + _n_sis_select * (omp_get_num_threads() + _mpi_comm->size());
+            unsigned long int feat_ind = _phi.size() + 2 * _n_sis_select * (omp_get_num_threads() + _mpi_comm->size());
 
             node_value_arrs::clear_temp_reg_thread();
             std::vector<node_ptr> generated_phi;
@@ -1083,9 +1090,10 @@ void FeatureSpace::generate_and_project(std::shared_ptr<LossFunction> loss, std:
 
             while((ii < inds.size()) && ((scores[inds[ii]] < worst_score) || (phi_sel_private.size() < _n_sis_select)))
             {
+                node_value_arrs::clear_temp_reg_thread();
                 double cur_score = scores[inds[ii]];
-                bool valid_feat = _is_valid(
-                    generated_phi[inds[ii]]->value_ptr(0),
+                int valid_feat = _is_valid(
+                    generated_phi[inds[ii]]->stand_value_ptr(),
                     _n_samp_train,
                     _cross_cor_max,
                     scores_sel_all,
@@ -1093,27 +1101,27 @@ void FeatureSpace::generate_and_project(std::shared_ptr<LossFunction> loss, std:
                     node_value_arrs::N_SELECTED - _n_sis_select,
                     0
                 );
-                valid_feat = valid_feat && _is_valid_feat_list(
-                    generated_phi[inds[ii]]->value_ptr(0),
-                    _n_samp_train,
-                    _cross_cor_max,
-                    phi_sel_private,
-                    scores_sel_private,
-                    cur_score
-                );
-                if(valid_feat)
+                if(valid_feat > 0)
                 {
-                    if(scores_sel_private.size() == _n_sis_select)
+                    valid_feat = _is_valid_feat_list(
+                        generated_phi[inds[ii]]->stand_value_ptr(),
+                        _n_samp_train,
+                        _cross_cor_max,
+                        phi_sel_private,
+                        scores_sel_private,
+                        cur_score
+                    );
+
+                    if((valid_feat > 0) && (num_valid_feats_private >= _n_sis_select))
                     {
                         generated_phi[inds[ii]]->reindex(index_base + worst_score_ind);
-                        generated_phi[inds[ii]]->set_value();
                         phi_sel_private[worst_score_ind] = generated_phi[inds[ii]];
                         scores_sel_private[worst_score_ind] = cur_score;
                     }
-                    else
+                    else if(valid_feat != 0)
                     {
+                        num_valid_feats_private += valid_feat > 0;
                         generated_phi[inds[ii]]->reindex(index_base + scores_sel_private.size());
-                        generated_phi[inds[ii]]->set_value();
                         phi_sel_private.push_back(generated_phi[inds[ii]]);
                         scores_sel_private.push_back(cur_score);
                     }
@@ -1126,38 +1134,88 @@ void FeatureSpace::generate_and_project(std::shared_ptr<LossFunction> loss, std:
 
         #pragma omp critical
         {
-            index_base = _phi.size() + _n_sis_select * _mpi_comm->rank();
+            index_base = _phi.size() + 2 * _n_sis_select * _mpi_comm->rank();
             worst_score_ind = std::max_element(scores_sel.begin(), scores_sel.end()) - scores_sel.begin();
             for(int sc = 0; sc < scores_sel_private.size(); ++sc)
             {
-                if(
-                    ((phi_sel.size() < _n_sis_select) || (scores_sel_private[sc] < scores_sel[worst_score_ind])) &&
-                    _is_valid_feat_list(phi_sel_private[sc]->value_ptr(), _n_samp_train, _cross_cor_max, phi_sel, scores_sel, scores_sel_private[sc])
-                )
+                node_value_arrs::clear_temp_reg_thread();
+                if(scores_sel_private[sc] > scores_sel[worst_score_ind])
                 {
-                    if(phi_sel.size() == _n_sis_select)
+                    continue;
+                }
+                int valid_feat = _is_valid_feat_list(
+                    phi_sel_private[sc]->stand_value_ptr(),
+                    _n_samp_train,
+                    _cross_cor_max,
+                    phi_sel,
+                    scores_sel,
+                    scores_sel_private[sc]
+                );
+                if((valid_feat > 0) && (num_valid_feats >= _n_sis_select))
+                {
+                    scores_sel[worst_score_ind] = scores_sel_private[sc];
+                    phi_sel[worst_score_ind] = phi_sel_private[sc];
+                    if(phi_sel[worst_score_ind]->rung() == _max_rung)
                     {
-                        scores_sel[worst_score_ind] = scores_sel_private[sc];
-                        phi_sel[worst_score_ind] = phi_sel_private[sc];
-                        if(phi_sel[worst_score_ind]->rung() == _max_rung)
-                        {
-                            phi_sel[worst_score_ind]->reindex(index_base + worst_score_ind);
-                        }
+                        phi_sel[worst_score_ind]->reindex(index_base + worst_score_ind);
                     }
-                    else
+                    worst_score_ind = std::max_element(scores_sel.begin(), scores_sel.end()) - scores_sel.begin();
+                }
+                else if(valid_feat != 0)
+                {
+                    num_valid_feats += (valid_feat > 0);
+                    scores_sel.push_back(scores_sel_private[sc]);
+                    phi_sel.push_back(phi_sel_private[sc]);
+                    if(phi_sel.back()->rung() == _max_rung)
                     {
-                        scores_sel.push_back(scores_sel_private[sc]);
-                        phi_sel.push_back(phi_sel_private[sc]);
-                        if(phi_sel.back()->rung() == _max_rung)
-                        {
-                            phi_sel.back()->reindex(index_base + phi_sel.size());
-                        }
+                        phi_sel.back()->reindex(index_base + phi_sel.size());
                     }
                     worst_score_ind = std::max_element(scores_sel.begin(), scores_sel.end()) - scores_sel.begin();
                 }
             }
         }
     }
+
+    // Go through all features and remove any that were valid, but no longer are due to new better features appearing. If _cross_cor_max == 1.0 then this is not necessary
+    if(_cross_cor_max < 0.99999)
+    {
+        int index_base = _phi.size() + 2 * _n_sis_select + _mpi_comm->rank();
+        std::vector<int> inds = util_funcs::argsort(scores_sel);
+
+        std::vector<node_ptr> phi_sel_copy(phi_sel);
+        phi_sel.clear();
+
+        std::vector<double> scores_sel_copy(scores_sel);
+        scores_sel.clear();
+
+        phi_sel.push_back(phi_sel_copy[inds[0]]);
+        scores_sel.push_back(scores_sel_copy[inds[0]]);
+
+        int ii = 1;
+        while((ii < inds.size()) && (phi_sel.size() < _n_sis_select))
+        {
+            node_value_arrs::clear_temp_reg_thread();
+            if(
+                _is_valid_feat_list(
+                    phi_sel_copy[inds[ii]]->stand_value_ptr(),
+                    _n_samp_train,
+                    _cross_cor_max,
+                    phi_sel,
+                    scores_sel,
+                    scores_sel_copy[inds[ii]]
+                ) > 0
+            )
+            {
+                scores_sel.push_back(scores_sel_copy[inds[ii]]);
+                phi_sel.push_back(phi_sel_copy[inds[ii]]);
+                if(phi_sel.back()->rung() == _max_rung)
+                {
+                    phi_sel.back()->reindex(index_base + phi_sel.size());
+                }
+            }
+            ++ii;
+        }
+    }
 }
 
 void FeatureSpace::sis(const std::vector<double>& prop)
@@ -1194,6 +1252,7 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
         _scores.resize(_phi.size());
     }
     #endif
+
     // Create output directories if needed
     boost::filesystem::path p(_feature_space_file.c_str());
     boost::filesystem::create_directories(p.remove_filename());
@@ -1246,7 +1305,17 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
     start_time = omp_get_wtime();
     while((cur_feat_local != _n_sis_select) && (ii < _scores.size()))
     {
-        if(_is_valid(_phi[inds[ii]]->value_ptr(), _n_samp_train, _cross_cor_max, scores_sel_all, _scores[inds[ii]], cur_feat + cur_feat_local, 0))
+        if(
+            _is_valid(
+                _phi[inds[ii]]->stand_value_ptr(),
+                _n_samp_train,
+                _cross_cor_max,
+                scores_sel_all,
+                _scores[inds[ii]],
+                cur_feat + cur_feat_local,
+                0
+            )
+        )
         {
             scores_sel[cur_feat_local] = _scores[inds[ii]];
             scores_sel_all[cur_feat + cur_feat_local] = _scores[inds[ii]];
@@ -1254,7 +1323,7 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
             phi_sel.back()->set_selected(true);
             phi_sel.back()->set_d_mat_ind(cur_feat + cur_feat_local);
             phi_sel.back()->set_value();
-
+            phi_sel.back()->set_standardized_value();
             ++cur_feat_local;
         }
         ++ii;
@@ -1302,11 +1371,15 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
     if(_mpi_comm->size() > 1)
     {
         // Collect the best features from all ranks
-        std::vector<node_sc_pair> local_sel(_n_sis_select, std::make_tuple<node_ptr, double>(nullptr, std::numeric_limits<double>::max()));
-        for(int ff = 0; ff < phi_sel.size(); ++ff)
-        {
-            local_sel[ff] = mpi_reduce_op::make_node_sc_pair(phi_sel[ff], scores_sel[ff]);
-        }
+        std::vector<node_sc_pair> local_sel(_n_sis_select);
+        std::transform(
+            phi_sel.begin(),
+            phi_sel.end(),
+            scores_sel.begin(),
+            local_sel.begin(),
+            [](node_ptr feat, double sc){return node_sc_pair(feat, sc);}
+        );
+
         std::vector<node_sc_pair> selected(_n_sis_select);
         mpi::all_reduce(
             *_mpi_comm,
@@ -1320,10 +1393,11 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
         cur_feat_local = 0;
         for(auto& sel : selected)
         {
-            _phi_selected.push_back(std::get<0>(sel));
+            _phi_selected.push_back(sel._feat);
             _phi_selected.back()->set_selected(true);
             _phi_selected.back()->set_d_mat_ind(cur_feat);
             _phi_selected.back()->set_value();
+            _phi_selected.back()->set_standardized_value();
             ++cur_feat_local;
             ++cur_feat;
         }
@@ -1336,7 +1410,7 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
             for(auto& sel : selected)
             {
                 out_file_stream << std::setw(14) <<std::left << cur_feat << _phi_selected[cur_feat]->postfix_expr() << std::endl;
-                sum_file_stream << std::setw(14) <<std::left << cur_feat << std::setw(24) << std::setprecision(18) << std::left << prefact * std::get<1>(sel);
+                sum_file_stream << std::setw(14) <<std::left << cur_feat << std::setw(24) << std::setprecision(18) << std::left << prefact * sel._score;
                 sum_file_stream << _phi_selected[cur_feat]->expr() << std::endl;
 
                 ++cur_feat;
@@ -1374,6 +1448,7 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
         double prefact = std::pow(-1, (_project_type != "classification"));
         for(auto& ind : inds)
         {
+
             node_value_arrs::clear_temp_reg();
             out_file_stream << std::setw(14) <<std::left << cur_feat << phi_sel[ind]->postfix_expr() << std::endl;
             sum_file_stream << std::setw(14) <<std::left << cur_feat << std::setw(24) << std::setprecision(18) << std::left << prefact * scores_sel[ind];
@@ -1383,6 +1458,7 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
             _phi_selected.back()->set_selected(true);
             _phi_selected.back()->set_d_mat_ind(cur_feat);
             _phi_selected.back()->set_value();
+            _phi_selected.back()->set_standardized_value();
 
             ++cur_feat;
             ++cur_feat_local;
@@ -1391,7 +1467,13 @@ void FeatureSpace::sis(std::shared_ptr<LossFunction> loss)
 
     if(cur_feat != node_value_arrs::N_SELECTED)
     {
-        throw std::logic_error("SIS went through all features and did not select enough.");
+        throw std::logic_error(
+            "SIS went through all features and did not select enough (" +
+            std::to_string(cur_feat) +
+            " not " +
+            std::to_string(_n_sis_select) +
+            ")."
+        );
     }
 
     if(_mpi_comm->rank() == 0)
@@ -1423,4 +1505,23 @@ void FeatureSpace::remove_feature(const int ind)
     }
 
     _phi.erase(_phi.begin() + ind);
+    --_n_feat;
+}
+
+void FeatureSpace::output_phi()
+{
+    boost::filesystem::path p(_phi_out_file.c_str());
+    boost::filesystem::create_directories(p.remove_filename());
+
+    std::ofstream out_file_stream = std::ofstream();
+    out_file_stream.open(_phi_out_file);
+
+    out_file_stream << "# Number of Features: " << _n_feat << std::endl;
+    out_file_stream << "# Maximum Rung of the Calculation: " << _max_rung << std::endl;
+
+    for(auto& feat : _phi)
+    {
+        out_file_stream << feat->postfix_expr() << std::endl;
+    }
+    out_file_stream.close();
 }
diff --git a/src/feature_creation/feature_space/FeatureSpace.hpp b/src/feature_creation/feature_space/FeatureSpace.hpp
index 9e337fb2103c934164cff660b412f34e7cbcda0a..0b2f7e305374c904e711ce091a1174ffa3bcedbb 100644
--- a/src/feature_creation/feature_space/FeatureSpace.hpp
+++ b/src/feature_creation/feature_space/FeatureSpace.hpp
@@ -76,9 +76,10 @@ class FeatureSpace
     const std::string _project_type; //!< The type of LossFunction to use when projecting the features onto a property
     const std::string _feature_space_file; //!< File to output the computer readable representation of the selected features to
     const std::string _feature_space_summary_file; //!< File to output the human readable representation of the selected features to
+    const std::string _phi_out_file; //!< Filename of the file to output the feature set to
 
     std::function<bool(const double*, const int, const double, const std::vector<double>&, const double, const int, const int)> _is_valid; //!< Function used to determine of a feature is too correlated to previously selected features
-    std::function<bool(const double*, const int, const double, const std::vector<node_ptr>&, const std::vector<double>&, const double)> _is_valid_feat_list; //!< Function used to determine of a feature is too correlated to previously selected features within a given list
+    std::function<int(const double*, const int, const double, const std::vector<node_ptr>&, const std::vector<double>&, const double)> _is_valid_feat_list; //!< Function used to determine of a feature is too correlated to previously selected features within a given list
 
     std::shared_ptr<MPI_Interface> _mpi_comm; //!< the MPI communicator for the calculation
 
@@ -145,6 +146,24 @@ public:
      */
     void initialize_fs_output_files() const;
 
+    /**
+     * @brief Remove duplicate features from the feature space
+     *
+     * @param feat_set Feature space to remove the duplicates from
+     * @param start The index to start the removal from
+     */
+    void remove_duplicate_features(std::vector<node_ptr>& feat_set, int start);
+
+    #ifdef PARAMETERIZE
+    /**
+     * @brief Reorder features based on the number of parameters they have (smallest to largest)
+     *
+     * @param feat_set Feature space to remove the duplicates from
+     * @param start The index to start the removal from
+     */
+    int reorder_by_n_params(std::vector<node_ptr>& feat_set, int start);
+    #endif
+
     /**
      * @brief Populate _phi using _phi_0 and the allowed operators up to (_max_rung - _n_rung_generate)^th rung
      */
@@ -265,6 +284,12 @@ public:
         const double u_bound=1e50
     );
 
+    // DocString: feat_space_output_phi
+    /**
+     * @brief Output the feature set to a file of a passed filename
+     */
+    void output_phi();
+
 #ifdef PARAMETERIZE
     /**
      * @brief Generate a new set of parameterized features from a single feature
diff --git a/src/feature_creation/node/Node.cpp b/src/feature_creation/node/Node.cpp
index 92c85b669238b946de9ed8ad172cb2e93fb66da1..8b4f4905d5f58b33975204ad17c799fff1f5a9b7 100644
--- a/src/feature_creation/node/Node.cpp
+++ b/src/feature_creation/node/Node.cpp
@@ -48,3 +48,49 @@ std::map<std::string, int> Node::primary_feature_decomp() const
 }
 BOOST_SERIALIZATION_ASSUME_ABSTRACT(Node)
 
+void Node::set_standardized_value(const bool for_comp) const
+{
+    double* stand_val_ptr;
+    if(_selected)
+    {
+        stand_val_ptr = node_value_arrs::get_stand_d_matrix_ptr(_d_mat_ind);
+    }
+    else
+    {
+        stand_val_ptr = node_value_arrs::access_temp_stand_storage(_arr_ind, for_comp);
+    }
+
+    util_funcs::standardize(value_ptr(-1, for_comp), _n_samp, stand_val_ptr);
+}
+
+void Node::set_standardized_test_value(const bool for_comp) const
+{
+    double* val_ptr = value_ptr(-1, for_comp);
+    double* test_val_ptr = test_value_ptr(-1, for_comp);
+    double* stand_val_ptr = node_value_arrs::access_temp_stand_storage_test(_arr_ind, for_comp);
+
+    double mean = util_funcs::mean(val_ptr, _n_samp);
+    double stand_dev = util_funcs::stand_dev(val_ptr, _n_samp, mean);
+    std::transform(
+        test_val_ptr,
+        test_val_ptr + _n_samp_test,
+        stand_val_ptr,
+        [&](double val){return (val - mean) / stand_dev;}
+    );
+}
+
+double* Node::stand_value_ptr(const bool for_comp) const
+{
+    if(_selected)
+    {
+        return node_value_arrs::get_stand_d_matrix_ptr(_d_mat_ind);
+    }
+    set_standardized_value(for_comp);
+    return node_value_arrs::access_temp_stand_storage(_arr_ind, for_comp);
+}
+
+double* Node::stand_test_value_ptr(const bool for_comp) const
+{
+    set_standardized_test_value(for_comp);
+    return node_value_arrs::access_temp_stand_storage_test(_arr_ind, for_comp);
+}
diff --git a/src/feature_creation/node/Node.hpp b/src/feature_creation/node/Node.hpp
index 6b752818b9d02c00c1c4a4372f00b3e1a4cabbc4..83aafbf725709a80d493b7cd09ba8684b9fd895d 100644
--- a/src/feature_creation/node/Node.hpp
+++ b/src/feature_creation/node/Node.hpp
@@ -279,6 +279,15 @@ public:
      */
     virtual void set_value(int offset=-1, const bool for_comp=false) const = 0;
 
+    // DocString: node_set_stand_value
+    /**
+     * @brief Set the value of all training samples to the standardized values for the feature inside the central data storage arrays
+     *
+     * @param offset (int) Where the current node is in the binary expression tree relative to other nodes at the same depth
+     * @param for_comp (bool) If true then the evaluation is used for comparing features
+     */
+    void set_standardized_value(const bool for_comp=false) const;
+
     /**
      * @brief The pointer to where the feature's training data is stored
      *
@@ -289,6 +298,16 @@ public:
      */
     virtual double* value_ptr(int offset=-1, const bool for_comp=false) const = 0;
 
+    /**
+     * @brief The pointer to where the feature's standardized training data is stored
+     *
+     * @param offset (int) Where the current node is in the binary expression tree relative to other nodes at the same depth
+     * @param for_comp (bool) If true then the evaluation is used for comparing features
+     *
+     * @return pointer to the feature's training value
+     */
+    double* stand_value_ptr(const bool for_comp=false) const;
+
     // DocString: node_set_test_value
     /**
      * @brief Set the value of all test samples for the feature inside the central data storage array
@@ -298,6 +317,15 @@ public:
      */
     virtual void set_test_value(int offset=-1, const bool for_comp=false) const = 0;
 
+    // DocString: node_set_stand_test_value
+    /**
+     * @brief Set the value of all test samples to the standardized values for the feature inside the central data storage array
+     *
+     * @param offset (int) Where the current node is in the binary expression tree relative to other nodes at the same depth
+     * @param for_comp (bool) If true then the evaluation is used for comparing features
+     */
+    void set_standardized_test_value(const bool for_comp=false) const;
+
     /**
      * @brief The pointer to where the feature's test data is stored
      *
@@ -308,6 +336,16 @@ public:
      */
     virtual double* test_value_ptr(int offset=-1, const bool for_comp=false) const = 0;
 
+    /**
+     * @brief The pointer to where the feature's standardized test data is stored
+     *
+     * @param offset (int) Where the current node is in the binary expression tree relative to other nodes at the same depth
+     * @param for_comp (bool) If true then the evaluation is used for comparing features
+     *
+     * @return pointer to the feature's test values
+     */
+    double* stand_test_value_ptr(const bool for_comp=false) const;
+
     // DocString: node_is_nan
     /**
      * @brief Check if the feature has a NaN value in it
diff --git a/src/feature_creation/node/operator_nodes/allowed_operator_nodes/cbrt/cube_root.cpp b/src/feature_creation/node/operator_nodes/allowed_operator_nodes/cbrt/cube_root.cpp
index 61e2a2e0c42b3593dd3b24e507b09fc9d7a11184..61249224a7b5759ccc0215f0e58e447f17b5dbb9 100644
--- a/src/feature_creation/node/operator_nodes/allowed_operator_nodes/cbrt/cube_root.cpp
+++ b/src/feature_creation/node/operator_nodes/allowed_operator_nodes/cbrt/cube_root.cpp
@@ -95,12 +95,6 @@ CbrtNode::CbrtNode(const node_ptr feat, const unsigned long int feat_ind, const
         throw InvalidFeatureException();
     }
 
-    double* val_ptr = feat->value_ptr(rung() + 2);
-    if(*std::min_element(val_ptr, val_ptr + _n_samp) < 0.0)
-    {
-        throw InvalidFeatureException();
-    }
-
     set_value();
 
     // Check if the feature is NaN, greater than the allowed max of less than the allowed min
diff --git a/src/feature_creation/node/utils.cpp b/src/feature_creation/node/utils.cpp
index 46b5c2883b9d258f3fa3e366d86348f9fb48334c..cf732d43fb9bd1fa72d4b72b2e774d11f9ec19eb 100644
--- a/src/feature_creation/node/utils.cpp
+++ b/src/feature_creation/node/utils.cpp
@@ -411,7 +411,9 @@ std::vector<node_ptr> str2node::phi_from_file(const std::string filename, const
     std::ifstream file_stream;
     file_stream.open(filename, std::ios::in);
 
-    int numLines = 0;
+    int num_lines = 0;
+    int n_prim_feat = 0;
+    int n_invalid_feat = 0;
     std::string line;
 
     std::vector<node_ptr> phi;
@@ -419,7 +421,7 @@ std::vector<node_ptr> str2node::phi_from_file(const std::string filename, const
 
     while(std::getline(file_stream, line))
     {
-        ++numLines;
+        ++num_lines;
         if(line[0] == '#')
         {
             continue;
@@ -437,11 +439,12 @@ std::vector<node_ptr> str2node::phi_from_file(const std::string filename, const
         }
         catch(const InvalidFeatureException& e)
         {
+            ++n_invalid_feat;
             // Do Nothing
         }
     }
     file_stream.close();
-    if(numLines < 1)
+    if(num_lines < 1)
     {
         throw std::logic_error("File, " + filename + " not present");
     }
diff --git a/src/feature_creation/node/value_storage/nodes_value_containers.cpp b/src/feature_creation/node/value_storage/nodes_value_containers.cpp
index 55f5d705f9eb11398c655b40cdaccde5425b0eba..bb4bafa520ceb6f5814e0791a9712d0fbb0253f5 100644
--- a/src/feature_creation/node/value_storage/nodes_value_containers.cpp
+++ b/src/feature_creation/node/value_storage/nodes_value_containers.cpp
@@ -47,6 +47,10 @@ std::vector<double> node_value_arrs::TEST_VALUES_ARR;
 std::vector<double> node_value_arrs::TEMP_STORAGE_ARR;
 std::vector<double> node_value_arrs::TEMP_STORAGE_TEST_ARR;
 
+std::vector<double> node_value_arrs::STANDARDIZED_D_MATRIX;
+std::vector<double> node_value_arrs::STANDARDIZED_STORAGE_ARR;
+std::vector<double> node_value_arrs::STANDARDIZED_TEST_STORAGE_ARR;
+
 void node_value_arrs::initialize_values_arr(
     const int n_samples,
     const int n_samples_test,
@@ -61,6 +65,8 @@ void node_value_arrs::initialize_values_arr(
 
     VALUES_ARR = std::vector<double>(N_STORE_FEATURES * N_SAMPLES);
     TEST_VALUES_ARR = std::vector<double>(N_STORE_FEATURES * N_SAMPLES_TEST);
+    STANDARDIZED_STORAGE_ARR = std::vector<double>(2 * (N_PRIMARY_FEATURES + 1) * N_SAMPLES * MAX_N_THREADS);
+    STANDARDIZED_TEST_STORAGE_ARR = std::vector<double>(2 * (N_PRIMARY_FEATURES + 1) * N_SAMPLES_TEST * MAX_N_THREADS);
 }
 
 void node_value_arrs::initialize_values_arr(
@@ -174,6 +180,9 @@ void node_value_arrs::resize_values_arr(const int n_dims, const int n_feat)
     {
         N_PRIMARY_FEATURES = N_STORE_FEATURES;
 
+        STANDARDIZED_STORAGE_ARR = std::vector<double>(2 * (N_PRIMARY_FEATURES + 1) * N_SAMPLES * MAX_N_THREADS);
+        STANDARDIZED_TEST_STORAGE_ARR = std::vector<double>(2 * (N_PRIMARY_FEATURES + 1) * N_SAMPLES_TEST * MAX_N_THREADS);
+
         TEMP_STORAGE_ARR.resize(MAX_N_THREADS * (N_OP_SLOTS * N_PRIMARY_FEATURES + 1) * N_SAMPLES);
         TEMP_STORAGE_ARR.shrink_to_fit();
 
@@ -236,6 +245,7 @@ void node_value_arrs::initialize_d_matrix_arr()
 {
     N_SELECTED = 0;
     D_MATRIX = std::vector<double>(0);
+    STANDARDIZED_D_MATRIX = std::vector<double>(0);
 }
 
 void node_value_arrs::resize_d_matrix_arr(const int n_select)
@@ -243,6 +253,9 @@ void node_value_arrs::resize_d_matrix_arr(const int n_select)
     N_SELECTED += n_select;
     D_MATRIX.resize(N_SELECTED * N_SAMPLES, 0.0);
     D_MATRIX.shrink_to_fit();
+
+    STANDARDIZED_D_MATRIX.resize(N_SELECTED * N_SAMPLES, 0.0);
+    STANDARDIZED_D_MATRIX.shrink_to_fit();
 }
 
 void node_value_arrs::finalize_values_arr()
@@ -265,11 +278,18 @@ void node_value_arrs::finalize_values_arr()
     TASK_START_TRAIN.resize(0);
     TASK_SZ_TEST.resize(0);
 
-    PARAM_STORAGE_ARR.resize(0);
-    PARAM_STORAGE_TEST_ARR.resize(0);
     D_MATRIX.resize(0);
+
     VALUES_ARR.resize(0);
     TEST_VALUES_ARR.resize(0);
+
     TEMP_STORAGE_ARR.resize(0);
     TEMP_STORAGE_TEST_ARR.resize(0);
+
+    PARAM_STORAGE_ARR.resize(0);
+    PARAM_STORAGE_TEST_ARR.resize(0);
+
+    STANDARDIZED_D_MATRIX.resize(0);
+    STANDARDIZED_STORAGE_ARR.resize(0);
+    STANDARDIZED_TEST_STORAGE_ARR.resize(0);
 }
diff --git a/src/feature_creation/node/value_storage/nodes_value_containers.hpp b/src/feature_creation/node/value_storage/nodes_value_containers.hpp
index 0b793bfe4d2668c5d7f8581956ff2b784423de21..ac9188697f0ddd716807172c97b93e4bb3216aa4 100644
--- a/src/feature_creation/node/value_storage/nodes_value_containers.hpp
+++ b/src/feature_creation/node/value_storage/nodes_value_containers.hpp
@@ -58,6 +58,10 @@ namespace node_value_arrs
     extern std::vector<int> TASK_START_TRAIN; //!< The starting point for each task in the training data
     extern std::vector<int> TASK_SZ_TEST; //!< Number of test sample per task
 
+    extern std::vector<double> STANDARDIZED_D_MATRIX; //!< The descriptor matrix filled with standardized feature values (Central storage for the selected feature space)
+    extern std::vector<double> STANDARDIZED_STORAGE_ARR; //!< //!< The vector used to temporarily store the values of the standardized feature training values
+    extern std::vector<double> STANDARDIZED_TEST_STORAGE_ARR; //!< //!< The vector used to temporarily store the values of the standardized feature test values
+
     extern int N_SELECTED; //!< Number of selected features
 
     extern int N_SAMPLES; //!< Number of training samples for each feature (Sum of all elements in TASK_SZ_TRAIN)
@@ -290,6 +294,38 @@ namespace node_value_arrs
      */
     inline double* access_temp_storage_test(const unsigned long int slot){return &TEMP_STORAGE_TEST_ARR[slot*N_SAMPLES_TEST];}
 
+    /**
+     * @brief Access element of temporary standardized storage array for the training data
+     *
+     * @param arr_ind The array index of the feature
+     * @param for_comp True if used for a comparison
+     *
+     * @return pointer to the data stored in the specified slot
+     */
+    inline double* access_temp_stand_storage(const unsigned long int arr_ind, const bool for_comp)
+    {
+        return &STANDARDIZED_STORAGE_ARR[
+            ((arr_ind % N_PRIMARY_FEATURES) + for_comp * N_PRIMARY_FEATURES) * N_SAMPLES +
+            omp_get_thread_num() * 2 * (N_PRIMARY_FEATURES + 1) * N_SAMPLES
+        ];
+    }
+
+    /**
+     * @brief Access element of temporary standardized storage array for the test data
+     *
+     * @param arr_ind The array index of the feature
+     * @param for_comp True if used for a comparison
+     *
+     * @return pointer to the data stored in the specified slot
+     */
+    inline double* access_temp_stand_storage_test(const unsigned long int arr_ind, const bool for_comp)
+    {
+        return &STANDARDIZED_TEST_STORAGE_ARR[
+            ((arr_ind % N_PRIMARY_FEATURES) + for_comp * N_PRIMARY_FEATURES) * N_SAMPLES_TEST +
+            omp_get_thread_num() * 2 * (N_PRIMARY_FEATURES + 1) * N_SAMPLES_TEST
+        ];
+    }
+
     /**
      * @brief Access the param storage array
      *
@@ -367,7 +403,7 @@ namespace node_value_arrs
     );
 
     /**
-     * @brief Get the pointer to a particular selected Node from sis
+     * @brief Get the pointer to a particular selected Node's data from sis
      *
      * @param ind Index of the data in the descriptor matrix
      * @return The pointer to the descriptor matrix's data
@@ -375,7 +411,7 @@ namespace node_value_arrs
     inline double* get_d_matrix_ptr(const int ind){return &D_MATRIX[ind * N_SAMPLES];}
 
     /**
-     * @brief Get the pointer to a particular selected Node from sis
+     * @brief Get the pointer to a particular selected Node's data from sis
      *
      * @param ind Index of the data in the descriptor matrix
      * @param taskind The index for the given task
@@ -383,6 +419,23 @@ namespace node_value_arrs
      */
     inline double* get_d_matrix_ptr(const int ind, const int taskind){return &D_MATRIX[ind * N_SAMPLES + TASK_START_TRAIN[taskind]];}
 
+    /**
+     * @brief Get the pointer to a particular selected Node's standardized from sis
+     *
+     * @param ind Index of the data in the descriptor matrix
+     * @return The pointer to the descriptor matrix's standardized data
+     */
+    inline double* get_stand_d_matrix_ptr(const int ind){return &STANDARDIZED_D_MATRIX[ind * N_SAMPLES];}
+
+    /**
+     * @brief Get the pointer to a particular selected Node's standardized from sis
+     *
+     * @param ind Index of the data in the descriptor matrix
+     * @param taskind The index for the given task
+     * @return The pointer to the descriptor matrix's standardized data
+     */
+    inline double* get_stand_d_matrix_ptr(const int ind, const int taskind){return &STANDARDIZED_D_MATRIX[ind * N_SAMPLES + TASK_START_TRAIN[taskind]];}
+
     /**
      * @brief Flush the temporary storage register (training data)
      * @details Reset all slots in the register to -1
diff --git a/src/inputs/InputParser.cpp b/src/inputs/InputParser.cpp
index 399704f64cb6cfdf1684565c0d248c5c46487b4b..69e8e97ca32ebcc2303547434b1e766726bdbb8a 100644
--- a/src/inputs/InputParser.cpp
+++ b/src/inputs/InputParser.cpp
@@ -29,6 +29,7 @@ InputParser::InputParser() :
     _prop_label("prop"),
     _task_key("Task"),
     _calc_type("regression"),
+    _phi_out_file(""),
     _mpi_comm(mpi_setup::comm),
     _cross_cor_max(1.0),
     _l_bound(1e-50),
@@ -65,6 +66,7 @@ InputParser::InputParser(pt::ptree ip, std::string fn, std::shared_ptr<MPI_Inter
     _prop_key(ip.get<std::string>("property_key", "prop")),
     _task_key(ip.get<std::string>("task_key", "task")),
     _calc_type(ip.get<std::string>("calc_type", "regression")),
+    _phi_out_file(ip.get<std::string>("phi_out_file", "")),
     _leave_out_inds(as_vector<int>(ip, "leave_out_inds")),
     _mpi_comm(comm),
     _cross_cor_max(ip.get<double>("max_feat_cross_correlation", 1.0)),
@@ -284,7 +286,6 @@ InputParser::InputParser(std::string fn) :
     if(_mpi_comm->rank() == 0)
     {
         std::vector<std::string> filepath = str_utils::split_string_trim(fn, "/");
-        std::string(fn);
         if(filepath.size() > 1)
         {
             fn = str_utils::join("/", filepath.data(), filepath.size() - 1) + "/stripped_" + filepath.back();
diff --git a/src/inputs/InputParser.hpp b/src/inputs/InputParser.hpp
index 6cc3f1c05a147dc876fd7248ce5495cf6b586999..66f78204926bb7ccf09304bc3185b322d19228b8 100644
--- a/src/inputs/InputParser.hpp
+++ b/src/inputs/InputParser.hpp
@@ -83,6 +83,7 @@ private:
     std::string _prop_label; //!< The label of the property
     std::string _task_key; //!< Key used to find the task column in the data file
     std::string _calc_type; //!< The type of LossFunction to use when projecting the features onto a property
+    std::string _phi_out_file; //!< Filename of the file to output the feature set to
 
     std::shared_ptr<MPI_Interface> _mpi_comm; //!< The MPI communicator for the calculation
 
@@ -509,6 +510,18 @@ public:
      */
     inline void set_filename(const std::string filename) {_filename = filename;}
 
+    // DocString: inputs_get_phi_out_file
+    /**
+     * @brief Filename of the file to output the feature set to
+     */
+    inline std::string phi_out_file() const {return _phi_out_file;}
+
+    // DocString: inputs_set_phi_out_file
+    /**
+     * @brief Set tilename of the file to output the feature set to
+     */
+    inline void set_phi_out_file(const std::string phi_out_file) {_phi_out_file = phi_out_file;}
+
     // DocString: inputs_get_data_file
     /**
      * @brief Name of the data file
diff --git a/src/loss_function/LossFunctionConvexHull.cpp b/src/loss_function/LossFunctionConvexHull.cpp
index e87f928c0df97991c5ff9e6ab7f89a078124d672..6327408d942ded34eee4ad3d35534290c6462b24 100644
--- a/src/loss_function/LossFunctionConvexHull.cpp
+++ b/src/loss_function/LossFunctionConvexHull.cpp
@@ -167,7 +167,6 @@ double LossFunctionConvexHull::project(const node_ptr& feat)
     {
         _scores[pp] = _convex_hull[pp].overlap_1d(val_ptr);
     }
-
     return *std::min_element(_scores.begin(), _scores.end());
 }
 
@@ -262,7 +261,7 @@ double LossFunctionConvexHull::operator()(const std::vector<int>& inds)
     {
         n_convex_overlap += static_cast<double>(lp.get_n_overlap(inds));
     }
-    return n_convex_overlap;
+    return n_convex_overlap * _n_samp * _n_class;
 }
 
 double LossFunctionConvexHull::operator()(const std::vector<model_node_ptr>& feats)
diff --git a/src/main.cpp b/src/main.cpp
index f9ea45f2097dfd1da2be87e79f49912a3f06d056..5371055a1b62016c6c5ea0ac88d71e7c6b9acf31 100644
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -42,10 +42,8 @@ int main(int argc, char const *argv[])
         filename = argv[1];
     }
 
-    boost::property_tree::ptree prop_tree = get_prop_tree(filename, mpi_setup::comm);
     double start = omp_get_wtime();
-
-    InputParser inputs(prop_tree, filename, mpi_setup::comm);
+    InputParser inputs(filename);
     mpi_setup::comm->barrier();
     duration = omp_get_wtime() - start;
     if(mpi_setup::comm->rank() == 0)
diff --git a/src/mpi_interface/MPI_Ops.cpp b/src/mpi_interface/MPI_Ops.cpp
index f2b71fed1c239de944218a534ad5633cf4eba24f..93dc1f9d4ecec371443981518158fa68e6f586b0 100644
--- a/src/mpi_interface/MPI_Ops.cpp
+++ b/src/mpi_interface/MPI_Ops.cpp
@@ -65,20 +65,20 @@ std::vector<node_sc_pair> mpi_reduce_op::select_top_feats(std::vector<node_sc_pa
 
     // Merge input vectors and sort
     in_vec_2.insert(in_vec_2.end(), in_vec_1.begin(), in_vec_1.end());
-    std::sort(in_vec_2.begin(), in_vec_2.end(), my_sorter);
+    std::sort(in_vec_2.begin(), in_vec_2.end());
 
     // Populate the output vector
     int ff = 0;
     int out_ind = 0;
     while((out_ind < N_SIS_SELECT) && (ff < in_vec_2.size()))
     {
-        const node_ptr cur_node = std::get<0>(in_vec_2[ff]);
-        if(cur_node && IS_VALID(cur_node->value_ptr(), cur_node->n_samp(), CROSS_COR_MAX, out_vec, std::get<1>(in_vec_2[ff])))
+        if(in_vec_2[ff]._feat && IS_VALID(in_vec_2[ff]._feat->stand_value_ptr(), in_vec_2[ff]._feat->n_samp(), CROSS_COR_MAX, out_vec, in_vec_2[ff]._score))
         {
             out_vec.push_back(in_vec_2[ff]);
             ++out_ind;
         }
         ++ff;
     }
+
     return out_vec;
 }
diff --git a/src/mpi_interface/MPI_Ops.hpp b/src/mpi_interface/MPI_Ops.hpp
index cfa62b5ba648f3f60a4609dd9069cd5c1d9b93ca..37d4758c2a2cfc38fb8f681dcad686c8c273b27e 100644
--- a/src/mpi_interface/MPI_Ops.hpp
+++ b/src/mpi_interface/MPI_Ops.hpp
@@ -35,26 +35,6 @@ namespace mpi_reduce_op
     extern double CROSS_COR_MAX; //!< The maximum cross correlation between features
     extern int N_SIS_SELECT; //!< The number of features to select
 
-    /**
-     * @brief Create a node_sc pair from a node_ptr and a score value
-     *
-     * @param feat the node_ptr for the pair
-     * @param sc the score for the pair
-     *
-     * @return The resulting pair
-     */
-    inline node_sc_pair make_node_sc_pair(node_ptr feat, double sc){return std::make_tuple(feat, sc);}
-
-    /**
-     * @brief The function for sorting different node_sc pointers
-     *
-     * @param node_1 first node to compare
-     * @param node_2 second node to compare
-     *
-     * @return True if the score of node_1 is less then the score of node_2
-     */
-    inline bool my_sorter(node_sc_pair node_1, node_sc_pair node_2){ return (std::get<1>(node_1) < std::get<1>(node_2)); }
-
     /**
      * @brief Get the top features of the combined input vectors
      *
diff --git a/src/python/py_binding_cpp_def/bindings_docstring_keyed.cpp b/src/python/py_binding_cpp_def/bindings_docstring_keyed.cpp
index 0c798735cf994b9f33d727df25882e17f77823d0..cca9598cbbfdc584d6256d26f4b3c35d96a60617 100644
--- a/src/python/py_binding_cpp_def/bindings_docstring_keyed.cpp
+++ b/src/python/py_binding_cpp_def/bindings_docstring_keyed.cpp
@@ -231,6 +231,7 @@ void sisso::registerInputs()
         .add_property("fix_intercept", &InputParser::fix_intercept, &InputParser::set_fix_intercept, "@DocString_inputs_fix_intercept@")
         .add_property("global_param_opt", &InputParser::global_param_opt, &InputParser::set_global_param_opt, "@DocString_inputs_global_param_opt@")
         .add_property("reparam_residual", &InputParser::reparam_residual, &InputParser::set_reparam_residual, "@DocString_inputs_reparam_residual@")
+        .add_property("phi_out_file", &InputParser::phi_out_file, &InputParser::set_phi_out_file, "@DocString_inputs_phi_out_file@")
     ;
 }
 
@@ -287,6 +288,7 @@ void sisso::feature_creation::registerFeatureSpace()
         .def("feat_in_phi", &FeatureSpace::feat_in_phi, (arg("self"), arg("ind")), "@DocString_feat_space_feat_in_phi@")
         .def("remove_feature", &FeatureSpace::remove_feature, (arg("self"), arg("ind")), "@DocString_feat_space_remove_feature@")
         .def("get_feature", &FeatureSpace::get_feature, (arg("self"), arg("ind")), "@DocString_feat_space_get_feature@")
+        .def("output_phi", &FeatureSpace::output_phi, (arg("self")), "@DocString_feat_space_output_phi@")
         .add_property("phi_selected", &FeatureSpace::phi_selected_py, "@DocString_feat_space_phi_selected_py@")
         .add_property("phi0", &FeatureSpace::phi0_py, "@DocString_feat_space_phi0_py@")
         .add_property("phi", &FeatureSpace::phi_py, "@DocString_feat_space_phi_py@")
diff --git a/src/utils/compare_features.cpp b/src/utils/compare_features.cpp
index fa5d96602c77448e5f126a48e72a412de6e58015..dd6fc36d419bbff14ed530c50ac9d991ecb15905 100644
--- a/src/utils/compare_features.cpp
+++ b/src/utils/compare_features.cpp
@@ -21,6 +21,7 @@
 
 #include "utils/compare_features.hpp"
 #include <iomanip>
+std::vector<double> comp_feats::DGEMV_OUT;
 std::vector<double> comp_feats::RANK;
 std::vector<int> comp_feats::INDEX;
 
@@ -29,13 +30,14 @@ void comp_feats::set_is_valid_fxn(
     const double max_corr,
     const int n_samp,
     std::function<bool(const double*, const int, const double, const std::vector<double>&, const double, const int, const int)>& is_valid,
-    std::function<bool(const double*, const int, const double, const std::vector<node_ptr>&, const std::vector<double>&, const double)>& is_valid_feat_list
+    std::function<int(const double*, const int, const double, const std::vector<node_ptr>&, const std::vector<double>&, const double)>& is_valid_feat_list
 )
 {
     if(project_type.compare("classification") != 0)
     {
         if(max_corr < 0.99999)
         {
+            DGEMV_OUT.resize(n_samp);
             is_valid = valid_feature_against_selected_pearson;
             is_valid_feat_list = valid_feature_against_selected_pearson_feat_list;
         }
@@ -79,9 +81,7 @@ bool comp_feats::valid_feature_against_selected_pearson_max_corr_1(
     const int start_sel
 )
 {
-    double mean = util_funcs::mean<double>(val_ptr, n_samp);
-    double stand_dev = util_funcs::stand_dev(val_ptr, n_samp, mean);
-    double base_val = util_funcs::r(val_ptr, val_ptr, n_samp, mean, stand_dev, mean, stand_dev);
+    double base_val = std::inner_product(val_ptr, val_ptr + n_samp, val_ptr, 0.0);
 
     for(int dd = start_sel; dd < end_sel; ++dd)
     {
@@ -90,9 +90,18 @@ bool comp_feats::valid_feature_against_selected_pearson_max_corr_1(
             continue;
         }
 
-        double comp_value  = (
-            base_val - std::abs(util_funcs::r(val_ptr, node_value_arrs::get_d_matrix_ptr(dd), n_samp, mean, stand_dev))
+        double comp_value  = 1.0 / static_cast<double>(n_samp) * (
+            base_val -
+            std::abs(
+                std::inner_product(
+                    val_ptr,
+                    val_ptr + n_samp,
+                    node_value_arrs::get_stand_d_matrix_ptr(dd),
+                    0.0
+                )
+            )
         );
+
         if(std::abs(comp_value) < 5.0e-9)
         {
             return false;
@@ -101,7 +110,7 @@ bool comp_feats::valid_feature_against_selected_pearson_max_corr_1(
     return true;
 }
 
-bool comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(
+int comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(
     const double* val_ptr,
     const int n_samp,
     const double cross_cor_max,
@@ -110,9 +119,7 @@ bool comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(
     const double cur_score
 )
 {
-    double mean = util_funcs::mean<double>(val_ptr, n_samp);
-    double stand_dev = util_funcs::stand_dev(val_ptr, n_samp, mean);
-    double base_val = util_funcs::r(val_ptr, val_ptr, n_samp, mean, stand_dev, mean, stand_dev);
+    double base_val = std::inner_product(val_ptr, val_ptr + n_samp, val_ptr, 0.0);
 
     for(int ff = 0; ff < selected.size(); ++ff)
     {
@@ -121,15 +128,24 @@ bool comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(
             continue;
         }
 
-        double comp_value  = (
-            base_val - std::abs(util_funcs::r(val_ptr, selected[ff]->value_ptr(-1, true), n_samp, mean, stand_dev))
+        double comp_value  = 1.0 / static_cast<double>(n_samp) * (
+            base_val -
+            std::abs(
+                std::inner_product(
+                    val_ptr,
+                    val_ptr + n_samp,
+                    selected[ff]->stand_value_ptr(true),
+                    0.0
+                )
+            )
         );
+
         if(std::abs(comp_value) < 5.0e-9)
         {
-            return false;
+            return 0;
         }
     }
-    return true;
+    return 1;
 }
 
 bool comp_feats::valid_feature_against_selected_pearson_max_corr_1_mpi_op(
@@ -140,20 +156,27 @@ bool comp_feats::valid_feature_against_selected_pearson_max_corr_1_mpi_op(
     const double cur_score
 )
 {
-    double mean = util_funcs::mean<double>(val_ptr, n_samp);
-    double stand_dev = util_funcs::stand_dev(val_ptr, n_samp, mean);
-    double base_val = util_funcs::r(val_ptr, val_ptr, n_samp, mean, stand_dev, mean, stand_dev);
+    double base_val = std::inner_product(val_ptr, val_ptr + n_samp, val_ptr, 0.0);
 
     for(auto& feat_sc : out_vec)
     {
-        if(abs(cur_score - std::get<1>(feat_sc)) > 1e-5)
+        if(abs(cur_score - feat_sc._score) > 1e-5)
         {
             continue;
         }
 
-        double comp_value  = (
-            base_val - std::abs(util_funcs::r(val_ptr, std::get<0>(feat_sc)->value_ptr(-1, true), n_samp, mean, stand_dev))
+        double comp_value  = 1.0 / static_cast<double>(n_samp) * (
+            base_val -
+            std::abs(
+                std::inner_product(
+                    val_ptr,
+                    val_ptr + n_samp,
+                    feat_sc._feat->stand_value_ptr(true),
+                    0.0
+                )
+            )
         );
+
         if(std::abs(comp_value) < 5.0e-9)
         {
             return false;
@@ -173,32 +196,30 @@ bool comp_feats::valid_feature_against_selected_pearson(
     const int start_sel
 )
 {
-    double mean = util_funcs::mean<double>(val_ptr, n_samp);
-    double stand_dev = util_funcs::stand_dev(val_ptr, n_samp, mean);
-    double base_val = util_funcs::r(val_ptr, val_ptr, n_samp, mean, stand_dev, mean, stand_dev);
-
-    volatile bool is_valid = true;
-
-    #pragma omp parallel for schedule(dynamic)
-    for(int dd = start_sel; dd < end_sel; ++dd)
+    if(end_sel <= start_sel)
     {
-        if(!is_valid)
-        {
-            continue;
-        }
-
-        double comp_value = (
-            base_val - std::abs(util_funcs::r(val_ptr, node_value_arrs::get_d_matrix_ptr(dd), n_samp, mean, stand_dev))
-        );
-        if(std::abs(comp_value) < (1.0 - cross_cor_max + 5.0e-9))
-        {
-            is_valid = false;
-        }
+        return true;
     }
-    return is_valid;
+
+    DGEMV_OUT.resize(end_sel - start_sel);
+    dgemv_(
+        'N',
+        DGEMV_OUT.size(),
+        n_samp,
+        1.0 / static_cast<double>(n_samp),
+        node_value_arrs::get_stand_d_matrix_ptr(start_sel),
+        DGEMV_OUT.size(),
+        val_ptr,
+        1,
+        0.0,
+        DGEMV_OUT.data(),
+        1
+    );
+
+    return std::abs(DGEMV_OUT[idamax_(DGEMV_OUT.size(), DGEMV_OUT.data(), 1) - 1]) <= cross_cor_max;
 }
 
-bool comp_feats::valid_feature_against_selected_pearson_feat_list(
+int comp_feats::valid_feature_against_selected_pearson_feat_list(
     const double* val_ptr,
     const int n_samp,
     const double cross_cor_max,
@@ -207,21 +228,21 @@ bool comp_feats::valid_feature_against_selected_pearson_feat_list(
     const double cur_score
 )
 {
-    double mean = util_funcs::mean<double>(val_ptr, n_samp);
-    double stand_dev = util_funcs::stand_dev(val_ptr, n_samp, mean);
-    double base_val = util_funcs::r(val_ptr, val_ptr, n_samp, mean, stand_dev, mean, stand_dev);
-
-    for(auto& feat : selected)
+    int is_valid = 1;
+    double comp_value = 1.0;
+    for(int ff = 0; ff < selected.size(); ++ff)
     {
-        double comp_value = (
-            base_val - std::abs(util_funcs::r(val_ptr, feat->value_ptr(-1, true), n_samp, mean, stand_dev))
+        comp_value = 1.0 / static_cast<double>(n_samp) * std::abs(
+            std::inner_product(val_ptr, val_ptr + n_samp, selected[ff]->stand_value_ptr(true), 0.0)
         );
-        if(std::abs(comp_value) < (1.0 - cross_cor_max + 5.0e-9))
+
+        if((comp_value > cross_cor_max) && (cur_score > scores_sel[ff]))
         {
-            return false;
+            return 0;
         }
+        is_valid -= 2 * (comp_value > cross_cor_max);
     }
-    return true;
+    return is_valid / std::abs(is_valid);
 }
 
 bool comp_feats::valid_feature_against_selected_pearson_mpi_op(
@@ -232,16 +253,13 @@ bool comp_feats::valid_feature_against_selected_pearson_mpi_op(
     const double cur_score
 )
 {
-    double mean = util_funcs::mean<double>(val_ptr, n_samp);
-    double stand_dev = util_funcs::stand_dev(val_ptr, n_samp, mean);
-    double base_val = util_funcs::r(val_ptr, val_ptr, n_samp, mean, stand_dev, mean, stand_dev);
-
     for(auto& feat_sc : out_vec)
     {
-        double comp_value = (
-            base_val - std::abs(util_funcs::r(val_ptr, std::get<0>(feat_sc)->value_ptr(-1, true), n_samp, mean, stand_dev))
+        double comp_value = 1.0 / static_cast<double>(n_samp) * std::abs(
+            std::inner_product(val_ptr, val_ptr + n_samp, feat_sc._feat->stand_value_ptr(true), 0.0)
         );
-        if(std::abs(comp_value) < (1.0 - cross_cor_max + 5.0e-9))
+
+        if(comp_value > cross_cor_max)
         {
             return false;
         }
@@ -291,7 +309,7 @@ bool comp_feats::valid_feature_against_selected_spearman_max_corr_1(
     return true;
 }
 
-bool comp_feats::valid_feature_against_selected_spearman_max_corr_1_feat_list(
+int comp_feats::valid_feature_against_selected_spearman_max_corr_1_feat_list(
     const double* val_ptr,
     const int n_samp,
     const double cross_cor_max,
@@ -325,10 +343,10 @@ bool comp_feats::valid_feature_against_selected_spearman_max_corr_1_feat_list(
         );
         if(std::abs(comp_value) < 5.0e-9)
         {
-            return false;
+            return 0;
         }
     }
-    return true;
+    return 1;
 }
 
 bool comp_feats::valid_feature_against_selected_spearman_max_corr_1_mpi_op(
@@ -352,13 +370,13 @@ bool comp_feats::valid_feature_against_selected_spearman_max_corr_1_mpi_op(
 
     for(auto& feat_sc : out_vec)
     {
-        if(abs(std::floor(cur_score) - std::floor(std::get<1>(feat_sc))) > 1e-5)
+        if(abs(std::floor(cur_score) - std::floor(feat_sc._score)) > 1e-5)
         {
             continue;
         }
 
         util_funcs::rank(
-            std::get<0>(feat_sc)->value_ptr(-1, true), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp
+            feat_sc._feat->value_ptr(-1, true), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp
         );
         double comp_value = (
             base_val - std::abs(util_funcs::r(&RANK[omp_get_thread_num() * 4 * n_samp], &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], n_samp))
@@ -381,39 +399,23 @@ bool comp_feats::valid_feature_against_selected_spearman(
     const int start_sel
 )
 {
-    double base_val = std::abs(
-        util_funcs::spearman_r(
-            val_ptr,
-            val_ptr,
-            &RANK[omp_get_thread_num() * 4 * n_samp],
-            &RANK[(omp_get_thread_num() * 4 + 2) * n_samp],
-            &INDEX[omp_get_thread_num() * 2 * n_samp],
-            n_samp
-        )
-    );
-    volatile bool is_valid = true;
-
+    util_funcs::rank(val_ptr, &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp);
+    for(int dd = start_sel; dd < end_sel; ++dd)
     {
-        for(int dd = start_sel; dd < end_sel; ++dd)
+        // Rank the new variable and take the Pearson correlation of the rank variables (val_ptr rank still in &RANK[(omp_get_thread_num() * 4 + 2) * n_samp])
+        util_funcs::rank(node_value_arrs::get_d_matrix_ptr(dd), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp);
+        double comp_value = std::abs(
+            util_funcs::r(&RANK[omp_get_thread_num() * 4 * n_samp], &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], n_samp)
+        );
+        if(comp_value > cross_cor_max)
         {
-            if(!is_valid)
-                continue;
-
-            // Rank the new variable and take the Pearson correlation of the rank variables (val_ptr rank still in &RANK[(omp_get_thread_num() * 4 + 2) * n_samp])
-            util_funcs::rank(node_value_arrs::get_d_matrix_ptr(dd), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp);
-            double comp_value = (
-                base_val - std::abs(util_funcs::r(&RANK[omp_get_thread_num() * 4 * n_samp], &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], n_samp))
-            );
-            if(std::abs(comp_value) < 1.0 -cross_cor_max + 5.0e-9)
-            {
-                is_valid = false;
-            }
+            return false;
         }
     }
-    return is_valid;
+    return true;
 }
 
-bool comp_feats::valid_feature_against_selected_spearman_feat_list(
+int comp_feats::valid_feature_against_selected_spearman_feat_list(
     const double* val_ptr,
     const int n_samp,
     const double cross_cor_max,
@@ -422,30 +424,22 @@ bool comp_feats::valid_feature_against_selected_spearman_feat_list(
     const double cur_score
 )
 {
-    double base_val = std::abs(
-        util_funcs::spearman_r(
-            val_ptr,
-            val_ptr,
-            &RANK[omp_get_thread_num() * 4 * n_samp],
-            &RANK[(omp_get_thread_num() * 4 + 2) * n_samp],
-            &INDEX[omp_get_thread_num() * 2 * n_samp],
-            n_samp
-        )
-    );
-
-    for(auto& feat : selected)
+    util_funcs::rank(val_ptr, &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp);
+    int is_valid = 1;
+    for(int ff = 0; ff < selected.size(); ++ff)
     {
         // Rank the new variable and take the Pearson correlation of the rank variables (val_ptr rank still in &RANK[(omp_get_thread_num() * 4 + 2) * n_samp])
-        util_funcs::rank(feat->value_ptr(-1, true), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp);
-        double comp_value = (
-            base_val - std::abs(util_funcs::r(&RANK[omp_get_thread_num() * 4 * n_samp], &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], n_samp))
+        util_funcs::rank(selected[ff]->value_ptr(-1, true), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp);
+        double comp_value = std::abs(
+            util_funcs::r(&RANK[omp_get_thread_num() * 4 * n_samp], &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], n_samp)
         );
-        if(std::abs(comp_value) < 1.0 - cross_cor_max + 5.0e-9)
+        if((comp_value > cross_cor_max) && (cur_score > scores_sel[ff]))
         {
-            return false;
+            return 0;
         }
+        is_valid -= 2 * (std::abs(comp_value) > cross_cor_max);
     }
-    return true;
+    return is_valid / std::abs(is_valid);
 }
 
 bool comp_feats::valid_feature_against_selected_spearman_mpi_op(
@@ -456,26 +450,16 @@ bool comp_feats::valid_feature_against_selected_spearman_mpi_op(
     const double cur_score
 )
 {
-    double base_val = std::abs(
-        util_funcs::spearman_r(
-            val_ptr,
-            val_ptr,
-            &RANK[omp_get_thread_num() * 4 * n_samp],
-            &RANK[(omp_get_thread_num() * 4 + 2) * n_samp],
-            &INDEX[omp_get_thread_num() * 2 * n_samp],
-            n_samp
-        )
-    );
-
+    util_funcs::rank(val_ptr, &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp);
     for(auto& feat_sc : out_vec)
     {
         util_funcs::rank(
-            std::get<0>(feat_sc)->value_ptr(-1, true), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp
+            feat_sc._feat->value_ptr(-1, true), &RANK[omp_get_thread_num() * 4 * n_samp], &INDEX[omp_get_thread_num() * 2 * n_samp], n_samp
         );
-        double comp_value = (
-            base_val - std::abs(util_funcs::r(&RANK[omp_get_thread_num() * 4 * n_samp], &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], n_samp))
+        double comp_value = std::abs(
+            util_funcs::r(&RANK[omp_get_thread_num() * 4 * n_samp], &RANK[(omp_get_thread_num() * 4 + 2) * n_samp], n_samp)
         );
-        if(std::abs(comp_value) < 1.0 - cross_cor_max + 5.0e-9)
+        if(comp_value > cross_cor_max)
         {
             return false;
         }
diff --git a/src/utils/compare_features.hpp b/src/utils/compare_features.hpp
index b0084cb22fafbc17cbbd58c2069b418541b483bf..16a059e3a56e1ab152c5901d20a818f30a4cc32a 100644
--- a/src/utils/compare_features.hpp
+++ b/src/utils/compare_features.hpp
@@ -26,10 +26,102 @@
 
 #include "feature_creation/node/Node.hpp"
 
-typedef std::tuple<node_ptr, double> node_sc_pair;
+struct node_sc_pair
+{
+    /**
+     * @brief Serialization function to send over MPI
+     *
+     * @param ar Archive representation of node
+     */
+    template <typename Archive>
+    void serialize(Archive& ar, const unsigned int version)
+    {
+        ar & _feat;
+        ar & _score;
+    }
+    node_ptr _feat; //!< The feature
+    double _score; //!< The score
+
+    /**
+     * @brief Default Constructor
+     */
+    node_sc_pair():
+        _feat(nullptr),
+        _score(0.0)
+    {}
+
+    /**
+     * @brief Constructor
+     *
+     * @param feat The feature
+     * @param score The score
+     */
+    node_sc_pair(node_ptr feat, double score):
+        _feat(feat),
+        _score(score)
+    {}
+
+    /**
+     * @brief Copy Constructor
+     *
+     * @param o Node to be copied
+     */
+    node_sc_pair(const node_sc_pair& o) = default;
+
+    /**
+     * @brief Move Constructor
+     *
+     * @param o Node to be copied
+     */
+    node_sc_pair(node_sc_pair&& o) = default;
+
+    /**
+     * @brief Copy Assignment operator
+     *
+     * @param o Node to be copied
+     */
+    node_sc_pair& operator= (const node_sc_pair& o) = default;
+
+    /**
+     * @brief Move Assignment operator
+     *
+     * @param o Node to be moved
+     */
+    node_sc_pair& operator= (node_sc_pair&& o) = default;
+
+    /**
+     * @brief Less than operator
+     *
+     * @param pair_2 node_sc_pair to compare against
+     * @return True if _score is less than pair_2.score
+     */
+    inline bool operator<(node_sc_pair pair_2){return _score < pair_2._score;}
+    /**
+     * @brief Greater than operator
+     *
+     * @param pair_2 node_sc_pair to compare against
+     * @return True if _score is greater than pair_2.score
+     */
+    inline bool operator>(node_sc_pair pair_2){return _score > pair_2._score;}
+    /**
+     * @brief Less than  or equal to operator
+     *
+     * @param pair_2 node_sc_pair to compare against
+     * @return True if _score is less than or equal to  pair_2.score
+     */
+    inline bool operator<=(node_sc_pair pair_2){return _score <= pair_2._score;}
+    /**
+     * @brief Greater than  or equal to operator
+     *
+     * @param pair_2 node_sc_pair to compare against
+     * @return True if _score is greater than or equal to  pair_2.score
+     */
+    inline bool operator>=(node_sc_pair pair_2){return _score >= pair_2._score;}
+};
 
 namespace comp_feats
 {
+    extern std::vector<double> DGEMV_OUT; //!< Function used to store the output of DGEMV
     extern std::vector<double> RANK; //!< Global variable used to store the rank variables for Spearman correlation
     extern std::vector<int> INDEX; //!< Global variable used to store the sorting indexes for Spearman correlation
 
@@ -47,7 +139,7 @@ namespace comp_feats
         const double max_corr,
         const int n_samp,
         std::function<bool(const double*, const int, const double, const std::vector<double>&, const double, const int, const int)>& is_valid,
-        std::function<bool(const double*, const int, const double, const std::vector<node_ptr>&, const std::vector<double>&, const double)>& is_valid_feat_list
+        std::function<int(const double*, const int, const double, const std::vector<node_ptr>&, const std::vector<double>&, const double)>& is_valid_feat_list
     );
 
     /**
@@ -88,9 +180,9 @@ namespace comp_feats
      * @param scores_sel The projection scores for the selected feature
      * @param cur_score The score of the current candidate feature
      *
-     * @return True if the feature is still valid
+     * @return 1 if the feature is valid, 0 if the feature is invalid, -1 if the feature is invalid but has a higher score than the conflicting features
      */
-    bool valid_feature_against_selected_pearson_max_corr_1_feat_list(
+    int valid_feature_against_selected_pearson_max_corr_1_feat_list(
         const double* val_ptr,
         const int n_samp,
         const double cross_cor_max,
@@ -151,9 +243,9 @@ namespace comp_feats
      * @param scores_sel The projection scores for the selected feature
      * @param cur_score The score of the current candidate feature
      *
-     * @return True if the feature is still valid
+     * @return 1 if the feature is valid, -1 if the feature is invalid, 0 if the feature is invalid but has a higher score than the conflicting features
      */
-    bool valid_feature_against_selected_pearson_feat_list(
+    int valid_feature_against_selected_pearson_feat_list(
         const double* val_ptr,
         const int n_samp,
         const double cross_cor_max,
@@ -214,9 +306,9 @@ namespace comp_feats
      * @param scores_sel The projection scores for the selected feature
      * @param cur_score The score of the current candidate feature
      *
-     * @return True if the feature is still valid
+     * @return 1 if the feature is valid, -1 if the feature is invalid, 0 if the feature is invalid but has a higher score than the conflicting features
      */
-    bool valid_feature_against_selected_spearman_max_corr_1_feat_list(
+    int valid_feature_against_selected_spearman_max_corr_1_feat_list(
         const double* val_ptr,
         const int n_samp,
         const double cross_cor_max,
@@ -277,9 +369,9 @@ namespace comp_feats
      * @param scores_sel The projection scores for the selected feature
      * @param cur_score The score of the current candidate feature
      *
-     * @return True if the feature is still valid
+     * @return 1 if the feature is valid, -1 if the feature is invalid, 0 if the feature is invalid but has a higher score than the conflicting features
      */
-    bool valid_feature_against_selected_spearman_feat_list(
+    int valid_feature_against_selected_spearman_feat_list(
         const double* val_ptr,
         const int n_samp,
         const double cross_cor_max,
diff --git a/src/utils/math_funcs.cpp b/src/utils/math_funcs.cpp
index 247a90ed2733ab611fde97a1ad8daa9212b0b2f4..8b53f0b9e5cc60352c59b4bafdd9ee347da3e939 100644
--- a/src/utils/math_funcs.cpp
+++ b/src/utils/math_funcs.cpp
@@ -41,6 +41,18 @@ bool util_funcs::iterate(std::vector<int>& inds, int size, int incriment)
     return cont;
 }
 
+void util_funcs::standardize(const double* val, const int sz, double* stand_val)
+{
+    double avg = mean(val, sz);
+    double std = stand_dev(val, sz, avg);
+    std::transform(
+        val,
+        val + sz,
+        stand_val,
+        [&](double vv){return (vv - avg) / std;}
+    );
+}
+
 double util_funcs::log_r2(const double* a, const double* b, double* log_a, const int size)
 {
     std::transform(a, a + size, log_a, [](double aa){return std::log(aa);});
diff --git a/src/utils/math_funcs.hpp b/src/utils/math_funcs.hpp
index 58878ca0e0554a0a5121c7d76c00222e356fcc29..fa3e3ad378e7a3945ed5c4f974cba5c6ad994e04 100644
--- a/src/utils/math_funcs.hpp
+++ b/src/utils/math_funcs.hpp
@@ -143,6 +143,15 @@ namespace util_funcs
         return std::sqrt(std::accumulate(start, start+size, 0.0, [&vec_mean](double total, double val){return total + std::pow(val - vec_mean, 2.0);}) / size);
     };
 
+    /**
+     * @brief Standardize a vector
+     *
+     * @param val pointer to the head of the vector to standardize
+     * @param sz size of the vector
+     * @param stand_val vector to the output vector
+     */
+    void standardize(const double* val, int sz, double* stand_val);
+
     /**
      * @brief Find the norm of a vector
      *
diff --git a/tests/exec_test/classification_max_corr_gen_proj/sisso.json b/tests/exec_test/classification_max_corr_gen_proj/sisso.json
index 7f978c23d974a3d8bf07c2710cac52494716e103..2ca3dab025898649d7569b0c686d9c97c6eee98c 100644
--- a/tests/exec_test/classification_max_corr_gen_proj/sisso.json
+++ b/tests/exec_test/classification_max_corr_gen_proj/sisso.json
@@ -5,7 +5,7 @@
     "n_residual": 1,
     "data_file": "data.csv",
     "data_file_relatice_to_json": true,
-    "max_feat_cross_correlation": 0.99,
+    "max_feat_cross_correlation": 0.9,
     "property_key": "prop",
     "leave_out_frac": 0.2,
     "n_models_store": 1,
diff --git a/tests/exec_test/default/feature_space/phi.txt b/tests/exec_test/default/feature_space/phi.out
similarity index 99%
rename from tests/exec_test/default/feature_space/phi.txt
rename to tests/exec_test/default/feature_space/phi.out
index cca393a6211387286058db79cd189cf7171af6bb..acb70639c5479bcb39cdb585a6c124a8826cfc40 100644
--- a/tests/exec_test/default/feature_space/phi.txt
+++ b/tests/exec_test/default/feature_space/phi.out
@@ -1,4 +1,4 @@
-# Number of Features: 3466
+# Number of Features: 3490
 # Maximum Rung of the Calculation: 2
 0
 1
@@ -108,8 +108,7 @@
 0|2|div|0|cbrt|mult
 0|2|div|0|abs|add
 0|2|div|0|abs|sub
-0|3|div|1|sq|div
-0|3|div|1|cb|div
+0|3|div|1|sp|div
 0|3|div|0|sq|mult
 0|3|div|0|cb|mult
 0|3|div|0|sp|mult
@@ -122,8 +121,8 @@
 0|3|div|0|2|div|add
 0|3|div|0|2|div|sub
 0|3|div|0|2|div|abd
-0|3|div|1|cb|mult
-0|3|div|1|sp|div
+0|3|div|1|sq|div
+0|3|div|1|cb|div
 0|3|div|1|sqrt|div
 0|3|div|1|cbrt|div
 0|3|div|2|sq|div
@@ -135,7 +134,8 @@
 1|0|mult|sp
 1|0|mult|cbrt
 1|0|mult|abs
-0|3|div|3|abs|div
+1|0|mult|1|mult
+0|3|div|3|sin|mult
 0|3|div|2|cos|div
 0|3|div|2|1|mult|mult
 0|3|div|2|1|mult|div
@@ -148,8 +148,8 @@
 0|3|div|2|cbrt|div
 0|3|div|3|cbrt|div
 0|3|div|3|abs|mult
+0|3|div|3|abs|div
 0|2|div|3|cb|div
-0|3|div|3|sin|mult
 0|3|div|3|sin|div
 0|3|div|3|cos|mult
 0|3|div|3|cos|div
@@ -161,6 +161,7 @@
 0|3|div|3|2|abd|mult
 0|3|div|3|2|abd|div
 0|3|div|3|2|mult|div
+0|3|div|1|cb|mult
 0|1|div|3|0|mult|mult
 0|1|div|1|div
 0|1|div|2|mult
@@ -255,7 +256,7 @@
 0|1|div|3|2|mult|div
 0|1|div|1|cb|div
 0|1|div|0|sq|mult
-1|0|mult|1|mult
+1|0|mult|2|mult
 0|1|div|0|sp|mult
 0|1|div|0|cbrt|mult
 0|1|div|0|abs|mult
@@ -268,8 +269,7 @@
 0|1|div|2|cb|div
 0|2|div|0|add
 0|2|div|0|sub
-1|sq|3|2|mult|div
-1|sq|3|abs|div
+1|sq|3|2|div|mult
 1|sq|3|sin|mult
 1|sq|3|sin|div
 1|sq|3|cos|mult
@@ -282,8 +282,8 @@
 1|sq|3|2|abd|mult
 1|sq|3|2|abd|div
 1|sq|3|2|mult|mult
-1|sq|3|abs|mult
-1|sq|3|2|div|mult
+1|sq|3|2|mult|div
+1|sq|3|abs|div
 1|sq|0|sq|div
 1|sq|0|cb|mult
 1|sq|0|cb|div
@@ -295,9 +295,8 @@
 1|sq|0|2|div|mult
 1|sq|0|3|div|mult
 1|sq|1|0|mult|mult
-1|sq|2|cos|mult
-1|sq|0|mult
-1|sq|0|div
+1|sq|1|0|div|mult
+1|sq|2|1|mult|mult
 1|sq|inv
 1|sq|sq
 1|sq|2|mult
@@ -309,19 +308,21 @@
 1|sq|2|abs|div
 1|sq|2|sin|mult
 1|sq|2|sin|div
-1|sq|1|0|div|mult
+1|sq|2|cos|mult
 1|sq|2|cos|div
-1|sq|2|1|mult|mult
+1|sq|2|0|mult|div
 1|sq|2|3|div|mult
 1|sq|3|0|mult|mult
 1|sq|3|0|mult|div
 1|sq|3|0|div|mult
+1|sq|3|sq|div
 1|sq|3|cb|mult
 1|sq|3|cb|div
 1|sq|2|cbrt|mult
 1|sq|2|cbrt|div
 1|sq|3|cbrt|mult
 1|sq|3|cbrt|div
+1|sq|3|abs|mult
 1|sp|3|cos|div
 1|sp|3|sq|mult
 1|sp|3|sq|div
@@ -349,8 +350,8 @@
 1|sp|3|2|div|mult
 1|sp|0|sq|mult
 1|sp|0|sq|div
-1|sp|2|div
-1|sq|2|0|mult|div
+1|sp|3|mult
+1|sq|2|sq|div
 1|sq|2|cb|div
 0|inv|abs
 0|inv|3|0|div|add
@@ -362,9 +363,10 @@
 1|sp|sq
 1|sp|cb
 1|sp|2|mult
-1|inv|3|1|div|sub
-1|sp|3|mult
+1|sp|2|div
+1|sq|0|div
 1|sp|3|div
+1|sp|3|sp|div
 1|sp|2|abs|mult
 1|sp|2|abs|div
 1|sp|2|sin|mult
@@ -375,9 +377,7 @@
 1|sp|2|3|div|mult
 1|sp|3|0|mult|mult
 1|sp|3|0|mult|div
-1|0|mult|1|cb|mult
-1|0|mult|3|sin|div
-1|0|mult|3|cos|mult
+1|0|mult|0|cb|mult
 1|0|mult|3|cos|div
 1|0|mult|3|1|mult|mult
 1|0|mult|3|2|add|mult
@@ -389,9 +389,9 @@
 1|0|mult|3|2|mult|mult
 1|0|mult|3|2|mult|div
 1|0|mult|3|2|div|mult
-1|0|mult|3|sin|mult
+1|0|mult|1|cb|mult
 1|0|mult|0|sq|mult
-1|0|mult|0|cb|mult
+1|0|mult|3|cos|mult
 1|0|mult|0|sp|mult
 1|0|mult|0|cbrt|mult
 1|0|mult|0|abs|mult
@@ -402,8 +402,9 @@
 1|0|mult|2|cb|div
 1|0|div|0|div
 1|0|div|sq
-1|0|mult|2|1|mult|mult
-1|0|mult|2|mult
+1|0|div|cb
+1|0|div|sp
+1|0|mult|3|0|mult|mult
 1|0|mult|2|div
 1|0|mult|3|mult
 1|0|mult|3|div
@@ -415,9 +416,9 @@
 1|0|mult|2|sin|div
 1|0|mult|2|cos|mult
 1|0|mult|2|cos|div
-1|0|div|cb
+1|0|mult|2|1|mult|mult
 1|0|mult|2|3|div|mult
-1|0|mult|3|0|mult|mult
+1|0|div|cbrt
 1|0|mult|3|sq|mult
 1|0|mult|3|sq|div
 1|0|mult|3|cb|mult
@@ -428,9 +429,9 @@
 1|0|mult|3|cbrt|div
 1|0|mult|3|abs|mult
 1|0|mult|3|abs|div
-1|0|div|3|2|mult|div
-1|0|div|3|abs|div
-1|0|div|3|sin|mult
+1|0|mult|3|sin|mult
+1|0|mult|3|sin|div
+1|0|div|0|sq|div
 1|0|div|3|sin|div
 1|0|div|3|cos|mult
 1|0|div|3|cos|div
@@ -442,9 +443,9 @@
 1|0|div|3|2|abd|mult
 1|0|div|3|2|abd|div
 1|0|div|3|2|mult|mult
-1|0|div|3|abs|mult
+1|0|div|3|2|mult|div
 1|0|div|1|cb|mult
-1|0|div|0|sq|div
+1|0|div|3|sin|mult
 1|0|div|0|cb|div
 1|0|div|0|cbrt|div
 1|0|div|0|abs|mult
@@ -455,9 +456,9 @@
 1|inv|2|1|div|sub
 1|inv|2|1|div|abd
 1|inv|3|1|div|add
-1|0|div|2|sin|div
-1|0|div|sp
-1|0|div|cbrt
+1|inv|3|1|div|sub
+1|sq|0|mult
+1|0|div|2|cos|div
 1|0|div|abs
 1|0|div|1|mult
 1|0|div|2|mult
@@ -468,9 +469,9 @@
 1|0|div|2|abs|mult
 1|0|div|2|abs|div
 1|0|div|2|sin|mult
-0|abs|3|2|abd|mult
+1|0|div|2|sin|div
 1|0|div|2|cos|mult
-1|0|div|2|cos|div
+0|abs|3|2|abd|mult
 1|0|div|2|1|mult|mult
 1|0|div|3|0|mult|div
 1|0|div|3|sq|mult
@@ -481,21 +482,12 @@
 1|0|div|2|cbrt|div
 1|0|div|3|cbrt|mult
 1|0|div|3|cbrt|div
-1|cb|3|2|mult|mult
-1|cb|3|abs|mult
-1|cb|3|abs|div
-1|cb|3|sin|mult
-1|cb|3|sin|div
-1|cb|3|cos|mult
-1|cb|3|cos|div
-1|cb|3|1|mult|mult
-1|cb|3|2|add|mult
-1|cb|3|2|add|div
-1|cb|3|2|sub|mult
-1|cb|3|2|sub|div
+1|0|div|3|abs|mult
+1|0|div|3|abs|div
+0|sq|inv
 1|cb|3|2|abd|mult
 1|cb|3|2|abd|div
-1|cb|3|cbrt|div
+1|cb|3|2|mult|mult
 1|cb|3|2|mult|div
 1|cb|3|2|div|mult
 1|cb|0|sq|div
@@ -505,24 +497,23 @@
 1|cb|0|abs|div
 1|cb|2|0|mult|div
 1|cb|2|sq|div
-0|sq|inv
+1|cb|2|cb|div
+1|cb|3|2|sub|div
 0|sq|sq
 0|sq|1|mult
-1|cb|2|sin|div
-1|cb|0|div
-1|cb|inv
-1|cb|sq
-1|cb|cb
-1|cb|2|mult
-1|cb|2|div
-1|cb|3|mult
-1|cb|3|div
-1|cb|3|sp|mult
-1|cb|3|sp|div
-1|cb|2|abs|mult
-1|cb|2|abs|div
-1|cb|2|sin|mult
 0|sq|1|div
+0|sq|2|mult
+0|sq|2|div
+0|sq|3|mult
+0|sq|3|div
+0|sq|3|sp|mult
+0|sq|3|sp|div
+0|sq|2|abs|mult
+0|sq|2|abs|div
+0|sq|2|sin|mult
+1|cb|2|cbrt|div
+1|cb|2|sin|mult
+1|cb|2|sin|div
 1|cb|2|cos|mult
 1|cb|2|cos|div
 1|cb|2|1|mult|mult
@@ -532,77 +523,78 @@
 1|cb|3|0|div|mult
 1|cb|3|sq|mult
 1|cb|3|sq|div
+1|cb|3|cb|div
 1|cb|2|cbrt|mult
-1|cb|2|cbrt|div
+0|sq|2|sin|div
 1|cb|3|cbrt|mult
-0|sq|3|2|mult|div
-0|sq|3|sin|div
-0|sq|3|cos|mult
-0|sq|3|cos|div
-0|sq|3|1|mult|mult
-0|sq|3|1|mult|div
-0|sq|3|1|div|mult
-0|sq|3|2|add|mult
-0|sq|3|2|add|div
-0|sq|3|2|sub|mult
-0|sq|3|2|sub|div
+1|cb|3|cbrt|div
+1|cb|3|abs|mult
+1|cb|3|abs|div
+1|cb|3|sin|mult
+1|cb|3|sin|div
+1|cb|3|cos|mult
+1|cb|3|cos|div
+1|cb|3|1|mult|mult
+1|cb|3|2|add|mult
+1|cb|3|2|add|div
+1|cb|3|2|sub|mult
+0|sq|2|cb|div
 0|sq|3|2|abd|mult
 0|sq|3|2|abd|div
 0|sq|3|2|mult|mult
-0|sq|3|sin|mult
+0|sq|3|2|mult|div
 0|sq|3|2|div|mult
 0|sq|1|cb|mult
 0|sq|1|cb|div
 0|sq|0|abs|div
+0|sq|1|sq|div
 0|sq|1|sp|div
 0|sq|1|sqrt|div
 0|sq|1|cbrt|div
-0|sq|2|cb|div
+0|sq|2|sq|div
+0|sq|3|2|sub|div
 0|sq|2|sp|div
 0|cb|inv
 0|cb|sq
 0|cb|cb
-0|sq|2|1|mult|mult
-0|sq|2|mult
-0|sq|2|div
-0|sq|3|mult
-0|sq|3|div
-0|sq|3|sp|mult
-0|sq|3|sp|div
-0|sq|2|abs|mult
-0|sq|2|abs|div
-0|sq|2|sin|mult
-0|sq|2|sin|div
+0|cb|abs
+0|cb|1|mult
+0|cb|1|div
+0|cb|2|mult
+0|cb|2|div
+0|cb|3|mult
+0|cb|3|div
+0|cb|3|sp|mult
+0|sq|3|cbrt|div
 0|sq|2|cos|mult
 0|sq|2|cos|div
-1|cb|0|mult
+0|sq|2|1|mult|mult
 0|sq|2|1|mult|div
 0|sq|2|1|div|mult
 0|sq|2|3|div|mult
 0|sq|3|0|mult|mult
+0|sq|3|sq|div
 0|sq|3|cb|mult
 0|sq|3|cb|div
 0|sq|2|cbrt|mult
 0|sq|2|cbrt|div
 0|sq|3|cbrt|mult
-0|sq|3|cbrt|div
+1|cb|2|abs|div
 0|sq|3|abs|mult
 0|sq|3|abs|div
-3|2|div|3|exp|sub
-3|2|div|2|sin|mult
-3|2|div|2|sin|div
-3|2|div|2|cos|add
-3|2|div|2|cos|sub
-3|2|div|2|cos|abd
-3|2|div|2|cos|mult
-3|2|div|2|cos|div
-3|2|div|2|1|mult|div
-3|2|div|2|3|div|add
-3|2|div|2|3|div|sub
-3|2|div|2|3|div|abd
-3|2|div|3|0|mult|mult
+0|sq|3|sin|mult
+0|sq|3|sin|div
+0|sq|3|cos|mult
+0|sq|3|cos|div
+0|sq|3|1|mult|mult
+0|sq|3|1|mult|div
+0|sq|3|1|div|mult
+0|sq|3|2|add|mult
+0|sq|3|2|add|div
+0|sq|3|2|sub|mult
+3|2|div|2|cbrt|add
 3|2|div|3|exp|add
-3|2|div|2|sin|abd
+3|2|div|3|exp|sub
 3|2|div|3|exp|abd
 3|2|div|3|inv|add
 3|2|div|3|inv|sub
@@ -614,21 +606,22 @@
 3|2|div|3|cb|add
 3|2|div|3|cb|sub
 3|2|div|3|cb|mult
-3|2|div|2|cbrt|add
-3|2|div|3|sub
-3|2|div|sp
-3|2|div|cbrt
-3|2|div|abs
-3|2|div|sin
-3|2|div|cos
-3|2|div|1|mult
-3|2|div|1|div
-3|2|div|2|add
-3|2|div|2|sub
-3|2|div|2|abd
-3|2|div|2|div
-3|2|div|3|add
+3|2|div|3|0|mult|mult
 3|2|div|2|cbrt|sub
+3|2|div|2|cbrt|abd
+3|2|div|2|cbrt|div
+3|2|div|3|cbrt|add
+3|2|div|3|cbrt|sub
+3|2|div|3|cbrt|mult
+3|2|div|3|abs|add
+3|2|div|3|abs|sub
+3|2|div|3|abs|abd
+3|2|div|3|abs|mult
+3|2|div|3|abs|div
+3|2|div|3|sin|add
+3|2|div|2|sin|sub
+3|2|div|3|add
+3|2|div|3|sub
 3|2|div|3|mult
 3|2|div|3|sp|add
 3|2|div|3|sp|sub
@@ -640,22 +633,22 @@
 3|2|div|2|abs|mult
 3|2|div|2|abs|div
 3|2|div|2|sin|add
-3|2|div|2|sin|sub
+3|2|div|3|sin|sub
+3|2|div|2|sin|abd
+3|2|div|2|sin|mult
+3|2|div|2|sin|div
+3|2|div|2|cos|add
+3|2|div|2|cos|sub
+3|2|div|2|cos|abd
+3|2|div|2|cos|mult
+3|2|div|2|cos|div
+3|2|div|2|1|mult|div
+3|2|div|2|3|div|add
+3|2|div|2|3|div|sub
+3|2|div|2|3|div|abd
+3|2|div|2|cb|div
+3|2|div|3|2|mult|abd
 3|2|div|1|cb|div
-3|2|div|3|2|sub|add
-3|2|div|3|2|sub|sub
-3|2|div|3|2|sub|abd
-3|2|div|3|2|sub|mult
-3|2|div|3|2|sub|div
-3|2|div|3|2|abd|add
-3|2|div|3|2|abd|sub
-3|2|div|3|2|abd|abd
-3|2|div|3|2|abd|mult
-3|2|div|3|2|abd|div
-3|2|div|3|2|mult|add
-3|2|div|3|2|mult|sub
-3|2|div|3|2|mult|abd
-3|2|div|3|2|add|div
 3|2|div|0|sq|div
 3|2|div|0|cb|div
 3|2|div|0|cbrt|div
@@ -667,21 +660,21 @@
 3|2|div|1|cbrt|div
 3|2|div|2|0|mult|div
 3|2|div|2|sq|div
-3|2|div|2|cb|div
+3|2|div|3|2|mult|sub
+1|cb|0|mult
+1|cb|0|div
+1|cb|inv
+1|cb|sq
+1|cb|cb
+1|cb|2|mult
+1|cb|2|div
+1|cb|3|mult
+1|cb|3|div
+1|cb|3|sp|mult
+1|cb|3|sp|div
+1|cb|2|abs|mult
+3|2|div|3|2|add|mult
 3|2|div|3|sin|abd
-3|2|div|2|cbrt|abd
-3|2|div|2|cbrt|div
-3|2|div|3|cbrt|add
-3|2|div|3|cbrt|sub
-3|2|div|3|cbrt|mult
-3|2|div|3|abs|add
-3|2|div|3|abs|sub
-3|2|div|3|abs|abd
-3|2|div|3|abs|mult
-3|2|div|3|abs|div
-3|2|div|3|sin|add
-3|2|div|3|sin|sub
-0|cb|abs
 3|2|div|3|sin|mult
 3|2|div|3|sin|div
 3|2|div|3|cos|add
@@ -693,9 +686,20 @@
 3|2|div|3|2|add|add
 3|2|div|3|2|add|sub
 3|2|div|3|2|add|abd
-3|2|div|3|2|add|mult
-0|cbrt|3|2|mult|div
-0|cbrt|3|sin|div
+0|cb|3|sp|div
+3|2|div|3|2|add|div
+3|2|div|3|2|sub|add
+3|2|div|3|2|sub|sub
+3|2|div|3|2|sub|abd
+3|2|div|3|2|sub|mult
+3|2|div|3|2|sub|div
+3|2|div|3|2|abd|add
+3|2|div|3|2|abd|sub
+3|2|div|3|2|abd|abd
+3|2|div|3|2|abd|mult
+3|2|div|3|2|abd|div
+3|2|div|3|2|mult|add
+0|cbrt|3|2|div|mult
 0|cbrt|3|cos|mult
 0|cbrt|3|cos|div
 0|cbrt|3|1|mult|mult
@@ -708,23 +712,21 @@
 0|cbrt|3|2|abd|mult
 0|cbrt|3|2|abd|div
 0|cbrt|3|2|mult|mult
-0|cbrt|3|sin|mult
-0|cbrt|3|2|div|mult
+0|cbrt|3|2|mult|div
+0|cbrt|3|sin|div
 0|cbrt|1|cb|mult
 0|cbrt|1|cb|div
 0|cbrt|0|abs|div
 0|cbrt|1|sq|div
 0|cbrt|1|sp|div
 0|cbrt|1|sqrt|div
+0|cbrt|1|cbrt|div
 0|cbrt|2|sq|div
 0|cbrt|2|cb|div
 0|abs|0|add
 0|abs|0|sub
 0|abs|0|abd
-0|cbrt|2|1|mult|mult
-0|cbrt|1|mult
-0|cbrt|1|div
-0|cbrt|2|mult
+0|cbrt|2|3|div|mult
 0|cbrt|2|div
 0|cbrt|3|mult
 0|cbrt|3|div
@@ -735,19 +737,22 @@
 0|cbrt|2|sin|div
 0|cbrt|2|cos|mult
 0|cbrt|2|cos|div
-0|abs|0|mult
+0|cbrt|2|1|mult|mult
 0|cbrt|2|1|mult|div
 0|cbrt|2|1|div|mult
-0|cbrt|2|3|div|mult
+0|abs|0|mult
 0|cbrt|3|0|mult|mult
 0|cbrt|3|sq|mult
 0|cbrt|3|sq|div
 0|cbrt|3|cb|mult
 0|cbrt|3|cb|div
 0|cbrt|2|cbrt|mult
+0|cbrt|2|cbrt|div
 0|cbrt|3|cbrt|mult
+0|cbrt|3|cbrt|div
 0|cbrt|3|abs|mult
 0|cbrt|3|abs|div
+0|cbrt|3|sin|mult
 0|abs|3|abs|mult
 0|abs|3|0|mult|sub
 0|abs|3|0|mult|abd
@@ -788,7 +793,7 @@
 0|abs|2|mult
 0|abs|2|div
 0|abs|3|mult
-0|cbrt|abs
+0|cbrt|2|mult
 0|abs|3|sp|mult
 0|abs|3|sp|div
 0|abs|2|abs|mult
@@ -801,47 +806,39 @@
 0|abs|2|1|mult|div
 0|abs|2|1|div|mult
 0|abs|2|3|div|mult
-0|cb|3|2|abd|div
-0|cb|3|abs|div
-0|cb|3|sin|mult
-0|cb|3|sin|div
-0|cb|3|cos|mult
-0|cb|3|cos|div
-0|cb|3|1|mult|mult
-0|cb|3|1|mult|div
-0|cb|3|1|div|mult
+0|cb|1|sqrt|div
 0|cb|3|2|add|mult
 0|cb|3|2|add|div
 0|cb|3|2|sub|mult
 0|cb|3|2|sub|div
 0|cb|3|2|abd|mult
-0|cb|3|abs|mult
+0|cb|3|2|abd|div
 0|cb|3|2|mult|mult
 0|cb|3|2|mult|div
 0|cb|3|2|div|mult
+0|cb|1|cb|div
 0|cb|0|abs|div
 0|cb|1|sq|div
 0|cb|1|sp|div
-0|cb|1|sqrt|div
+0|cb|3|1|div|mult
 0|cb|1|cbrt|div
 0|cb|2|sq|div
+0|cb|2|cb|div
 0|cb|2|sp|div
 0|sp|inv
 0|sp|1|mult
-0|cb|2|cos|mult
-0|cb|1|mult
-0|cb|1|div
-0|cb|2|mult
-0|cb|2|div
-0|cb|3|mult
-0|cb|3|div
-0|cb|3|sp|mult
-0|cb|3|sp|div
+0|sp|1|div
+0|sp|2|mult
+0|sp|2|div
+0|sp|3|mult
+0|sp|3|div
+0|sp|3|sp|div
+0|cb|3|cb|div
 0|cb|2|abs|mult
 0|cb|2|abs|div
 0|cb|2|sin|mult
 0|cb|2|sin|div
-0|sp|1|div
+0|cb|2|cos|mult
 0|cb|2|cos|div
 0|cb|2|1|mult|mult
 0|cb|2|1|mult|div
@@ -850,16 +847,20 @@
 0|cb|3|0|mult|mult
 0|cb|3|sq|mult
 0|cb|3|sq|div
+0|sp|2|abs|mult
 0|cb|2|cbrt|mult
 0|cb|2|cbrt|div
 0|cb|3|cbrt|mult
 0|cb|3|cbrt|div
-0|sp|3|2|mult|div
-0|sp|3|sin|div
-0|sp|3|cos|mult
-0|sp|3|cos|div
-0|sp|3|1|mult|mult
-0|sp|3|1|mult|div
+0|cb|3|abs|mult
+0|cb|3|abs|div
+0|cb|3|sin|mult
+0|cb|3|sin|div
+0|cb|3|cos|mult
+0|cb|3|cos|div
+0|cb|3|1|mult|mult
+0|cb|3|1|mult|div
+0|sp|1|sq|div
 0|sp|3|1|div|mult
 0|sp|3|2|add|mult
 0|sp|3|2|add|div
@@ -868,25 +869,25 @@
 0|sp|3|2|abd|mult
 0|sp|3|2|abd|div
 0|sp|3|2|mult|mult
-0|sp|3|sin|mult
+0|sp|3|2|mult|div
 0|sp|3|2|div|mult
 0|sp|1|cb|mult
 0|sp|1|cb|div
 0|sp|0|abs|div
-0|sp|1|sq|div
+0|sp|3|1|mult|div
+0|sp|1|sp|div
 0|sp|1|sqrt|div
 0|sp|1|cbrt|div
 0|sp|2|sq|div
 0|sp|2|cb|div
+0|sp|2|sp|div
 0|cbrt|inv
 0|cbrt|sq
 0|cbrt|cbrt
-0|sp|2|1|div|mult
-0|sp|2|mult
-0|sp|2|div
-0|sp|3|mult
-0|sp|3|div
-0|sp|2|abs|mult
+0|cbrt|abs
+0|cbrt|1|mult
+0|cbrt|1|div
+0|sp|3|cb|mult
 0|sp|2|abs|div
 0|sp|2|sin|mult
 0|sp|2|sin|div
@@ -894,12 +895,12 @@
 0|sp|2|cos|div
 0|sp|2|1|mult|mult
 0|sp|2|1|mult|div
-1|sp|0|cb|mult
+0|sp|2|1|div|mult
 0|sp|2|3|div|mult
 0|sp|3|0|mult|mult
 0|sp|3|sq|mult
 0|sp|3|sq|div
-0|sp|3|cb|mult
+1|sp|0|cb|mult
 0|sp|3|cb|div
 0|sp|2|cbrt|mult
 0|sp|2|cbrt|div
@@ -907,7 +908,13 @@
 0|sp|3|cbrt|div
 0|sp|3|abs|mult
 0|sp|3|abs|div
-2|sq|0|cbrt|div
+0|sp|3|sin|mult
+0|sp|3|sin|div
+0|sp|3|cos|mult
+0|sp|3|cos|div
+0|sp|3|1|mult|mult
+2|sq|0|cbrt|mult
+2|sq|3|2|mult|add
 2|sq|3|2|mult|sub
 2|sq|3|2|mult|abd
 2|sq|3|2|mult|mult
@@ -920,8 +927,8 @@
 2|sq|0|cb|div
 2|sq|0|sp|mult
 2|sq|0|sp|div
-2|sq|0|cbrt|mult
-2|sq|3|2|mult|add
+2|sq|3|2|abd|div
+2|sq|0|cbrt|div
 2|sq|0|abs|mult
 2|sq|0|abs|div
 2|sq|0|1|div|mult
@@ -933,8 +940,8 @@
 2|sq|1|sp|mult
 2|sq|1|sp|div
 2|sq|1|sqrt|mult
-2|sq|1|sqrt|div
-2|sq|3|1|div|mult
+2|sq|3|1|mult|div
+2|sq|3|abs|add
 2|sq|3|abs|sub
 2|sq|3|abs|mult
 2|sq|3|abs|div
@@ -947,8 +954,8 @@
 2|sq|3|cos|mult
 2|sq|3|cos|div
 2|sq|3|1|mult|mult
-2|sq|3|1|mult|div
-2|sq|1|cbrt|mult
+2|sq|1|sqrt|div
+2|sq|3|1|div|mult
 2|sq|3|2|add|add
 2|sq|3|2|add|sub
 2|sq|3|2|add|mult
@@ -960,7 +967,6 @@
 2|sq|3|2|abd|add
 2|sq|3|2|abd|sub
 2|sq|3|2|abd|mult
-2|sq|3|2|abd|div
 2|cb|2|cos|add
 2|cb|3|sp|abd
 2|cb|3|sp|mult
@@ -989,6 +995,7 @@
 2|cb|3|0|mult|mult
 2|cb|3|0|mult|div
 2|cb|sin
+2|sq|1|cbrt|mult
 2|sq|1|cbrt|div
 2|sq|1|3|div|mult
 2|sq|2|0|mult|mult
@@ -1001,7 +1008,7 @@
 2|cb|sq
 2|cb|cb
 2|cb|abs
-2|sq|3|abs|add
+2|sq|3|cbrt|div
 2|cb|cos
 2|cb|1|mult
 2|cb|1|div
@@ -1085,6 +1092,7 @@
 2|sq|2|cos|mult
 2|sq|3|sq|sub
 2|sq|3|sq|abd
+2|sq|3|sq|div
 2|sq|3|cb|add
 2|sq|3|cb|sub
 2|sq|3|cb|mult
@@ -1094,7 +1102,6 @@
 2|sq|3|cbrt|add
 2|sq|3|cbrt|sub
 2|sq|3|cbrt|mult
-2|sq|3|cbrt|div
 2|sq|3|sp|abd
 2|sq|sin
 2|sq|cos
@@ -1121,7 +1128,8 @@
 2|sq|2|sin|div
 2|sq|2|cos|add
 2|sq|2|cos|sub
-2|sp|3|cbrt|mult
+2|sp|3|cbrt|sub
+2|sp|3|inv|add
 2|sp|3|inv|sub
 2|sp|3|sq|add
 2|sp|3|sq|sub
@@ -1134,8 +1142,8 @@
 2|sp|2|cbrt|add
 2|sp|2|cbrt|sub
 2|sp|3|cbrt|add
-2|sp|3|cbrt|sub
-2|sp|3|inv|add
+2|sp|3|exp|sub
+2|sp|3|cbrt|mult
 2|sp|3|cbrt|div
 2|sp|3|abs|add
 2|sp|3|abs|sub
@@ -1147,12 +1155,12 @@
 2|sp|3|sin|div
 2|sp|3|cos|add
 2|sp|3|cos|sub
-2|sp|3|cos|mult
-2|sp|2|cos|sub
+2|sp|2|cos|add
 2|sp|3|div
 2|sp|3|sp|add
 2|sp|3|sp|sub
 2|sp|3|sp|abd
+2|sp|3|sp|div
 2|sp|2|abs|add
 2|sp|2|abs|sub
 2|sp|2|abs|mult
@@ -1161,8 +1169,8 @@
 2|sp|2|sin|sub
 2|sp|2|sin|mult
 2|sp|2|sin|div
-2|sp|2|cos|add
-2|sp|3|cos|div
+2|sp|3|cos|mult
+2|sp|2|cos|sub
 2|sp|2|cos|mult
 2|sp|2|cos|div
 2|sp|2|1|mult|mult
@@ -1174,7 +1182,6 @@
 2|sp|3|0|mult|div
 2|sp|3|0|div|mult
 2|sp|3|exp|add
-2|sp|3|exp|sub
 2|sp|1|sqrt|mult
 2|sp|0|sp|div
 2|sp|0|cbrt|mult
@@ -1203,6 +1210,7 @@
 2|sp|2|cb|add
 2|sp|2|cb|sub
 2|sp|3|2|abd|sub
+2|sp|3|cos|div
 2|sp|3|1|mult|mult
 2|sp|3|1|mult|div
 2|sp|3|1|div|mult
@@ -1255,7 +1263,7 @@
 2|cb|3|2|sub|div
 2|cb|3|2|abd|add
 2|cb|3|2|abd|sub
-2|cb|3|cb|sub
+2|cb|3|cb|abd
 2|cb|3|exp|add
 2|cb|3|exp|sub
 2|cb|3|exp|abd
@@ -1268,8 +1276,9 @@
 2|cb|3|sq|mult
 2|cb|3|sq|div
 2|cb|3|cb|add
+2|cb|3|cb|sub
 2|cb|3|2|abd|abd
-2|cb|3|cb|abd
+2|cb|3|cb|div
 2|cb|2|cbrt|add
 2|cb|2|cbrt|sub
 2|cb|2|cbrt|abd
@@ -1334,7 +1343,9 @@
 2|cb|1|0|mult|div
 2|cb|1|0|div|mult
 2|cb|1|sq|mult
-1|2|div|3|mult
+1|2|div|1|mult
+1|cbrt|2|0|mult|div
+1|cbrt|2|sq|div
 1|cbrt|2|cb|div
 1|2|div|0|mult
 1|2|div|0|div
@@ -1346,9 +1357,9 @@
 1|2|div|1|add
 1|2|div|1|sub
 1|2|div|1|abd
-1|2|div|1|mult
+1|cbrt|1|0|div|mult
 1|2|div|2|div
-1|cbrt|2|sq|div
+1|2|div|3|mult
 1|2|div|3|div
 1|2|div|3|sp|mult
 1|2|div|2|abs|mult
@@ -1359,9 +1370,9 @@
 1|2|div|2|cos|div
 1|2|div|2|1|mult|add
 1|2|div|2|1|mult|sub
-1|2|div|2|1|mult|abd
-1|2|div|3|0|mult|mult
-1|cbrt|0|sq|div
+1|cbrt|3|2|div|mult
+1|cbrt|3|sin|mult
+1|cbrt|3|sin|div
 1|cbrt|3|cos|mult
 1|cbrt|3|cos|div
 1|cbrt|3|1|mult|mult
@@ -1373,9 +1384,9 @@
 1|cbrt|3|2|abd|div
 1|cbrt|3|2|mult|mult
 1|cbrt|3|2|mult|div
-1|cbrt|3|2|div|mult
+1|2|div|2|1|mult|abd
 1|cbrt|0|sq|mult
-1|2|div|3|0|mult|div
+1|cbrt|0|sq|div
 1|cbrt|0|cb|mult
 1|cbrt|0|cb|div
 1|cbrt|0|sp|mult
@@ -1386,9 +1397,8 @@
 1|cbrt|0|2|div|mult
 1|cbrt|0|3|div|mult
 1|cbrt|1|0|mult|mult
-1|cbrt|1|0|div|mult
-1|cbrt|2|0|mult|div
-1|2|div|2|sq|div
+1|2|div|2|0|mult|div
+1|2|div|0|sq|div
 1|2|div|0|cb|mult
 1|2|div|0|cb|div
 1|2|div|0|sp|mult
@@ -1401,8 +1411,8 @@
 1|2|div|1|sp|mult
 1|2|div|1|sqrt|mult
 1|2|div|1|cbrt|mult
-1|2|div|2|0|mult|div
-1|2|div|0|sq|div
+1|2|div|0|sq|mult
+1|2|div|2|sq|div
 1|2|div|2|cb|div
 1|3|div|0|mult
 1|3|div|0|div
@@ -1414,8 +1424,9 @@
 1|3|div|1|add
 1|3|div|1|sub
 1|3|div|1|abd
-1|3|div|1|mult
-1|2|div|3|cos|div
+1|2|div|3|cos|mult
+1|2|div|3|0|mult|mult
+1|2|div|3|0|mult|div
 1|2|div|3|sq|mult
 1|2|div|3|sq|div
 1|2|div|3|cb|mult
@@ -1427,8 +1438,8 @@
 1|2|div|3|abs|div
 1|2|div|3|sin|mult
 1|2|div|3|sin|div
-1|2|div|3|cos|mult
-1|cbrt|3|sin|div
+1|cbrt|3|abs|div
+1|2|div|3|cos|div
 1|2|div|3|1|mult|add
 1|2|div|3|1|mult|sub
 1|2|div|3|1|mult|mult
@@ -1440,7 +1451,6 @@
 1|2|div|3|2|abd|div
 1|2|div|3|2|mult|div
 1|2|div|1|cb|mult
-1|2|div|0|sq|mult
 1|sqrt|2|cbrt|mult
 1|sqrt|2|sin|mult
 1|sqrt|2|sin|div
@@ -1468,7 +1478,7 @@
 1|sqrt|3|1|mult|mult
 1|sqrt|3|2|add|mult
 1|sqrt|3|2|add|div
-1|sp|2|cb|div
+1|sp|2|sp|div
 1|sp|0|cb|div
 1|sp|0|sp|div
 1|sp|0|cbrt|mult
@@ -1481,6 +1491,7 @@
 1|sp|1|0|div|mult
 1|sp|2|0|mult|div
 1|sp|2|sq|div
+1|sp|2|cb|div
 1|sqrt|3|2|sub|mult
 1|sqrt|0|mult
 1|sqrt|0|div
@@ -1517,10 +1528,10 @@
 1|cbrt|3|cb|mult
 1|cbrt|3|cb|div
 1|cbrt|2|cbrt|mult
+1|cbrt|2|cbrt|div
 1|cbrt|3|cbrt|mult
+1|cbrt|3|cbrt|div
 1|cbrt|3|abs|mult
-1|cbrt|3|abs|div
-1|cbrt|3|sin|mult
 1|sqrt|0|cbrt|div
 1|sqrt|3|2|sub|div
 1|sqrt|3|2|abd|mult
@@ -1534,7 +1545,7 @@
 1|sqrt|0|cb|div
 1|sqrt|0|sp|mult
 1|sqrt|0|cbrt|mult
-1|3|div|2|mult
+1|3|div|1|mult
 1|sqrt|0|abs|mult
 1|sqrt|0|abs|div
 1|sqrt|0|2|div|mult
@@ -1682,6 +1693,7 @@
 1|3|div|1|2|div|abd
 1|3|div|2|0|mult|div
 1|3|div|3|0|mult|div
+1|3|div|2|mult
 1|3|div|2|div
 1|3|div|3|div
 1|3|div|2|abs|mult
@@ -1747,7 +1759,7 @@
 2|0|mult|1|mult
 2|0|mult|1|div
 2|0|mult|2|mult
-3|2|div|cb
+3|2|div|2|div
 2|0|mult|3|div
 2|0|mult|3|sp|mult
 2|0|mult|3|sp|div
@@ -1760,10 +1772,7 @@
 2|0|mult|2|1|mult|mult
 2|0|mult|2|1|div|mult
 2|0|mult|2|3|div|mult
-3|inv|2|3|div|sub
-3|inv|3|sp|add
-3|inv|3|sp|sub
-3|inv|3|sp|abd
+3|inv|3|exp|sub
 3|inv|2|abs|add
 3|inv|2|abs|sub
 3|inv|2|abs|abd
@@ -1774,10 +1783,10 @@
 3|inv|2|cos|sub
 3|inv|2|cos|abd
 3|inv|2|3|div|add
-3|inv|3|sub
+3|inv|2|3|div|sub
 3|inv|2|3|div|abd
 3|inv|3|exp|add
-3|inv|3|exp|sub
+3|inv|3|sp|abd
 3|inv|3|exp|abd
 3|sq|0|mult
 3|sq|0|div
@@ -1787,10 +1796,10 @@
 3|sq|cos
 3|sq|1|mult
 3|sq|1|div
-3|exp|2|cos|abd
-3|exp|3|add
-3|exp|3|sub
-3|exp|3|sp|add
+3|sq|2|add
+3|sq|2|sub
+3|sq|2|abd
+3|exp|2|3|div|abd
 3|exp|3|sp|sub
 3|exp|3|sp|abd
 3|exp|2|abs|add
@@ -1801,10 +1810,10 @@
 3|exp|2|sin|abd
 3|exp|2|cos|add
 3|exp|2|cos|sub
-3|sq|2|add
+3|exp|2|cos|abd
 3|exp|2|3|div|add
 3|exp|2|3|div|sub
-3|exp|2|3|div|abd
+3|sq|2|mult
 3|inv|exp
 3|inv|nexp
 3|inv|abs
@@ -1814,11 +1823,10 @@
 3|inv|2|sub
 3|inv|2|abd
 3|inv|3|add
-3|sq|3|2|abd|div
-3|sq|2|3|div|sub
-3|sq|3|0|mult|mult
-3|sq|3|0|div|mult
-3|sq|3|exp|add
+3|inv|3|sub
+3|inv|3|sp|add
+3|inv|3|sp|sub
+3|sq|0|sp|div
 3|sq|3|exp|sub
 3|sq|3|inv|add
 3|sq|3|inv|sub
@@ -1828,11 +1836,11 @@
 3|sq|3|cos|div
 3|sq|3|2|add|div
 3|sq|3|2|sub|div
-3|sq|2|3|div|add
+3|sq|3|2|abd|div
 3|sq|1|cb|div
 3|sq|0|sq|div
 3|sq|0|cb|div
-3|sq|0|sp|div
+3|sq|3|exp|add
 3|sq|0|cbrt|div
 3|sq|0|abs|div
 3|sq|1|0|mult|div
@@ -1841,10 +1849,11 @@
 3|sq|1|sqrt|div
 3|sq|1|cbrt|div
 3|sq|2|0|mult|div
-3|sq|2|abs|mult
-3|sq|2|sub
-3|sq|2|abd
-3|sq|2|mult
+3|sq|2|sq|div
+3|sq|2|cb|div
+3|cb|0|mult
+3|cb|0|div
+3|sq|2|sin|mult
 3|sq|2|div
 3|sq|3|add
 3|sq|3|sub
@@ -1854,11 +1863,11 @@
 3|sq|2|abs|add
 3|sq|2|abs|sub
 3|sq|2|abs|abd
-3|exp|2|abd
+3|sq|2|abs|mult
 3|sq|2|abs|div
 3|sq|2|sin|add
 3|sq|2|sin|sub
-3|sq|2|sin|mult
+3|exp|3|sp|add
 3|sq|2|sin|div
 3|sq|2|cos|add
 3|sq|2|cos|sub
@@ -1867,10 +1876,11 @@
 3|sq|2|1|mult|mult
 3|sq|2|1|mult|div
 3|sq|2|1|div|mult
-3|0|mult|2|abs|div
-3|0|mult|inv
-3|0|mult|sq
-3|0|mult|cb
+3|sq|2|3|div|add
+3|sq|2|3|div|sub
+3|sq|3|0|mult|mult
+3|sq|3|0|div|mult
+3|0|mult|2|cos|mult
 3|0|mult|sp
 3|0|mult|cbrt
 3|0|mult|abs
@@ -1881,10 +1891,10 @@
 3|0|mult|3|mult
 3|0|mult|3|sp|mult
 3|0|mult|2|abs|mult
-3|0|mult|0|mult
+3|0|mult|2|abs|div
 3|0|mult|2|sin|mult
 3|0|mult|2|sin|div
-3|0|mult|2|cos|mult
+3|0|mult|cb
 3|0|mult|2|cos|div
 3|0|mult|2|1|mult|mult
 3|0|mult|2|1|mult|div
@@ -1894,10 +1904,10 @@
 3|0|mult|3|sin|div
 3|0|mult|3|cos|div
 3|0|mult|3|2|add|div
-2|3|div|1|cb|div
-2|3|div|2|cos|div
-2|3|div|2|1|mult|mult
-2|3|div|3|0|mult|div
+3|0|mult|3|2|sub|div
+3|0|mult|3|2|abd|div
+3|0|mult|1|cb|div
+2|3|div|0|cbrt|div
 2|3|div|3|sq|div
 2|3|div|3|cb|div
 2|3|div|3|cbrt|div
@@ -1908,10 +1918,10 @@
 2|3|div|3|2|add|div
 2|3|div|3|2|sub|div
 2|3|div|3|2|abd|div
-3|0|mult|3|2|sub|div
+2|3|div|1|cb|div
 2|3|div|0|sq|div
 2|3|div|0|cb|div
-2|3|div|0|cbrt|div
+3|0|mult|0|abs|div
 2|3|div|0|abs|div
 2|3|div|1|0|mult|div
 2|3|div|1|sq|div
@@ -1921,10 +1931,10 @@
 3|0|mult|0|add
 3|0|mult|0|sub
 3|0|mult|0|abd
-3|0|div|0|cb|div
-3|0|div|2|cos|mult
-3|0|div|2|cos|div
-3|0|div|2|1|mult|mult
+3|0|mult|0|mult
+3|0|mult|inv
+3|0|mult|sq
+3|0|div|1|0|mult|div
 3|0|div|2|1|mult|div
 3|0|div|2|cbrt|div
 3|0|div|3|abs|div
@@ -1935,10 +1945,10 @@
 3|0|div|3|2|abd|div
 3|0|div|1|cb|div
 3|0|div|0|sq|div
-3|0|div|2|sin|div
+3|0|div|0|cb|div
 3|0|div|0|cbrt|div
 3|0|div|0|abs|div
-3|0|div|1|0|mult|div
+3|0|div|2|1|mult|mult
 3|0|div|1|sq|div
 3|0|div|1|sp|div
 3|0|div|1|sqrt|div
@@ -1948,10 +1958,10 @@
 3|0|div|2|cb|div
 3|exp|2|add
 3|exp|2|sub
-3|0|div|cb
-3|0|mult|3|2|abd|div
-3|0|mult|1|cb|div
-3|0|mult|0|abs|div
+3|exp|2|abd
+3|exp|3|add
+3|exp|3|sub
+3|0|div|abs
 3|0|mult|1|sq|div
 3|0|mult|1|sp|div
 3|0|mult|1|sqrt|div
@@ -1961,10 +1971,10 @@
 3|0|mult|2|sp|div
 3|0|div|0|div
 3|0|div|sq
-3|sq|2|sq|div
+3|0|div|cb
 3|0|div|sp
 3|0|div|cbrt
-3|0|div|abs
+3|cb|inv
 3|0|div|1|mult
 3|0|div|1|div
 3|0|div|2|mult
@@ -1974,12 +1984,11 @@
 3|0|div|2|abs|mult
 3|0|div|2|abs|div
 3|0|div|2|sin|mult
-2|cbrt|0|sq|div
-2|cbrt|3|sq|div
-2|cbrt|3|cb|add
-2|cbrt|3|cb|sub
-2|cbrt|3|cb|mult
-2|cbrt|3|cb|div
+3|0|div|2|sin|div
+3|0|div|2|cos|mult
+3|0|div|2|cos|div
+2|cbrt|1|0|mult|div
+2|cbrt|3|cbrt|div
 2|cbrt|3|abs|div
 2|cbrt|3|sin|div
 2|cbrt|3|cos|div
@@ -1988,11 +1997,11 @@
 2|cbrt|3|2|sub|div
 2|cbrt|3|2|abd|div
 2|cbrt|1|cb|div
-2|cbrt|3|sq|mult
+2|cbrt|0|sq|div
 2|cbrt|0|cb|div
 2|cbrt|0|cbrt|div
 2|cbrt|0|abs|div
-2|cbrt|1|0|mult|div
+2|cbrt|3|cb|div
 2|cbrt|1|sq|div
 2|cbrt|1|sp|div
 2|cbrt|1|sqrt|div
@@ -2001,12 +2010,11 @@
 3|cbrt|0|div
 3|cbrt|exp
 3|cbrt|nexp
-2|cbrt|2|3|div|mult
-2|cbrt|2|sin|abd
-2|cbrt|2|sin|mult
-2|cbrt|2|sin|div
-2|cbrt|2|cos|add
-2|cbrt|2|cos|sub
+3|cbrt|inv
+3|cbrt|sq
+3|cbrt|cbrt
+3|cbrt|abs
+2|cbrt|3|exp|sub
 2|cbrt|2|cos|abd
 2|cbrt|2|cos|mult
 2|cbrt|2|cos|div
@@ -2015,12 +2023,12 @@
 2|cbrt|2|3|div|add
 2|cbrt|2|3|div|sub
 2|cbrt|2|3|div|abd
-3|cbrt|inv
+2|cbrt|2|3|div|mult
 2|cbrt|3|0|mult|mult
 2|cbrt|3|0|mult|div
 2|cbrt|3|0|div|mult
 2|cbrt|3|exp|add
-2|cbrt|3|exp|sub
+3|cbrt|sin
 2|cbrt|3|exp|abd
 2|cbrt|3|inv|add
 2|cbrt|3|inv|sub
@@ -2028,12 +2036,12 @@
 2|cbrt|3|sq|add
 2|cbrt|3|sq|sub
 2|cbrt|3|sq|abd
-3|cbrt|3|0|div|mult
-3|cbrt|2|sin|div
-3|cbrt|2|cos|add
-3|cbrt|2|cos|sub
-3|cbrt|2|cos|abd
-3|cbrt|2|cos|mult
+2|cbrt|3|sq|mult
+2|cbrt|3|sq|div
+2|cbrt|3|cb|add
+2|cbrt|3|cb|sub
+2|cbrt|3|cb|mult
+3|cbrt|3|inv|sub
 3|cbrt|2|cos|div
 3|cbrt|2|1|mult|mult
 3|cbrt|2|1|mult|div
@@ -2042,12 +2050,12 @@
 3|cbrt|2|3|div|sub
 3|cbrt|2|3|div|abd
 3|cbrt|3|0|mult|mult
-3|cbrt|2|sin|mult
+3|cbrt|3|0|div|mult
 3|cbrt|3|exp|add
 3|cbrt|3|exp|sub
 3|cbrt|3|exp|abd
 3|cbrt|3|inv|add
-3|cbrt|3|inv|sub
+3|cbrt|2|cos|mult
 3|cbrt|3|inv|abd
 3|cbrt|3|sq|add
 3|cbrt|3|sq|sub
@@ -2055,11 +2063,12 @@
 3|cbrt|3|cb|add
 3|cbrt|3|cb|sub
 3|cbrt|2|cbrt|add
-3|cbrt|3|add
-3|cbrt|sq
-3|cbrt|cbrt
-3|cbrt|abs
-3|cbrt|sin
+3|cbrt|2|cbrt|sub
+3|cbrt|2|cbrt|abd
+3|cbrt|2|cbrt|mult
+3|cbrt|2|cbrt|div
+3|cbrt|3|abs|div
+3|cbrt|2|abs|add
 3|cbrt|cos
 3|cbrt|1|mult
 3|cbrt|1|div
@@ -2068,12 +2077,12 @@
 3|cbrt|2|abd
 3|cbrt|2|mult
 3|cbrt|2|div
-2|cbrt|2|sin|sub
+3|cbrt|3|add
 3|cbrt|3|sub
 3|cbrt|3|sp|add
 3|cbrt|3|sp|sub
 3|cbrt|3|sp|abd
-3|cbrt|2|abs|add
+2|cbrt|2|cos|sub
 3|cbrt|2|abs|sub
 3|cbrt|2|abs|abd
 3|cbrt|2|abs|mult
@@ -2081,12 +2090,12 @@
 3|cbrt|2|sin|add
 3|cbrt|2|sin|sub
 3|cbrt|2|sin|abd
-3|cb|2|1|div|mult
-3|cb|2|abs|div
-3|cb|2|sin|add
-3|cb|2|sin|sub
-3|cb|2|sin|abd
-3|cb|2|sin|mult
+3|cbrt|2|sin|mult
+3|cbrt|2|sin|div
+3|cbrt|2|cos|add
+3|cbrt|2|cos|sub
+3|cbrt|2|cos|abd
+3|cb|3|0|div|mult
 3|cb|2|sin|div
 3|cb|2|cos|add
 3|cb|2|cos|sub
@@ -2095,12 +2104,12 @@
 3|cb|2|cos|div
 3|cb|2|1|mult|mult
 3|cb|2|1|mult|div
-3|cb|2|abs|mult
+3|cb|2|1|div|mult
 3|cb|2|3|div|add
 3|cb|2|3|div|sub
 3|cb|2|3|div|abd
 3|cb|3|0|mult|mult
-3|cb|3|0|div|mult
+3|cb|2|sin|mult
 3|cb|3|exp|add
 3|cb|3|exp|sub
 3|cb|3|exp|abd
@@ -2108,11 +2117,12 @@
 3|cb|3|inv|sub
 3|cb|3|inv|abd
 3|cb|3|sq|add
-3|cb|2|sub
-3|sq|2|cb|div
-3|cb|0|mult
-3|cb|0|div
-3|cb|inv
+3|cb|3|sq|sub
+3|cb|3|sq|abd
+3|cb|2|cbrt|div
+3|cb|3|abs|div
+3|cb|3|sin|div
+3|cb|3|sub
 3|cb|sq
 3|cb|cb
 3|cb|abs
@@ -2121,12 +2131,12 @@
 3|cb|1|mult
 3|cb|1|div
 3|cb|2|add
-3|cb|3|sq|sub
+3|cb|2|sub
 3|cb|2|abd
 3|cb|2|mult
 3|cb|2|div
 3|cb|3|add
-3|cb|3|sub
+3|cb|3|cos|div
 3|cb|3|abd
 3|cb|3|sp|add
 3|cb|3|sp|sub
@@ -2134,12 +2144,12 @@
 3|cb|2|abs|add
 3|cb|2|abs|sub
 3|cb|2|abs|abd
-2|cbrt|3|sub
-2|cbrt|nexp
-2|cbrt|inv
-2|cbrt|sq
-2|cbrt|cbrt
-2|cbrt|abs
+3|cb|2|abs|mult
+3|cb|2|abs|div
+3|cb|2|sin|add
+3|cb|2|sin|sub
+3|cb|2|sin|abd
+2|cbrt|3|sp|abd
 2|cbrt|sin
 2|cbrt|cos
 2|cbrt|1|mult
@@ -2148,12 +2158,12 @@
 2|cbrt|2|sub
 2|cbrt|2|abd
 2|cbrt|3|add
-2|cbrt|exp
+2|cbrt|3|sub
 2|cbrt|3|mult
 2|cbrt|3|div
 2|cbrt|3|sp|add
 2|cbrt|3|sp|sub
-2|cbrt|3|sp|abd
+2|cbrt|abs
 2|cbrt|3|sp|mult
 2|cbrt|2|abs|add
 2|cbrt|2|abs|sub
@@ -2161,12 +2171,12 @@
 2|cbrt|2|abs|mult
 2|cbrt|2|abs|div
 2|cbrt|2|sin|add
-3|cb|0|cbrt|div
-3|cb|3|sq|abd
-3|cb|2|cbrt|div
-3|cb|3|abs|div
-3|cb|3|sin|div
-3|cb|3|cos|div
+2|cbrt|2|sin|sub
+2|cbrt|2|sin|abd
+2|cbrt|2|sin|mult
+2|cbrt|2|sin|div
+2|cbrt|2|cos|add
+3|cb|1|sqrt|div
 3|cb|3|2|add|div
 3|cb|3|2|sub|div
 3|cb|3|2|abd|div
@@ -2174,12 +2184,12 @@
 3|cb|0|sq|div
 3|cb|0|cb|div
 3|cb|0|sp|div
-2|3|div|2|cos|mult
+3|cb|0|cbrt|div
 3|cb|0|abs|div
 3|cb|1|0|mult|div
 3|cb|1|sq|div
 3|cb|1|sp|div
-3|cb|1|sqrt|div
+2|3|div|3|0|mult|div
 3|cb|1|cbrt|div
 3|cb|2|0|mult|div
 3|cb|2|sq|div
@@ -2187,8 +2197,12 @@
 3|cb|2|sp|div
 2|cbrt|0|mult
 2|cbrt|0|div
-2|abs|1|mult
-3|sp|2|cb|div
+2|cbrt|exp
+2|cbrt|nexp
+2|cbrt|inv
+2|cbrt|sq
+2|cbrt|cbrt
+2|abs|1|div
 3|sp|2|sp|div
 2|abs|0|mult
 2|abs|0|div
@@ -2201,8 +2215,8 @@
 2|abs|log
 2|abs|sin
 2|abs|cos
-3|sp|2|sq|div
-2|abs|1|div
+2|abs|1|mult
+3|sp|2|cb|div
 2|abs|2|add
 2|abs|2|sub
 2|abs|2|abd
@@ -2214,8 +2228,8 @@
 2|abs|3|div
 2|abs|3|sp|add
 2|abs|3|sp|sub
-3|sp|3|2|abd|div
-3|sp|2|div
+2|abs|3|sp|abd
+3|sp|1|cb|div
 3|sp|3|add
 3|sp|3|sub
 3|sp|2|abs|div
@@ -2228,8 +2242,8 @@
 3|sp|3|cos|div
 3|sp|3|2|add|div
 3|sp|3|2|sub|div
-2|abs|3|sp|abd
-3|sp|1|cb|div
+3|sp|3|2|abd|div
+2|abs|3|sp|mult
 3|sp|0|sq|div
 3|sp|0|cb|div
 3|sp|0|sp|div
@@ -2241,9 +2255,8 @@
 3|sp|1|sqrt|div
 3|sp|1|cbrt|div
 3|sp|2|0|mult|div
-2|sin|sp
-2|abs|1|sp|div
-2|abs|1|sqrt|div
+3|sp|2|sq|div
+2|sin|abs
 2|abs|1|cbrt|div
 2|abs|2|0|mult|div
 2|abs|2|sq|div
@@ -2255,9 +2268,9 @@
 2|sin|inv
 2|sin|sq
 2|sin|cb
-2|abs|1|sq|div
+2|sin|sp
 2|sin|cbrt
-2|sin|abs
+2|abs|1|sqrt|div
 2|sin|1|mult
 2|sin|1|div
 2|sin|2|add
@@ -2268,8 +2281,9 @@
 2|sin|3|add
 2|sin|3|sub
 2|sin|3|mult
-2|abs|3|cos|div
-2|abs|3|sp|mult
+2|sin|3|div
+2|sin|3|sp|add
+2|abs|3|2|add|div
 2|abs|3|sp|div
 2|abs|2|sin|div
 2|abs|2|cos|div
@@ -2281,9 +2295,9 @@
 2|abs|3|cbrt|div
 2|abs|3|abs|div
 2|abs|3|sin|div
-3|sp|2|mult
+2|abs|3|cos|div
 2|abs|3|1|mult|div
-2|abs|3|2|add|div
+3|sp|2|div
 2|abs|3|2|sub|div
 2|abs|3|2|abd|div
 2|abs|3|2|mult|div
@@ -2294,8 +2308,9 @@
 2|abs|0|cbrt|div
 2|abs|0|abs|div
 2|abs|1|0|mult|div
-1|0|sq|div
-1|2|cos|div
+2|abs|1|sq|div
+2|abs|1|sp|div
+1|0|cb|div
 1|3|0|mult|div
 1|3|sq|div
 1|3|cb|div
@@ -2308,8 +2323,8 @@
 1|3|2|sub|div
 1|3|2|abd|div
 1|3|2|mult|div
-1|2|sin|div
-1|0|cb|div
+1|0|sq|div
+1|2|cos|div
 1|0|cbrt|div
 1|0|abs|div
 1|2|0|mult|div
@@ -2321,7 +2336,8 @@
 2|2|cos|div
 2|3|0|mult|div
 2|3|sq|div
-0|3|2|add|div
+2|3|cb|div
+0|3|2|sub|div
 0|2|abs|div
 0|2|sin|div
 0|2|cos|div
@@ -2334,8 +2350,8 @@
 0|3|sin|div
 0|3|cos|div
 0|3|1|mult|div
-2|3|cb|div
-0|3|2|sub|div
+0|3|2|add|div
+2|3|cbrt|div
 0|3|2|abd|div
 0|3|2|mult|div
 0|1|cb|div
@@ -2347,8 +2363,8 @@
 0|2|sq|div
 0|2|cb|div
 1|2|abs|div
-3|2|0|mult|div
-3|3|2|add|div
+1|2|sin|div
+3|2|sq|div
 3|3|2|sub|div
 3|3|2|abd|div
 3|1|cb|div
@@ -2361,8 +2377,8 @@
 3|1|sp|div
 3|1|sqrt|div
 3|1|cbrt|div
-3|3|cos|div
-3|2|sq|div
+3|2|0|mult|div
+3|3|2|add|div
 3|2|cb|div
 3|sp|0|mult
 3|sp|0|div
@@ -2374,8 +2390,8 @@
 3|sp|1|div
 3|sp|2|add
 3|sp|2|sub
-2|0|cbrt|div
-2|3|cbrt|div
+3|sp|2|mult
+2|0|abs|div
 2|3|abs|div
 2|3|sin|div
 2|3|cos|div
@@ -2387,8 +2403,8 @@
 2|0|sq|div
 2|0|cb|div
 2|0|sp|div
-2|sin|3|div
-2|0|abs|div
+2|0|cbrt|div
+2|sin|3|sp|sub
 2|1|0|mult|div
 2|1|sq|div
 2|1|sp|div
@@ -2400,10 +2416,8 @@
 3|2|1|mult|div
 3|2|cbrt|div
 3|3|sin|div
-2|1|div|3|mult
-2|1|mult|0|cb|div
-2|1|mult|0|sp|div
-2|1|mult|0|cbrt|div
+3|3|cos|div
+2|1|div|2|abs|mult
 2|1|mult|0|abs|div
 2|1|div|0|mult
 2|1|div|0|div
@@ -2414,10 +2428,10 @@
 2|1|div|abs
 2|1|div|1|div
 2|1|div|2|mult
-2|1|mult|0|sq|div
+2|1|div|3|mult
 2|1|div|3|div
 2|1|div|3|sp|mult
-2|1|div|2|abs|mult
+2|1|mult|0|cbrt|div
 2|1|div|2|abs|div
 2|1|div|2|sin|mult
 2|1|div|2|sin|div
@@ -2427,10 +2441,10 @@
 2|1|div|3|sq|div
 2|1|div|3|cb|div
 2|1|div|3|cbrt|div
-2|1|mult|2|sin|div
-2|1|mult|abs
-2|1|mult|1|add
-2|1|mult|1|sub
+2|1|div|3|abs|div
+2|1|div|3|sin|div
+2|1|div|3|cos|div
+2|1|mult|3|0|mult|div
 2|1|mult|1|abd
 2|1|mult|1|mult
 2|1|mult|2|mult
@@ -2441,10 +2455,10 @@
 2|1|mult|2|abs|mult
 2|1|mult|2|abs|div
 2|1|mult|2|sin|mult
-2|1|div|3|abs|div
+2|1|mult|2|sin|div
 2|1|mult|2|cos|mult
 2|1|mult|2|cos|div
-2|1|mult|3|0|mult|div
+2|1|div|3|1|mult|div
 2|1|mult|3|sq|div
 2|1|mult|3|cb|div
 2|1|mult|3|cbrt|div
@@ -2454,10 +2468,10 @@
 2|1|mult|3|2|add|div
 2|1|mult|3|2|sub|div
 2|1|mult|3|2|abd|div
-2|3|div|2|abs|add
-2|3|div|1|mult
-2|3|div|1|div
-2|3|div|2|add
+2|1|mult|0|sq|div
+2|1|mult|0|cb|div
+2|1|mult|0|sp|div
+2|3|div|2|abs|mult
 2|3|div|2|sub
 2|3|div|2|abd
 2|3|div|2|mult
@@ -2468,10 +2482,10 @@
 2|3|div|3|sp|add
 2|3|div|3|sp|sub
 2|3|div|3|sp|abd
-2|3|div|cos
+2|3|div|2|abs|add
 2|3|div|2|abs|sub
 2|3|div|2|abs|abd
-2|3|div|2|abs|mult
+2|3|div|2|add
 2|3|div|2|abs|div
 2|3|div|2|sin|add
 2|3|div|2|sin|sub
@@ -2481,10 +2495,10 @@
 2|3|div|2|cos|add
 2|3|div|2|cos|sub
 2|3|div|2|cos|abd
-2|1|div|1|sq|div
-2|1|div|3|sin|div
-2|1|div|3|cos|div
-2|1|div|3|1|mult|div
+2|3|div|2|cos|mult
+2|3|div|2|cos|div
+2|3|div|2|1|mult|mult
+2|1|div|1|cbrt|div
 2|1|div|3|2|add|div
 2|1|div|3|2|sub|div
 2|1|div|3|2|abd|div
@@ -2494,10 +2508,10 @@
 2|1|div|0|cbrt|div
 2|1|div|0|abs|div
 2|1|div|1|0|mult|div
-2|1|mult|cbrt
+2|1|div|1|sq|div
 2|1|div|1|sp|div
 2|1|div|1|sqrt|div
-2|1|div|1|cbrt|div
+2|1|mult|1|sub
 2|3|div|0|mult
 2|3|div|0|div
 2|3|div|exp
@@ -2507,10 +2521,10 @@
 2|3|div|cbrt
 2|3|div|abs
 2|3|div|sin
-2|cos|exp
-2|sin|0|cb|div
-2|sin|0|cbrt|div
-2|sin|0|abs|div
+2|3|div|cos
+2|3|div|1|mult
+2|3|div|1|div
+2|cos|sq
 2|sin|1|0|mult|div
 2|sin|1|sq|div
 2|sin|1|sp|div
@@ -2521,10 +2535,10 @@
 2|sin|2|cb|div
 2|cos|0|mult
 2|cos|0|div
-2|sin|0|sq|div
+2|cos|exp
 2|cos|nexp
 2|cos|inv
-2|cos|sq
+2|sin|0|abs|div
 2|cos|cb
 2|cos|sp
 2|cos|cbrt
@@ -2534,9 +2548,10 @@
 2|cos|2|add
 2|cos|2|sub
 2|cos|2|abd
-2|sin|3|sq|div
-2|sin|3|sp|add
-2|sin|3|sp|sub
+2|cos|2|mult
+2|cos|2|div
+2|cos|3|add
+2|sin|3|cbrt|div
 2|sin|3|sp|abd
 2|sin|3|sp|mult
 2|sin|2|abs|add
@@ -2547,10 +2562,10 @@
 2|sin|2|cos|div
 2|sin|2|1|mult|div
 2|sin|3|0|mult|div
-2|cos|2|mult
+2|sin|3|sq|div
 2|sin|3|cb|div
 2|sin|2|cbrt|div
-2|sin|3|cbrt|div
+2|cos|3|sub
 2|sin|3|abs|div
 2|sin|3|sin|div
 2|sin|3|cos|div
@@ -2560,10 +2575,10 @@
 2|sin|3|2|abd|div
 2|sin|3|2|mult|div
 2|sin|1|cb|div
-2|cos|1|sq|div
-2|cos|3|sin|div
-2|cos|3|cos|div
-2|cos|3|1|mult|div
+2|sin|0|sq|div
+2|sin|0|cb|div
+2|sin|0|cbrt|div
+2|cos|1|cbrt|div
 2|cos|3|2|add|div
 2|cos|3|2|sub|div
 2|cos|3|2|abd|div
@@ -2574,10 +2589,10 @@
 2|cos|0|cbrt|div
 2|cos|0|abs|div
 2|cos|1|0|mult|div
-2|cos|3|abs|div
+2|cos|1|sq|div
 2|cos|1|sp|div
 2|cos|1|sqrt|div
-2|cos|1|cbrt|div
+2|cos|3|1|mult|div
 2|cos|2|0|mult|div
 2|cos|2|sq|div
 2|cos|2|cb|div
@@ -2587,10 +2602,10 @@
 2|1|mult|sq
 2|1|mult|cb
 2|1|mult|sp
-2|cos|2|abs|mult
-2|cos|2|div
-2|cos|3|add
-2|cos|3|sub
+2|1|mult|cbrt
+2|1|mult|abs
+2|1|mult|1|add
+2|cos|2|sin|sub
 2|cos|3|mult
 2|cos|3|div
 2|cos|3|sp|add
@@ -2600,10 +2615,10 @@
 2|cos|2|abs|add
 2|cos|2|abs|sub
 2|cos|2|abs|abd
-3|cbrt|2|cbrt|sub
+2|cos|2|abs|mult
 2|cos|2|abs|div
 2|cos|2|sin|add
-2|cos|2|sin|sub
+3|cbrt|3|sin|div
 2|cos|2|sin|abd
 2|cos|2|sin|mult
 2|cos|2|sin|div
@@ -2613,21 +2628,16 @@
 2|cos|3|cb|div
 2|cos|2|cbrt|div
 2|cos|3|cbrt|div
-3|2|sub|3|sq|sub
-3|2|sub|2|3|div|sub
-3|2|sub|2|3|div|abd
-3|2|sub|2|3|div|mult
-3|2|sub|3|0|mult|mult
-3|2|sub|3|0|mult|div
-3|2|sub|3|0|div|mult
-3|2|sub|3|exp|add
-3|2|sub|3|exp|sub
+2|cos|3|abs|div
+2|cos|3|sin|div
+2|cos|3|cos|div
+3|2|sub|2|cbrt|add
 3|2|sub|3|exp|abd
 3|2|sub|3|inv|add
 3|2|sub|3|inv|sub
 3|2|sub|3|inv|abd
 3|2|sub|3|sq|add
-3|2|sub|2|3|div|add
+3|2|sub|3|sq|sub
 3|2|sub|3|sq|abd
 3|2|sub|3|sq|mult
 3|2|sub|3|sq|div
@@ -2635,26 +2645,26 @@
 3|2|sub|3|cb|sub
 3|2|sub|3|cb|mult
 3|2|sub|3|cb|div
-3|2|sub|2|cbrt|add
+3|2|sub|3|exp|sub
 3|2|sub|2|cbrt|sub
 3|2|sub|2|cbrt|abd
 3|2|sub|2|cbrt|mult
 3|2|sub|2|cbrt|div
-3|2|sub|2|sin|add
-3|2|sub|3|add
-3|2|sub|3|mult
-3|2|sub|3|div
-3|2|sub|3|sp|add
-3|2|sub|3|sp|sub
-3|2|sub|3|sp|abd
-3|2|sub|3|sp|mult
-3|2|sub|3|sp|div
+3|2|sub|3|cbrt|add
+3|2|sub|3|cbrt|sub
+3|2|sub|3|cbrt|abd
+3|2|sub|3|cbrt|mult
+3|2|sub|3|cbrt|div
+3|2|sub|3|abs|add
+3|2|sub|3|abs|sub
+3|2|sub|3|abs|abd
+3|2|sub|2|cos|mult
 3|2|sub|2|abs|add
 3|2|sub|2|abs|sub
 3|2|sub|2|abs|abd
 3|2|sub|2|abs|mult
 3|2|sub|2|abs|div
-3|2|sub|3|cbrt|add
+3|2|sub|2|sin|add
 3|2|sub|2|sin|sub
 3|2|sub|2|sin|abd
 3|2|sub|2|sin|mult
@@ -2662,26 +2672,25 @@
 3|2|sub|2|cos|add
 3|2|sub|2|cos|sub
 3|2|sub|2|cos|abd
-3|2|sub|2|cos|mult
+3|2|sub|3|abs|mult
 3|2|sub|2|cos|div
 3|2|sub|2|1|mult|mult
 3|2|sub|2|1|mult|div
 3|2|sub|2|1|div|mult
-3|2|sub|2|cb|div
-3|2|sub|1|cb|div
-3|2|sub|0|sq|div
-3|2|sub|0|cb|div
-3|2|sub|0|sp|div
-3|2|sub|0|cbrt|div
-3|2|sub|0|abs|div
-3|2|sub|1|0|mult|div
-3|2|sub|1|sq|div
-3|2|sub|1|sp|div
+3|2|sub|2|3|div|add
+3|2|sub|2|3|div|sub
+3|2|sub|2|3|div|abd
+3|2|sub|2|3|div|mult
+3|2|sub|3|0|mult|mult
+3|2|sub|3|0|mult|div
+3|2|sub|3|0|div|mult
+3|2|sub|3|exp|add
+3|2|abd|log
 3|2|sub|1|sqrt|div
 3|2|sub|1|cbrt|div
 3|2|sub|2|0|mult|div
 3|2|sub|2|sq|div
-3|2|sub|3|2|mult|div
+3|2|sub|2|cb|div
 3|2|abd|0|mult
 3|2|abd|0|div
 3|2|abd|inv
@@ -2690,24 +2699,25 @@
 3|2|abd|sp
 3|2|abd|sqrt
 3|2|abd|cbrt
-3|2|abd|log
+3|2|sub|1|sp|div
 3|2|abd|sin
 3|2|abd|cos
 3|2|abd|1|mult
-3|2|sub|3|sin|mult
-3|2|sub|3|cbrt|sub
-3|2|sub|3|cbrt|abd
-3|2|sub|3|cbrt|mult
-3|2|sub|3|cbrt|div
-3|2|sub|3|abs|add
-3|2|sub|3|abs|sub
-3|2|sub|3|abs|abd
-3|2|sub|3|abs|mult
+3|2|abd|1|div
+3|2|abd|2|add
+3|2|abd|2|sub
+3|2|abd|2|mult
+3|2|abd|2|div
+3|2|abd|3|add
+3|2|abd|3|sub
+3|2|abd|3|mult
+3|2|abd|3|div
+3|2|sub|3|1|div|mult
 3|2|sub|3|abs|div
 3|2|sub|3|sin|add
 3|2|sub|3|sin|sub
 3|2|sub|3|sin|abd
-3|2|sub|2|div
+3|2|sub|3|sin|mult
 3|2|sub|3|sin|div
 3|2|sub|3|cos|add
 3|2|sub|3|cos|sub
@@ -2716,25 +2726,26 @@
 3|2|sub|3|cos|div
 3|2|sub|3|1|mult|mult
 3|2|sub|3|1|mult|div
-3|2|sub|3|1|div|mult
+3|2|sub|3|sp|div
 3|2|sub|3|2|add|mult
 3|2|sub|3|2|add|div
 3|2|sub|3|2|abd|div
-3|2|add|3|sq|abd
-3|2|add|2|3|div|abd
-3|2|add|2|3|div|mult
-3|2|add|3|0|mult|mult
-3|2|add|3|0|mult|div
-3|2|add|3|0|div|mult
-3|2|add|3|exp|add
-3|2|add|3|exp|sub
-3|2|add|3|exp|abd
+3|2|sub|3|2|mult|div
+3|2|sub|1|cb|div
+3|2|sub|0|sq|div
+3|2|sub|0|cb|div
+3|2|sub|0|sp|div
+3|2|sub|0|cbrt|div
+3|2|sub|0|abs|div
+3|2|sub|1|0|mult|div
+3|2|sub|1|sq|div
+3|2|add|2|cbrt|sub
 3|2|add|3|inv|add
 3|2|add|3|inv|sub
 3|2|add|3|inv|abd
 3|2|add|3|sq|add
 3|2|add|3|sq|sub
-3|2|add|2|3|div|sub
+3|2|add|3|sq|abd
 3|2|add|3|sq|mult
 3|2|add|3|sq|div
 3|2|add|3|cb|add
@@ -2742,26 +2753,26 @@
 3|2|add|3|cb|mult
 3|2|add|3|cb|div
 3|2|add|2|cbrt|add
-3|2|add|2|cbrt|sub
+3|2|add|3|exp|abd
 3|2|add|2|cbrt|abd
 3|2|add|2|cbrt|mult
 3|2|add|2|cbrt|div
 3|2|add|3|cbrt|add
-3|2|add|2|sin|sub
-3|2|add|3|mult
-3|2|add|3|div
-3|2|add|3|sp|add
-3|2|add|3|sp|sub
-3|2|add|3|sp|abd
-3|2|add|3|sp|mult
-3|2|add|3|sp|div
-3|2|add|2|abs|add
+3|2|add|3|cbrt|sub
+3|2|add|3|cbrt|abd
+3|2|add|3|cbrt|mult
+3|2|add|3|cbrt|div
+3|2|add|3|abs|add
+3|2|add|3|abs|sub
+3|2|add|3|abs|abd
+3|2|add|3|abs|mult
+3|2|add|2|cos|div
 3|2|add|2|abs|sub
 3|2|add|2|abs|abd
 3|2|add|2|abs|mult
 3|2|add|2|abs|div
 3|2|add|2|sin|add
-3|2|add|3|cbrt|sub
+3|2|add|2|sin|sub
 3|2|add|2|sin|abd
 3|2|add|2|sin|mult
 3|2|add|2|sin|div
@@ -2769,26 +2780,26 @@
 3|2|add|2|cos|sub
 3|2|add|2|cos|abd
 3|2|add|2|cos|mult
-3|2|add|2|cos|div
+3|2|add|3|abs|div
 3|2|add|2|1|mult|mult
 3|2|add|2|1|mult|div
 3|2|add|2|1|div|mult
 3|2|add|2|3|div|add
-3|2|sub|inv
-3|2|add|0|cb|div
-3|2|add|0|cbrt|div
-3|2|add|0|abs|div
-3|2|add|1|0|mult|div
-3|2|add|1|sq|div
-3|2|add|1|sp|div
-3|2|add|1|sqrt|div
-3|2|add|1|cbrt|div
+3|2|add|2|3|div|sub
+3|2|add|2|3|div|abd
+3|2|add|2|3|div|mult
+3|2|add|3|0|mult|mult
+3|2|add|3|0|mult|div
+3|2|add|3|0|div|mult
+3|2|add|3|exp|add
+3|2|add|3|exp|sub
+3|2|sub|1|mult
 3|2|add|2|0|mult|div
 3|2|add|2|sq|div
 3|2|add|2|cb|div
 3|2|sub|0|mult
 3|2|sub|0|div
-3|2|add|0|sq|div
+3|2|sub|inv
 3|2|sub|sq
 3|2|sub|cb
 3|2|sub|sp
@@ -2796,25 +2807,25 @@
 3|2|sub|abs
 3|2|sub|sin
 3|2|sub|cos
-3|2|sub|1|mult
+3|2|add|1|cbrt|div
 3|2|sub|1|div
 3|2|sub|2|sub
 3|2|sub|2|abd
 3|2|sub|2|mult
+3|2|sub|2|div
+3|2|sub|3|add
+3|2|sub|3|mult
+3|2|sub|3|div
+3|2|sub|3|sp|add
+3|2|sub|3|sp|sub
+3|2|sub|3|sp|abd
+3|2|sub|3|sp|mult
+3|2|add|3|1|div|mult
+3|2|add|3|sin|add
+3|2|add|3|sin|sub
+3|2|add|3|sin|abd
+3|2|add|3|sin|mult
 3|2|add|3|sin|div
-3|2|add|3|cbrt|abd
-3|2|add|3|cbrt|mult
-3|2|add|3|cbrt|div
-3|2|add|3|abs|add
-3|2|add|3|abs|sub
-3|2|add|3|abs|abd
-3|2|add|3|abs|mult
-3|2|add|3|abs|div
-3|2|add|3|sin|add
-3|2|add|3|sin|sub
-3|2|add|3|sin|abd
-3|2|add|3|sin|mult
-3|2|abd|1|div
 3|2|add|3|cos|add
 3|2|add|3|cos|sub
 3|2|add|3|cos|abd
@@ -2822,26 +2833,24 @@
 3|2|add|3|cos|div
 3|2|add|3|1|mult|mult
 3|2|add|3|1|mult|div
-3|2|add|3|1|div|mult
+3|2|abd|3|sp|add
 3|2|add|3|2|sub|div
 3|2|add|3|2|abd|div
 3|2|add|3|2|mult|div
 3|2|add|1|cb|div
-3|2|mult|3|inv|sub
-3|2|mult|2|cos|mult
-3|2|mult|2|cos|div
-3|2|mult|2|1|mult|mult
-3|2|mult|2|1|div|mult
-3|2|mult|2|3|div|add
-3|2|mult|2|3|div|sub
-3|2|mult|2|3|div|abd
-3|2|mult|3|0|mult|mult
-3|2|mult|3|0|div|mult
-3|2|mult|3|exp|add
+3|2|add|0|sq|div
+3|2|add|0|cb|div
+3|2|add|0|cbrt|div
+3|2|add|0|abs|div
+3|2|add|1|0|mult|div
+3|2|add|1|sq|div
+3|2|add|1|sp|div
+3|2|add|1|sqrt|div
+3|2|mult|2|cbrt|add
 3|2|mult|3|exp|sub
 3|2|mult|3|exp|abd
 3|2|mult|3|inv|add
-3|2|mult|2|cos|abd
+3|2|mult|3|inv|sub
 3|2|mult|3|inv|abd
 3|2|mult|3|sq|add
 3|2|mult|3|sq|sub
@@ -2851,24 +2860,24 @@
 3|2|mult|3|cb|sub
 3|2|mult|3|cb|abd
 3|2|mult|3|cb|mult
-3|2|mult|2|cbrt|add
+3|2|mult|3|exp|add
 3|2|mult|2|cbrt|sub
 3|2|mult|2|cbrt|abd
-3|2|mult|3|sp|mult
-3|2|mult|1|mult
-3|2|mult|1|div
-3|2|mult|2|add
-3|2|mult|2|sub
-3|2|mult|2|abd
-3|2|mult|2|mult
-3|2|mult|3|add
-3|2|mult|3|sub
-3|2|mult|3|abd
-3|2|mult|3|mult
+3|2|mult|2|cbrt|mult
+3|2|mult|3|cbrt|add
+3|2|mult|3|cbrt|sub
+3|2|mult|3|cbrt|abd
+3|2|mult|3|cbrt|mult
+3|2|mult|3|abs|add
+3|2|mult|3|abs|sub
+3|2|mult|3|abs|abd
+3|2|mult|3|abs|mult
+3|2|mult|3|abs|div
+3|2|mult|2|sin|div
 3|2|mult|3|sp|add
 3|2|mult|3|sp|sub
 3|2|mult|3|sp|abd
-3|2|mult|2|cbrt|mult
+3|2|mult|3|sp|mult
 3|2|mult|2|abs|add
 3|2|mult|2|abs|sub
 3|2|mult|2|abs|abd
@@ -2878,24 +2887,23 @@
 3|2|mult|2|sin|sub
 3|2|mult|2|sin|abd
 3|2|mult|2|sin|mult
-3|2|mult|2|sin|div
+3|2|mult|3|sin|add
 3|2|mult|2|cos|add
 3|2|mult|2|cos|sub
-3|2|mult|0|sp|div
-3|2|mult|3|2|sub|add
-3|2|mult|3|2|sub|sub
-3|2|mult|3|2|sub|abd
-3|2|mult|3|2|sub|mult
-3|2|mult|3|2|sub|div
-3|2|mult|3|2|abd|add
-3|2|mult|3|2|abd|sub
-3|2|mult|3|2|abd|abd
-3|2|mult|3|2|abd|mult
-3|2|mult|3|2|abd|div
-3|2|mult|1|cb|div
+3|2|mult|2|cos|abd
+3|2|mult|2|cos|mult
+3|2|mult|2|cos|div
+3|2|mult|2|1|mult|mult
+3|2|mult|2|1|div|mult
+3|2|mult|2|3|div|add
+3|2|mult|2|3|div|sub
+3|2|mult|2|3|div|abd
+3|2|mult|3|0|mult|mult
+3|2|mult|3|0|div|mult
+3|2|div|nexp
 3|2|mult|0|sq|div
 3|2|mult|0|cb|div
-3|2|mult|3|2|add|div
+3|2|mult|0|sp|div
 3|2|mult|0|cbrt|div
 3|2|mult|0|abs|div
 3|2|mult|1|0|mult|div
@@ -2906,22 +2914,23 @@
 3|2|div|0|mult
 3|2|div|0|div
 3|2|div|exp
-3|2|div|nexp
+3|2|mult|1|cb|div
 3|2|div|sq
-3|2|mult|3|sin|mult
-3|2|mult|3|cbrt|add
-3|2|mult|3|cbrt|sub
-3|2|mult|3|cbrt|abd
-3|2|mult|3|cbrt|mult
-3|2|mult|3|abs|add
-3|2|mult|3|abs|sub
-3|2|mult|3|abs|abd
-3|2|mult|3|abs|mult
-3|2|mult|3|abs|div
-3|2|mult|3|sin|add
+3|2|div|cb
+3|2|div|sp
+3|2|div|cbrt
+3|2|div|abs
+3|2|div|sin
+3|2|div|cos
+3|2|div|1|mult
+3|2|div|1|div
+3|2|div|2|add
+3|2|div|2|sub
+3|2|div|2|abd
+3|2|mult|3|2|add|abd
 3|2|mult|3|sin|sub
 3|2|mult|3|sin|abd
-3|2|mult|cos
+3|2|mult|3|sin|mult
 3|2|mult|3|sin|div
 3|2|mult|3|cos|add
 3|2|mult|3|cos|sub
@@ -2932,23 +2941,24 @@
 3|2|mult|3|1|div|mult
 3|2|mult|3|2|add|add
 3|2|mult|3|2|add|sub
-3|2|mult|3|2|add|abd
+3|2|mult|3|mult
 3|2|mult|3|2|add|mult
-3|2|abd|3|sq|add
-3|2|abd|2|1|mult|mult
-3|2|abd|2|1|mult|div
-3|2|abd|2|1|div|mult
-3|2|abd|2|3|div|add
-3|2|abd|2|3|div|sub
-3|2|abd|2|3|div|mult
-3|2|abd|3|0|mult|mult
-3|2|abd|3|0|mult|div
-3|2|abd|3|0|div|mult
-3|2|abd|3|exp|add
+3|2|mult|3|2|add|div
+3|2|mult|3|2|sub|add
+3|2|mult|3|2|sub|sub
+3|2|mult|3|2|sub|abd
+3|2|mult|3|2|sub|mult
+3|2|mult|3|2|sub|div
+3|2|mult|3|2|abd|add
+3|2|mult|3|2|abd|sub
+3|2|mult|3|2|abd|abd
+3|2|mult|3|2|abd|mult
+3|2|mult|3|2|abd|div
+3|2|abd|2|cbrt|sub
 3|2|abd|3|exp|sub
 3|2|abd|3|inv|add
 3|2|abd|3|inv|sub
-3|2|abd|2|cos|div
+3|2|abd|3|sq|add
 3|2|abd|3|sq|sub
 3|2|abd|3|sq|abd
 3|2|abd|3|sq|mult
@@ -2958,23 +2968,24 @@
 3|2|abd|3|cb|mult
 3|2|abd|3|cb|div
 3|2|abd|2|cbrt|add
-3|2|abd|2|cbrt|sub
+3|2|abd|3|exp|add
 3|2|abd|2|cbrt|mult
 3|2|abd|2|cbrt|div
-3|2|abd|3|sp|div
-3|2|abd|2|add
-3|2|abd|2|sub
-3|2|abd|2|mult
-3|2|abd|2|div
-3|2|abd|3|add
-3|2|abd|3|sub
-3|2|abd|3|mult
-3|2|abd|3|div
-3|2|abd|3|sp|add
+3|2|abd|3|cbrt|add
+3|2|abd|3|cbrt|sub
+3|2|abd|3|cbrt|mult
+3|2|abd|3|cbrt|div
+3|2|abd|3|abs|add
+3|2|abd|3|abs|sub
+3|2|abd|3|abs|abd
+3|2|abd|3|abs|mult
+3|2|abd|3|abs|div
+3|2|abd|3|sin|add
+3|2|abd|2|cos|add
 3|2|abd|3|sp|sub
 3|2|abd|3|sp|abd
 3|2|abd|3|sp|mult
-3|2|abd|3|cbrt|add
+3|2|abd|3|sp|div
 3|2|abd|2|abs|add
 3|2|abd|2|abs|sub
 3|2|abd|2|abs|abd
@@ -2984,24 +2995,24 @@
 3|2|abd|2|sin|sub
 3|2|abd|2|sin|mult
 3|2|abd|2|sin|div
-3|2|abd|2|cos|add
+3|2|abd|3|sin|sub
 3|2|abd|2|cos|sub
 3|2|abd|2|cos|mult
-3|2|abd|1|cbrt|div
-3|2|abd|3|2|sub|mult
-3|2|abd|3|2|sub|div
-3|2|abd|3|2|mult|div
-3|2|abd|1|cb|div
-3|2|abd|0|sq|div
-3|2|abd|0|cb|div
-3|2|abd|0|sp|div
-3|2|abd|0|cbrt|div
-3|2|abd|0|abs|div
-3|2|abd|1|0|mult|div
+3|2|abd|2|cos|div
+3|2|abd|2|1|mult|mult
+3|2|abd|2|1|mult|div
+3|2|abd|2|1|div|mult
+3|2|abd|2|3|div|add
+3|2|abd|2|3|div|sub
+3|2|abd|2|3|div|mult
+3|2|abd|3|0|mult|mult
+3|2|abd|3|0|mult|div
+3|2|abd|3|0|div|mult
+3|2|mult|cbrt
 3|2|abd|1|sq|div
 3|2|abd|1|sp|div
 3|2|abd|1|sqrt|div
-3|2|abd|3|2|sub|abd
+3|2|abd|1|cbrt|div
 3|2|abd|2|0|mult|div
 3|2|abd|2|sq|div
 3|2|abd|2|cb|div
@@ -3011,23 +3022,23 @@
 3|2|mult|sq
 3|2|mult|cb
 3|2|mult|sp
-3|2|mult|cbrt
+3|2|abd|1|0|mult|div
 3|2|mult|abs
 3|2|mult|sin
-3|2|abd|3|cos|add
-3|2|abd|3|cbrt|sub
-3|2|abd|3|cbrt|mult
-3|2|abd|3|cbrt|div
-3|2|abd|3|abs|add
-3|2|abd|3|abs|sub
-3|2|abd|3|abs|abd
-3|2|abd|3|abs|mult
-3|2|abd|3|abs|div
-3|2|abd|3|sin|add
-3|2|abd|3|sin|sub
+3|2|mult|cos
+3|2|mult|1|mult
+3|2|mult|1|div
+3|2|mult|2|add
+3|2|mult|2|sub
+3|2|mult|2|abd
+3|2|mult|2|mult
+3|2|mult|3|add
+3|2|mult|3|sub
+3|2|mult|3|abd
+3|2|abd|3|2|add|div
 3|2|abd|3|sin|mult
 3|2|abd|3|sin|div
-3|2|add|3|add
+3|2|abd|3|cos|add
 3|2|abd|3|cos|sub
 3|2|abd|3|cos|mult
 3|2|abd|3|cos|div
@@ -3037,16 +3048,20 @@
 3|2|abd|3|2|add|add
 3|2|abd|3|2|add|sub
 3|2|abd|3|2|add|mult
-3|2|abd|3|2|add|div
+3|2|add|2|abs|add
 3|2|abd|3|2|sub|add
 3|2|abd|3|2|sub|sub
-3|sin|2|cos|sub
-3|sin|3|sp|abd
-3|sin|3|sp|mult
-3|sin|2|abs|add
-3|sin|2|abs|sub
-3|sin|2|abs|abd
-3|sin|2|abs|mult
+3|2|abd|3|2|sub|abd
+3|2|abd|3|2|sub|mult
+3|2|abd|3|2|sub|div
+3|2|abd|3|2|mult|div
+3|2|abd|1|cb|div
+3|2|abd|0|sq|div
+3|2|abd|0|cb|div
+3|2|abd|0|sp|div
+3|2|abd|0|cbrt|div
+3|2|abd|0|abs|div
+3|sin|2|1|div|mult
 3|sin|2|abs|div
 3|sin|2|sin|add
 3|sin|2|sin|sub
@@ -3054,26 +3069,26 @@
 3|sin|2|sin|mult
 3|sin|2|sin|div
 3|sin|2|cos|add
-3|sin|3|sp|sub
+3|sin|2|cos|sub
 3|sin|2|cos|abd
 3|sin|2|cos|mult
 3|sin|2|cos|div
 3|sin|2|1|mult|mult
 3|sin|2|1|mult|div
-3|sin|2|1|div|mult
+3|sin|2|abs|mult
 3|sin|2|3|div|add
 3|sin|2|3|div|sub
 3|sin|2|3|div|abd
 3|sin|2|3|div|mult
 3|sin|3|0|mult|mult
 3|sin|3|0|mult|div
-3|sin|abs
-3|abs|1|cbrt|div
-3|abs|2|0|mult|div
-3|abs|2|sq|div
-3|abs|2|cb|div
-3|sin|0|mult
-3|sin|0|div
+3|sin|3|0|div|mult
+3|sin|3|exp|add
+3|sin|3|exp|sub
+3|sin|3|exp|abd
+3|sin|3|inv|add
+3|sin|3|inv|sub
+3|sin|2|mult
 3|sin|exp
 3|sin|nexp
 3|sin|inv
@@ -3081,79 +3096,80 @@
 3|sin|cb
 3|sin|sp
 3|sin|cbrt
-3|sin|3|0|div|mult
+3|sin|abs
 3|sin|1|mult
 3|sin|1|div
 3|sin|2|add
 3|sin|2|sub
 3|sin|2|abd
-3|sin|2|mult
+3|sin|3|inv|abd
 3|sin|2|div
 3|sin|3|add
 3|sin|3|sub
 3|sin|3|mult
 3|sin|3|div
 3|sin|3|sp|add
-3|sin|0|abs|div
-3|sin|3|abs|abd
-3|sin|3|abs|mult
-3|sin|3|abs|div
-3|sin|3|cos|div
-3|sin|3|1|mult|div
-3|sin|3|2|add|div
-3|sin|3|2|sub|div
+3|sin|3|sp|sub
+3|sin|3|sp|abd
+3|sin|3|sp|mult
+3|sin|2|abs|add
+3|sin|2|abs|sub
+3|sin|2|abs|abd
+3|sin|2|sq|div
 3|sin|3|2|abd|div
 3|sin|3|2|mult|div
 3|sin|1|cb|div
 3|sin|0|sq|div
 3|sin|0|cb|div
 3|sin|0|cbrt|div
-3|sin|3|abs|sub
+3|sin|0|abs|div
 3|sin|1|0|mult|div
 3|sin|1|sq|div
 3|sin|1|sp|div
 3|sin|1|sqrt|div
 3|sin|1|cbrt|div
 3|sin|2|0|mult|div
-3|sin|2|sq|div
+3|sin|3|2|sub|div
 3|sin|2|cb|div
 3|cos|0|mult
 3|cos|0|div
 3|cos|exp
 3|cos|nexp
-3|sin|3|cb|sub
-3|sin|3|exp|add
-3|sin|3|exp|sub
-3|sin|3|exp|abd
-3|sin|3|inv|add
-3|sin|3|inv|sub
-3|sin|3|inv|abd
+3|cos|inv
+3|cos|sq
+3|cos|cb
+3|cos|sp
+3|cos|cbrt
+3|cos|abs
+3|cos|1|mult
+3|sin|2|cbrt|div
 3|sin|3|sq|add
 3|sin|3|sq|sub
 3|sin|3|sq|abd
 3|sin|3|sq|mult
 3|sin|3|sq|div
 3|sin|3|cb|add
-3|abs|1|sqrt|div
+3|sin|3|cb|sub
 3|sin|3|cb|mult
 3|sin|3|cb|div
 3|sin|2|cbrt|add
 3|sin|2|cbrt|sub
 3|sin|2|cbrt|abd
 3|sin|2|cbrt|mult
-3|sin|2|cbrt|div
+3|sin|0|div
 3|sin|3|cbrt|add
 3|sin|3|cbrt|sub
 3|sin|3|cbrt|mult
 3|sin|3|cbrt|div
 3|sin|3|abs|add
-3|abs|2|mult
-3|abs|sq
-3|abs|cb
-3|abs|sp
-3|abs|sqrt
-3|abs|cbrt
-3|abs|log
+3|sin|3|abs|sub
+3|sin|3|abs|abd
+3|sin|3|abs|mult
+3|sin|3|abs|div
+3|sin|3|cos|div
+3|sin|3|1|mult|div
+3|sin|3|2|add|div
+3|abs|3|sp|abd
 3|abs|sin
 3|abs|cos
 3|abs|1|mult
@@ -3161,25 +3177,26 @@
 3|abs|2|add
 3|abs|2|sub
 3|abs|2|abd
-3|abs|inv
+3|abs|2|mult
 3|abs|2|div
 3|abs|3|sub
 3|abs|3|mult
 3|abs|3|sp|add
 3|abs|3|sp|sub
-3|abs|3|sp|abd
+3|abs|log
 3|abs|3|sp|mult
 3|abs|2|abs|add
 3|abs|2|abs|sub
 3|abs|2|abs|abd
 3|abs|2|abs|mult
 3|abs|2|abs|div
-3|cbrt|0|cbrt|div
-3|cbrt|2|cbrt|abd
-3|cbrt|2|cbrt|mult
-3|cbrt|2|cbrt|div
-3|cbrt|3|abs|div
-3|cbrt|3|sin|div
+3|abs|2|sin|add
+3|abs|2|sin|sub
+3|abs|2|sin|mult
+3|abs|2|sin|div
+3|abs|2|cos|add
+3|abs|2|cos|sub
+3|cbrt|1|cbrt|div
 3|cbrt|3|cos|div
 3|cbrt|3|2|add|div
 3|cbrt|3|2|sub|div
@@ -3187,26 +3204,26 @@
 3|cbrt|1|cb|div
 3|cbrt|0|sq|div
 3|cbrt|0|cb|div
-3|abs|2|sin|add
+3|cbrt|0|cbrt|div
 3|cbrt|0|abs|div
 3|cbrt|1|0|mult|div
 3|cbrt|1|sq|div
 3|cbrt|1|sp|div
 3|cbrt|1|sqrt|div
-3|cbrt|1|cbrt|div
+3|abs|2|cos|mult
 3|cbrt|2|0|mult|div
 3|cbrt|2|sq|div
 3|cbrt|2|cb|div
 3|abs|0|mult
 3|abs|0|div
 3|abs|nexp
-3|abs|3|1|mult|div
-3|abs|3|cb|sub
-3|abs|3|cb|mult
-3|abs|3|cb|div
-3|abs|2|cbrt|add
-3|abs|2|cbrt|sub
-3|abs|2|cbrt|mult
+3|abs|inv
+3|abs|sq
+3|abs|cb
+3|abs|sp
+3|abs|sqrt
+3|abs|cbrt
+3|abs|0|sq|div
 3|abs|2|cbrt|div
 3|abs|3|cbrt|add
 3|abs|3|cbrt|sub
@@ -3214,60 +3231,58 @@
 3|abs|3|cbrt|div
 3|abs|3|sin|div
 3|abs|3|cos|div
-3|abs|3|cb|add
+3|abs|3|1|mult|div
 3|abs|3|2|add|div
 3|abs|3|2|sub|div
 3|abs|3|2|abd|div
 3|abs|3|2|mult|div
 3|abs|1|cb|div
-3|abs|0|sq|div
+3|abs|2|cbrt|mult
 3|abs|0|cb|div
 3|abs|0|cbrt|div
 3|abs|0|abs|div
 3|abs|1|0|mult|div
 3|abs|1|sq|div
 3|abs|1|sp|div
-3|abs|2|3|div|mult
-3|abs|2|sin|sub
-3|abs|2|sin|mult
-3|abs|2|sin|div
-3|abs|2|cos|add
-3|abs|2|cos|sub
-3|abs|2|cos|mult
+3|abs|1|sqrt|div
+3|abs|1|cbrt|div
+3|abs|2|0|mult|div
+3|abs|2|sq|div
+3|abs|2|cb|div
+3|sin|0|mult
+3|abs|3|inv|add
 3|abs|2|cos|div
 3|abs|2|1|mult|mult
 3|abs|2|1|mult|div
 3|abs|2|1|div|mult
 3|abs|2|3|div|add
 3|abs|2|3|div|sub
-3|cos|inv
+3|abs|2|3|div|mult
 3|abs|3|0|mult|mult
 3|abs|3|0|mult|div
 3|abs|3|0|div|mult
 3|abs|3|exp|add
 3|abs|3|exp|sub
-3|abs|3|inv|add
+3|cos|1|div
 3|abs|3|inv|sub
 3|abs|3|sq|add
 3|abs|3|sq|sub
 3|abs|3|sq|abd
 3|abs|3|sq|mult
 3|abs|3|sq|div
-3|1|mult|2|cb|div
-3|1|mult|3|sin|div
-3|1|mult|3|cos|mult
-3|1|mult|3|cos|div
-3|1|mult|3|2|add|div
-3|1|mult|3|2|sub|div
-3|1|mult|3|2|abd|div
-3|1|mult|0|sq|div
-3|1|mult|0|cb|div
+3|abs|3|cb|add
+3|abs|3|cb|sub
+3|abs|3|cb|mult
+3|abs|3|cb|div
+3|abs|2|cbrt|add
+3|abs|2|cbrt|sub
+3|1|div|1|div
 3|1|mult|0|sp|div
 3|1|mult|0|cbrt|div
 3|1|mult|0|abs|div
 3|1|mult|2|0|mult|div
 3|1|mult|2|sq|div
-3|1|mult|3|sin|mult
+3|1|mult|2|cb|div
 3|1|div|0|mult
 3|1|div|0|div
 3|1|div|sq
@@ -3275,26 +3290,26 @@
 3|1|div|sp
 3|1|div|cbrt
 3|1|div|abs
-3|1|div|1|div
+3|1|mult|0|cb|div
 3|1|div|2|mult
 3|1|div|2|div
 3|1|div|3|mult
 3|1|div|3|sp|mult
-3|1|mult|2|1|mult|add
-3|1|mult|1|sub
-3|1|mult|1|abd
-3|1|mult|1|mult
-3|1|mult|2|mult
-3|1|mult|2|div
-3|1|mult|3|mult
-3|1|mult|3|sp|mult
-3|1|mult|2|abs|mult
+3|1|div|2|abs|mult
+3|1|div|2|abs|div
+3|1|div|2|sin|mult
+3|1|div|2|sin|div
+3|1|div|2|cos|mult
+3|1|div|2|cos|div
+3|1|div|2|1|mult|div
+3|1|div|2|1|div|add
+3|1|mult|2|cbrt|mult
 3|1|mult|2|abs|div
 3|1|mult|2|sin|mult
 3|1|mult|2|sin|div
 3|1|mult|2|cos|mult
 3|1|mult|2|cos|div
-3|1|div|2|abs|mult
+3|1|mult|2|1|mult|add
 3|1|mult|2|1|mult|sub
 3|1|mult|2|1|mult|abd
 3|1|mult|2|1|mult|mult
@@ -3302,26 +3317,26 @@
 3|1|mult|3|0|div|mult
 3|1|mult|3|sq|mult
 3|1|mult|3|cb|mult
-3|1|mult|2|cbrt|mult
+3|1|div|2|1|div|sub
 3|1|mult|2|cbrt|div
 3|1|mult|3|cbrt|mult
 3|1|mult|3|abs|mult
 3|1|mult|3|abs|div
-3|2|add|inv
-3|1|div|0|cb|div
-3|1|div|0|cbrt|div
-3|1|div|0|abs|div
-3|1|div|1|0|mult|div
-3|1|div|1|sq|div
-3|1|div|1|sp|div
-3|1|div|1|sqrt|div
-3|1|div|1|cbrt|div
+3|1|mult|3|sin|mult
+3|1|mult|3|sin|div
+3|1|mult|3|cos|mult
+3|1|mult|3|cos|div
+3|1|mult|3|2|add|div
+3|1|mult|3|2|sub|div
+3|1|mult|3|2|abd|div
+3|1|mult|0|sq|div
+3|2|add|1|mult
 3|1|div|2|0|mult|div
 3|1|div|2|sq|div
 3|1|div|2|cb|div
 3|2|add|0|mult
 3|2|add|0|div
-3|1|div|0|sq|div
+3|2|add|inv
 3|2|add|sq
 3|2|add|cb
 3|2|add|sp
@@ -3329,25 +3344,25 @@
 3|2|add|abs
 3|2|add|sin
 3|2|add|cos
-3|2|add|1|mult
+3|1|div|1|cbrt|div
 3|2|add|1|div
 3|2|add|2|add
 3|2|add|2|mult
 3|2|add|2|div
-3|1|div|2|cbrt|mult
-3|1|div|2|abs|div
-3|1|div|2|sin|mult
-3|1|div|2|sin|div
-3|1|div|2|cos|mult
-3|1|div|2|cos|div
-3|1|div|2|1|mult|div
-3|1|div|2|1|div|add
-3|1|div|2|1|div|sub
+3|2|add|3|add
+3|2|add|3|mult
+3|2|add|3|div
+3|2|add|3|sp|add
+3|2|add|3|sp|sub
+3|2|add|3|sp|abd
+3|2|add|3|sp|mult
+3|2|add|3|sp|div
+3|1|div|3|cos|div
 3|1|div|2|1|div|abd
 3|1|div|3|0|mult|mult
 3|1|div|3|sq|mult
 3|1|div|3|cb|mult
-3|1|mult|1|add
+3|1|div|2|cbrt|mult
 3|1|div|2|cbrt|div
 3|1|div|3|cbrt|mult
 3|1|div|3|abs|mult
@@ -3355,26 +3370,26 @@
 3|1|div|3|sin|mult
 3|1|div|3|sin|div
 3|1|div|3|cos|mult
-3|1|div|3|cos|div
+3|1|mult|2|abs|mult
 3|1|div|3|2|add|div
 3|1|div|3|2|sub|div
 3|1|div|3|2|abd|div
 3|1|div|1|cb|div
-3|cos|2|3|div|sub
-3|cos|2|sin|sub
-3|cos|2|sin|abd
-3|cos|2|sin|mult
-3|cos|2|sin|div
-3|cos|2|cos|add
-3|cos|2|cos|sub
-3|cos|2|cos|abd
-3|cos|2|cos|mult
+3|1|div|0|sq|div
+3|1|div|0|cb|div
+3|1|div|0|cbrt|div
+3|1|div|0|abs|div
+3|1|div|1|0|mult|div
+3|1|div|1|sq|div
+3|1|div|1|sp|div
+3|1|div|1|sqrt|div
+3|cos|3|exp|abd
 3|cos|2|cos|div
 3|cos|2|1|mult|mult
 3|cos|2|1|mult|div
 3|cos|2|1|div|mult
 3|cos|2|3|div|add
-3|cos|2|sin|add
+3|cos|2|3|div|sub
 3|cos|2|3|div|abd
 3|cos|2|3|div|mult
 3|cos|3|0|mult|mult
@@ -3382,25 +3397,26 @@
 3|cos|3|0|div|mult
 3|cos|3|exp|add
 3|cos|3|exp|sub
-3|cos|3|exp|abd
+3|cos|2|cos|mult
 3|cos|3|inv|add
 3|cos|3|inv|sub
 3|cos|3|inv|abd
 3|cos|3|sq|add
-3|cos|3|add
-3|cos|sq
-3|cos|cb
-3|cos|sp
-3|cos|cbrt
-3|cos|abs
-3|cos|1|mult
-3|cos|1|div
+3|cos|3|sq|sub
+3|cos|3|sq|abd
+3|cos|3|sq|mult
+3|cos|3|sq|div
+3|cos|3|cb|add
+3|cos|3|cb|sub
+3|cos|3|cb|mult
+3|cos|3|cb|div
+3|cos|2|abs|add
 3|cos|2|add
 3|cos|2|sub
 3|cos|2|abd
 3|cos|2|mult
 3|cos|2|div
-3|cos|3|sq|sub
+3|cos|3|add
 3|cos|3|sub
 3|cos|3|mult
 3|cos|3|div
@@ -3408,26 +3424,26 @@
 3|cos|3|sp|sub
 3|cos|3|sp|abd
 3|cos|3|sp|mult
-3|cos|2|abs|add
+3|cos|2|cbrt|add
 3|cos|2|abs|sub
 3|cos|2|abs|abd
 3|cos|2|abs|mult
 3|cos|2|abs|div
-3|cos|1|sqrt|div
-3|cos|3|1|mult|div
-3|cos|3|2|add|div
-3|cos|3|2|sub|div
-3|cos|3|2|abd|div
-3|cos|3|2|mult|div
-3|cos|1|cb|div
-3|cos|0|sq|div
-3|cos|0|cb|div
+3|cos|2|sin|add
+3|cos|2|sin|sub
+3|cos|2|sin|abd
+3|cos|2|sin|mult
+3|cos|2|sin|div
+3|cos|2|cos|add
+3|cos|2|cos|sub
+3|cos|2|cos|abd
+3|1|mult|sq
 3|cos|0|cbrt|div
 3|cos|0|abs|div
 3|cos|1|0|mult|div
 3|cos|1|sq|div
 3|cos|1|sp|div
-3|cos|3|sin|div
+3|cos|1|sqrt|div
 3|cos|1|cbrt|div
 3|cos|2|0|mult|div
 3|cos|2|sq|div
@@ -3435,25 +3451,25 @@
 3|1|mult|0|mult
 3|1|mult|0|div
 3|1|mult|inv
-3|1|mult|sq
+3|cos|0|cb|div
 3|1|mult|cb
 3|1|mult|sp
 3|1|mult|cbrt
 3|1|mult|abs
-3|cos|3|cbrt|add
-3|cos|3|sq|abd
-3|cos|3|sq|mult
-3|cos|3|sq|div
-3|cos|3|cb|add
-3|cos|3|cb|sub
-3|cos|3|cb|mult
-3|cos|3|cb|div
-3|cos|2|cbrt|add
+3|1|mult|1|add
+3|1|mult|1|sub
+3|1|mult|1|abd
+3|1|mult|1|mult
+3|1|mult|2|mult
+3|1|mult|2|div
+3|1|mult|3|mult
+3|1|mult|3|sp|mult
+3|cos|3|abs|div
 3|cos|2|cbrt|sub
 3|cos|2|cbrt|abd
 3|cos|2|cbrt|mult
 3|cos|2|cbrt|div
-0|3|sp|div
+3|cos|3|cbrt|add
 3|cos|3|cbrt|sub
 3|cos|3|cbrt|mult
 3|cos|3|cbrt|div
@@ -3461,8 +3477,16 @@
 3|cos|3|abs|sub
 3|cos|3|abs|abd
 3|cos|3|abs|mult
-3|cos|3|abs|div
+0|3|sp|div
 3|cos|3|sin|add
 3|cos|3|sin|sub
 3|cos|3|sin|abd
 3|cos|3|sin|mult
+3|cos|3|sin|div
+3|cos|3|1|mult|div
+3|cos|3|2|add|div
+3|cos|3|2|sub|div
+3|cos|3|2|abd|div
+3|cos|3|2|mult|div
+3|cos|1|cb|div
+3|cos|0|sq|div
diff --git a/tests/exec_test/default/sisso.json b/tests/exec_test/default/sisso.json
index 7c12e68e7753d7a668536e2123018cf837d04eb6..de149bf935a3f909b3a5f589ce096486b41e6149 100644
--- a/tests/exec_test/default/sisso.json
+++ b/tests/exec_test/default/sisso.json
@@ -1,6 +1,6 @@
 {
     "desc_dim": 2,
-    "n_sis_select": 1,
+    "n_sis_select": 2,
     "max_rung": 2,
     "n_residual": 1,
     "data_file": "../data.csv",
@@ -10,5 +10,6 @@
     "leave_out_frac": 0.05,
     "n_models_store": 1,
     "leave_out_inds": [0, 1, 2, 60, 61],
-    "fix_intercept": false
+    "fix_intercept": false,
+    "phi_out_file": "feature_space/phi.txt"
 }
diff --git a/tests/exec_test/gen_proj/sisso.json b/tests/exec_test/gen_proj/sisso.json
index dc65c132bc8d780fa99c16cdf6a25779dc6f0bbe..4ca1df07872f765bb4c28ec586831b0af56708f5 100644
--- a/tests/exec_test/gen_proj/sisso.json
+++ b/tests/exec_test/gen_proj/sisso.json
@@ -1,16 +1,16 @@
 {
     "desc_dim": 2,
-    "n_sis_select": 1,
+    "n_sis_select": 2,
     "max_rung": 2,
     "n_residual": 1,
     "data_file": "../data.csv",
     "data_file_relatice_to_json": true,
     "property_key": "Prop",
     "task_key": "Task",
-    "leave_out_frac": 0.0,
+    "leave_out_frac": 0.05,
     "n_models_store": 1,
     "n_rung_generate": 1,
-    "opset": ["add", "sub", "abs_diff", "mult", "div", "inv", "abs", "exp", "log", "sin", "cos", "sq", "cb", "six_pow", "sqrt", "cbrt", "neg_exp"],
-    "param_opset": [],
-    "fix_intercept": false
+    "leave_out_inds": [0, 1, 2, 60, 61],
+    "fix_intercept": false,
+    "phi_out_file": "feature_space/phi.txt"
 }
diff --git a/tests/exec_test/reparam_gen_proj/sisso.json b/tests/exec_test/reparam_gen_proj/sisso.json
index 90182dad19e3288700eddcb2c4fa45cb076a0e61..6829a1ee034417909ff34a027c24d147a3418408 100644
--- a/tests/exec_test/reparam_gen_proj/sisso.json
+++ b/tests/exec_test/reparam_gen_proj/sisso.json
@@ -1,6 +1,6 @@
 {
     "desc_dim": 2,
-    "n_sis_select": 21,
+    "n_sis_select": 10,
     "max_rung": 1,
     "n_residual": 5,
     "data_file": "data.csv",
@@ -10,7 +10,7 @@
     "n_models_store": 5,
     "n_rung_generate": 1,
     "leave_out_inds": [],
-    "opset": ["sq"],
+    "opset": ["sq", "cb"],
     "param_opset": [
         "add",
         "sub",
diff --git a/tests/googletest/CMakeLists.txt b/tests/googletest/CMakeLists.txt
index 0ea0181fde5e2ca2441a9fe2aad32d6991e1c917..d9d831130e451a938fb1731d30b72bce7d4ad77b 100644
--- a/tests/googletest/CMakeLists.txt
+++ b/tests/googletest/CMakeLists.txt
@@ -3,6 +3,12 @@ set(CMAKE_INSTALL_RPATH ${Boost_LIBRARY_DIRS};${LAPACK_DIR};${MPI_DIR};${COIN_CL
 
 file(GLOB_RECURSE SISSO_TEST_SOURCES *.cc)
 add_executable(sisso_test  ${SISSO_TEST_SOURCES})
+add_dependencies(sisso_test libsisso)
+
+string(LENGTH "${GTEST_BUILD_DIR}" GT_LEN)
+if(${GT_LEN} GREATER "0")
+    add_dependencies(sisso_test external_gtest)
+endif()
 
 set_target_properties(sisso_test
     PROPERTIES
diff --git a/tests/googletest/feature_creation/feature_generation/test_feat_node.cc b/tests/googletest/feature_creation/feature_generation/test_feat_node.cc
index 46106f91c9d4dcd667589254995b920817f80c68..c36dca0d87079a11c3490479c829033bb6575862 100644
--- a/tests/googletest/feature_creation/feature_generation/test_feat_node.cc
+++ b/tests/googletest/feature_creation/feature_generation/test_feat_node.cc
@@ -22,18 +22,18 @@ namespace
     protected:
         void SetUp() override
         {
-            node_value_arrs::initialize_values_arr({4}, {1}, 4, 2, false);
+            node_value_arrs::initialize_values_arr({8}, {1}, 4, 2, false);
 
-            _value_1 = {1.0, 2.0, 3.0, 4.0};
+            _value_1 = {2, 4, 4, 4, 5, 5, 7, 9};
             _test_value_1 =  {5.0};
 
-            _value_2 = {10.0, 10.0, 10.0, 1.0};
+            _value_2 = {10.0, 10.0, 10.0, 1.0, 10.0, 10.0, 10.0, 1.0};
             _test_value_2 =  {10.0};
 
-            _value_3 = {1.0, 2.0, 3.0, 1.0};
+            _value_3 = {1.0, 2.0, 3.0, 1.0, 1.0, 4.0, 5.0, 1.0};
             _test_value_3 =  {5.0};
 
-            _value_4 = {1.0, 2.0, 3.0};
+            _value_4 = {1.0, 2.0, 3.0,};
             _test_value_4 =  {};
         }
 
@@ -201,4 +201,24 @@ namespace
         #endif
 
     }
+
+    TEST_F(FeatureNodeTest, StandValTests)
+    {
+        std::vector<double> test_std = {-1.5, -0.5, -0.5, -0.5,  0,  0,  1,  2};
+
+        std::shared_ptr<FeatureNode> feat_1 = std::make_shared<FeatureNode>(
+            0,
+            "A",
+            _value_1,
+            _test_value_1,
+            Unit("m")
+        );
+
+        double* stand_value_ptr = feat_1->stand_value_ptr();
+        std::transform(test_std.begin(), test_std.end(), stand_value_ptr, test_std.begin(), std::minus<double>());
+        EXPECT_TRUE(std::all_of(test_std.begin(), test_std.end(), [](double val){return std::abs(val) < 1e-10;}));
+
+        stand_value_ptr = feat_1->stand_test_value_ptr();
+        EXPECT_LT(std::abs(*stand_value_ptr), 1e-10);
+    }
 }
diff --git a/tests/googletest/feature_creation/feature_space/test_feat_space.cc b/tests/googletest/feature_creation/feature_space/test_feat_space.cc
index 87d3212e0f075ea297bac43df30fa357197e3898..8b365ab8a667832c275b50c893086b813d29bfc0 100644
--- a/tests/googletest/feature_creation/feature_space/test_feat_space.cc
+++ b/tests/googletest/feature_creation/feature_space/test_feat_space.cc
@@ -244,4 +244,115 @@ namespace
         EXPECT_THROW(feat_space.sis(_prop), std::logic_error);
     }
 
+    TEST_F(FeatSpaceTest, RemoveDuplicatesTest)
+    {
+        node_value_arrs::finalize_values_arr();
+        node_value_arrs::initialize_values_arr({10}, {0}, 8, 0, false);
+
+        InputParser inputs;
+        inputs.set_task_sizes_train({10});
+        inputs.set_allowed_ops({"sq"});
+        inputs.set_allowed_param_ops({});
+        inputs.set_cross_cor_max(1.0);
+        inputs.set_l_bound(1e-50);
+        inputs.set_u_bound(1e50);
+        inputs.set_n_rung_store(0);
+        inputs.set_max_rung(0);
+        inputs.set_n_sis_select(10);
+        inputs.set_n_rung_generate(0);
+        inputs.set_max_param_depth(0);
+        inputs.set_reparam_residual(false);
+        inputs.set_calc_type("regression");
+
+        std::vector<double> value_1 = { 1.0, -1.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0};
+        std::vector<double> value_2 = { 0.0,  0.0,  1.0, -1.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0};
+        std::vector<double> value_3 = { 1.0, -1.0,  1.0, -1.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0};
+        std::vector<double> value_4 = { 0.0,  0.0,  0.0,  0.0, -1.0,  1.0,  0.0,  0.0,  0.0,  0.0};
+        std::vector<double> value_6 = { 0.0,  0.0,  0.0,  0.0, -1.0,  1.0, -1.0,  1.0,  0.0,  0.0};
+        std::vector<double> value_5 = { 0.0,  0.0,  0.0,  0.0,  0.0,  0.0, -1.0,  1.0,  0.0,  0.0};
+        std::vector<double> prop    = { 0.0,  0.0,  0.0,  0.0, -1.0,  1.0, -1.0,  1.0,  0.0,  0.0};
+        inputs.set_prop_train(prop);
+
+        FeatureNode feat_1(0, "A", value_1, std::vector<double>(), Unit());
+        FeatureNode feat_2(1, "B", value_2, std::vector<double>(), Unit());
+        FeatureNode feat_3(2, "C", value_3, std::vector<double>(), Unit());
+        FeatureNode feat_4(3, "D", value_4, std::vector<double>(), Unit());
+        FeatureNode feat_5(4, "E", value_5, std::vector<double>(), Unit());
+        FeatureNode feat_6(5, "F", value_6, std::vector<double>(), Unit());
+        FeatureNode feat_7(6, "G", value_4, std::vector<double>(), Unit());
+        FeatureNode feat_8(7, "H", value_1, std::vector<double>(), Unit());
+
+        std::vector<FeatureNode> phi_0 = {
+            feat_1,
+            feat_2,
+            feat_3,
+            feat_4,
+            feat_5,
+            feat_6,
+            feat_7,
+            feat_8
+        };
+        inputs.set_phi_0(phi_0);
+
+        std::vector<node_ptr> phi(8, nullptr);
+        std::transform(phi_0.begin(), phi_0.end(), phi.begin(), [](FeatureNode feat){return std::make_shared<FeatureNode>(feat);});
+        FeatureSpace feat_space(inputs);
+
+        feat_space.remove_duplicate_features(phi, 2);
+        EXPECT_EQ(phi.size(), 7);
+
+        feat_space.remove_duplicate_features(phi, 0);
+        EXPECT_EQ(phi.size(), 6);
+    }
+
+
+    #ifdef PARAMETERIZE
+    TEST_F(FeatSpaceTest, ReorderByNparamsTest)
+    {
+        nlopt_wrapper::MAX_PARAM_DEPTH = 2;
+        node_value_arrs::initialize_param_storage();
+        _inputs.set_max_rung(2);
+        _inputs.set_max_param_depth(2);
+        _inputs.set_n_rung_store(0);
+        _inputs.set_n_rung_generate(0);
+        _inputs.set_prop_train(_prop);
+
+        FeatureSpace feat_space(_inputs);
+        std::vector<node_ptr> phi(8);
+
+        phi[0] = feat_space.phi0()[0];
+        phi[1] = feat_space.phi0()[1];
+        phi[2] = feat_space.phi0()[2];
+        phi[0]->set_value();
+        phi[1]->set_value();
+        phi[2]->set_value();
+
+        double* val_ptr = feat_space.phi0()[1]->value_ptr();
+
+        std::vector<double> prop_cb(_prop.size(), 0.0);
+        std::transform(val_ptr, val_ptr + prop_cb.size(), prop_cb.begin(), [](double val){return std::pow(val + 2.0, 3.0);});
+        std::shared_ptr<NLOptimizer> optimizer_cb = nlopt_wrapper::get_optimizer("regression", _inputs.task_sizes_train(), prop_cb, 2);
+
+        std::vector<double> prop_lor(_prop.size(), 0.0);
+        std::transform(val_ptr, val_ptr + prop_lor.size(), prop_lor.begin(), [](double val){return 1.0 / (2.0 + std::pow(val, 2.0));});
+        std::shared_ptr<NLOptimizer> optimizer_lor = nlopt_wrapper::get_optimizer("regression", _inputs.task_sizes_train(), prop_lor, 2);
+
+        phi[3] = std::make_shared<CbNode>(phi[1], 5, 1e-50, 1e50);
+        phi[4] = std::make_shared<CbParamNode>(phi[1], 6, 1e-50, 1e50, optimizer_cb);
+
+        phi[5] = std::make_shared<SqNode>(phi[1], 7, 1e-50, 1e50);
+        phi[6] = std::make_shared<InvParamNode>(phi[5], 9, 1e-50, 1e50, optimizer_lor);
+        phi[7] = std::make_shared<InvNode>(phi[5], 8, 1e-50, 1e50);
+
+        EXPECT_EQ(feat_space.reorder_by_n_params(phi, 5), 7);
+        EXPECT_EQ(phi[4]->n_params(), 2);
+        EXPECT_EQ(phi[6]->n_params(), 0);
+        EXPECT_EQ(phi[7]->n_params(), 4);
+
+        EXPECT_EQ(feat_space.reorder_by_n_params(phi, 0), 6);
+        EXPECT_EQ(phi[4]->n_params(), 0);
+        EXPECT_EQ(phi[6]->n_params(), 2);
+        EXPECT_EQ(phi[7]->n_params(), 4);
+    }
+    #endif
 }
diff --git a/tests/googletest/feature_creation/utils/test_utils.cc b/tests/googletest/feature_creation/utils/test_utils.cc
index 516d5de05338035e4b4e4a0b22cc94d522edefe7..c8c6472516c79ddd939768448c8997ec36f0b16c 100644
--- a/tests/googletest/feature_creation/utils/test_utils.cc
+++ b/tests/googletest/feature_creation/utils/test_utils.cc
@@ -56,6 +56,11 @@ namespace
 
         EXPECT_THROW(str2node::postfix2node("0|asdf", _phi0, _feat_ind, excluded_inds), std::logic_error);
         EXPECT_THROW(str2node::postfix2node("1|0|sq", _phi0, _feat_ind, excluded_inds), std::logic_error);
+        EXPECT_THROW(str2node::postfix2node("3|sq", _phi0, _feat_ind, excluded_inds), std::logic_error);
+
+        excluded_inds = {1};
+        EXPECT_THROW(str2node::postfix2node("1|sq", _phi0, _feat_ind, excluded_inds), InvalidFeatureException);
+        excluded_inds.clear();
 
         node_ptr test = str2node::postfix2node("0|2|div|exp|1|add", _phi0, _feat_ind, excluded_inds);
         EXPECT_EQ(test->type(), NODE_TYPE::ADD);
diff --git a/tests/googletest/feature_creation/value_storage/test_value_storage.cc b/tests/googletest/feature_creation/value_storage/test_value_storage.cc
index 4614922ef947f320642e8cfc0f69b6a75fa9aa7f..e698d90e912f03d18936b494082d82f13b0c19d2 100644
--- a/tests/googletest/feature_creation/value_storage/test_value_storage.cc
+++ b/tests/googletest/feature_creation/value_storage/test_value_storage.cc
@@ -21,9 +21,9 @@ namespace {
     //test mean calculations
     TEST(ValueStorage, ValueStorageTest)
     {
-        EXPECT_THROW(node_value_arrs::initialize_values_arr({5}, {2}, 1, -2, true), std::logic_error);
+        EXPECT_THROW(node_value_arrs::initialize_values_arr({5}, {2}, 2, -2, true), std::logic_error);
 
-        node_value_arrs::initialize_values_arr({5}, {2}, 1, 2, true);
+        node_value_arrs::initialize_values_arr({5}, {2}, 2, 2, true);
 
         EXPECT_THROW(node_value_arrs::set_task_sz_train({20}), std::logic_error);
         EXPECT_THROW(node_value_arrs::set_task_sz_test({6}), std::logic_error);
@@ -31,15 +31,19 @@ namespace {
         EXPECT_EQ(node_value_arrs::N_SAMPLES, 5);
         EXPECT_EQ(node_value_arrs::N_SAMPLES_TEST, 2);
         EXPECT_EQ(node_value_arrs::N_RUNGS_STORED, 0);
-        EXPECT_EQ(node_value_arrs::N_STORE_FEATURES, 1);
+        EXPECT_EQ(node_value_arrs::N_STORE_FEATURES, 2);
         EXPECT_EQ(node_value_arrs::N_OP_SLOTS, 6);
         EXPECT_EQ(node_value_arrs::MAX_RUNG, 2);
-        EXPECT_EQ(node_value_arrs::VALUES_ARR.size(), 5);
-        EXPECT_EQ(node_value_arrs::TEST_VALUES_ARR.size(), 2);
-        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_ARR.size(), node_value_arrs::MAX_N_THREADS * (6 * 1 + 1) * 5);
-        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_REG.size(), node_value_arrs::MAX_N_THREADS * (6 * 1 + 1));
-        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_TEST_ARR.size(), node_value_arrs::MAX_N_THREADS * (6 * 1 + 1) * 2);
-        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_TEST_REG.size(), node_value_arrs::MAX_N_THREADS * (6 * 1 + 1));
+        EXPECT_EQ(node_value_arrs::VALUES_ARR.size(), 10);
+        EXPECT_EQ(node_value_arrs::TEST_VALUES_ARR.size(), 4);
+        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_ARR.size(), node_value_arrs::MAX_N_THREADS * (6 * 2 + 1) * 5);
+        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_REG.size(), node_value_arrs::MAX_N_THREADS * (6 * 2 + 1));
+        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_TEST_ARR.size(), node_value_arrs::MAX_N_THREADS * (6 * 2 + 1) * 2);
+        EXPECT_EQ(node_value_arrs::TEMP_STORAGE_TEST_REG.size(), node_value_arrs::MAX_N_THREADS * (6 * 2 + 1));
+
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_D_MATRIX.size(), 0);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_STORAGE_ARR.size(), node_value_arrs::MAX_N_THREADS * 2 * 3 * 5);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_TEST_STORAGE_ARR.size(), node_value_arrs::MAX_N_THREADS * 2 * 3 * 2);
 
         EXPECT_THROW(node_value_arrs::resize_values_arr(10, 2), std::logic_error);
         node_value_arrs::resize_values_arr(1, 2);
@@ -53,14 +57,17 @@ namespace {
         node_value_arrs::initialize_d_matrix_arr();
         EXPECT_EQ(node_value_arrs::N_SELECTED, 0);
         EXPECT_EQ(node_value_arrs::D_MATRIX.size(), 0);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_D_MATRIX.size(), 0);
 
         node_value_arrs::resize_d_matrix_arr(2);
         EXPECT_EQ(node_value_arrs::N_SELECTED, 2);
         EXPECT_EQ(node_value_arrs::D_MATRIX.size(), 10);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_D_MATRIX.size(), 10);
 
         node_value_arrs::resize_d_matrix_arr(3);
         EXPECT_EQ(node_value_arrs::N_SELECTED, 5);
         EXPECT_EQ(node_value_arrs::D_MATRIX.size(), 25);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_D_MATRIX.size(), 25);
 
         node_value_arrs::get_value_ptr(1, 1, 0)[1] = 1.0;
         EXPECT_EQ(node_value_arrs::VALUES_ARR[6], 1.0);
@@ -71,22 +78,28 @@ namespace {
 
         node_value_arrs::get_value_ptr(10, 141, 2, 0)[0] = 1.0;
         EXPECT_EQ(node_value_arrs::temp_storage_reg(10, 2, 0, false), 141);
-        EXPECT_EQ(node_value_arrs::access_temp_storage(node_value_arrs::get_op_slot(2, 0, false))[0], 1.0);
+        EXPECT_EQ(node_value_arrs::access_temp_storage(node_value_arrs::get_op_slot(2, 0, false) * 2)[0], 1.0);
 
         node_value_arrs::get_test_value_ptr(10, 141, 2, 0)[0] = 1.0;
         EXPECT_EQ(node_value_arrs::temp_storage_test_reg(10, 2, 0, false), 141);
-        EXPECT_EQ(node_value_arrs::access_temp_storage_test(node_value_arrs::get_op_slot(2, 0, false))[0], 1.0);
+        EXPECT_EQ(node_value_arrs::access_temp_storage_test(node_value_arrs::get_op_slot(2, 0, false) * 2)[0], 1.0);
 
         node_value_arrs::get_d_matrix_ptr(1)[0] = 1.0;
         EXPECT_EQ(node_value_arrs::D_MATRIX[5], 1.0);
 
+        node_value_arrs::access_temp_stand_storage(1, false)[0] = 3.0;
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_STORAGE_ARR[5 + omp_get_thread_num() * 30], 3.0);
+
+        node_value_arrs::access_temp_stand_storage_test(0, true)[0] = 3.0;
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_TEST_STORAGE_ARR[4 + omp_get_thread_num() * 12], 3.0);
+
         #pragma omp parallel
         {
             int sz_reg = (node_value_arrs::N_OP_SLOTS * node_value_arrs::N_PRIMARY_FEATURES + 1);
             std::fill_n(node_value_arrs::TEMP_STORAGE_REG.data() + sz_reg * omp_get_thread_num(), sz_reg, omp_get_thread_num() + 1);
-            EXPECT_EQ(node_value_arrs::TEMP_STORAGE_REG[7 * omp_get_thread_num()], omp_get_thread_num() + 1);
+            EXPECT_EQ(node_value_arrs::TEMP_STORAGE_REG[14 * omp_get_thread_num()], omp_get_thread_num() + 1);
             node_value_arrs::clear_temp_reg_thread();
-            EXPECT_EQ(node_value_arrs::TEMP_STORAGE_REG[7 * omp_get_thread_num()], -1);
+            EXPECT_EQ(node_value_arrs::TEMP_STORAGE_REG[14 * omp_get_thread_num()], -1);
         }
 
         std::fill_n(node_value_arrs::TEMP_STORAGE_REG.data(), node_value_arrs::TEMP_STORAGE_REG.size(), 2.0);
@@ -107,6 +120,9 @@ namespace {
         EXPECT_EQ(node_value_arrs::PARAM_STORAGE_ARR.size(), 0);
         EXPECT_EQ(node_value_arrs::PARAM_STORAGE_TEST_ARR.size(), 0);
         EXPECT_EQ(node_value_arrs::D_MATRIX.size(), 0);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_D_MATRIX.size(), 0);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_STORAGE_ARR.size(), 0);
+        EXPECT_EQ(node_value_arrs::STANDARDIZED_TEST_STORAGE_ARR.size(), 0);
         EXPECT_EQ(node_value_arrs::TASK_SZ_TRAIN.size(), 0);
         EXPECT_EQ(node_value_arrs::TASK_START_TRAIN.size(), 0);
         EXPECT_EQ(node_value_arrs::TASK_SZ_TEST.size(), 0);
diff --git a/tests/googletest/utils/test_compare_features.cc b/tests/googletest/utils/test_compare_features.cc
index cbf0ff1af25616eba94e2e83b06e802dbfd3d790..5d61cf3266fb2399be274e562c319b07396f4b2c 100644
--- a/tests/googletest/utils/test_compare_features.cc
+++ b/tests/googletest/utils/test_compare_features.cc
@@ -23,52 +23,62 @@ namespace {
         std::vector<double> val_1 = {1.0, 2.0, 3.0, 4.0};
         std::vector<double> val_2 = {2.0, 1.0, 3.0, 4.0};
         std::vector<double> val_3 = {2.0, 4.0, 6.0, 8.0};
+
+        std::vector<double> stand_val_1(4, 0);
+        util_funcs::standardize(val_1.data(), 4, stand_val_1.data());
+
+        std::vector<double> stand_val_2(4, 0);
+        util_funcs::standardize(val_2.data(), 4, stand_val_2.data());
+
+        std::vector<double> stand_val_3(4, 0);
+        util_funcs::standardize(val_3.data(), 4, stand_val_3.data());
+
         std::vector<double> target = {1.0, 3.0, 5.0, 6.0};
         std::vector<double> scores = {0.9897782665572893};
 
         std::vector<node_ptr> selected(1);
-        std::vector<node_sc_pair> mpi_op_sel(1);
 
         node_value_arrs::initialize_values_arr({4}, {0}, 1, 0, false);
         selected[0] = std::make_shared<FeatureNode>(0, "A", val_3, std::vector<double>(), Unit());
-        mpi_op_sel[0] = mpi_reduce_op::make_node_sc_pair(selected[0], scores[0]);
+        std::vector<node_sc_pair> mpi_op_sel(1, node_sc_pair(selected[0], scores[0]));
 
         node_value_arrs::initialize_d_matrix_arr();
         node_value_arrs::resize_d_matrix_arr(1);
 
         std::copy_n(val_3.data(), val_3.size(), node_value_arrs::get_d_matrix_ptr(0));
+        std::copy_n(stand_val_3.data(), stand_val_3.size(), node_value_arrs::get_stand_d_matrix_ptr(0));
 
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_max_corr_1(val_1.data(), 4, 1.0, scores, 0.9897782665572893, 1, 0));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(val_1.data(), 4, 1.0, selected, scores, 0.9897782665572893));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_max_corr_1_mpi_op(val_1.data(), 4, 1.0, mpi_op_sel, 0.9897782665572893));
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_max_corr_1(stand_val_1.data(), 4, 1.0, scores, 0.9897782665572893, 1, 0));
+        EXPECT_NE(comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(stand_val_1.data(), 4, 1.0, selected, scores, 0.9897782665572893), 1);
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_max_corr_1_mpi_op(stand_val_1.data(), 4, 1.0, mpi_op_sel, 0.9897782665572893));
 
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson(val_1.data(), 4, 1.0, scores, 0.9897782665572893, 1, 0));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_feat_list(val_1.data(), 4, 1.0, selected, scores, 0.9897782665572893));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_mpi_op(val_1.data(), 4, 1.0, mpi_op_sel, 0.9897782665572893));
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson(stand_val_1.data(), 4, 0.99, scores, 0.9897782665572893, 1, 0));
+        EXPECT_NE(comp_feats::valid_feature_against_selected_pearson_feat_list(stand_val_1.data(), 4, 0.99, selected, scores, 0.9897782665572893), 1);
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_pearson_mpi_op(stand_val_1.data(), 4, 0.99, mpi_op_sel, 0.9897782665572893));
 
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_max_corr_1(val_2.data(), 4, 1.0, scores, 0.9028289727756884, 1, 0));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(val_2.data(), 4, 1.0, selected, scores, 0.9028289727756884));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_max_corr_1_mpi_op(val_2.data(), 4, 1.0, mpi_op_sel, 0.9028289727756884));
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_max_corr_1(stand_val_2.data(), 4, 1.0, scores, 0.9028289727756884, 1, 0));
+        EXPECT_EQ(comp_feats::valid_feature_against_selected_pearson_max_corr_1_feat_list(stand_val_2.data(), 4, 1.0, selected, scores, 0.9028289727756884), 1);
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_max_corr_1_mpi_op(stand_val_2.data(), 4, 1.0, mpi_op_sel, 0.9028289727756884));
 
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson(val_2.data(), 4, 1.0, scores, 0.9028289727756884, 1, 0));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_feat_list(val_2.data(), 4, 1.0, selected, scores, 0.9028289727756884));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_mpi_op(val_2.data(), 4, 1.0, mpi_op_sel, 0.9028289727756884));
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson(stand_val_2.data(), 4, 0.99, scores, 0.9028289727756884, 1, 0));
+        EXPECT_EQ(comp_feats::valid_feature_against_selected_pearson_feat_list(stand_val_2.data(), 4, 0.99, selected, scores, 0.9028289727756884), 1);
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_pearson_mpi_op(stand_val_2.data(), 4, 0.99, mpi_op_sel, 0.9028289727756884));
 
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_max_corr_1(val_1.data(), 4, 1.0, scores, 0.9897782665572893, 1, 0));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_max_corr_1_feat_list(val_1.data(), 4, 1.0, selected, scores, 0.9897782665572893));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_max_corr_1_mpi_op(val_1.data(), 4, 1.0, mpi_op_sel, 0.9897782665572893));
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_max_corr_1(stand_val_1.data(), 4, 1.0, scores, 0.9897782665572893, 1, 0));
+        EXPECT_NE(comp_feats::valid_feature_against_selected_spearman_max_corr_1_feat_list(stand_val_1.data(), 4, 1.0, selected, scores, 0.9897782665572893), 1);
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_max_corr_1_mpi_op(stand_val_1.data(), 4, 1.0, mpi_op_sel, 0.9897782665572893));
 
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman(val_1.data(), 4, 1.0, scores, 0.9897782665572893, 1, 0));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_feat_list(val_1.data(), 4, 1.0, selected, scores, 0.9897782665572893));
-        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_mpi_op(val_1.data(), 4, 1.0, mpi_op_sel, 0.9897782665572893));
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman(stand_val_1.data(), 4, 0.99, scores, 0.9897782665572893, 1, 0));
+        EXPECT_NE(comp_feats::valid_feature_against_selected_spearman_feat_list(stand_val_1.data(), 4, 0.99, selected, scores, 0.9897782665572893), 1);
+        EXPECT_FALSE(comp_feats::valid_feature_against_selected_spearman_mpi_op(stand_val_1.data(), 4, 0.99, mpi_op_sel, 0.9897782665572893));
 
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_max_corr_1(val_2.data(), 4, 1.0, scores, 0.9028289727756884, 1, 0));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_max_corr_1_feat_list(val_2.data(), 4, 1.0, selected, scores, 0.9028289727756884));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_max_corr_1_mpi_op(val_2.data(), 4, 1.0, mpi_op_sel, 0.9028289727756884));
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_max_corr_1(stand_val_2.data(), 4, 1.0, scores, 0.9028289727756884, 1, 0));
+        EXPECT_EQ(comp_feats::valid_feature_against_selected_spearman_max_corr_1_feat_list(stand_val_2.data(), 4, 1.0, selected, scores, 0.9028289727756884), 1);
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_max_corr_1_mpi_op(stand_val_2.data(), 4, 1.0, mpi_op_sel, 0.9028289727756884));
 
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman(val_2.data(), 4, 1.0, scores, 0.9028289727756884, 1, 0));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_feat_list(val_2.data(), 4, 1.0, selected, scores, 0.9028289727756884));
-        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_mpi_op(val_2.data(), 4, 1.0, mpi_op_sel, 0.9028289727756884));
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman(stand_val_2.data(), 4, 0.99, scores, 0.9028289727756884, 1, 0));
+        EXPECT_EQ(comp_feats::valid_feature_against_selected_spearman_feat_list(stand_val_2.data(), 4, 0.99, selected, scores, 0.9028289727756884), 1);
+        EXPECT_TRUE(comp_feats::valid_feature_against_selected_spearman_mpi_op(stand_val_2.data(), 4, 0.99, mpi_op_sel, 0.9028289727756884));
 
         node_value_arrs::finalize_values_arr();
     }
diff --git a/tests/googletest/utils/test_math_utils.cc b/tests/googletest/utils/test_math_utils.cc
index 0e7a91ce475c41dbf472bc0fc2b2f7f9535aba48..1c685039526ff2aa16c07442afeb11e104f4f857 100644
--- a/tests/googletest/utils/test_math_utils.cc
+++ b/tests/googletest/utils/test_math_utils.cc
@@ -324,6 +324,21 @@ namespace {
         EXPECT_EQ(util_funcs::max_abs_val<double>(dNeg3.data(), dNeg3.size()), 9.0);
     }
 
+    // test standardize
+    TEST(MathUtils, StandardizeTest)
+    {
+        std::vector<double> test = {2, 4, 4, 4, 5, 5, 7, 9};
+        std::vector<double> test_std = {-1.5, -0.5, -0.5, -0.5,  0,  0,  1,  2};
+
+        util_funcs::standardize(test.data(), test.size(), test.data());
+
+        EXPECT_LT(std::abs(util_funcs::mean(test)), 1e-10);
+        EXPECT_LT(std::abs(util_funcs::stand_dev(test) - 1.0), 1e-10);
+
+        std::transform(test.begin(), test.end(), test_std.begin(), test.begin(), std::minus<double>());
+        EXPECT_TRUE(std::all_of(test.begin(), test.end(), [](double val){return std::abs(val) < 1e-10;}));
+    }
+
     // test iterate
     TEST(MathUtils, IterateTest)
     {
diff --git a/tests/pytest/test_feature_creation/test_feat_generation/test_inv_node.py b/tests/pytest/test_feature_creation/test_feat_generation/test_inv_node.py
index 646bb223b576212e5de36a7e3421fedd9dbd912d..88cddd48ebe8f2e715a2bb3c3333fff862c28c43 100644
--- a/tests/pytest/test_feature_creation/test_feat_generation/test_inv_node.py
+++ b/tests/pytest/test_feature_creation/test_feat_generation/test_inv_node.py
@@ -55,7 +55,7 @@ def test_inv_node():
         pass
 
     try:
-        feats.append(InvNode(feat_1, 4, 1e1, 1e50))
+        feats.append(InvNode(feat_1, 4, 1e40, 1e50))
         raise InvalidFeatureMade("Inversion outside of user specified bounds")
     except RuntimeError:
         pass
diff --git a/tests/pytest/test_feature_creation/test_feature_space/feature_space/phi.txt b/tests/pytest/test_feature_creation/test_feature_space/feature_space/phi.txt
deleted file mode 100644
index 6917948658b14e4285276277a0a2ff6b85af6fd1..0000000000000000000000000000000000000000
--- a/tests/pytest/test_feature_creation/test_feature_space/feature_space/phi.txt
+++ /dev/null
@@ -1,26911 +0,0 @@
-# Number of Features: 26909
-# Maximum Rung of the Calculation: 2
-0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-8|1|add
-7|5|mult
-7|6|add
-7|6|sub
-7|6|mult
-8|0|add
-8|0|sub
-8|0|mult
-8|sq
-8|cb
-8|cbrt
-7|5|sub
-8|1|sub
-8|1|mult
-8|2|add
-8|2|sub
-8|2|mult
-8|3|add
-8|3|sub
-8|3|mult
-8|4|add
-7|2|add
-6|5|mult
-7|0|add
-7|0|sub
-7|0|mult
-7|sq
-7|cb
-7|cbrt
-7|1|add
-7|1|sub
-7|1|mult
-8|4|sub
-7|2|sub
-7|2|mult
-7|3|add
-7|3|sub
-7|3|mult
-7|4|add
-7|4|sub
-7|4|mult
-7|5|add
-9|5|mult
-9|2|sub
-9|2|mult
-9|3|add
-9|3|sub
-9|3|mult
-9|4|add
-9|4|sub
-9|4|mult
-9|5|add
-9|5|sub
-9|2|add
-9|6|add
-9|6|sub
-9|6|mult
-9|7|add
-9|7|sub
-9|7|mult
-9|8|add
-9|8|sub
-9|8|mult
-8|7|mult
-8|4|mult
-8|5|add
-8|5|sub
-8|5|mult
-8|6|add
-8|6|sub
-8|6|mult
-8|7|add
-8|7|sub
-6|5|sub
-9|0|add
-9|0|sub
-9|0|mult
-9|sq
-9|cb
-9|cbrt
-9|1|add
-9|1|sub
-9|1|mult
-4|0|sub
-3|sq
-3|cb
-3|cbrt
-3|1|add
-3|1|sub
-3|1|mult
-3|2|add
-3|2|sub
-3|2|mult
-4|0|add
-3|0|mult
-4|0|mult
-4|sq
-4|cb
-4|cbrt
-4|1|add
-4|1|sub
-4|1|mult
-4|2|add
-4|2|sub
-2|0|sub
-0|cb
-0|cbrt
-1|0|add
-1|0|sub
-1|0|mult
-1|sq
-1|cb
-1|cbrt
-2|0|add
-4|2|mult
-2|0|mult
-2|sq
-2|cb
-2|cbrt
-2|1|add
-2|1|sub
-2|1|mult
-3|0|add
-3|0|sub
-6|2|add
-5|4|mult
-6|0|add
-6|0|sub
-6|0|mult
-6|sq
-6|cb
-6|cbrt
-6|1|add
-6|1|sub
-6|1|mult
-5|4|sub
-6|2|sub
-6|2|mult
-6|3|add
-6|3|sub
-6|3|mult
-6|4|add
-6|4|sub
-6|4|mult
-6|5|add
-5|1|add
-4|3|add
-4|3|sub
-4|3|mult
-5|0|add
-5|0|sub
-5|0|mult
-5|sq
-5|cb
-5|cbrt
-0|sq
-5|1|sub
-5|1|mult
-5|2|add
-5|2|sub
-5|2|mult
-5|3|add
-5|3|sub
-5|3|mult
-5|4|add
-6|1|sub|8|6|sub|sub
-6|1|sub|9|0|add|mult
-6|1|sub|9|0|add|sub
-6|1|sub|9|0|add|add
-6|1|sub|6|5|sub|mult
-6|1|sub|6|5|sub|add
-6|1|sub|8|7|sub|mult
-6|1|sub|8|7|sub|sub
-6|1|sub|8|7|sub|add
-6|1|sub|8|7|add|mult
-6|1|sub|8|7|add|sub
-6|1|sub|8|7|add|add
-6|1|sub|8|6|mult|mult
-6|1|sub|8|6|sub|mult
-6|1|sub|9|0|sub|add
-6|1|sub|8|6|add|mult
-6|1|sub|8|6|add|add
-6|1|sub|8|5|mult|mult
-6|1|sub|8|5|sub|mult
-6|1|sub|8|5|sub|sub
-6|1|sub|8|5|sub|add
-6|1|sub|8|5|add|mult
-6|1|sub|8|5|add|sub
-6|1|sub|8|5|add|add
-6|1|sub|8|4|mult|mult
-6|1|sub|8|7|mult|mult
-6|1|sub|9|8|mult|mult
-6|1|sub|4|0|sub|sub
-6|1|sub|3|2|add|mult
-6|1|sub|3|2|add|sub
-6|1|sub|3|2|add|add
-6|1|sub|3|1|mult|mult
-6|1|sub|3|1|sub|mult
-6|1|sub|3|1|sub|add
-6|1|sub|3|1|add|mult
-6|1|sub|3|1|add|sub
-6|1|sub|3|cbrt|mult
-6|1|sub|3|cb|mult
-6|1|sub|3|sq|mult
-6|1|sub|4|0|sub|mult
-6|1|sub|9|8|sub|mult
-6|1|sub|4|0|sub|add
-6|1|sub|9|1|mult|mult
-6|1|sub|9|1|sub|mult
-6|1|sub|9|1|sub|add
-6|1|sub|9|1|add|mult
-6|1|sub|9|1|add|sub
-6|1|sub|9|cbrt|mult
-6|1|sub|9|cb|mult
-6|1|sub|9|sq|mult
-6|1|sub|9|0|mult|mult
-6|1|sub|9|0|sub|mult
-6|1|sub|9|0|sub|sub
-6|1|sub|9|3|add|sub
-6|1|sub|9|4|mult|mult
-6|1|sub|9|4|sub|mult
-6|1|sub|9|4|sub|sub
-6|1|sub|9|4|sub|add
-6|1|sub|9|4|add|mult
-6|1|sub|9|4|add|sub
-6|1|sub|9|4|add|add
-6|1|sub|9|3|mult|mult
-6|1|sub|9|3|sub|mult
-6|1|sub|9|3|sub|sub
-6|1|sub|9|3|sub|add
-6|1|sub|9|3|add|mult
-6|1|sub|9|5|add|add
-6|1|sub|9|3|add|add
-6|1|sub|9|2|mult|mult
-6|1|sub|9|2|sub|mult
-6|1|sub|9|2|sub|sub
-6|1|sub|9|2|sub|add
-6|1|sub|9|5|mult|mult
-6|1|sub|7|5|add|mult
-6|1|sub|7|5|add|sub
-6|1|sub|7|5|add|add
-6|1|sub|7|4|mult|mult
-6|1|sub|7|4|sub|mult
-6|1|sub|7|4|sub|sub
-6|1|sub|9|6|mult|mult
-6|1|sub|9|8|sub|sub
-6|1|sub|9|8|sub|add
-6|1|sub|9|8|add|mult
-6|1|sub|9|8|add|sub
-6|1|sub|9|8|add|add
-6|1|sub|9|7|mult|mult
-6|1|sub|9|7|sub|mult
-6|1|sub|9|7|sub|sub
-6|1|sub|9|7|sub|add
-6|1|sub|9|7|add|mult
-6|1|sub|9|7|add|sub
-6|1|sub|9|7|add|add
-6|1|sub|3|2|sub|add
-6|1|sub|9|6|sub|mult
-6|1|sub|9|6|sub|sub
-6|1|sub|9|6|add|mult
-6|1|sub|9|6|add|add
-6|1|sub|9|2|add|mult
-6|1|sub|9|2|add|sub
-6|1|sub|9|2|add|add
-6|1|sub|9|5|sub|mult
-6|1|sub|9|5|sub|sub
-6|1|sub|9|5|sub|add
-6|1|sub|9|5|add|mult
-6|1|sub|9|5|add|sub
-6|1|sub|6|cbrt|mult
-6|1|mult|7|mult
-6|1|mult|6|mult
-6|1|mult|5|mult
-6|1|mult|4|mult
-6|1|mult|3|mult
-6|1|mult|2|mult
-6|1|mult|1|mult
-6|1|mult|cbrt
-6|1|mult|cb
-6|1|mult|sq
-6|1|mult|0|mult
-6|1|sub|6|1|add|mult
-6|1|mult|8|mult
-6|1|sub|6|cb|mult
-6|1|sub|6|sq|mult
-6|1|sub|6|0|mult|mult
-6|1|sub|6|0|sub|mult
-6|1|sub|6|0|sub|add
-6|1|sub|6|0|add|mult
-6|1|sub|6|0|add|add
-6|1|sub|5|4|mult|mult
-6|1|sub|6|2|add|mult
-6|1|sub|6|2|add|add
-6|1|sub|3|0|sub|mult
-6|1|sub|3|0|sub|sub
-6|1|mult|8|0|mult|add
-6|1|mult|8|1|mult|mult
-6|1|mult|8|1|mult|sub
-6|1|mult|8|1|mult|add
-6|1|mult|8|1|sub|mult
-6|1|mult|7|5|sub|mult
-6|1|mult|8|cbrt|mult
-6|1|mult|8|cb|mult
-6|1|mult|8|sq|mult
-6|1|mult|8|sq|sub
-6|1|mult|8|sq|add
-6|1|mult|8|0|mult|mult
-6|1|mult|8|0|mult|sub
-6|1|sub|3|0|sub|add
-6|1|mult|8|0|sub|mult
-6|1|mult|8|0|add|mult
-6|1|mult|7|6|mult|mult
-6|1|mult|7|6|mult|sub
-6|1|mult|7|6|mult|add
-6|1|mult|7|6|sub|mult
-6|1|mult|7|6|add|mult
-6|1|mult|7|5|mult|mult
-6|1|mult|7|5|mult|sub
-6|1|mult|7|5|mult|add
-6|1|mult|8|1|add|mult
-6|1|mult|9|mult
-6|1|sub|4|1|add|mult
-6|1|sub|2|0|sub|mult
-6|1|sub|2|0|sub|sub
-6|1|sub|2|0|sub|add
-6|1|sub|4|2|sub|mult
-6|1|sub|4|2|sub|sub
-6|1|sub|4|2|sub|add
-6|1|sub|4|2|add|mult
-6|1|sub|4|2|add|sub
-6|1|sub|4|2|add|add
-6|1|sub|4|1|mult|mult
-6|1|sub|4|1|sub|mult
-6|1|sub|4|1|sub|add
-6|1|sub|0|cb|mult
-6|1|sub|4|1|add|sub
-6|1|sub|4|cbrt|mult
-6|1|sub|4|cb|mult
-6|1|sub|4|sq|mult
-6|1|sub|4|0|mult|mult
-6|1|sub|3|0|mult|mult
-6|1|sub|4|0|add|mult
-6|1|sub|4|0|add|sub
-6|1|sub|4|0|add|add
-6|1|sub|3|2|mult|mult
-6|1|sub|3|2|sub|mult
-6|1|sub|3|2|sub|sub
-6|1|sub|4|2|mult|mult
-6|1|sub|3|0|add|mult
-6|1|sub|3|0|add|sub
-6|1|sub|3|0|add|add
-6|1|sub|2|1|mult|mult
-6|1|sub|2|1|sub|mult
-6|1|sub|2|1|sub|add
-6|1|sub|2|1|add|mult
-6|1|sub|2|1|add|sub
-6|1|sub|2|cbrt|mult
-6|1|sub|2|cb|mult
-6|1|sub|2|sq|mult
-6|1|sub|2|0|mult|mult
-6|1|sub|7|4|sub|add
-6|1|sub|2|0|add|mult
-6|1|sub|2|0|add|sub
-6|1|sub|2|0|add|add
-6|1|sub|1|cbrt|mult
-6|1|sub|1|cb|mult
-6|1|sub|1|sq|mult
-6|1|sub|1|0|mult|mult
-6|1|sub|1|0|sub|mult
-6|1|sub|1|0|sub|sub
-6|1|sub|1|0|add|mult
-6|1|sub|1|0|add|sub
-6|1|sub|0|cbrt|mult
-6|1|add|1|0|sub|add
-6|1|add|2|cbrt|mult
-6|1|add|2|cb|mult
-6|1|add|2|sq|mult
-6|1|add|2|0|mult|mult
-6|1|add|4|2|mult|mult
-6|1|add|2|0|add|mult
-6|1|add|2|0|add|sub
-6|1|add|2|0|add|add
-6|1|add|1|cbrt|mult
-6|1|add|1|cb|mult
-6|1|add|1|sq|mult
-6|1|add|1|0|mult|mult
-6|1|add|1|0|sub|mult
-6|1|add|2|1|add|add
-6|1|add|1|0|add|mult
-6|1|add|1|0|add|add
-6|1|add|0|cbrt|mult
-6|1|add|0|cb|mult
-6|1|add|2|0|sub|mult
-6|1|add|2|0|sub|sub
-6|1|add|2|0|sub|add
-6|1|add|4|2|sub|mult
-6|1|add|4|2|sub|sub
-6|1|add|4|2|sub|add
-6|1|add|4|2|add|mult
-6|1|add|4|2|add|sub
-6|1|add|5|4|mult|mult
-6|1|sub|sq
-6|1|sub|0|mult
-6|1|sub|0|sub
-6|1|sub|0|add
-6|1|add|6|cbrt|mult
-6|1|add|6|cb|mult
-6|1|add|6|sq|mult
-6|1|add|6|0|mult|mult
-6|1|add|6|0|sub|mult
-6|1|add|6|0|sub|add
-6|1|add|6|0|add|mult
-6|1|add|6|0|add|add
-6|1|add|4|2|add|add
-6|1|add|6|2|add|mult
-6|1|add|6|2|add|add
-6|1|add|3|0|sub|mult
-6|1|add|3|0|sub|sub
-6|1|add|3|0|sub|add
-6|1|add|3|0|add|mult
-6|1|add|3|0|add|sub
-6|1|add|3|0|add|add
-6|1|add|2|1|mult|mult
-6|1|add|2|1|sub|mult
-6|1|add|2|1|sub|sub
-6|1|add|2|1|add|mult
-6|1|add|9|sq|mult
-6|1|add|3|cb|mult
-6|1|add|3|sq|mult
-6|1|add|4|0|sub|mult
-6|1|add|4|0|sub|sub
-6|1|add|4|0|sub|add
-6|1|add|9|1|mult|mult
-6|1|add|9|1|sub|mult
-6|1|add|9|1|sub|sub
-6|1|add|9|1|add|mult
-6|1|add|9|1|add|add
-6|1|add|9|cbrt|mult
-6|1|add|9|cb|mult
-6|1|add|3|cbrt|mult
-6|1|add|9|0|mult|mult
-6|1|add|9|0|sub|mult
-6|1|add|9|0|sub|sub
-6|1|add|9|0|sub|add
-6|1|add|9|0|add|mult
-6|1|add|9|0|add|sub
-6|1|add|9|0|add|add
-6|1|add|6|5|sub|mult
-6|1|add|6|5|sub|add
-6|1|add|8|7|sub|mult
-6|1|add|8|7|sub|sub
-6|1|add|8|7|sub|add
-6|1|add|4|0|add|add
-6|1|add|4|1|mult|mult
-6|1|add|4|1|sub|mult
-6|1|add|4|1|sub|sub
-6|1|add|4|1|add|mult
-6|1|add|4|1|add|add
-6|1|add|4|cbrt|mult
-6|1|add|4|cb|mult
-6|1|add|4|sq|mult
-6|1|add|4|0|mult|mult
-6|1|add|3|0|mult|mult
-6|1|add|4|0|add|mult
-6|1|add|4|0|add|sub
-6|1|sub|cb
-6|1|add|3|2|mult|mult
-6|1|add|3|2|sub|mult
-6|1|add|3|2|sub|sub
-6|1|add|3|2|sub|add
-6|1|add|3|2|add|mult
-6|1|add|3|2|add|sub
-6|1|add|3|2|add|add
-6|1|add|3|1|mult|mult
-6|1|add|3|1|sub|mult
-6|1|add|3|1|sub|sub
-6|1|add|3|1|add|mult
-6|1|add|3|1|add|add
-6|1|sub|8|4|add|add
-6|1|sub|7|0|sub|mult
-6|1|sub|7|0|sub|sub
-6|1|sub|7|0|sub|add
-6|1|sub|7|0|add|mult
-6|1|sub|7|0|add|sub
-6|1|sub|7|0|add|add
-6|1|sub|6|5|mult|mult
-6|1|sub|7|2|add|mult
-6|1|sub|7|2|add|sub
-6|1|sub|7|2|add|add
-6|1|sub|8|4|add|mult
-6|1|sub|8|4|add|sub
-6|1|sub|7|0|mult|mult
-6|1|sub|8|3|mult|mult
-6|1|sub|8|3|sub|mult
-6|1|sub|8|3|sub|sub
-6|1|sub|8|3|sub|add
-6|1|sub|8|3|add|mult
-6|1|sub|8|3|add|sub
-6|1|sub|8|3|add|add
-6|1|sub|8|2|mult|mult
-6|1|sub|8|2|sub|mult
-6|1|sub|8|2|sub|sub
-6|1|sub|8|2|sub|add
-6|1|sub|8|2|add|mult
-6|1|sub|7|2|sub|sub
-6|1|sub|7|4|add|mult
-6|1|sub|7|4|add|sub
-6|1|sub|7|4|add|add
-6|1|sub|7|3|mult|mult
-6|1|sub|7|3|sub|mult
-6|1|sub|7|3|sub|sub
-6|1|sub|7|3|sub|add
-6|1|sub|7|3|add|mult
-6|1|sub|7|3|add|sub
-6|1|sub|7|3|add|add
-6|1|sub|7|2|mult|mult
-6|1|sub|7|2|sub|mult
-6|1|sub|8|2|add|sub
-6|1|sub|7|2|sub|add
-6|1|sub|8|4|sub|mult
-6|1|sub|8|4|sub|sub
-6|1|sub|8|4|sub|add
-6|1|sub|7|1|mult|mult
-6|1|sub|7|1|sub|mult
-6|1|sub|7|1|sub|add
-6|1|sub|7|1|add|mult
-6|1|sub|7|1|add|sub
-6|1|sub|7|cbrt|mult
-6|1|sub|7|cb|mult
-6|1|sub|7|sq|mult
-6|1|sub|5|add
-6|1|sub|9|sub
-6|1|sub|9|add
-6|1|sub|8|mult
-6|1|sub|8|sub
-6|1|sub|8|add
-6|1|sub|7|mult
-6|1|sub|7|sub
-6|1|sub|7|add
-6|1|sub|6|mult
-6|1|sub|6|add
-6|1|sub|5|mult
-6|1|sub|5|sub
-6|1|sub|9|mult
-6|1|sub|4|mult
-6|1|sub|4|sub
-6|1|sub|4|add
-6|1|sub|3|mult
-6|1|sub|3|sub
-6|1|sub|3|add
-6|1|sub|2|mult
-6|1|sub|2|sub
-6|1|sub|2|add
-6|1|sub|1|mult
-6|1|sub|1|sub
-6|1|sub|cbrt
-6|1|sub|8|0|sub|sub
-6|1|sub|8|2|add|add
-6|1|sub|8|1|mult|mult
-6|1|sub|8|1|sub|mult
-6|1|sub|8|1|sub|add
-6|1|sub|7|5|sub|mult
-6|1|sub|7|5|sub|sub
-6|1|sub|7|5|sub|add
-6|1|sub|8|cbrt|mult
-6|1|sub|8|cb|mult
-6|1|sub|8|sq|mult
-6|1|sub|8|0|mult|mult
-6|1|sub|8|0|sub|mult
-6|1|mult|8|2|add|mult
-6|1|sub|8|0|sub|add
-6|1|sub|8|0|add|mult
-6|1|sub|8|0|add|sub
-6|1|sub|8|0|add|add
-6|1|sub|7|6|mult|mult
-6|1|sub|7|6|sub|mult
-6|1|sub|7|6|sub|sub
-6|1|sub|7|6|add|mult
-6|1|sub|7|6|add|add
-6|1|sub|7|5|mult|mult
-6|1|sub|8|1|add|mult
-6|1|sub|8|1|add|sub
-5|4|sub|7|2|add|mult
-5|4|sub|7|1|add|sub
-5|4|sub|7|1|add|add
-5|4|sub|7|cbrt|mult
-5|4|sub|7|cb|mult
-5|4|sub|7|sq|mult
-5|4|sub|7|0|mult|mult
-5|4|sub|7|0|sub|mult
-5|4|sub|7|0|sub|sub
-5|4|sub|7|0|sub|add
-5|4|sub|7|0|add|mult
-5|4|sub|7|0|add|sub
-5|4|sub|7|0|add|add
-5|4|sub|6|5|mult|mult
-5|4|sub|7|1|add|mult
-5|4|sub|7|2|add|sub
-5|4|sub|7|2|add|add
-5|4|sub|8|4|add|mult
-5|4|sub|8|4|add|sub
-5|4|sub|8|3|mult|mult
-5|4|sub|8|3|sub|mult
-5|4|sub|8|3|sub|sub
-5|4|sub|8|3|sub|add
-5|4|sub|8|3|add|mult
-5|4|sub|8|3|add|sub
-5|4|sub|8|3|add|add
-5|4|sub|8|2|mult|mult
-5|4|sub|7|3|add|mult
-5|4|sub|9|5|mult|mult
-5|4|sub|7|5|add|mult
-5|4|sub|7|5|add|add
-5|4|sub|7|4|mult|mult
-5|4|sub|7|4|sub|mult
-5|4|sub|7|4|sub|add
-5|4|sub|7|4|add|mult
-5|4|sub|7|4|add|sub
-5|4|sub|7|3|mult|mult
-5|4|sub|7|3|sub|mult
-5|4|sub|7|3|sub|sub
-5|4|sub|7|3|sub|add
-5|4|sub|8|2|sub|mult
-5|4|sub|7|3|add|sub
-5|4|sub|7|3|add|add
-5|4|sub|7|2|mult|mult
-5|4|sub|7|2|sub|mult
-5|4|sub|7|2|sub|sub
-5|4|sub|7|2|sub|add
-5|4|sub|8|4|sub|mult
-5|4|sub|8|4|sub|add
-5|4|sub|7|1|mult|mult
-5|4|sub|7|1|sub|mult
-5|4|sub|7|1|sub|sub
-5|4|sub|7|1|sub|add
-5|4|sub|7|mult
-5|4|sub|7|6|add|sub
-5|4|sub|7|6|add|add
-5|4|sub|7|5|mult|mult
-5|4|sub|8|1|add|mult
-5|4|sub|8|1|add|sub
-5|4|sub|8|1|add|add
-5|4|sub|9|mult
-5|4|sub|9|sub
-5|4|sub|9|add
-5|4|sub|8|mult
-5|4|sub|8|sub
-5|4|sub|8|add
-5|4|sub|7|6|add|mult
-5|4|sub|7|sub
-5|4|sub|7|add
-5|4|sub|6|mult
-5|4|sub|6|sub
-5|4|sub|6|add
-5|4|sub|5|mult
-5|4|sub|5|add
-5|4|sub|4|mult
-5|4|sub|4|sub
-5|4|sub|3|mult
-5|4|sub|3|sub
-5|4|sub|3|add
-5|4|sub|8|cb|mult
-5|4|sub|8|2|sub|sub
-5|4|sub|8|2|sub|add
-5|4|sub|8|2|add|mult
-5|4|sub|8|2|add|sub
-5|4|sub|8|2|add|add
-5|4|sub|8|1|mult|mult
-5|4|sub|8|1|sub|mult
-5|4|sub|8|1|sub|sub
-5|4|sub|8|1|sub|add
-5|4|sub|7|5|sub|mult
-5|4|sub|7|5|sub|sub
-5|4|sub|8|cbrt|mult
-5|4|sub|9|2|sub|add
-5|4|sub|8|sq|mult
-5|4|sub|8|0|mult|mult
-5|4|sub|8|0|sub|mult
-5|4|sub|8|0|sub|sub
-5|4|sub|8|0|sub|add
-5|4|sub|8|0|add|mult
-5|4|sub|8|0|add|sub
-5|4|sub|8|0|add|add
-5|4|sub|7|6|mult|mult
-5|4|sub|7|6|sub|mult
-5|4|sub|7|6|sub|sub
-5|4|sub|7|6|sub|add
-5|4|sub|6|5|sub|mult
-5|4|sub|9|1|add|sub
-5|4|sub|9|1|add|add
-5|4|sub|9|cbrt|mult
-5|4|sub|9|cb|mult
-5|4|sub|9|sq|mult
-5|4|sub|9|0|mult|mult
-5|4|sub|9|0|sub|mult
-5|4|sub|9|0|sub|sub
-5|4|sub|9|0|sub|add
-5|4|sub|9|0|add|mult
-5|4|sub|9|0|add|sub
-5|4|sub|9|0|add|add
-5|4|sub|9|1|add|mult
-5|4|sub|6|5|sub|sub
-5|4|sub|8|7|sub|mult
-5|4|sub|8|7|sub|sub
-5|4|sub|8|7|sub|add
-5|4|sub|8|7|add|mult
-5|4|sub|8|7|add|sub
-5|4|sub|8|7|add|add
-5|4|sub|8|6|mult|mult
-5|4|sub|8|6|sub|mult
-5|4|sub|8|6|sub|sub
-5|4|sub|8|6|sub|add
-5|4|sub|8|6|add|mult
-5|4|sub|3|1|sub|add
-5|4|sub|4|0|add|mult
-5|4|sub|4|0|add|sub
-5|4|sub|3|2|mult|mult
-5|4|sub|3|2|sub|mult
-5|4|sub|3|2|sub|sub
-5|4|sub|3|2|sub|add
-5|4|sub|3|2|add|mult
-5|4|sub|3|2|add|sub
-5|4|sub|3|2|add|add
-5|4|sub|3|1|mult|mult
-5|4|sub|3|1|sub|mult
-5|4|sub|3|1|sub|sub
-5|4|sub|8|6|add|sub
-5|4|sub|3|1|add|mult
-5|4|sub|3|1|add|sub
-5|4|sub|3|1|add|add
-5|4|sub|3|cbrt|mult
-5|4|sub|3|cb|mult
-5|4|sub|3|sq|mult
-5|4|sub|4|0|sub|mult
-5|4|sub|4|0|sub|sub
-5|4|sub|9|1|mult|mult
-5|4|sub|9|1|sub|mult
-5|4|sub|9|1|sub|sub
-5|4|sub|9|1|sub|add
-5|4|sub|9|4|sub|add
-5|4|sub|9|6|add|mult
-5|4|sub|9|6|add|sub
-5|4|sub|9|6|add|add
-5|4|sub|9|2|add|mult
-5|4|sub|9|2|add|sub
-5|4|sub|9|2|add|add
-5|4|sub|9|5|sub|mult
-5|4|sub|9|5|sub|sub
-5|4|sub|9|5|add|mult
-5|4|sub|9|5|add|add
-5|4|sub|9|4|mult|mult
-5|4|sub|9|4|sub|mult
-5|4|sub|9|6|sub|add
-5|4|sub|9|4|add|mult
-5|4|sub|9|4|add|sub
-5|4|sub|9|3|mult|mult
-5|4|sub|9|3|sub|mult
-5|4|sub|9|3|sub|sub
-5|4|sub|9|3|sub|add
-5|4|sub|9|3|add|mult
-5|4|sub|9|3|add|sub
-5|4|sub|9|3|add|add
-5|4|sub|9|2|mult|mult
-5|4|sub|9|2|sub|mult
-5|4|sub|9|2|sub|sub
-5|4|sub|9|8|add|mult
-5|4|sub|8|6|add|add
-5|4|sub|8|5|mult|mult
-5|4|sub|8|5|sub|mult
-5|4|sub|8|5|sub|sub
-5|4|sub|8|5|add|mult
-5|4|sub|8|5|add|add
-5|4|sub|8|4|mult|mult
-5|4|sub|8|7|mult|mult
-5|4|sub|9|8|mult|mult
-5|4|sub|9|8|sub|mult
-5|4|sub|9|8|sub|sub
-5|4|sub|9|8|sub|add
-5|4|sub|2|mult
-5|4|sub|9|8|add|sub
-5|4|sub|9|8|add|add
-5|4|sub|9|7|mult|mult
-5|4|sub|9|7|sub|mult
-5|4|sub|9|7|sub|sub
-5|4|sub|9|7|sub|add
-5|4|sub|9|7|add|mult
-5|4|sub|9|7|add|sub
-5|4|sub|9|7|add|add
-5|4|sub|9|6|mult|mult
-5|4|sub|9|6|sub|mult
-5|4|sub|9|6|sub|sub
-6|1|mult|9|2|add|mult
-6|1|mult|9|8|mult|add
-6|1|mult|9|8|sub|mult
-6|1|mult|9|8|add|mult
-6|1|mult|9|7|mult|mult
-6|1|mult|9|7|mult|sub
-6|1|mult|9|7|mult|add
-6|1|mult|9|7|sub|mult
-6|1|mult|9|7|add|mult
-6|1|mult|9|6|mult|mult
-6|1|mult|9|6|mult|sub
-6|1|mult|9|6|mult|add
-6|1|mult|9|6|sub|mult
-6|1|mult|9|6|add|mult
-6|1|mult|9|8|mult|sub
-6|1|mult|9|5|sub|mult
-6|1|mult|9|5|add|mult
-6|1|mult|9|4|mult|mult
-6|1|mult|9|4|mult|sub
-6|1|mult|9|4|mult|add
-6|1|mult|9|4|sub|mult
-6|1|mult|9|4|add|mult
-6|1|mult|9|3|mult|mult
-6|1|mult|9|3|mult|sub
-6|1|mult|9|3|mult|add
-6|1|mult|9|3|sub|mult
-6|1|mult|9|3|add|mult
-6|1|mult|8|6|add|mult
-6|1|mult|9|0|mult|mult
-6|1|mult|9|0|mult|sub
-6|1|mult|9|0|mult|add
-6|1|mult|9|0|sub|mult
-6|1|mult|9|0|add|mult
-6|1|mult|6|5|sub|mult
-6|1|mult|8|7|sub|mult
-6|1|mult|8|7|add|mult
-6|1|mult|8|6|mult|mult
-6|1|mult|8|6|mult|sub
-6|1|mult|8|6|mult|add
-6|1|mult|8|6|sub|mult
-6|1|mult|9|2|mult|mult
-6|1|mult|8|5|mult|mult
-6|1|mult|8|5|mult|sub
-6|1|mult|8|5|mult|add
-6|1|mult|8|5|sub|mult
-6|1|mult|8|5|add|mult
-6|1|mult|8|4|mult|mult
-6|1|mult|8|4|mult|sub
-6|1|mult|8|4|mult|add
-6|1|mult|8|7|mult|mult
-6|1|mult|8|7|mult|sub
-6|1|mult|8|7|mult|add
-6|1|mult|9|8|mult|mult
-6|1|mult|6|5|mult|sub
-6|1|mult|7|1|add|mult
-6|1|mult|7|cbrt|mult
-6|1|mult|7|cb|mult
-6|1|mult|7|sq|mult
-6|1|mult|7|sq|sub
-6|1|mult|7|sq|add
-6|1|mult|7|0|mult|mult
-6|1|mult|7|0|mult|sub
-6|1|mult|7|0|mult|add
-6|1|mult|7|0|sub|mult
-6|1|mult|7|0|add|mult
-6|1|mult|6|5|mult|mult
-6|1|mult|7|1|sub|mult
-6|1|mult|6|5|mult|add
-6|1|mult|7|2|add|mult
-6|1|mult|8|4|add|mult
-6|1|mult|8|3|mult|mult
-6|1|mult|8|3|mult|sub
-6|1|mult|8|3|mult|add
-6|1|mult|8|3|sub|mult
-6|1|mult|8|3|add|mult
-6|1|mult|8|2|mult|mult
-6|1|mult|8|2|mult|sub
-6|1|mult|8|2|mult|add
-6|1|mult|8|2|sub|mult
-6|1|mult|7|3|mult|mult
-6|1|mult|9|2|mult|sub
-6|1|mult|9|2|mult|add
-6|1|mult|9|2|sub|mult
-6|1|mult|9|5|mult|mult
-6|1|mult|9|5|mult|sub
-6|1|mult|9|5|mult|add
-6|1|mult|7|5|add|mult
-6|1|mult|7|4|mult|mult
-6|1|mult|7|4|mult|sub
-6|1|mult|7|4|mult|add
-6|1|mult|7|4|sub|mult
-6|1|mult|7|4|add|mult
-6|1|mult|9|sq|add
-6|1|mult|7|3|mult|sub
-6|1|mult|7|3|mult|add
-6|1|mult|7|3|sub|mult
-6|1|mult|7|3|add|mult
-6|1|mult|7|2|mult|mult
-6|1|mult|7|2|mult|sub
-6|1|mult|7|2|mult|add
-6|1|mult|7|2|sub|mult
-6|1|mult|8|4|sub|mult
-6|1|mult|7|1|mult|mult
-6|1|mult|7|1|mult|sub
-6|1|mult|7|1|mult|add
-6|1|mult|2|sq|add
-6|1|mult|6|2|add|mult
-6|1|mult|3|0|sub|mult
-6|1|mult|3|0|add|mult
-6|1|mult|2|1|mult|mult
-6|1|mult|2|1|mult|sub
-6|1|mult|2|1|mult|add
-6|1|mult|2|1|sub|mult
-6|1|mult|2|1|add|mult
-6|1|mult|2|cbrt|mult
-6|1|mult|2|cb|mult
-6|1|mult|2|sq|mult
-6|1|mult|2|sq|sub
-6|1|mult|5|4|mult|add
-6|1|mult|2|0|mult|mult
-6|1|mult|2|0|mult|sub
-6|1|mult|2|0|mult|add
-6|1|mult|4|2|mult|mult
-6|1|mult|4|2|mult|sub
-6|1|mult|4|2|mult|add
-6|1|mult|2|0|add|mult
-6|1|mult|1|cbrt|mult
-6|1|mult|1|cb|mult
-6|1|mult|1|sq|mult
-6|1|mult|1|sq|sub
-6|1|mult|1|sq|add
-6|1|mult|6|1|add|mult
-5|4|sub|2|sub
-5|4|sub|2|add
-5|4|sub|1|mult
-5|4|sub|1|sub
-5|4|sub|1|add
-5|4|sub|cbrt
-5|4|sub|cb
-5|4|sub|sq
-5|4|sub|0|mult
-5|4|sub|0|sub
-5|4|sub|0|add
-6|1|mult|6|1|sub|mult
-6|1|mult|1|0|mult|mult
-6|1|mult|6|cbrt|mult
-6|1|mult|6|cb|mult
-6|1|mult|6|sq|mult
-6|1|mult|6|sq|sub
-6|1|mult|6|sq|add
-6|1|mult|6|0|mult|mult
-6|1|mult|6|0|mult|sub
-6|1|mult|6|0|mult|add
-6|1|mult|6|0|sub|mult
-6|1|mult|6|0|add|mult
-6|1|mult|5|4|mult|mult
-6|1|mult|5|4|mult|sub
-6|1|mult|3|sq|mult
-6|1|mult|3|2|mult|mult
-6|1|mult|3|2|mult|sub
-6|1|mult|3|2|mult|add
-6|1|mult|3|2|sub|mult
-6|1|mult|3|2|add|mult
-6|1|mult|3|1|mult|mult
-6|1|mult|3|1|mult|sub
-6|1|mult|3|1|mult|add
-6|1|mult|3|1|sub|mult
-6|1|mult|3|1|add|mult
-6|1|mult|3|cbrt|mult
-6|1|mult|3|cb|mult
-6|1|mult|4|0|add|mult
-6|1|mult|3|sq|sub
-6|1|mult|3|sq|add
-6|1|mult|4|0|sub|mult
-6|1|mult|9|1|mult|mult
-6|1|mult|9|1|mult|sub
-6|1|mult|9|1|mult|add
-6|1|mult|9|1|sub|mult
-6|1|mult|9|1|add|mult
-6|1|mult|9|cbrt|mult
-6|1|mult|9|cb|mult
-6|1|mult|9|sq|mult
-6|1|mult|9|sq|sub
-6|1|mult|4|1|sub|mult
-6|1|mult|1|0|mult|sub
-6|1|mult|1|0|mult|add
-6|1|mult|1|0|sub|mult
-6|1|mult|1|0|add|mult
-6|1|mult|0|cbrt|mult
-6|1|mult|0|cb|mult
-6|1|mult|2|0|sub|mult
-6|1|mult|4|2|sub|mult
-6|1|mult|4|2|add|mult
-6|1|mult|4|1|mult|mult
-6|1|mult|4|1|mult|sub
-6|1|mult|4|1|mult|add
-6|1|add|8|7|add|mult
-6|1|mult|4|1|add|mult
-6|1|mult|4|cbrt|mult
-6|1|mult|4|cb|mult
-6|1|mult|4|sq|mult
-6|1|mult|4|sq|sub
-6|1|mult|4|sq|add
-6|1|mult|4|0|mult|mult
-6|1|mult|4|0|mult|sub
-6|1|mult|4|0|mult|add
-6|1|mult|3|0|mult|mult
-6|1|mult|3|0|mult|sub
-6|1|mult|3|0|mult|add
-6|sq|9|cb|mult
-6|sq|3|1|sub|mult
-6|sq|3|1|add|mult
-6|sq|3|cbrt|mult
-6|sq|3|cb|mult
-6|sq|3|sq|sub
-6|sq|3|sq|add
-6|sq|4|0|sub|mult
-6|sq|9|1|mult|mult
-6|sq|9|1|mult|sub
-6|sq|9|1|mult|add
-6|sq|9|1|sub|mult
-6|sq|9|1|add|mult
-6|sq|9|cbrt|mult
-6|sq|3|1|mult|add
-6|sq|9|sq|sub
-6|sq|9|sq|add
-6|sq|9|0|mult|mult
-6|sq|9|0|mult|sub
-6|sq|9|0|mult|add
-6|sq|9|0|sub|mult
-6|sq|9|0|add|mult
-6|sq|6|5|sub|mult
-6|sq|8|7|sub|mult
-6|sq|8|7|add|mult
-6|sq|8|6|mult|mult
-6|sq|8|6|mult|sub
-6|sq|4|0|mult|sub
-6|sq|4|2|sub|mult
-6|sq|4|2|add|mult
-6|sq|4|1|mult|mult
-6|sq|4|1|mult|sub
-6|sq|4|1|mult|add
-6|sq|4|1|sub|mult
-6|sq|4|1|add|mult
-6|sq|4|cbrt|mult
-6|sq|4|cb|mult
-6|sq|4|sq|sub
-6|sq|4|sq|add
-6|sq|4|0|mult|mult
-6|sq|8|6|mult|add
-6|sq|4|0|mult|add
-6|sq|3|0|mult|mult
-6|sq|3|0|mult|sub
-6|sq|3|0|mult|add
-6|sq|4|0|add|mult
-6|sq|3|2|mult|mult
-6|sq|3|2|mult|sub
-6|sq|3|2|mult|add
-6|sq|3|2|sub|mult
-6|sq|3|2|add|mult
-6|sq|3|1|mult|mult
-6|sq|3|1|mult|sub
-6|sq|9|3|mult|add
-6|sq|9|6|sub|mult
-6|sq|9|6|add|mult
-6|sq|9|2|add|mult
-6|sq|9|5|sub|mult
-6|sq|9|5|add|mult
-6|sq|9|4|mult|mult
-6|sq|9|4|mult|sub
-6|sq|9|4|mult|add
-6|sq|9|4|sub|mult
-6|sq|9|4|add|mult
-6|sq|9|3|mult|mult
-6|sq|9|3|mult|sub
-6|sq|9|6|mult|add
-6|sq|9|3|sub|mult
-6|sq|9|3|add|mult
-6|sq|9|2|mult|mult
-6|sq|9|2|mult|sub
-6|sq|9|2|mult|add
-6|sq|9|2|sub|mult
-6|sq|9|5|mult|mult
-6|sq|9|5|mult|sub
-6|sq|9|5|mult|add
-6|sq|7|5|add|mult
-6|sq|7|4|mult|mult
-6|sq|7|4|mult|sub
-6|sq|8|7|mult|add
-6|sq|8|6|sub|mult
-6|sq|8|6|add|mult
-6|sq|8|5|mult|mult
-6|sq|8|5|mult|sub
-6|sq|8|5|mult|add
-6|sq|8|5|sub|mult
-6|sq|8|5|add|mult
-6|sq|8|4|mult|mult
-6|sq|8|4|mult|sub
-6|sq|8|4|mult|add
-6|sq|8|7|mult|mult
-6|sq|8|7|mult|sub
-6|sq|2|0|sub|mult
-6|sq|9|8|mult|mult
-6|sq|9|8|mult|sub
-6|sq|9|8|mult|add
-6|sq|9|8|sub|mult
-6|sq|9|8|add|mult
-6|sq|9|7|mult|mult
-6|sq|9|7|mult|sub
-6|sq|9|7|mult|add
-6|sq|9|7|sub|mult
-6|sq|9|7|add|mult
-6|sq|9|6|mult|mult
-6|sq|9|6|mult|sub
-6|cb|8|2|add|mult
-6|cb|7|sq|mult
-6|cb|7|0|mult|mult
-6|cb|7|0|sub|mult
-6|cb|7|0|add|mult
-6|cb|6|5|mult|mult
-6|cb|7|2|add|mult
-6|cb|8|4|add|mult
-6|cb|8|3|mult|mult
-6|cb|8|3|sub|mult
-6|cb|8|3|add|mult
-6|cb|8|2|mult|mult
-6|cb|8|2|sub|mult
-6|cb|7|cb|add
-6|cb|8|1|mult|mult
-6|cb|8|1|sub|mult
-6|cb|7|5|sub|mult
-6|cb|8|cbrt|mult
-6|cb|8|cb|sub
-6|cb|8|cb|add
-6|cb|8|sq|mult
-6|cb|8|0|mult|mult
-6|cb|8|0|sub|mult
-6|cb|8|0|add|mult
-6|cb|7|6|mult|mult
-6|cb|7|6|sub|mult
-6|cb|7|4|sub|mult
-6|cb|9|5|add|mult
-6|cb|9|4|mult|mult
-6|cb|9|4|sub|mult
-6|cb|9|4|add|mult
-6|cb|9|3|mult|mult
-6|cb|9|3|sub|mult
-6|cb|9|3|add|mult
-6|cb|9|2|mult|mult
-6|cb|9|2|sub|mult
-6|cb|9|5|mult|mult
-6|cb|7|5|add|mult
-6|cb|7|4|mult|mult
-6|cb|7|6|add|mult
-6|cb|7|4|add|mult
-6|cb|7|3|mult|mult
-6|cb|7|3|sub|mult
-6|cb|7|3|add|mult
-6|cb|7|2|mult|mult
-6|cb|7|2|sub|mult
-6|cb|8|4|sub|mult
-6|cb|7|1|mult|mult
-6|cb|7|1|sub|mult
-6|cb|7|1|add|mult
-6|cb|7|cbrt|mult
-6|cb|7|cb|sub
-6|sq|4|2|mult|add
-6|sq|2|1|mult|add
-6|sq|2|1|sub|mult
-6|sq|2|1|add|mult
-6|sq|2|cbrt|mult
-6|sq|2|cb|mult
-6|sq|2|sq|sub
-6|sq|2|sq|add
-6|sq|2|0|mult|mult
-6|sq|2|0|mult|sub
-6|sq|2|0|mult|add
-6|sq|4|2|mult|mult
-6|sq|4|2|mult|sub
-6|sq|2|1|mult|sub
-6|sq|2|0|add|mult
-6|sq|1|cbrt|mult
-6|sq|1|cb|mult
-6|sq|1|sq|sub
-6|sq|1|sq|add
-6|sq|1|0|mult|mult
-6|sq|1|0|mult|sub
-6|sq|1|0|mult|add
-6|sq|1|0|sub|mult
-6|sq|1|0|add|mult
-6|sq|0|cbrt|mult
-6|sq|0|cb|mult
-6|cb|0|mult
-6|cb|7|5|mult|mult
-6|cb|8|1|add|mult
-6|cb|9|mult
-6|cb|8|mult
-6|cb|7|mult
-6|cb|5|mult
-6|cb|4|mult
-6|cb|3|mult
-6|cb|2|mult
-6|cb|1|mult
-6|cb|cb
-6|cb|sq
-6|sq|7|4|mult|add
-6|sq|6|0|mult|mult
-6|sq|6|0|mult|sub
-6|sq|6|0|mult|add
-6|sq|6|0|sub|mult
-6|sq|6|0|add|mult
-6|sq|5|4|mult|mult
-6|sq|5|4|mult|sub
-6|sq|5|4|mult|add
-6|sq|6|2|add|mult
-6|sq|3|0|sub|mult
-6|sq|3|0|add|mult
-6|sq|2|1|mult|mult
-6|0|mult|3|sq|mult
-6|0|mult|4|0|add|mult
-6|0|mult|3|2|mult|mult
-6|0|mult|3|2|mult|sub
-6|0|mult|3|2|mult|add
-6|0|mult|3|2|sub|mult
-6|0|mult|3|2|add|mult
-6|0|mult|3|1|mult|mult
-6|0|mult|3|1|mult|sub
-6|0|mult|3|1|mult|add
-6|0|mult|3|1|sub|mult
-6|0|mult|3|1|add|mult
-6|0|mult|3|cbrt|mult
-6|0|mult|3|cb|mult
-6|0|mult|3|0|mult|add
-6|0|mult|3|sq|sub
-6|0|mult|3|sq|add
-6|0|mult|4|0|sub|mult
-6|0|mult|9|1|mult|mult
-6|0|mult|9|1|mult|sub
-6|0|mult|9|1|mult|add
-6|0|mult|9|1|sub|mult
-6|0|mult|9|1|add|mult
-6|0|mult|9|cbrt|mult
-6|0|mult|9|cb|mult
-6|0|mult|9|sq|mult
-6|0|mult|9|sq|sub
-6|0|mult|4|1|mult|add
-6|0|mult|1|0|mult|mult
-6|0|mult|1|0|mult|sub
-6|0|mult|1|0|mult|add
-6|0|mult|1|0|sub|mult
-6|0|mult|1|0|add|mult
-6|0|mult|0|cbrt|mult
-6|0|mult|0|cb|mult
-6|0|mult|2|0|sub|mult
-6|0|mult|4|2|sub|mult
-6|0|mult|4|2|add|mult
-6|0|mult|4|1|mult|mult
-6|0|mult|4|1|mult|sub
-6|0|mult|9|sq|add
-6|0|mult|4|1|sub|mult
-6|0|mult|4|1|add|mult
-6|0|mult|4|cbrt|mult
-6|0|mult|4|cb|mult
-6|0|mult|4|sq|mult
-6|0|mult|4|sq|sub
-6|0|mult|4|sq|add
-6|0|mult|4|0|mult|mult
-6|0|mult|4|0|mult|sub
-6|0|mult|4|0|mult|add
-6|0|mult|3|0|mult|mult
-6|0|mult|3|0|mult|sub
-6|0|mult|9|6|add|mult
-6|0|mult|9|8|mult|add
-6|0|mult|9|8|sub|mult
-6|0|mult|9|8|add|mult
-6|0|mult|9|7|mult|mult
-6|0|mult|9|7|mult|sub
-6|0|mult|9|7|mult|add
-6|0|mult|9|7|sub|mult
-6|0|mult|9|7|add|mult
-6|0|mult|9|6|mult|mult
-6|0|mult|9|6|mult|sub
-6|0|mult|9|6|mult|add
-6|0|mult|9|6|sub|mult
-6|0|mult|9|8|mult|sub
-6|0|mult|9|2|add|mult
-6|0|mult|9|5|sub|mult
-6|0|mult|9|5|add|mult
-6|0|mult|9|4|mult|mult
-6|0|mult|9|4|mult|sub
-6|0|mult|9|4|mult|add
-6|0|mult|9|4|sub|mult
-6|0|mult|9|4|add|mult
-6|0|mult|9|3|mult|mult
-6|0|mult|9|3|mult|sub
-6|0|mult|9|3|mult|add
-6|0|mult|9|3|sub|mult
-6|0|mult|8|6|add|mult
-6|0|mult|9|0|mult|mult
-6|0|mult|9|0|mult|sub
-6|0|mult|9|0|mult|add
-6|0|mult|9|0|sub|mult
-6|0|mult|9|0|add|mult
-6|0|mult|6|5|sub|mult
-6|0|mult|8|7|sub|mult
-6|0|mult|8|7|add|mult
-6|0|mult|8|6|mult|mult
-6|0|mult|8|6|mult|sub
-6|0|mult|8|6|mult|add
-6|0|mult|8|6|sub|mult
-6|0|mult|1|sq|add
-6|0|mult|8|5|mult|mult
-6|0|mult|8|5|mult|sub
-6|0|mult|8|5|mult|add
-6|0|mult|8|5|sub|mult
-6|0|mult|8|5|add|mult
-6|0|mult|8|4|mult|mult
-6|0|mult|8|4|mult|sub
-6|0|mult|8|4|mult|add
-6|0|mult|8|7|mult|mult
-6|0|mult|8|7|mult|sub
-6|0|mult|8|7|mult|add
-6|0|mult|9|8|mult|mult
-6|sq|8|2|mult|add
-6|sq|6|5|mult|mult
-6|sq|6|5|mult|sub
-6|sq|6|5|mult|add
-6|sq|7|2|add|mult
-6|sq|8|4|add|mult
-6|sq|8|3|mult|mult
-6|sq|8|3|mult|sub
-6|sq|8|3|mult|add
-6|sq|8|3|sub|mult
-6|sq|8|3|add|mult
-6|sq|8|2|mult|mult
-6|sq|8|2|mult|sub
-6|sq|7|0|add|mult
-6|sq|8|2|sub|mult
-6|sq|8|2|add|mult
-6|sq|8|1|mult|mult
-6|sq|8|1|mult|sub
-6|sq|8|1|mult|add
-6|sq|8|1|sub|mult
-6|sq|7|5|sub|mult
-6|sq|8|cbrt|mult
-6|sq|8|cb|mult
-6|sq|8|sq|sub
-6|sq|8|sq|add
-6|sq|8|0|mult|mult
-6|sq|7|1|mult|mult
-6|sq|7|4|sub|mult
-6|sq|7|4|add|mult
-6|sq|7|3|mult|mult
-6|sq|7|3|mult|sub
-6|sq|7|3|mult|add
-6|sq|7|3|sub|mult
-6|sq|7|3|add|mult
-6|sq|7|2|mult|mult
-6|sq|7|2|mult|sub
-6|sq|7|2|mult|add
-6|sq|7|2|sub|mult
-6|sq|8|4|sub|mult
-6|sq|8|0|mult|sub
-6|sq|7|1|mult|sub
-6|sq|7|1|mult|add
-6|sq|7|1|sub|mult
-6|sq|7|1|add|mult
-6|sq|7|cbrt|mult
-6|sq|7|cb|mult
-6|sq|7|sq|sub
-6|sq|7|sq|add
-6|sq|7|0|mult|mult
-6|sq|7|0|mult|sub
-6|sq|7|0|mult|add
-6|sq|7|0|sub|mult
-6|0|mult|2|sq|sub
-6|0|mult|5|4|mult|add
-6|0|mult|6|2|add|mult
-6|0|mult|3|0|sub|mult
-6|0|mult|3|0|add|mult
-6|0|mult|2|1|mult|mult
-6|0|mult|2|1|mult|sub
-6|0|mult|2|1|mult|add
-6|0|mult|2|1|sub|mult
-6|0|mult|2|1|add|mult
-6|0|mult|2|cbrt|mult
-6|0|mult|2|cb|mult
-6|0|mult|2|sq|mult
-6|0|mult|5|4|mult|sub
-6|0|mult|2|sq|add
-6|0|mult|2|0|mult|mult
-6|0|mult|2|0|mult|sub
-6|0|mult|2|0|mult|add
-6|0|mult|4|2|mult|mult
-6|0|mult|4|2|mult|sub
-6|0|mult|4|2|mult|add
-6|0|mult|2|0|add|mult
-6|0|mult|1|cbrt|mult
-6|0|mult|1|cb|mult
-6|0|mult|1|sq|mult
-6|0|mult|1|sq|sub
-6|sq|9|mult
-6|sq|8|0|mult|add
-6|sq|8|0|sub|mult
-6|sq|8|0|add|mult
-6|sq|7|6|mult|mult
-6|sq|7|6|mult|sub
-6|sq|7|6|mult|add
-6|sq|7|6|sub|mult
-6|sq|7|6|add|mult
-6|sq|7|5|mult|mult
-6|sq|7|5|mult|sub
-6|sq|7|5|mult|add
-6|sq|8|1|add|mult
-6|cb|9|5|sub|mult
-6|sq|8|mult
-6|sq|7|mult
-6|sq|5|mult
-6|sq|4|mult
-6|sq|3|mult
-6|sq|2|mult
-6|sq|1|mult
-6|sq|sq
-6|sq|0|mult
-6|0|mult|6|0|sub|mult
-6|0|mult|6|0|add|mult
-6|0|mult|5|4|mult|mult
-6|1|add|7|6|add|add
-6|1|add|8|cb|mult
-6|1|add|8|sq|mult
-6|1|add|8|0|mult|mult
-6|1|add|8|0|sub|mult
-6|1|add|8|0|sub|sub
-6|1|add|8|0|sub|add
-6|1|add|8|0|add|mult
-6|1|add|8|0|add|sub
-6|1|add|8|0|add|add
-6|1|add|7|6|mult|mult
-6|1|add|7|6|sub|mult
-6|1|add|7|6|sub|sub
-6|1|add|7|6|add|mult
-6|1|add|8|cbrt|mult
-6|1|add|7|5|mult|mult
-6|1|add|8|1|add|mult
-6|1|add|8|1|add|add
-6|1|add|9|mult
-6|1|add|9|sub
-6|1|add|9|add
-6|1|add|8|mult
-6|1|add|8|sub
-6|1|add|8|add
-6|1|add|7|mult
-6|1|add|7|sub
-6|1|add|7|add
-6|1|add|8|2|mult|mult
-6|1|add|7|2|add|sub
-6|1|add|7|2|add|add
-6|1|add|8|4|add|mult
-6|1|add|8|4|add|sub
-6|1|add|8|4|add|add
-6|1|add|8|3|mult|mult
-6|1|add|8|3|sub|mult
-6|1|add|8|3|sub|sub
-6|1|add|8|3|sub|add
-6|1|add|8|3|add|mult
-6|1|add|8|3|add|sub
-6|1|add|8|3|add|add
-6|1|add|6|mult
-6|1|add|8|2|sub|mult
-6|1|add|8|2|sub|sub
-6|1|add|8|2|sub|add
-6|1|add|8|2|add|mult
-6|1|add|8|2|add|sub
-6|1|add|8|2|add|add
-6|1|add|8|1|mult|mult
-6|1|add|8|1|sub|mult
-6|1|add|8|1|sub|sub
-6|1|add|7|5|sub|mult
-6|1|add|7|5|sub|sub
-6|1|add|7|5|sub|add
-6|cbrt|2|0|add|mult
-6|cbrt|3|0|sub|mult
-6|cbrt|3|0|add|mult
-6|cbrt|2|1|mult|mult
-6|cbrt|2|1|sub|mult
-6|cbrt|2|1|add|mult
-6|cbrt|2|cbrt|mult
-6|cbrt|2|cbrt|sub
-6|cbrt|2|cbrt|add
-6|cbrt|2|cb|mult
-6|cbrt|2|sq|mult
-6|cbrt|2|0|mult|mult
-6|cbrt|4|2|mult|mult
-6|cbrt|6|2|add|mult
-6|cbrt|1|cbrt|mult
-6|cbrt|1|cbrt|sub
-6|cbrt|1|cbrt|add
-6|cbrt|1|cb|mult
-6|cbrt|1|sq|mult
-6|cbrt|1|0|mult|mult
-6|cbrt|1|0|sub|mult
-6|cbrt|1|0|add|mult
-6|cbrt|0|cbrt|mult
-6|cbrt|0|cbrt|sub
-6|cbrt|0|cbrt|add
-6|cbrt|0|cb|mult
-6|1|add|2|add
-6|1|add|6|add
-6|1|add|5|mult
-6|1|add|5|sub
-6|1|add|5|add
-6|1|add|4|mult
-6|1|add|4|sub
-6|1|add|4|add
-6|1|add|3|mult
-6|1|add|3|sub
-6|1|add|3|add
-6|1|add|2|mult
-6|1|add|2|sub
-6|1|add|7|2|add|mult
-6|1|add|1|mult
-6|1|add|1|add
-6|1|add|cbrt
-6|1|add|cb
-6|1|add|sq
-6|1|add|0|mult
-6|1|add|0|sub
-6|1|add|0|add
-6|cbrt|6|0|mult|mult
-6|cbrt|6|0|sub|mult
-6|cbrt|6|0|add|mult
-6|cbrt|5|4|mult|mult
-6|1|add|9|5|sub|mult
-6|1|add|9|7|sub|add
-6|1|add|9|7|add|mult
-6|1|add|9|7|add|sub
-6|1|add|9|7|add|add
-6|1|add|9|6|mult|mult
-6|1|add|9|6|sub|mult
-6|1|add|9|6|sub|sub
-6|1|add|9|6|add|mult
-6|1|add|9|6|add|add
-6|1|add|9|2|add|mult
-6|1|add|9|2|add|sub
-6|1|add|9|2|add|add
-6|1|add|9|7|sub|sub
-6|1|add|9|5|sub|sub
-6|1|add|9|5|sub|add
-6|1|add|9|5|add|mult
-6|1|add|9|5|add|sub
-6|1|add|9|5|add|add
-6|1|add|9|4|mult|mult
-6|1|add|9|4|sub|mult
-6|1|add|9|4|sub|sub
-6|1|add|9|4|sub|add
-6|1|add|9|4|add|mult
-6|1|add|9|4|add|sub
-6|1|add|9|4|add|add
-6|1|add|8|5|add|sub
-6|1|add|8|7|add|sub
-6|1|add|8|7|add|add
-6|1|add|8|6|mult|mult
-6|1|add|8|6|sub|mult
-6|1|add|8|6|sub|sub
-6|1|add|8|6|add|mult
-6|1|add|8|6|add|add
-6|1|add|8|5|mult|mult
-6|1|add|8|5|sub|mult
-6|1|add|8|5|sub|sub
-6|1|add|8|5|sub|add
-6|1|add|8|5|add|mult
-6|1|add|9|3|mult|mult
-6|1|add|8|5|add|add
-6|1|add|8|4|mult|mult
-6|1|add|8|7|mult|mult
-6|1|add|9|8|mult|mult
-6|1|add|9|8|sub|mult
-6|1|add|9|8|sub|sub
-6|1|add|9|8|sub|add
-6|1|add|9|8|add|mult
-6|1|add|9|8|add|sub
-6|1|add|9|8|add|add
-6|1|add|9|7|mult|mult
-6|1|add|9|7|sub|mult
-6|1|add|7|1|add|mult
-6|1|add|7|3|add|sub
-6|1|add|7|3|add|add
-6|1|add|7|2|mult|mult
-6|1|add|7|2|sub|mult
-6|1|add|7|2|sub|sub
-6|1|add|7|2|sub|add
-6|1|add|8|4|sub|mult
-6|1|add|8|4|sub|sub
-6|1|add|8|4|sub|add
-6|1|add|7|1|mult|mult
-6|1|add|7|1|sub|mult
-6|1|add|7|1|sub|sub
-6|1|add|7|3|add|mult
-6|1|add|7|1|add|add
-6|1|add|7|cbrt|mult
-6|1|add|7|cb|mult
-6|1|add|7|sq|mult
-6|1|add|7|0|mult|mult
-6|1|add|7|0|sub|mult
-6|1|add|7|0|sub|sub
-6|1|add|7|0|sub|add
-6|1|add|7|0|add|mult
-6|1|add|7|0|add|sub
-6|1|add|7|0|add|add
-6|1|add|6|5|mult|mult
-6|1|add|7|5|add|sub
-6|1|add|9|3|sub|mult
-6|1|add|9|3|sub|sub
-6|1|add|9|3|sub|add
-6|1|add|9|3|add|mult
-6|1|add|9|3|add|sub
-6|1|add|9|3|add|add
-6|1|add|9|2|mult|mult
-6|1|add|9|2|sub|mult
-6|1|add|9|2|sub|sub
-6|1|add|9|2|sub|add
-6|1|add|9|5|mult|mult
-6|1|add|7|5|add|mult
-6|cbrt|2|0|sub|mult
-6|1|add|7|5|add|add
-6|1|add|7|4|mult|mult
-6|1|add|7|4|sub|mult
-6|1|add|7|4|sub|sub
-6|1|add|7|4|sub|add
-6|1|add|7|4|add|mult
-6|1|add|7|4|add|sub
-6|1|add|7|4|add|add
-6|1|add|7|3|mult|mult
-6|1|add|7|3|sub|mult
-6|1|add|7|3|sub|sub
-6|1|add|7|3|sub|add
-6|cb|1|cbrt|mult
-6|cb|3|0|sub|mult
-6|cb|3|0|add|mult
-6|cb|2|1|mult|mult
-6|cb|2|1|sub|mult
-6|cb|2|1|add|mult
-6|cb|2|cbrt|mult
-6|cb|2|cb|sub
-6|cb|2|cb|add
-6|cb|2|sq|mult
-6|cb|2|0|mult|mult
-6|cb|4|2|mult|mult
-6|cb|2|0|add|mult
-6|cb|6|2|add|mult
-6|cb|1|cb|sub
-6|cb|1|cb|add
-6|cb|1|sq|mult
-6|cb|1|0|mult|mult
-6|cb|1|0|sub|mult
-6|cb|1|0|add|mult
-6|cb|0|cbrt|mult
-6|cb|0|cb|sub
-6|cb|0|cb|add
-6|cb|2|0|sub|mult
-6|cb|4|2|sub|mult
-6|cb|4|2|add|mult
-6|cbrt|7|mult
-6|cbrt|8|cb|mult
-6|cbrt|8|sq|mult
-6|cbrt|8|0|mult|mult
-6|cbrt|8|0|sub|mult
-6|cbrt|8|0|add|mult
-6|cbrt|7|6|mult|mult
-6|cbrt|7|6|sub|mult
-6|cbrt|7|6|add|mult
-6|cbrt|7|5|mult|mult
-6|cbrt|8|1|add|mult
-6|cbrt|9|mult
-6|cbrt|8|mult
-6|cb|4|1|mult|mult
-6|cbrt|5|mult
-6|cbrt|4|mult
-6|cbrt|3|mult
-6|cbrt|2|mult
-6|cbrt|1|mult
-6|cbrt|cbrt
-6|cbrt|sq
-6|cbrt|0|mult
-6|cb|6|0|mult|mult
-6|cb|6|0|sub|mult
-6|cb|6|0|add|mult
-6|cb|5|4|mult|mult
-6|cb|8|5|add|mult
-6|cb|9|sq|mult
-6|cb|9|0|mult|mult
-6|cb|9|0|sub|mult
-6|cb|9|0|add|mult
-6|cb|6|5|sub|mult
-6|cb|8|7|sub|mult
-6|cb|8|7|add|mult
-6|cb|8|6|mult|mult
-6|cb|8|6|sub|mult
-6|cb|8|6|add|mult
-6|cb|8|5|mult|mult
-6|cb|8|5|sub|mult
-6|cb|9|cb|add
-6|cb|8|4|mult|mult
-6|cb|8|7|mult|mult
-6|cb|9|8|mult|mult
-6|cb|9|8|sub|mult
-6|cb|9|8|add|mult
-6|cb|9|7|mult|mult
-6|cb|9|7|sub|mult
-6|cb|9|7|add|mult
-6|cb|9|6|mult|mult
-6|cb|9|6|sub|mult
-6|cb|9|6|add|mult
-6|cb|9|2|add|mult
-6|cb|3|1|mult|mult
-6|cb|4|1|sub|mult
-6|cb|4|1|add|mult
-6|cb|4|cbrt|mult
-6|cb|4|cb|sub
-6|cb|4|cb|add
-6|cb|4|sq|mult
-6|cb|4|0|mult|mult
-6|cb|3|0|mult|mult
-6|cb|4|0|add|mult
-6|cb|3|2|mult|mult
-6|cb|3|2|sub|mult
-6|cb|3|2|add|mult
-6|cbrt|8|cbrt|add
-6|cb|3|1|sub|mult
-6|cb|3|1|add|mult
-6|cb|3|cbrt|mult
-6|cb|3|cb|sub
-6|cb|3|cb|add
-6|cb|3|sq|mult
-6|cb|4|0|sub|mult
-6|cb|9|1|mult|mult
-6|cb|9|1|sub|mult
-6|cb|9|1|add|mult
-6|cb|9|cbrt|mult
-6|cb|9|cb|sub
-6|cbrt|8|7|add|mult
-6|cbrt|9|1|sub|mult
-6|cbrt|9|1|add|mult
-6|cbrt|9|cbrt|mult
-6|cbrt|9|cbrt|sub
-6|cbrt|9|cbrt|add
-6|cbrt|9|cb|mult
-6|cbrt|9|sq|mult
-6|cbrt|9|0|mult|mult
-6|cbrt|9|0|sub|mult
-6|cbrt|9|0|add|mult
-6|cbrt|6|5|sub|mult
-6|cbrt|8|7|sub|mult
-6|cbrt|9|1|mult|mult
-6|cbrt|8|6|mult|mult
-6|cbrt|8|6|sub|mult
-6|cbrt|8|6|add|mult
-6|cbrt|8|5|mult|mult
-6|cbrt|8|5|sub|mult
-6|cbrt|8|5|add|mult
-6|cbrt|8|4|mult|mult
-6|cbrt|8|7|mult|mult
-6|cbrt|9|8|mult|mult
-6|cbrt|9|8|sub|mult
-6|cbrt|9|8|add|mult
-6|cbrt|9|7|mult|mult
-6|cbrt|4|0|add|mult
-6|cbrt|4|2|sub|mult
-6|cbrt|4|2|add|mult
-6|cbrt|4|1|mult|mult
-6|cbrt|4|1|sub|mult
-6|cbrt|4|1|add|mult
-6|cbrt|4|cbrt|mult
-6|cbrt|4|cbrt|sub
-6|cbrt|4|cbrt|add
-6|cbrt|4|cb|mult
-6|cbrt|4|sq|mult
-6|cbrt|4|0|mult|mult
-6|cbrt|3|0|mult|mult
-6|cbrt|9|7|sub|mult
-6|cbrt|3|2|mult|mult
-6|cbrt|3|2|sub|mult
-6|cbrt|3|2|add|mult
-6|cbrt|3|1|mult|mult
-6|cbrt|3|1|sub|mult
-6|cbrt|3|1|add|mult
-6|cbrt|3|cbrt|mult
-6|cbrt|3|cbrt|sub
-6|cbrt|3|cbrt|add
-6|cbrt|3|cb|mult
-6|cbrt|3|sq|mult
-6|cbrt|4|0|sub|mult
-6|cbrt|7|2|add|mult
-6|cbrt|7|1|mult|mult
-6|cbrt|7|1|sub|mult
-6|cbrt|7|1|add|mult
-6|cbrt|7|cbrt|mult
-6|cbrt|7|cbrt|sub
-6|cbrt|7|cbrt|add
-6|cbrt|7|cb|mult
-6|cbrt|7|sq|mult
-6|cbrt|7|0|mult|mult
-6|cbrt|7|0|sub|mult
-6|cbrt|7|0|add|mult
-6|cbrt|6|5|mult|mult
-6|cbrt|8|4|sub|mult
-6|cbrt|8|4|add|mult
-6|cbrt|8|3|mult|mult
-6|cbrt|8|3|sub|mult
-6|cbrt|8|3|add|mult
-6|cbrt|8|2|mult|mult
-6|cbrt|8|2|sub|mult
-6|cbrt|8|2|add|mult
-6|cbrt|8|1|mult|mult
-6|cbrt|8|1|sub|mult
-6|cbrt|7|5|sub|mult
-6|cbrt|8|cbrt|mult
-6|cbrt|8|cbrt|sub
-6|cbrt|9|3|add|mult
-6|cbrt|9|7|add|mult
-6|cbrt|9|6|mult|mult
-6|cbrt|9|6|sub|mult
-6|cbrt|9|6|add|mult
-6|cbrt|9|2|add|mult
-6|cbrt|9|5|sub|mult
-6|cbrt|9|5|add|mult
-6|cbrt|9|4|mult|mult
-6|cbrt|9|4|sub|mult
-6|cbrt|9|4|add|mult
-6|cbrt|9|3|mult|mult
-6|cbrt|9|3|sub|mult
-5|4|sub|3|0|mult|mult
-6|cbrt|9|2|mult|mult
-6|cbrt|9|2|sub|mult
-6|cbrt|9|5|mult|mult
-6|cbrt|7|5|add|mult
-6|cbrt|7|4|mult|mult
-6|cbrt|7|4|sub|mult
-6|cbrt|7|4|add|mult
-6|cbrt|7|3|mult|mult
-6|cbrt|7|3|sub|mult
-6|cbrt|7|3|add|mult
-6|cbrt|7|2|mult|mult
-6|cbrt|7|2|sub|mult
-6|3|sub|4|sq|mult
-6|3|sub|4|2|sub|add
-6|3|sub|4|2|add|mult
-6|3|sub|4|2|add|sub
-6|3|sub|4|2|add|add
-6|3|sub|4|1|mult|mult
-6|3|sub|4|1|sub|mult
-6|3|sub|4|1|sub|sub
-6|3|sub|4|1|sub|add
-6|3|sub|4|1|add|mult
-6|3|sub|4|1|add|sub
-6|3|sub|4|1|add|add
-6|3|sub|4|cbrt|mult
-6|3|sub|4|cb|mult
-6|3|sub|4|2|sub|sub
-6|3|sub|4|0|mult|mult
-6|3|sub|3|0|mult|mult
-6|3|sub|4|0|add|mult
-6|3|sub|4|0|add|sub
-6|3|sub|4|0|add|add
-6|3|sub|3|2|mult|mult
-6|3|sub|3|2|sub|mult
-6|3|sub|3|2|sub|sub
-6|3|sub|3|2|add|mult
-6|3|sub|3|2|add|sub
-6|3|sub|3|1|mult|mult
-6|3|sub|3|1|sub|mult
-6|3|sub|1|0|mult|mult
-6|3|sub|2|1|add|add
-6|3|sub|2|cbrt|mult
-6|3|sub|2|cb|mult
-6|3|sub|2|sq|mult
-6|3|sub|2|0|mult|mult
-6|3|sub|4|2|mult|mult
-6|3|sub|2|0|add|mult
-6|3|sub|2|0|add|sub
-6|3|sub|2|0|add|add
-6|3|sub|1|cbrt|mult
-6|3|sub|1|cb|mult
-6|3|sub|1|sq|mult
-6|3|sub|3|1|sub|sub
-6|3|sub|1|0|sub|mult
-6|3|sub|1|0|sub|sub
-6|3|sub|1|0|sub|add
-6|3|sub|1|0|add|mult
-6|3|sub|1|0|add|sub
-6|3|sub|1|0|add|add
-6|3|sub|0|cbrt|mult
-6|3|sub|0|cb|mult
-6|3|sub|2|0|sub|mult
-6|3|sub|2|0|sub|sub
-6|3|sub|2|0|sub|add
-6|3|sub|4|2|sub|mult
-6|3|sub|8|5|mult|mult
-6|3|sub|6|5|sub|add
-6|3|sub|8|7|sub|mult
-6|3|sub|8|7|sub|sub
-6|3|sub|8|7|sub|add
-6|3|sub|8|7|add|mult
-6|3|sub|8|7|add|sub
-6|3|sub|8|7|add|add
-6|3|sub|8|6|mult|mult
-6|3|sub|8|6|sub|mult
-6|3|sub|8|6|sub|sub
-6|3|sub|8|6|add|mult
-6|3|sub|8|6|add|add
-6|3|sub|6|5|sub|mult
-6|3|sub|8|5|sub|mult
-6|3|sub|8|5|sub|sub
-6|3|sub|8|5|sub|add
-6|3|sub|8|5|add|mult
-6|3|sub|8|5|add|sub
-6|3|sub|8|5|add|add
-6|3|sub|8|4|mult|mult
-6|3|sub|8|7|mult|mult
-6|3|sub|9|8|mult|mult
-6|3|sub|9|8|sub|mult
-6|3|sub|9|8|sub|sub
-6|3|sub|9|8|sub|add
-6|3|sub|9|1|add|mult
-6|3|sub|3|1|add|mult
-6|3|sub|3|1|add|sub
-6|3|sub|3|cbrt|mult
-6|3|sub|3|cb|mult
-6|3|sub|3|sq|mult
-6|3|sub|4|0|sub|mult
-6|3|sub|4|0|sub|sub
-6|3|sub|4|0|sub|add
-6|3|sub|9|1|mult|mult
-6|3|sub|9|1|sub|mult
-6|3|sub|9|1|sub|sub
-6|3|sub|9|1|sub|add
-6|3|sub|2|1|add|sub
-6|3|sub|9|1|add|sub
-6|3|sub|9|1|add|add
-6|3|sub|9|cbrt|mult
-6|3|sub|9|cb|mult
-6|3|sub|9|sq|mult
-6|3|sub|9|0|mult|mult
-6|3|sub|9|0|sub|mult
-6|3|sub|9|0|sub|sub
-6|3|sub|9|0|sub|add
-6|3|sub|9|0|add|mult
-6|3|sub|9|0|add|sub
-6|3|sub|9|0|add|add
-6|3|mult|7|5|sub|mult
-6|3|mult|8|3|mult|add
-6|3|mult|8|3|sub|mult
-6|3|mult|8|3|add|mult
-6|3|mult|8|2|mult|mult
-6|3|mult|8|2|mult|sub
-6|3|mult|8|2|mult|add
-6|3|mult|8|2|sub|mult
-6|3|mult|8|2|add|mult
-6|3|mult|8|1|mult|mult
-6|3|mult|8|1|mult|sub
-6|3|mult|8|1|mult|add
-6|3|mult|8|1|sub|mult
-6|3|mult|8|3|mult|sub
-6|3|mult|8|cbrt|mult
-6|3|mult|8|cb|mult
-6|3|mult|8|sq|mult
-6|3|mult|8|sq|sub
-6|3|mult|8|sq|add
-6|3|mult|8|0|mult|mult
-6|3|mult|8|0|mult|sub
-6|3|mult|8|0|mult|add
-6|3|mult|8|0|sub|mult
-6|3|mult|8|0|add|mult
-6|3|mult|7|6|mult|mult
-6|3|mult|7|6|mult|sub
-6|3|mult|7|sq|sub
-6|3|mult|7|2|mult|sub
-6|3|mult|7|2|mult|add
-6|3|mult|7|2|sub|mult
-6|3|mult|8|4|sub|mult
-6|3|mult|7|1|mult|mult
-6|3|mult|7|1|mult|sub
-6|3|mult|7|1|mult|add
-6|3|mult|7|1|sub|mult
-6|3|mult|7|1|add|mult
-6|3|mult|7|cbrt|mult
-6|3|mult|7|cb|mult
-6|3|mult|7|sq|mult
-6|3|mult|7|6|mult|add
-6|3|mult|7|sq|add
-6|3|mult|7|0|mult|mult
-6|3|mult|7|0|mult|sub
-6|3|mult|7|0|mult|add
-6|3|mult|7|0|sub|mult
-6|3|mult|7|0|add|mult
-6|3|mult|6|5|mult|mult
-6|3|mult|6|5|mult|sub
-6|3|mult|6|5|mult|add
-6|3|mult|7|2|add|mult
-6|3|mult|8|4|add|mult
-6|3|mult|8|3|mult|mult
-6|3|sub|6|0|add|add
-6|3|sub|6|1|mult|mult
-6|3|sub|6|1|sub|mult
-6|3|sub|6|1|sub|add
-6|3|sub|6|1|add|mult
-6|3|sub|6|1|add|add
-6|3|sub|6|cbrt|mult
-6|3|sub|6|cb|mult
-6|3|sub|6|sq|mult
-6|3|sub|6|0|mult|mult
-6|3|sub|6|0|sub|mult
-6|3|sub|6|0|sub|add
-6|3|sub|6|0|add|mult
-6|3|sub|5|4|sub|add
-6|3|sub|5|4|mult|mult
-6|3|sub|6|2|add|mult
-6|3|sub|6|2|add|add
-6|3|sub|3|0|sub|mult
-6|3|sub|3|0|sub|sub
-6|3|sub|3|0|add|mult
-6|3|sub|3|0|add|sub
-6|3|sub|2|1|mult|mult
-6|3|sub|2|1|sub|mult
-6|3|sub|2|1|sub|sub
-6|3|sub|2|1|sub|add
-6|3|sub|2|1|add|mult
-6|3|mult|3|mult
-6|3|mult|7|6|sub|mult
-6|3|mult|7|6|add|mult
-6|3|mult|7|5|mult|mult
-6|3|mult|7|5|mult|sub
-6|3|mult|7|5|mult|add
-6|3|mult|8|1|add|mult
-6|3|mult|9|mult
-6|3|mult|8|mult
-6|3|mult|7|mult
-6|3|mult|6|mult
-6|3|mult|5|mult
-6|3|mult|4|mult
-6|3|sub|9|8|add|mult
-6|3|mult|2|mult
-6|3|mult|1|mult
-6|3|mult|cbrt
-6|3|mult|cb
-6|3|mult|sq
-6|3|mult|0|mult
-6|3|sub|6|3|add|mult
-6|3|sub|6|2|mult|mult
-6|3|sub|6|2|sub|mult
-6|3|sub|6|2|sub|add
-6|3|sub|5|4|sub|mult
-6|3|sub|5|4|sub|sub
-6|3|sub|2|mult
-6|3|sub|7|mult
-6|3|sub|7|sub
-6|3|sub|7|add
-6|3|sub|6|mult
-6|3|sub|6|add
-6|3|sub|5|mult
-6|3|sub|5|sub
-6|3|sub|5|add
-6|3|sub|4|mult
-6|3|sub|4|sub
-6|3|sub|4|add
-6|3|sub|3|mult
-6|3|sub|3|sub
-6|3|sub|8|add
-6|3|sub|2|sub
-6|3|sub|2|add
-6|3|sub|1|mult
-6|3|sub|1|sub
-6|3|sub|1|add
-6|3|sub|cbrt
-6|3|sub|cb
-6|3|sub|sq
-6|3|sub|0|mult
-6|3|sub|0|sub
-6|3|sub|0|add
-6|3|add|6|2|mult|mult
-6|3|sub|7|6|sub|mult
-6|3|sub|7|5|sub|add
-6|3|sub|8|cbrt|mult
-6|3|sub|8|cb|mult
-6|3|sub|8|sq|mult
-6|3|sub|8|0|mult|mult
-6|3|sub|8|0|sub|mult
-6|3|sub|8|0|sub|sub
-6|3|sub|8|0|sub|add
-6|3|sub|8|0|add|mult
-6|3|sub|8|0|add|sub
-6|3|sub|8|0|add|add
-6|3|sub|7|6|mult|mult
-6|3|add|6|2|sub|mult
-6|3|sub|7|6|sub|sub
-6|3|sub|7|6|add|mult
-6|3|sub|7|6|add|add
-6|3|sub|7|5|mult|mult
-6|3|sub|8|1|add|mult
-6|3|sub|8|1|add|sub
-6|3|sub|8|1|add|add
-6|3|sub|9|mult
-6|3|sub|9|sub
-6|3|sub|9|add
-6|3|sub|8|mult
-6|3|sub|8|sub
-6|3|add|2|0|add|add
-6|3|add|2|1|sub|sub
-6|3|add|2|1|sub|add
-6|3|add|2|1|add|mult
-6|3|add|2|1|add|sub
-6|3|add|2|1|add|add
-6|3|add|2|cbrt|mult
-6|3|add|2|cb|mult
-6|3|add|2|sq|mult
-6|3|add|2|0|mult|mult
-6|3|add|4|2|mult|mult
-6|3|add|2|0|add|mult
-6|3|add|2|0|add|sub
-6|3|add|2|1|sub|mult
-6|3|add|1|cbrt|mult
-6|3|add|1|cb|mult
-6|3|add|1|sq|mult
-6|3|add|1|0|mult|mult
-6|3|add|1|0|sub|mult
-6|3|add|1|0|sub|sub
-6|3|add|1|0|sub|add
-6|3|add|1|0|add|mult
-6|3|add|1|0|add|sub
-6|3|add|1|0|add|add
-6|3|add|0|cbrt|mult
-6|3|add|0|cb|mult
-6|3|add|6|0|mult|mult
-6|3|add|6|2|sub|add
-6|3|add|5|4|sub|mult
-6|3|add|5|4|sub|sub
-6|3|add|5|4|sub|add
-6|3|add|6|1|mult|mult
-6|3|add|6|1|sub|mult
-6|3|add|6|1|sub|add
-6|3|add|6|1|add|mult
-6|3|add|6|1|add|add
-6|3|add|6|cbrt|mult
-6|3|add|6|cb|mult
-6|3|add|6|sq|mult
-6|3|sub|7|5|sub|sub
-6|3|add|6|0|sub|mult
-6|3|add|6|0|sub|add
-6|3|add|6|0|add|mult
-6|3|add|6|0|add|add
-6|3|add|5|4|mult|mult
-6|3|add|6|2|add|mult
-6|3|add|6|2|add|add
-6|3|add|3|0|sub|mult
-6|3|add|3|0|sub|add
-6|3|add|3|0|add|mult
-6|3|add|3|0|add|add
-6|3|add|2|1|mult|mult
-6|3|sub|9|2|sub|add
-6|3|sub|9|4|sub|add
-6|3|sub|9|4|add|mult
-6|3|sub|9|4|add|sub
-6|3|sub|9|4|add|add
-6|3|sub|9|3|mult|mult
-6|3|sub|9|3|sub|mult
-6|3|sub|9|3|sub|add
-6|3|sub|9|3|add|mult
-6|3|sub|9|3|add|sub
-6|3|sub|9|2|mult|mult
-6|3|sub|9|2|sub|mult
-6|3|sub|9|2|sub|sub
-6|3|sub|9|4|sub|sub
-6|3|sub|9|5|mult|mult
-6|3|sub|7|5|add|mult
-6|3|sub|7|5|add|sub
-6|3|sub|7|5|add|add
-6|3|sub|7|4|mult|mult
-6|3|sub|7|4|sub|mult
-6|3|sub|7|4|sub|sub
-6|3|sub|7|4|sub|add
-6|3|sub|7|4|add|mult
-6|3|sub|7|4|add|sub
-6|3|sub|7|4|add|add
-6|3|sub|7|3|mult|mult
-6|3|sub|9|6|add|mult
-6|3|sub|9|8|add|sub
-6|3|sub|9|8|add|add
-6|3|sub|9|7|mult|mult
-6|3|sub|9|7|sub|mult
-6|3|sub|9|7|sub|sub
-6|3|sub|9|7|sub|add
-6|3|sub|9|7|add|mult
-6|3|sub|9|7|add|sub
-6|3|sub|9|7|add|add
-6|3|sub|9|6|mult|mult
-6|3|sub|9|6|sub|mult
-6|3|sub|9|6|sub|sub
-6|3|sub|7|3|sub|mult
-6|3|sub|9|6|add|add
-6|3|sub|9|2|add|mult
-6|3|sub|9|2|add|sub
-6|3|sub|9|2|add|add
-6|3|sub|9|5|sub|mult
-6|3|sub|9|5|sub|sub
-6|3|sub|9|5|sub|add
-6|3|sub|9|5|add|mult
-6|3|sub|9|5|add|sub
-6|3|sub|9|5|add|add
-6|3|sub|9|4|mult|mult
-6|3|sub|9|4|sub|mult
-6|3|sub|8|3|add|sub
-6|3|sub|7|0|add|add
-6|3|sub|6|5|mult|mult
-6|3|sub|7|2|add|mult
-6|3|sub|7|2|add|sub
-6|3|sub|7|2|add|add
-6|3|sub|8|4|add|mult
-6|3|sub|8|4|add|sub
-6|3|sub|8|4|add|add
-6|3|sub|8|3|mult|mult
-6|3|sub|8|3|sub|mult
-6|3|sub|8|3|sub|add
-6|3|sub|8|3|add|mult
-6|3|sub|7|0|add|sub
-6|3|sub|8|2|mult|mult
-6|3|sub|8|2|sub|mult
-6|3|sub|8|2|sub|sub
-6|3|sub|8|2|sub|add
-6|3|sub|8|2|add|mult
-6|3|sub|8|2|add|sub
-6|3|sub|8|2|add|add
-6|3|sub|8|1|mult|mult
-6|3|sub|8|1|sub|mult
-6|3|sub|8|1|sub|sub
-6|3|sub|8|1|sub|add
-6|3|sub|7|5|sub|mult
-6|3|sub|7|1|sub|sub
-6|3|sub|7|3|sub|add
-6|3|sub|7|3|add|mult
-6|3|sub|7|3|add|sub
-6|3|sub|7|2|mult|mult
-6|3|sub|7|2|sub|mult
-6|3|sub|7|2|sub|sub
-6|3|sub|7|2|sub|add
-6|3|sub|8|4|sub|mult
-6|3|sub|8|4|sub|sub
-6|3|sub|8|4|sub|add
-6|3|sub|7|1|mult|mult
-6|3|sub|7|1|sub|mult
-6|3|mult|7|2|mult|mult
-6|3|sub|7|1|sub|add
-6|3|sub|7|1|add|mult
-6|3|sub|7|1|add|sub
-6|3|sub|7|1|add|add
-6|3|sub|7|cbrt|mult
-6|3|sub|7|cb|mult
-6|3|sub|7|sq|mult
-6|3|sub|7|0|mult|mult
-6|3|sub|7|0|sub|mult
-6|3|sub|7|0|sub|sub
-6|3|sub|7|0|sub|add
-6|3|sub|7|0|add|mult
-6|4|add|7|3|add|add
-6|4|add|7|5|add|sub
-6|4|add|7|5|add|add
-6|4|add|7|4|mult|mult
-6|4|add|7|4|sub|mult
-6|4|add|7|4|sub|sub
-6|4|add|7|4|add|mult
-6|4|add|7|4|add|add
-6|4|add|7|3|mult|mult
-6|4|add|7|3|sub|mult
-6|4|add|7|3|sub|sub
-6|4|add|7|3|sub|add
-6|4|add|7|3|add|mult
-6|4|add|7|3|add|sub
-6|4|add|7|5|add|mult
-6|4|add|7|2|mult|mult
-6|4|add|7|2|sub|mult
-6|4|add|7|2|sub|sub
-6|4|add|7|2|sub|add
-6|4|add|8|4|sub|mult
-6|4|add|8|4|sub|sub
-6|4|add|7|1|mult|mult
-6|4|add|7|1|sub|mult
-6|4|add|7|1|sub|sub
-6|4|add|7|1|sub|add
-6|4|add|7|1|add|mult
-6|4|add|7|1|add|sub
-6|4|add|9|4|add|add
-6|4|add|9|2|add|sub
-6|4|add|9|2|add|add
-6|4|add|9|5|sub|mult
-6|4|add|9|5|sub|sub
-6|4|add|9|5|sub|add
-6|4|add|9|5|add|mult
-6|4|add|9|5|add|sub
-6|4|add|9|5|add|add
-6|4|add|9|4|mult|mult
-6|4|add|9|4|sub|mult
-6|4|add|9|4|sub|sub
-6|4|add|9|4|add|mult
-6|4|add|7|1|add|add
-6|4|add|9|3|mult|mult
-6|4|add|9|3|sub|mult
-6|4|add|9|3|sub|sub
-6|4|add|9|3|sub|add
-6|4|add|9|3|add|mult
-6|4|add|9|3|add|sub
-6|4|add|9|3|add|add
-6|4|add|9|2|mult|mult
-6|4|add|9|2|sub|mult
-6|4|add|9|2|sub|sub
-6|4|add|9|2|sub|add
-6|4|add|9|5|mult|mult
-6|4|add|8|cb|mult
-6|4|add|8|2|sub|add
-6|4|add|8|2|add|mult
-6|4|add|8|2|add|sub
-6|4|add|8|2|add|add
-6|4|add|8|1|mult|mult
-6|4|add|8|1|sub|mult
-6|4|add|8|1|sub|sub
-6|4|add|8|1|sub|add
-6|4|add|7|5|sub|mult
-6|4|add|7|5|sub|sub
-6|4|add|7|5|sub|add
-6|4|add|8|cbrt|mult
-6|4|add|8|2|sub|sub
-6|4|add|8|sq|mult
-6|4|add|8|0|mult|mult
-6|4|add|8|0|sub|mult
-6|4|add|8|0|sub|sub
-6|4|add|8|0|sub|add
-6|4|add|8|0|add|mult
-6|4|add|8|0|add|sub
-6|4|add|8|0|add|add
-6|4|add|7|6|mult|mult
-6|4|add|7|6|sub|mult
-6|4|add|7|6|sub|sub
-6|4|add|7|6|add|mult
-6|4|add|7|2|add|sub
-6|4|add|7|cbrt|mult
-6|4|add|7|cb|mult
-6|4|add|7|sq|mult
-6|4|add|7|0|mult|mult
-6|4|add|7|0|sub|mult
-6|4|add|7|0|sub|sub
-6|4|add|7|0|sub|add
-6|4|add|7|0|add|mult
-6|4|add|7|0|add|sub
-6|4|add|7|0|add|add
-6|4|add|6|5|mult|mult
-6|4|add|7|2|add|mult
-6|4|add|9|2|add|mult
-6|4|add|7|2|add|add
-6|4|add|8|4|add|mult
-6|4|add|8|4|add|add
-6|4|add|8|3|mult|mult
-6|4|add|8|3|sub|mult
-6|4|add|8|3|sub|sub
-6|4|add|8|3|sub|add
-6|4|add|8|3|add|mult
-6|4|add|8|3|add|sub
-6|4|add|8|3|add|add
-6|4|add|8|2|mult|mult
-6|4|add|8|2|sub|mult
-6|4|add|3|1|add|sub
-6|4|add|3|2|mult|mult
-6|4|add|3|2|sub|mult
-6|4|add|3|2|sub|sub
-6|4|add|3|2|sub|add
-6|4|add|3|2|add|mult
-6|4|add|3|2|add|sub
-6|4|add|3|2|add|add
-6|4|add|3|1|mult|mult
-6|4|add|3|1|sub|mult
-6|4|add|3|1|sub|sub
-6|4|add|3|1|sub|add
-6|4|add|3|1|add|mult
-6|4|add|4|0|add|add
-6|4|add|3|1|add|add
-6|4|add|3|cbrt|mult
-6|4|add|3|cb|mult
-6|4|add|3|sq|mult
-6|4|add|4|0|sub|mult
-6|4|add|4|0|sub|add
-6|4|add|9|1|mult|mult
-6|4|add|9|1|sub|mult
-6|4|add|9|1|sub|sub
-6|4|add|9|1|sub|add
-6|4|add|9|1|add|mult
-6|4|add|9|1|add|sub
-6|4|add|4|2|add|mult
-6|4|add|1|0|sub|sub
-6|4|add|1|0|sub|add
-6|4|add|1|0|add|mult
-6|4|add|1|0|add|sub
-6|4|add|1|0|add|add
-6|4|add|0|cbrt|mult
-6|4|add|0|cb|mult
-6|4|add|2|0|sub|mult
-6|4|add|2|0|sub|sub
-6|4|add|2|0|sub|add
-6|4|add|4|2|sub|mult
-6|4|add|4|2|sub|add
-6|4|add|9|1|add|add
-6|4|add|4|2|add|add
-6|4|add|4|1|mult|mult
-6|4|add|4|1|sub|mult
-6|4|add|4|1|sub|add
-6|4|add|4|1|add|mult
-6|4|add|4|1|add|add
-6|4|add|4|cbrt|mult
-6|4|add|4|cb|mult
-6|4|add|4|sq|mult
-6|4|add|4|0|mult|mult
-6|4|add|3|0|mult|mult
-6|4|add|4|0|add|mult
-6|4|add|9|8|add|add
-6|4|add|8|5|sub|add
-6|4|add|8|5|add|mult
-6|4|add|8|5|add|sub
-6|4|add|8|5|add|add
-6|4|add|8|4|mult|mult
-6|4|add|8|7|mult|mult
-6|4|add|9|8|mult|mult
-6|4|add|9|8|sub|mult
-6|4|add|9|8|sub|sub
-6|4|add|9|8|sub|add
-6|4|add|9|8|add|mult
-6|4|add|9|8|add|sub
-6|4|add|8|5|sub|sub
-6|4|add|9|7|mult|mult
-6|4|add|9|7|sub|mult
-6|4|add|9|7|sub|sub
-6|4|add|9|7|sub|add
-6|4|add|9|7|add|mult
-6|4|add|9|7|add|sub
-6|4|add|9|7|add|add
-6|4|add|9|6|mult|mult
-6|4|add|9|6|sub|mult
-6|4|add|9|6|sub|sub
-6|4|add|9|6|add|mult
-6|4|add|9|6|add|add
-6|4|add|8|7|sub|mult
-6|4|add|9|cbrt|mult
-6|4|add|9|cb|mult
-6|4|add|9|sq|mult
-6|4|add|9|0|mult|mult
-6|4|add|9|0|sub|mult
-6|4|add|9|0|sub|sub
-6|4|add|9|0|sub|add
-6|4|add|9|0|add|mult
-6|4|add|9|0|add|sub
-6|4|add|9|0|add|add
-6|4|add|6|5|sub|mult
-6|4|add|6|5|sub|add
-6|4|add|7|6|add|add
-6|4|add|8|7|sub|sub
-6|4|add|8|7|sub|add
-6|4|add|8|7|add|mult
-6|4|add|8|7|add|sub
-6|4|add|8|7|add|add
-6|4|add|8|6|mult|mult
-6|4|add|8|6|sub|mult
-6|4|add|8|6|sub|sub
-6|4|add|8|6|add|mult
-6|4|add|8|6|add|add
-6|4|add|8|5|mult|mult
-6|4|add|8|5|sub|mult
-6|3|mult|6|5|sub|mult
-6|3|mult|9|1|mult|add
-6|3|mult|9|1|sub|mult
-6|3|mult|9|1|add|mult
-6|3|mult|9|cbrt|mult
-6|3|mult|9|cb|mult
-6|3|mult|9|sq|mult
-6|3|mult|9|sq|sub
-6|3|mult|9|sq|add
-6|3|mult|9|0|mult|mult
-6|3|mult|9|0|mult|sub
-6|3|mult|9|0|mult|add
-6|3|mult|9|0|sub|mult
-6|3|mult|9|0|add|mult
-6|3|mult|9|1|mult|sub
-6|3|mult|8|7|sub|mult
-6|3|mult|8|7|add|mult
-6|3|mult|8|6|mult|mult
-6|3|mult|8|6|mult|sub
-6|3|mult|8|6|mult|add
-6|3|mult|8|6|sub|mult
-6|3|mult|8|6|add|mult
-6|3|mult|8|5|mult|mult
-6|3|mult|8|5|mult|sub
-6|3|mult|8|5|mult|add
-6|3|mult|8|5|sub|mult
-6|3|mult|8|5|add|mult
-6|3|mult|3|2|add|mult
-6|3|mult|4|sq|add
-6|3|mult|4|0|mult|mult
-6|3|mult|4|0|mult|sub
-6|3|mult|4|0|mult|add
-6|3|mult|3|0|mult|mult
-6|3|mult|3|0|mult|sub
-6|3|mult|3|0|mult|add
-6|3|mult|4|0|add|mult
-6|3|mult|3|2|mult|mult
-6|3|mult|3|2|mult|sub
-6|3|mult|3|2|mult|add
-6|3|mult|3|2|sub|mult
-6|3|mult|8|4|mult|mult
-6|3|mult|3|1|mult|mult
-6|3|mult|3|1|mult|sub
-6|3|mult|3|1|mult|add
-6|3|mult|3|1|sub|mult
-6|3|mult|3|1|add|mult
-6|3|mult|3|cbrt|mult
-6|3|mult|3|cb|mult
-6|3|mult|3|sq|mult
-6|3|mult|3|sq|sub
-6|3|mult|3|sq|add
-6|3|mult|4|0|sub|mult
-6|3|mult|9|1|mult|mult
-6|3|mult|9|5|mult|sub
-6|3|mult|9|4|sub|mult
-6|3|mult|9|4|add|mult
-6|3|mult|9|3|mult|mult
-6|3|mult|9|3|mult|sub
-6|3|mult|9|3|mult|add
-6|3|mult|9|3|sub|mult
-6|3|mult|9|3|add|mult
-6|3|mult|9|2|mult|mult
-6|3|mult|9|2|mult|sub
-6|3|mult|9|2|mult|add
-6|3|mult|9|2|sub|mult
-6|3|mult|9|5|mult|mult
-6|3|mult|9|4|mult|add
-6|3|mult|9|5|mult|add
-6|3|mult|7|5|add|mult
-6|3|mult|7|4|mult|mult
-6|3|mult|7|4|mult|sub
-6|3|mult|7|4|mult|add
-6|3|mult|7|4|sub|mult
-6|3|mult|7|4|add|mult
-6|3|mult|7|3|mult|mult
-6|3|mult|7|3|mult|sub
-6|3|mult|7|3|mult|add
-6|3|mult|7|3|sub|mult
-6|3|mult|7|3|add|mult
-6|3|mult|9|7|mult|add
-6|3|mult|8|4|mult|sub
-6|3|mult|8|4|mult|add
-6|3|mult|8|7|mult|mult
-6|3|mult|8|7|mult|sub
-6|3|mult|8|7|mult|add
-6|3|mult|9|8|mult|mult
-6|3|mult|9|8|mult|sub
-6|3|mult|9|8|mult|add
-6|3|mult|9|8|sub|mult
-6|3|mult|9|8|add|mult
-6|3|mult|9|7|mult|mult
-6|3|mult|9|7|mult|sub
-6|3|mult|4|sq|sub
-6|3|mult|9|7|sub|mult
-6|3|mult|9|7|add|mult
-6|3|mult|9|6|mult|mult
-6|3|mult|9|6|mult|sub
-6|3|mult|9|6|mult|add
-6|3|mult|9|6|sub|mult
-6|3|mult|9|6|add|mult
-6|3|mult|9|2|add|mult
-6|3|mult|9|5|sub|mult
-6|3|mult|9|5|add|mult
-6|3|mult|9|4|mult|mult
-6|3|mult|9|4|mult|sub
-6|3|mult|6|2|mult|sub
-6|4|add|1|mult
-6|4|add|1|sub
-6|4|add|1|add
-6|4|add|cbrt
-6|4|add|cb
-6|4|add|sq
-6|4|add|0|mult
-6|4|add|0|sub
-6|4|add|0|add
-6|3|mult|6|3|sub|mult
-6|3|mult|6|3|add|mult
-6|3|mult|6|2|mult|mult
-6|4|add|2|add
-6|3|mult|6|2|mult|add
-6|3|mult|6|2|sub|mult
-6|3|mult|5|4|sub|mult
-6|3|mult|6|1|mult|mult
-6|3|mult|6|1|mult|sub
-6|3|mult|6|1|mult|add
-6|3|mult|6|1|sub|mult
-6|3|mult|6|1|add|mult
-6|3|mult|6|cbrt|mult
-6|3|mult|6|cb|mult
-6|3|mult|6|sq|mult
-6|3|mult|6|sq|sub
-6|4|add|7|add
-6|4|add|7|5|mult|mult
-6|4|add|8|1|add|mult
-6|4|add|8|1|add|sub
-6|4|add|8|1|add|add
-6|4|add|9|mult
-6|4|add|9|sub
-6|4|add|9|add
-6|4|add|8|mult
-6|4|add|8|sub
-6|4|add|8|add
-6|4|add|7|mult
-6|4|add|7|sub
-6|3|mult|6|sq|add
-6|4|add|6|mult
-6|4|add|6|add
-6|4|add|5|mult
-6|4|add|5|sub
-6|4|add|5|add
-6|4|add|4|mult
-6|4|add|4|add
-6|4|add|3|mult
-6|4|add|3|sub
-6|4|add|3|add
-6|4|add|2|mult
-6|4|add|2|sub
-6|3|mult|0|cbrt|mult
-6|3|mult|4|2|mult|add
-6|3|mult|2|0|add|mult
-6|3|mult|1|cbrt|mult
-6|3|mult|1|cb|mult
-6|3|mult|1|sq|mult
-6|3|mult|1|sq|sub
-6|3|mult|1|sq|add
-6|3|mult|1|0|mult|mult
-6|3|mult|1|0|mult|sub
-6|3|mult|1|0|mult|add
-6|3|mult|1|0|sub|mult
-6|3|mult|1|0|add|mult
-6|3|mult|4|2|mult|sub
-6|3|mult|0|cb|mult
-6|3|mult|2|0|sub|mult
-6|3|mult|4|2|sub|mult
-6|3|mult|4|2|add|mult
-6|3|mult|4|1|mult|mult
-6|3|mult|4|1|mult|sub
-6|3|mult|4|1|mult|add
-6|3|mult|4|1|sub|mult
-6|3|mult|4|1|add|mult
-6|3|mult|4|cbrt|mult
-6|3|mult|4|cb|mult
-6|3|mult|4|sq|mult
-6|3|mult|2|1|mult|sub
-6|3|mult|6|0|mult|mult
-6|3|mult|6|0|mult|sub
-6|3|mult|6|0|mult|add
-6|3|mult|6|0|sub|mult
-6|3|mult|6|0|add|mult
-6|3|mult|5|4|mult|mult
-6|3|mult|5|4|mult|sub
-6|3|mult|5|4|mult|add
-6|3|mult|6|2|add|mult
-6|3|mult|3|0|sub|mult
-6|3|mult|3|0|add|mult
-6|3|mult|2|1|mult|mult
-6|3|add|2|0|sub|mult
-6|3|mult|2|1|mult|add
-6|3|mult|2|1|sub|mult
-6|3|mult|2|1|add|mult
-6|3|mult|2|cbrt|mult
-6|3|mult|2|cb|mult
-6|3|mult|2|sq|mult
-6|3|mult|2|sq|sub
-6|3|mult|2|sq|add
-6|3|mult|2|0|mult|mult
-6|3|mult|2|0|mult|sub
-6|3|mult|2|0|mult|add
-6|3|mult|4|2|mult|mult
-6|2|sub|3|cb|mult
-6|2|sub|3|2|mult|mult
-6|2|sub|3|2|sub|mult
-6|2|sub|3|2|sub|add
-6|2|sub|3|2|add|mult
-6|2|sub|3|2|add|sub
-6|2|sub|3|1|mult|mult
-6|2|sub|3|1|sub|mult
-6|2|sub|3|1|sub|sub
-6|2|sub|3|1|sub|add
-6|2|sub|3|1|add|mult
-6|2|sub|3|1|add|sub
-6|2|sub|3|1|add|add
-6|2|sub|3|cbrt|mult
-6|2|sub|4|0|add|add
-6|2|sub|3|sq|mult
-6|2|sub|4|0|sub|mult
-6|2|sub|4|0|sub|sub
-6|2|sub|4|0|sub|add
-6|2|sub|9|1|mult|mult
-6|2|sub|9|1|sub|mult
-6|2|sub|9|1|sub|sub
-6|2|sub|9|1|sub|add
-6|2|sub|9|1|add|mult
-6|2|sub|9|1|add|sub
-6|2|sub|9|1|add|add
-6|2|sub|9|cbrt|mult
-6|2|sub|4|1|sub|mult
-6|2|sub|1|0|add|mult
-6|2|sub|1|0|add|sub
-6|2|sub|1|0|add|add
-6|2|sub|0|cbrt|mult
-6|2|sub|0|cb|mult
-6|2|sub|2|0|sub|mult
-6|2|sub|2|0|sub|sub
-6|2|sub|4|2|sub|mult
-6|2|sub|4|2|sub|add
-6|2|sub|4|2|add|mult
-6|2|sub|4|2|add|sub
-6|2|sub|4|1|mult|mult
-6|2|sub|9|cb|mult
-6|2|sub|4|1|sub|sub
-6|2|sub|4|1|sub|add
-6|2|sub|4|1|add|mult
-6|2|sub|4|1|add|sub
-6|2|sub|4|1|add|add
-6|2|sub|4|cbrt|mult
-6|2|sub|4|cb|mult
-6|2|sub|4|sq|mult
-6|2|sub|4|0|mult|mult
-6|2|sub|3|0|mult|mult
-6|2|sub|4|0|add|mult
-6|2|sub|4|0|add|sub
-6|2|sub|9|7|sub|mult
-6|2|sub|8|5|add|sub
-6|2|sub|8|5|add|add
-6|2|sub|8|4|mult|mult
-6|2|sub|8|7|mult|mult
-6|2|sub|9|8|mult|mult
-6|2|sub|9|8|sub|mult
-6|2|sub|9|8|sub|sub
-6|2|sub|9|8|sub|add
-6|2|sub|9|8|add|mult
-6|2|sub|9|8|add|sub
-6|2|sub|9|8|add|add
-6|2|sub|9|7|mult|mult
-6|2|sub|8|5|add|mult
-6|2|sub|9|7|sub|sub
-6|2|sub|9|7|sub|add
-6|2|sub|9|7|add|mult
-6|2|sub|9|7|add|sub
-6|2|sub|9|7|add|add
-6|2|sub|9|6|mult|mult
-6|2|sub|9|6|sub|mult
-6|2|sub|9|6|sub|sub
-6|2|sub|9|6|add|mult
-6|2|sub|9|6|add|add
-6|2|sub|9|2|add|mult
-6|2|sub|9|2|add|sub
-6|2|sub|8|7|sub|add
-6|2|sub|9|sq|mult
-6|2|sub|9|0|mult|mult
-6|2|sub|9|0|sub|mult
-6|2|sub|9|0|sub|sub
-6|2|sub|9|0|sub|add
-6|2|sub|9|0|add|mult
-6|2|sub|9|0|add|sub
-6|2|sub|9|0|add|add
-6|2|sub|6|5|sub|mult
-6|2|sub|6|5|sub|add
-6|2|sub|8|7|sub|mult
-6|2|sub|8|7|sub|sub
-6|2|sub|1|0|sub|add
-6|2|sub|8|7|add|mult
-6|2|sub|8|7|add|sub
-6|2|sub|8|7|add|add
-6|2|sub|8|6|mult|mult
-6|2|sub|8|6|sub|mult
-6|2|sub|8|6|sub|sub
-6|2|sub|8|6|add|mult
-6|2|sub|8|6|add|add
-6|2|sub|8|5|mult|mult
-6|2|sub|8|5|sub|mult
-6|2|sub|8|5|sub|sub
-6|2|sub|8|5|sub|add
-6|2|mult|8|0|add|mult
-6|2|mult|8|1|mult|add
-6|2|mult|8|1|sub|mult
-6|2|mult|7|5|sub|mult
-6|2|mult|8|cbrt|mult
-6|2|mult|8|cb|mult
-6|2|mult|8|sq|mult
-6|2|mult|8|sq|sub
-6|2|mult|8|sq|add
-6|2|mult|8|0|mult|mult
-6|2|mult|8|0|mult|sub
-6|2|mult|8|0|mult|add
-6|2|mult|8|0|sub|mult
-6|2|mult|8|1|mult|sub
-6|2|mult|7|6|mult|mult
-6|2|mult|7|6|mult|sub
-6|2|mult|7|6|mult|add
-6|2|mult|7|6|sub|mult
-6|2|mult|7|6|add|mult
-6|2|mult|7|5|mult|mult
-6|2|mult|7|5|mult|sub
-6|2|mult|7|5|mult|add
-6|2|mult|8|1|add|mult
-6|2|mult|9|mult
-6|2|mult|8|mult
-6|2|mult|7|mult
-6|2|mult|7|2|add|mult
-6|2|mult|7|cb|mult
-6|2|mult|7|sq|mult
-6|2|mult|7|sq|sub
-6|2|mult|7|sq|add
-6|2|mult|7|0|mult|mult
-6|2|mult|7|0|mult|sub
-6|2|mult|7|0|mult|add
-6|2|mult|7|0|sub|mult
-6|2|mult|7|0|add|mult
-6|2|mult|6|5|mult|mult
-6|2|mult|6|5|mult|sub
-6|2|mult|6|5|mult|add
-6|2|mult|6|mult
-6|2|mult|8|4|add|mult
-6|2|mult|8|3|mult|mult
-6|2|mult|8|3|mult|sub
-6|2|mult|8|3|mult|add
-6|2|mult|8|3|sub|mult
-6|2|mult|8|3|add|mult
-6|2|mult|8|2|mult|mult
-6|2|mult|8|2|mult|sub
-6|2|mult|8|2|mult|add
-6|2|mult|8|2|sub|mult
-6|2|mult|8|2|add|mult
-6|2|mult|8|1|mult|mult
-6|2|sub|2|cbrt|mult
-6|2|sub|6|2|add|mult
-6|2|sub|3|0|sub|mult
-6|2|sub|3|0|sub|sub
-6|2|sub|3|0|sub|add
-6|2|sub|3|0|add|mult
-6|2|sub|3|0|add|sub
-6|2|sub|3|0|add|add
-6|2|sub|2|1|mult|mult
-6|2|sub|2|1|sub|mult
-6|2|sub|2|1|sub|sub
-6|2|sub|2|1|add|mult
-6|2|sub|2|1|add|sub
-6|2|sub|5|4|mult|mult
-6|2|sub|2|cb|mult
-6|2|sub|2|sq|mult
-6|2|sub|2|0|mult|mult
-6|2|sub|4|2|mult|mult
-6|2|sub|2|0|add|mult
-6|2|sub|2|0|add|sub
-6|2|sub|1|cbrt|mult
-6|2|sub|1|cb|mult
-6|2|sub|1|sq|mult
-6|2|sub|1|0|mult|mult
-6|2|sub|1|0|sub|mult
-6|2|sub|1|0|sub|sub
-6|2|sub|6|1|mult|mult
-6|2|mult|5|mult
-6|2|mult|4|mult
-6|2|mult|3|mult
-6|2|mult|2|mult
-6|2|mult|1|mult
-6|2|mult|cbrt
-6|2|mult|cb
-6|2|mult|sq
-6|2|mult|0|mult
-6|2|sub|5|4|sub|mult
-6|2|sub|5|4|sub|sub
-6|2|sub|5|4|sub|add
-6|2|sub|9|5|sub|mult
-6|2|sub|6|1|sub|mult
-6|2|sub|6|1|sub|add
-6|2|sub|6|1|add|mult
-6|2|sub|6|1|add|add
-6|2|sub|6|cbrt|mult
-6|2|sub|6|cb|mult
-6|2|sub|6|sq|mult
-6|2|sub|6|0|mult|mult
-6|2|sub|6|0|sub|mult
-6|2|sub|6|0|sub|add
-6|2|sub|6|0|add|mult
-6|2|sub|6|0|add|add
-5|4|sub|6|1|add|sub
-6|2|sub|1|sub
-6|2|sub|1|add
-6|2|sub|cbrt
-6|2|sub|cb
-6|2|sub|sq
-6|2|sub|0|mult
-6|2|sub|0|sub
-6|2|sub|0|add
-5|4|sub|6|1|mult|mult
-5|4|sub|6|1|sub|mult
-5|4|sub|6|1|sub|sub
-5|4|sub|6|1|sub|add
-5|4|sub|6|1|add|mult
-6|2|sub|1|mult
-5|4|sub|6|1|add|add
-5|4|sub|6|cbrt|mult
-5|4|sub|6|cb|mult
-5|4|sub|6|sq|mult
-5|4|sub|6|0|mult|mult
-5|4|sub|6|0|sub|mult
-5|4|sub|6|0|sub|sub
-5|4|sub|6|0|sub|add
-5|4|sub|6|0|add|mult
-5|4|sub|6|0|add|sub
-5|4|sub|6|0|add|add
-5|4|sub|5|4|mult|mult
-6|2|sub|6|mult
-6|2|sub|8|1|add|mult
-6|2|sub|8|1|add|sub
-6|2|sub|8|1|add|add
-6|2|sub|9|mult
-6|2|sub|9|sub
-6|2|sub|9|add
-6|2|sub|8|mult
-6|2|sub|8|sub
-6|2|sub|8|add
-6|2|sub|7|mult
-6|2|sub|7|sub
-6|2|sub|7|add
-5|4|sub|6|2|add|mult
-6|2|sub|6|add
-6|2|sub|5|mult
-6|2|sub|5|sub
-6|2|sub|5|add
-6|2|sub|4|mult
-6|2|sub|4|sub
-6|2|sub|4|add
-6|2|sub|3|mult
-6|2|sub|3|sub
-6|2|sub|3|add
-6|2|sub|2|mult
-6|2|sub|2|sub
-5|4|sub|4|2|sub|mult
-5|4|sub|1|0|mult|mult
-5|4|sub|1|0|sub|mult
-5|4|sub|1|0|sub|sub
-5|4|sub|1|0|sub|add
-5|4|sub|1|0|add|mult
-5|4|sub|1|0|add|sub
-5|4|sub|1|0|add|add
-5|4|sub|0|cbrt|mult
-5|4|sub|0|cb|mult
-5|4|sub|2|0|sub|mult
-5|4|sub|2|0|sub|sub
-5|4|sub|2|0|sub|add
-5|4|sub|1|sq|mult
-5|4|sub|4|2|sub|sub
-5|4|sub|4|2|add|mult
-5|4|sub|4|2|add|sub
-5|4|sub|4|1|mult|mult
-5|4|sub|4|1|sub|mult
-5|4|sub|4|1|sub|sub
-5|4|sub|4|1|add|mult
-5|4|sub|4|1|add|sub
-5|4|sub|4|cbrt|mult
-5|4|sub|4|cb|mult
-5|4|sub|4|sq|mult
-5|4|sub|4|0|mult|mult
-5|4|sub|2|1|add|mult
-5|4|sub|6|2|add|sub
-5|4|sub|6|2|add|add
-5|4|sub|3|0|sub|mult
-5|4|sub|3|0|sub|sub
-5|4|sub|3|0|sub|add
-5|4|sub|3|0|add|mult
-5|4|sub|3|0|add|sub
-5|4|sub|3|0|add|add
-5|4|sub|2|1|mult|mult
-5|4|sub|2|1|sub|mult
-5|4|sub|2|1|sub|sub
-5|4|sub|2|1|sub|add
-6|2|sub|7|5|mult|mult
-5|4|sub|2|1|add|sub
-5|4|sub|2|1|add|add
-5|4|sub|2|cbrt|mult
-5|4|sub|2|cb|mult
-5|4|sub|2|sq|mult
-5|4|sub|2|0|mult|mult
-5|4|sub|4|2|mult|mult
-5|4|sub|2|0|add|mult
-5|4|sub|2|0|add|sub
-5|4|sub|2|0|add|add
-5|4|sub|1|cbrt|mult
-5|4|sub|1|cb|mult
-6|2|sub|7|3|add|sub
-6|2|sub|7|4|mult|mult
-6|2|sub|7|4|sub|mult
-6|2|sub|7|4|sub|sub
-6|2|sub|7|4|sub|add
-6|2|sub|7|4|add|mult
-6|2|sub|7|4|add|sub
-6|2|sub|7|4|add|add
-6|2|sub|7|3|mult|mult
-6|2|sub|7|3|sub|mult
-6|2|sub|7|3|sub|sub
-6|2|sub|7|3|sub|add
-6|2|sub|7|3|add|mult
-6|2|sub|7|5|add|add
-6|2|sub|7|3|add|add
-6|2|sub|7|2|mult|mult
-6|2|sub|7|2|sub|mult
-6|2|sub|7|2|sub|add
-6|2|sub|8|4|sub|mult
-6|2|sub|8|4|sub|sub
-6|2|sub|8|4|sub|add
-6|2|sub|7|1|mult|mult
-6|2|sub|7|1|sub|mult
-6|2|sub|7|1|sub|sub
-6|2|sub|7|1|sub|add
-6|2|sub|7|1|add|mult
-6|2|sub|9|3|mult|mult
-6|2|sub|9|5|sub|sub
-6|2|sub|9|5|sub|add
-6|2|sub|9|5|add|mult
-6|2|sub|9|5|add|sub
-6|2|sub|9|5|add|add
-6|2|sub|9|4|mult|mult
-6|2|sub|9|4|sub|mult
-6|2|sub|9|4|sub|sub
-6|2|sub|9|4|sub|add
-6|2|sub|9|4|add|mult
-6|2|sub|9|4|add|sub
-6|2|sub|9|4|add|add
-6|2|sub|7|1|add|sub
-6|2|sub|9|3|sub|mult
-6|2|sub|9|3|sub|sub
-6|2|sub|9|3|sub|add
-6|2|sub|9|3|add|mult
-6|2|sub|9|3|add|sub
-6|2|sub|9|3|add|add
-6|2|sub|9|2|mult|mult
-6|2|sub|9|2|sub|mult
-6|2|sub|9|2|sub|add
-6|2|sub|9|5|mult|mult
-6|2|sub|7|5|add|mult
-6|2|sub|7|5|add|sub
-6|2|sub|8|sq|mult
-6|2|sub|8|2|sub|add
-6|2|sub|8|2|add|mult
-6|2|sub|8|2|add|sub
-6|2|sub|8|1|mult|mult
-6|2|sub|8|1|sub|mult
-6|2|sub|8|1|sub|sub
-6|2|sub|8|1|sub|add
-6|2|sub|7|5|sub|mult
-6|2|sub|7|5|sub|sub
-6|2|sub|7|5|sub|add
-6|2|sub|8|cbrt|mult
-6|2|sub|8|cb|mult
-6|2|sub|8|2|sub|mult
-6|2|sub|8|0|mult|mult
-6|2|sub|8|0|sub|mult
-6|2|sub|8|0|sub|sub
-6|2|sub|8|0|sub|add
-6|2|sub|8|0|add|mult
-6|2|sub|8|0|add|sub
-6|2|sub|8|0|add|add
-6|2|sub|7|6|mult|mult
-6|2|sub|7|6|sub|mult
-6|2|sub|7|6|sub|sub
-6|2|sub|7|6|add|mult
-6|2|sub|7|6|add|add
-6|2|sub|7|2|add|mult
-6|2|sub|7|1|add|add
-6|2|sub|7|cbrt|mult
-6|2|sub|7|cb|mult
-6|2|sub|7|sq|mult
-6|2|sub|7|0|mult|mult
-6|2|sub|7|0|sub|mult
-6|2|sub|7|0|sub|sub
-6|2|sub|7|0|sub|add
-6|2|sub|7|0|add|mult
-6|2|sub|7|0|add|sub
-6|2|sub|7|0|add|add
-6|2|sub|6|5|mult|mult
-6|2|mult|7|cbrt|mult
-6|2|sub|7|2|add|sub
-6|2|sub|8|4|add|mult
-6|2|sub|8|4|add|sub
-6|2|sub|8|4|add|add
-6|2|sub|8|3|mult|mult
-6|2|sub|8|3|sub|mult
-6|2|sub|8|3|sub|sub
-6|2|sub|8|3|sub|add
-6|2|sub|8|3|add|mult
-6|2|sub|8|3|add|sub
-6|2|sub|8|3|add|add
-6|2|sub|8|2|mult|mult
-6|3|add|8|4|sub|sub
-6|3|add|7|4|add|mult
-6|3|add|7|4|add|sub
-6|3|add|7|4|add|add
-6|3|add|7|3|mult|mult
-6|3|add|7|3|sub|mult
-6|3|add|7|3|sub|sub
-6|3|add|7|3|add|mult
-6|3|add|7|3|add|add
-6|3|add|7|2|mult|mult
-6|3|add|7|2|sub|mult
-6|3|add|7|2|sub|sub
-6|3|add|7|2|sub|add
-6|3|add|8|4|sub|mult
-6|3|add|7|4|sub|add
-6|3|add|8|4|sub|add
-6|3|add|7|1|mult|mult
-6|3|add|7|1|sub|mult
-6|3|add|7|1|sub|sub
-6|3|add|7|1|sub|add
-6|3|add|7|1|add|mult
-6|3|add|7|1|add|sub
-6|3|add|7|1|add|add
-6|3|add|7|cbrt|mult
-6|3|add|7|cb|mult
-6|3|add|7|sq|mult
-6|3|add|7|0|mult|mult
-6|3|add|9|3|add|mult
-6|3|add|9|5|add|sub
-6|3|add|9|5|add|add
-6|3|add|9|4|mult|mult
-6|3|add|9|4|sub|mult
-6|3|add|9|4|sub|sub
-6|3|add|9|4|sub|add
-6|3|add|9|4|add|mult
-6|3|add|9|4|add|sub
-6|3|add|9|4|add|add
-6|3|add|9|3|mult|mult
-6|3|add|9|3|sub|mult
-6|3|add|9|3|sub|sub
-6|3|add|7|0|sub|mult
-6|3|add|9|3|add|add
-6|3|add|9|2|mult|mult
-6|3|add|9|2|sub|mult
-6|3|add|9|2|sub|sub
-6|3|add|9|2|sub|add
-6|3|add|9|5|mult|mult
-6|3|add|7|5|add|mult
-6|3|add|7|5|add|sub
-6|3|add|7|5|add|add
-6|3|add|7|4|mult|mult
-6|3|add|7|4|sub|mult
-6|3|add|7|4|sub|sub
-6|3|add|8|0|add|mult
-6|3|add|8|1|sub|sub
-6|3|add|8|1|sub|add
-6|3|add|7|5|sub|mult
-6|3|add|7|5|sub|sub
-6|3|add|7|5|sub|add
-6|3|add|8|cbrt|mult
-6|3|add|8|cb|mult
-6|3|add|8|sq|mult
-6|3|add|8|0|mult|mult
-6|3|add|8|0|sub|mult
-6|3|add|8|0|sub|sub
-6|3|add|8|0|sub|add
-6|3|add|8|1|sub|mult
-6|3|add|8|0|add|sub
-6|3|add|8|0|add|add
-6|3|add|7|6|mult|mult
-6|3|add|7|6|sub|mult
-6|3|add|7|6|sub|sub
-6|3|add|7|6|add|mult
-6|3|add|7|6|add|add
-6|3|add|7|5|mult|mult
-6|3|add|8|1|add|mult
-6|3|add|8|1|add|sub
-6|3|add|8|1|add|add
-6|3|add|9|mult
-6|3|add|8|3|mult|mult
-6|3|add|7|0|sub|sub
-6|3|add|7|0|sub|add
-6|3|add|7|0|add|mult
-6|3|add|7|0|add|sub
-6|3|add|7|0|add|add
-6|3|add|6|5|mult|mult
-6|3|add|7|2|add|mult
-6|3|add|7|2|add|sub
-6|3|add|7|2|add|add
-6|3|add|8|4|add|mult
-6|3|add|8|4|add|sub
-6|3|add|8|4|add|add
-6|3|add|9|5|add|mult
-6|3|add|8|3|sub|mult
-6|3|add|8|3|sub|sub
-6|3|add|8|3|add|mult
-6|3|add|8|3|add|add
-6|3|add|8|2|mult|mult
-6|3|add|8|2|sub|mult
-6|3|add|8|2|sub|sub
-6|3|add|8|2|sub|add
-6|3|add|8|2|add|mult
-6|3|add|8|2|add|sub
-6|3|add|8|2|add|add
-6|3|add|8|1|mult|mult
-6|3|add|4|0|sub|add
-6|3|add|3|2|add|mult
-6|3|add|3|2|add|add
-6|3|add|3|1|mult|mult
-6|3|add|3|1|sub|mult
-6|3|add|3|1|sub|add
-6|3|add|3|1|add|mult
-6|3|add|3|1|add|add
-6|3|add|3|cbrt|mult
-6|3|add|3|cb|mult
-6|3|add|3|sq|mult
-6|3|add|4|0|sub|mult
-6|3|add|4|0|sub|sub
-6|3|add|3|2|sub|add
-6|3|add|9|1|mult|mult
-6|3|add|9|1|sub|mult
-6|3|add|9|1|sub|sub
-6|3|add|9|1|sub|add
-6|3|add|9|1|add|mult
-6|3|add|9|1|add|sub
-6|3|add|9|1|add|add
-6|3|add|9|cbrt|mult
-6|3|add|9|cb|mult
-6|3|add|9|sq|mult
-6|3|add|9|0|mult|mult
-6|3|add|9|0|sub|mult
-6|3|add|4|1|add|mult
-6|3|add|2|0|sub|sub
-6|3|add|2|0|sub|add
-6|3|add|4|2|sub|mult
-6|3|add|4|2|sub|sub
-6|3|add|4|2|sub|add
-6|3|add|4|2|add|mult
-6|3|add|4|2|add|sub
-6|3|add|4|2|add|add
-6|3|add|4|1|mult|mult
-6|3|add|4|1|sub|mult
-6|3|add|4|1|sub|sub
-6|3|add|4|1|sub|add
-6|3|add|9|0|sub|sub
-6|3|add|4|1|add|sub
-6|3|add|4|1|add|add
-6|3|add|4|cbrt|mult
-6|3|add|4|cb|mult
-6|3|add|4|sq|mult
-6|3|add|4|0|mult|mult
-6|3|add|3|0|mult|mult
-6|3|add|4|0|add|mult
-6|3|add|4|0|add|sub
-6|3|add|4|0|add|add
-6|3|add|3|2|mult|mult
-6|3|add|3|2|sub|mult
-6|3|add|9|7|add|sub
-6|3|add|9|8|mult|mult
-6|3|add|9|8|sub|mult
-6|3|add|9|8|sub|sub
-6|3|add|9|8|sub|add
-6|3|add|9|8|add|mult
-6|3|add|9|8|add|sub
-6|3|add|9|8|add|add
-6|3|add|9|7|mult|mult
-6|3|add|9|7|sub|mult
-6|3|add|9|7|sub|sub
-6|3|add|9|7|sub|add
-6|3|add|9|7|add|mult
-6|3|add|8|7|mult|mult
-6|3|add|9|7|add|add
-6|3|add|9|6|mult|mult
-6|3|add|9|6|sub|mult
-6|3|add|9|6|sub|sub
-6|3|add|9|6|add|mult
-6|3|add|9|6|add|add
-6|3|add|9|2|add|mult
-6|3|add|9|2|add|sub
-6|3|add|9|2|add|add
-6|3|add|9|5|sub|mult
-6|3|add|9|5|sub|sub
-6|3|add|9|5|sub|add
-6|3|add|8|6|mult|mult
-6|3|add|9|0|sub|add
-6|3|add|9|0|add|mult
-6|3|add|9|0|add|sub
-6|3|add|9|0|add|add
-6|3|add|6|5|sub|mult
-6|3|add|6|5|sub|add
-6|3|add|8|7|sub|mult
-6|3|add|8|7|sub|sub
-6|3|add|8|7|sub|add
-6|3|add|8|7|add|mult
-6|3|add|8|7|add|sub
-6|3|add|8|7|add|add
-6|3|add|9|sub
-6|3|add|8|6|sub|mult
-6|3|add|8|6|sub|sub
-6|3|add|8|6|add|mult
-6|3|add|8|6|add|add
-6|3|add|8|5|mult|mult
-6|3|add|8|5|sub|mult
-6|3|add|8|5|sub|sub
-6|3|add|8|5|sub|add
-6|3|add|8|5|add|mult
-6|3|add|8|5|add|sub
-6|3|add|8|5|add|add
-6|3|add|8|4|mult|mult
-6|2|mult|8|5|mult|add
-6|2|mult|9|0|sub|mult
-6|2|mult|9|0|add|mult
-6|2|mult|6|5|sub|mult
-6|2|mult|8|7|sub|mult
-6|2|mult|8|7|add|mult
-6|2|mult|8|6|mult|mult
-6|2|mult|8|6|mult|sub
-6|2|mult|8|6|mult|add
-6|2|mult|8|6|sub|mult
-6|2|mult|8|6|add|mult
-6|2|mult|8|5|mult|mult
-6|2|mult|8|5|mult|sub
-6|2|mult|9|0|mult|add
-6|2|mult|8|5|sub|mult
-6|2|mult|8|5|add|mult
-6|2|mult|8|4|mult|mult
-6|2|mult|8|4|mult|sub
-6|2|mult|8|4|mult|add
-6|2|mult|8|7|mult|mult
-6|2|mult|8|7|mult|sub
-6|2|mult|8|7|mult|add
-6|2|mult|9|8|mult|mult
-6|2|mult|9|8|mult|sub
-6|2|mult|9|8|mult|add
-6|2|mult|9|8|sub|mult
-6|2|mult|4|0|sub|mult
-6|2|mult|3|2|sub|mult
-6|2|mult|3|2|add|mult
-6|2|mult|3|1|mult|mult
-6|2|mult|3|1|mult|sub
-6|2|mult|3|1|mult|add
-6|2|mult|3|1|sub|mult
-6|2|mult|3|1|add|mult
-6|2|mult|3|cbrt|mult
-6|2|mult|3|cb|mult
-6|2|mult|3|sq|mult
-6|2|mult|3|sq|sub
-6|2|mult|3|sq|add
-6|2|mult|9|8|add|mult
-6|2|mult|9|1|mult|mult
-6|2|mult|9|1|mult|sub
-6|2|mult|9|1|mult|add
-6|2|mult|9|1|sub|mult
-6|2|mult|9|1|add|mult
-6|2|mult|9|cbrt|mult
-6|2|mult|9|cb|mult
-6|2|mult|9|sq|mult
-6|2|mult|9|sq|sub
-6|2|mult|9|sq|add
-6|2|mult|9|0|mult|mult
-6|2|mult|9|0|mult|sub
-6|2|mult|7|3|mult|add
-6|2|mult|9|2|sub|mult
-6|2|mult|9|5|mult|mult
-6|2|mult|9|5|mult|sub
-6|2|mult|9|5|mult|add
-6|2|mult|7|5|add|mult
-6|2|mult|7|4|mult|mult
-6|2|mult|7|4|mult|sub
-6|2|mult|7|4|mult|add
-6|2|mult|7|4|sub|mult
-6|2|mult|7|4|add|mult
-6|2|mult|7|3|mult|mult
-6|2|mult|7|3|mult|sub
-6|2|mult|9|2|mult|add
-6|2|mult|7|3|sub|mult
-6|2|mult|7|3|add|mult
-6|2|mult|7|2|mult|mult
-6|2|mult|7|2|mult|sub
-6|2|mult|7|2|mult|add
-6|2|mult|7|2|sub|mult
-6|2|mult|8|4|sub|mult
-6|2|mult|7|1|mult|mult
-6|2|mult|7|1|mult|sub
-6|2|mult|7|1|mult|add
-6|2|mult|7|1|sub|mult
-6|2|mult|7|1|add|mult
-6|2|mult|9|5|add|mult
-6|2|mult|9|7|mult|mult
-6|2|mult|9|7|mult|sub
-6|2|mult|9|7|mult|add
-6|2|mult|9|7|sub|mult
-6|2|mult|9|7|add|mult
-6|2|mult|9|6|mult|mult
-6|2|mult|9|6|mult|sub
-6|2|mult|9|6|mult|add
-6|2|mult|9|6|sub|mult
-6|2|mult|9|6|add|mult
-6|2|mult|9|2|add|mult
-6|2|mult|9|5|sub|mult
-6|2|mult|3|2|mult|add
-6|2|mult|9|4|mult|mult
-6|2|mult|9|4|mult|sub
-6|2|mult|9|4|mult|add
-6|2|mult|9|4|sub|mult
-6|2|mult|9|4|add|mult
-6|2|mult|9|3|mult|mult
-6|2|mult|9|3|mult|sub
-6|2|mult|9|3|mult|add
-6|2|mult|9|3|sub|mult
-6|2|mult|9|3|add|mult
-6|2|mult|9|2|mult|mult
-6|2|mult|9|2|mult|sub
-6|2|mult|6|sq|mult
-6|3|add|0|mult
-6|3|add|0|sub
-6|3|add|0|add
-6|2|mult|6|2|sub|mult
-6|2|mult|5|4|sub|mult
-6|2|mult|6|1|mult|mult
-6|2|mult|6|1|mult|sub
-6|2|mult|6|1|mult|add
-6|2|mult|6|1|sub|mult
-6|2|mult|6|1|add|mult
-6|2|mult|6|cbrt|mult
-6|2|mult|6|cb|mult
-6|3|add|sq
-6|2|mult|6|sq|sub
-6|2|mult|6|sq|add
-6|2|mult|6|0|mult|mult
-6|2|mult|6|0|mult|sub
-6|2|mult|6|0|mult|add
-6|2|mult|6|0|sub|mult
-6|2|mult|6|0|add|mult
-6|2|mult|5|4|mult|mult
-6|2|mult|5|4|mult|sub
-6|2|mult|5|4|mult|add
-6|2|mult|6|2|add|mult
-6|2|mult|3|0|sub|mult
-6|3|add|4|mult
-6|3|add|9|add
-6|3|add|8|mult
-6|3|add|8|sub
-6|3|add|8|add
-6|3|add|7|mult
-6|3|add|7|sub
-6|3|add|7|add
-6|3|add|6|mult
-6|3|add|6|add
-6|3|add|5|mult
-6|3|add|5|sub
-6|3|add|5|add
-6|2|mult|3|0|add|mult
-6|3|add|4|sub
-6|3|add|4|add
-6|3|add|3|mult
-6|3|add|3|add
-6|3|add|2|mult
-6|3|add|2|sub
-6|3|add|2|add
-6|3|add|1|mult
-6|3|add|1|sub
-6|3|add|1|add
-6|3|add|cbrt
-6|3|add|cb
-6|2|mult|4|cb|mult
-6|2|mult|1|0|add|mult
-6|2|mult|0|cbrt|mult
-6|2|mult|0|cb|mult
-6|2|mult|2|0|sub|mult
-6|2|mult|4|2|sub|mult
-6|2|mult|4|2|add|mult
-6|2|mult|4|1|mult|mult
-6|2|mult|4|1|mult|sub
-6|2|mult|4|1|mult|add
-6|2|mult|4|1|sub|mult
-6|2|mult|4|1|add|mult
-6|2|mult|4|cbrt|mult
-6|2|mult|1|0|sub|mult
-6|2|mult|4|sq|mult
-6|2|mult|4|sq|sub
-6|2|mult|4|sq|add
-6|2|mult|4|0|mult|mult
-6|2|mult|4|0|mult|sub
-6|2|mult|4|0|mult|add
-6|2|mult|3|0|mult|mult
-6|2|mult|3|0|mult|sub
-6|2|mult|3|0|mult|add
-6|2|mult|4|0|add|mult
-6|2|mult|3|2|mult|mult
-6|2|mult|3|2|mult|sub
-6|2|mult|2|0|mult|add
-6|2|mult|2|1|mult|mult
-6|2|mult|2|1|mult|sub
-6|2|mult|2|1|mult|add
-6|2|mult|2|1|sub|mult
-6|2|mult|2|1|add|mult
-6|2|mult|2|cbrt|mult
-6|2|mult|2|cb|mult
-6|2|mult|2|sq|mult
-6|2|mult|2|sq|sub
-6|2|mult|2|sq|add
-6|2|mult|2|0|mult|mult
-6|2|mult|2|0|mult|sub
-6|0|mult|9|3|add|mult
-6|2|mult|4|2|mult|mult
-6|2|mult|4|2|mult|sub
-6|2|mult|4|2|mult|add
-6|2|mult|2|0|add|mult
-6|2|mult|1|cbrt|mult
-6|2|mult|1|cb|mult
-6|2|mult|1|sq|mult
-6|2|mult|1|sq|sub
-6|2|mult|1|sq|add
-6|2|mult|1|0|mult|mult
-6|2|mult|1|0|mult|sub
-6|2|mult|1|0|mult|add
-2|1|add|9|4|mult|mult
-2|1|add|9|6|sub|sub
-2|1|add|9|6|sub|add
-2|1|add|9|6|add|mult
-2|1|add|9|6|add|sub
-2|1|add|9|6|add|add
-2|1|add|9|2|add|mult
-2|1|add|9|2|add|add
-2|1|add|9|5|sub|mult
-2|1|add|9|5|sub|sub
-2|1|add|9|5|sub|add
-2|1|add|9|5|add|mult
-2|1|add|9|5|add|sub
-2|1|add|9|5|add|add
-2|1|add|9|6|sub|mult
-2|1|add|9|4|sub|mult
-2|1|add|9|4|sub|sub
-2|1|add|9|4|sub|add
-2|1|add|9|4|add|mult
-2|1|add|9|4|add|sub
-2|1|add|9|4|add|add
-2|1|add|9|3|mult|mult
-2|1|add|9|3|sub|mult
-2|1|add|9|3|sub|sub
-2|1|add|9|3|sub|add
-2|1|add|9|3|add|mult
-2|1|add|9|3|add|sub
-2|1|add|9|8|sub|sub
-2|1|add|8|6|add|add
-2|1|add|8|5|mult|mult
-2|1|add|8|5|sub|mult
-2|1|add|8|5|sub|sub
-2|1|add|8|5|sub|add
-2|1|add|8|5|add|mult
-2|1|add|8|5|add|sub
-2|1|add|8|5|add|add
-2|1|add|8|4|mult|mult
-2|1|add|8|7|mult|mult
-2|1|add|9|8|mult|mult
-2|1|add|9|8|sub|mult
-2|1|add|9|3|add|add
-2|1|add|9|8|sub|add
-2|1|add|9|8|add|mult
-2|1|add|9|8|add|sub
-2|1|add|9|8|add|add
-2|1|add|9|7|mult|mult
-2|1|add|9|7|sub|mult
-2|1|add|9|7|sub|sub
-2|1|add|9|7|sub|add
-2|1|add|9|7|add|mult
-2|1|add|9|7|add|sub
-2|1|add|9|7|add|add
-2|1|add|9|6|mult|mult
-2|1|add|7|0|sub|add
-2|1|add|8|4|sub|add
-2|1|add|7|1|mult|mult
-2|1|add|7|1|sub|mult
-2|1|add|7|1|sub|sub
-2|1|add|7|1|add|mult
-2|1|add|7|1|add|add
-2|1|add|7|cbrt|mult
-2|1|add|7|cb|mult
-2|1|add|7|sq|mult
-2|1|add|7|0|mult|mult
-2|1|add|7|0|sub|mult
-2|1|add|7|0|sub|sub
-2|1|add|8|4|sub|sub
-2|1|add|7|0|add|mult
-2|1|add|7|0|add|sub
-2|1|add|7|0|add|add
-2|1|add|6|5|mult|mult
-2|1|add|7|2|add|mult
-2|1|add|7|2|add|add
-2|1|add|8|4|add|mult
-2|1|add|8|4|add|sub
-2|1|add|8|4|add|add
-2|1|add|8|3|mult|mult
-2|1|add|8|3|sub|mult
-2|1|add|8|3|sub|sub
-2|1|add|7|4|add|sub
-2|1|add|9|2|mult|mult
-2|1|add|9|2|sub|mult
-2|1|add|9|2|sub|sub
-2|1|add|9|5|mult|mult
-2|1|add|7|5|add|mult
-2|1|add|7|5|add|sub
-2|1|add|7|5|add|add
-2|1|add|7|4|mult|mult
-2|1|add|7|4|sub|mult
-2|1|add|7|4|sub|sub
-2|1|add|7|4|sub|add
-2|1|add|7|4|add|mult
-2|1|add|8|6|add|sub
-2|1|add|7|4|add|add
-2|1|add|7|3|mult|mult
-2|1|add|7|3|sub|mult
-2|1|add|7|3|sub|sub
-2|1|add|7|3|sub|add
-2|1|add|7|3|add|mult
-2|1|add|7|3|add|sub
-2|1|add|7|3|add|add
-2|1|add|7|2|mult|mult
-2|1|add|7|2|sub|mult
-2|1|add|7|2|sub|sub
-2|1|add|8|4|sub|mult
-2|1|add|0|cb|mult
-2|1|add|4|2|mult|mult
-2|1|add|2|0|add|mult
-2|1|add|2|0|add|add
-2|1|add|1|cbrt|mult
-2|1|add|1|cb|mult
-2|1|add|1|sq|mult
-2|1|add|1|0|mult|mult
-2|1|add|1|0|sub|mult
-2|1|add|1|0|sub|add
-2|1|add|1|0|add|mult
-2|1|add|1|0|add|add
-2|1|add|0|cbrt|mult
-2|1|add|2|0|mult|mult
-2|1|add|2|0|sub|mult
-2|1|add|2|0|sub|add
-2|1|add|4|2|sub|mult
-2|1|add|4|2|sub|sub
-2|1|add|4|2|add|mult
-2|1|add|4|2|add|add
-2|1|add|4|1|mult|mult
-2|1|add|4|1|sub|mult
-2|1|add|4|1|sub|sub
-2|1|add|4|1|add|mult
-2|1|add|4|1|add|add
-2|1|add|4|cbrt|mult
-2|1|sub|2|mult
-2|1|sub|6|mult
-2|1|sub|6|sub
-2|1|sub|6|add
-2|1|sub|5|mult
-2|1|sub|5|sub
-2|1|sub|5|add
-2|1|sub|4|mult
-2|1|sub|4|sub
-2|1|sub|4|add
-2|1|sub|3|mult
-2|1|sub|3|sub
-2|1|sub|3|add
-2|1|add|4|cb|mult
-2|1|sub|2|add
-2|1|sub|1|mult
-2|1|sub|1|sub
-2|1|sub|cbrt
-2|1|sub|cb
-2|1|sub|sq
-2|1|sub|0|mult
-2|1|sub|0|sub
-2|1|sub|0|add
-2|1|add|2|cbrt|mult
-2|1|add|2|cb|mult
-2|1|add|2|sq|mult
-2|1|add|6|5|sub|sub
-2|1|add|9|1|add|add
-2|1|add|9|cbrt|mult
-2|1|add|9|cb|mult
-2|1|add|9|sq|mult
-2|1|add|9|0|mult|mult
-2|1|add|9|0|sub|mult
-2|1|add|9|0|sub|sub
-2|1|add|9|0|sub|add
-2|1|add|9|0|add|mult
-2|1|add|9|0|add|sub
-2|1|add|9|0|add|add
-2|1|add|6|5|sub|mult
-2|1|add|9|1|add|mult
-2|1|add|6|5|sub|add
-2|1|add|8|7|sub|mult
-2|1|add|8|7|sub|sub
-2|1|add|8|7|sub|add
-2|1|add|8|7|add|mult
-2|1|add|8|7|add|sub
-2|1|add|8|7|add|add
-2|1|add|8|6|mult|mult
-2|1|add|8|6|sub|mult
-2|1|add|8|6|sub|sub
-2|1|add|8|6|sub|add
-2|1|add|8|6|add|mult
-2|1|add|3|1|sub|mult
-2|1|add|4|sq|mult
-2|1|add|4|0|mult|mult
-2|1|add|3|0|mult|mult
-2|1|add|4|0|add|mult
-2|1|add|4|0|add|sub
-2|1|add|4|0|add|add
-2|1|add|3|2|mult|mult
-2|1|add|3|2|sub|mult
-2|1|add|3|2|sub|sub
-2|1|add|3|2|add|mult
-2|1|add|3|2|add|add
-2|1|add|3|1|mult|mult
-2|1|add|8|3|sub|add
-2|1|add|3|1|sub|sub
-2|1|add|3|1|add|mult
-2|1|add|3|1|add|add
-2|1|add|3|cbrt|mult
-2|1|add|3|cb|mult
-2|1|add|3|sq|mult
-2|1|add|4|0|sub|mult
-2|1|add|4|0|sub|sub
-2|1|add|4|0|sub|add
-2|1|add|9|1|mult|mult
-2|1|add|9|1|sub|mult
-2|1|add|9|1|sub|sub
-2|cbrt|9|3|mult|mult
-2|cbrt|9|8|add|mult
-2|cbrt|9|7|mult|mult
-2|cbrt|9|7|sub|mult
-2|cbrt|9|7|add|mult
-2|cbrt|9|6|mult|mult
-2|cbrt|9|6|sub|mult
-2|cbrt|9|6|add|mult
-2|cbrt|9|2|add|mult
-2|cbrt|9|5|sub|mult
-2|cbrt|9|5|add|mult
-2|cbrt|9|4|mult|mult
-2|cbrt|9|4|sub|mult
-2|cbrt|9|4|add|mult
-2|cbrt|9|8|sub|mult
-2|cbrt|9|3|sub|mult
-2|cbrt|9|3|add|mult
-2|cbrt|9|2|mult|mult
-2|cbrt|9|2|sub|mult
-2|cbrt|9|5|mult|mult
-2|cbrt|7|5|add|mult
-2|cbrt|7|4|mult|mult
-2|cbrt|7|4|sub|mult
-2|cbrt|7|4|add|mult
-2|cbrt|7|3|mult|mult
-2|cbrt|7|3|sub|mult
-2|cbrt|7|3|add|mult
-2|cbrt|9|0|add|mult
-2|cbrt|3|sq|mult
-2|cbrt|4|0|sub|mult
-2|cbrt|9|1|mult|mult
-2|cbrt|9|1|sub|mult
-2|cbrt|9|1|add|mult
-2|cbrt|9|cbrt|mult
-2|cbrt|9|cbrt|sub
-2|cbrt|9|cbrt|add
-2|cbrt|9|cb|mult
-2|cbrt|9|sq|mult
-2|cbrt|9|0|mult|mult
-2|cbrt|9|0|sub|mult
-2|cbrt|7|2|mult|mult
-2|cbrt|6|5|sub|mult
-2|cbrt|8|7|sub|mult
-2|cbrt|8|7|add|mult
-2|cbrt|8|6|mult|mult
-2|cbrt|8|6|sub|mult
-2|cbrt|8|6|add|mult
-2|cbrt|8|5|mult|mult
-2|cbrt|8|5|sub|mult
-2|cbrt|8|5|add|mult
-2|cbrt|8|4|mult|mult
-2|cbrt|8|7|mult|mult
-2|cbrt|9|8|mult|mult
-2|cbrt|9|mult
-2|cbrt|8|cbrt|sub
-2|cbrt|8|cbrt|add
-2|cbrt|8|cb|mult
-2|cbrt|8|sq|mult
-2|cbrt|8|0|mult|mult
-2|cbrt|8|0|sub|mult
-2|cbrt|8|0|add|mult
-2|cbrt|7|6|mult|mult
-2|cbrt|7|6|sub|mult
-2|cbrt|7|6|add|mult
-2|cbrt|7|5|mult|mult
-2|cbrt|8|1|add|mult
-2|cbrt|8|cbrt|mult
-2|cbrt|8|mult
-2|cbrt|7|mult
-2|cbrt|6|mult
-2|cbrt|5|mult
-2|cbrt|4|mult
-2|cbrt|3|mult
-2|cbrt|1|mult
-2|cbrt|cbrt
-2|cbrt|sq
-2|cbrt|0|mult
-2|cb|2|0|mult|mult
-2|cb|4|2|mult|mult
-2|cbrt|7|0|add|mult
-2|cbrt|7|2|sub|mult
-2|cbrt|8|4|sub|mult
-2|cbrt|7|1|mult|mult
-2|cbrt|7|1|sub|mult
-2|cbrt|7|1|add|mult
-2|cbrt|7|cbrt|mult
-2|cbrt|7|cbrt|sub
-2|cbrt|7|cbrt|add
-2|cbrt|7|cb|mult
-2|cbrt|7|sq|mult
-2|cbrt|7|0|mult|mult
-2|cbrt|7|0|sub|mult
-2|cbrt|3|cb|mult
-2|cbrt|6|5|mult|mult
-2|cbrt|7|2|add|mult
-2|cbrt|8|4|add|mult
-2|cbrt|8|3|mult|mult
-2|cbrt|8|3|sub|mult
-2|cbrt|8|3|add|mult
-2|cbrt|8|2|mult|mult
-2|cbrt|8|2|sub|mult
-2|cbrt|8|2|add|mult
-2|cbrt|8|1|mult|mult
-2|cbrt|8|1|sub|mult
-2|cbrt|7|5|sub|mult
-2|1|add|8|sub
-2|1|add|7|6|sub|sub
-2|1|add|7|6|sub|add
-2|1|add|7|6|add|mult
-2|1|add|7|6|add|sub
-2|1|add|7|6|add|add
-2|1|add|7|5|mult|mult
-2|1|add|8|1|add|mult
-2|1|add|8|1|add|add
-2|1|add|9|mult
-2|1|add|9|sub
-2|1|add|9|add
-2|1|add|8|mult
-2|1|add|7|6|sub|mult
-2|1|add|8|add
-2|1|add|7|mult
-2|1|add|7|sub
-2|1|add|7|add
-2|1|add|6|mult
-2|1|add|6|sub
-2|1|add|6|add
-2|1|add|5|mult
-2|1|add|5|sub
-2|1|add|5|add
-2|1|add|4|mult
-2|1|add|4|sub
-2|1|add|7|5|sub|sub
-2|1|add|8|3|add|mult
-2|1|add|8|3|add|sub
-2|1|add|8|3|add|add
-2|1|add|8|2|mult|mult
-2|1|add|8|2|sub|mult
-2|1|add|8|2|sub|sub
-2|1|add|8|2|add|mult
-2|1|add|8|2|add|add
-2|1|add|8|1|mult|mult
-2|1|add|8|1|sub|mult
-2|1|add|8|1|sub|sub
-2|1|add|7|5|sub|mult
-2|1|add|4|add
-2|1|add|7|5|sub|add
-2|1|add|8|cbrt|mult
-2|1|add|8|cb|mult
-2|1|add|8|sq|mult
-2|1|add|8|0|mult|mult
-2|1|add|8|0|sub|mult
-2|1|add|8|0|sub|sub
-2|1|add|8|0|sub|add
-2|1|add|8|0|add|mult
-2|1|add|8|0|add|sub
-2|1|add|8|0|add|add
-2|1|add|7|6|mult|mult
-2|cbrt|4|sq|mult
-2|cbrt|0|cbrt|add
-2|cbrt|0|cb|mult
-2|cbrt|2|0|sub|mult
-2|cbrt|4|2|sub|mult
-2|cbrt|4|2|add|mult
-2|cbrt|4|1|mult|mult
-2|cbrt|4|1|sub|mult
-2|cbrt|4|1|add|mult
-2|cbrt|4|cbrt|mult
-2|cbrt|4|cbrt|sub
-2|cbrt|4|cbrt|add
-2|cbrt|4|cb|mult
-2|cbrt|0|cbrt|sub
-2|cbrt|4|0|mult|mult
-2|cbrt|3|0|mult|mult
-2|cbrt|4|0|add|mult
-2|cbrt|3|2|mult|mult
-2|cbrt|3|2|sub|mult
-2|cbrt|3|2|add|mult
-2|cbrt|3|1|mult|mult
-2|cbrt|3|1|sub|mult
-2|cbrt|3|1|add|mult
-2|cbrt|3|cbrt|mult
-2|cbrt|3|cbrt|sub
-2|cbrt|3|cbrt|add
-2|1|add|0|add
-2|1|add|3|mult
-2|1|add|3|sub
-2|1|add|3|add
-2|1|add|2|mult
-2|1|add|2|add
-2|1|add|1|mult
-2|1|add|1|add
-2|1|add|cbrt
-2|1|add|cb
-2|1|add|sq
-2|1|add|0|mult
-2|1|add|0|sub
-2|1|sub|7|add
-2|cbrt|2|0|mult|mult
-2|cbrt|4|2|mult|mult
-2|cbrt|2|0|add|mult
-2|cbrt|1|cbrt|mult
-2|cbrt|1|cbrt|sub
-2|cbrt|1|cbrt|add
-2|cbrt|1|cb|mult
-2|cbrt|1|sq|mult
-2|cbrt|1|0|mult|mult
-2|cbrt|1|0|sub|mult
-2|cbrt|1|0|add|mult
-2|cbrt|0|cbrt|mult
-2|1|mult|8|3|sub|mult
-2|1|mult|7|0|mult|mult
-2|1|mult|7|0|mult|sub
-2|1|mult|7|0|mult|add
-2|1|mult|7|0|sub|mult
-2|1|mult|7|0|add|mult
-2|1|mult|6|5|mult|mult
-2|1|mult|6|5|mult|sub
-2|1|mult|6|5|mult|add
-2|1|mult|7|2|add|mult
-2|1|mult|8|4|add|mult
-2|1|mult|8|3|mult|mult
-2|1|mult|8|3|mult|sub
-2|1|mult|8|3|mult|add
-2|1|mult|7|sq|add
-2|1|mult|8|3|add|mult
-2|1|mult|8|2|mult|mult
-2|1|mult|8|2|mult|sub
-2|1|mult|8|2|mult|add
-2|1|mult|8|2|sub|mult
-2|1|mult|8|2|add|mult
-2|1|mult|8|1|mult|mult
-2|1|mult|8|1|mult|sub
-2|1|mult|8|1|mult|add
-2|1|mult|8|1|sub|mult
-2|1|mult|7|5|sub|mult
-2|1|mult|8|cbrt|mult
-2|1|mult|7|2|mult|sub
-2|1|mult|7|5|add|mult
-2|1|mult|7|4|mult|mult
-2|1|mult|7|4|mult|sub
-2|1|mult|7|4|mult|add
-2|1|mult|7|4|sub|mult
-2|1|mult|7|4|add|mult
-2|1|mult|7|3|mult|mult
-2|1|mult|7|3|mult|sub
-2|1|mult|7|3|mult|add
-2|1|mult|7|3|sub|mult
-2|1|mult|7|3|add|mult
-2|1|mult|7|2|mult|mult
-2|1|mult|8|cb|mult
-2|1|mult|7|2|mult|add
-2|1|mult|7|2|sub|mult
-2|1|mult|8|4|sub|mult
-2|1|mult|7|1|mult|mult
-2|1|mult|7|1|mult|sub
-2|1|mult|7|1|mult|add
-2|1|mult|7|1|sub|mult
-2|1|mult|7|1|add|mult
-2|1|mult|7|cbrt|mult
-2|1|mult|7|cb|mult
-2|1|mult|7|sq|mult
-2|1|mult|7|sq|sub
-2|1|sub|1|cbrt|mult
-2|1|mult|cbrt
-2|1|mult|cb
-2|1|mult|sq
-2|1|mult|0|mult
-2|1|sub|2|1|add|mult
-2|1|sub|2|cbrt|mult
-2|1|sub|2|cb|mult
-2|1|sub|2|sq|mult
-2|1|sub|2|0|mult|mult
-2|1|sub|4|2|mult|mult
-2|1|sub|2|0|add|mult
-2|1|sub|2|0|add|add
-2|1|mult|1|mult
-2|1|sub|1|cb|mult
-2|1|sub|1|sq|mult
-2|1|sub|1|0|mult|mult
-2|1|sub|1|0|sub|mult
-2|1|sub|1|0|sub|sub
-2|1|sub|1|0|add|mult
-2|1|sub|1|0|add|sub
-2|1|sub|0|cbrt|mult
-2|1|sub|0|cb|mult
-2|1|sub|2|0|sub|mult
-2|1|sub|2|0|sub|add
-2|1|sub|4|2|sub|mult
-2|1|mult|7|6|add|mult
-2|1|mult|8|sq|mult
-2|1|mult|8|sq|sub
-2|1|mult|8|sq|add
-2|1|mult|8|0|mult|mult
-2|1|mult|8|0|mult|sub
-2|1|mult|8|0|mult|add
-2|1|mult|8|0|sub|mult
-2|1|mult|8|0|add|mult
-2|1|mult|7|6|mult|mult
-2|1|mult|7|6|mult|sub
-2|1|mult|7|6|mult|add
-2|1|mult|7|6|sub|mult
-2|1|mult|9|5|mult|add
-2|1|mult|7|5|mult|mult
-2|1|mult|7|5|mult|sub
-2|1|mult|7|5|mult|add
-2|1|mult|8|1|add|mult
-2|1|mult|9|mult
-2|1|mult|8|mult
-2|1|mult|7|mult
-2|1|mult|6|mult
-2|1|mult|5|mult
-2|1|mult|4|mult
-2|1|mult|3|mult
-2|1|mult|2|mult
-2|1|mult|9|1|sub|mult
-2|1|mult|3|1|mult|add
-2|1|mult|3|1|sub|mult
-2|1|mult|3|1|add|mult
-2|1|mult|3|cbrt|mult
-2|1|mult|3|cb|mult
-2|1|mult|3|sq|mult
-2|1|mult|3|sq|sub
-2|1|mult|3|sq|add
-2|1|mult|4|0|sub|mult
-2|1|mult|9|1|mult|mult
-2|1|mult|9|1|mult|sub
-2|1|mult|9|1|mult|add
-2|1|mult|3|1|mult|sub
-2|1|mult|9|1|add|mult
-2|1|mult|9|cbrt|mult
-2|1|mult|9|cb|mult
-2|1|mult|9|sq|mult
-2|1|mult|9|sq|sub
-2|1|mult|9|sq|add
-2|1|mult|9|0|mult|mult
-2|1|mult|9|0|mult|sub
-2|1|mult|9|0|mult|add
-2|1|mult|9|0|sub|mult
-2|1|mult|9|0|add|mult
-2|1|mult|6|5|sub|mult
-2|1|mult|4|0|mult|mult
-2|1|mult|4|2|sub|mult
-2|1|mult|4|2|add|mult
-2|1|mult|4|1|mult|mult
-2|1|mult|4|1|mult|sub
-2|1|mult|4|1|mult|add
-2|1|mult|4|1|sub|mult
-2|1|mult|4|1|add|mult
-2|1|mult|4|cbrt|mult
-2|1|mult|4|cb|mult
-2|1|mult|4|sq|mult
-2|1|mult|4|sq|sub
-2|1|mult|4|sq|add
-2|1|mult|8|7|sub|mult
-2|1|mult|4|0|mult|sub
-2|1|mult|4|0|mult|add
-2|1|mult|3|0|mult|mult
-2|1|mult|3|0|mult|sub
-2|1|mult|3|0|mult|add
-2|1|mult|4|0|add|mult
-2|1|mult|3|2|mult|mult
-2|1|mult|3|2|mult|sub
-2|1|mult|3|2|mult|add
-2|1|mult|3|2|sub|mult
-2|1|mult|3|2|add|mult
-2|1|mult|3|1|mult|mult
-2|1|mult|9|4|sub|mult
-2|1|mult|9|7|add|mult
-2|1|mult|9|6|mult|mult
-2|1|mult|9|6|mult|sub
-2|1|mult|9|6|mult|add
-2|1|mult|9|6|sub|mult
-2|1|mult|9|6|add|mult
-2|1|mult|9|2|add|mult
-2|1|mult|9|5|sub|mult
-2|1|mult|9|5|add|mult
-2|1|mult|9|4|mult|mult
-2|1|mult|9|4|mult|sub
-2|1|mult|9|4|mult|add
-2|1|mult|9|7|sub|mult
-2|1|mult|9|4|add|mult
-2|1|mult|9|3|mult|mult
-2|1|mult|9|3|mult|sub
-2|1|mult|9|3|mult|add
-2|1|mult|9|3|sub|mult
-2|1|mult|9|3|add|mult
-2|1|mult|9|2|mult|mult
-2|1|mult|9|2|mult|sub
-2|1|mult|9|2|mult|add
-2|1|mult|9|2|sub|mult
-2|1|mult|9|5|mult|mult
-2|1|mult|9|5|mult|sub
-2|1|mult|8|4|mult|sub
-2|1|mult|8|7|add|mult
-2|1|mult|8|6|mult|mult
-2|1|mult|8|6|mult|sub
-2|1|mult|8|6|mult|add
-2|1|mult|8|6|sub|mult
-2|1|mult|8|6|add|mult
-2|1|mult|8|5|mult|mult
-2|1|mult|8|5|mult|sub
-2|1|mult|8|5|mult|add
-2|1|mult|8|5|sub|mult
-2|1|mult|8|5|add|mult
-2|1|mult|8|4|mult|mult
-2|1|sub|4|2|sub|sub
-2|1|mult|8|4|mult|add
-2|1|mult|8|7|mult|mult
-2|1|mult|8|7|mult|sub
-2|1|mult|8|7|mult|add
-2|1|mult|9|8|mult|mult
-2|1|mult|9|8|mult|sub
-2|1|mult|9|8|mult|add
-2|1|mult|9|8|sub|mult
-2|1|mult|9|8|add|mult
-2|1|mult|9|7|mult|mult
-2|1|mult|9|7|mult|sub
-2|1|mult|9|7|mult|add
-2|1|sub|7|1|sub|add
-2|1|sub|7|3|sub|sub
-2|1|sub|7|3|sub|add
-2|1|sub|7|3|add|mult
-2|1|sub|7|3|add|sub
-2|1|sub|7|3|add|add
-2|1|sub|7|2|mult|mult
-2|1|sub|7|2|sub|mult
-2|1|sub|7|2|sub|sub
-2|1|sub|8|4|sub|mult
-2|1|sub|8|4|sub|sub
-2|1|sub|8|4|sub|add
-2|1|sub|7|1|mult|mult
-2|1|sub|7|1|sub|mult
-2|1|sub|7|3|sub|mult
-2|1|sub|7|1|add|mult
-2|1|sub|7|1|add|sub
-2|1|sub|7|cbrt|mult
-2|1|sub|7|cb|mult
-2|1|sub|7|sq|mult
-2|1|sub|7|0|mult|mult
-2|1|sub|7|0|sub|mult
-2|1|sub|7|0|sub|sub
-2|1|sub|7|0|sub|add
-2|1|sub|7|0|add|mult
-2|1|sub|7|0|add|sub
-2|1|sub|7|0|add|add
-2|1|sub|9|2|sub|sub
-2|1|sub|9|4|add|mult
-2|1|sub|9|4|add|sub
-2|1|sub|9|4|add|add
-2|1|sub|9|3|mult|mult
-2|1|sub|9|3|sub|mult
-2|1|sub|9|3|sub|sub
-2|1|sub|9|3|sub|add
-2|1|sub|9|3|add|mult
-2|1|sub|9|3|add|sub
-2|1|sub|9|3|add|add
-2|1|sub|9|2|mult|mult
-2|1|sub|9|2|sub|mult
-2|1|sub|6|5|mult|mult
-2|1|sub|9|5|mult|mult
-2|1|sub|7|5|add|mult
-2|1|sub|7|5|add|sub
-2|1|sub|7|5|add|add
-2|1|sub|7|4|mult|mult
-2|1|sub|7|4|sub|mult
-2|1|sub|7|4|sub|sub
-2|1|sub|7|4|sub|add
-2|1|sub|7|4|add|mult
-2|1|sub|7|4|add|sub
-2|1|sub|7|4|add|add
-2|1|sub|7|3|mult|mult
-2|1|sub|7|6|add|sub
-2|1|sub|8|0|mult|mult
-2|1|sub|8|0|sub|mult
-2|1|sub|8|0|sub|sub
-2|1|sub|8|0|sub|add
-2|1|sub|8|0|add|mult
-2|1|sub|8|0|add|sub
-2|1|sub|8|0|add|add
-2|1|sub|7|6|mult|mult
-2|1|sub|7|6|sub|mult
-2|1|sub|7|6|sub|sub
-2|1|sub|7|6|sub|add
-2|1|sub|7|6|add|mult
-2|1|sub|8|sq|mult
-2|1|sub|7|6|add|add
-2|1|sub|7|5|mult|mult
-2|1|sub|8|1|add|mult
-2|1|sub|8|1|add|sub
-2|1|sub|9|mult
-2|1|sub|9|sub
-2|1|sub|9|add
-2|1|sub|8|mult
-2|1|sub|8|sub
-2|1|sub|8|add
-2|1|sub|7|mult
-2|1|sub|7|sub
-2|1|sub|8|2|mult|mult
-2|1|sub|7|2|add|mult
-2|1|sub|7|2|add|add
-2|1|sub|8|4|add|mult
-2|1|sub|8|4|add|sub
-2|1|sub|8|4|add|add
-2|1|sub|8|3|mult|mult
-2|1|sub|8|3|sub|mult
-2|1|sub|8|3|sub|sub
-2|1|sub|8|3|sub|add
-2|1|sub|8|3|add|mult
-2|1|sub|8|3|add|sub
-2|1|sub|8|3|add|add
-2|1|sub|9|4|sub|add
-2|1|sub|8|2|sub|mult
-2|1|sub|8|2|sub|sub
-2|1|sub|8|2|add|mult
-2|1|sub|8|2|add|add
-2|1|sub|8|1|mult|mult
-2|1|sub|8|1|sub|mult
-2|1|sub|8|1|sub|add
-2|1|sub|7|5|sub|mult
-2|1|sub|7|5|sub|sub
-2|1|sub|7|5|sub|add
-2|1|sub|8|cbrt|mult
-2|1|sub|8|cb|mult
-2|1|sub|9|sq|mult
-2|1|sub|3|cb|mult
-2|1|sub|3|sq|mult
-2|1|sub|4|0|sub|mult
-2|1|sub|4|0|sub|sub
-2|1|sub|4|0|sub|add
-2|1|sub|9|1|mult|mult
-2|1|sub|9|1|sub|mult
-2|1|sub|9|1|sub|add
-2|1|sub|9|1|add|mult
-2|1|sub|9|1|add|sub
-2|1|sub|9|cbrt|mult
-2|1|sub|9|cb|mult
-2|1|sub|3|cbrt|mult
-2|1|sub|9|0|mult|mult
-2|1|sub|9|0|sub|mult
-2|1|sub|9|0|sub|sub
-2|1|sub|9|0|sub|add
-2|1|sub|9|0|add|mult
-2|1|sub|9|0|add|sub
-2|1|sub|9|0|add|add
-2|1|sub|6|5|sub|mult
-2|1|sub|6|5|sub|sub
-2|1|sub|6|5|sub|add
-2|1|sub|8|7|sub|mult
-2|1|sub|8|7|sub|sub
-2|1|sub|4|0|add|mult
-2|1|sub|4|2|add|mult
-2|1|sub|4|2|add|add
-2|1|sub|4|1|mult|mult
-2|1|sub|4|1|sub|mult
-2|1|sub|4|1|sub|add
-2|1|sub|4|1|add|mult
-2|1|sub|4|1|add|sub
-2|1|sub|4|cbrt|mult
-2|1|sub|4|cb|mult
-2|1|sub|4|sq|mult
-2|1|sub|4|0|mult|mult
-2|1|sub|3|0|mult|mult
-2|1|sub|8|7|sub|add
-2|1|sub|4|0|add|sub
-2|1|sub|4|0|add|add
-2|1|sub|3|2|mult|mult
-2|1|sub|3|2|sub|mult
-2|1|sub|3|2|sub|sub
-2|1|sub|3|2|add|mult
-2|1|sub|3|2|add|add
-2|1|sub|3|1|mult|mult
-2|1|sub|3|1|sub|mult
-2|1|sub|3|1|sub|add
-2|1|sub|3|1|add|mult
-2|1|sub|3|1|add|sub
-2|1|sub|9|6|add|sub
-2|1|sub|9|7|mult|mult
-2|1|sub|9|7|sub|mult
-2|1|sub|9|7|sub|sub
-2|1|sub|9|7|sub|add
-2|1|sub|9|7|add|mult
-2|1|sub|9|7|add|sub
-2|1|sub|9|7|add|add
-2|1|sub|9|6|mult|mult
-2|1|sub|9|6|sub|mult
-2|1|sub|9|6|sub|sub
-2|1|sub|9|6|sub|add
-2|1|sub|9|6|add|mult
-2|1|sub|9|8|add|add
-2|1|sub|9|6|add|add
-2|1|sub|9|2|add|mult
-2|1|sub|9|2|add|add
-2|1|sub|9|5|sub|mult
-2|1|sub|9|5|sub|sub
-2|1|sub|9|5|sub|add
-2|1|sub|9|5|add|mult
-2|1|sub|9|5|add|sub
-2|1|sub|9|5|add|add
-2|1|sub|9|4|mult|mult
-2|1|sub|9|4|sub|mult
-2|1|sub|9|4|sub|sub
-2|1|sub|8|5|sub|sub
-2|1|sub|8|7|add|mult
-2|1|sub|8|7|add|sub
-2|1|sub|8|7|add|add
-2|1|sub|8|6|mult|mult
-2|1|sub|8|6|sub|mult
-2|1|sub|8|6|sub|sub
-2|1|sub|8|6|sub|add
-2|1|sub|8|6|add|mult
-2|1|sub|8|6|add|sub
-2|1|sub|8|6|add|add
-2|1|sub|8|5|mult|mult
-2|1|sub|8|5|sub|mult
-2|cb|2|0|add|mult
-2|1|sub|8|5|sub|add
-2|1|sub|8|5|add|mult
-2|1|sub|8|5|add|sub
-2|1|sub|8|5|add|add
-2|1|sub|8|4|mult|mult
-2|1|sub|8|7|mult|mult
-2|1|sub|9|8|mult|mult
-2|1|sub|9|8|sub|mult
-2|1|sub|9|8|sub|sub
-2|1|sub|9|8|sub|add
-2|1|sub|9|8|add|mult
-2|1|sub|9|8|add|sub
-4|2|mult|4|0|mult|sub
-4|2|mult|4|2|sub|mult
-4|2|mult|4|2|add|mult
-4|2|mult|4|1|mult|mult
-4|2|mult|4|1|mult|sub
-4|2|mult|4|1|mult|add
-4|2|mult|4|1|sub|mult
-4|2|mult|4|1|add|mult
-4|2|mult|4|cbrt|mult
-4|2|mult|4|cb|mult
-4|2|mult|4|sq|mult
-4|2|mult|4|sq|sub
-4|2|mult|4|sq|add
-4|2|mult|4|0|mult|mult
-4|2|mult|2|0|sub|mult
-4|2|mult|4|0|mult|add
-4|2|mult|3|0|mult|mult
-4|2|mult|3|0|mult|sub
-4|2|mult|3|0|mult|add
-4|2|mult|4|0|add|mult
-4|2|mult|3|2|mult|mult
-4|2|mult|3|2|mult|sub
-4|2|mult|3|2|mult|add
-4|2|mult|3|2|sub|mult
-4|2|mult|3|2|add|mult
-4|2|mult|3|1|mult|mult
-4|2|mult|3|1|mult|sub
-4|2|mult|2|0|add|mult
-2|0|mult|8|mult
-2|0|mult|7|mult
-2|0|mult|6|mult
-2|0|mult|5|mult
-2|0|mult|4|mult
-2|0|mult|3|mult
-2|0|mult|2|mult
-2|0|mult|1|mult
-2|0|mult|cbrt
-2|0|mult|cb
-2|0|mult|sq
-2|0|mult|0|mult
-4|2|mult|3|1|mult|add
-4|2|mult|1|cbrt|mult
-4|2|mult|1|cb|mult
-4|2|mult|1|sq|mult
-4|2|mult|1|sq|sub
-4|2|mult|1|sq|add
-4|2|mult|1|0|mult|mult
-4|2|mult|1|0|mult|sub
-4|2|mult|1|0|mult|add
-4|2|mult|1|0|sub|mult
-4|2|mult|1|0|add|mult
-4|2|mult|0|cbrt|mult
-4|2|mult|0|cb|mult
-4|2|mult|8|4|mult|add
-4|2|mult|8|6|mult|mult
-4|2|mult|8|6|mult|sub
-4|2|mult|8|6|mult|add
-4|2|mult|8|6|sub|mult
-4|2|mult|8|6|add|mult
-4|2|mult|8|5|mult|mult
-4|2|mult|8|5|mult|sub
-4|2|mult|8|5|mult|add
-4|2|mult|8|5|sub|mult
-4|2|mult|8|5|add|mult
-4|2|mult|8|4|mult|mult
-4|2|mult|8|4|mult|sub
-4|2|mult|8|7|add|mult
-4|2|mult|8|7|mult|mult
-4|2|mult|8|7|mult|sub
-4|2|mult|8|7|mult|add
-4|2|mult|9|8|mult|mult
-4|2|mult|9|8|mult|sub
-4|2|mult|9|8|mult|add
-4|2|mult|9|8|sub|mult
-4|2|mult|9|8|add|mult
-4|2|mult|9|7|mult|mult
-4|2|mult|9|7|mult|sub
-4|2|mult|9|7|mult|add
-4|2|mult|9|7|sub|mult
-4|2|mult|9|1|add|mult
-4|2|mult|3|1|sub|mult
-4|2|mult|3|1|add|mult
-4|2|mult|3|cbrt|mult
-4|2|mult|3|cb|mult
-4|2|mult|3|sq|mult
-4|2|mult|3|sq|sub
-4|2|mult|3|sq|add
-4|2|mult|4|0|sub|mult
-4|2|mult|9|1|mult|mult
-4|2|mult|9|1|mult|sub
-4|2|mult|9|1|mult|add
-4|2|mult|9|1|sub|mult
-2|0|mult|9|mult
-4|2|mult|9|cbrt|mult
-4|2|mult|9|cb|mult
-4|2|mult|9|sq|mult
-4|2|mult|9|sq|sub
-4|2|mult|9|sq|add
-4|2|mult|9|0|mult|mult
-4|2|mult|9|0|mult|sub
-4|2|mult|9|0|mult|add
-4|2|mult|9|0|sub|mult
-4|2|mult|9|0|add|mult
-4|2|mult|6|5|sub|mult
-4|2|mult|8|7|sub|mult
-2|0|mult|7|4|add|mult
-2|0|mult|9|2|mult|mult
-2|0|mult|9|2|mult|sub
-2|0|mult|9|2|mult|add
-2|0|mult|9|2|sub|mult
-2|0|mult|9|5|mult|mult
-2|0|mult|9|5|mult|sub
-2|0|mult|9|5|mult|add
-2|0|mult|7|5|add|mult
-2|0|mult|7|4|mult|mult
-2|0|mult|7|4|mult|sub
-2|0|mult|7|4|mult|add
-2|0|mult|7|4|sub|mult
-2|0|mult|9|3|add|mult
-2|0|mult|7|3|mult|mult
-2|0|mult|7|3|mult|sub
-2|0|mult|7|3|mult|add
-2|0|mult|7|3|sub|mult
-2|0|mult|7|3|add|mult
-2|0|mult|7|2|mult|mult
-2|0|mult|7|2|mult|sub
-2|0|mult|7|2|mult|add
-2|0|mult|7|2|sub|mult
-2|0|mult|8|4|sub|mult
-2|0|mult|7|1|mult|mult
-2|0|mult|7|1|mult|sub
-2|0|mult|9|6|add|mult
-2|0|mult|9|8|mult|add
-2|0|mult|9|8|sub|mult
-2|0|mult|9|8|add|mult
-2|0|mult|9|7|mult|mult
-2|0|mult|9|7|mult|sub
-2|0|mult|9|7|mult|add
-2|0|mult|9|7|sub|mult
-2|0|mult|9|7|add|mult
-2|0|mult|9|6|mult|mult
-2|0|mult|9|6|mult|sub
-2|0|mult|9|6|mult|add
-2|0|mult|9|6|sub|mult
-2|0|mult|7|1|mult|add
-2|0|mult|9|2|add|mult
-2|0|mult|9|5|sub|mult
-2|0|mult|9|5|add|mult
-2|0|mult|9|4|mult|mult
-2|0|mult|9|4|mult|sub
-2|0|mult|9|4|mult|add
-2|0|mult|9|4|sub|mult
-2|0|mult|9|4|add|mult
-2|0|mult|9|3|mult|mult
-2|0|mult|9|3|mult|sub
-2|0|mult|9|3|mult|add
-2|0|mult|9|3|sub|mult
-2|0|mult|8|0|mult|sub
-2|0|mult|8|2|add|mult
-2|0|mult|8|1|mult|mult
-2|0|mult|8|1|mult|sub
-2|0|mult|8|1|mult|add
-2|0|mult|8|1|sub|mult
-2|0|mult|7|5|sub|mult
-2|0|mult|8|cbrt|mult
-2|0|mult|8|cb|mult
-2|0|mult|8|sq|mult
-2|0|mult|8|sq|sub
-2|0|mult|8|sq|add
-2|0|mult|8|0|mult|mult
-2|0|mult|8|2|sub|mult
-2|0|mult|8|0|mult|add
-2|0|mult|8|0|sub|mult
-2|0|mult|8|0|add|mult
-2|0|mult|7|6|mult|mult
-2|0|mult|7|6|mult|sub
-2|0|mult|7|6|mult|add
-2|0|mult|7|6|sub|mult
-2|0|mult|7|6|add|mult
-2|0|mult|7|5|mult|mult
-2|0|mult|7|5|mult|sub
-2|0|mult|7|5|mult|add
-2|0|mult|8|1|add|mult
-2|0|mult|6|5|mult|mult
-2|0|mult|7|1|sub|mult
-2|0|mult|7|1|add|mult
-2|0|mult|7|cbrt|mult
-2|0|mult|7|cb|mult
-2|0|mult|7|sq|mult
-2|0|mult|7|sq|sub
-2|0|mult|7|sq|add
-2|0|mult|7|0|mult|mult
-2|0|mult|7|0|mult|sub
-2|0|mult|7|0|mult|add
-2|0|mult|7|0|sub|mult
-2|0|mult|7|0|add|mult
-4|2|mult|9|7|add|mult
-2|0|mult|6|5|mult|sub
-2|0|mult|6|5|mult|add
-2|0|mult|7|2|add|mult
-2|0|mult|8|4|add|mult
-2|0|mult|8|3|mult|mult
-2|0|mult|8|3|mult|sub
-2|0|mult|8|3|mult|add
-2|0|mult|8|3|sub|mult
-2|0|mult|8|3|add|mult
-2|0|mult|8|2|mult|mult
-2|0|mult|8|2|mult|sub
-2|0|mult|8|2|mult|add
-2|0|add|3|1|sub|mult
-2|0|add|4|cbrt|mult
-2|0|add|4|cb|mult
-2|0|add|4|sq|mult
-2|0|add|4|0|mult|mult
-2|0|add|3|0|mult|mult
-2|0|add|4|0|add|mult
-2|0|add|4|0|add|add
-2|0|add|3|2|mult|mult
-2|0|add|3|2|sub|mult
-2|0|add|3|2|sub|sub
-2|0|add|3|2|add|mult
-2|0|add|3|2|add|add
-2|0|add|3|1|mult|mult
-2|0|add|4|1|add|add
-2|0|add|3|1|sub|sub
-2|0|add|3|1|sub|add
-2|0|add|3|1|add|mult
-2|0|add|3|1|add|sub
-2|0|add|3|1|add|add
-2|0|add|3|cbrt|mult
-2|0|add|3|cb|mult
-2|0|add|3|sq|mult
-2|0|add|4|0|sub|mult
-2|0|add|4|0|sub|sub
-2|0|add|9|1|mult|mult
-2|0|add|9|1|sub|mult
-2|0|add|0|cbrt|mult
-4|2|mult|cbrt
-4|2|mult|cb
-4|2|mult|sq
-4|2|mult|0|mult
-2|0|add|1|cbrt|mult
-2|0|add|1|cb|mult
-2|0|add|1|sq|mult
-2|0|add|1|0|mult|mult
-2|0|add|1|0|sub|mult
-2|0|add|1|0|sub|sub
-2|0|add|1|0|add|mult
-2|0|add|1|0|add|add
-2|0|add|9|1|sub|sub
-2|0|add|0|cb|mult
-2|0|add|2|0|sub|mult
-2|0|add|4|2|sub|mult
-2|0|add|4|2|sub|sub
-2|0|add|4|2|add|mult
-2|0|add|4|2|add|add
-2|0|add|4|1|mult|mult
-2|0|add|4|1|sub|mult
-2|0|add|4|1|sub|sub
-2|0|add|4|1|sub|add
-2|0|add|4|1|add|mult
-2|0|add|4|1|add|sub
-2|0|add|9|8|sub|mult
-2|0|add|8|6|add|sub
-2|0|add|8|6|add|add
-2|0|add|8|5|mult|mult
-2|0|add|8|5|sub|mult
-2|0|add|8|5|sub|sub
-2|0|add|8|5|sub|add
-2|0|add|8|5|add|mult
-2|0|add|8|5|add|sub
-2|0|add|8|5|add|add
-2|0|add|8|4|mult|mult
-2|0|add|8|7|mult|mult
-2|0|add|9|8|mult|mult
-2|0|add|8|6|add|mult
-2|0|add|9|8|sub|sub
-2|0|add|9|8|sub|add
-2|0|add|9|8|add|mult
-2|0|add|9|8|add|sub
-2|0|add|9|8|add|add
-2|0|add|9|7|mult|mult
-2|0|add|9|7|sub|mult
-2|0|add|9|7|sub|sub
-2|0|add|9|7|sub|add
-2|0|add|9|7|add|mult
-2|0|add|9|7|add|sub
-2|0|add|9|7|add|add
-2|0|add|6|5|sub|mult
-2|0|add|9|1|sub|add
-2|0|add|9|1|add|mult
-2|0|add|9|1|add|sub
-2|0|add|9|1|add|add
-2|0|add|9|cbrt|mult
-2|0|add|9|cb|mult
-2|0|add|9|sq|mult
-2|0|add|9|0|mult|mult
-2|0|add|9|0|sub|mult
-2|0|add|9|0|sub|sub
-2|0|add|9|0|add|mult
-2|0|add|9|0|add|add
-4|2|mult|1|mult
-2|0|add|6|5|sub|sub
-2|0|add|6|5|sub|add
-2|0|add|8|7|sub|mult
-2|0|add|8|7|sub|sub
-2|0|add|8|7|sub|add
-2|0|add|8|7|add|mult
-2|0|add|8|7|add|sub
-2|0|add|8|7|add|add
-2|0|add|8|6|mult|mult
-2|0|add|8|6|sub|mult
-2|0|add|8|6|sub|sub
-2|0|add|8|6|sub|add
-4|2|mult|7|2|mult|add
-4|2|mult|7|4|mult|mult
-4|2|mult|7|4|mult|sub
-4|2|mult|7|4|mult|add
-4|2|mult|7|4|sub|mult
-4|2|mult|7|4|add|mult
-4|2|mult|7|3|mult|mult
-4|2|mult|7|3|mult|sub
-4|2|mult|7|3|mult|add
-4|2|mult|7|3|sub|mult
-4|2|mult|7|3|add|mult
-4|2|mult|7|2|mult|mult
-4|2|mult|7|2|mult|sub
-4|2|mult|7|5|add|mult
-4|2|mult|7|2|sub|mult
-4|2|mult|8|4|sub|mult
-4|2|mult|7|1|mult|mult
-4|2|mult|7|1|mult|sub
-4|2|mult|7|1|mult|add
-4|2|mult|7|1|sub|mult
-4|2|mult|7|1|add|mult
-4|2|mult|7|cbrt|mult
-4|2|mult|7|cb|mult
-4|2|mult|7|sq|mult
-4|2|mult|7|sq|sub
-4|2|mult|7|sq|add
-4|2|mult|9|4|add|mult
-4|2|mult|9|6|mult|mult
-4|2|mult|9|6|mult|sub
-4|2|mult|9|6|mult|add
-4|2|mult|9|6|sub|mult
-4|2|mult|9|6|add|mult
-4|2|mult|9|2|add|mult
-4|2|mult|9|5|sub|mult
-4|2|mult|9|5|add|mult
-4|2|mult|9|4|mult|mult
-4|2|mult|9|4|mult|sub
-4|2|mult|9|4|mult|add
-4|2|mult|9|4|sub|mult
-4|2|mult|7|0|mult|mult
-4|2|mult|9|3|mult|mult
-4|2|mult|9|3|mult|sub
-4|2|mult|9|3|mult|add
-4|2|mult|9|3|sub|mult
-4|2|mult|9|3|add|mult
-4|2|mult|9|2|mult|mult
-4|2|mult|9|2|mult|sub
-4|2|mult|9|2|mult|add
-4|2|mult|9|2|sub|mult
-4|2|mult|9|5|mult|mult
-4|2|mult|9|5|mult|sub
-4|2|mult|9|5|mult|add
-4|2|mult|7|6|add|mult
-4|2|mult|8|sq|mult
-4|2|mult|8|sq|sub
-4|2|mult|8|sq|add
-4|2|mult|8|0|mult|mult
-4|2|mult|8|0|mult|sub
-4|2|mult|8|0|mult|add
-4|2|mult|8|0|sub|mult
-4|2|mult|8|0|add|mult
-4|2|mult|7|6|mult|mult
-4|2|mult|7|6|mult|sub
-4|2|mult|7|6|mult|add
-4|2|mult|7|6|sub|mult
-4|2|mult|8|cb|mult
-4|2|mult|7|5|mult|mult
-4|2|mult|7|5|mult|sub
-4|2|mult|7|5|mult|add
-4|2|mult|8|1|add|mult
-4|2|mult|9|mult
-4|2|mult|8|mult
-4|2|mult|7|mult
-4|2|mult|6|mult
-4|2|mult|5|mult
-4|2|mult|4|mult
-4|2|mult|3|mult
-4|2|mult|2|mult
-4|2|mult|8|3|sub|mult
-4|2|mult|7|0|mult|sub
-4|2|mult|7|0|mult|add
-4|2|mult|7|0|sub|mult
-4|2|mult|7|0|add|mult
-4|2|mult|6|5|mult|mult
-4|2|mult|6|5|mult|sub
-4|2|mult|6|5|mult|add
-4|2|mult|7|2|add|mult
-4|2|mult|8|4|add|mult
-4|2|mult|8|3|mult|mult
-4|2|mult|8|3|mult|sub
-4|2|mult|8|3|mult|add
-2|0|mult|9|8|mult|sub
-4|2|mult|8|3|add|mult
-4|2|mult|8|2|mult|mult
-4|2|mult|8|2|mult|sub
-4|2|mult|8|2|mult|add
-4|2|mult|8|2|sub|mult
-4|2|mult|8|2|add|mult
-4|2|mult|8|1|mult|mult
-4|2|mult|8|1|mult|sub
-4|2|mult|8|1|mult|add
-4|2|mult|8|1|sub|mult
-4|2|mult|7|5|sub|mult
-4|2|mult|8|cbrt|mult
-2|sq|1|0|mult|sub
-2|cb|0|mult
-2|sq|2|0|mult|mult
-2|sq|2|0|mult|sub
-2|sq|2|0|mult|add
-2|sq|4|2|mult|mult
-2|sq|4|2|mult|sub
-2|sq|4|2|mult|add
-2|sq|2|0|add|mult
-2|sq|1|cbrt|mult
-2|sq|1|cb|mult
-2|sq|1|sq|sub
-2|sq|1|sq|add
-2|sq|1|0|mult|mult
-2|cb|sq
-2|sq|1|0|mult|add
-2|sq|1|0|sub|mult
-2|sq|1|0|add|mult
-2|sq|0|cbrt|mult
-2|sq|0|cb|mult
-2|sq|2|0|sub|mult
-2|sq|4|2|sub|mult
-2|sq|4|2|add|mult
-2|sq|4|1|mult|mult
-2|sq|4|1|mult|sub
-2|sq|4|1|mult|add
-2|sq|4|1|sub|mult
-2|cb|7|6|sub|mult
-2|cb|8|2|add|mult
-2|cb|8|1|mult|mult
-2|cb|8|1|sub|mult
-2|cb|7|5|sub|mult
-2|cb|8|cbrt|mult
-2|cb|8|cb|sub
-2|cb|8|cb|add
-2|cb|8|sq|mult
-2|cb|8|0|mult|mult
-2|cb|8|0|sub|mult
-2|cb|8|0|add|mult
-2|cb|7|6|mult|mult
-2|sq|4|1|add|mult
-2|cb|7|6|add|mult
-2|cb|7|5|mult|mult
-2|cb|8|1|add|mult
-2|cb|9|mult
-2|cb|8|mult
-2|cb|7|mult
-2|cb|6|mult
-2|cb|5|mult
-2|cb|4|mult
-2|cb|3|mult
-2|cb|1|mult
-2|cb|cb
-2|sq|9|0|sub|mult
-2|sq|9|1|mult|mult
-2|sq|9|1|mult|sub
-2|sq|9|1|mult|add
-2|sq|9|1|sub|mult
-2|sq|9|1|add|mult
-2|sq|9|cbrt|mult
-2|sq|9|cb|mult
-2|sq|9|sq|sub
-2|sq|9|sq|add
-2|sq|9|0|mult|mult
-2|sq|9|0|mult|sub
-2|sq|9|0|mult|add
-2|sq|4|0|sub|mult
-2|sq|9|0|add|mult
-2|sq|6|5|sub|mult
-2|sq|8|7|sub|mult
-2|sq|8|7|add|mult
-2|sq|8|6|mult|mult
-2|sq|8|6|mult|sub
-2|sq|8|6|mult|add
-2|sq|8|6|sub|mult
-2|sq|8|6|add|mult
-2|sq|8|5|mult|mult
-2|sq|8|5|mult|sub
-2|sq|8|5|mult|add
-2|sq|3|2|mult|sub
-2|sq|4|cbrt|mult
-2|sq|4|cb|mult
-2|sq|4|sq|sub
-2|sq|4|sq|add
-2|sq|4|0|mult|mult
-2|sq|4|0|mult|sub
-2|sq|4|0|mult|add
-2|sq|3|0|mult|mult
-2|sq|3|0|mult|sub
-2|sq|3|0|mult|add
-2|sq|4|0|add|mult
-2|sq|3|2|mult|mult
-2|cb|8|2|sub|mult
-2|sq|3|2|mult|add
-2|sq|3|2|sub|mult
-2|sq|3|2|add|mult
-2|sq|3|1|mult|mult
-2|sq|3|1|mult|sub
-2|sq|3|1|mult|add
-2|sq|3|1|sub|mult
-2|sq|3|1|add|mult
-2|sq|3|cbrt|mult
-2|sq|3|cb|mult
-2|sq|3|sq|sub
-2|sq|3|sq|add
-2|cb|9|cb|sub
-2|cb|3|1|mult|mult
-2|cb|3|1|sub|mult
-2|cb|3|1|add|mult
-2|cb|3|cbrt|mult
-2|cb|3|cb|sub
-2|cb|3|cb|add
-2|cb|3|sq|mult
-2|cb|4|0|sub|mult
-2|cb|9|1|mult|mult
-2|cb|9|1|sub|mult
-2|cb|9|1|add|mult
-2|cb|9|cbrt|mult
-2|cb|3|2|add|mult
-2|cb|9|cb|add
-2|cb|9|sq|mult
-2|cb|9|0|mult|mult
-2|cb|9|0|sub|mult
-2|cb|9|0|add|mult
-2|cb|6|5|sub|mult
-2|cb|8|7|sub|mult
-2|cb|8|7|add|mult
-2|cb|8|6|mult|mult
-2|cb|8|6|sub|mult
-2|cb|8|6|add|mult
-2|cb|8|5|mult|mult
-2|cb|4|2|add|mult
-2|cb|1|cbrt|mult
-2|cb|1|cb|sub
-2|cb|1|cb|add
-2|cb|1|sq|mult
-2|cb|1|0|mult|mult
-2|cb|1|0|sub|mult
-2|cb|1|0|add|mult
-2|cb|0|cbrt|mult
-2|cb|0|cb|sub
-2|cb|0|cb|add
-2|cb|2|0|sub|mult
-2|cb|4|2|sub|mult
-2|cb|8|5|sub|mult
-2|cb|4|1|mult|mult
-2|cb|4|1|sub|mult
-2|cb|4|1|add|mult
-2|cb|4|cbrt|mult
-2|cb|4|cb|sub
-2|cb|4|cb|add
-2|cb|4|sq|mult
-2|cb|4|0|mult|mult
-2|cb|3|0|mult|mult
-2|cb|4|0|add|mult
-2|cb|3|2|mult|mult
-2|cb|3|2|sub|mult
-2|cb|7|cb|sub
-2|cb|7|4|sub|mult
-2|cb|7|4|add|mult
-2|cb|7|3|mult|mult
-2|cb|7|3|sub|mult
-2|cb|7|3|add|mult
-2|cb|7|2|mult|mult
-2|cb|7|2|sub|mult
-2|cb|8|4|sub|mult
-2|cb|7|1|mult|mult
-2|cb|7|1|sub|mult
-2|cb|7|1|add|mult
-2|cb|7|cbrt|mult
-2|cb|7|4|mult|mult
-2|cb|7|cb|add
-2|cb|7|sq|mult
-2|cb|7|0|mult|mult
-2|cb|7|0|sub|mult
-2|cb|7|0|add|mult
-2|cb|6|5|mult|mult
-2|cb|7|2|add|mult
-2|cb|8|4|add|mult
-2|cb|8|3|mult|mult
-2|cb|8|3|sub|mult
-2|cb|8|3|add|mult
-2|cb|8|2|mult|mult
-2|cb|9|2|add|mult
-2|cb|8|5|add|mult
-2|cb|8|4|mult|mult
-2|cb|8|7|mult|mult
-2|cb|9|8|mult|mult
-2|cb|9|8|sub|mult
-2|cb|9|8|add|mult
-2|cb|9|7|mult|mult
-2|cb|9|7|sub|mult
-2|cb|9|7|add|mult
-2|cb|9|6|mult|mult
-2|cb|9|6|sub|mult
-2|cb|9|6|add|mult
-2|sq|8|5|sub|mult
-2|cb|9|5|sub|mult
-2|cb|9|5|add|mult
-2|cb|9|4|mult|mult
-2|cb|9|4|sub|mult
-2|cb|9|4|add|mult
-2|cb|9|3|mult|mult
-2|cb|9|3|sub|mult
-2|cb|9|3|add|mult
-2|cb|9|2|mult|mult
-2|cb|9|2|sub|mult
-2|cb|9|5|mult|mult
-2|cb|7|5|add|mult
-2|0|mult|4|1|sub|mult
-2|0|mult|1|0|mult|sub
-2|0|mult|1|0|mult|add
-2|0|mult|1|0|sub|mult
-2|0|mult|1|0|add|mult
-2|0|mult|0|cbrt|mult
-2|0|mult|0|cb|mult
-2|0|mult|2|0|sub|mult
-2|0|mult|4|2|sub|mult
-2|0|mult|4|2|add|mult
-2|0|mult|4|1|mult|mult
-2|0|mult|4|1|mult|sub
-2|0|mult|4|1|mult|add
-2|0|mult|1|0|mult|mult
-2|0|mult|4|1|add|mult
-2|0|mult|4|cbrt|mult
-2|0|mult|4|cb|mult
-2|0|mult|4|sq|mult
-2|0|mult|4|sq|sub
-2|0|mult|4|sq|add
-2|0|mult|4|0|mult|mult
-2|0|mult|4|0|mult|sub
-2|0|mult|4|0|mult|add
-2|0|mult|3|0|mult|mult
-2|0|mult|3|0|mult|sub
-2|0|mult|3|0|mult|add
-2|sq|3|mult
-2|sq|7|6|sub|mult
-2|sq|7|6|add|mult
-2|sq|7|5|mult|mult
-2|sq|7|5|mult|sub
-2|sq|7|5|mult|add
-2|sq|8|1|add|mult
-2|sq|9|mult
-2|sq|8|mult
-2|sq|7|mult
-2|sq|6|mult
-2|sq|5|mult
-2|sq|4|mult
-2|0|mult|4|0|add|mult
-2|sq|1|mult
-2|sq|sq
-2|sq|0|mult
-2|0|mult|4|2|mult|mult
-2|0|mult|4|2|mult|sub
-2|0|mult|4|2|mult|add
-2|0|mult|2|0|add|mult
-2|0|mult|1|cbrt|mult
-2|0|mult|1|cb|mult
-2|0|mult|1|sq|mult
-2|0|mult|1|sq|sub
-2|0|mult|1|sq|add
-2|0|mult|8|6|add|mult
-2|0|mult|9|0|mult|mult
-2|0|mult|9|0|mult|sub
-2|0|mult|9|0|mult|add
-2|0|mult|9|0|sub|mult
-2|0|mult|9|0|add|mult
-2|0|mult|6|5|sub|mult
-2|0|mult|8|7|sub|mult
-2|0|mult|8|7|add|mult
-2|0|mult|8|6|mult|mult
-2|0|mult|8|6|mult|sub
-2|0|mult|8|6|mult|add
-2|0|mult|8|6|sub|mult
-2|0|mult|9|sq|add
-2|0|mult|8|5|mult|mult
-2|0|mult|8|5|mult|sub
-2|0|mult|8|5|mult|add
-2|0|mult|8|5|sub|mult
-2|0|mult|8|5|add|mult
-2|0|mult|8|4|mult|mult
-2|0|mult|8|4|mult|sub
-2|0|mult|8|4|mult|add
-2|0|mult|8|7|mult|mult
-2|0|mult|8|7|mult|sub
-2|0|mult|8|7|mult|add
-2|0|mult|9|8|mult|mult
-2|0|mult|3|sq|mult
-2|0|mult|3|2|mult|mult
-2|0|mult|3|2|mult|sub
-2|0|mult|3|2|mult|add
-2|0|mult|3|2|sub|mult
-2|0|mult|3|2|add|mult
-2|0|mult|3|1|mult|mult
-2|0|mult|3|1|mult|sub
-2|0|mult|3|1|mult|add
-2|0|mult|3|1|sub|mult
-2|0|mult|3|1|add|mult
-2|0|mult|3|cbrt|mult
-2|0|mult|3|cb|mult
-2|sq|7|6|mult|add
-2|0|mult|3|sq|sub
-2|0|mult|3|sq|add
-2|0|mult|4|0|sub|mult
-2|0|mult|9|1|mult|mult
-2|0|mult|9|1|mult|sub
-2|0|mult|9|1|mult|add
-2|0|mult|9|1|sub|mult
-2|0|mult|9|1|add|mult
-2|0|mult|9|cbrt|mult
-2|0|mult|9|cb|mult
-2|0|mult|9|sq|mult
-2|0|mult|9|sq|sub
-2|sq|9|2|sub|mult
-2|sq|9|4|mult|sub
-2|sq|9|4|mult|add
-2|sq|9|4|sub|mult
-2|sq|9|4|add|mult
-2|sq|9|3|mult|mult
-2|sq|9|3|mult|sub
-2|sq|9|3|mult|add
-2|sq|9|3|sub|mult
-2|sq|9|3|add|mult
-2|sq|9|2|mult|mult
-2|sq|9|2|mult|sub
-2|sq|9|2|mult|add
-2|sq|9|4|mult|mult
-2|sq|9|5|mult|mult
-2|sq|9|5|mult|sub
-2|sq|9|5|mult|add
-2|sq|7|5|add|mult
-2|sq|7|4|mult|mult
-2|sq|7|4|mult|sub
-2|sq|7|4|mult|add
-2|sq|7|4|sub|mult
-2|sq|7|4|add|mult
-2|sq|7|3|mult|mult
-2|sq|7|3|mult|sub
-2|sq|7|3|mult|add
-2|sq|9|7|mult|mult
-2|sq|8|5|add|mult
-2|sq|8|4|mult|mult
-2|sq|8|4|mult|sub
-2|sq|8|4|mult|add
-2|sq|8|7|mult|mult
-2|sq|8|7|mult|sub
-2|sq|8|7|mult|add
-2|sq|9|8|mult|mult
-2|sq|9|8|mult|sub
-2|sq|9|8|mult|add
-2|sq|9|8|sub|mult
-2|sq|9|8|add|mult
-2|sq|7|3|sub|mult
-2|sq|9|7|mult|sub
-2|sq|9|7|mult|add
-2|sq|9|7|sub|mult
-2|sq|9|7|add|mult
-2|sq|9|6|mult|mult
-2|sq|9|6|mult|sub
-2|sq|9|6|mult|add
-2|sq|9|6|sub|mult
-2|sq|9|6|add|mult
-2|sq|9|2|add|mult
-2|sq|9|5|sub|mult
-2|sq|9|5|add|mult
-2|sq|8|1|sub|mult
-2|sq|8|3|mult|sub
-2|sq|8|3|mult|add
-2|sq|8|3|sub|mult
-2|sq|8|3|add|mult
-2|sq|8|2|mult|mult
-2|sq|8|2|mult|sub
-2|sq|8|2|mult|add
-2|sq|8|2|sub|mult
-2|sq|8|2|add|mult
-2|sq|8|1|mult|mult
-2|sq|8|1|mult|sub
-2|sq|8|1|mult|add
-2|sq|8|3|mult|mult
-2|sq|7|5|sub|mult
-2|sq|8|cbrt|mult
-2|sq|8|cb|mult
-2|sq|8|sq|sub
-2|sq|8|sq|add
-2|sq|8|0|mult|mult
-2|sq|8|0|mult|sub
-2|sq|8|0|mult|add
-2|sq|8|0|sub|mult
-2|sq|8|0|add|mult
-2|sq|7|6|mult|mult
-2|sq|7|6|mult|sub
-2|sq|7|cb|mult
-2|sq|7|3|add|mult
-2|sq|7|2|mult|mult
-2|sq|7|2|mult|sub
-2|sq|7|2|mult|add
-2|sq|7|2|sub|mult
-2|sq|8|4|sub|mult
-2|sq|7|1|mult|mult
-2|sq|7|1|mult|sub
-2|sq|7|1|mult|add
-2|sq|7|1|sub|mult
-2|sq|7|1|add|mult
-2|sq|7|cbrt|mult
-2|1|mult|2|0|sub|mult
-2|sq|7|sq|sub
-2|sq|7|sq|add
-2|sq|7|0|mult|mult
-2|sq|7|0|mult|sub
-2|sq|7|0|mult|add
-2|sq|7|0|sub|mult
-2|sq|7|0|add|mult
-2|sq|6|5|mult|mult
-2|sq|6|5|mult|sub
-2|sq|6|5|mult|add
-2|sq|7|2|add|mult
-2|sq|8|4|add|mult
-6|0|add|8|4|add|mult
-6|0|add|7|1|add|add
-6|0|add|7|cbrt|mult
-6|0|add|7|cb|mult
-6|0|add|7|sq|mult
-6|0|add|7|0|mult|mult
-6|0|add|7|0|sub|mult
-6|0|add|7|0|sub|sub
-6|0|add|7|0|add|mult
-6|0|add|7|0|add|add
-6|0|add|6|5|mult|mult
-6|0|add|7|2|add|mult
-6|0|add|7|2|add|sub
-6|0|add|7|2|add|add
-6|0|add|7|1|add|sub
-6|0|add|8|4|add|sub
-6|0|add|8|4|add|add
-6|0|add|8|3|mult|mult
-6|0|add|8|3|sub|mult
-6|0|add|8|3|sub|sub
-6|0|add|8|3|sub|add
-6|0|add|8|3|add|mult
-6|0|add|8|3|add|sub
-6|0|add|8|3|add|add
-6|0|add|8|2|mult|mult
-6|0|add|8|2|sub|mult
-6|0|add|8|2|sub|sub
-6|0|add|7|3|add|add
-6|0|add|7|4|sub|mult
-6|0|add|7|4|sub|sub
-6|0|add|7|4|sub|add
-6|0|add|7|4|add|mult
-6|0|add|7|4|add|sub
-6|0|add|7|4|add|add
-6|0|add|7|3|mult|mult
-6|0|add|7|3|sub|mult
-6|0|add|7|3|sub|sub
-6|0|add|7|3|sub|add
-6|0|add|7|3|add|mult
-6|0|add|7|3|add|sub
-6|0|add|8|2|sub|add
-6|0|add|7|2|mult|mult
-6|0|add|7|2|sub|mult
-6|0|add|7|2|sub|sub
-6|0|add|7|2|sub|add
-6|0|add|8|4|sub|mult
-6|0|add|8|4|sub|sub
-6|0|add|8|4|sub|add
-6|0|add|7|1|mult|mult
-6|0|add|7|1|sub|mult
-6|0|add|7|1|sub|sub
-6|0|add|7|1|sub|add
-6|0|add|7|1|add|mult
-6|0|add|5|mult
-6|0|add|8|1|add|add
-6|0|add|9|mult
-6|0|add|9|sub
-6|0|add|9|add
-6|0|add|8|mult
-6|0|add|8|sub
-6|0|add|8|add
-6|0|add|7|mult
-6|0|add|7|sub
-6|0|add|7|add
-6|0|add|6|mult
-6|0|add|6|add
-6|0|add|8|1|add|sub
-6|0|add|5|sub
-6|0|add|5|add
-6|0|add|4|mult
-6|0|add|4|sub
-6|0|add|4|add
-6|0|add|3|mult
-6|0|add|3|sub
-6|0|add|3|add
-6|0|add|2|mult
-6|0|add|2|sub
-6|0|add|2|add
-6|0|add|1|mult
-6|0|add|8|sq|mult
-6|0|add|8|2|add|mult
-6|0|add|8|2|add|sub
-6|0|add|8|2|add|add
-6|0|add|8|1|mult|mult
-6|0|add|8|1|sub|mult
-6|0|add|8|1|sub|sub
-6|0|add|8|1|sub|add
-6|0|add|7|5|sub|mult
-6|0|add|7|5|sub|sub
-6|0|add|7|5|sub|add
-6|0|add|8|cbrt|mult
-6|0|add|8|cb|mult
-6|0|add|7|4|mult|mult
-6|0|add|8|0|mult|mult
-6|0|add|8|0|sub|mult
-6|0|add|8|0|sub|sub
-6|0|add|8|0|add|mult
-6|0|add|8|0|add|add
-6|0|add|7|6|mult|mult
-6|0|add|7|6|sub|mult
-6|0|add|7|6|sub|sub
-6|0|add|7|6|add|mult
-6|0|add|7|6|add|add
-6|0|add|7|5|mult|mult
-6|0|add|8|1|add|mult
-6|0|add|8|7|add|add
-6|0|add|9|0|mult|mult
-6|0|add|9|0|sub|mult
-6|0|add|9|0|sub|sub
-6|0|add|9|0|add|mult
-6|0|add|9|0|add|add
-6|0|add|6|5|sub|mult
-6|0|add|6|5|sub|add
-6|0|add|8|7|sub|mult
-6|0|add|8|7|sub|sub
-6|0|add|8|7|sub|add
-6|0|add|8|7|add|mult
-6|0|add|8|7|add|sub
-6|0|add|9|sq|mult
-6|0|add|8|6|mult|mult
-6|0|add|8|6|sub|mult
-6|0|add|8|6|sub|sub
-6|0|add|8|6|add|mult
-6|0|add|8|6|add|add
-6|0|add|8|5|mult|mult
-6|0|add|8|5|sub|mult
-6|0|add|8|5|sub|sub
-6|0|add|8|5|sub|add
-6|0|add|8|5|add|mult
-6|0|add|8|5|add|sub
-6|0|add|8|5|add|add
-6|0|add|3|cb|mult
-6|0|add|3|2|sub|add
-6|0|add|3|2|add|mult
-6|0|add|3|2|add|sub
-6|0|add|3|2|add|add
-6|0|add|3|1|mult|mult
-6|0|add|3|1|sub|mult
-6|0|add|3|1|sub|sub
-6|0|add|3|1|sub|add
-6|0|add|3|1|add|mult
-6|0|add|3|1|add|sub
-6|0|add|3|1|add|add
-6|0|add|3|cbrt|mult
-6|0|add|8|4|mult|mult
-6|0|add|3|sq|mult
-6|0|add|4|0|sub|mult
-6|0|add|4|0|sub|sub
-6|0|add|9|1|mult|mult
-6|0|add|9|1|sub|mult
-6|0|add|9|1|sub|sub
-6|0|add|9|1|sub|add
-6|0|add|9|1|add|mult
-6|0|add|9|1|add|sub
-6|0|add|9|1|add|add
-6|0|add|9|cbrt|mult
-6|0|add|9|cb|mult
-6|0|add|9|3|sub|sub
-6|0|add|9|5|add|mult
-6|0|add|9|5|add|sub
-6|0|add|9|5|add|add
-6|0|add|9|4|mult|mult
-6|0|add|9|4|sub|mult
-6|0|add|9|4|sub|sub
-6|0|add|9|4|sub|add
-6|0|add|9|4|add|mult
-6|0|add|9|4|add|sub
-6|0|add|9|4|add|add
-6|0|add|9|3|mult|mult
-6|0|add|9|3|sub|mult
-6|0|add|9|5|sub|add
-6|0|add|9|3|sub|add
-6|0|add|9|3|add|mult
-6|0|add|9|3|add|sub
-6|0|add|9|3|add|add
-6|0|add|9|2|mult|mult
-6|0|add|9|2|sub|mult
-6|0|add|9|2|sub|sub
-6|0|add|9|2|sub|add
-6|0|add|9|5|mult|mult
-6|0|add|7|5|add|mult
-6|0|add|7|5|add|sub
-6|0|add|7|5|add|add
-6|0|add|9|7|add|mult
-6|0|add|8|7|mult|mult
-6|0|add|9|8|mult|mult
-6|0|add|9|8|sub|mult
-6|0|add|9|8|sub|sub
-6|0|add|9|8|sub|add
-6|0|add|9|8|add|mult
-6|0|add|9|8|add|sub
-6|0|add|9|8|add|add
-6|0|add|9|7|mult|mult
-6|0|add|9|7|sub|mult
-6|0|add|9|7|sub|sub
-6|0|add|9|7|sub|add
-6|0|add|1|sub
-6|0|add|9|7|add|sub
-6|0|add|9|7|add|add
-6|0|add|9|6|mult|mult
-6|0|add|9|6|sub|mult
-6|0|add|9|6|sub|sub
-6|0|add|9|6|add|mult
-6|0|add|9|6|add|add
-6|0|add|9|2|add|mult
-6|0|add|9|2|add|sub
-6|0|add|9|2|add|add
-6|0|add|9|5|sub|mult
-6|0|add|9|5|sub|sub
-5|4|mult|7|5|add|mult
-5|4|mult|9|4|add|mult
-5|4|mult|9|3|mult|mult
-5|4|mult|9|3|mult|sub
-5|4|mult|9|3|mult|add
-5|4|mult|9|3|sub|mult
-5|4|mult|9|3|add|mult
-5|4|mult|9|2|mult|mult
-5|4|mult|9|2|mult|sub
-5|4|mult|9|2|mult|add
-5|4|mult|9|2|sub|mult
-5|4|mult|9|5|mult|mult
-5|4|mult|9|5|mult|sub
-5|4|mult|9|5|mult|add
-5|4|mult|9|4|sub|mult
-5|4|mult|7|4|mult|mult
-5|4|mult|7|4|mult|sub
-5|4|mult|7|4|mult|add
-5|4|mult|7|4|sub|mult
-5|4|mult|7|4|add|mult
-5|4|mult|7|3|mult|mult
-5|4|mult|7|3|mult|sub
-5|4|mult|7|3|mult|add
-5|4|mult|7|3|sub|mult
-5|4|mult|7|3|add|mult
-5|4|mult|7|2|mult|mult
-5|4|mult|7|2|mult|sub
-5|4|mult|9|7|sub|mult
-5|4|mult|8|4|mult|add
-5|4|mult|8|7|mult|mult
-5|4|mult|8|7|mult|sub
-5|4|mult|8|7|mult|add
-5|4|mult|9|8|mult|mult
-5|4|mult|9|8|mult|sub
-5|4|mult|9|8|mult|add
-5|4|mult|9|8|sub|mult
-5|4|mult|9|8|add|mult
-5|4|mult|9|7|mult|mult
-5|4|mult|9|7|mult|sub
-5|4|mult|9|7|mult|add
-5|4|mult|7|2|mult|add
-5|4|mult|9|7|add|mult
-5|4|mult|9|6|mult|mult
-5|4|mult|9|6|mult|sub
-5|4|mult|9|6|mult|add
-5|4|mult|9|6|sub|mult
-5|4|mult|9|6|add|mult
-5|4|mult|9|2|add|mult
-5|4|mult|9|5|sub|mult
-5|4|mult|9|5|add|mult
-5|4|mult|9|4|mult|mult
-5|4|mult|9|4|mult|sub
-5|4|mult|9|4|mult|add
-5|4|mult|8|cb|mult
-5|4|mult|8|3|add|mult
-5|4|mult|8|2|mult|mult
-5|4|mult|8|2|mult|sub
-5|4|mult|8|2|mult|add
-5|4|mult|8|2|sub|mult
-5|4|mult|8|2|add|mult
-5|4|mult|8|1|mult|mult
-5|4|mult|8|1|mult|sub
-5|4|mult|8|1|mult|add
-5|4|mult|8|1|sub|mult
-5|4|mult|7|5|sub|mult
-5|4|mult|8|cbrt|mult
-5|4|mult|8|3|sub|mult
-5|4|mult|8|sq|mult
-5|4|mult|8|sq|sub
-5|4|mult|8|sq|add
-5|4|mult|8|0|mult|mult
-5|4|mult|8|0|mult|sub
-5|4|mult|8|0|mult|add
-5|4|mult|8|0|sub|mult
-5|4|mult|8|0|add|mult
-5|4|mult|7|6|mult|mult
-5|4|mult|7|6|mult|sub
-5|4|mult|7|6|mult|add
-5|4|mult|7|6|sub|mult
-5|4|mult|7|0|mult|mult
-5|4|mult|7|2|sub|mult
-5|4|mult|8|4|sub|mult
-5|4|mult|7|1|mult|mult
-5|4|mult|7|1|mult|sub
-5|4|mult|7|1|mult|add
-5|4|mult|7|1|sub|mult
-5|4|mult|7|1|add|mult
-5|4|mult|7|cbrt|mult
-5|4|mult|7|cb|mult
-5|4|mult|7|sq|mult
-5|4|mult|7|sq|sub
-5|4|mult|7|sq|add
-5|4|mult|8|4|mult|sub
-5|4|mult|7|0|mult|sub
-5|4|mult|7|0|mult|add
-5|4|mult|7|0|sub|mult
-5|4|mult|7|0|add|mult
-5|4|mult|6|5|mult|mult
-5|4|mult|6|5|mult|sub
-5|4|mult|6|5|mult|add
-5|4|mult|7|2|add|mult
-5|4|mult|8|4|add|mult
-5|4|mult|8|3|mult|mult
-5|4|mult|8|3|mult|sub
-5|4|mult|8|3|mult|add
-5|4|mult|2|0|sub|mult
-5|4|mult|1|cbrt|mult
-5|4|mult|1|cb|mult
-5|4|mult|1|sq|mult
-5|4|mult|1|sq|sub
-5|4|mult|1|sq|add
-5|4|mult|1|0|mult|mult
-5|4|mult|1|0|mult|sub
-5|4|mult|1|0|mult|add
-5|4|mult|1|0|sub|mult
-5|4|mult|1|0|add|mult
-5|4|mult|0|cbrt|mult
-5|4|mult|0|cb|mult
-5|4|mult|2|0|add|mult
-5|4|mult|4|2|sub|mult
-5|4|mult|4|2|add|mult
-5|4|mult|4|1|mult|mult
-5|4|mult|4|1|mult|sub
-5|4|mult|4|1|mult|add
-5|4|mult|4|1|sub|mult
-5|4|mult|4|1|add|mult
-5|4|mult|4|cbrt|mult
-5|4|mult|4|cb|mult
-5|4|mult|4|sq|mult
-5|4|mult|4|sq|sub
-5|4|mult|4|sq|add
-5|4|mult|2|1|sub|mult
-6|0|add|1|add
-6|0|add|cbrt
-6|0|add|cb
-6|0|add|sq
-6|0|add|0|mult
-6|0|add|0|add
-5|4|mult|6|2|add|mult
-5|4|mult|3|0|sub|mult
-5|4|mult|3|0|add|mult
-5|4|mult|2|1|mult|mult
-5|4|mult|2|1|mult|sub
-5|4|mult|2|1|mult|add
-5|4|mult|4|0|mult|mult
-5|4|mult|2|1|add|mult
-5|4|mult|2|cbrt|mult
-5|4|mult|2|cb|mult
-5|4|mult|2|sq|mult
-5|4|mult|2|sq|sub
-5|4|mult|2|sq|add
-5|4|mult|2|0|mult|mult
-5|4|mult|2|0|mult|sub
-5|4|mult|2|0|mult|add
-5|4|mult|4|2|mult|mult
-5|4|mult|4|2|mult|sub
-5|4|mult|4|2|mult|add
-5|4|mult|8|7|sub|mult
-5|4|mult|9|1|add|mult
-5|4|mult|9|cbrt|mult
-5|4|mult|9|cb|mult
-5|4|mult|9|sq|mult
-5|4|mult|9|sq|sub
-5|4|mult|9|sq|add
-5|4|mult|9|0|mult|mult
-5|4|mult|9|0|mult|sub
-5|4|mult|9|0|mult|add
-5|4|mult|9|0|sub|mult
-5|4|mult|9|0|add|mult
-5|4|mult|6|5|sub|mult
-5|4|mult|9|1|sub|mult
-5|4|mult|8|7|add|mult
-5|4|mult|8|6|mult|mult
-5|4|mult|8|6|mult|sub
-5|4|mult|8|6|mult|add
-5|4|mult|8|6|sub|mult
-5|4|mult|8|6|add|mult
-5|4|mult|8|5|mult|mult
-5|4|mult|8|5|mult|sub
-5|4|mult|8|5|mult|add
-5|4|mult|8|5|sub|mult
-5|4|mult|8|5|add|mult
-5|4|mult|8|4|mult|mult
-5|4|mult|3|1|mult|sub
-5|4|mult|4|0|mult|sub
-5|4|mult|4|0|mult|add
-5|4|mult|3|0|mult|mult
-5|4|mult|3|0|mult|sub
-5|4|mult|3|0|mult|add
-5|4|mult|4|0|add|mult
-5|4|mult|3|2|mult|mult
-5|4|mult|3|2|mult|sub
-5|4|mult|3|2|mult|add
-5|4|mult|3|2|sub|mult
-5|4|mult|3|2|add|mult
-5|4|mult|3|1|mult|mult
-6|0|add|3|2|sub|sub
-5|4|mult|3|1|mult|add
-5|4|mult|3|1|sub|mult
-5|4|mult|3|1|add|mult
-5|4|mult|3|cbrt|mult
-5|4|mult|3|cb|mult
-5|4|mult|3|sq|mult
-5|4|mult|3|sq|sub
-5|4|mult|3|sq|add
-5|4|mult|4|0|sub|mult
-5|4|mult|9|1|mult|mult
-5|4|mult|9|1|mult|sub
-5|4|mult|9|1|mult|add
-6|0|sub|4|0|add|sub
-6|0|sub|4|1|mult|mult
-6|0|sub|4|1|sub|mult
-6|0|sub|4|1|sub|sub
-6|0|sub|4|1|sub|add
-6|0|sub|4|1|add|mult
-6|0|sub|4|1|add|sub
-6|0|sub|4|1|add|add
-6|0|sub|4|cbrt|mult
-6|0|sub|4|cb|mult
-6|0|sub|4|sq|mult
-6|0|sub|4|0|mult|mult
-6|0|sub|3|0|mult|mult
-6|0|sub|4|0|add|mult
-6|0|sub|4|2|add|add
-6|0|sub|3|2|mult|mult
-6|0|sub|3|2|sub|mult
-6|0|sub|3|2|sub|sub
-6|0|sub|3|2|sub|add
-6|0|sub|3|2|add|mult
-6|0|sub|3|2|add|sub
-6|0|sub|3|2|add|add
-6|0|sub|3|1|mult|mult
-6|0|sub|3|1|sub|mult
-6|0|sub|3|1|sub|sub
-6|0|sub|3|1|sub|add
-6|0|sub|3|1|add|mult
-6|0|sub|1|0|sub|mult
-6|0|sub|2|1|add|add
-6|0|sub|2|cbrt|mult
-6|0|sub|2|cb|mult
-6|0|sub|2|sq|mult
-6|0|sub|2|0|mult|mult
-6|0|sub|4|2|mult|mult
-6|0|sub|2|0|add|mult
-6|0|sub|2|0|add|sub
-6|0|sub|1|cbrt|mult
-6|0|sub|1|cb|mult
-6|0|sub|1|sq|mult
-6|0|sub|1|0|mult|mult
-6|0|sub|3|1|add|sub
-6|0|sub|1|0|sub|add
-6|0|sub|1|0|add|mult
-6|0|sub|1|0|add|sub
-6|0|sub|0|cbrt|mult
-6|0|sub|0|cb|mult
-6|0|sub|2|0|sub|mult
-6|0|sub|2|0|sub|add
-6|0|sub|4|2|sub|mult
-6|0|sub|4|2|sub|sub
-6|0|sub|4|2|sub|add
-6|0|sub|4|2|add|mult
-6|0|sub|4|2|add|sub
-6|0|sub|8|5|add|mult
-6|0|sub|8|7|add|mult
-6|0|sub|8|7|add|sub
-6|0|sub|8|7|add|add
-6|0|sub|8|6|mult|mult
-6|0|sub|8|6|sub|mult
-6|0|sub|8|6|sub|sub
-6|0|sub|8|6|add|mult
-6|0|sub|8|6|add|add
-6|0|sub|8|5|mult|mult
-6|0|sub|8|5|sub|mult
-6|0|sub|8|5|sub|sub
-6|0|sub|8|5|sub|add
-6|0|sub|8|7|sub|add
-6|0|sub|8|5|add|sub
-6|0|sub|8|5|add|add
-6|0|sub|8|4|mult|mult
-6|0|sub|8|7|mult|mult
-6|0|sub|9|8|mult|mult
-6|0|sub|9|8|sub|mult
-6|0|sub|9|8|sub|sub
-6|0|sub|9|8|sub|add
-6|0|sub|9|8|add|mult
-6|0|sub|9|8|add|sub
-6|0|sub|9|8|add|add
-6|0|sub|9|7|mult|mult
-6|0|sub|9|1|add|add
-6|0|sub|3|1|add|add
-6|0|sub|3|cbrt|mult
-6|0|sub|3|cb|mult
-6|0|sub|3|sq|mult
-6|0|sub|4|0|sub|mult
-6|0|sub|4|0|sub|add
-6|0|sub|9|1|mult|mult
-6|0|sub|9|1|sub|mult
-6|0|sub|9|1|sub|sub
-6|0|sub|9|1|sub|add
-6|0|sub|9|1|add|mult
-6|0|sub|9|1|add|sub
-6|0|sub|2|1|add|sub
-6|0|sub|9|cbrt|mult
-6|0|sub|9|cb|mult
-6|0|sub|9|sq|mult
-6|0|sub|9|0|mult|mult
-6|0|sub|9|0|sub|mult
-6|0|sub|9|0|sub|add
-6|0|sub|9|0|add|mult
-6|0|sub|9|0|add|sub
-6|0|sub|6|5|sub|mult
-6|0|sub|6|5|sub|add
-6|0|sub|8|7|sub|mult
-6|0|sub|8|7|sub|sub
-6|0|mult|6|5|mult|mult
-6|0|mult|7|1|sub|mult
-6|0|mult|7|1|add|mult
-6|0|mult|7|cbrt|mult
-6|0|mult|7|cb|mult
-6|0|mult|7|sq|mult
-6|0|mult|7|sq|sub
-6|0|mult|7|sq|add
-6|0|mult|7|0|mult|mult
-6|0|mult|7|0|mult|sub
-6|0|mult|7|0|mult|add
-6|0|mult|7|0|sub|mult
-6|0|mult|7|0|add|mult
-6|0|mult|7|1|mult|add
-6|0|mult|6|5|mult|sub
-6|0|mult|6|5|mult|add
-6|0|mult|7|2|add|mult
-6|0|mult|8|4|add|mult
-6|0|mult|8|3|mult|mult
-6|0|mult|8|3|mult|sub
-6|0|mult|8|3|mult|add
-6|0|mult|8|3|sub|mult
-6|0|mult|8|3|add|mult
-6|0|mult|8|2|mult|mult
-6|0|mult|8|2|mult|sub
-6|0|mult|8|2|mult|add
-6|0|mult|7|4|add|mult
-6|0|mult|9|2|mult|mult
-6|0|mult|9|2|mult|sub
-6|0|mult|9|2|mult|add
-6|0|mult|9|2|sub|mult
-6|0|mult|9|5|mult|mult
-6|0|mult|9|5|mult|sub
-6|0|mult|9|5|mult|add
-6|0|mult|7|5|add|mult
-6|0|mult|7|4|mult|mult
-6|0|mult|7|4|mult|sub
-6|0|mult|7|4|mult|add
-6|0|mult|7|4|sub|mult
-6|0|mult|8|2|sub|mult
-6|0|mult|7|3|mult|mult
-6|0|mult|7|3|mult|sub
-6|0|mult|7|3|mult|add
-6|0|mult|7|3|sub|mult
-6|0|mult|7|3|add|mult
-6|0|mult|7|2|mult|mult
-6|0|mult|7|2|mult|sub
-6|0|mult|7|2|mult|add
-6|0|mult|7|2|sub|mult
-6|0|mult|8|4|sub|mult
-6|0|mult|7|1|mult|mult
-6|0|mult|7|1|mult|sub
-6|0|sub|6|0|add|mult
-6|0|mult|8|mult
-6|0|mult|7|mult
-6|0|mult|6|mult
-6|0|mult|5|mult
-6|0|mult|4|mult
-6|0|mult|3|mult
-6|0|mult|2|mult
-6|0|mult|1|mult
-6|0|mult|cbrt
-6|0|mult|cb
-6|0|mult|sq
-6|0|mult|0|mult
-6|0|mult|9|mult
-6|0|sub|5|4|mult|mult
-6|0|sub|6|2|add|mult
-6|0|sub|6|2|add|add
-6|0|sub|3|0|sub|mult
-6|0|sub|3|0|sub|add
-6|0|sub|3|0|add|mult
-6|0|sub|3|0|add|sub
-6|0|sub|2|1|mult|mult
-6|0|sub|2|1|sub|mult
-6|0|sub|2|1|sub|sub
-6|0|sub|2|1|sub|add
-6|0|sub|2|1|add|mult
-6|0|mult|8|0|mult|sub
-6|0|mult|8|2|add|mult
-6|0|mult|8|1|mult|mult
-6|0|mult|8|1|mult|sub
-6|0|mult|8|1|mult|add
-6|0|mult|8|1|sub|mult
-6|0|mult|7|5|sub|mult
-6|0|mult|8|cbrt|mult
-6|0|mult|8|cb|mult
-6|0|mult|8|sq|mult
-6|0|mult|8|sq|sub
-6|0|mult|8|sq|add
-6|0|mult|8|0|mult|mult
-6|0|sub|9|7|sub|mult
-6|0|mult|8|0|mult|add
-6|0|mult|8|0|sub|mult
-6|0|mult|8|0|add|mult
-6|0|mult|7|6|mult|mult
-6|0|mult|7|6|mult|sub
-6|0|mult|7|6|mult|add
-6|0|mult|7|6|sub|mult
-6|0|mult|7|6|add|mult
-6|0|mult|7|5|mult|mult
-6|0|mult|7|5|mult|sub
-6|0|mult|7|5|mult|add
-6|0|mult|8|1|add|mult
-6|0|sub|2|sub
-6|0|sub|7|add
-6|0|sub|6|mult
-6|0|sub|6|add
-6|0|sub|5|mult
-6|0|sub|5|sub
-6|0|sub|5|add
-6|0|sub|4|mult
-6|0|sub|4|sub
-6|0|sub|4|add
-6|0|sub|3|mult
-6|0|sub|3|sub
-6|0|sub|3|add
-6|0|sub|2|mult
-6|0|sub|7|sub
-6|0|sub|2|add
-6|0|sub|1|mult
-6|0|sub|1|sub
-6|0|sub|1|add
-6|0|sub|cbrt
-6|0|sub|cb
-6|0|sub|sq
-6|0|sub|0|mult
-6|0|sub|0|sub
-6|0|add|5|4|mult|mult
-6|0|add|6|2|add|mult
-6|0|add|6|2|add|add
-6|0|sub|7|6|add|mult
-6|0|sub|7|5|sub|add
-6|0|sub|8|cbrt|mult
-6|0|sub|8|cb|mult
-6|0|sub|8|sq|mult
-6|0|sub|8|0|mult|mult
-6|0|sub|8|0|sub|mult
-6|0|sub|8|0|sub|add
-6|0|sub|8|0|add|mult
-6|0|sub|8|0|add|sub
-6|0|sub|7|6|mult|mult
-6|0|sub|7|6|sub|mult
-6|0|sub|7|6|sub|sub
-6|0|add|3|0|sub|mult
-6|0|sub|7|6|add|add
-6|0|sub|7|5|mult|mult
-6|0|sub|8|1|add|mult
-6|0|sub|8|1|add|sub
-6|0|sub|8|1|add|add
-6|0|sub|9|mult
-6|0|sub|9|sub
-6|0|sub|9|add
-6|0|sub|8|mult
-6|0|sub|8|sub
-6|0|sub|8|add
-6|0|sub|7|mult
-6|0|add|4|1|sub|add
-6|0|add|0|cb|mult
-6|0|add|2|0|sub|mult
-6|0|add|2|0|sub|sub
-6|0|add|4|2|sub|mult
-6|0|add|4|2|sub|sub
-6|0|add|4|2|sub|add
-6|0|add|4|2|add|mult
-6|0|add|4|2|add|sub
-6|0|add|4|2|add|add
-6|0|add|4|1|mult|mult
-6|0|add|4|1|sub|mult
-6|0|add|4|1|sub|sub
-6|0|add|0|cbrt|mult
-6|0|add|4|1|add|mult
-6|0|add|4|1|add|sub
-6|0|add|4|1|add|add
-6|0|add|4|cbrt|mult
-6|0|add|4|cb|mult
-6|0|add|4|sq|mult
-6|0|add|4|0|mult|mult
-6|0|add|3|0|mult|mult
-6|0|add|4|0|add|mult
-6|0|add|4|0|add|add
-6|0|add|3|2|mult|mult
-6|0|add|3|2|sub|mult
-6|0|add|2|sq|mult
-6|0|add|3|0|sub|sub
-6|0|add|3|0|add|mult
-6|0|add|3|0|add|add
-6|0|add|2|1|mult|mult
-6|0|add|2|1|sub|mult
-6|0|add|2|1|sub|sub
-6|0|add|2|1|sub|add
-6|0|add|2|1|add|mult
-6|0|add|2|1|add|sub
-6|0|add|2|1|add|add
-6|0|add|2|cbrt|mult
-6|0|add|2|cb|mult
-6|0|sub|7|5|sub|sub
-6|0|add|2|0|mult|mult
-6|0|add|4|2|mult|mult
-6|0|add|2|0|add|mult
-6|0|add|2|0|add|add
-6|0|add|1|cbrt|mult
-6|0|add|1|cb|mult
-6|0|add|1|sq|mult
-6|0|add|1|0|mult|mult
-6|0|add|1|0|sub|mult
-6|0|add|1|0|sub|sub
-6|0|add|1|0|add|mult
-6|0|add|1|0|add|add
-6|0|sub|7|5|add|mult
-6|0|sub|9|3|mult|mult
-6|0|sub|9|3|sub|mult
-6|0|sub|9|3|sub|sub
-6|0|sub|9|3|sub|add
-6|0|sub|9|3|add|mult
-6|0|sub|9|3|add|sub
-6|0|sub|9|3|add|add
-6|0|sub|9|2|mult|mult
-6|0|sub|9|2|sub|mult
-6|0|sub|9|2|sub|sub
-6|0|sub|9|2|sub|add
-6|0|sub|9|5|mult|mult
-6|0|sub|9|4|add|add
-6|0|sub|7|5|add|sub
-6|0|sub|7|5|add|add
-6|0|sub|7|4|mult|mult
-6|0|sub|7|4|sub|mult
-6|0|sub|7|4|sub|sub
-6|0|sub|7|4|sub|add
-6|0|sub|7|4|add|mult
-6|0|sub|7|4|add|sub
-6|0|sub|7|4|add|add
-6|0|sub|7|3|mult|mult
-6|0|sub|7|3|sub|mult
-6|0|sub|7|3|sub|sub
-6|0|sub|9|2|add|add
-6|0|sub|9|7|sub|sub
-6|0|sub|9|7|sub|add
-6|0|sub|9|7|add|mult
-6|0|sub|9|7|add|sub
-6|0|sub|9|7|add|add
-6|0|sub|9|6|mult|mult
-6|0|sub|9|6|sub|mult
-6|0|sub|9|6|sub|sub
-6|0|sub|9|6|add|mult
-6|0|sub|9|6|add|add
-6|0|sub|9|2|add|mult
-6|0|sub|9|2|add|sub
-6|0|sub|7|3|sub|add
-6|0|sub|9|5|sub|mult
-6|0|sub|9|5|sub|sub
-6|0|sub|9|5|sub|add
-6|0|sub|9|5|add|mult
-6|0|sub|9|5|add|sub
-6|0|sub|9|5|add|add
-6|0|sub|9|4|mult|mult
-6|0|sub|9|4|sub|mult
-6|0|sub|9|4|sub|sub
-6|0|sub|9|4|sub|add
-6|0|sub|9|4|add|mult
-6|0|sub|9|4|add|sub
-6|0|sub|8|3|add|add
-6|0|sub|7|2|add|mult
-6|0|sub|7|2|add|sub
-6|0|sub|7|2|add|add
-6|0|sub|8|4|add|mult
-6|0|sub|8|4|add|sub
-6|0|sub|8|4|add|add
-6|0|sub|8|3|mult|mult
-6|0|sub|8|3|sub|mult
-6|0|sub|8|3|sub|sub
-6|0|sub|8|3|sub|add
-6|0|sub|8|3|add|mult
-6|0|sub|8|3|add|sub
-6|0|sub|6|5|mult|mult
-6|0|sub|8|2|mult|mult
-6|0|sub|8|2|sub|mult
-6|0|sub|8|2|sub|sub
-6|0|sub|8|2|sub|add
-6|0|sub|8|2|add|mult
-6|0|sub|8|2|add|sub
-6|0|sub|8|2|add|add
-6|0|sub|8|1|mult|mult
-6|0|sub|8|1|sub|mult
-6|0|sub|8|1|sub|sub
-6|0|sub|8|1|sub|add
-6|0|sub|7|5|sub|mult
-6|0|sub|7|1|sub|sub
-6|0|sub|7|3|add|mult
-6|0|sub|7|3|add|sub
-6|0|sub|7|3|add|add
-6|0|sub|7|2|mult|mult
-6|0|sub|7|2|sub|mult
-6|0|sub|7|2|sub|sub
-6|0|sub|7|2|sub|add
-6|0|sub|8|4|sub|mult
-6|0|sub|8|4|sub|sub
-6|0|sub|8|4|sub|add
-6|0|sub|7|1|mult|mult
-6|0|sub|7|1|sub|mult
-5|4|mult|7|6|add|mult
-6|0|sub|7|1|sub|add
-6|0|sub|7|1|add|mult
-6|0|sub|7|1|add|sub
-6|0|sub|7|1|add|add
-6|0|sub|7|cbrt|mult
-6|0|sub|7|cb|mult
-6|0|sub|7|sq|mult
-6|0|sub|7|0|mult|mult
-6|0|sub|7|0|sub|mult
-6|0|sub|7|0|sub|add
-6|0|sub|7|0|add|mult
-6|0|sub|7|0|add|sub
-3|0|add|2|0|add|add
-3|0|add|2|1|mult|mult
-3|0|add|2|1|sub|mult
-3|0|add|2|1|sub|sub
-3|0|add|2|1|sub|add
-3|0|add|2|1|add|mult
-3|0|add|2|1|add|sub
-3|0|add|2|1|add|add
-3|0|add|2|cbrt|mult
-3|0|add|2|cb|mult
-3|0|add|2|sq|mult
-3|0|add|2|0|mult|mult
-3|0|add|4|2|mult|mult
-3|0|add|2|0|add|mult
-3|0|sub|0|sub
-3|0|add|1|cbrt|mult
-3|0|add|1|cb|mult
-3|0|add|1|sq|mult
-3|0|add|1|0|mult|mult
-3|0|add|1|0|sub|mult
-3|0|add|1|0|sub|sub
-3|0|add|1|0|add|mult
-3|0|add|1|0|add|add
-3|0|add|0|cbrt|mult
-3|0|add|0|cb|mult
-3|0|add|2|0|sub|mult
-3|0|add|2|0|sub|sub
-3|0|sub|4|add
-3|0|sub|8|add
-3|0|sub|7|mult
-3|0|sub|7|sub
-3|0|sub|7|add
-3|0|sub|6|mult
-3|0|sub|6|sub
-3|0|sub|6|add
-3|0|sub|5|mult
-3|0|sub|5|sub
-3|0|sub|5|add
-3|0|sub|4|mult
-3|0|sub|4|sub
-3|0|add|4|2|sub|mult
-3|0|sub|3|mult
-3|0|sub|3|add
-3|0|sub|2|mult
-3|0|sub|2|sub
-3|0|sub|2|add
-3|0|sub|1|mult
-3|0|sub|1|sub
-3|0|sub|1|add
-3|0|sub|cbrt
-3|0|sub|cb
-3|0|sub|sq
-3|0|sub|0|mult
-3|0|add|9|1|add|mult
-3|0|add|3|1|sub|add
-3|0|add|3|1|add|mult
-3|0|add|3|1|add|add
-3|0|add|3|cbrt|mult
-3|0|add|3|cb|mult
-3|0|add|3|sq|mult
-3|0|add|4|0|sub|mult
-3|0|add|4|0|sub|sub
-3|0|add|9|1|mult|mult
-3|0|add|9|1|sub|mult
-3|0|add|9|1|sub|sub
-3|0|add|9|1|sub|add
-3|0|add|3|1|sub|mult
-3|0|add|9|1|add|sub
-3|0|add|9|1|add|add
-3|0|add|9|cbrt|mult
-3|0|add|9|cb|mult
-3|0|add|9|sq|mult
-3|0|add|9|0|mult|mult
-3|0|add|9|0|sub|mult
-3|0|add|9|0|sub|sub
-3|0|add|9|0|add|mult
-3|0|add|9|0|add|add
-3|0|add|6|5|sub|mult
-3|0|add|6|5|sub|sub
-3|0|add|4|cbrt|mult
-3|0|add|4|2|sub|sub
-3|0|add|4|2|sub|add
-3|0|add|4|2|add|mult
-3|0|add|4|2|add|sub
-3|0|add|4|2|add|add
-3|0|add|4|1|mult|mult
-3|0|add|4|1|sub|mult
-3|0|add|4|1|sub|sub
-3|0|add|4|1|sub|add
-3|0|add|4|1|add|mult
-3|0|add|4|1|add|sub
-3|0|add|4|1|add|add
-3|0|sub|8|sub
-3|0|add|4|cb|mult
-3|0|add|4|sq|mult
-3|0|add|4|0|mult|mult
-3|0|add|3|0|mult|mult
-3|0|add|4|0|add|mult
-3|0|add|4|0|add|add
-3|0|add|3|2|mult|mult
-3|0|add|3|2|sub|mult
-3|0|add|3|2|sub|add
-3|0|add|3|2|add|mult
-3|0|add|3|2|add|add
-3|0|add|3|1|mult|mult
-3|0|sub|8|4|sub|add
-3|0|sub|7|4|add|add
-3|0|sub|7|3|mult|mult
-3|0|sub|7|3|sub|mult
-3|0|sub|7|3|sub|sub
-3|0|sub|7|3|add|mult
-3|0|sub|7|3|add|add
-3|0|sub|7|2|mult|mult
-3|0|sub|7|2|sub|mult
-3|0|sub|7|2|sub|sub
-3|0|sub|7|2|sub|add
-3|0|sub|8|4|sub|mult
-3|0|sub|8|4|sub|sub
-3|0|sub|7|4|add|sub
-3|0|sub|7|1|mult|mult
-3|0|sub|7|1|sub|mult
-3|0|sub|7|1|sub|sub
-3|0|sub|7|1|sub|add
-3|0|sub|7|1|add|mult
-3|0|sub|7|1|add|sub
-3|0|sub|7|1|add|add
-3|0|sub|7|cbrt|mult
-3|0|sub|7|cb|mult
-3|0|sub|7|sq|mult
-3|0|sub|7|0|mult|mult
-3|0|sub|7|0|sub|mult
-3|0|sub|9|2|mult|mult
-3|0|sub|9|4|mult|mult
-3|0|sub|9|4|sub|mult
-3|0|sub|9|4|sub|sub
-3|0|sub|9|4|sub|add
-3|0|sub|9|4|add|mult
-3|0|sub|9|4|add|sub
-3|0|sub|9|4|add|add
-3|0|sub|9|3|mult|mult
-3|0|sub|9|3|sub|mult
-3|0|sub|9|3|sub|sub
-3|0|sub|9|3|add|mult
-3|0|sub|9|3|add|add
-3|0|sub|7|0|sub|add
-3|0|sub|9|2|sub|mult
-3|0|sub|9|2|sub|sub
-3|0|sub|9|2|sub|add
-3|0|sub|9|5|mult|mult
-3|0|sub|7|5|add|mult
-3|0|sub|7|5|add|sub
-3|0|sub|7|5|add|add
-3|0|sub|7|4|mult|mult
-3|0|sub|7|4|sub|mult
-3|0|sub|7|4|sub|sub
-3|0|sub|7|4|sub|add
-3|0|sub|7|4|add|mult
-3|0|sub|7|6|sub|sub
-3|0|sub|7|5|sub|sub
-3|0|sub|7|5|sub|add
-3|0|sub|8|cbrt|mult
-3|0|sub|8|cb|mult
-3|0|sub|8|sq|mult
-3|0|sub|8|0|mult|mult
-3|0|sub|8|0|sub|mult
-3|0|sub|8|0|sub|add
-3|0|sub|8|0|add|mult
-3|0|sub|8|0|add|sub
-3|0|sub|7|6|mult|mult
-3|0|sub|7|6|sub|mult
-3|0|sub|7|5|sub|mult
-3|0|sub|7|6|sub|add
-3|0|sub|7|6|add|mult
-3|0|sub|7|6|add|sub
-3|0|sub|7|6|add|add
-3|0|sub|7|5|mult|mult
-3|0|sub|8|1|add|mult
-3|0|sub|8|1|add|sub
-3|0|sub|8|1|add|add
-3|0|sub|9|mult
-3|0|sub|9|sub
-3|0|sub|9|add
-3|0|sub|8|mult
-3|0|sub|8|3|add|mult
-3|0|sub|7|0|add|mult
-3|0|sub|7|0|add|sub
-3|0|sub|6|5|mult|mult
-3|0|sub|7|2|add|mult
-3|0|sub|7|2|add|sub
-3|0|sub|7|2|add|add
-3|0|sub|8|4|add|mult
-3|0|sub|8|4|add|sub
-3|0|sub|8|4|add|add
-3|0|sub|8|3|mult|mult
-3|0|sub|8|3|sub|mult
-3|0|sub|8|3|sub|sub
-3|0|add|6|5|sub|add
-3|0|sub|8|3|add|add
-3|0|sub|8|2|mult|mult
-3|0|sub|8|2|sub|mult
-3|0|sub|8|2|sub|sub
-3|0|sub|8|2|sub|add
-3|0|sub|8|2|add|mult
-3|0|sub|8|2|add|sub
-3|0|sub|8|2|add|add
-3|0|sub|8|1|mult|mult
-3|0|sub|8|1|sub|mult
-3|0|sub|8|1|sub|sub
-3|0|sub|8|1|sub|add
-3|0|add|7|6|sub|add
-3|0|add|7|5|sub|sub
-3|0|add|7|5|sub|add
-3|0|add|8|cbrt|mult
-3|0|add|8|cb|mult
-3|0|add|8|sq|mult
-3|0|add|8|0|mult|mult
-3|0|add|8|0|sub|mult
-3|0|add|8|0|sub|sub
-3|0|add|8|0|add|mult
-3|0|add|8|0|add|add
-3|0|add|7|6|mult|mult
-3|0|add|7|6|sub|mult
-3|0|add|7|6|sub|sub
-3|0|add|7|5|sub|mult
-3|0|add|7|6|add|mult
-3|0|add|7|6|add|sub
-3|0|add|7|6|add|add
-3|0|add|7|5|mult|mult
-3|0|add|8|1|add|mult
-3|0|add|8|1|add|sub
-3|0|add|8|1|add|add
-3|0|add|9|mult
-3|0|add|9|sub
-3|0|add|9|add
-3|0|add|8|mult
-3|0|add|8|sub
-3|0|add|8|3|add|mult
-3|0|add|7|0|add|mult
-3|0|add|7|0|add|add
-3|0|add|6|5|mult|mult
-3|0|add|7|2|add|mult
-3|0|add|7|2|add|sub
-3|0|add|7|2|add|add
-3|0|add|8|4|add|mult
-3|0|add|8|4|add|sub
-3|0|add|8|4|add|add
-3|0|add|8|3|mult|mult
-3|0|add|8|3|sub|mult
-3|0|add|8|3|sub|sub
-3|0|add|8|add
-3|0|add|8|3|add|add
-3|0|add|8|2|mult|mult
-3|0|add|8|2|sub|mult
-3|0|add|8|2|sub|sub
-3|0|add|8|2|sub|add
-3|0|add|8|2|add|mult
-3|0|add|8|2|add|sub
-3|0|add|8|2|add|add
-3|0|add|8|1|mult|mult
-3|0|add|8|1|sub|mult
-3|0|add|8|1|sub|sub
-3|0|add|8|1|sub|add
-2|1|mult|2|0|add|mult
-2|1|mult|2|1|add|mult
-2|1|mult|2|cbrt|mult
-2|1|mult|2|cb|mult
-2|1|mult|2|sq|mult
-2|1|mult|2|sq|sub
-2|1|mult|2|sq|add
-2|1|mult|2|0|mult|mult
-2|1|mult|2|0|mult|sub
-2|1|mult|2|0|mult|add
-2|1|mult|4|2|mult|mult
-2|1|mult|4|2|mult|sub
-2|1|mult|4|2|mult|add
-2|1|mult|2|1|sub|mult
-2|1|mult|1|cbrt|mult
-2|1|mult|1|cb|mult
-2|1|mult|1|sq|mult
-2|1|mult|1|sq|sub
-2|1|mult|1|sq|add
-2|1|mult|1|0|mult|mult
-2|1|mult|1|0|mult|sub
-2|1|mult|1|0|mult|add
-2|1|mult|1|0|sub|mult
-2|1|mult|1|0|add|mult
-2|1|mult|0|cbrt|mult
-2|1|mult|0|cb|mult
-3|0|add|3|mult
-3|0|add|7|mult
-3|0|add|7|sub
-3|0|add|7|add
-3|0|add|6|mult
-3|0|add|6|sub
-3|0|add|6|add
-3|0|add|5|mult
-3|0|add|5|sub
-3|0|add|5|add
-3|0|add|4|mult
-3|0|add|4|sub
-3|0|add|4|add
-3|0|add|7|0|sub|sub
-3|0|add|3|add
-3|0|add|2|mult
-3|0|add|2|sub
-3|0|add|2|add
-3|0|add|1|mult
-3|0|add|1|sub
-3|0|add|1|add
-3|0|add|cbrt
-3|0|add|cb
-3|0|add|sq
-3|0|add|0|mult
-3|0|add|0|add
-3|0|add|9|6|sub|sub
-3|0|add|9|8|add|mult
-3|0|add|9|8|add|sub
-3|0|add|9|8|add|add
-3|0|add|9|7|mult|mult
-3|0|add|9|7|sub|mult
-3|0|add|9|7|sub|sub
-3|0|add|9|7|sub|add
-3|0|add|9|7|add|mult
-3|0|add|9|7|add|sub
-3|0|add|9|7|add|add
-3|0|add|9|6|mult|mult
-3|0|add|9|6|sub|mult
-3|0|add|9|8|sub|add
-3|0|add|9|6|sub|add
-3|0|add|9|6|add|mult
-3|0|add|9|6|add|sub
-3|0|add|9|6|add|add
-3|0|add|9|2|add|mult
-3|0|add|9|2|add|sub
-3|0|add|9|2|add|add
-3|0|add|9|5|sub|mult
-3|0|add|9|5|sub|sub
-3|0|add|9|5|sub|add
-3|0|add|9|5|add|mult
-3|0|add|9|5|add|sub
-3|0|add|8|6|add|add
-3|0|add|8|7|sub|mult
-3|0|add|8|7|sub|sub
-3|0|add|8|7|sub|add
-3|0|add|8|7|add|mult
-3|0|add|8|7|add|sub
-3|0|add|8|7|add|add
-3|0|add|8|6|mult|mult
-3|0|add|8|6|sub|mult
-3|0|add|8|6|sub|sub
-3|0|add|8|6|sub|add
-3|0|add|8|6|add|mult
-3|0|add|8|6|add|sub
-3|0|add|9|5|add|add
-3|0|add|8|5|mult|mult
-3|0|add|8|5|sub|mult
-3|0|add|8|5|sub|sub
-3|0|add|8|5|sub|add
-3|0|add|8|5|add|mult
-3|0|add|8|5|add|sub
-3|0|add|8|5|add|add
-3|0|add|8|4|mult|mult
-3|0|add|8|7|mult|mult
-3|0|add|9|8|mult|mult
-3|0|add|9|8|sub|mult
-3|0|add|9|8|sub|sub
-3|0|add|8|4|sub|add
-3|0|add|7|4|add|add
-3|0|add|7|3|mult|mult
-3|0|add|7|3|sub|mult
-3|0|add|7|3|sub|sub
-3|0|add|7|3|add|mult
-3|0|add|7|3|add|add
-3|0|add|7|2|mult|mult
-3|0|add|7|2|sub|mult
-3|0|add|7|2|sub|sub
-3|0|add|7|2|sub|add
-3|0|add|8|4|sub|mult
-3|0|add|8|4|sub|sub
-3|0|add|7|4|add|sub
-3|0|add|7|1|mult|mult
-3|0|add|7|1|sub|mult
-3|0|add|7|1|sub|sub
-3|0|add|7|1|sub|add
-3|0|add|7|1|add|mult
-3|0|add|7|1|add|sub
-3|0|add|7|1|add|add
-3|0|add|7|cbrt|mult
-3|0|add|7|cb|mult
-3|0|add|7|sq|mult
-3|0|add|7|0|mult|mult
-3|0|add|7|0|sub|mult
-3|0|add|9|2|mult|mult
-3|0|add|9|4|mult|mult
-3|0|add|9|4|sub|mult
-3|0|add|9|4|sub|sub
-3|0|add|9|4|sub|add
-3|0|add|9|4|add|mult
-3|0|add|9|4|add|sub
-3|0|add|9|4|add|add
-3|0|add|9|3|mult|mult
-3|0|add|9|3|sub|mult
-3|0|add|9|3|sub|sub
-3|0|add|9|3|add|mult
-3|0|add|9|3|add|add
-3|0|sub|9|5|add|add
-3|0|add|9|2|sub|mult
-3|0|add|9|2|sub|sub
-3|0|add|9|2|sub|add
-3|0|add|9|5|mult|mult
-3|0|add|7|5|add|mult
-3|0|add|7|5|add|sub
-3|0|add|7|5|add|add
-3|0|add|7|4|mult|mult
-3|0|add|7|4|sub|mult
-3|0|add|7|4|sub|sub
-3|0|add|7|4|sub|add
-3|0|add|7|4|add|mult
-6|2|add|9|6|add|add
-6|2|add|9|8|add|sub
-6|2|add|9|8|add|add
-6|2|add|9|7|mult|mult
-6|2|add|9|7|sub|mult
-6|2|add|9|7|sub|sub
-6|2|add|9|7|sub|add
-6|2|add|9|7|add|mult
-6|2|add|9|7|add|sub
-6|2|add|9|7|add|add
-6|2|add|9|6|mult|mult
-6|2|add|9|6|sub|mult
-6|2|add|9|6|sub|sub
-6|2|add|9|6|add|mult
-6|2|add|9|8|add|mult
-6|2|add|9|2|add|mult
-6|2|add|9|2|add|add
-6|2|add|9|5|sub|mult
-6|2|add|9|5|sub|sub
-6|2|add|9|5|sub|add
-6|2|add|9|5|add|mult
-6|2|add|9|5|add|sub
-6|2|add|9|5|add|add
-6|2|add|9|4|mult|mult
-6|2|add|9|4|sub|mult
-6|2|add|9|4|sub|sub
-6|2|add|9|4|sub|add
-6|2|add|8|5|mult|mult
-6|2|add|6|5|sub|add
-6|2|add|8|7|sub|mult
-6|2|add|8|7|sub|sub
-6|2|add|8|7|sub|add
-6|2|add|8|7|add|mult
-6|2|add|8|7|add|sub
-6|2|add|8|7|add|add
-6|2|add|8|6|mult|mult
-6|2|add|8|6|sub|mult
-6|2|add|8|6|sub|sub
-6|2|add|8|6|add|mult
-6|2|add|8|6|add|add
-6|2|add|9|4|add|mult
-6|2|add|8|5|sub|mult
-6|2|add|8|5|sub|sub
-6|2|add|8|5|sub|add
-6|2|add|8|5|add|mult
-6|2|add|8|5|add|sub
-6|2|add|8|5|add|add
-6|2|add|8|4|mult|mult
-6|2|add|8|7|mult|mult
-6|2|add|9|8|mult|mult
-6|2|add|9|8|sub|mult
-6|2|add|9|8|sub|sub
-6|2|add|9|8|sub|add
-6|2|add|7|1|sub|sub
-6|2|add|7|3|sub|add
-6|2|add|7|3|add|mult
-6|2|add|7|3|add|sub
-6|2|add|7|3|add|add
-6|2|add|7|2|mult|mult
-6|2|add|7|2|sub|mult
-6|2|add|7|2|sub|sub
-6|2|add|8|4|sub|mult
-6|2|add|8|4|sub|sub
-6|2|add|8|4|sub|add
-6|2|add|7|1|mult|mult
-6|2|add|7|1|sub|mult
-6|2|add|7|3|sub|sub
-6|2|add|7|1|sub|add
-6|2|add|7|1|add|mult
-6|2|add|7|1|add|sub
-6|2|add|7|1|add|add
-6|2|add|7|cbrt|mult
-6|2|add|7|cb|mult
-6|2|add|7|sq|mult
-6|2|add|7|0|mult|mult
-6|2|add|7|0|sub|mult
-6|2|add|7|0|sub|sub
-6|2|add|7|0|sub|add
-6|2|add|7|0|add|mult
-6|2|add|9|5|mult|mult
-6|2|add|9|4|add|sub
-6|2|add|9|4|add|add
-6|2|add|9|3|mult|mult
-6|2|add|9|3|sub|mult
-6|2|add|9|3|sub|sub
-6|2|add|9|3|sub|add
-6|2|add|9|3|add|mult
-6|2|add|9|3|add|sub
-6|2|add|9|3|add|add
-6|2|add|9|2|mult|mult
-6|2|add|9|2|sub|mult
-6|2|add|9|2|sub|sub
-6|2|add|6|5|sub|mult
-6|2|add|7|5|add|mult
-6|2|add|7|5|add|sub
-6|2|add|7|5|add|add
-6|2|add|7|4|mult|mult
-6|2|add|7|4|sub|mult
-6|2|add|7|4|sub|sub
-6|2|add|7|4|sub|add
-6|2|add|7|4|add|mult
-6|2|add|7|4|add|sub
-6|2|add|7|4|add|add
-6|2|add|7|3|mult|mult
-6|2|add|7|3|sub|mult
-6|2|add|1|0|mult|mult
-6|2|add|2|1|add|mult
-6|2|add|2|1|add|add
-6|2|add|2|cbrt|mult
-6|2|add|2|cb|mult
-6|2|add|2|sq|mult
-6|2|add|2|0|mult|mult
-6|2|add|4|2|mult|mult
-6|2|add|2|0|add|mult
-6|2|add|2|0|add|add
-6|2|add|1|cbrt|mult
-6|2|add|1|cb|mult
-6|2|add|1|sq|mult
-6|2|add|2|1|sub|add
-6|2|add|1|0|sub|mult
-6|2|add|1|0|sub|sub
-6|2|add|1|0|sub|add
-6|2|add|1|0|add|mult
-6|2|add|1|0|add|sub
-6|2|add|1|0|add|add
-6|2|add|0|cbrt|mult
-6|2|add|0|cb|mult
-6|2|add|2|0|sub|mult
-6|2|add|2|0|sub|add
-6|2|add|4|2|sub|mult
-6|2|add|4|2|sub|sub
-5|4|mult|1|mult
-5|4|mult|7|5|mult|mult
-5|4|mult|7|5|mult|sub
-5|4|mult|7|5|mult|add
-5|4|mult|8|1|add|mult
-5|4|mult|9|mult
-5|4|mult|8|mult
-5|4|mult|7|mult
-5|4|mult|6|mult
-5|4|mult|5|mult
-5|4|mult|4|mult
-5|4|mult|3|mult
-5|4|mult|2|mult
-6|2|add|4|2|add|mult
-5|4|mult|cbrt
-5|4|mult|cb
-5|4|mult|sq
-5|4|mult|0|mult
-6|2|add|3|0|sub|mult
-6|2|add|3|0|sub|sub
-6|2|add|3|0|sub|add
-6|2|add|3|0|add|mult
-6|2|add|3|0|add|sub
-6|2|add|3|0|add|add
-6|2|add|2|1|mult|mult
-6|2|add|2|1|sub|mult
-6|2|add|9|1|add|mult
-6|2|add|3|1|add|sub
-6|2|add|3|1|add|add
-6|2|add|3|cbrt|mult
-6|2|add|3|cb|mult
-6|2|add|3|sq|mult
-6|2|add|4|0|sub|mult
-6|2|add|4|0|sub|sub
-6|2|add|4|0|sub|add
-6|2|add|9|1|mult|mult
-6|2|add|9|1|sub|mult
-6|2|add|9|1|sub|sub
-6|2|add|9|1|sub|add
-6|2|add|3|1|add|mult
-6|2|add|9|1|add|sub
-6|2|add|9|1|add|add
-6|2|add|9|cbrt|mult
-6|2|add|9|cb|mult
-6|2|add|9|sq|mult
-6|2|add|9|0|mult|mult
-6|2|add|9|0|sub|mult
-6|2|add|9|0|sub|sub
-6|2|add|9|0|sub|add
-6|2|add|9|0|add|mult
-6|2|add|9|0|add|sub
-6|2|add|9|0|add|add
-6|2|add|3|0|mult|mult
-6|2|add|4|2|add|add
-6|2|add|4|1|mult|mult
-6|2|add|4|1|sub|mult
-6|2|add|4|1|sub|sub
-6|2|add|4|1|sub|add
-6|2|add|4|1|add|mult
-6|2|add|4|1|add|sub
-6|2|add|4|1|add|add
-6|2|add|4|cbrt|mult
-6|2|add|4|cb|mult
-6|2|add|4|sq|mult
-6|2|add|4|0|mult|mult
-6|2|add|7|0|add|sub
-6|2|add|4|0|add|mult
-6|2|add|4|0|add|sub
-6|2|add|4|0|add|add
-6|2|add|3|2|mult|mult
-6|2|add|3|2|sub|mult
-6|2|add|3|2|sub|sub
-6|2|add|3|2|add|mult
-6|2|add|3|2|add|add
-6|2|add|3|1|mult|mult
-6|2|add|3|1|sub|mult
-6|2|add|3|1|sub|sub
-6|2|add|3|1|sub|add
-3|0|sub|9|1|add|mult
-3|0|sub|3|1|sub|add
-3|0|sub|3|1|add|mult
-3|0|sub|3|1|add|add
-3|0|sub|3|cbrt|mult
-3|0|sub|3|cb|mult
-3|0|sub|3|sq|mult
-3|0|sub|4|0|sub|mult
-3|0|sub|4|0|sub|add
-3|0|sub|9|1|mult|mult
-3|0|sub|9|1|sub|mult
-3|0|sub|9|1|sub|sub
-3|0|sub|9|1|sub|add
-3|0|sub|3|1|sub|mult
-3|0|sub|9|1|add|sub
-3|0|sub|9|1|add|add
-3|0|sub|9|cbrt|mult
-3|0|sub|9|cb|mult
-3|0|sub|9|sq|mult
-3|0|sub|9|0|mult|mult
-3|0|sub|9|0|sub|mult
-3|0|sub|9|0|sub|add
-3|0|sub|9|0|add|mult
-3|0|sub|9|0|add|sub
-3|0|sub|6|5|sub|mult
-3|0|sub|6|5|sub|sub
-3|0|sub|4|cbrt|mult
-3|0|sub|4|2|sub|sub
-3|0|sub|4|2|sub|add
-3|0|sub|4|2|add|mult
-3|0|sub|4|2|add|sub
-3|0|sub|4|2|add|add
-3|0|sub|4|1|mult|mult
-3|0|sub|4|1|sub|mult
-3|0|sub|4|1|sub|sub
-3|0|sub|4|1|sub|add
-3|0|sub|4|1|add|mult
-3|0|sub|4|1|add|sub
-3|0|sub|4|1|add|add
-3|0|sub|6|5|sub|add
-3|0|sub|4|cb|mult
-3|0|sub|4|sq|mult
-3|0|sub|4|0|mult|mult
-3|0|sub|3|0|mult|mult
-3|0|sub|4|0|add|mult
-3|0|sub|4|0|add|sub
-3|0|sub|3|2|mult|mult
-3|0|sub|3|2|sub|mult
-3|0|sub|3|2|sub|add
-3|0|sub|3|2|add|mult
-3|0|sub|3|2|add|add
-3|0|sub|3|1|mult|mult
-3|0|sub|9|6|sub|sub
-3|0|sub|9|8|add|mult
-3|0|sub|9|8|add|sub
-3|0|sub|9|8|add|add
-3|0|sub|9|7|mult|mult
-3|0|sub|9|7|sub|mult
-3|0|sub|9|7|sub|sub
-3|0|sub|9|7|sub|add
-3|0|sub|9|7|add|mult
-3|0|sub|9|7|add|sub
-3|0|sub|9|7|add|add
-3|0|sub|9|6|mult|mult
-3|0|sub|9|6|sub|mult
-3|0|sub|9|8|sub|add
-3|0|sub|9|6|sub|add
-3|0|sub|9|6|add|mult
-3|0|sub|9|6|add|sub
-3|0|sub|9|6|add|add
-3|0|sub|9|2|add|mult
-3|0|sub|9|2|add|sub
-3|0|sub|9|2|add|add
-3|0|sub|9|5|sub|mult
-3|0|sub|9|5|sub|sub
-3|0|sub|9|5|sub|add
-3|0|sub|9|5|add|mult
-3|0|sub|9|5|add|sub
-3|0|sub|8|6|add|add
-3|0|sub|8|7|sub|mult
-3|0|sub|8|7|sub|sub
-3|0|sub|8|7|sub|add
-3|0|sub|8|7|add|mult
-3|0|sub|8|7|add|sub
-3|0|sub|8|7|add|add
-3|0|sub|8|6|mult|mult
-3|0|sub|8|6|sub|mult
-3|0|sub|8|6|sub|sub
-3|0|sub|8|6|sub|add
-3|0|sub|8|6|add|mult
-3|0|sub|8|6|add|sub
-3|0|sub|4|2|sub|mult
-3|0|sub|8|5|mult|mult
-3|0|sub|8|5|sub|mult
-3|0|sub|8|5|sub|sub
-3|0|sub|8|5|sub|add
-3|0|sub|8|5|add|mult
-3|0|sub|8|5|add|sub
-3|0|sub|8|5|add|add
-3|0|sub|8|4|mult|mult
-3|0|sub|8|7|mult|mult
-3|0|sub|9|8|mult|mult
-3|0|sub|9|8|sub|mult
-3|0|sub|9|8|sub|sub
-6|2|add|7|6|sub|sub
-6|2|add|8|cbrt|mult
-6|2|add|8|cb|mult
-6|2|add|8|sq|mult
-6|2|add|8|0|mult|mult
-6|2|add|8|0|sub|mult
-6|2|add|8|0|sub|sub
-6|2|add|8|0|sub|add
-6|2|add|8|0|add|mult
-6|2|add|8|0|add|sub
-6|2|add|8|0|add|add
-6|2|add|7|6|mult|mult
-6|2|add|7|6|sub|mult
-6|2|add|7|5|sub|add
-6|2|add|7|6|add|mult
-6|2|add|7|6|add|add
-6|2|add|7|5|mult|mult
-6|2|add|8|1|add|mult
-6|2|add|8|1|add|sub
-6|2|add|8|1|add|add
-6|2|add|9|mult
-6|2|add|9|sub
-6|2|add|9|add
-6|2|add|8|mult
-6|2|add|8|sub
-6|2|add|8|add
-6|2|add|8|3|add|sub
-6|2|add|7|0|add|add
-6|2|add|6|5|mult|mult
-6|2|add|7|2|add|mult
-6|2|add|7|2|add|add
-6|2|add|8|4|add|mult
-6|2|add|8|4|add|sub
-6|2|add|8|4|add|add
-6|2|add|8|3|mult|mult
-6|2|add|8|3|sub|mult
-6|2|add|8|3|sub|sub
-6|2|add|8|3|sub|add
-6|2|add|8|3|add|mult
-6|2|add|7|mult
-6|2|add|8|3|add|add
-6|2|add|8|2|mult|mult
-6|2|add|8|2|sub|mult
-6|2|add|8|2|sub|sub
-6|2|add|8|2|add|mult
-6|2|add|8|2|add|add
-6|2|add|8|1|mult|mult
-6|2|add|8|1|sub|mult
-6|2|add|8|1|sub|sub
-6|2|add|8|1|sub|add
-6|2|add|7|5|sub|mult
-6|2|add|7|5|sub|sub
-3|0|sub|2|0|add|sub
-3|0|sub|2|1|sub|mult
-3|0|sub|2|1|sub|sub
-3|0|sub|2|1|sub|add
-3|0|sub|2|1|add|mult
-3|0|sub|2|1|add|sub
-3|0|sub|2|1|add|add
-3|0|sub|2|cbrt|mult
-3|0|sub|2|cb|mult
-3|0|sub|2|sq|mult
-3|0|sub|2|0|mult|mult
-3|0|sub|4|2|mult|mult
-3|0|sub|2|0|add|mult
-3|0|sub|2|1|mult|mult
-3|0|sub|1|cbrt|mult
-3|0|sub|1|cb|mult
-3|0|sub|1|sq|mult
-3|0|sub|1|0|mult|mult
-3|0|sub|1|0|sub|mult
-3|0|sub|1|0|sub|add
-3|0|sub|1|0|add|mult
-3|0|sub|1|0|add|sub
-3|0|sub|0|cbrt|mult
-3|0|sub|0|cb|mult
-3|0|sub|2|0|sub|mult
-3|0|sub|2|0|sub|add
-6|2|add|3|add
-6|2|add|7|sub
-6|2|add|7|add
-6|2|add|6|mult
-6|2|add|6|add
-6|2|add|5|mult
-6|2|add|5|sub
-6|2|add|5|add
-6|2|add|4|mult
-6|2|add|4|sub
-6|2|add|4|add
-6|2|add|3|mult
-6|2|add|3|sub
-6|4|add|1|0|sub|mult
-6|2|add|2|mult
-6|2|add|2|add
-6|2|add|1|mult
-6|2|add|1|sub
-6|2|add|1|add
-6|2|add|cbrt
-6|2|add|cb
-6|2|add|sq
-6|2|add|0|mult
-6|2|add|0|sub
-6|2|add|0|add
-3|0|sub|3|0|add|mult
-5|2|add|0|sub
-5|2|add|4|add
-5|2|add|3|mult
-5|2|add|3|sub
-5|2|add|3|add
-5|2|add|2|mult
-5|2|add|2|add
-5|2|add|1|mult
-5|2|add|1|sub
-5|2|add|1|add
-5|2|add|cbrt
-5|2|add|cb
-5|2|add|sq
-5|2|add|0|mult
-5|2|add|4|sub
-5|2|add|0|add
-5|1|mult|5|1|sub|mult
-5|1|mult|0|sq|mult
-5|1|mult|0|sq|sub
-5|1|mult|0|sq|add
-5|1|mult|5|cbrt|mult
-5|1|mult|5|cb|mult
-5|1|mult|5|sq|mult
-5|1|mult|5|sq|sub
-5|1|mult|5|sq|add
-5|1|mult|5|0|mult|mult
-5|1|mult|5|0|mult|sub
-5|2|add|9|add
-5|2|add|7|6|sub|mult
-5|2|add|7|6|sub|sub
-5|2|add|7|6|sub|add
-5|2|add|7|6|add|mult
-5|2|add|7|6|add|sub
-5|2|add|7|6|add|add
-5|2|add|7|5|mult|mult
-5|2|add|8|1|add|mult
-5|2|add|8|1|add|sub
-5|2|add|8|1|add|add
-5|2|add|9|mult
-5|2|add|9|sub
-5|1|mult|5|0|mult|add
-5|2|add|8|mult
-5|2|add|8|sub
-5|2|add|8|add
-5|2|add|7|mult
-5|2|add|7|sub
-5|2|add|7|add
-5|2|add|6|mult
-5|2|add|6|sub
-5|2|add|6|add
-5|2|add|5|mult
-5|2|add|5|add
-5|2|add|4|mult
-5|1|mult|6|0|add|mult
-5|1|mult|6|1|mult|add
-5|1|mult|6|1|sub|mult
-5|1|mult|6|1|add|mult
-5|1|mult|6|cbrt|mult
-5|1|mult|6|cb|mult
-5|1|mult|6|sq|mult
-5|1|mult|6|sq|sub
-5|1|mult|6|sq|add
-5|1|mult|6|0|mult|mult
-5|1|mult|6|0|mult|sub
-5|1|mult|6|0|mult|add
-5|1|mult|6|0|sub|mult
-5|1|mult|6|1|mult|sub
-5|1|mult|5|4|mult|mult
-5|1|mult|5|4|mult|sub
-5|1|mult|5|4|mult|add
-5|1|mult|6|2|add|mult
-5|1|mult|3|0|sub|mult
-5|1|mult|3|0|add|mult
-5|1|mult|2|1|mult|mult
-5|1|mult|2|1|mult|sub
-5|1|mult|2|1|mult|add
-5|1|mult|2|1|sub|mult
-5|1|mult|2|1|add|mult
-5|1|mult|2|cbrt|mult
-5|1|mult|6|4|sub|mult
-5|1|mult|5|0|sub|mult
-5|1|mult|5|0|add|mult
-5|1|mult|4|3|mult|mult
-5|1|mult|4|3|mult|sub
-5|1|mult|4|3|mult|add
-5|1|mult|4|3|sub|mult
-5|1|mult|4|3|add|mult
-5|1|mult|5|1|add|mult
-5|1|mult|6|5|add|mult
-5|1|mult|6|4|mult|mult
-5|1|mult|6|4|mult|sub
-5|1|mult|6|4|mult|add
-5|2|add|7|6|mult|mult
-5|1|mult|6|4|add|mult
-5|1|mult|6|3|mult|mult
-5|1|mult|6|3|mult|sub
-5|1|mult|6|3|mult|add
-5|1|mult|6|3|sub|mult
-5|1|mult|6|3|add|mult
-5|1|mult|6|2|mult|mult
-5|1|mult|6|2|mult|sub
-5|1|mult|6|2|mult|add
-5|1|mult|6|2|sub|mult
-5|1|mult|5|4|sub|mult
-5|1|mult|6|1|mult|mult
-5|2|add|7|4|add|add
-5|2|add|9|2|mult|mult
-5|2|add|9|2|sub|mult
-5|2|add|9|2|sub|sub
-5|2|add|9|5|mult|mult
-5|2|add|7|5|add|mult
-5|2|add|7|5|add|add
-5|2|add|7|4|mult|mult
-5|2|add|7|4|sub|mult
-5|2|add|7|4|sub|sub
-5|2|add|7|4|sub|add
-5|2|add|7|4|add|mult
-5|2|add|7|4|add|sub
-5|2|add|9|3|add|add
-5|2|add|7|3|mult|mult
-5|2|add|7|3|sub|mult
-5|2|add|7|3|sub|sub
-5|2|add|7|3|sub|add
-5|2|add|7|3|add|mult
-5|2|add|7|3|add|sub
-5|2|add|7|3|add|add
-5|2|add|7|2|mult|mult
-5|2|add|7|2|sub|mult
-5|2|add|7|2|sub|sub
-5|2|add|8|4|sub|mult
-5|2|add|8|4|sub|sub
-5|2|add|9|4|mult|mult
-5|2|add|9|6|sub|mult
-5|2|add|9|6|sub|sub
-5|2|add|9|6|sub|add
-5|2|add|9|6|add|mult
-5|2|add|9|6|add|sub
-5|2|add|9|6|add|add
-5|2|add|9|2|add|mult
-5|2|add|9|2|add|add
-5|2|add|9|5|sub|mult
-5|2|add|9|5|sub|sub
-5|2|add|9|5|add|mult
-5|2|add|9|5|add|add
-5|2|add|8|4|sub|add
-5|2|add|9|4|sub|mult
-5|2|add|9|4|sub|sub
-5|2|add|9|4|sub|add
-5|2|add|9|4|add|mult
-5|2|add|9|4|add|sub
-5|2|add|9|4|add|add
-5|2|add|9|3|mult|mult
-5|2|add|9|3|sub|mult
-5|2|add|9|3|sub|sub
-5|2|add|9|3|sub|add
-5|2|add|9|3|add|mult
-5|2|add|9|3|add|sub
-5|2|add|8|1|sub|add
-5|2|add|8|3|sub|add
-5|2|add|8|3|add|mult
-5|2|add|8|3|add|sub
-5|2|add|8|3|add|add
-5|2|add|8|2|mult|mult
-5|2|add|8|2|sub|mult
-5|2|add|8|2|sub|sub
-5|2|add|8|2|add|mult
-5|2|add|8|2|add|add
-5|2|add|8|1|mult|mult
-5|2|add|8|1|sub|mult
-5|2|add|8|1|sub|sub
-5|2|add|8|3|sub|sub
-5|2|add|7|5|sub|mult
-5|2|add|7|5|sub|sub
-5|2|add|8|cbrt|mult
-5|2|add|8|cb|mult
-5|2|add|8|sq|mult
-5|2|add|8|0|mult|mult
-5|2|add|8|0|sub|mult
-5|2|add|8|0|sub|sub
-5|2|add|8|0|sub|add
-5|2|add|8|0|add|mult
-5|2|add|8|0|add|sub
-5|2|add|8|0|add|add
-5|2|add|7|0|sub|sub
-5|2|add|7|1|mult|mult
-5|2|add|7|1|sub|mult
-5|2|add|7|1|sub|sub
-5|2|add|7|1|sub|add
-5|2|add|7|1|add|mult
-5|2|add|7|1|add|sub
-5|2|add|7|1|add|add
-5|2|add|7|cbrt|mult
-5|2|add|7|cb|mult
-5|2|add|7|sq|mult
-5|2|add|7|0|mult|mult
-5|2|add|7|0|sub|mult
-5|1|mult|2|cb|mult
-5|2|add|7|0|sub|add
-5|2|add|7|0|add|mult
-5|2|add|7|0|add|sub
-5|2|add|7|0|add|add
-5|2|add|6|5|mult|mult
-5|2|add|7|2|add|mult
-5|2|add|7|2|add|add
-5|2|add|8|4|add|mult
-5|2|add|8|4|add|sub
-5|2|add|8|4|add|add
-5|2|add|8|3|mult|mult
-5|2|add|8|3|sub|mult
-5|1|mult|7|1|mult|mult
-5|1|mult|7|4|mult|add
-5|1|mult|7|4|sub|mult
-5|1|mult|7|4|add|mult
-5|1|mult|7|3|mult|mult
-5|1|mult|7|3|mult|sub
-5|1|mult|7|3|mult|add
-5|1|mult|7|3|sub|mult
-5|1|mult|7|3|add|mult
-5|1|mult|7|2|mult|mult
-5|1|mult|7|2|mult|sub
-5|1|mult|7|2|mult|add
-5|1|mult|7|2|sub|mult
-5|1|mult|8|4|sub|mult
-5|1|mult|7|4|mult|sub
-5|1|mult|7|1|mult|sub
-5|1|mult|7|1|mult|add
-5|1|mult|7|1|sub|mult
-5|1|mult|7|1|add|mult
-5|1|mult|7|cbrt|mult
-5|1|mult|7|cb|mult
-5|1|mult|7|sq|mult
-5|1|mult|7|sq|sub
-5|1|mult|7|sq|add
-5|1|mult|7|0|mult|mult
-5|1|mult|7|0|mult|sub
-5|1|mult|7|0|mult|add
-5|1|mult|9|3|mult|sub
-5|1|mult|9|6|mult|add
-5|1|mult|9|6|sub|mult
-5|1|mult|9|6|add|mult
-5|1|mult|9|2|add|mult
-5|1|mult|9|5|sub|mult
-5|1|mult|9|5|add|mult
-5|1|mult|9|4|mult|mult
-5|1|mult|9|4|mult|sub
-5|1|mult|9|4|mult|add
-5|1|mult|9|4|sub|mult
-5|1|mult|9|4|add|mult
-5|1|mult|9|3|mult|mult
-5|1|mult|7|0|sub|mult
-5|1|mult|9|3|mult|add
-5|1|mult|9|3|sub|mult
-5|1|mult|9|3|add|mult
-5|1|mult|9|2|mult|mult
-5|1|mult|9|2|mult|sub
-5|1|mult|9|2|mult|add
-5|1|mult|9|2|sub|mult
-5|1|mult|9|5|mult|mult
-5|1|mult|9|5|mult|sub
-5|1|mult|9|5|mult|add
-5|1|mult|7|5|add|mult
-5|1|mult|7|4|mult|mult
-5|1|mult|7|5|mult|add
-5|1|mult|8|0|mult|mult
-5|1|mult|8|0|mult|sub
-5|1|mult|8|0|mult|add
-5|1|mult|8|0|sub|mult
-5|1|mult|8|0|add|mult
-5|1|mult|7|6|mult|mult
-5|1|mult|7|6|mult|sub
-5|1|mult|7|6|mult|add
-5|1|mult|7|6|sub|mult
-5|1|mult|7|6|add|mult
-5|1|mult|7|5|mult|mult
-5|1|mult|7|5|mult|sub
-5|1|mult|8|sq|add
-5|1|mult|8|1|add|mult
-5|1|mult|9|mult
-5|1|mult|8|mult
-5|1|mult|7|mult
-5|1|mult|6|mult
-5|1|mult|5|mult
-5|1|mult|4|mult
-5|1|mult|3|mult
-5|1|mult|2|mult
-5|1|mult|1|mult
-5|1|mult|cbrt
-5|1|mult|cb
-5|1|mult|8|2|mult|sub
-5|1|mult|7|0|add|mult
-5|1|mult|6|5|mult|mult
-5|1|mult|6|5|mult|sub
-5|1|mult|6|5|mult|add
-5|1|mult|7|2|add|mult
-5|1|mult|8|4|add|mult
-5|1|mult|8|3|mult|mult
-5|1|mult|8|3|mult|sub
-5|1|mult|8|3|mult|add
-5|1|mult|8|3|sub|mult
-5|1|mult|8|3|add|mult
-5|1|mult|8|2|mult|mult
-5|1|mult|9|6|mult|sub
-5|1|mult|8|2|mult|add
-5|1|mult|8|2|sub|mult
-5|1|mult|8|2|add|mult
-5|1|mult|8|1|mult|mult
-5|1|mult|8|1|mult|sub
-5|1|mult|8|1|mult|add
-5|1|mult|8|1|sub|mult
-5|1|mult|7|5|sub|mult
-5|1|mult|8|cbrt|mult
-5|1|mult|8|cb|mult
-5|1|mult|8|sq|mult
-5|1|mult|8|sq|sub
-5|1|mult|3|0|mult|mult
-5|1|mult|4|1|mult|sub
-5|1|mult|4|1|mult|add
-5|1|mult|4|1|sub|mult
-5|1|mult|4|1|add|mult
-5|1|mult|4|cbrt|mult
-5|1|mult|4|cb|mult
-5|1|mult|4|sq|mult
-5|1|mult|4|sq|sub
-5|1|mult|4|sq|add
-5|1|mult|4|0|mult|mult
-5|1|mult|4|0|mult|sub
-5|1|mult|4|0|mult|add
-5|1|mult|4|1|mult|mult
-5|1|mult|3|0|mult|sub
-5|1|mult|3|0|mult|add
-5|1|mult|4|0|add|mult
-5|1|mult|3|2|mult|mult
-5|1|mult|3|2|mult|sub
-5|1|mult|3|2|mult|add
-5|1|mult|3|2|sub|mult
-5|1|mult|3|2|add|mult
-5|1|mult|3|1|mult|mult
-5|1|mult|3|1|mult|sub
-5|1|mult|3|1|mult|add
-5|1|mult|3|1|sub|mult
-5|1|mult|1|sq|mult
-5|1|mult|2|sq|mult
-5|1|mult|2|sq|sub
-5|1|mult|2|sq|add
-5|1|mult|2|0|mult|mult
-5|1|mult|2|0|mult|sub
-5|1|mult|2|0|mult|add
-5|1|mult|4|2|mult|mult
-5|1|mult|4|2|mult|sub
-5|1|mult|4|2|mult|add
-5|1|mult|2|0|add|mult
-5|1|mult|1|cbrt|mult
-5|1|mult|1|cb|mult
-5|1|mult|3|1|add|mult
-5|1|mult|1|sq|sub
-5|1|mult|1|sq|add
-5|1|mult|1|0|mult|mult
-5|1|mult|1|0|mult|sub
-5|1|mult|1|0|mult|add
-5|1|mult|1|0|sub|mult
-5|1|mult|1|0|add|mult
-5|1|mult|0|cbrt|mult
-5|1|mult|0|cb|mult
-5|1|mult|2|0|sub|mult
-5|1|mult|4|2|sub|mult
-5|1|mult|4|2|add|mult
-5|1|mult|8|7|mult|sub
-5|1|mult|8|6|mult|add
-5|1|mult|8|6|sub|mult
-5|1|mult|8|6|add|mult
-5|1|mult|8|5|mult|mult
-5|1|mult|8|5|mult|sub
-5|1|mult|8|5|mult|add
-5|1|mult|8|5|sub|mult
-5|1|mult|8|5|add|mult
-5|1|mult|8|4|mult|mult
-5|1|mult|8|4|mult|sub
-5|1|mult|8|4|mult|add
-5|1|mult|8|7|mult|mult
-5|1|mult|8|6|mult|sub
-5|1|mult|8|7|mult|add
-5|1|mult|9|8|mult|mult
-5|1|mult|9|8|mult|sub
-5|1|mult|9|8|mult|add
-5|1|mult|9|8|sub|mult
-5|1|mult|9|8|add|mult
-5|1|mult|9|7|mult|mult
-5|1|mult|9|7|mult|sub
-5|1|mult|9|7|mult|add
-5|1|mult|9|7|sub|mult
-5|1|mult|9|7|add|mult
-5|1|mult|9|6|mult|mult
-5|1|mult|9|cb|mult
-5|1|mult|3|cbrt|mult
-5|1|mult|3|cb|mult
-5|1|mult|3|sq|mult
-5|1|mult|3|sq|sub
-5|1|mult|3|sq|add
-5|1|mult|4|0|sub|mult
-5|1|mult|9|1|mult|mult
-5|1|mult|9|1|mult|sub
-5|1|mult|9|1|mult|add
-5|1|mult|9|1|sub|mult
-5|1|mult|9|1|add|mult
-5|1|mult|9|cbrt|mult
-5|2|add|9|6|mult|mult
-5|1|mult|9|sq|mult
-5|1|mult|9|sq|sub
-5|1|mult|9|sq|add
-5|1|mult|9|0|mult|mult
-5|1|mult|9|0|mult|sub
-5|1|mult|9|0|mult|add
-5|1|mult|9|0|sub|mult
-5|1|mult|9|0|add|mult
-5|1|mult|6|5|sub|mult
-5|1|mult|8|7|sub|mult
-5|1|mult|8|7|add|mult
-5|1|mult|8|6|mult|mult
-5|2|sub|7|1|sub|add
-5|2|sub|7|3|sub|add
-5|2|sub|7|3|add|mult
-5|2|sub|7|3|add|sub
-5|2|sub|7|3|add|add
-5|2|sub|7|2|mult|mult
-5|2|sub|7|2|sub|mult
-5|2|sub|7|2|sub|add
-5|2|sub|8|4|sub|mult
-5|2|sub|8|4|sub|sub
-5|2|sub|8|4|sub|add
-5|2|sub|7|1|mult|mult
-5|2|sub|7|1|sub|mult
-5|2|sub|7|1|sub|sub
-5|2|sub|7|3|sub|sub
-5|2|sub|7|1|add|mult
-5|2|sub|7|1|add|sub
-5|2|sub|7|1|add|add
-5|2|sub|7|cbrt|mult
-5|2|sub|7|cb|mult
-5|2|sub|7|sq|mult
-5|2|sub|7|0|mult|mult
-5|2|sub|7|0|sub|mult
-5|2|sub|7|0|sub|sub
-5|2|sub|7|0|sub|add
-5|2|sub|7|0|add|mult
-5|2|sub|7|0|add|sub
-5|2|sub|9|2|sub|add
-5|2|sub|9|4|add|mult
-5|2|sub|9|4|add|sub
-5|2|sub|9|4|add|add
-5|2|sub|9|3|mult|mult
-5|2|sub|9|3|sub|mult
-5|2|sub|9|3|sub|sub
-5|2|sub|9|3|sub|add
-5|2|sub|9|3|add|mult
-5|2|sub|9|3|add|sub
-5|2|sub|9|3|add|add
-5|2|sub|9|2|mult|mult
-5|2|sub|9|2|sub|mult
-5|2|sub|7|0|add|add
-5|2|sub|9|5|mult|mult
-5|2|sub|7|5|add|mult
-5|2|sub|7|5|add|add
-5|2|sub|7|4|mult|mult
-5|2|sub|7|4|sub|mult
-5|2|sub|7|4|sub|sub
-5|2|sub|7|4|sub|add
-5|2|sub|7|4|add|mult
-5|2|sub|7|4|add|sub
-5|2|sub|7|4|add|add
-5|2|sub|7|3|mult|mult
-5|2|sub|7|3|sub|mult
-5|2|sub|7|6|add|mult
-5|2|sub|8|sq|mult
-5|2|sub|8|0|mult|mult
-5|2|sub|8|0|sub|mult
-5|2|sub|8|0|sub|sub
-5|2|sub|8|0|sub|add
-5|2|sub|8|0|add|mult
-5|2|sub|8|0|add|sub
-5|2|sub|8|0|add|add
-5|2|sub|7|6|mult|mult
-5|2|sub|7|6|sub|mult
-5|2|sub|7|6|sub|sub
-5|2|sub|7|6|sub|add
-5|2|sub|8|cb|mult
-5|2|sub|7|6|add|sub
-5|2|sub|7|6|add|add
-5|2|sub|7|5|mult|mult
-5|2|sub|8|1|add|mult
-5|2|sub|8|1|add|sub
-5|2|sub|8|1|add|add
-5|2|sub|9|mult
-5|2|sub|9|sub
-5|2|sub|9|add
-5|2|sub|8|mult
-5|2|sub|8|sub
-5|2|sub|8|add
-5|2|sub|8|3|add|add
-5|2|sub|6|5|mult|mult
-5|2|sub|7|2|add|mult
-5|2|sub|7|2|add|sub
-5|2|sub|8|4|add|mult
-5|2|sub|8|4|add|sub
-5|2|sub|8|4|add|add
-5|2|sub|8|3|mult|mult
-5|2|sub|8|3|sub|mult
-5|2|sub|8|3|sub|sub
-5|2|sub|8|3|sub|add
-5|2|sub|8|3|add|mult
-5|2|sub|8|3|add|sub
-5|2|sub|9|4|sub|add
-5|2|sub|8|2|mult|mult
-5|2|sub|8|2|sub|mult
-5|2|sub|8|2|sub|add
-5|2|sub|8|2|add|mult
-5|2|sub|8|2|add|sub
-5|2|sub|8|1|mult|mult
-5|2|sub|8|1|sub|mult
-5|2|sub|8|1|sub|sub
-5|2|sub|8|1|sub|add
-5|2|sub|7|5|sub|mult
-5|2|sub|7|5|sub|sub
-5|2|sub|8|cbrt|mult
-5|2|sub|9|1|add|mult
-5|2|sub|3|1|add|sub
-5|2|sub|3|1|add|add
-5|2|sub|3|cbrt|mult
-5|2|sub|3|cb|mult
-5|2|sub|3|sq|mult
-5|2|sub|4|0|sub|mult
-5|2|sub|4|0|sub|sub
-5|2|sub|4|0|sub|add
-5|2|sub|9|1|mult|mult
-5|2|sub|9|1|sub|mult
-5|2|sub|9|1|sub|sub
-5|2|sub|9|1|sub|add
-5|2|sub|3|1|add|mult
-5|2|sub|9|1|add|sub
-5|2|sub|9|1|add|add
-5|2|sub|9|cbrt|mult
-5|2|sub|9|cb|mult
-5|2|sub|9|sq|mult
-5|2|sub|9|0|mult|mult
-5|2|sub|9|0|sub|mult
-5|2|sub|9|0|sub|sub
-5|2|sub|9|0|sub|add
-5|2|sub|9|0|add|mult
-5|2|sub|9|0|add|sub
-5|2|sub|9|0|add|add
-5|2|sub|3|0|mult|mult
-5|2|sub|4|2|add|sub
-5|2|sub|4|1|mult|mult
-5|2|sub|4|1|sub|mult
-5|2|sub|4|1|sub|sub
-5|2|sub|4|1|sub|add
-5|2|sub|4|1|add|mult
-5|2|sub|4|1|add|sub
-5|2|sub|4|1|add|add
-5|2|sub|4|cbrt|mult
-5|2|sub|4|cb|mult
-5|2|sub|4|sq|mult
-5|2|sub|4|0|mult|mult
-5|2|sub|6|5|sub|mult
-5|2|sub|4|0|add|mult
-5|2|sub|4|0|add|sub
-5|2|sub|4|0|add|add
-5|2|sub|3|2|mult|mult
-5|2|sub|3|2|sub|mult
-5|2|sub|3|2|sub|add
-5|2|sub|3|2|add|mult
-5|2|sub|3|2|add|sub
-5|2|sub|3|1|mult|mult
-5|2|sub|3|1|sub|mult
-5|2|sub|3|1|sub|sub
-5|2|sub|3|1|sub|add
-5|2|sub|9|6|sub|add
-5|2|sub|9|8|add|sub
-5|2|sub|9|8|add|add
-5|2|sub|9|7|mult|mult
-5|2|sub|9|7|sub|mult
-5|2|sub|9|7|sub|sub
-5|2|sub|9|7|sub|add
-5|2|sub|9|7|add|mult
-5|2|sub|9|7|add|sub
-5|2|sub|9|7|add|add
-5|2|sub|9|6|mult|mult
-5|2|sub|9|6|sub|mult
-5|2|sub|9|6|sub|sub
-5|2|sub|9|8|add|mult
-5|2|sub|9|6|add|mult
-5|2|sub|9|6|add|sub
-5|2|sub|9|6|add|add
-5|2|sub|9|2|add|mult
-5|2|sub|9|2|add|sub
-5|2|sub|9|5|sub|mult
-5|2|sub|9|5|sub|sub
-5|2|sub|9|5|add|mult
-5|2|sub|9|5|add|add
-5|2|sub|9|4|mult|mult
-5|2|sub|9|4|sub|mult
-5|2|sub|9|4|sub|sub
-5|2|sub|8|6|add|sub
-5|2|sub|6|5|sub|sub
-5|2|sub|8|7|sub|mult
-5|2|sub|8|7|sub|sub
-5|2|sub|8|7|sub|add
-5|2|sub|8|7|add|mult
-5|2|sub|8|7|add|sub
-5|2|sub|8|7|add|add
-5|2|sub|8|6|mult|mult
-5|2|sub|8|6|sub|mult
-5|2|sub|8|6|sub|sub
-5|2|sub|8|6|sub|add
-5|2|sub|8|6|add|mult
-5|2|sub|7|mult
-5|2|sub|8|6|add|add
-5|2|sub|8|5|mult|mult
-5|2|sub|8|5|sub|mult
-5|2|sub|8|5|sub|sub
-5|2|sub|8|5|add|mult
-5|2|sub|8|5|add|add
-5|2|sub|8|4|mult|mult
-5|2|sub|8|7|mult|mult
-5|2|sub|9|8|mult|mult
-5|2|sub|9|8|sub|mult
-5|2|sub|9|8|sub|sub
-5|2|sub|9|8|sub|add
-5|2|add|3|1|sub|mult
-5|2|add|4|cb|mult
-5|2|add|4|sq|mult
-5|2|add|4|0|mult|mult
-5|2|add|3|0|mult|mult
-5|2|add|4|0|add|mult
-5|2|add|4|0|add|sub
-5|2|add|4|0|add|add
-5|2|add|3|2|mult|mult
-5|2|add|3|2|sub|mult
-5|2|add|3|2|sub|sub
-5|2|add|3|2|add|mult
-5|2|add|3|2|add|add
-5|2|add|3|1|mult|mult
-5|2|add|4|cbrt|mult
-5|2|add|3|1|sub|sub
-5|2|add|3|1|sub|add
-5|2|add|3|1|add|mult
-5|2|add|3|1|add|sub
-5|2|add|3|1|add|add
-5|2|add|3|cbrt|mult
-5|2|add|3|cb|mult
-5|2|add|3|sq|mult
-5|2|add|4|0|sub|mult
-5|2|add|4|0|sub|sub
-5|2|add|4|0|sub|add
-5|2|add|9|1|mult|mult
-5|2|add|2|0|sub|mult
-5|2|add|1|cbrt|mult
-5|2|add|1|cb|mult
-5|2|add|1|sq|mult
-5|2|add|1|0|mult|mult
-5|2|add|1|0|sub|mult
-5|2|add|1|0|sub|sub
-5|2|add|1|0|sub|add
-5|2|add|1|0|add|mult
-5|2|add|1|0|add|sub
-5|2|add|1|0|add|add
-5|2|add|0|cbrt|mult
-5|2|add|0|cb|mult
-5|2|add|9|1|sub|mult
-5|2|add|2|0|sub|add
-5|2|add|4|2|sub|mult
-5|2|add|4|2|sub|sub
-5|2|add|4|2|add|mult
-5|2|add|4|2|add|add
-5|2|add|4|1|mult|mult
-5|2|add|4|1|sub|mult
-5|2|add|4|1|sub|sub
-5|2|add|4|1|sub|add
-5|2|add|4|1|add|mult
-5|2|add|4|1|add|sub
-5|2|add|4|1|add|add
-5|2|add|9|8|sub|mult
-5|2|add|8|6|sub|add
-5|2|add|8|6|add|mult
-5|2|add|8|6|add|sub
-5|2|add|8|6|add|add
-5|2|add|8|5|mult|mult
-5|2|add|8|5|sub|mult
-5|2|add|8|5|sub|sub
-5|2|add|8|5|add|mult
-5|2|add|8|5|add|add
-5|2|add|8|4|mult|mult
-5|2|add|8|7|mult|mult
-5|2|add|9|8|mult|mult
-5|2|add|8|6|sub|sub
-5|2|add|9|8|sub|sub
-5|2|add|9|8|sub|add
-5|2|add|9|8|add|mult
-5|2|add|9|8|add|sub
-5|2|add|9|8|add|add
-5|2|add|9|7|mult|mult
-5|2|add|9|7|sub|mult
-5|2|add|9|7|sub|sub
-5|2|add|9|7|sub|add
-5|2|add|9|7|add|mult
-5|2|add|9|7|add|sub
-5|2|add|9|7|add|add
-5|2|add|9|0|add|mult
-5|2|add|9|1|sub|sub
-5|2|add|9|1|sub|add
-5|2|add|9|1|add|mult
-5|2|add|9|1|add|sub
-5|2|add|9|1|add|add
-5|2|add|9|cbrt|mult
-5|2|add|9|cb|mult
-5|2|add|9|sq|mult
-5|2|add|9|0|mult|mult
-5|2|add|9|0|sub|mult
-5|2|add|9|0|sub|sub
-5|2|add|9|0|sub|add
-5|2|add|2|0|add|add
-5|2|add|9|0|add|sub
-5|2|add|9|0|add|add
-5|2|add|6|5|sub|mult
-5|2|add|6|5|sub|sub
-5|2|add|8|7|sub|mult
-5|2|add|8|7|sub|sub
-5|2|add|8|7|sub|add
-5|2|add|8|7|add|mult
-5|2|add|8|7|add|sub
-5|2|add|8|7|add|add
-5|2|add|8|6|mult|mult
-5|2|add|8|6|sub|mult
-5|2|add|4|3|sub|sub
-5|2|add|5|1|sub|add
-5|2|add|0|sq|mult
-5|2|add|5|cbrt|mult
-5|2|add|5|cb|mult
-5|2|add|5|sq|mult
-5|2|add|5|0|mult|mult
-5|2|add|5|0|sub|mult
-5|2|add|5|0|sub|add
-5|2|add|5|0|add|mult
-5|2|add|5|0|add|add
-5|2|add|4|3|mult|mult
-5|2|add|4|3|sub|mult
-5|2|add|5|1|sub|mult
-5|2|add|4|3|sub|add
-5|2|add|4|3|add|mult
-5|2|add|4|3|add|sub
-5|2|add|4|3|add|add
-5|2|add|5|1|add|mult
-5|2|add|5|1|add|add
-5|2|add|6|5|add|mult
-5|2|add|6|5|add|add
-5|2|add|6|4|mult|mult
-5|2|add|6|4|sub|mult
-5|2|add|6|4|sub|sub
-5|2|add|6|4|sub|add
-5|2|sub|3|add
-5|2|sub|7|sub
-5|2|sub|7|add
-5|2|sub|6|mult
-5|2|sub|6|sub
-5|2|sub|6|add
-5|2|sub|5|mult
-5|2|sub|5|add
-5|2|sub|4|mult
-5|2|sub|4|sub
-5|2|sub|4|add
-5|2|sub|3|mult
-5|2|sub|3|sub
-5|2|add|6|4|add|mult
-5|2|sub|2|mult
-5|2|sub|2|sub
-5|2|sub|1|mult
-5|2|sub|1|sub
-5|2|sub|1|add
-5|2|sub|cbrt
-5|2|sub|cb
-5|2|sub|sq
-5|2|sub|0|mult
-5|2|sub|0|sub
-5|2|sub|0|add
-5|2|add|5|1|mult|mult
-5|2|add|3|0|add|sub
-5|2|add|6|0|sub|sub
-5|2|add|6|0|sub|add
-5|2|add|6|0|add|mult
-5|2|add|6|0|add|sub
-5|2|add|6|0|add|add
-5|2|add|5|4|mult|mult
-5|2|add|6|2|add|mult
-5|2|add|6|2|add|add
-5|2|add|3|0|sub|mult
-5|2|add|3|0|sub|sub
-5|2|add|3|0|sub|add
-5|2|add|3|0|add|mult
-5|2|add|6|0|sub|mult
-5|2|add|3|0|add|add
-5|2|add|2|1|mult|mult
-5|2|add|2|1|sub|mult
-5|2|add|2|1|sub|add
-5|2|add|2|1|add|mult
-5|2|add|2|1|add|add
-5|2|add|2|cbrt|mult
-5|2|add|2|cb|mult
-5|2|add|2|sq|mult
-5|2|add|2|0|mult|mult
-5|2|add|4|2|mult|mult
-5|2|add|2|0|add|mult
-5|2|add|5|4|sub|mult
-5|2|add|6|4|add|sub
-5|2|add|6|4|add|add
-5|2|add|6|3|mult|mult
-5|2|add|6|3|sub|mult
-5|2|add|6|3|sub|sub
-5|2|add|6|3|sub|add
-5|2|add|6|3|add|mult
-5|2|add|6|3|add|sub
-5|2|add|6|3|add|add
-5|2|add|6|2|mult|mult
-5|2|add|6|2|sub|mult
-5|2|add|6|2|sub|sub
-5|1|mult|sq
-5|2|add|5|4|sub|add
-5|2|add|6|1|mult|mult
-5|2|add|6|1|sub|mult
-5|2|add|6|1|sub|sub
-5|2|add|6|1|sub|add
-5|2|add|6|1|add|mult
-5|2|add|6|1|add|sub
-5|2|add|6|1|add|add
-5|2|add|6|cbrt|mult
-5|2|add|6|cb|mult
-5|2|add|6|sq|mult
-5|2|add|6|0|mult|mult
-0|sq|8|0|mult|sub
-0|sq|8|2|mult|add
-0|sq|8|2|sub|mult
-0|sq|8|2|add|mult
-0|sq|8|1|mult|mult
-0|sq|8|1|mult|sub
-0|sq|8|1|mult|add
-0|sq|8|1|sub|mult
-0|sq|7|5|sub|mult
-0|sq|8|cbrt|mult
-0|sq|8|cb|mult
-0|sq|8|sq|sub
-0|sq|8|sq|add
-0|sq|8|0|mult|mult
-0|sq|8|2|mult|sub
-0|sq|8|0|mult|add
-0|sq|8|0|sub|mult
-0|sq|8|0|add|mult
-0|sq|7|6|mult|mult
-0|sq|7|6|mult|sub
-0|sq|7|6|mult|add
-0|sq|7|6|sub|mult
-0|sq|7|6|add|mult
-0|sq|7|5|mult|mult
-0|sq|7|5|mult|sub
-0|sq|7|5|mult|add
-0|sq|8|1|add|mult
-0|sq|7|0|sub|mult
-0|sq|7|1|mult|mult
-0|sq|7|1|mult|sub
-0|sq|7|1|mult|add
-0|sq|7|1|sub|mult
-0|sq|7|1|add|mult
-0|sq|7|cbrt|mult
-0|sq|7|cb|mult
-0|sq|7|sq|sub
-0|sq|7|sq|add
-0|sq|7|0|mult|mult
-0|sq|7|0|mult|sub
-0|sq|7|0|mult|add
-0|sq|9|mult
-0|sq|7|0|add|mult
-0|sq|6|5|mult|mult
-0|sq|6|5|mult|sub
-0|sq|6|5|mult|add
-0|sq|7|2|add|mult
-0|sq|8|4|add|mult
-0|sq|8|3|mult|mult
-0|sq|8|3|mult|sub
-0|sq|8|3|mult|add
-0|sq|8|3|sub|mult
-0|sq|8|3|add|mult
-0|sq|8|2|mult|mult
-5|cbrt|6|2|add|mult
-5|cbrt|6|1|mult|mult
-5|cbrt|6|1|sub|mult
-5|cbrt|6|1|add|mult
-5|cbrt|6|cbrt|mult
-5|cbrt|6|cbrt|sub
-5|cbrt|6|cbrt|add
-5|cbrt|6|cb|mult
-5|cbrt|6|sq|mult
-5|cbrt|6|0|mult|mult
-5|cbrt|6|0|sub|mult
-5|cbrt|6|0|add|mult
-5|cbrt|5|4|mult|mult
-5|cbrt|5|4|sub|mult
-5|cbrt|3|0|sub|mult
-5|cbrt|3|0|add|mult
-5|cbrt|2|1|mult|mult
-5|cbrt|2|1|sub|mult
-5|cbrt|2|1|add|mult
-5|cbrt|2|cbrt|mult
-5|cbrt|2|cbrt|sub
-5|cbrt|2|cbrt|add
-5|cbrt|2|cb|mult
-5|cbrt|2|sq|mult
-5|cbrt|2|0|mult|mult
-5|cbrt|4|2|mult|mult
-5|cbrt|4|3|mult|mult
-0|sq|8|mult
-0|sq|7|mult
-0|sq|6|mult
-0|sq|5|mult
-0|sq|4|mult
-0|sq|3|mult
-0|sq|2|mult
-0|sq|1|mult
-0|sq|sq
-5|cbrt|5|0|mult|mult
-5|cbrt|5|0|sub|mult
-5|cbrt|5|0|add|mult
-0|sq|8|4|sub|mult
-5|cbrt|4|3|sub|mult
-5|cbrt|4|3|add|mult
-5|cbrt|5|1|add|mult
-5|cbrt|6|5|add|mult
-5|cbrt|6|4|mult|mult
-5|cbrt|6|4|sub|mult
-5|cbrt|6|4|add|mult
-5|cbrt|6|3|mult|mult
-5|cbrt|6|3|sub|mult
-5|cbrt|6|3|add|mult
-5|cbrt|6|2|mult|mult
-5|cbrt|6|2|sub|mult
-0|sq|8|6|mult|sub
-0|sq|9|cb|mult
-0|sq|9|sq|sub
-0|sq|9|sq|add
-0|sq|9|0|mult|mult
-0|sq|9|0|mult|sub
-0|sq|9|0|mult|add
-0|sq|9|0|sub|mult
-0|sq|9|0|add|mult
-0|sq|6|5|sub|mult
-0|sq|8|7|sub|mult
-0|sq|8|7|add|mult
-0|sq|8|6|mult|mult
-0|sq|9|cbrt|mult
-0|sq|8|6|mult|add
-0|sq|8|6|sub|mult
-0|sq|8|6|add|mult
-0|sq|8|5|mult|mult
-0|sq|8|5|mult|sub
-0|sq|8|5|mult|add
-0|sq|8|5|sub|mult
-0|sq|8|5|add|mult
-0|sq|8|4|mult|mult
-0|sq|8|4|mult|sub
-0|sq|8|4|mult|add
-0|sq|8|7|mult|mult
-0|sq|3|1|mult|add
-0|sq|4|0|mult|add
-0|sq|3|0|mult|mult
-0|sq|3|0|mult|sub
-0|sq|3|0|mult|add
-0|sq|4|0|add|mult
-0|sq|3|2|mult|mult
-0|sq|3|2|mult|sub
-0|sq|3|2|mult|add
-0|sq|3|2|sub|mult
-0|sq|3|2|add|mult
-0|sq|3|1|mult|mult
-0|sq|3|1|mult|sub
-0|sq|8|7|mult|sub
-0|sq|3|1|sub|mult
-0|sq|3|1|add|mult
-0|sq|3|cbrt|mult
-0|sq|3|cb|mult
-0|sq|3|sq|sub
-0|sq|3|sq|add
-0|sq|4|0|sub|mult
-0|sq|9|1|mult|mult
-0|sq|9|1|mult|sub
-0|sq|9|1|mult|add
-0|sq|9|1|sub|mult
-0|sq|9|1|add|mult
-0|sq|7|4|mult|sub
-0|sq|9|3|mult|add
-0|sq|9|3|sub|mult
-0|sq|9|3|add|mult
-0|sq|9|2|mult|mult
-0|sq|9|2|mult|sub
-0|sq|9|2|mult|add
-0|sq|9|2|sub|mult
-0|sq|9|5|mult|mult
-0|sq|9|5|mult|sub
-0|sq|9|5|mult|add
-0|sq|7|5|add|mult
-0|sq|7|4|mult|mult
-0|sq|9|3|mult|sub
-0|sq|7|4|mult|add
-0|sq|7|4|sub|mult
-0|sq|7|4|add|mult
-0|sq|7|3|mult|mult
-0|sq|7|3|mult|sub
-0|sq|7|3|mult|add
-0|sq|7|3|sub|mult
-0|sq|7|3|add|mult
-0|sq|7|2|mult|mult
-0|sq|7|2|mult|sub
-0|sq|7|2|mult|add
-0|sq|7|2|sub|mult
-0|sq|9|6|mult|sub
-0|sq|8|7|mult|add
-0|sq|9|8|mult|mult
-0|sq|9|8|mult|sub
-0|sq|9|8|mult|add
-0|sq|9|8|sub|mult
-0|sq|9|8|add|mult
-0|sq|9|7|mult|mult
-0|sq|9|7|mult|sub
-0|sq|9|7|mult|add
-0|sq|9|7|sub|mult
-0|sq|9|7|add|mult
-0|sq|9|6|mult|mult
-5|cbrt|2|0|add|mult
-0|sq|9|6|mult|add
-0|sq|9|6|sub|mult
-0|sq|9|6|add|mult
-0|sq|9|2|add|mult
-0|sq|9|5|sub|mult
-0|sq|9|5|add|mult
-0|sq|9|4|mult|mult
-0|sq|9|4|mult|sub
-0|sq|9|4|mult|add
-0|sq|9|4|sub|mult
-0|sq|9|4|add|mult
-0|sq|9|3|mult|mult
-5|cb|4|3|add|mult
-5|cbrt|6|mult
-5|cbrt|4|mult
-5|cbrt|3|mult
-5|cbrt|2|mult
-5|cbrt|1|mult
-5|cbrt|cbrt
-5|cbrt|sq
-5|cbrt|0|mult
-5|cb|5|0|mult|mult
-5|cb|5|0|sub|mult
-5|cb|5|0|add|mult
-5|cb|4|3|mult|mult
-5|cb|4|3|sub|mult
-5|cbrt|7|mult
-5|cb|5|1|add|mult
-5|cb|6|5|add|mult
-5|cb|6|4|mult|mult
-5|cb|6|4|sub|mult
-5|cb|6|4|add|mult
-5|cb|6|3|mult|mult
-5|cb|6|3|sub|mult
-5|cb|6|3|add|mult
-5|cb|6|2|mult|mult
-5|cb|6|2|sub|mult
-5|cb|5|4|sub|mult
-5|cb|6|1|mult|mult
-5|cbrt|8|cbrt|add
-5|cbrt|8|4|add|mult
-5|cbrt|8|3|mult|mult
-5|cbrt|8|3|sub|mult
-5|cbrt|8|3|add|mult
-5|cbrt|8|2|mult|mult
-5|cbrt|8|2|sub|mult
-5|cbrt|8|2|add|mult
-5|cbrt|8|1|mult|mult
-5|cbrt|8|1|sub|mult
-5|cbrt|7|5|sub|mult
-5|cbrt|8|cbrt|mult
-5|cbrt|8|cbrt|sub
-5|cb|6|1|sub|mult
-5|cbrt|8|cb|mult
-5|cbrt|8|sq|mult
-5|cbrt|8|0|mult|mult
-5|cbrt|8|0|sub|mult
-5|cbrt|8|0|add|mult
-5|cbrt|7|6|mult|mult
-5|cbrt|7|6|sub|mult
-5|cbrt|7|6|add|mult
-5|cbrt|7|5|mult|mult
-5|cbrt|8|1|add|mult
-5|cbrt|9|mult
-5|cbrt|8|mult
-5|cb|4|cbrt|mult
-5|cb|1|0|mult|mult
-5|cb|1|0|sub|mult
-5|cb|1|0|add|mult
-5|cb|0|cbrt|mult
-5|cb|0|cb|sub
-5|cb|0|cb|add
-5|cb|2|0|sub|mult
-5|cb|4|2|sub|mult
-5|cb|4|2|add|mult
-5|cb|4|1|mult|mult
-5|cb|4|1|sub|mult
-5|cb|4|1|add|mult
-5|cb|1|sq|mult
-5|cb|4|cb|sub
-5|cb|4|cb|add
-5|cb|4|sq|mult
-5|cb|4|0|mult|mult
-5|cb|3|0|mult|mult
-5|cb|4|0|add|mult
-5|cb|3|2|mult|mult
-5|cb|3|2|sub|mult
-5|cb|3|2|add|mult
-5|cb|3|1|mult|mult
-5|cb|3|1|sub|mult
-5|cb|3|1|add|mult
-5|cb|2|1|mult|mult
-5|cb|6|1|add|mult
-5|cb|6|cbrt|mult
-5|cb|6|cb|sub
-5|cb|6|cb|add
-5|cb|6|sq|mult
-5|cb|6|0|mult|mult
-5|cb|6|0|sub|mult
-5|cb|6|0|add|mult
-5|cb|5|4|mult|mult
-5|cb|6|2|add|mult
-5|cb|3|0|sub|mult
-5|cb|3|0|add|mult
-5|cbrt|7|2|add|mult
-5|cb|2|1|sub|mult
-5|cb|2|1|add|mult
-5|cb|2|cbrt|mult
-5|cb|2|cb|sub
-5|cb|2|cb|add
-5|cb|2|sq|mult
-5|cb|2|0|mult|mult
-5|cb|4|2|mult|mult
-5|cb|2|0|add|mult
-5|cb|1|cbrt|mult
-5|cb|1|cb|sub
-5|cb|1|cb|add
-5|cbrt|9|1|mult|mult
-5|cbrt|3|2|mult|mult
-5|cbrt|3|2|sub|mult
-5|cbrt|3|2|add|mult
-5|cbrt|3|1|mult|mult
-5|cbrt|3|1|sub|mult
-5|cbrt|3|1|add|mult
-5|cbrt|3|cbrt|mult
-5|cbrt|3|cbrt|sub
-5|cbrt|3|cbrt|add
-5|cbrt|3|cb|mult
-5|cbrt|3|sq|mult
-5|cbrt|4|0|sub|mult
-5|cbrt|4|0|add|mult
-5|cbrt|9|1|sub|mult
-5|cbrt|9|1|add|mult
-5|cbrt|9|cbrt|mult
-5|cbrt|9|cbrt|sub
-5|cbrt|9|cbrt|add
-5|cbrt|9|cb|mult
-5|cbrt|9|sq|mult
-5|cbrt|9|0|mult|mult
-5|cbrt|9|0|sub|mult
-5|cbrt|9|0|add|mult
-5|cbrt|6|5|sub|mult
-5|cbrt|8|7|sub|mult
-5|cbrt|2|0|sub|mult
-5|cbrt|1|cbrt|mult
-5|cbrt|1|cbrt|sub
-5|cbrt|1|cbrt|add
-5|cbrt|1|cb|mult
-5|cbrt|1|sq|mult
-5|cbrt|1|0|mult|mult
-5|cbrt|1|0|sub|mult
-5|cbrt|1|0|add|mult
-5|cbrt|0|cbrt|mult
-5|cbrt|0|cbrt|sub
-5|cbrt|0|cbrt|add
-5|cbrt|0|cb|mult
-5|cbrt|8|7|add|mult
-5|cbrt|4|2|sub|mult
-5|cbrt|4|2|add|mult
-5|cbrt|4|1|mult|mult
-5|cbrt|4|1|sub|mult
-5|cbrt|4|1|add|mult
-5|cbrt|4|cbrt|mult
-5|cbrt|4|cbrt|sub
-5|cbrt|4|cbrt|add
-5|cbrt|4|cb|mult
-5|cbrt|4|sq|mult
-5|cbrt|4|0|mult|mult
-5|cbrt|3|0|mult|mult
-5|cbrt|8|4|sub|mult
-5|cbrt|9|2|mult|mult
-5|cbrt|9|2|sub|mult
-5|cbrt|9|5|mult|mult
-5|cbrt|7|5|add|mult
-5|cbrt|7|4|mult|mult
-5|cbrt|7|4|sub|mult
-5|cbrt|7|4|add|mult
-5|cbrt|7|3|mult|mult
-5|cbrt|7|3|sub|mult
-5|cbrt|7|3|add|mult
-5|cbrt|7|2|mult|mult
-5|cbrt|7|2|sub|mult
-5|cbrt|9|3|add|mult
-5|cbrt|7|1|mult|mult
-5|cbrt|7|1|sub|mult
-5|cbrt|7|1|add|mult
-5|cbrt|7|cbrt|mult
-5|cbrt|7|cbrt|sub
-5|cbrt|7|cbrt|add
-5|cbrt|7|cb|mult
-5|cbrt|7|sq|mult
-5|cbrt|7|0|mult|mult
-5|cbrt|7|0|sub|mult
-5|cbrt|7|0|add|mult
-5|cbrt|6|5|mult|mult
-5|cbrt|9|7|sub|mult
-5|cbrt|8|6|mult|mult
-5|cbrt|8|6|sub|mult
-5|cbrt|8|6|add|mult
-5|cbrt|8|5|mult|mult
-5|cbrt|8|5|sub|mult
-5|cbrt|8|5|add|mult
-5|cbrt|8|4|mult|mult
-5|cbrt|8|7|mult|mult
-5|cbrt|9|8|mult|mult
-5|cbrt|9|8|sub|mult
-5|cbrt|9|8|add|mult
-5|cbrt|9|7|mult|mult
-0|sq|4|0|mult|sub
-5|cbrt|9|7|add|mult
-5|cbrt|9|6|mult|mult
-5|cbrt|9|6|sub|mult
-5|cbrt|9|6|add|mult
-5|cbrt|9|2|add|mult
-5|cbrt|9|5|sub|mult
-5|cbrt|9|5|add|mult
-5|cbrt|9|4|mult|mult
-5|cbrt|9|4|sub|mult
-5|cbrt|9|4|add|mult
-5|cbrt|9|3|mult|mult
-5|cbrt|9|3|sub|mult
-5|1|sub|6|5|sub|mult
-5|1|sub|9|1|sub|add
-5|1|sub|9|1|add|mult
-5|1|sub|9|1|add|sub
-5|1|sub|9|cbrt|mult
-5|1|sub|9|cb|mult
-5|1|sub|9|sq|mult
-5|1|sub|9|0|mult|mult
-5|1|sub|9|0|sub|mult
-5|1|sub|9|0|sub|sub
-5|1|sub|9|0|sub|add
-5|1|sub|9|0|add|mult
-5|1|sub|9|0|add|sub
-5|1|sub|9|0|add|add
-5|1|sub|9|1|sub|mult
-5|1|sub|6|5|sub|sub
-5|1|sub|8|7|sub|mult
-5|1|sub|8|7|sub|sub
-5|1|sub|8|7|sub|add
-5|1|sub|8|7|add|mult
-5|1|sub|8|7|add|sub
-5|1|sub|8|7|add|add
-5|1|sub|8|6|mult|mult
-5|1|sub|8|6|sub|mult
-5|1|sub|8|6|sub|sub
-5|1|sub|8|6|sub|add
-5|1|sub|8|6|add|mult
-5|1|sub|3|2|add|add
-5|1|sub|4|sq|mult
-5|1|sub|4|0|mult|mult
-5|1|sub|3|0|mult|mult
-5|1|sub|4|0|add|mult
-5|1|sub|4|0|add|sub
-5|1|sub|4|0|add|add
-5|1|sub|3|2|mult|mult
-5|1|sub|3|2|sub|mult
-5|1|sub|3|2|sub|sub
-5|1|sub|3|2|sub|add
-5|1|sub|3|2|add|mult
-5|1|sub|3|2|add|sub
-5|1|sub|8|6|add|sub
-5|1|sub|3|1|mult|mult
-5|1|sub|3|1|sub|mult
-5|1|sub|3|1|sub|add
-5|1|sub|3|1|add|mult
-5|1|sub|3|1|add|sub
-5|1|sub|3|cbrt|mult
-5|1|sub|3|cb|mult
-5|1|sub|3|sq|mult
-5|1|sub|4|0|sub|mult
-5|1|sub|4|0|sub|sub
-5|1|sub|4|0|sub|add
-5|1|sub|9|1|mult|mult
-5|1|sub|9|4|sub|sub
-5|1|sub|9|6|add|mult
-5|1|sub|9|6|add|sub
-5|1|sub|9|6|add|add
-5|1|sub|9|2|add|mult
-5|1|sub|9|2|add|sub
-5|1|sub|9|2|add|add
-5|1|sub|9|5|sub|mult
-5|1|sub|9|5|sub|sub
-5|1|sub|9|5|add|mult
-5|1|sub|9|5|add|add
-5|1|sub|9|4|mult|mult
-5|1|sub|9|4|sub|mult
-5|1|sub|9|6|sub|add
-5|1|sub|9|4|sub|add
-5|1|sub|9|4|add|mult
-5|1|sub|9|4|add|sub
-5|1|sub|9|4|add|add
-5|1|sub|9|3|mult|mult
-5|1|sub|9|3|sub|mult
-5|1|sub|9|3|sub|sub
-5|1|sub|9|3|sub|add
-5|1|sub|9|3|add|mult
-5|1|sub|9|3|add|sub
-5|1|sub|9|3|add|add
-5|1|sub|9|2|mult|mult
-5|1|sub|9|8|add|mult
-5|1|sub|8|6|add|add
-5|1|sub|8|5|mult|mult
-5|1|sub|8|5|sub|mult
-5|1|sub|8|5|sub|sub
-5|1|sub|8|5|add|mult
-5|1|sub|8|5|add|add
-5|1|sub|8|4|mult|mult
-5|1|sub|8|7|mult|mult
-5|1|sub|9|8|mult|mult
-5|1|sub|9|8|sub|mult
-5|1|sub|9|8|sub|sub
-5|1|sub|9|8|sub|add
-5|1|sub|4|cb|mult
-5|1|sub|9|8|add|sub
-5|1|sub|9|8|add|add
-5|1|sub|9|7|mult|mult
-5|1|sub|9|7|sub|mult
-5|1|sub|9|7|sub|sub
-5|1|sub|9|7|sub|add
-5|1|sub|9|7|add|mult
-5|1|sub|9|7|add|sub
-5|1|sub|9|7|add|add
-5|1|sub|9|6|mult|mult
-5|1|sub|9|6|sub|mult
-5|1|sub|9|6|sub|sub
-5|1|sub|5|4|sub|mult
-5|1|sub|6|4|add|add
-5|1|sub|6|3|mult|mult
-5|1|sub|6|3|sub|mult
-5|1|sub|6|3|sub|sub
-5|1|sub|6|3|sub|add
-5|1|sub|6|3|add|mult
-5|1|sub|6|3|add|sub
-5|1|sub|6|3|add|add
-5|1|sub|6|2|mult|mult
-5|1|sub|6|2|sub|mult
-5|1|sub|6|2|sub|sub
-5|1|sub|6|2|sub|add
-5|1|sub|6|4|add|sub
-5|1|sub|5|4|sub|add
-5|1|sub|6|1|mult|mult
-5|1|sub|6|1|sub|mult
-5|1|sub|6|1|sub|add
-5|1|sub|6|1|add|mult
-5|1|sub|6|1|add|sub
-5|1|sub|6|cbrt|mult
-5|1|sub|6|cb|mult
-5|1|sub|6|sq|mult
-5|1|sub|6|0|mult|mult
-5|1|sub|6|0|sub|mult
-5|1|sub|6|0|sub|sub
-5|1|sub|4|3|sub|sub
-5|1|mult|0|mult
-5|1|sub|0|sq|mult
-5|1|sub|5|cbrt|mult
-5|1|sub|5|cb|mult
-5|1|sub|5|sq|mult
-5|1|sub|5|0|mult|mult
-5|1|sub|5|0|sub|mult
-5|1|sub|5|0|sub|add
-5|1|sub|5|0|add|mult
-5|1|sub|5|0|add|add
-5|1|sub|4|3|mult|mult
-5|1|sub|4|3|sub|mult
-5|1|sub|6|0|sub|add
-5|1|sub|4|3|sub|add
-5|1|sub|4|3|add|mult
-5|1|sub|4|3|add|sub
-5|1|sub|4|3|add|add
-5|1|sub|5|1|add|mult
-5|1|sub|6|5|add|mult
-5|1|sub|6|5|add|add
-5|1|sub|6|4|mult|mult
-5|1|sub|6|4|sub|mult
-5|1|sub|6|4|sub|sub
-5|1|sub|6|4|sub|add
-5|1|sub|6|4|add|mult
-5|1|sub|2|0|sub|add
-5|1|sub|1|cbrt|mult
-5|1|sub|1|cb|mult
-5|1|sub|1|sq|mult
-5|1|sub|1|0|mult|mult
-5|1|sub|1|0|sub|mult
-5|1|sub|1|0|sub|sub
-5|1|sub|1|0|add|mult
-5|1|sub|1|0|add|sub
-5|1|sub|0|cbrt|mult
-5|1|sub|0|cb|mult
-5|1|sub|2|0|sub|mult
-5|1|sub|2|0|sub|sub
-5|1|sub|2|0|add|add
-5|1|sub|4|2|sub|mult
-5|1|sub|4|2|sub|sub
-5|1|sub|4|2|sub|add
-5|1|sub|4|2|add|mult
-5|1|sub|4|2|add|sub
-5|1|sub|4|2|add|add
-5|1|sub|4|1|mult|mult
-5|1|sub|4|1|sub|mult
-5|1|sub|4|1|sub|add
-5|1|sub|4|1|add|mult
-5|1|sub|4|1|add|sub
-5|1|sub|4|cbrt|mult
-5|1|sub|3|0|add|add
-5|1|sub|6|0|add|mult
-5|1|sub|6|0|add|sub
-5|1|sub|6|0|add|add
-5|1|sub|5|4|mult|mult
-5|1|sub|6|2|add|mult
-5|1|sub|6|2|add|sub
-5|1|sub|6|2|add|add
-5|1|sub|3|0|sub|mult
-5|1|sub|3|0|sub|sub
-5|1|sub|3|0|sub|add
-5|1|sub|3|0|add|mult
-5|1|sub|3|0|add|sub
-5|1|sub|9|2|sub|mult
-5|1|sub|2|1|mult|mult
-5|1|sub|2|1|sub|mult
-5|1|sub|2|1|sub|add
-5|1|sub|2|1|add|mult
-5|1|sub|2|1|add|sub
-5|1|sub|2|cbrt|mult
-5|1|sub|2|cb|mult
-5|1|sub|2|sq|mult
-5|1|sub|2|0|mult|mult
-5|1|sub|4|2|mult|mult
-5|1|sub|2|0|add|mult
-5|1|sub|2|0|add|sub
-0|sq|6|3|sub|mult
-0|sq|4|3|sub|mult
-0|sq|4|3|add|mult
-0|sq|5|1|add|mult
-0|sq|6|5|add|mult
-0|sq|6|4|mult|mult
-0|sq|6|4|mult|sub
-0|sq|6|4|mult|add
-0|sq|6|4|sub|mult
-0|sq|6|4|add|mult
-0|sq|6|3|mult|mult
-0|sq|6|3|mult|sub
-0|sq|6|3|mult|add
-0|sq|4|3|mult|add
-0|sq|6|3|add|mult
-0|sq|6|2|mult|mult
-0|sq|6|2|mult|sub
-0|sq|6|2|mult|add
-0|sq|6|2|sub|mult
-0|sq|5|4|sub|mult
-0|sq|6|1|mult|mult
-0|sq|6|1|mult|sub
-0|sq|6|1|mult|add
-0|sq|6|1|sub|mult
-0|sq|6|1|add|mult
-0|sq|6|cbrt|mult
-5|1|sub|0|sub
-5|1|sub|3|mult
-5|1|sub|3|sub
-5|1|sub|3|add
-5|1|sub|2|mult
-5|1|sub|2|sub
-5|1|sub|2|add
-5|1|sub|1|mult
-5|1|sub|1|sub
-5|1|sub|cbrt
-5|1|sub|cb
-5|1|sub|sq
-5|1|sub|0|mult
-0|sq|6|cb|mult
-5|1|sub|0|add
-0|sq|5|cbrt|mult
-0|sq|5|cb|mult
-0|sq|5|sq|sub
-0|sq|5|sq|add
-0|sq|5|0|mult|mult
-0|sq|5|0|mult|sub
-0|sq|5|0|mult|add
-0|sq|5|0|sub|mult
-0|sq|5|0|add|mult
-0|sq|4|3|mult|mult
-0|sq|4|3|mult|sub
-0|sq|2|0|sub|mult
-0|sq|4|2|mult|sub
-0|sq|4|2|mult|add
-0|sq|2|0|add|mult
-0|sq|1|cbrt|mult
-0|sq|1|cb|mult
-0|sq|1|sq|sub
-0|sq|1|sq|add
-0|sq|1|0|mult|mult
-0|sq|1|0|mult|sub
-0|sq|1|0|mult|add
-0|sq|1|0|sub|mult
-0|sq|1|0|add|mult
-0|sq|4|2|mult|mult
-0|sq|4|2|sub|mult
-0|sq|4|2|add|mult
-0|sq|4|1|mult|mult
-0|sq|4|1|mult|sub
-0|sq|4|1|mult|add
-0|sq|4|1|sub|mult
-0|sq|4|1|add|mult
-0|sq|4|cbrt|mult
-0|sq|4|cb|mult
-0|sq|4|sq|sub
-0|sq|4|sq|add
-0|sq|4|0|mult|mult
-0|sq|3|0|add|mult
-0|sq|6|sq|sub
-0|sq|6|sq|add
-0|sq|6|0|mult|mult
-0|sq|6|0|mult|sub
-0|sq|6|0|mult|add
-0|sq|6|0|sub|mult
-0|sq|6|0|add|mult
-0|sq|5|4|mult|mult
-0|sq|5|4|mult|sub
-0|sq|5|4|mult|add
-0|sq|6|2|add|mult
-0|sq|3|0|sub|mult
-5|1|sub|4|add
-0|sq|2|1|mult|mult
-0|sq|2|1|mult|sub
-0|sq|2|1|mult|add
-0|sq|2|1|sub|mult
-0|sq|2|1|add|mult
-0|sq|2|cbrt|mult
-0|sq|2|cb|mult
-0|sq|2|sq|sub
-0|sq|2|sq|add
-0|sq|2|0|mult|mult
-0|sq|2|0|mult|sub
-0|sq|2|0|mult|add
-5|1|sub|7|0|add|mult
-5|1|sub|7|1|mult|mult
-5|1|sub|7|1|sub|mult
-5|1|sub|7|1|sub|add
-5|1|sub|7|1|add|mult
-5|1|sub|7|1|add|sub
-5|1|sub|7|cbrt|mult
-5|1|sub|7|cb|mult
-5|1|sub|7|sq|mult
-5|1|sub|7|0|mult|mult
-5|1|sub|7|0|sub|mult
-5|1|sub|7|0|sub|sub
-5|1|sub|7|0|sub|add
-5|1|sub|8|4|sub|add
-5|1|sub|7|0|add|sub
-5|1|sub|7|0|add|add
-5|1|sub|6|5|mult|mult
-5|1|sub|7|2|add|mult
-5|1|sub|7|2|add|sub
-5|1|sub|7|2|add|add
-5|1|sub|8|4|add|mult
-5|1|sub|8|4|add|sub
-5|1|sub|8|4|add|add
-5|1|sub|8|3|mult|mult
-5|1|sub|8|3|sub|mult
-5|1|sub|8|3|sub|sub
-5|1|sub|7|3|mult|mult
-5|1|sub|9|2|sub|sub
-5|1|sub|9|2|sub|add
-5|1|sub|9|5|mult|mult
-5|1|sub|7|5|add|mult
-5|1|sub|7|5|add|add
-5|1|sub|7|4|mult|mult
-5|1|sub|7|4|sub|mult
-5|1|sub|7|4|sub|sub
-5|1|sub|7|4|sub|add
-5|1|sub|7|4|add|mult
-5|1|sub|7|4|add|sub
-5|1|sub|7|4|add|add
-5|1|sub|8|3|sub|add
-5|1|sub|7|3|sub|mult
-5|1|sub|7|3|sub|sub
-5|1|sub|7|3|sub|add
-5|1|sub|7|3|add|mult
-5|1|sub|7|3|add|sub
-5|1|sub|7|3|add|add
-5|1|sub|7|2|mult|mult
-5|1|sub|7|2|sub|mult
-5|1|sub|7|2|sub|sub
-5|1|sub|7|2|sub|add
-5|1|sub|8|4|sub|mult
-5|1|sub|8|4|sub|sub
-5|1|sub|8|mult
-5|1|sub|7|6|sub|mult
-5|1|sub|7|6|sub|sub
-5|1|sub|7|6|sub|add
-5|1|sub|7|6|add|mult
-5|1|sub|7|6|add|sub
-5|1|sub|7|6|add|add
-5|1|sub|7|5|mult|mult
-5|1|sub|8|1|add|mult
-5|1|sub|8|1|add|sub
-5|1|sub|9|mult
-5|1|sub|9|sub
-5|1|sub|9|add
-5|1|sub|7|6|mult|mult
-5|1|sub|8|sub
-5|1|sub|8|add
-5|1|sub|7|mult
-5|1|sub|7|sub
-5|1|sub|7|add
-5|1|sub|6|mult
-5|1|sub|6|sub
-5|1|sub|6|add
-5|1|sub|5|mult
-5|1|sub|5|add
-5|1|sub|4|mult
-5|1|sub|4|sub
-5|1|sub|8|1|sub|add
-5|1|sub|8|3|add|mult
-5|1|sub|8|3|add|sub
-5|1|sub|8|3|add|add
-5|1|sub|8|2|mult|mult
-5|1|sub|8|2|sub|mult
-5|1|sub|8|2|sub|sub
-5|1|sub|8|2|sub|add
-5|1|sub|8|2|add|mult
-5|1|sub|8|2|add|sub
-5|1|sub|8|2|add|add
-5|1|sub|8|1|mult|mult
-5|1|sub|8|1|sub|mult
-5|2|sub|4|2|add|mult
-5|1|sub|7|5|sub|mult
-5|1|sub|7|5|sub|sub
-5|1|sub|8|cbrt|mult
-5|1|sub|8|cb|mult
-5|1|sub|8|sq|mult
-5|1|sub|8|0|mult|mult
-5|1|sub|8|0|sub|mult
-5|1|sub|8|0|sub|sub
-5|1|sub|8|0|sub|add
-5|1|sub|8|0|add|mult
-5|1|sub|8|0|add|sub
-5|1|sub|8|0|add|add
-5|3|mult|7|cbrt|mult
-5|3|mult|7|3|mult|add
-5|3|mult|7|3|sub|mult
-5|3|mult|7|3|add|mult
-5|3|mult|7|2|mult|mult
-5|3|mult|7|2|mult|sub
-5|3|mult|7|2|mult|add
-5|3|mult|7|2|sub|mult
-5|3|mult|8|4|sub|mult
-5|3|mult|7|1|mult|mult
-5|3|mult|7|1|mult|sub
-5|3|mult|7|1|mult|add
-5|3|mult|7|1|sub|mult
-5|3|mult|7|1|add|mult
-5|3|mult|7|3|mult|sub
-5|3|mult|7|cb|mult
-5|3|mult|7|sq|mult
-5|3|mult|7|sq|sub
-5|3|mult|7|sq|add
-5|3|mult|7|0|mult|mult
-5|3|mult|7|0|mult|sub
-5|3|mult|7|0|mult|add
-5|3|mult|7|0|sub|mult
-5|3|mult|7|0|add|mult
-5|3|mult|6|5|mult|mult
-5|3|mult|6|5|mult|sub
-5|3|mult|6|5|mult|add
-5|3|mult|9|2|mult|sub
-5|3|mult|9|5|add|mult
-5|3|mult|9|4|mult|mult
-5|3|mult|9|4|mult|sub
-5|3|mult|9|4|mult|add
-5|3|mult|9|4|sub|mult
-5|3|mult|9|4|add|mult
-5|3|mult|9|3|mult|mult
-5|3|mult|9|3|mult|sub
-5|3|mult|9|3|mult|add
-5|3|mult|9|3|sub|mult
-5|3|mult|9|3|add|mult
-5|3|mult|9|2|mult|mult
-5|3|mult|7|2|add|mult
-5|3|mult|9|2|mult|add
-5|3|mult|9|2|sub|mult
-5|3|mult|9|5|mult|mult
-5|3|mult|9|5|mult|sub
-5|3|mult|9|5|mult|add
-5|3|mult|7|5|add|mult
-5|3|mult|7|4|mult|mult
-5|3|mult|7|4|mult|sub
-5|3|mult|7|4|mult|add
-5|3|mult|7|4|sub|mult
-5|3|mult|7|4|add|mult
-5|3|mult|7|3|mult|mult
-5|3|mult|6|mult
-5|3|mult|7|6|mult|mult
-5|3|mult|7|6|mult|sub
-5|3|mult|7|6|mult|add
-5|3|mult|7|6|sub|mult
-5|3|mult|7|6|add|mult
-5|3|mult|7|5|mult|mult
-5|3|mult|7|5|mult|sub
-5|3|mult|7|5|mult|add
-5|3|mult|8|1|add|mult
-5|3|mult|9|mult
-5|3|mult|8|mult
-5|3|mult|7|mult
-5|3|mult|8|0|add|mult
-5|3|mult|5|mult
-5|3|mult|4|mult
-5|3|mult|3|mult
-5|3|mult|2|mult
-5|3|mult|1|mult
-5|3|mult|cbrt
-5|3|mult|cb
-5|3|mult|sq
-5|3|mult|0|mult
-5|3|sub|5|3|add|mult
-5|3|sub|5|2|mult|mult
-5|3|sub|5|2|sub|mult
-5|3|mult|8|1|mult|sub
-5|3|mult|8|4|add|mult
-5|3|mult|8|3|mult|mult
-5|3|mult|8|3|mult|sub
-5|3|mult|8|3|mult|add
-5|3|mult|8|3|sub|mult
-5|3|mult|8|3|add|mult
-5|3|mult|8|2|mult|mult
-5|3|mult|8|2|mult|sub
-5|3|mult|8|2|mult|add
-5|3|mult|8|2|sub|mult
-5|3|mult|8|2|add|mult
-5|3|mult|8|1|mult|mult
-5|3|mult|9|5|sub|mult
-5|3|mult|8|1|mult|add
-5|3|mult|8|1|sub|mult
-5|3|mult|7|5|sub|mult
-5|3|mult|8|cbrt|mult
-5|3|mult|8|cb|mult
-5|3|mult|8|sq|mult
-5|3|mult|8|sq|sub
-5|3|mult|8|sq|add
-5|3|mult|8|0|mult|mult
-5|3|mult|8|0|mult|sub
-5|3|mult|8|0|mult|add
-5|3|mult|8|0|sub|mult
-5|3|mult|3|2|mult|sub
-5|3|mult|4|cb|mult
-5|3|mult|4|sq|mult
-5|3|mult|4|sq|sub
-5|3|mult|4|sq|add
-5|3|mult|4|0|mult|mult
-5|3|mult|4|0|mult|sub
-5|3|mult|4|0|mult|add
-5|3|mult|3|0|mult|mult
-5|3|mult|3|0|mult|sub
-5|3|mult|3|0|mult|add
-5|3|mult|4|0|add|mult
-5|3|mult|3|2|mult|mult
-5|3|mult|4|cbrt|mult
-5|3|mult|3|2|mult|add
-5|3|mult|3|2|sub|mult
-5|3|mult|3|2|add|mult
-5|3|mult|3|1|mult|mult
-5|3|mult|3|1|mult|sub
-5|3|mult|3|1|mult|add
-5|3|mult|3|1|sub|mult
-5|3|mult|3|1|add|mult
-5|3|mult|3|cbrt|mult
-5|3|mult|3|cb|mult
-5|3|mult|3|sq|mult
-5|3|mult|3|sq|sub
-5|3|mult|1|0|mult|add
-5|3|mult|2|0|mult|add
-5|3|mult|4|2|mult|mult
-5|3|mult|4|2|mult|sub
-5|3|mult|4|2|mult|add
-5|3|mult|2|0|add|mult
-5|3|mult|1|cbrt|mult
-5|3|mult|1|cb|mult
-5|3|mult|1|sq|mult
-5|3|mult|1|sq|sub
-5|3|mult|1|sq|add
-5|3|mult|1|0|mult|mult
-5|3|mult|1|0|mult|sub
-5|3|mult|3|sq|add
-5|3|mult|1|0|sub|mult
-5|3|mult|1|0|add|mult
-5|3|mult|0|cbrt|mult
-5|3|mult|0|cb|mult
-5|3|mult|2|0|sub|mult
-5|3|mult|4|2|sub|mult
-5|3|mult|4|2|add|mult
-5|3|mult|4|1|mult|mult
-5|3|mult|4|1|mult|sub
-5|3|mult|4|1|mult|add
-5|3|mult|4|1|sub|mult
-5|3|mult|4|1|add|mult
-5|3|mult|9|8|sub|mult
-5|3|mult|8|5|mult|add
-5|3|mult|8|5|sub|mult
-5|3|mult|8|5|add|mult
-5|3|mult|8|4|mult|mult
-5|3|mult|8|4|mult|sub
-5|3|mult|8|4|mult|add
-5|3|mult|8|7|mult|mult
-5|3|mult|8|7|mult|sub
-5|3|mult|8|7|mult|add
-5|3|mult|9|8|mult|mult
-5|3|mult|9|8|mult|sub
-5|3|mult|9|8|mult|add
-5|3|mult|8|5|mult|sub
-5|3|mult|9|8|add|mult
-5|3|mult|9|7|mult|mult
-5|3|mult|9|7|mult|sub
-5|3|mult|9|7|mult|add
-5|3|mult|9|7|sub|mult
-5|3|mult|9|7|add|mult
-5|3|mult|9|6|mult|mult
-5|3|mult|9|6|mult|sub
-5|3|mult|9|6|mult|add
-5|3|mult|9|6|sub|mult
-5|3|mult|9|6|add|mult
-5|3|mult|9|2|add|mult
-5|3|mult|9|0|mult|sub
-5|3|mult|4|0|sub|mult
-5|3|mult|9|1|mult|mult
-5|3|mult|9|1|mult|sub
-5|3|mult|9|1|mult|add
-5|3|mult|9|1|sub|mult
-5|3|mult|9|1|add|mult
-5|3|mult|9|cbrt|mult
-5|3|mult|9|cb|mult
-5|3|mult|9|sq|mult
-5|3|mult|9|sq|sub
-5|3|mult|9|sq|add
-5|3|mult|9|0|mult|mult
-5|3|sub|5|2|sub|add
-5|3|mult|9|0|mult|add
-5|3|mult|9|0|sub|mult
-5|3|mult|9|0|add|mult
-5|3|mult|6|5|sub|mult
-5|3|mult|8|7|sub|mult
-5|3|mult|8|7|add|mult
-5|3|mult|8|6|mult|mult
-5|3|mult|8|6|mult|sub
-5|3|mult|8|6|mult|add
-5|3|mult|8|6|sub|mult
-5|3|mult|8|6|add|mult
-5|3|mult|8|5|mult|mult
-5|3|sub|9|0|mult|mult
-5|3|sub|4|0|sub|mult
-5|3|sub|4|0|sub|sub
-5|3|sub|4|0|sub|add
-5|3|sub|9|1|mult|mult
-5|3|sub|9|1|sub|mult
-5|3|sub|9|1|sub|sub
-5|3|sub|9|1|sub|add
-5|3|sub|9|1|add|mult
-5|3|sub|9|1|add|sub
-5|3|sub|9|1|add|add
-5|3|sub|9|cbrt|mult
-5|3|sub|9|cb|mult
-5|3|sub|9|sq|mult
-5|3|sub|3|sq|mult
-5|3|sub|9|0|sub|mult
-5|3|sub|9|0|sub|sub
-5|3|sub|9|0|sub|add
-5|3|sub|9|0|add|mult
-5|3|sub|9|0|add|sub
-5|3|sub|9|0|add|add
-5|3|sub|6|5|sub|mult
-5|3|sub|6|5|sub|sub
-5|3|sub|8|7|sub|mult
-5|3|sub|8|7|sub|sub
-5|3|sub|8|7|sub|add
-5|3|sub|8|7|add|mult
-5|3|sub|4|0|add|add
-5|3|sub|4|1|sub|sub
-5|3|sub|4|1|sub|add
-5|3|sub|4|1|add|mult
-5|3|sub|4|1|add|sub
-5|3|sub|4|1|add|add
-5|3|sub|4|cbrt|mult
-5|3|sub|4|cb|mult
-5|3|sub|4|sq|mult
-5|3|sub|4|0|mult|mult
-5|3|sub|3|0|mult|mult
-5|3|sub|4|0|add|mult
-5|3|sub|4|0|add|sub
-5|3|sub|8|7|add|sub
-5|3|sub|3|2|mult|mult
-5|3|sub|3|2|sub|mult
-5|3|sub|3|2|sub|sub
-5|3|sub|3|2|add|mult
-5|3|sub|3|2|add|sub
-5|3|sub|3|1|mult|mult
-5|3|sub|3|1|sub|mult
-5|3|sub|3|1|sub|sub
-5|3|sub|3|1|add|mult
-5|3|sub|3|1|add|sub
-5|3|sub|3|cbrt|mult
-5|3|sub|3|cb|mult
-5|3|sub|9|2|add|add
-5|3|sub|9|7|add|mult
-5|3|sub|9|7|add|sub
-5|3|sub|9|7|add|add
-5|3|sub|9|6|mult|mult
-5|3|sub|9|6|sub|mult
-5|3|sub|9|6|sub|sub
-5|3|sub|9|6|sub|add
-5|3|sub|9|6|add|mult
-5|3|sub|9|6|add|sub
-5|3|sub|9|6|add|add
-5|3|sub|9|2|add|mult
-5|3|sub|9|2|add|sub
-5|3|sub|9|7|sub|add
-5|3|sub|9|5|sub|mult
-5|3|sub|9|5|sub|sub
-5|3|sub|9|5|add|mult
-5|3|sub|9|5|add|add
-5|3|sub|9|4|mult|mult
-5|3|sub|9|4|sub|mult
-5|3|sub|9|4|sub|sub
-5|3|sub|9|4|sub|add
-5|3|sub|9|4|add|mult
-5|3|sub|9|4|add|sub
-5|3|sub|9|4|add|add
-5|3|sub|9|3|mult|mult
-5|3|sub|8|5|add|add
-5|3|sub|8|7|add|add
-5|3|sub|8|6|mult|mult
-5|3|sub|8|6|sub|mult
-5|3|sub|8|6|sub|sub
-5|3|sub|8|6|sub|add
-5|3|sub|8|6|add|mult
-5|3|sub|8|6|add|sub
-5|3|sub|8|6|add|add
-5|3|sub|8|5|mult|mult
-5|3|sub|8|5|sub|mult
-5|3|sub|8|5|sub|sub
-5|3|sub|8|5|add|mult
-5|3|sub|4|1|sub|mult
-5|3|sub|8|4|mult|mult
-5|3|sub|8|7|mult|mult
-5|3|sub|9|8|mult|mult
-5|3|sub|9|8|sub|mult
-5|3|sub|9|8|sub|sub
-5|3|sub|9|8|sub|add
-5|3|sub|9|8|add|mult
-5|3|sub|9|8|add|sub
-5|3|sub|9|8|add|add
-5|3|sub|9|7|mult|mult
-5|3|sub|9|7|sub|mult
-5|3|sub|9|7|sub|sub
-5|3|sub|6|2|sub|add
-5|3|sub|6|4|sub|add
-5|3|sub|6|4|add|mult
-5|3|sub|6|4|add|sub
-5|3|sub|6|4|add|add
-5|3|sub|6|3|mult|mult
-5|3|sub|6|3|sub|mult
-5|3|sub|6|3|sub|add
-5|3|sub|6|3|add|mult
-5|3|sub|6|3|add|sub
-5|3|sub|6|2|mult|mult
-5|3|sub|6|2|sub|mult
-5|3|sub|6|2|sub|sub
-5|3|sub|6|4|sub|sub
-5|3|sub|5|4|sub|mult
-5|3|sub|5|4|sub|add
-5|3|sub|6|1|mult|mult
-5|3|sub|6|1|sub|mult
-5|3|sub|6|1|sub|sub
-5|3|sub|6|1|sub|add
-5|3|sub|6|1|add|mult
-5|3|sub|6|1|add|sub
-5|3|sub|6|1|add|add
-5|3|sub|6|cbrt|mult
-5|3|sub|6|cb|mult
-5|3|sub|6|sq|mult
-5|3|sub|5|0|add|mult
-5|3|sub|5|2|add|mult
-5|3|sub|5|2|add|add
-5|3|sub|5|1|mult|mult
-5|3|sub|5|1|sub|mult
-5|3|sub|5|1|sub|add
-5|3|sub|0|sq|mult
-5|3|sub|5|cbrt|mult
-5|3|sub|5|cb|mult
-5|3|sub|5|sq|mult
-5|3|sub|5|0|mult|mult
-5|3|sub|5|0|sub|mult
-5|3|sub|5|0|sub|add
-5|3|sub|6|0|mult|mult
-5|3|sub|5|0|add|add
-5|3|sub|4|3|mult|mult
-5|3|sub|4|3|sub|mult
-5|3|sub|4|3|sub|add
-5|3|sub|4|3|add|mult
-5|3|sub|4|3|add|sub
-5|3|sub|5|1|add|mult
-5|3|sub|5|1|add|add
-5|3|sub|6|5|add|mult
-5|3|sub|6|5|add|add
-5|3|sub|6|4|mult|mult
-5|3|sub|6|4|sub|mult
-5|3|sub|1|0|add|add
-5|3|sub|2|0|add|mult
-5|3|sub|2|0|add|sub
-5|3|sub|2|0|add|add
-5|3|sub|1|cbrt|mult
-5|3|sub|1|cb|mult
-5|3|sub|1|sq|mult
-5|3|sub|1|0|mult|mult
-5|3|sub|1|0|sub|mult
-5|3|sub|1|0|sub|sub
-5|3|sub|1|0|sub|add
-5|3|sub|1|0|add|mult
-5|3|sub|1|0|add|sub
-5|3|sub|4|2|mult|mult
-5|3|sub|0|cbrt|mult
-5|3|sub|0|cb|mult
-5|3|sub|2|0|sub|mult
-5|3|sub|2|0|sub|sub
-5|3|sub|2|0|sub|add
-5|3|sub|4|2|sub|mult
-5|3|sub|4|2|sub|sub
-5|3|sub|4|2|sub|add
-5|3|sub|4|2|add|mult
-5|3|sub|4|2|add|sub
-5|3|sub|4|2|add|add
-5|3|sub|4|1|mult|mult
-5|3|sub|3|0|add|mult
-5|3|sub|6|0|sub|mult
-5|3|sub|6|0|sub|sub
-5|3|sub|6|0|sub|add
-5|3|sub|6|0|add|mult
-5|3|sub|6|0|add|sub
-5|3|sub|6|0|add|add
-5|3|sub|5|4|mult|mult
-5|3|sub|6|2|add|mult
-5|3|sub|6|2|add|sub
-5|3|sub|6|2|add|add
-5|3|sub|3|0|sub|mult
-5|3|sub|3|0|sub|sub
-5|3|mult|2|0|mult|sub
-5|3|sub|3|0|add|sub
-5|3|sub|2|1|mult|mult
-5|3|sub|2|1|sub|mult
-5|3|sub|2|1|sub|sub
-5|3|sub|2|1|sub|add
-5|3|sub|2|1|add|mult
-5|3|sub|2|1|add|sub
-5|3|sub|2|1|add|add
-5|3|sub|2|cbrt|mult
-5|3|sub|2|cb|mult
-5|3|sub|2|sq|mult
-5|3|sub|2|0|mult|mult
-5|4|add|9|1|sub|add
-5|4|add|3|1|sub|sub
-5|4|add|3|1|sub|add
-5|4|add|3|1|add|mult
-5|4|add|3|1|add|sub
-5|4|add|3|1|add|add
-5|4|add|3|cbrt|mult
-5|4|add|3|cb|mult
-5|4|add|3|sq|mult
-5|4|add|4|0|sub|mult
-5|4|add|4|0|sub|add
-5|4|add|9|1|mult|mult
-5|4|add|9|1|sub|mult
-5|4|add|9|1|sub|sub
-5|4|add|3|1|sub|mult
-5|4|add|9|1|add|mult
-5|4|add|9|1|add|sub
-5|4|add|9|1|add|add
-5|4|add|9|cbrt|mult
-5|4|add|9|cb|mult
-5|4|add|9|sq|mult
-5|4|add|9|0|mult|mult
-5|4|add|9|0|sub|mult
-5|4|add|9|0|sub|sub
-5|4|add|9|0|sub|add
-5|4|add|9|0|add|mult
-5|4|add|9|0|add|sub
-5|4|add|4|sq|mult
-5|4|add|2|0|sub|add
-5|4|add|4|2|sub|mult
-5|4|add|4|2|sub|add
-5|4|add|4|2|add|mult
-5|4|add|4|2|add|add
-5|4|add|4|1|mult|mult
-5|4|add|4|1|sub|mult
-5|4|add|4|1|sub|add
-5|4|add|4|1|add|mult
-5|4|add|4|1|add|add
-5|4|add|4|cbrt|mult
-5|4|add|4|cb|mult
-5|4|add|9|0|add|add
-5|4|add|4|0|mult|mult
-5|4|add|3|0|mult|mult
-5|4|add|4|0|add|mult
-5|4|add|4|0|add|add
-5|4|add|3|2|mult|mult
-5|4|add|3|2|sub|mult
-5|4|add|3|2|sub|sub
-5|4|add|3|2|sub|add
-5|4|add|3|2|add|mult
-5|4|add|3|2|add|sub
-5|4|add|3|2|add|add
-5|4|add|3|1|mult|mult
-5|4|add|9|6|sub|sub
-5|4|add|9|8|add|mult
-5|4|add|9|8|add|sub
-5|4|add|9|8|add|add
-5|4|add|9|7|mult|mult
-5|4|add|9|7|sub|mult
-5|4|add|9|7|sub|sub
-5|4|add|9|7|sub|add
-5|4|add|9|7|add|mult
-5|4|add|9|7|add|sub
-5|4|add|9|7|add|add
-5|4|add|9|6|mult|mult
-5|4|add|9|6|sub|mult
-5|4|add|9|8|sub|add
-5|4|add|9|6|sub|add
-5|4|add|9|6|add|mult
-5|4|add|9|6|add|sub
-5|4|add|9|6|add|add
-5|4|add|9|2|add|mult
-5|4|add|9|2|add|sub
-5|4|add|9|2|add|add
-5|4|add|9|5|sub|mult
-5|4|add|9|5|sub|sub
-5|4|add|9|5|add|mult
-5|4|add|9|5|add|add
-5|4|add|9|4|mult|mult
-5|4|add|8|6|add|mult
-5|4|add|6|5|sub|mult
-5|4|add|6|5|sub|sub
-5|4|add|8|7|sub|mult
-5|4|add|8|7|sub|sub
-5|4|add|8|7|sub|add
-5|4|add|8|7|add|mult
-5|4|add|8|7|add|sub
-5|4|add|8|7|add|add
-5|4|add|8|6|mult|mult
-5|4|add|8|6|sub|mult
-5|4|add|8|6|sub|sub
-5|4|add|8|6|sub|add
-5|4|add|2|0|sub|sub
-5|4|add|8|6|add|sub
-5|4|add|8|6|add|add
-5|4|add|8|5|mult|mult
-5|4|add|8|5|sub|mult
-5|4|add|8|5|sub|sub
-5|4|add|8|5|add|mult
-5|4|add|8|5|add|add
-5|4|add|8|4|mult|mult
-5|4|add|8|7|mult|mult
-5|4|add|9|8|mult|mult
-5|4|add|9|8|sub|mult
-5|4|add|9|8|sub|sub
-5|4|add|6|3|sub|sub
-5|4|add|4|3|add|add
-5|4|add|5|1|add|mult
-5|4|add|5|1|add|add
-5|4|add|6|5|add|mult
-5|4|add|6|5|add|add
-5|4|add|6|4|mult|mult
-5|4|add|6|4|sub|mult
-5|4|add|6|4|sub|sub
-5|4|add|6|4|add|mult
-5|4|add|6|4|add|add
-5|4|add|6|3|mult|mult
-5|4|add|6|3|sub|mult
-5|4|add|4|3|add|mult
-5|4|add|6|3|sub|add
-5|4|add|6|3|add|mult
-5|4|add|6|3|add|sub
-5|4|add|6|3|add|add
-5|4|add|6|2|mult|mult
-5|4|add|6|2|sub|mult
-5|4|add|6|2|sub|sub
-5|4|add|6|2|sub|add
-5|4|add|5|4|sub|mult
-5|4|add|6|1|mult|mult
-5|4|add|6|1|sub|mult
-5|4|add|6|1|sub|sub
-5|4|add|5|1|sub|add
-5|4|add|5|3|mult|mult
-5|4|add|5|3|sub|mult
-5|4|add|5|3|sub|add
-5|4|add|5|3|add|mult
-5|4|add|5|3|add|add
-5|4|add|5|2|mult|mult
-5|4|add|5|2|sub|mult
-5|4|add|5|2|sub|add
-5|4|add|5|2|add|mult
-5|4|add|5|2|add|add
-5|4|add|5|1|mult|mult
-5|4|add|5|1|sub|mult
-5|4|add|6|1|sub|add
-5|4|add|0|sq|mult
-5|4|add|5|cbrt|mult
-5|4|add|5|cb|mult
-5|4|add|5|sq|mult
-5|4|add|5|0|mult|mult
-5|4|add|5|0|sub|mult
-5|4|add|5|0|sub|add
-5|4|add|5|0|add|mult
-5|4|add|5|0|add|add
-5|4|add|4|3|mult|mult
-5|4|add|4|3|sub|mult
-5|4|add|4|3|sub|add
-5|4|add|1|cbrt|mult
-5|4|add|2|1|sub|add
-5|4|add|2|1|add|mult
-5|4|add|2|1|add|sub
-5|4|add|2|1|add|add
-5|4|add|2|cbrt|mult
-5|4|add|2|cb|mult
-5|4|add|2|sq|mult
-5|4|add|2|0|mult|mult
-5|4|add|4|2|mult|mult
-5|4|add|2|0|add|mult
-5|4|add|2|0|add|sub
-5|4|add|2|0|add|add
-5|4|add|2|1|sub|sub
-5|4|add|1|cb|mult
-5|4|add|1|sq|mult
-5|4|add|1|0|mult|mult
-5|4|add|1|0|sub|mult
-5|4|add|1|0|sub|sub
-5|4|add|1|0|sub|add
-5|4|add|1|0|add|mult
-5|4|add|1|0|add|sub
-5|4|add|1|0|add|add
-5|4|add|0|cbrt|mult
-5|4|add|0|cb|mult
-5|4|add|2|0|sub|mult
-5|4|add|6|0|add|add
-5|4|add|6|1|add|mult
-5|4|add|6|1|add|sub
-5|4|add|6|1|add|add
-5|4|add|6|cbrt|mult
-5|4|add|6|cb|mult
-5|4|add|6|sq|mult
-5|4|add|6|0|mult|mult
-5|4|add|6|0|sub|mult
-5|4|add|6|0|sub|sub
-5|4|add|6|0|sub|add
-5|4|add|6|0|add|mult
-5|4|add|6|0|add|sub
-5|4|add|9|4|sub|mult
-5|4|add|5|4|mult|mult
-5|4|add|6|2|add|mult
-5|4|add|6|2|add|sub
-5|4|add|6|2|add|add
-5|4|add|3|0|sub|mult
-5|4|add|3|0|sub|sub
-5|4|add|3|0|sub|add
-5|4|add|3|0|add|mult
-5|4|add|3|0|add|sub
-5|4|add|3|0|add|add
-5|4|add|2|1|mult|mult
-5|4|add|2|1|sub|mult
-5|3|mult|0|sq|add
-5|3|mult|5|3|sub|mult
-5|3|mult|5|3|add|mult
-5|3|mult|5|2|mult|mult
-5|3|mult|5|2|mult|sub
-5|3|mult|5|2|mult|add
-5|3|mult|5|2|sub|mult
-5|3|mult|5|2|add|mult
-5|3|mult|5|1|mult|mult
-5|3|mult|5|1|mult|sub
-5|3|mult|5|1|mult|add
-5|3|mult|5|1|sub|mult
-5|3|mult|0|sq|mult
-5|3|mult|0|sq|sub
-5|4|add|0|add
-5|3|mult|5|cbrt|mult
-5|3|mult|5|cb|mult
-5|3|mult|5|sq|mult
-5|3|mult|5|sq|sub
-5|3|mult|5|sq|add
-5|3|mult|5|0|mult|mult
-5|3|mult|5|0|mult|sub
-5|3|mult|5|0|mult|add
-5|3|mult|5|0|sub|mult
-5|3|mult|5|0|add|mult
-5|3|mult|4|3|mult|mult
-5|3|mult|4|3|mult|sub
-5|4|add|3|sub
-5|4|add|8|add
-5|4|add|7|mult
-5|4|add|7|sub
-5|4|add|7|add
-5|4|add|6|mult
-5|4|add|6|sub
-5|4|add|6|add
-5|4|add|5|mult
-5|4|add|5|add
-5|4|add|4|mult
-5|4|add|4|add
-5|4|add|3|mult
-5|3|mult|4|3|mult|add
-5|4|add|3|add
-5|4|add|2|mult
-5|4|add|2|sub
-5|4|add|2|add
-5|4|add|1|mult
-5|4|add|1|sub
-5|4|add|1|add
-5|4|add|cbrt
-5|4|add|cb
-5|4|add|sq
-5|4|add|0|mult
-5|4|add|0|sub
-5|3|mult|3|0|sub|mult
-5|3|mult|6|sq|mult
-5|3|mult|6|sq|sub
-5|3|mult|6|sq|add
-5|3|mult|6|0|mult|mult
-5|3|mult|6|0|mult|sub
-5|3|mult|6|0|mult|add
-5|3|mult|6|0|sub|mult
-5|3|mult|6|0|add|mult
-5|3|mult|5|4|mult|mult
-5|3|mult|5|4|mult|sub
-5|3|mult|5|4|mult|add
-5|3|mult|6|2|add|mult
-5|3|mult|6|cb|mult
-5|3|mult|3|0|add|mult
-5|3|mult|2|1|mult|mult
-5|3|mult|2|1|mult|sub
-5|3|mult|2|1|mult|add
-5|3|mult|2|1|sub|mult
-5|3|mult|2|1|add|mult
-5|3|mult|2|cbrt|mult
-5|3|mult|2|cb|mult
-5|3|mult|2|sq|mult
-5|3|mult|2|sq|sub
-5|3|mult|2|sq|add
-5|3|mult|2|0|mult|mult
-5|3|mult|6|3|sub|mult
-5|3|mult|4|3|sub|mult
-5|3|mult|4|3|add|mult
-5|3|mult|5|1|add|mult
-5|3|mult|6|5|add|mult
-5|3|mult|6|4|mult|mult
-5|3|mult|6|4|mult|sub
-5|3|mult|6|4|mult|add
-5|3|mult|6|4|sub|mult
-5|3|mult|6|4|add|mult
-5|3|mult|6|3|mult|mult
-5|3|mult|6|3|mult|sub
-5|3|mult|6|3|mult|add
-5|4|add|8|sub
-5|3|mult|6|3|add|mult
-5|3|mult|6|2|mult|mult
-5|3|mult|6|2|mult|sub
-5|3|mult|6|2|mult|add
-5|3|mult|6|2|sub|mult
-5|3|mult|5|4|sub|mult
-5|3|mult|6|1|mult|mult
-5|3|mult|6|1|mult|sub
-5|3|mult|6|1|mult|add
-5|3|mult|6|1|sub|mult
-5|3|mult|6|1|add|mult
-5|3|mult|6|cbrt|mult
-5|4|add|7|1|sub|add
-5|4|add|7|3|add|mult
-5|4|add|7|3|add|sub
-5|4|add|7|3|add|add
-5|4|add|7|2|mult|mult
-5|4|add|7|2|sub|mult
-5|4|add|7|2|sub|sub
-5|4|add|7|2|sub|add
-5|4|add|8|4|sub|mult
-5|4|add|8|4|sub|sub
-5|4|add|7|1|mult|mult
-5|4|add|7|1|sub|mult
-5|4|add|7|1|sub|sub
-5|4|add|7|3|sub|add
-5|4|add|7|1|add|mult
-5|4|add|7|1|add|sub
-5|4|add|7|1|add|add
-5|4|add|7|cbrt|mult
-5|4|add|7|cb|mult
-5|4|add|7|sq|mult
-5|4|add|7|0|mult|mult
-5|4|add|7|0|sub|mult
-5|4|add|7|0|sub|sub
-5|4|add|7|0|sub|add
-5|4|add|7|0|add|mult
-5|4|add|7|0|add|sub
-5|4|add|9|2|sub|sub
-5|4|add|9|4|sub|sub
-5|4|add|9|4|add|mult
-5|4|add|9|4|add|add
-5|4|add|9|3|mult|mult
-5|4|add|9|3|sub|mult
-5|4|add|9|3|sub|sub
-5|4|add|9|3|sub|add
-5|4|add|9|3|add|mult
-5|4|add|9|3|add|sub
-5|4|add|9|3|add|add
-5|4|add|9|2|mult|mult
-5|4|add|9|2|sub|mult
-5|4|add|7|0|add|add
-5|4|add|9|2|sub|add
-5|4|add|9|5|mult|mult
-5|4|add|7|5|add|mult
-5|4|add|7|5|add|add
-5|4|add|7|4|mult|mult
-5|4|add|7|4|sub|mult
-5|4|add|7|4|sub|sub
-5|4|add|7|4|add|mult
-5|4|add|7|4|add|add
-5|4|add|7|3|mult|mult
-5|4|add|7|3|sub|mult
-5|4|add|7|3|sub|sub
-5|4|add|7|6|sub|sub
-5|4|add|8|cbrt|mult
-5|4|add|8|cb|mult
-5|4|add|8|sq|mult
-5|4|add|8|0|mult|mult
-5|4|add|8|0|sub|mult
-5|4|add|8|0|sub|sub
-5|4|add|8|0|sub|add
-5|4|add|8|0|add|mult
-5|4|add|8|0|add|sub
-5|4|add|8|0|add|add
-5|4|add|7|6|mult|mult
-5|4|add|7|6|sub|mult
-5|4|add|7|5|sub|sub
-5|4|add|7|6|sub|add
-5|4|add|7|6|add|mult
-5|4|add|7|6|add|sub
-5|4|add|7|6|add|add
-5|4|add|7|5|mult|mult
-5|4|add|8|1|add|mult
-5|4|add|8|1|add|sub
-5|4|add|8|1|add|add
-5|4|add|9|mult
-5|4|add|9|sub
-5|4|add|9|add
-5|4|add|8|mult
-5|4|add|8|3|add|add
-5|4|add|6|5|mult|mult
-5|4|add|7|2|add|mult
-5|4|add|7|2|add|sub
-5|4|add|7|2|add|add
-5|4|add|8|4|add|mult
-5|4|add|8|4|add|add
-5|4|add|8|3|mult|mult
-5|4|add|8|3|sub|mult
-5|4|add|8|3|sub|sub
-5|4|add|8|3|sub|add
-5|4|add|8|3|add|mult
-5|4|add|8|3|add|sub
-5|3|sub|9|3|sub|mult
-5|4|add|8|2|mult|mult
-5|4|add|8|2|sub|mult
-5|4|add|8|2|sub|sub
-5|4|add|8|2|sub|add
-5|4|add|8|2|add|mult
-5|4|add|8|2|add|sub
-5|4|add|8|2|add|add
-5|4|add|8|1|mult|mult
-5|4|add|8|1|sub|mult
-5|4|add|8|1|sub|sub
-5|4|add|8|1|sub|add
-5|4|add|7|5|sub|mult
-5|2|mult|4|sq|sub
-5|2|mult|0|cbrt|mult
-5|2|mult|0|cb|mult
-5|2|mult|2|0|sub|mult
-5|2|mult|4|2|sub|mult
-5|2|mult|4|2|add|mult
-5|2|mult|4|1|mult|mult
-5|2|mult|4|1|mult|sub
-5|2|mult|4|1|mult|add
-5|2|mult|4|1|sub|mult
-5|2|mult|4|1|add|mult
-5|2|mult|4|cbrt|mult
-5|2|mult|4|cb|mult
-5|2|mult|4|sq|mult
-5|2|mult|1|0|add|mult
-5|2|mult|4|sq|add
-5|2|mult|4|0|mult|mult
-5|2|mult|4|0|mult|sub
-5|2|mult|4|0|mult|add
-5|2|mult|3|0|mult|mult
-5|2|mult|3|0|mult|sub
-5|2|mult|3|0|mult|add
-5|2|mult|4|0|add|mult
-5|2|mult|3|2|mult|mult
-5|2|mult|3|2|mult|sub
-5|2|mult|3|2|mult|add
-5|2|mult|3|2|sub|mult
-5|2|mult|4|2|mult|mult
-5|2|mult|2|1|mult|sub
-5|2|mult|2|1|mult|add
-5|2|mult|2|1|sub|mult
-5|2|mult|2|1|add|mult
-5|2|mult|2|cbrt|mult
-5|2|mult|2|cb|mult
-5|2|mult|2|sq|mult
-5|2|mult|2|sq|sub
-5|2|mult|2|sq|add
-5|2|mult|2|0|mult|mult
-5|2|mult|2|0|mult|sub
-5|2|mult|2|0|mult|add
-5|2|mult|3|2|add|mult
-5|2|mult|4|2|mult|sub
-5|2|mult|4|2|mult|add
-5|2|mult|2|0|add|mult
-5|2|mult|1|cbrt|mult
-5|2|mult|1|cb|mult
-5|2|mult|1|sq|mult
-5|2|mult|1|sq|sub
-5|2|mult|1|sq|add
-5|2|mult|1|0|mult|mult
-5|2|mult|1|0|mult|sub
-5|2|mult|1|0|mult|add
-5|2|mult|1|0|sub|mult
-5|2|mult|8|5|add|mult
-5|2|mult|6|5|sub|mult
-5|2|mult|8|7|sub|mult
-5|2|mult|8|7|add|mult
-5|2|mult|8|6|mult|mult
-5|2|mult|8|6|mult|sub
-5|2|mult|8|6|mult|add
-5|2|mult|8|6|sub|mult
-5|2|mult|8|6|add|mult
-5|2|mult|8|5|mult|mult
-5|2|mult|8|5|mult|sub
-5|2|mult|8|5|mult|add
-5|2|mult|8|5|sub|mult
-5|2|mult|9|0|add|mult
-5|2|mult|8|4|mult|mult
-5|2|mult|8|4|mult|sub
-5|2|mult|8|4|mult|add
-5|2|mult|8|7|mult|mult
-5|2|mult|8|7|mult|sub
-5|2|mult|8|7|mult|add
-5|2|mult|9|8|mult|mult
-5|2|mult|9|8|mult|sub
-5|2|mult|9|8|mult|add
-5|2|mult|9|8|sub|mult
-5|2|mult|9|8|add|mult
-5|2|mult|9|7|mult|mult
-5|2|mult|9|1|mult|sub
-5|2|mult|3|1|mult|mult
-5|2|mult|3|1|mult|sub
-5|2|mult|3|1|mult|add
-5|2|mult|3|1|sub|mult
-5|2|mult|3|1|add|mult
-5|2|mult|3|cbrt|mult
-5|2|mult|3|cb|mult
-5|2|mult|3|sq|mult
-5|2|mult|3|sq|sub
-5|2|mult|3|sq|add
-5|2|mult|4|0|sub|mult
-5|2|mult|9|1|mult|mult
-5|2|mult|2|1|mult|mult
-5|2|mult|9|1|mult|add
-5|2|mult|9|1|sub|mult
-5|2|mult|9|1|add|mult
-5|2|mult|9|cbrt|mult
-5|2|mult|9|cb|mult
-5|2|mult|9|sq|mult
-5|2|mult|9|sq|sub
-5|2|mult|9|sq|add
-5|2|mult|9|0|mult|mult
-5|2|mult|9|0|mult|sub
-5|2|mult|9|0|mult|add
-5|2|mult|9|0|sub|mult
-5|3|add|0|mult
-5|3|add|4|add
-5|3|add|3|mult
-5|3|add|3|add
-5|3|add|2|mult
-5|3|add|2|sub
-5|3|add|2|add
-5|3|add|1|mult
-5|3|add|1|sub
-5|3|add|1|add
-5|3|add|cbrt
-5|3|add|cb
-5|3|add|sq
-5|3|add|4|sub
-5|3|add|0|sub
-5|3|add|0|add
-5|2|mult|5|2|sub|mult
-5|2|mult|5|2|add|mult
-5|2|mult|5|1|mult|mult
-5|2|mult|5|1|mult|sub
-5|2|mult|5|1|mult|add
-5|2|mult|5|1|sub|mult
-5|2|mult|0|sq|mult
-5|2|mult|0|sq|sub
-5|2|mult|0|sq|add
-5|2|mult|5|cbrt|mult
-5|3|add|9|add
-5|3|add|7|6|sub|mult
-5|3|add|7|6|sub|sub
-5|3|add|7|6|sub|add
-5|3|add|7|6|add|mult
-5|3|add|7|6|add|sub
-5|3|add|7|6|add|add
-5|3|add|7|5|mult|mult
-5|3|add|8|1|add|mult
-5|3|add|8|1|add|sub
-5|3|add|8|1|add|add
-5|3|add|9|mult
-5|3|add|9|sub
-5|2|mult|5|cb|mult
-5|3|add|8|mult
-5|3|add|8|sub
-5|3|add|8|add
-5|3|add|7|mult
-5|3|add|7|sub
-5|3|add|7|add
-5|3|add|6|mult
-5|3|add|6|sub
-5|3|add|6|add
-5|3|add|5|mult
-5|3|add|5|add
-5|3|add|4|mult
-5|2|mult|6|sq|sub
-5|2|mult|6|2|mult|sub
-5|2|mult|6|2|mult|add
-5|2|mult|6|2|sub|mult
-5|2|mult|5|4|sub|mult
-5|2|mult|6|1|mult|mult
-5|2|mult|6|1|mult|sub
-5|2|mult|6|1|mult|add
-5|2|mult|6|1|sub|mult
-5|2|mult|6|1|add|mult
-5|2|mult|6|cbrt|mult
-5|2|mult|6|cb|mult
-5|2|mult|6|sq|mult
-5|2|mult|6|2|mult|mult
-5|2|mult|6|sq|add
-5|2|mult|6|0|mult|mult
-5|2|mult|6|0|mult|sub
-5|2|mult|6|0|mult|add
-5|2|mult|6|0|sub|mult
-5|2|mult|6|0|add|mult
-5|2|mult|5|4|mult|mult
-5|2|mult|5|4|mult|sub
-5|2|mult|5|4|mult|add
-5|2|mult|6|2|add|mult
-5|2|mult|3|0|sub|mult
-5|2|mult|3|0|add|mult
-5|2|mult|4|3|add|mult
-5|2|mult|5|sq|mult
-5|2|mult|5|sq|sub
-5|2|mult|5|sq|add
-5|2|mult|5|0|mult|mult
-5|2|mult|5|0|mult|sub
-5|2|mult|5|0|mult|add
-5|2|mult|5|0|sub|mult
-5|2|mult|5|0|add|mult
-5|2|mult|4|3|mult|mult
-5|2|mult|4|3|mult|sub
-5|2|mult|4|3|mult|add
-5|2|mult|4|3|sub|mult
-5|2|mult|9|7|mult|sub
-5|2|mult|5|1|add|mult
-5|2|mult|6|5|add|mult
-5|2|mult|6|4|mult|mult
-5|2|mult|6|4|mult|sub
-5|2|mult|6|4|mult|add
-5|2|mult|6|4|sub|mult
-5|2|mult|6|4|add|mult
-5|2|mult|6|3|mult|mult
-5|2|mult|6|3|mult|sub
-5|2|mult|6|3|mult|add
-5|2|mult|6|3|sub|mult
-5|2|mult|6|3|add|mult
-5|2|sub|6|3|sub|mult
-5|2|sub|4|3|add|add
-5|2|sub|5|1|add|mult
-5|2|sub|5|1|add|add
-5|2|sub|6|5|add|mult
-5|2|sub|6|5|add|add
-5|2|sub|6|4|mult|mult
-5|2|sub|6|4|sub|mult
-5|2|sub|6|4|sub|sub
-5|2|sub|6|4|sub|add
-5|2|sub|6|4|add|mult
-5|2|sub|6|4|add|sub
-5|2|sub|6|4|add|add
-5|2|sub|6|3|mult|mult
-5|2|sub|4|3|add|sub
-5|2|sub|6|3|sub|sub
-5|2|sub|6|3|sub|add
-5|2|sub|6|3|add|mult
-5|2|sub|6|3|add|sub
-5|2|sub|6|3|add|add
-5|2|sub|6|2|mult|mult
-5|2|sub|6|2|sub|mult
-5|2|sub|6|2|sub|add
-5|2|sub|5|4|sub|mult
-5|2|sub|5|4|sub|add
-5|2|sub|6|1|mult|mult
-5|2|sub|6|1|sub|mult
-5|2|sub|5|cbrt|mult
-5|2|mult|3|mult
-5|2|mult|2|mult
-5|2|mult|1|mult
-5|2|mult|cbrt
-5|2|mult|cb
-5|2|mult|sq
-5|2|mult|0|mult
-5|2|sub|5|2|add|mult
-5|2|sub|5|1|mult|mult
-5|2|sub|5|1|sub|mult
-5|2|sub|5|1|sub|add
-5|2|sub|0|sq|mult
-5|2|sub|6|1|sub|sub
-5|2|sub|5|cb|mult
-5|2|sub|5|sq|mult
-5|2|sub|5|0|mult|mult
-5|2|sub|5|0|sub|mult
-5|2|sub|5|0|sub|add
-5|2|sub|5|0|add|mult
-5|2|sub|5|0|add|add
-5|2|sub|4|3|mult|mult
-5|2|sub|4|3|sub|mult
-5|2|sub|4|3|sub|sub
-5|2|sub|4|3|sub|add
-5|2|sub|4|3|add|mult
-5|2|sub|1|0|mult|mult
-5|2|sub|2|1|add|mult
-5|2|sub|2|1|add|sub
-5|2|sub|2|cbrt|mult
-5|2|sub|2|cb|mult
-5|2|sub|2|sq|mult
-5|2|sub|2|0|mult|mult
-5|2|sub|4|2|mult|mult
-5|2|sub|2|0|add|mult
-5|2|sub|2|0|add|sub
-5|2|sub|1|cbrt|mult
-5|2|sub|1|cb|mult
-5|2|sub|1|sq|mult
-5|2|sub|2|1|sub|sub
-5|2|sub|1|0|sub|mult
-5|2|sub|1|0|sub|sub
-5|2|sub|1|0|sub|add
-5|2|sub|1|0|add|mult
-5|2|sub|1|0|add|sub
-5|2|sub|1|0|add|add
-5|2|sub|0|cbrt|mult
-5|2|sub|0|cb|mult
-5|2|sub|2|0|sub|mult
-5|2|sub|2|0|sub|sub
-5|2|sub|4|2|sub|mult
-5|2|sub|4|2|sub|add
-5|2|sub|6|0|add|sub
-5|2|sub|6|1|sub|add
-5|2|sub|6|1|add|mult
-5|2|sub|6|1|add|sub
-5|2|sub|6|1|add|add
-5|2|sub|6|cbrt|mult
-5|2|sub|6|cb|mult
-5|2|sub|6|sq|mult
-5|2|sub|6|0|mult|mult
-5|2|sub|6|0|sub|mult
-5|2|sub|6|0|sub|sub
-5|2|sub|6|0|sub|add
-5|2|sub|6|0|add|mult
-5|2|mult|4|mult
-5|2|sub|6|0|add|add
-5|2|sub|5|4|mult|mult
-5|2|sub|6|2|add|mult
-5|2|sub|6|2|add|sub
-5|2|sub|3|0|sub|mult
-5|2|sub|3|0|sub|sub
-5|2|sub|3|0|sub|add
-5|2|sub|3|0|add|mult
-5|2|sub|3|0|add|sub
-5|2|sub|3|0|add|add
-5|2|sub|2|1|mult|mult
-5|2|sub|2|1|sub|mult
-5|2|mult|7|3|add|mult
-5|2|mult|9|5|mult|sub
-5|2|mult|9|5|mult|add
-5|2|mult|7|5|add|mult
-5|2|mult|7|4|mult|mult
-5|2|mult|7|4|mult|sub
-5|2|mult|7|4|mult|add
-5|2|mult|7|4|sub|mult
-5|2|mult|7|4|add|mult
-5|2|mult|7|3|mult|mult
-5|2|mult|7|3|mult|sub
-5|2|mult|7|3|mult|add
-5|2|mult|7|3|sub|mult
-5|2|mult|9|5|mult|mult
-5|2|mult|7|2|mult|mult
-5|2|mult|7|2|mult|sub
-5|2|mult|7|2|mult|add
-5|2|mult|7|2|sub|mult
-5|2|mult|8|4|sub|mult
-5|2|mult|7|1|mult|mult
-5|2|mult|7|1|mult|sub
-5|2|mult|7|1|mult|add
-5|2|mult|7|1|sub|mult
-5|2|mult|7|1|add|mult
-5|2|mult|7|cbrt|mult
-5|2|mult|7|cb|mult
-5|2|mult|9|4|mult|sub
-5|2|mult|9|7|mult|add
-5|2|mult|9|7|sub|mult
-5|2|mult|9|7|add|mult
-5|2|mult|9|6|mult|mult
-5|2|mult|9|6|mult|sub
-5|2|mult|9|6|mult|add
-5|2|mult|9|6|sub|mult
-5|2|mult|9|6|add|mult
-5|2|mult|9|2|add|mult
-5|2|mult|9|5|sub|mult
-5|2|mult|9|5|add|mult
-5|2|mult|9|4|mult|mult
-5|2|mult|7|sq|mult
-5|2|mult|9|4|mult|add
-5|2|mult|9|4|sub|mult
-5|2|mult|9|4|add|mult
-5|2|mult|9|3|mult|mult
-5|2|mult|9|3|mult|sub
-5|2|mult|9|3|mult|add
-5|2|mult|9|3|sub|mult
-5|2|mult|9|3|add|mult
-5|2|mult|9|2|mult|mult
-5|2|mult|9|2|mult|sub
-5|2|mult|9|2|mult|add
-5|2|mult|9|2|sub|mult
-5|2|mult|7|6|mult|sub
-5|2|mult|7|5|sub|mult
-5|2|mult|8|cbrt|mult
-5|2|mult|8|cb|mult
-5|2|mult|8|sq|mult
-5|2|mult|8|sq|sub
-5|2|mult|8|sq|add
-5|2|mult|8|0|mult|mult
-5|2|mult|8|0|mult|sub
-5|2|mult|8|0|mult|add
-5|2|mult|8|0|sub|mult
-5|2|mult|8|0|add|mult
-5|2|mult|7|6|mult|mult
-5|2|mult|8|1|sub|mult
-5|2|mult|7|6|mult|add
-5|2|mult|7|6|sub|mult
-5|2|mult|7|6|add|mult
-5|2|mult|7|5|mult|mult
-5|2|mult|7|5|mult|sub
-5|2|mult|7|5|mult|add
-5|2|mult|8|1|add|mult
-5|2|mult|9|mult
-5|2|mult|8|mult
-5|2|mult|7|mult
-5|2|mult|6|mult
-5|2|mult|5|mult
-5|2|mult|8|3|mult|mult
-5|2|mult|7|sq|sub
-5|2|mult|7|sq|add
-5|2|mult|7|0|mult|mult
-5|2|mult|7|0|mult|sub
-5|2|mult|7|0|mult|add
-5|2|mult|7|0|sub|mult
-5|2|mult|7|0|add|mult
-5|2|mult|6|5|mult|mult
-5|2|mult|6|5|mult|sub
-5|2|mult|6|5|mult|add
-5|2|mult|7|2|add|mult
-5|2|mult|8|4|add|mult
-5|3|add|7|6|mult|mult
-5|2|mult|8|3|mult|sub
-5|2|mult|8|3|mult|add
-5|2|mult|8|3|sub|mult
-5|2|mult|8|3|add|mult
-5|2|mult|8|2|mult|mult
-5|2|mult|8|2|mult|sub
-5|2|mult|8|2|mult|add
-5|2|mult|8|2|sub|mult
-5|2|mult|8|2|add|mult
-5|2|mult|8|1|mult|mult
-5|2|mult|8|1|mult|sub
-5|2|mult|8|1|mult|add
-5|3|add|4|3|add|mult
-5|3|add|5|1|sub|add
-5|3|add|0|sq|mult
-5|3|add|5|cbrt|mult
-5|3|add|5|cb|mult
-5|3|add|5|sq|mult
-5|3|add|5|0|mult|mult
-5|3|add|5|0|sub|mult
-5|3|add|5|0|sub|add
-5|3|add|5|0|add|mult
-5|3|add|5|0|add|add
-5|3|add|4|3|mult|mult
-5|3|add|4|3|sub|mult
-5|3|add|4|3|sub|sub
-5|3|add|5|1|sub|mult
-5|3|add|4|3|add|add
-5|3|add|5|1|add|mult
-5|3|add|5|1|add|add
-5|3|add|6|5|add|mult
-5|3|add|6|5|add|add
-5|3|add|6|4|mult|mult
-5|3|add|6|4|sub|mult
-5|3|add|6|4|sub|sub
-5|3|add|6|4|sub|add
-5|3|add|6|4|add|mult
-5|3|add|6|4|add|sub
-5|3|add|6|4|add|add
-5|3|sub|1|add
-5|3|sub|5|mult
-5|3|sub|5|add
-5|3|sub|4|mult
-5|3|sub|4|sub
-5|3|sub|4|add
-5|3|sub|3|mult
-5|3|sub|3|sub
-5|3|sub|2|mult
-5|3|sub|2|sub
-5|3|sub|2|add
-5|3|sub|1|mult
-5|3|sub|1|sub
-5|3|add|6|3|mult|mult
-5|3|sub|cbrt
-5|3|sub|cb
-5|3|sub|sq
-5|3|sub|0|mult
-5|3|sub|0|sub
-5|3|sub|0|add
-5|3|add|5|2|mult|mult
-5|3|add|5|2|sub|mult
-5|3|add|5|2|sub|add
-5|3|add|5|2|add|mult
-5|3|add|5|2|add|add
-5|3|add|5|1|mult|mult
-5|3|add|2|1|sub|add
-5|3|add|6|0|add|add
-5|3|add|5|4|mult|mult
-5|3|add|6|2|add|mult
-5|3|add|6|2|add|sub
-5|3|add|6|2|add|add
-5|3|add|3|0|sub|mult
-5|3|add|3|0|sub|add
-5|3|add|3|0|add|mult
-5|3|add|3|0|add|add
-5|3|add|2|1|mult|mult
-5|3|add|2|1|sub|mult
-5|3|add|2|1|sub|sub
-5|3|add|6|0|add|sub
-5|3|add|2|1|add|mult
-5|3|add|2|1|add|sub
-5|3|add|2|1|add|add
-5|3|add|2|cbrt|mult
-5|3|add|2|cb|mult
-5|3|add|2|sq|mult
-5|3|add|2|0|mult|mult
-5|3|add|4|2|mult|mult
-5|3|add|2|0|add|mult
-5|3|add|2|0|add|sub
-5|3|add|2|0|add|add
-5|3|add|1|cbrt|mult
-5|3|add|6|1|sub|sub
-5|3|add|6|3|sub|mult
-5|3|add|6|3|sub|sub
-5|3|add|6|3|add|mult
-5|3|add|6|3|add|add
-5|3|add|6|2|mult|mult
-5|3|add|6|2|sub|mult
-5|3|add|6|2|sub|sub
-5|3|add|6|2|sub|add
-5|3|add|5|4|sub|mult
-5|3|add|5|4|sub|add
-5|3|add|6|1|mult|mult
-5|3|add|6|1|sub|mult
-5|3|sub|6|add
-5|3|add|6|1|sub|add
-5|3|add|6|1|add|mult
-5|3|add|6|1|add|sub
-5|3|add|6|1|add|add
-5|3|add|6|cbrt|mult
-5|3|add|6|cb|mult
-5|3|add|6|sq|mult
-5|3|add|6|0|mult|mult
-5|3|add|6|0|sub|mult
-5|3|add|6|0|sub|sub
-5|3|add|6|0|sub|add
-5|3|add|6|0|add|mult
-5|3|sub|7|sq|mult
-5|3|sub|8|4|sub|mult
-5|3|sub|8|4|sub|sub
-5|3|sub|8|4|sub|add
-5|3|sub|7|1|mult|mult
-5|3|sub|7|1|sub|mult
-5|3|sub|7|1|sub|sub
-5|3|sub|7|1|sub|add
-5|3|sub|7|1|add|mult
-5|3|sub|7|1|add|sub
-5|3|sub|7|1|add|add
-5|3|sub|7|cbrt|mult
-5|3|sub|7|cb|mult
-5|3|sub|7|2|sub|add
-5|3|sub|7|0|mult|mult
-5|3|sub|7|0|sub|mult
-5|3|sub|7|0|sub|sub
-5|3|sub|7|0|sub|add
-5|3|sub|7|0|add|mult
-5|3|sub|7|0|add|sub
-5|3|sub|7|0|add|add
-5|3|sub|6|5|mult|mult
-5|3|sub|7|2|add|mult
-5|3|sub|7|2|add|sub
-5|3|sub|7|2|add|add
-5|3|sub|8|4|add|mult
-5|3|sub|7|4|sub|sub
-5|3|sub|9|3|sub|add
-5|3|sub|9|3|add|mult
-5|3|sub|9|3|add|sub
-5|3|sub|9|2|mult|mult
-5|3|sub|9|2|sub|mult
-5|3|sub|9|2|sub|sub
-5|3|sub|9|2|sub|add
-5|3|sub|9|5|mult|mult
-5|3|sub|7|5|add|mult
-5|3|sub|7|5|add|add
-5|3|sub|7|4|mult|mult
-5|3|sub|7|4|sub|mult
-5|3|sub|8|4|add|sub
-5|3|sub|7|4|sub|add
-5|3|sub|7|4|add|mult
-5|3|sub|7|4|add|sub
-5|3|sub|7|4|add|add
-5|3|sub|7|3|mult|mult
-5|3|sub|7|3|sub|mult
-5|3|sub|7|3|sub|add
-5|3|sub|7|3|add|mult
-5|3|sub|7|3|add|sub
-5|3|sub|7|2|mult|mult
-5|3|sub|7|2|sub|mult
-5|3|sub|7|2|sub|sub
-5|3|sub|8|1|add|sub
-5|3|sub|8|0|add|mult
-5|3|sub|8|0|add|sub
-5|3|sub|8|0|add|add
-5|3|sub|7|6|mult|mult
-5|3|sub|7|6|sub|mult
-5|3|sub|7|6|sub|sub
-5|3|sub|7|6|sub|add
-5|3|sub|7|6|add|mult
-5|3|sub|7|6|add|sub
-5|3|sub|7|6|add|add
-5|3|sub|7|5|mult|mult
-5|3|sub|8|1|add|mult
-5|3|sub|8|0|sub|add
-5|3|sub|8|1|add|add
-5|3|sub|9|mult
-5|3|sub|9|sub
-5|3|sub|9|add
-5|3|sub|8|mult
-5|3|sub|8|sub
-5|3|sub|8|add
-5|3|sub|7|mult
-5|3|sub|7|sub
-5|3|sub|7|add
-5|3|sub|6|mult
-5|3|sub|6|sub
-5|3|sub|8|2|add|add
-5|3|sub|8|4|add|add
-5|3|sub|8|3|mult|mult
-5|3|sub|8|3|sub|mult
-5|3|sub|8|3|sub|add
-5|3|sub|8|3|add|mult
-5|3|sub|8|3|add|sub
-5|3|sub|8|2|mult|mult
-5|3|sub|8|2|sub|mult
-5|3|sub|8|2|sub|sub
-5|3|sub|8|2|sub|add
-5|3|sub|8|2|add|mult
-5|3|sub|8|2|add|sub
-5|3|add|1|cb|mult
-5|3|sub|8|1|mult|mult
-5|3|sub|8|1|sub|mult
-5|3|sub|8|1|sub|sub
-5|3|sub|8|1|sub|add
-5|3|sub|7|5|sub|mult
-5|3|sub|7|5|sub|sub
-5|3|sub|8|cbrt|mult
-5|3|sub|8|cb|mult
-5|3|sub|8|sq|mult
-5|3|sub|8|0|mult|mult
-5|3|sub|8|0|sub|mult
-5|3|sub|8|0|sub|sub
-5|3|add|7|4|add|add
-5|3|add|9|2|sub|mult
-5|3|add|9|2|sub|sub
-5|3|add|9|2|sub|add
-5|3|add|9|5|mult|mult
-5|3|add|7|5|add|mult
-5|3|add|7|5|add|add
-5|3|add|7|4|mult|mult
-5|3|add|7|4|sub|mult
-5|3|add|7|4|sub|sub
-5|3|add|7|4|sub|add
-5|3|add|7|4|add|mult
-5|3|add|7|4|add|sub
-5|3|add|9|2|mult|mult
-5|3|add|7|3|mult|mult
-5|3|add|7|3|sub|mult
-5|3|add|7|3|sub|sub
-5|3|add|7|3|add|mult
-5|3|add|7|3|add|add
-5|3|add|7|2|mult|mult
-5|3|add|7|2|sub|mult
-5|3|add|7|2|sub|sub
-5|3|add|7|2|sub|add
-5|3|add|8|4|sub|mult
-5|3|add|8|4|sub|sub
-5|3|add|8|4|sub|add
-5|3|add|9|5|add|add
-5|3|add|9|6|sub|mult
-5|3|add|9|6|sub|sub
-5|3|add|9|6|sub|add
-5|3|add|9|6|add|mult
-5|3|add|9|6|add|sub
-5|3|add|9|6|add|add
-5|3|add|9|2|add|mult
-5|3|add|9|2|add|sub
-5|3|add|9|2|add|add
-5|3|add|9|5|sub|mult
-5|3|add|9|5|sub|sub
-5|3|add|9|5|add|mult
-5|3|add|7|1|mult|mult
-5|3|add|9|4|mult|mult
-5|3|add|9|4|sub|mult
-5|3|add|9|4|sub|sub
-5|3|add|9|4|sub|add
-5|3|add|9|4|add|mult
-5|3|add|9|4|add|sub
-5|3|add|9|4|add|add
-5|3|add|9|3|mult|mult
-5|3|add|9|3|sub|mult
-5|3|add|9|3|sub|sub
-5|3|add|9|3|add|mult
-5|3|add|9|3|add|add
-5|3|add|8|1|sub|add
-5|3|add|8|3|add|mult
-5|3|add|8|3|add|add
-5|3|add|8|2|mult|mult
-5|3|add|8|2|sub|mult
-5|3|add|8|2|sub|sub
-5|3|add|8|2|sub|add
-5|3|add|8|2|add|mult
-5|3|add|8|2|add|sub
-5|3|add|8|2|add|add
-5|3|add|8|1|mult|mult
-5|3|add|8|1|sub|mult
-5|3|add|8|1|sub|sub
-5|3|add|8|3|sub|sub
-5|3|add|7|5|sub|mult
-5|3|add|7|5|sub|sub
-5|3|add|8|cbrt|mult
-5|3|add|8|cb|mult
-5|3|add|8|sq|mult
-5|3|add|8|0|mult|mult
-5|3|add|8|0|sub|mult
-5|3|add|8|0|sub|sub
-5|3|add|8|0|sub|add
-5|3|add|8|0|add|mult
-5|3|add|8|0|add|sub
-5|3|add|8|0|add|add
-5|3|add|7|0|sub|add
-5|3|add|7|1|sub|mult
-5|3|add|7|1|sub|sub
-5|3|add|7|1|sub|add
-5|3|add|7|1|add|mult
-5|3|add|7|1|add|sub
-5|3|add|7|1|add|add
-5|3|add|7|cbrt|mult
-5|3|add|7|cb|mult
-5|3|add|7|sq|mult
-5|3|add|7|0|mult|mult
-5|3|add|7|0|sub|mult
-5|3|add|7|0|sub|sub
-5|3|add|9|6|mult|mult
-5|3|add|7|0|add|mult
-5|3|add|7|0|add|sub
-5|3|add|7|0|add|add
-5|3|add|6|5|mult|mult
-5|3|add|7|2|add|mult
-5|3|add|7|2|add|sub
-5|3|add|7|2|add|add
-5|3|add|8|4|add|mult
-5|3|add|8|4|add|sub
-5|3|add|8|4|add|add
-5|3|add|8|3|mult|mult
-5|3|add|8|3|sub|mult
-5|3|add|3|2|add|add
-5|3|add|4|cbrt|mult
-5|3|add|4|cb|mult
-5|3|add|4|sq|mult
-5|3|add|4|0|mult|mult
-5|3|add|3|0|mult|mult
-5|3|add|4|0|add|mult
-5|3|add|4|0|add|sub
-5|3|add|4|0|add|add
-5|3|add|3|2|mult|mult
-5|3|add|3|2|sub|mult
-5|3|add|3|2|sub|add
-5|3|add|3|2|add|mult
-5|3|add|4|1|add|add
-5|3|add|3|1|mult|mult
-5|3|add|3|1|sub|mult
-5|3|add|3|1|sub|add
-5|3|add|3|1|add|mult
-5|3|add|3|1|add|add
-5|3|add|3|cbrt|mult
-5|3|add|3|cb|mult
-5|3|add|3|sq|mult
-5|3|add|4|0|sub|mult
-5|3|add|4|0|sub|sub
-5|3|add|4|0|sub|add
-5|3|add|9|1|mult|mult
-5|3|add|2|0|sub|add
-5|3|add|1|sq|mult
-5|3|add|1|0|mult|mult
-5|3|add|1|0|sub|mult
-5|3|add|1|0|sub|sub
-5|3|add|1|0|sub|add
-5|3|add|1|0|add|mult
-5|3|add|1|0|add|sub
-5|3|add|1|0|add|add
-5|3|add|0|cbrt|mult
-5|3|add|0|cb|mult
-5|3|add|2|0|sub|mult
-5|3|add|2|0|sub|sub
-5|3|add|9|1|sub|mult
-5|3|add|4|2|sub|mult
-5|3|add|4|2|sub|sub
-5|3|add|4|2|sub|add
-5|3|add|4|2|add|mult
-5|3|add|4|2|add|sub
-5|3|add|4|2|add|add
-5|3|add|4|1|mult|mult
-5|3|add|4|1|sub|mult
-5|3|add|4|1|sub|sub
-5|3|add|4|1|sub|add
-5|3|add|4|1|add|mult
-5|3|add|4|1|add|sub
-5|3|add|9|8|sub|mult
-5|3|add|8|6|sub|add
-5|3|add|8|6|add|mult
-5|3|add|8|6|add|sub
-5|3|add|8|6|add|add
-5|3|add|8|5|mult|mult
-5|3|add|8|5|sub|mult
-5|3|add|8|5|sub|sub
-5|3|add|8|5|add|mult
-5|3|add|8|5|add|add
-5|3|add|8|4|mult|mult
-5|3|add|8|7|mult|mult
-5|3|add|9|8|mult|mult
-5|3|add|8|6|sub|sub
-5|3|add|9|8|sub|sub
-5|3|add|9|8|sub|add
-5|3|add|9|8|add|mult
-5|3|add|9|8|add|sub
-5|3|add|9|8|add|add
-5|3|add|9|7|mult|mult
-5|3|add|9|7|sub|mult
-5|3|add|9|7|sub|sub
-5|3|add|9|7|sub|add
-5|3|add|9|7|add|mult
-5|3|add|9|7|add|sub
-5|3|add|9|7|add|add
-5|3|add|9|0|add|mult
-5|3|add|9|1|sub|sub
-5|3|add|9|1|sub|add
-5|3|add|9|1|add|mult
-5|3|add|9|1|add|sub
-5|3|add|9|1|add|add
-5|3|add|9|cbrt|mult
-5|3|add|9|cb|mult
-5|3|add|9|sq|mult
-5|3|add|9|0|mult|mult
-5|3|add|9|0|sub|mult
-5|3|add|9|0|sub|sub
-5|3|add|9|0|sub|add
-5|cb|3|cbrt|mult
-5|3|add|9|0|add|sub
-5|3|add|9|0|add|add
-5|3|add|6|5|sub|mult
-5|3|add|6|5|sub|sub
-5|3|add|8|7|sub|mult
-5|3|add|8|7|sub|sub
-5|3|add|8|7|sub|add
-5|3|add|8|7|add|mult
-5|3|add|8|7|add|sub
-5|3|add|8|7|add|add
-5|3|add|8|6|mult|mult
-5|3|add|8|6|sub|mult
-5|1|add|3|cbrt|mult
-5|1|add|4|0|add|add
-5|1|add|3|2|mult|mult
-5|1|add|3|2|sub|mult
-5|1|add|3|2|sub|sub
-5|1|add|3|2|sub|add
-5|1|add|3|2|add|mult
-5|1|add|3|2|add|sub
-5|1|add|3|2|add|add
-5|1|add|3|1|mult|mult
-5|1|add|3|1|sub|mult
-5|1|add|3|1|sub|sub
-5|1|add|3|1|add|mult
-5|1|add|3|1|add|add
-5|1|add|4|0|add|sub
-5|1|add|3|cb|mult
-5|1|add|3|sq|mult
-5|1|add|4|0|sub|mult
-5|1|add|4|0|sub|sub
-5|1|add|4|0|sub|add
-5|1|add|9|1|mult|mult
-5|1|add|9|1|sub|mult
-5|1|add|9|1|sub|sub
-5|1|add|9|1|add|mult
-5|1|add|9|1|add|add
-5|1|add|9|cbrt|mult
-5|1|add|9|cb|mult
-5|1|add|4|2|add|sub
-5|1|add|1|0|sub|add
-5|1|add|1|0|add|mult
-5|1|add|1|0|add|add
-5|1|add|0|cbrt|mult
-5|1|add|0|cb|mult
-5|1|add|2|0|sub|mult
-5|1|add|2|0|sub|sub
-5|1|add|2|0|sub|add
-5|1|add|4|2|sub|mult
-5|1|add|4|2|sub|sub
-5|1|add|4|2|sub|add
-5|1|add|4|2|add|mult
-5|1|add|9|sq|mult
-5|1|add|4|2|add|add
-5|1|add|4|1|mult|mult
-5|1|add|4|1|sub|mult
-5|1|add|4|1|sub|sub
-5|1|add|4|1|add|mult
-5|1|add|4|1|add|add
-5|1|add|4|cbrt|mult
-5|1|add|4|cb|mult
-5|1|add|4|sq|mult
-5|1|add|4|0|mult|mult
-5|1|add|3|0|mult|mult
-5|1|add|4|0|add|mult
-5|1|add|9|7|sub|sub
-5|1|add|8|5|add|add
-5|1|add|8|4|mult|mult
-5|1|add|8|7|mult|mult
-5|1|add|9|8|mult|mult
-5|1|add|9|8|sub|mult
-5|1|add|9|8|sub|sub
-5|1|add|9|8|sub|add
-5|1|add|9|8|add|mult
-5|1|add|9|8|add|sub
-5|1|add|9|8|add|add
-5|1|add|9|7|mult|mult
-5|1|add|9|7|sub|mult
-5|1|add|8|5|add|mult
-5|1|add|9|7|sub|add
-5|1|add|9|7|add|mult
-5|1|add|9|7|add|sub
-5|1|add|9|7|add|add
-5|1|add|9|6|mult|mult
-5|1|add|9|6|sub|mult
-5|1|add|9|6|sub|sub
-5|1|add|9|6|sub|add
-5|1|add|9|6|add|mult
-5|1|add|9|6|add|sub
-5|1|add|9|6|add|add
-5|1|add|9|2|add|mult
-5|1|add|8|7|add|mult
-5|1|add|9|0|mult|mult
-5|1|add|9|0|sub|mult
-5|1|add|9|0|sub|sub
-5|1|add|9|0|sub|add
-5|1|add|9|0|add|mult
-5|1|add|9|0|add|sub
-5|1|add|9|0|add|add
-5|1|add|6|5|sub|mult
-5|1|add|6|5|sub|sub
-5|1|add|8|7|sub|mult
-5|1|add|8|7|sub|sub
-5|1|add|8|7|sub|add
-5|1|add|1|0|sub|mult
-5|1|add|8|7|add|sub
-5|1|add|8|7|add|add
-5|1|add|8|6|mult|mult
-5|1|add|8|6|sub|mult
-5|1|add|8|6|sub|sub
-5|1|add|8|6|sub|add
-5|1|add|8|6|add|mult
-5|1|add|8|6|add|sub
-5|1|add|8|6|add|add
-5|1|add|8|5|mult|mult
-5|1|add|8|5|sub|mult
-5|1|add|8|5|sub|sub
-4|3|add|0|add
-4|3|add|3|add
-4|3|add|2|mult
-4|3|add|2|sub
-4|3|add|2|add
-4|3|add|1|mult
-4|3|add|1|sub
-4|3|add|1|add
-4|3|add|cbrt
-4|3|add|cb
-4|3|add|sq
-4|3|add|0|mult
-4|3|add|0|sub
-4|3|add|3|mult
-5|1|add|6|5|add|mult
-5|1|add|6|5|add|add
-5|1|add|6|4|mult|mult
-5|1|add|6|4|sub|mult
-5|1|add|6|4|sub|sub
-5|1|add|6|4|sub|add
-5|1|add|6|4|add|mult
-5|1|add|6|4|add|sub
-5|1|add|6|4|add|add
-5|1|add|6|3|mult|mult
-5|1|add|6|3|sub|mult
-5|1|add|6|3|sub|sub
-4|3|add|8|sub
-4|3|add|7|6|sub|add
-4|3|add|7|6|add|mult
-4|3|add|7|6|add|sub
-4|3|add|7|6|add|add
-4|3|add|7|5|mult|mult
-4|3|add|8|1|add|mult
-4|3|add|8|1|add|sub
-4|3|add|8|1|add|add
-4|3|add|9|mult
-4|3|add|9|sub
-4|3|add|9|add
-4|3|add|8|mult
-5|1|add|6|3|sub|add
-4|3|add|8|add
-4|3|add|7|mult
-4|3|add|7|sub
-4|3|add|7|add
-4|3|add|6|mult
-4|3|add|6|sub
-4|3|add|6|add
-4|3|add|5|mult
-4|3|add|5|sub
-4|3|add|5|add
-4|3|add|4|mult
-4|3|add|4|add
-5|1|add|2|1|add|add
-5|1|add|6|2|add|sub
-5|1|add|6|2|add|add
-5|1|add|3|0|sub|mult
-5|1|add|3|0|sub|sub
-5|1|add|3|0|sub|add
-5|1|add|3|0|add|mult
-5|1|add|3|0|add|sub
-5|1|add|3|0|add|add
-5|1|add|2|1|mult|mult
-5|1|add|2|1|sub|mult
-5|1|add|2|1|sub|sub
-5|1|add|2|1|add|mult
-5|1|add|6|2|add|mult
-5|1|add|2|cbrt|mult
-5|1|add|2|cb|mult
-5|1|add|2|sq|mult
-5|1|add|2|0|mult|mult
-5|1|add|4|2|mult|mult
-5|1|add|2|0|add|mult
-5|1|add|2|0|add|sub
-5|1|add|2|0|add|add
-5|1|add|1|cbrt|mult
-5|1|add|1|cb|mult
-5|1|add|1|sq|mult
-5|1|add|1|0|mult|mult
-5|1|add|6|1|add|mult
-5|1|add|6|3|add|mult
-5|1|add|6|3|add|sub
-5|1|add|6|3|add|add
-5|1|add|6|2|mult|mult
-5|1|add|6|2|sub|mult
-5|1|add|6|2|sub|sub
-5|1|add|6|2|sub|add
-5|1|add|5|4|sub|mult
-5|1|add|5|4|sub|add
-5|1|add|6|1|mult|mult
-5|1|add|6|1|sub|mult
-5|1|add|6|1|sub|sub
-5|1|add|9|2|add|sub
-5|1|add|6|1|add|add
-5|1|add|6|cbrt|mult
-5|1|add|6|cb|mult
-5|1|add|6|sq|mult
-5|1|add|6|0|mult|mult
-5|1|add|6|0|sub|mult
-5|1|add|6|0|sub|sub
-5|1|add|6|0|sub|add
-5|1|add|6|0|add|mult
-5|1|add|6|0|add|sub
-5|1|add|6|0|add|add
-5|1|add|5|4|mult|mult
-6|5|add|6|4|add|add
-5|1|add|2|add
-5|1|add|1|mult
-5|1|add|1|add
-5|1|add|cbrt
-5|1|add|cb
-5|1|add|sq
-5|1|add|0|mult
-5|1|add|0|sub
-5|1|add|0|add
-6|5|add|6|4|mult|mult
-6|5|add|6|4|sub|mult
-6|5|add|6|4|sub|add
-6|5|add|6|4|add|mult
-5|1|add|2|sub
-6|5|add|6|3|mult|mult
-6|5|add|6|3|sub|mult
-6|5|add|6|3|sub|add
-6|5|add|6|3|add|mult
-6|5|add|6|3|add|add
-6|5|add|6|2|mult|mult
-6|5|add|6|2|sub|mult
-6|5|add|6|2|sub|add
-6|5|add|5|4|sub|mult
-6|5|add|5|4|sub|add
-6|5|add|6|1|mult|mult
-6|5|add|6|1|sub|mult
-5|1|add|7|add
-5|1|add|7|6|add|add
-5|1|add|7|5|mult|mult
-5|1|add|8|1|add|mult
-5|1|add|8|1|add|add
-5|1|add|9|mult
-5|1|add|9|sub
-5|1|add|9|add
-5|1|add|8|mult
-5|1|add|8|sub
-5|1|add|8|add
-5|1|add|7|mult
-5|1|add|7|sub
-6|5|add|6|1|sub|add
-5|1|add|6|mult
-5|1|add|6|sub
-5|1|add|6|add
-5|1|add|5|mult
-5|1|add|5|add
-5|1|add|4|mult
-5|1|add|4|sub
-5|1|add|4|add
-5|1|add|3|mult
-5|1|add|3|sub
-5|1|add|3|add
-5|1|add|2|mult
-6|5|add|1|0|sub|mult
-6|5|add|2|cbrt|mult
-6|5|add|2|cb|mult
-6|5|add|2|sq|mult
-6|5|add|2|0|mult|mult
-6|5|add|4|2|mult|mult
-6|5|add|2|0|add|mult
-6|5|add|2|0|add|sub
-6|5|add|2|0|add|add
-6|5|add|1|cbrt|mult
-6|5|add|1|cb|mult
-6|5|add|1|sq|mult
-6|5|add|1|0|mult|mult
-6|5|add|2|1|add|add
-6|5|add|1|0|sub|sub
-6|5|add|1|0|sub|add
-6|5|add|1|0|add|mult
-6|5|add|1|0|add|sub
-6|5|add|1|0|add|add
-6|5|add|0|cbrt|mult
-6|5|add|0|cb|mult
-6|5|add|2|0|sub|mult
-6|5|add|2|0|sub|sub
-6|5|add|2|0|sub|add
-6|5|add|4|2|sub|mult
-6|5|add|4|2|sub|sub
-6|5|add|6|2|add|add
-6|5|add|6|1|add|mult
-6|5|add|6|1|add|add
-6|5|add|6|cbrt|mult
-6|5|add|6|cb|mult
-6|5|add|6|sq|mult
-6|5|add|6|0|mult|mult
-6|5|add|6|0|sub|mult
-6|5|add|6|0|sub|add
-6|5|add|6|0|add|mult
-6|5|add|6|0|add|add
-6|5|add|5|4|mult|mult
-6|5|add|6|2|add|mult
-5|1|add|7|6|add|sub
-6|5|add|3|0|sub|mult
-6|5|add|3|0|sub|sub
-6|5|add|3|0|sub|add
-6|5|add|3|0|add|mult
-6|5|add|3|0|add|sub
-6|5|add|3|0|add|add
-6|5|add|2|1|mult|mult
-6|5|add|2|1|sub|mult
-6|5|add|2|1|sub|sub
-6|5|add|2|1|sub|add
-6|5|add|2|1|add|mult
-6|5|add|2|1|add|sub
-5|1|add|7|3|add|sub
-5|1|add|7|4|mult|mult
-5|1|add|7|4|sub|mult
-5|1|add|7|4|sub|sub
-5|1|add|7|4|sub|add
-5|1|add|7|4|add|mult
-5|1|add|7|4|add|sub
-5|1|add|7|4|add|add
-5|1|add|7|3|mult|mult
-5|1|add|7|3|sub|mult
-5|1|add|7|3|sub|sub
-5|1|add|7|3|sub|add
-5|1|add|7|3|add|mult
-5|1|add|7|5|add|add
-5|1|add|7|3|add|add
-5|1|add|7|2|mult|mult
-5|1|add|7|2|sub|mult
-5|1|add|7|2|sub|sub
-5|1|add|7|2|sub|add
-5|1|add|8|4|sub|mult
-5|1|add|8|4|sub|sub
-5|1|add|8|4|sub|add
-5|1|add|7|1|mult|mult
-5|1|add|7|1|sub|mult
-5|1|add|7|1|sub|sub
-5|1|add|7|1|add|mult
-5|1|add|9|3|mult|mult
-5|1|add|9|2|add|add
-5|1|add|9|5|sub|mult
-5|1|add|9|5|sub|sub
-5|1|add|9|5|add|mult
-5|1|add|9|5|add|add
-5|1|add|9|4|mult|mult
-5|1|add|9|4|sub|mult
-5|1|add|9|4|sub|sub
-5|1|add|9|4|sub|add
-5|1|add|9|4|add|mult
-5|1|add|9|4|add|sub
-5|1|add|9|4|add|add
-5|1|add|7|1|add|add
-5|1|add|9|3|sub|mult
-5|1|add|9|3|sub|sub
-5|1|add|9|3|sub|add
-5|1|add|9|3|add|mult
-5|1|add|9|3|add|sub
-5|1|add|9|3|add|add
-5|1|add|9|2|mult|mult
-5|1|add|9|2|sub|mult
-5|1|add|9|2|sub|sub
-5|1|add|9|2|sub|add
-5|1|add|9|5|mult|mult
-5|1|add|7|5|add|mult
-5|1|add|8|sq|mult
-5|1|add|8|2|sub|sub
-5|1|add|8|2|sub|add
-5|1|add|8|2|add|mult
-5|1|add|8|2|add|sub
-5|1|add|8|2|add|add
-5|1|add|8|1|mult|mult
-5|1|add|8|1|sub|mult
-5|1|add|8|1|sub|sub
-5|1|add|7|5|sub|mult
-5|1|add|7|5|sub|sub
-5|1|add|8|cbrt|mult
-5|1|add|8|cb|mult
-5|1|add|8|2|sub|mult
-5|1|add|8|0|mult|mult
-5|1|add|8|0|sub|mult
-5|1|add|8|0|sub|sub
-5|1|add|8|0|sub|add
-5|1|add|8|0|add|mult
-5|1|add|8|0|add|sub
-5|1|add|8|0|add|add
-5|1|add|7|6|mult|mult
-5|1|add|7|6|sub|mult
-5|1|add|7|6|sub|sub
-5|1|add|7|6|sub|add
-5|1|add|7|6|add|mult
-5|1|add|7|2|add|sub
-5|1|add|7|cbrt|mult
-5|1|add|7|cb|mult
-5|1|add|7|sq|mult
-5|1|add|7|0|mult|mult
-5|1|add|7|0|sub|mult
-5|1|add|7|0|sub|sub
-5|1|add|7|0|sub|add
-5|1|add|7|0|add|mult
-5|1|add|7|0|add|sub
-5|1|add|7|0|add|add
-5|1|add|6|5|mult|mult
-5|1|add|7|2|add|mult
-4|3|add|7|6|sub|sub
-5|1|add|7|2|add|add
-5|1|add|8|4|add|mult
-5|1|add|8|4|add|sub
-5|1|add|8|4|add|add
-5|1|add|8|3|mult|mult
-5|1|add|8|3|sub|mult
-5|1|add|8|3|sub|sub
-5|1|add|8|3|sub|add
-5|1|add|8|3|add|mult
-5|1|add|8|3|add|sub
-5|1|add|8|3|add|add
-5|1|add|8|2|mult|mult
-4|3|sub|cbrt
-4|3|sub|5|mult
-4|3|sub|5|sub
-4|3|sub|5|add
-4|3|sub|4|mult
-4|3|sub|4|add
-4|3|sub|3|mult
-4|3|sub|3|sub
-4|3|sub|2|mult
-4|3|sub|2|sub
-4|3|sub|2|add
-4|3|sub|1|mult
-4|3|sub|1|sub
-4|3|sub|1|add
-4|3|sub|6|add
-4|3|sub|cb
-4|3|sub|sq
-4|3|sub|0|mult
-4|3|sub|0|sub
-4|3|sub|0|add
-4|3|add|5|1|add|mult
-4|3|add|5|1|add|sub
-4|3|add|5|1|add|add
-4|3|add|6|5|add|mult
-4|3|add|6|5|add|sub
-4|3|add|6|5|add|add
-4|3|add|6|4|mult|mult
-4|3|sub|8|1|add|sub
-4|3|sub|8|0|add|mult
-4|3|sub|8|0|add|sub
-4|3|sub|8|0|add|add
-4|3|sub|7|6|mult|mult
-4|3|sub|7|6|sub|mult
-4|3|sub|7|6|sub|sub
-4|3|sub|7|6|sub|add
-4|3|sub|7|6|add|mult
-4|3|sub|7|6|add|sub
-4|3|sub|7|6|add|add
-4|3|sub|7|5|mult|mult
-4|3|sub|8|1|add|mult
-4|3|add|6|4|sub|mult
-4|3|sub|8|1|add|add
-4|3|sub|9|mult
-4|3|sub|9|sub
-4|3|sub|9|add
-4|3|sub|8|mult
-4|3|sub|8|sub
-4|3|sub|8|add
-4|3|sub|7|mult
-4|3|sub|7|sub
-4|3|sub|7|add
-4|3|sub|6|mult
-4|3|sub|6|sub
-4|3|add|3|0|add|add
-4|3|add|6|0|sub|sub
-4|3|add|6|0|sub|add
-4|3|add|6|0|add|mult
-4|3|add|6|0|add|sub
-4|3|add|6|0|add|add
-4|3|add|5|4|mult|mult
-4|3|add|6|2|add|mult
-4|3|add|6|2|add|sub
-4|3|add|6|2|add|add
-4|3|add|3|0|sub|mult
-4|3|add|3|0|sub|add
-4|3|add|3|0|add|mult
-4|3|add|6|0|sub|mult
-4|3|add|2|1|mult|mult
-4|3|add|2|1|sub|mult
-4|3|add|2|1|sub|sub
-4|3|add|2|1|sub|add
-4|3|add|2|1|add|mult
-4|3|add|2|1|add|sub
-4|3|add|2|1|add|add
-4|3|add|2|cbrt|mult
-4|3|add|2|cb|mult
-4|3|add|2|sq|mult
-4|3|add|2|0|mult|mult
-4|3|add|4|2|mult|mult
-4|3|add|5|4|sub|mult
-4|3|add|6|4|sub|sub
-4|3|add|6|4|add|mult
-4|3|add|6|4|add|add
-4|3|add|6|3|mult|mult
-4|3|add|6|3|sub|mult
-4|3|add|6|3|sub|sub
-4|3|add|6|3|add|mult
-4|3|add|6|3|add|add
-4|3|add|6|2|mult|mult
-4|3|add|6|2|sub|mult
-4|3|add|6|2|sub|sub
-4|3|add|6|2|sub|add
-4|3|sub|8|0|sub|add
-4|3|add|5|4|sub|sub
-4|3|add|6|1|mult|mult
-4|3|add|6|1|sub|mult
-4|3|add|6|1|sub|sub
-4|3|add|6|1|sub|add
-4|3|add|6|1|add|mult
-4|3|add|6|1|add|sub
-4|3|add|6|1|add|add
-4|3|add|6|cbrt|mult
-4|3|add|6|cb|mult
-4|3|add|6|sq|mult
-4|3|add|6|0|mult|mult
-4|3|sub|7|5|add|add
-4|3|sub|9|3|mult|mult
-4|3|sub|9|3|sub|mult
-4|3|sub|9|3|sub|add
-4|3|sub|9|3|add|mult
-4|3|sub|9|3|add|sub
-4|3|sub|9|2|mult|mult
-4|3|sub|9|2|sub|mult
-4|3|sub|9|2|sub|sub
-4|3|sub|9|2|sub|add
-4|3|sub|9|5|mult|mult
-4|3|sub|7|5|add|mult
-4|3|sub|7|5|add|sub
-4|3|sub|9|4|add|add
-4|3|sub|7|4|mult|mult
-4|3|sub|7|4|sub|mult
-4|3|sub|7|4|sub|sub
-4|3|sub|7|4|add|mult
-4|3|sub|7|4|add|add
-4|3|sub|7|3|mult|mult
-4|3|sub|7|3|sub|mult
-4|3|sub|7|3|sub|add
-4|3|sub|7|3|add|mult
-4|3|sub|7|3|add|sub
-4|3|sub|7|2|mult|mult
-4|3|sub|7|2|sub|mult
-4|3|sub|9|2|add|mult
-4|3|sub|9|7|sub|sub
-4|3|sub|9|7|sub|add
-4|3|sub|9|7|add|mult
-4|3|sub|9|7|add|sub
-4|3|sub|9|7|add|add
-4|3|sub|9|6|mult|mult
-4|3|sub|9|6|sub|mult
-4|3|sub|9|6|sub|sub
-4|3|sub|9|6|sub|add
-4|3|sub|9|6|add|mult
-4|3|sub|9|6|add|sub
-4|3|sub|9|6|add|add
-4|3|sub|7|2|sub|sub
-4|3|sub|9|2|add|sub
-4|3|sub|9|2|add|add
-4|3|sub|9|5|sub|mult
-4|3|sub|9|5|sub|sub
-4|3|sub|9|5|sub|add
-4|3|sub|9|5|add|mult
-4|3|sub|9|5|add|sub
-4|3|sub|9|5|add|add
-4|3|sub|9|4|mult|mult
-4|3|sub|9|4|sub|mult
-4|3|sub|9|4|sub|sub
-4|3|sub|9|4|add|mult
-4|3|sub|8|1|mult|mult
-4|3|sub|8|3|mult|mult
-4|3|sub|8|3|sub|mult
-4|3|sub|8|3|sub|add
-4|3|sub|8|3|add|mult
-4|3|sub|8|3|add|sub
-4|3|sub|8|2|mult|mult
-4|3|sub|8|2|sub|mult
-4|3|sub|8|2|sub|sub
-4|3|sub|8|2|sub|add
-4|3|sub|8|2|add|mult
-4|3|sub|8|2|add|sub
-4|3|sub|8|2|add|add
-4|3|sub|8|4|add|add
-4|3|sub|8|1|sub|mult
-4|3|sub|8|1|sub|sub
-4|3|sub|8|1|sub|add
-4|3|sub|7|5|sub|mult
-4|3|sub|7|5|sub|sub
-4|3|sub|7|5|sub|add
-4|3|sub|8|cbrt|mult
-4|3|sub|8|cb|mult
-4|3|sub|8|sq|mult
-4|3|sub|8|0|mult|mult
-4|3|sub|8|0|sub|mult
-4|3|sub|8|0|sub|sub
-4|3|sub|7|sq|mult
-4|3|sub|7|2|sub|add
-4|3|sub|8|4|sub|mult
-4|3|sub|8|4|sub|sub
-4|3|sub|7|1|mult|mult
-4|3|sub|7|1|sub|mult
-4|3|sub|7|1|sub|sub
-4|3|sub|7|1|sub|add
-4|3|sub|7|1|add|mult
-4|3|sub|7|1|add|sub
-4|3|sub|7|1|add|add
-4|3|sub|7|cbrt|mult
-4|3|sub|7|cb|mult
-4|3|add|2|0|add|mult
-4|3|sub|7|0|mult|mult
-4|3|sub|7|0|sub|mult
-4|3|sub|7|0|sub|sub
-4|3|sub|7|0|sub|add
-4|3|sub|7|0|add|mult
-4|3|sub|7|0|add|sub
-4|3|sub|7|0|add|add
-4|3|sub|6|5|mult|mult
-4|3|sub|7|2|add|mult
-4|3|sub|7|2|add|sub
-4|3|sub|7|2|add|add
-4|3|sub|8|4|add|mult
-4|3|add|7|3|mult|mult
-4|3|add|9|2|mult|mult
-4|3|add|9|2|sub|mult
-4|3|add|9|2|sub|sub
-4|3|add|9|2|sub|add
-4|3|add|9|5|mult|mult
-4|3|add|7|5|add|mult
-4|3|add|7|5|add|sub
-4|3|add|7|5|add|add
-4|3|add|7|4|mult|mult
-4|3|add|7|4|sub|mult
-4|3|add|7|4|sub|sub
-4|3|add|7|4|add|mult
-4|3|add|7|4|add|add
-4|3|add|9|3|add|add
-4|3|add|7|3|sub|mult
-4|3|add|7|3|sub|sub
-4|3|add|7|3|add|mult
-4|3|add|7|3|add|add
-4|3|add|7|2|mult|mult
-4|3|add|7|2|sub|mult
-4|3|add|7|2|sub|sub
-4|3|add|7|2|sub|add
-4|3|add|8|4|sub|mult
-4|3|add|8|4|sub|sub
-4|3|add|7|1|mult|mult
-4|3|add|7|1|sub|mult
-4|3|add|9|5|sub|add
-4|3|add|9|6|mult|mult
-4|3|add|9|6|sub|mult
-4|3|add|9|6|sub|sub
-4|3|add|9|6|sub|add
-4|3|add|9|6|add|mult
-4|3|add|9|6|add|sub
-4|3|add|9|6|add|add
-4|3|add|9|2|add|mult
-4|3|add|9|2|add|sub
-4|3|add|9|2|add|add
-4|3|add|9|5|sub|mult
-4|3|add|9|5|sub|sub
-4|3|add|7|1|sub|sub
-4|3|add|9|5|add|mult
-4|3|add|9|5|add|sub
-4|3|add|9|5|add|add
-4|3|add|9|4|mult|mult
-4|3|add|9|4|sub|mult
-4|3|add|9|4|sub|sub
-4|3|add|9|4|add|mult
-4|3|add|9|4|add|add
-4|3|add|9|3|mult|mult
-4|3|add|9|3|sub|mult
-4|3|add|9|3|sub|sub
-4|3|add|9|3|add|mult
-4|3|add|7|5|sub|add
-4|3|add|8|2|sub|mult
-4|3|add|8|2|sub|sub
-4|3|add|8|2|sub|add
-4|3|add|8|2|add|mult
-4|3|add|8|2|add|sub
-4|3|add|8|2|add|add
-4|3|add|8|1|mult|mult
-4|3|add|8|1|sub|mult
-4|3|add|8|1|sub|sub
-4|3|add|8|1|sub|add
-4|3|add|7|5|sub|mult
-4|3|add|7|5|sub|sub
-4|3|add|8|2|mult|mult
-4|3|add|8|cbrt|mult
-4|3|add|8|cb|mult
-4|3|add|8|sq|mult
-4|3|add|8|0|mult|mult
-4|3|add|8|0|sub|mult
-4|3|add|8|0|sub|sub
-4|3|add|8|0|sub|add
-4|3|add|8|0|add|mult
-4|3|add|8|0|add|sub
-4|3|add|8|0|add|add
-4|3|add|7|6|mult|mult
-4|3|add|7|6|sub|mult
-4|3|add|7|0|add|sub
-4|3|add|7|1|sub|add
-4|3|add|7|1|add|mult
-4|3|add|7|1|add|sub
-4|3|add|7|1|add|add
-4|3|add|7|cbrt|mult
-4|3|add|7|cb|mult
-4|3|add|7|sq|mult
-4|3|add|7|0|mult|mult
-4|3|add|7|0|sub|mult
-4|3|add|7|0|sub|sub
-4|3|add|7|0|sub|add
-4|3|add|7|0|add|mult
-4|3|add|9|7|add|add
-4|3|add|7|0|add|add
-4|3|add|6|5|mult|mult
-4|3|add|7|2|add|mult
-4|3|add|7|2|add|sub
-4|3|add|7|2|add|add
-4|3|add|8|4|add|mult
-4|3|add|8|4|add|add
-4|3|add|8|3|mult|mult
-4|3|add|8|3|sub|mult
-4|3|add|8|3|sub|sub
-4|3|add|8|3|add|mult
-4|3|add|8|3|add|add
-4|3|add|3|1|mult|mult
-4|3|add|4|cbrt|mult
-4|3|add|4|cb|mult
-4|3|add|4|sq|mult
-4|3|add|4|0|mult|mult
-4|3|add|3|0|mult|mult
-4|3|add|4|0|add|mult
-4|3|add|4|0|add|add
-4|3|add|3|2|mult|mult
-4|3|add|3|2|sub|mult
-4|3|add|3|2|sub|add
-4|3|add|3|2|add|mult
-4|3|add|3|2|add|add
-4|3|add|4|1|add|add
-4|3|add|3|1|sub|mult
-4|3|add|3|1|sub|add
-4|3|add|3|1|add|mult
-4|3|add|3|1|add|add
-4|3|add|3|cbrt|mult
-4|3|add|3|cb|mult
-4|3|add|3|sq|mult
-4|3|add|4|0|sub|mult
-4|3|add|4|0|sub|add
-4|3|add|9|1|mult|mult
-4|3|add|9|1|sub|mult
-4|3|add|9|1|sub|sub
-4|3|add|0|cbrt|mult
-4|3|add|2|0|add|sub
-4|3|add|2|0|add|add
-4|3|add|1|cbrt|mult
-4|3|add|1|cb|mult
-4|3|add|1|sq|mult
-4|3|add|1|0|mult|mult
-4|3|add|1|0|sub|mult
-4|3|add|1|0|sub|sub
-4|3|add|1|0|sub|add
-4|3|add|1|0|add|mult
-4|3|add|1|0|add|sub
-4|3|add|1|0|add|add
-4|3|add|9|1|sub|add
-4|3|add|0|cb|mult
-4|3|add|2|0|sub|mult
-4|3|add|2|0|sub|sub
-4|3|add|2|0|sub|add
-4|3|add|4|2|sub|mult
-4|3|add|4|2|sub|add
-4|3|add|4|2|add|mult
-4|3|add|4|2|add|add
-4|3|add|4|1|mult|mult
-4|3|add|4|1|sub|mult
-4|3|add|4|1|sub|add
-4|3|add|4|1|add|mult
-4|3|add|9|8|mult|mult
-4|3|add|8|6|add|mult
-4|3|add|8|6|add|sub
-4|3|add|8|6|add|add
-4|3|add|8|5|mult|mult
-4|3|add|8|5|sub|mult
-4|3|add|8|5|sub|sub
-4|3|add|8|5|sub|add
-4|3|add|8|5|add|mult
-4|3|add|8|5|add|sub
-4|3|add|8|5|add|add
-4|3|add|8|4|mult|mult
-4|3|add|8|7|mult|mult
-4|3|add|8|6|sub|add
-4|3|add|9|8|sub|mult
-4|3|add|9|8|sub|sub
-4|3|add|9|8|sub|add
-4|3|add|9|8|add|mult
-4|3|add|9|8|add|sub
-4|3|add|9|8|add|add
-4|3|add|9|7|mult|mult
-4|3|add|9|7|sub|mult
-4|3|add|9|7|sub|sub
-4|3|add|9|7|sub|add
-4|3|add|9|7|add|mult
-4|3|add|9|7|add|sub
-4|3|add|9|0|add|add
-4|3|add|9|1|add|mult
-4|3|add|9|1|add|sub
-4|3|add|9|1|add|add
-4|3|add|9|cbrt|mult
-4|3|add|9|cb|mult
-4|3|add|9|sq|mult
-4|3|add|9|0|mult|mult
-4|3|add|9|0|sub|mult
-4|3|add|9|0|sub|sub
-4|3|add|9|0|sub|add
-4|3|add|9|0|add|mult
-4|3|add|9|0|add|sub
-6|5|add|4|2|sub|add
-4|3|add|6|5|sub|mult
-4|3|add|6|5|sub|sub
-4|3|add|6|5|sub|add
-4|3|add|8|7|sub|mult
-4|3|add|8|7|sub|sub
-4|3|add|8|7|sub|add
-4|3|add|8|7|add|mult
-4|3|add|8|7|add|sub
-4|3|add|8|7|add|add
-4|3|add|8|6|mult|mult
-4|3|add|8|6|sub|mult
-4|3|add|8|6|sub|sub
-6|4|sub|4|sq|mult
-6|4|sub|2|0|sub|sub
-6|4|sub|2|0|sub|add
-6|4|sub|4|2|sub|mult
-6|4|sub|4|2|sub|sub
-6|4|sub|4|2|add|mult
-6|4|sub|4|2|add|sub
-6|4|sub|4|1|mult|mult
-6|4|sub|4|1|sub|mult
-6|4|sub|4|1|sub|sub
-6|4|sub|4|1|add|mult
-6|4|sub|4|1|add|sub
-6|4|sub|4|cbrt|mult
-6|4|sub|4|cb|mult
-6|4|sub|2|0|sub|mult
-6|4|sub|4|0|mult|mult
-6|4|sub|3|0|mult|mult
-6|4|sub|4|0|add|mult
-6|4|sub|4|0|add|sub
-6|4|sub|3|2|mult|mult
-6|4|sub|3|2|sub|mult
-6|4|sub|3|2|sub|sub
-6|4|sub|3|2|sub|add
-6|4|sub|3|2|add|mult
-6|4|sub|3|2|add|sub
-6|4|sub|3|2|add|add
-6|4|sub|3|1|mult|mult
-6|4|sub|2|0|add|add
-6|4|sub|2|1|sub|sub
-6|4|sub|2|1|sub|add
-6|4|sub|2|1|add|mult
-6|4|sub|2|1|add|sub
-6|4|sub|2|1|add|add
-6|4|sub|2|cbrt|mult
-6|4|sub|2|cb|mult
-6|4|sub|2|sq|mult
-6|4|sub|2|0|mult|mult
-6|4|sub|4|2|mult|mult
-6|4|sub|2|0|add|mult
-6|4|sub|2|0|add|sub
-6|4|sub|3|1|sub|mult
-6|4|sub|1|cbrt|mult
-6|4|sub|1|cb|mult
-6|4|sub|1|sq|mult
-6|4|sub|1|0|mult|mult
-6|4|sub|1|0|sub|mult
-6|4|sub|1|0|sub|sub
-6|4|sub|1|0|sub|add
-6|4|sub|1|0|add|mult
-6|4|sub|1|0|add|sub
-6|4|sub|1|0|add|add
-6|4|sub|0|cbrt|mult
-6|4|sub|0|cb|mult
-6|4|sub|8|6|add|mult
-6|4|sub|9|0|add|add
-6|4|sub|6|5|sub|mult
-6|4|sub|6|5|sub|add
-6|4|sub|8|7|sub|mult
-6|4|sub|8|7|sub|sub
-6|4|sub|8|7|sub|add
-6|4|sub|8|7|add|mult
-6|4|sub|8|7|add|sub
-6|4|sub|8|7|add|add
-6|4|sub|8|6|mult|mult
-6|4|sub|8|6|sub|mult
-6|4|sub|8|6|sub|sub
-6|4|sub|9|0|add|sub
-6|4|sub|8|6|add|add
-6|4|sub|8|5|mult|mult
-6|4|sub|8|5|sub|mult
-6|4|sub|8|5|sub|sub
-6|4|sub|8|5|sub|add
-6|4|sub|8|5|add|mult
-6|4|sub|8|5|add|sub
-6|4|sub|8|5|add|add
-6|4|sub|8|4|mult|mult
-6|4|sub|8|7|mult|mult
-6|4|sub|9|8|mult|mult
-6|4|sub|9|8|sub|mult
-6|4|sub|9|1|sub|sub
-6|4|sub|3|1|sub|sub
-6|4|sub|3|1|sub|add
-6|4|sub|3|1|add|mult
-6|4|sub|3|1|add|sub
-6|4|sub|3|1|add|add
-6|4|sub|3|cbrt|mult
-6|4|sub|3|cb|mult
-6|4|sub|3|sq|mult
-6|4|sub|4|0|sub|mult
-6|4|sub|4|0|sub|sub
-6|4|sub|9|1|mult|mult
-6|4|sub|9|1|sub|mult
-6|4|sub|2|1|sub|mult
-6|4|sub|9|1|sub|add
-6|4|sub|9|1|add|mult
-6|4|sub|9|1|add|sub
-6|4|sub|9|1|add|add
-6|4|sub|9|cbrt|mult
-6|4|sub|9|cb|mult
-6|4|sub|9|sq|mult
-6|4|sub|9|0|mult|mult
-6|4|sub|9|0|sub|mult
-6|4|sub|9|0|sub|sub
-6|4|sub|9|0|sub|add
-6|4|sub|9|0|add|mult
-6|4|mult|8|cb|mult
-6|4|mult|8|3|add|mult
-6|4|mult|8|2|mult|mult
-6|4|mult|8|2|mult|sub
-6|4|mult|8|2|mult|add
-6|4|mult|8|2|sub|mult
-6|4|mult|8|2|add|mult
-6|4|mult|8|1|mult|mult
-6|4|mult|8|1|mult|sub
-6|4|mult|8|1|mult|add
-6|4|mult|8|1|sub|mult
-6|4|mult|7|5|sub|mult
-6|4|mult|8|cbrt|mult
-6|4|mult|8|3|sub|mult
-6|4|mult|8|sq|mult
-6|4|mult|8|sq|sub
-6|4|mult|8|sq|add
-6|4|mult|8|0|mult|mult
-6|4|mult|8|0|mult|sub
-6|4|mult|8|0|mult|add
-6|4|mult|8|0|sub|mult
-6|4|mult|8|0|add|mult
-6|4|mult|7|6|mult|mult
-6|4|mult|7|6|mult|sub
-6|4|mult|7|6|mult|add
-6|4|mult|7|6|sub|mult
-6|4|mult|7|0|mult|mult
-6|4|mult|7|2|sub|mult
-6|4|mult|8|4|sub|mult
-6|4|mult|7|1|mult|mult
-6|4|mult|7|1|mult|sub
-6|4|mult|7|1|mult|add
-6|4|mult|7|1|sub|mult
-6|4|mult|7|1|add|mult
-6|4|mult|7|cbrt|mult
-6|4|mult|7|cb|mult
-6|4|mult|7|sq|mult
-6|4|mult|7|sq|sub
-6|4|mult|7|sq|add
-6|4|mult|7|6|add|mult
-6|4|mult|7|0|mult|sub
-6|4|mult|7|0|mult|add
-6|4|mult|7|0|sub|mult
-6|4|mult|7|0|add|mult
-6|4|mult|6|5|mult|mult
-6|4|mult|6|5|mult|sub
-6|4|mult|6|5|mult|add
-6|4|mult|7|2|add|mult
-6|4|mult|8|4|add|mult
-6|4|mult|8|3|mult|mult
-6|4|mult|8|3|mult|sub
-6|4|mult|8|3|mult|add
-6|4|sub|6|0|sub|add
-6|4|sub|5|4|sub|mult
-6|4|sub|5|4|sub|add
-6|4|sub|6|1|mult|mult
-6|4|sub|6|1|sub|mult
-6|4|sub|6|1|sub|add
-6|4|sub|6|1|add|mult
-6|4|sub|6|1|add|add
-6|4|sub|6|cbrt|mult
-6|4|sub|6|cb|mult
-6|4|sub|6|sq|mult
-6|4|sub|6|0|mult|mult
-6|4|sub|6|0|sub|mult
-6|4|sub|6|2|sub|add
-6|4|sub|6|0|add|mult
-6|4|sub|6|0|add|add
-6|4|sub|5|4|mult|mult
-6|4|sub|6|2|add|mult
-6|4|sub|6|2|add|add
-6|4|sub|3|0|sub|mult
-6|4|sub|3|0|sub|sub
-6|4|sub|3|0|sub|add
-6|4|sub|3|0|add|mult
-6|4|sub|3|0|add|sub
-6|4|sub|3|0|add|add
-6|4|sub|2|1|mult|mult
-6|4|mult|1|mult
-6|4|mult|7|5|mult|mult
-6|4|mult|7|5|mult|sub
-6|4|mult|7|5|mult|add
-6|4|mult|8|1|add|mult
-6|4|mult|9|mult
-6|4|mult|8|mult
-6|4|mult|7|mult
-6|4|mult|6|mult
-6|4|mult|5|mult
-6|4|mult|4|mult
-6|4|mult|3|mult
-6|4|mult|2|mult
-6|4|sub|9|8|sub|sub
-6|4|mult|cbrt
-6|4|mult|cb
-6|4|mult|sq
-6|4|mult|0|mult
-6|4|sub|6|4|add|mult
-6|4|sub|6|3|mult|mult
-6|4|sub|6|3|sub|mult
-6|4|sub|6|3|sub|add
-6|4|sub|6|3|add|mult
-6|4|sub|6|3|add|add
-6|4|sub|6|2|mult|mult
-6|4|sub|6|2|sub|mult
-6|4|sub|3|sub
-6|4|sub|8|sub
-6|4|sub|8|add
-6|4|sub|7|mult
-6|4|sub|7|sub
-6|4|sub|7|add
-6|4|sub|6|mult
-6|4|sub|6|add
-6|4|sub|5|mult
-6|4|sub|5|sub
-6|4|sub|5|add
-6|4|sub|4|mult
-6|4|sub|4|sub
-6|4|sub|3|mult
-6|4|sub|8|mult
-6|4|sub|3|add
-6|4|sub|2|mult
-6|4|sub|2|sub
-6|4|sub|2|add
-6|4|sub|1|mult
-6|4|sub|1|sub
-6|4|sub|1|add
-6|4|sub|cbrt
-6|4|sub|cb
-6|4|sub|sq
-6|4|sub|0|mult
-6|4|sub|0|sub
-6|4|sub|8|0|add|add
-6|4|sub|7|5|sub|mult
-6|4|sub|7|5|sub|sub
-6|4|sub|7|5|sub|add
-6|4|sub|8|cbrt|mult
-6|4|sub|8|cb|mult
-6|4|sub|8|sq|mult
-6|4|sub|8|0|mult|mult
-6|4|sub|8|0|sub|mult
-6|4|sub|8|0|sub|sub
-6|4|sub|8|0|sub|add
-6|4|sub|8|0|add|mult
-6|4|sub|8|0|add|sub
-6|4|sub|0|add
-6|4|sub|7|6|mult|mult
-6|4|sub|7|6|sub|mult
-6|4|sub|7|6|sub|sub
-6|4|sub|7|6|add|mult
-6|4|sub|7|6|add|add
-6|4|sub|7|5|mult|mult
-6|4|sub|8|1|add|mult
-6|4|sub|8|1|add|sub
-6|4|sub|8|1|add|add
-6|4|sub|9|mult
-6|4|sub|9|sub
-6|4|sub|9|add
-6|4|add|2|1|add|add
-6|4|add|3|0|sub|mult
-6|4|add|3|0|sub|sub
-6|4|add|3|0|sub|add
-6|4|add|3|0|add|mult
-6|4|add|3|0|add|sub
-6|4|add|3|0|add|add
-6|4|add|2|1|mult|mult
-6|4|add|2|1|sub|mult
-6|4|add|2|1|sub|sub
-6|4|add|2|1|sub|add
-6|4|add|2|1|add|mult
-6|4|add|2|1|add|sub
-6|4|add|6|2|add|add
-6|4|add|2|cbrt|mult
-6|4|add|2|cb|mult
-6|4|add|2|sq|mult
-6|4|add|2|0|mult|mult
-6|4|add|4|2|mult|mult
-6|4|add|2|0|add|mult
-6|4|add|2|0|add|sub
-6|4|add|2|0|add|add
-6|4|add|1|cbrt|mult
-6|4|add|1|cb|mult
-6|4|add|1|sq|mult
-6|4|add|1|0|mult|mult
-6|4|add|6|1|sub|add
-6|4|add|6|3|mult|mult
-6|4|add|6|3|sub|mult
-6|4|add|6|3|sub|add
-6|4|add|6|3|add|mult
-6|4|add|6|3|add|add
-6|4|add|6|2|mult|mult
-6|4|add|6|2|sub|mult
-6|4|add|6|2|sub|add
-6|4|add|5|4|sub|mult
-6|4|add|5|4|sub|sub
-6|4|add|6|1|mult|mult
-6|4|add|6|1|sub|mult
-6|4|sub|8|1|sub|add
-6|4|add|6|1|add|mult
-6|4|add|6|1|add|add
-6|4|add|6|cbrt|mult
-6|4|add|6|cb|mult
-6|4|add|6|sq|mult
-6|4|add|6|0|mult|mult
-6|4|add|6|0|sub|mult
-6|4|add|6|0|sub|add
-6|4|add|6|0|add|mult
-6|4|add|6|0|add|add
-6|4|add|5|4|mult|mult
-6|4|add|6|2|add|mult
-6|4|sub|9|2|sub|mult
-6|4|sub|9|4|sub|mult
-6|4|sub|9|4|sub|add
-6|4|sub|9|4|add|mult
-6|4|sub|9|4|add|sub
-6|4|sub|9|3|mult|mult
-6|4|sub|9|3|sub|mult
-6|4|sub|9|3|sub|sub
-6|4|sub|9|3|sub|add
-6|4|sub|9|3|add|mult
-6|4|sub|9|3|add|sub
-6|4|sub|9|3|add|add
-6|4|sub|9|2|mult|mult
-6|4|sub|9|4|mult|mult
-6|4|sub|9|2|sub|sub
-6|4|sub|9|2|sub|add
-6|4|sub|9|5|mult|mult
-6|4|sub|7|5|add|mult
-6|4|sub|7|5|add|sub
-6|4|sub|7|5|add|add
-6|4|sub|7|4|mult|mult
-6|4|sub|7|4|sub|mult
-6|4|sub|7|4|sub|add
-6|4|sub|7|4|add|mult
-6|4|sub|7|4|add|sub
-6|4|sub|7|3|mult|mult
-6|4|sub|9|6|sub|mult
-6|4|sub|9|8|sub|add
-6|4|sub|9|8|add|mult
-6|4|sub|9|8|add|sub
-6|4|sub|9|8|add|add
-6|4|sub|9|7|mult|mult
-6|4|sub|9|7|sub|mult
-6|4|sub|9|7|sub|sub
-6|4|sub|9|7|sub|add
-6|4|sub|9|7|add|mult
-6|4|sub|9|7|add|sub
-6|4|sub|9|7|add|add
-6|4|sub|9|6|mult|mult
-6|4|sub|7|3|sub|mult
-6|4|sub|9|6|sub|sub
-6|4|sub|9|6|add|mult
-6|4|sub|9|6|add|add
-6|4|sub|9|2|add|mult
-6|4|sub|9|2|add|sub
-6|4|sub|9|2|add|add
-6|4|sub|9|5|sub|mult
-6|4|sub|9|5|sub|sub
-6|4|sub|9|5|sub|add
-6|4|sub|9|5|add|mult
-6|4|sub|9|5|add|sub
-6|4|sub|9|5|add|add
-6|4|sub|8|3|add|mult
-6|4|sub|7|0|add|sub
-6|4|sub|7|0|add|add
-6|4|sub|6|5|mult|mult
-6|4|sub|7|2|add|mult
-6|4|sub|7|2|add|sub
-6|4|sub|7|2|add|add
-6|4|sub|8|4|add|mult
-6|4|sub|8|4|add|sub
-6|4|sub|8|3|mult|mult
-6|4|sub|8|3|sub|mult
-6|4|sub|8|3|sub|sub
-6|4|sub|8|3|sub|add
-6|4|sub|7|0|add|mult
-6|4|sub|8|3|add|sub
-6|4|sub|8|3|add|add
-6|4|sub|8|2|mult|mult
-6|4|sub|8|2|sub|mult
-6|4|sub|8|2|sub|sub
-6|4|sub|8|2|sub|add
-6|4|sub|8|2|add|mult
-6|4|sub|8|2|add|sub
-6|4|sub|8|2|add|add
-6|4|sub|8|1|mult|mult
-6|4|sub|8|1|sub|mult
-6|4|sub|8|1|sub|sub
-6|4|sub|7|1|sub|mult
-6|4|sub|7|3|sub|sub
-6|4|sub|7|3|sub|add
-6|4|sub|7|3|add|mult
-6|4|sub|7|3|add|sub
-6|4|sub|7|3|add|add
-6|4|sub|7|2|mult|mult
-6|4|sub|7|2|sub|mult
-6|4|sub|7|2|sub|sub
-6|4|sub|7|2|sub|add
-6|4|sub|8|4|sub|mult
-6|4|sub|8|4|sub|add
-6|4|sub|7|1|mult|mult
-6|4|mult|7|2|mult|add
-6|4|sub|7|1|sub|sub
-6|4|sub|7|1|sub|add
-6|4|sub|7|1|add|mult
-6|4|sub|7|1|add|sub
-6|4|sub|7|1|add|add
-6|4|sub|7|cbrt|mult
-6|4|sub|7|cb|mult
-6|4|sub|7|sq|mult
-6|4|sub|7|0|mult|mult
-6|4|sub|7|0|sub|mult
-6|4|sub|7|0|sub|sub
-6|4|sub|7|0|sub|add
-6|5|add|7|1|sub|mult
-6|5|add|7|3|sub|sub
-6|5|add|7|3|sub|add
-6|5|add|7|3|add|mult
-6|5|add|7|3|add|sub
-6|5|add|7|3|add|add
-6|5|add|7|2|mult|mult
-6|5|add|7|2|sub|mult
-6|5|add|7|2|sub|sub
-6|5|add|7|2|sub|add
-6|5|add|8|4|sub|mult
-6|5|add|8|4|sub|sub
-6|5|add|8|4|sub|add
-6|5|add|7|1|mult|mult
-6|5|add|7|3|sub|mult
-6|5|add|7|1|sub|sub
-6|5|add|7|1|sub|add
-6|5|add|7|1|add|mult
-6|5|add|7|1|add|sub
-6|5|add|7|1|add|add
-6|5|add|7|cbrt|mult
-6|5|add|7|cb|mult
-6|5|add|7|sq|mult
-6|5|add|7|0|mult|mult
-6|5|add|7|0|sub|mult
-6|5|add|7|0|sub|sub
-6|5|add|7|0|sub|add
-6|5|add|9|2|sub|sub
-6|5|add|9|4|add|mult
-6|5|add|9|4|add|sub
-6|5|add|9|4|add|add
-6|5|add|9|3|mult|mult
-6|5|add|9|3|sub|mult
-6|5|add|9|3|sub|sub
-6|5|add|9|3|sub|add
-6|5|add|9|3|add|mult
-6|5|add|9|3|add|sub
-6|5|add|9|3|add|add
-6|5|add|9|2|mult|mult
-6|5|add|9|2|sub|mult
-6|5|add|7|0|add|mult
-6|5|add|9|2|sub|add
-6|5|add|9|5|mult|mult
-6|5|add|7|5|add|mult
-6|5|add|7|5|add|add
-6|5|add|7|4|mult|mult
-6|5|add|7|4|sub|mult
-6|5|add|7|4|sub|sub
-6|5|add|7|4|sub|add
-6|5|add|7|4|add|mult
-6|5|add|7|4|add|sub
-6|5|add|7|4|add|add
-6|5|add|7|3|mult|mult
-6|5|add|8|0|add|add
-6|5|add|8|1|sub|add
-6|5|add|7|5|sub|mult
-6|5|add|7|5|sub|sub
-6|5|add|8|cbrt|mult
-6|5|add|8|cb|mult
-6|5|add|8|sq|mult
-6|5|add|8|0|mult|mult
-6|5|add|8|0|sub|mult
-6|5|add|8|0|sub|sub
-6|5|add|8|0|sub|add
-6|5|add|8|0|add|mult
-6|5|add|8|0|add|sub
-6|5|add|8|1|sub|sub
-6|5|add|7|6|mult|mult
-6|5|add|7|6|sub|mult
-6|5|add|7|6|sub|sub
-6|5|add|7|6|add|mult
-6|5|add|7|6|add|add
-6|5|add|7|5|mult|mult
-6|5|add|8|1|add|mult
-6|5|add|8|1|add|sub
-6|5|add|8|1|add|add
-6|5|add|9|mult
-6|5|add|9|sub
-6|5|add|9|add
-6|5|add|8|3|sub|add
-6|5|add|7|0|add|sub
-6|5|add|7|0|add|add
-6|5|add|6|5|mult|mult
-6|5|add|7|2|add|mult
-6|5|add|7|2|add|sub
-6|5|add|7|2|add|add
-6|5|add|8|4|add|mult
-6|5|add|8|4|add|sub
-6|5|add|8|4|add|add
-6|5|add|8|3|mult|mult
-6|5|add|8|3|sub|mult
-6|5|add|8|3|sub|sub
-6|5|add|9|4|sub|add
-6|5|add|8|3|add|mult
-6|5|add|8|3|add|sub
-6|5|add|8|3|add|add
-6|5|add|8|2|mult|mult
-6|5|add|8|2|sub|mult
-6|5|add|8|2|sub|sub
-6|5|add|8|2|sub|add
-6|5|add|8|2|add|mult
-6|5|add|8|2|add|sub
-6|5|add|8|2|add|add
-6|5|add|8|1|mult|mult
-6|5|add|8|1|sub|mult
-6|5|add|9|1|mult|mult
-6|5|add|3|1|sub|mult
-6|5|add|3|1|sub|sub
-6|5|add|3|1|sub|add
-6|5|add|3|1|add|mult
-6|5|add|3|1|add|sub
-6|5|add|3|1|add|add
-6|5|add|3|cbrt|mult
-6|5|add|3|cb|mult
-6|5|add|3|sq|mult
-6|5|add|4|0|sub|mult
-6|5|add|4|0|sub|sub
-6|5|add|4|0|sub|add
-6|5|add|3|1|mult|mult
-6|5|add|9|1|sub|mult
-6|5|add|9|1|sub|sub
-6|5|add|9|1|sub|add
-6|5|add|9|1|add|mult
-6|5|add|9|1|add|sub
-6|5|add|9|1|add|add
-6|5|add|9|cbrt|mult
-6|5|add|9|cb|mult
-6|5|add|9|sq|mult
-6|5|add|9|0|mult|mult
-6|5|add|9|0|sub|mult
-6|5|add|9|0|sub|sub
-6|5|add|4|sq|mult
-6|5|add|4|2|add|mult
-6|5|add|4|2|add|sub
-6|5|add|4|2|add|add
-6|5|add|4|1|mult|mult
-6|5|add|4|1|sub|mult
-6|5|add|4|1|sub|sub
-6|5|add|4|1|sub|add
-6|5|add|4|1|add|mult
-6|5|add|4|1|add|sub
-6|5|add|4|1|add|add
-6|5|add|4|cbrt|mult
-6|5|add|4|cb|mult
-6|5|add|9|0|sub|add
-6|5|add|4|0|mult|mult
-6|5|add|3|0|mult|mult
-6|5|add|4|0|add|mult
-6|5|add|4|0|add|sub
-6|5|add|4|0|add|add
-6|5|add|3|2|mult|mult
-6|5|add|3|2|sub|mult
-6|5|add|3|2|sub|sub
-6|5|add|3|2|sub|add
-6|5|add|3|2|add|mult
-6|5|add|3|2|add|sub
-6|5|add|3|2|add|add
-6|5|add|9|6|sub|sub
-6|5|add|9|8|add|mult
-6|5|add|9|8|add|sub
-6|5|add|9|8|add|add
-6|5|add|9|7|mult|mult
-6|5|add|9|7|sub|mult
-6|5|add|9|7|sub|sub
-6|5|add|9|7|sub|add
-6|5|add|9|7|add|mult
-6|5|add|9|7|add|sub
-6|5|add|9|7|add|add
-6|5|add|9|6|mult|mult
-6|5|add|9|6|sub|mult
-6|5|add|9|8|sub|add
-6|5|add|9|6|add|mult
-6|5|add|9|6|add|add
-6|5|add|9|2|add|mult
-6|5|add|9|2|add|sub
-6|5|add|9|2|add|add
-6|5|add|9|5|sub|mult
-6|5|add|9|5|sub|sub
-6|5|add|9|5|add|mult
-6|5|add|9|5|add|add
-6|5|add|9|4|mult|mult
-6|5|add|9|4|sub|mult
-6|5|add|9|4|sub|sub
-6|5|add|8|6|sub|sub
-6|5|add|9|0|add|mult
-6|5|add|9|0|add|sub
-6|5|add|9|0|add|add
-6|5|add|6|5|sub|mult
-6|5|add|8|7|sub|mult
-6|5|add|8|7|sub|sub
-6|5|add|8|7|sub|add
-6|5|add|8|7|add|mult
-6|5|add|8|7|add|sub
-6|5|add|8|7|add|add
-6|5|add|8|6|mult|mult
-6|5|add|8|6|sub|mult
-6|5|add|8|mult
-6|5|add|8|6|add|mult
-6|5|add|8|6|add|add
-6|5|add|8|5|mult|mult
-6|5|add|8|5|sub|mult
-6|5|add|8|5|sub|sub
-6|5|add|8|5|add|mult
-6|5|add|8|5|add|add
-6|5|add|8|4|mult|mult
-6|5|add|8|7|mult|mult
-6|5|add|9|8|mult|mult
-6|5|add|9|8|sub|mult
-6|5|add|9|8|sub|sub
-6|4|mult|8|7|add|mult
-6|4|mult|9|cbrt|mult
-6|4|mult|9|cb|mult
-6|4|mult|9|sq|mult
-6|4|mult|9|sq|sub
-6|4|mult|9|sq|add
-6|4|mult|9|0|mult|mult
-6|4|mult|9|0|mult|sub
-6|4|mult|9|0|mult|add
-6|4|mult|9|0|sub|mult
-6|4|mult|9|0|add|mult
-6|4|mult|6|5|sub|mult
-6|4|mult|8|7|sub|mult
-6|4|mult|9|1|add|mult
-6|4|mult|8|6|mult|mult
-6|4|mult|8|6|mult|sub
-6|4|mult|8|6|mult|add
-6|4|mult|8|6|sub|mult
-6|4|mult|8|6|add|mult
-6|4|mult|8|5|mult|mult
-6|4|mult|8|5|mult|sub
-6|4|mult|8|5|mult|add
-6|4|mult|8|5|sub|mult
-6|4|mult|8|5|add|mult
-6|4|mult|8|4|mult|mult
-6|4|mult|8|4|mult|sub
-6|4|mult|3|1|mult|add
-6|4|mult|4|0|mult|add
-6|4|mult|3|0|mult|mult
-6|4|mult|3|0|mult|sub
-6|4|mult|3|0|mult|add
-6|4|mult|4|0|add|mult
-6|4|mult|3|2|mult|mult
-6|4|mult|3|2|mult|sub
-6|4|mult|3|2|mult|add
-6|4|mult|3|2|sub|mult
-6|4|mult|3|2|add|mult
-6|4|mult|3|1|mult|mult
-6|4|mult|3|1|mult|sub
-6|4|mult|8|4|mult|add
-6|4|mult|3|1|sub|mult
-6|4|mult|3|1|add|mult
-6|4|mult|3|cbrt|mult
-6|4|mult|3|cb|mult
-6|4|mult|3|sq|mult
-6|4|mult|3|sq|sub
-6|4|mult|3|sq|add
-6|4|mult|4|0|sub|mult
-6|4|mult|9|1|mult|mult
-6|4|mult|9|1|mult|sub
-6|4|mult|9|1|mult|add
-6|4|mult|9|1|sub|mult
-6|4|mult|7|5|add|mult
-6|4|mult|9|3|mult|mult
-6|4|mult|9|3|mult|sub
-6|4|mult|9|3|mult|add
-6|4|mult|9|3|sub|mult
-6|4|mult|9|3|add|mult
-6|4|mult|9|2|mult|mult
-6|4|mult|9|2|mult|sub
-6|4|mult|9|2|mult|add
-6|4|mult|9|2|sub|mult
-6|4|mult|9|5|mult|mult
-6|4|mult|9|5|mult|sub
-6|4|mult|9|5|mult|add
-6|4|mult|9|4|add|mult
-6|4|mult|7|4|mult|mult
-6|4|mult|7|4|mult|sub
-6|4|mult|7|4|mult|add
-6|4|mult|7|4|sub|mult
-6|4|mult|7|4|add|mult
-6|4|mult|7|3|mult|mult
-6|4|mult|7|3|mult|sub
-6|4|mult|7|3|mult|add
-6|4|mult|7|3|sub|mult
-6|4|mult|7|3|add|mult
-6|4|mult|7|2|mult|mult
-6|4|mult|7|2|mult|sub
-6|4|mult|9|7|add|mult
-6|4|mult|8|7|mult|mult
-6|4|mult|8|7|mult|sub
-6|4|mult|8|7|mult|add
-6|4|mult|9|8|mult|mult
-6|4|mult|9|8|mult|sub
-6|4|mult|9|8|mult|add
-6|4|mult|9|8|sub|mult
-6|4|mult|9|8|add|mult
-6|4|mult|9|7|mult|mult
-6|4|mult|9|7|mult|sub
-6|4|mult|9|7|mult|add
-6|4|mult|9|7|sub|mult
-6|4|mult|4|0|mult|sub
-6|4|mult|9|6|mult|mult
-6|4|mult|9|6|mult|sub
-6|4|mult|9|6|mult|add
-6|4|mult|9|6|sub|mult
-6|4|mult|9|6|add|mult
-6|4|mult|9|2|add|mult
-6|4|mult|9|5|sub|mult
-6|4|mult|9|5|add|mult
-6|4|mult|9|4|mult|mult
-6|4|mult|9|4|mult|sub
-6|4|mult|9|4|mult|add
-6|4|mult|9|4|sub|mult
-6|4|mult|5|4|sub|mult
-6|5|add|0|add
-6|4|mult|6|4|sub|mult
-6|4|mult|6|4|add|mult
-6|4|mult|6|3|mult|mult
-6|4|mult|6|3|mult|sub
-6|4|mult|6|3|mult|add
-6|4|mult|6|3|sub|mult
-6|4|mult|6|3|add|mult
-6|4|mult|6|2|mult|mult
-6|4|mult|6|2|mult|sub
-6|4|mult|6|2|mult|add
-6|4|mult|6|2|sub|mult
-6|5|add|0|sub
-6|4|mult|6|1|mult|mult
-6|4|mult|6|1|mult|sub
-6|4|mult|6|1|mult|add
-6|4|mult|6|1|sub|mult
-6|4|mult|6|1|add|mult
-6|4|mult|6|cbrt|mult
-6|4|mult|6|cb|mult
-6|4|mult|6|sq|mult
-6|4|mult|6|sq|sub
-6|4|mult|6|sq|add
-6|4|mult|6|0|mult|mult
-6|4|mult|6|0|mult|sub
-6|5|add|3|mult
-6|5|add|8|sub
-6|5|add|8|add
-6|5|add|7|mult
-6|5|add|7|sub
-6|5|add|7|add
-6|5|add|6|mult
-6|5|add|6|add
-6|5|add|5|mult
-6|5|add|5|add
-6|5|add|4|mult
-6|5|add|4|sub
-6|5|add|4|add
-6|4|mult|6|0|mult|add
-6|5|add|3|sub
-6|5|add|3|add
-6|5|add|2|mult
-6|5|add|2|sub
-6|5|add|2|add
-6|5|add|1|mult
-6|5|add|1|sub
-6|5|add|1|add
-6|5|add|cbrt
-6|5|add|cb
-6|5|add|sq
-6|5|add|0|mult
-6|4|mult|4|2|sub|mult
-6|4|mult|1|cb|mult
-6|4|mult|1|sq|mult
-6|4|mult|1|sq|sub
-6|4|mult|1|sq|add
-6|4|mult|1|0|mult|mult
-6|4|mult|1|0|mult|sub
-6|4|mult|1|0|mult|add
-6|4|mult|1|0|sub|mult
-6|4|mult|1|0|add|mult
-6|4|mult|0|cbrt|mult
-6|4|mult|0|cb|mult
-6|4|mult|2|0|sub|mult
-6|4|mult|1|cbrt|mult
-6|4|mult|4|2|add|mult
-6|4|mult|4|1|mult|mult
-6|4|mult|4|1|mult|sub
-6|4|mult|4|1|mult|add
-6|4|mult|4|1|sub|mult
-6|4|mult|4|1|add|mult
-6|4|mult|4|cbrt|mult
-6|4|mult|4|cb|mult
-6|4|mult|4|sq|mult
-6|4|mult|4|sq|sub
-6|4|mult|4|sq|add
-6|4|mult|4|0|mult|mult
-6|4|mult|2|1|add|mult
-6|4|mult|6|0|sub|mult
-6|4|mult|6|0|add|mult
-6|4|mult|5|4|mult|mult
-6|4|mult|5|4|mult|sub
-6|4|mult|5|4|mult|add
-6|4|mult|6|2|add|mult
-6|4|mult|3|0|sub|mult
-6|4|mult|3|0|add|mult
-6|4|mult|2|1|mult|mult
-6|4|mult|2|1|mult|sub
-6|4|mult|2|1|mult|add
-6|4|mult|2|1|sub|mult
-4|3|sub|9|7|sub|mult
-6|4|mult|2|cbrt|mult
-6|4|mult|2|cb|mult
-6|4|mult|2|sq|mult
-6|4|mult|2|sq|sub
-6|4|mult|2|sq|add
-6|4|mult|2|0|mult|mult
-6|4|mult|2|0|mult|sub
-6|4|mult|2|0|mult|add
-6|4|mult|4|2|mult|mult
-6|4|mult|4|2|mult|sub
-6|4|mult|4|2|mult|add
-6|4|mult|2|0|add|mult
-5|0|mult|7|0|mult|sub
-5|0|mult|7|2|sub|mult
-5|0|mult|8|4|sub|mult
-5|0|mult|7|1|mult|mult
-5|0|mult|7|1|mult|sub
-5|0|mult|7|1|mult|add
-5|0|mult|7|1|sub|mult
-5|0|mult|7|1|add|mult
-5|0|mult|7|cbrt|mult
-5|0|mult|7|cb|mult
-5|0|mult|7|sq|mult
-5|0|mult|7|sq|sub
-5|0|mult|7|sq|add
-5|0|mult|7|0|mult|mult
-5|0|mult|7|2|mult|add
-5|0|mult|7|0|mult|add
-5|0|mult|7|0|sub|mult
-5|0|mult|7|0|add|mult
-5|0|mult|6|5|mult|mult
-5|0|mult|6|5|mult|sub
-5|0|mult|6|5|mult|add
-5|0|mult|7|2|add|mult
-5|0|mult|8|4|add|mult
-5|0|mult|8|3|mult|mult
-5|0|mult|8|3|mult|sub
-5|0|mult|8|3|mult|add
-5|0|mult|8|3|sub|mult
-5|0|mult|7|5|add|mult
-5|0|mult|9|3|mult|mult
-5|0|mult|9|3|mult|sub
-5|0|mult|9|3|mult|add
-5|0|mult|9|3|sub|mult
-5|0|mult|9|3|add|mult
-5|0|mult|9|2|mult|mult
-5|0|mult|9|2|mult|sub
-5|0|mult|9|2|mult|add
-5|0|mult|9|2|sub|mult
-5|0|mult|9|5|mult|mult
-5|0|mult|9|5|mult|sub
-5|0|mult|9|5|mult|add
-5|0|mult|8|3|add|mult
-5|0|mult|7|4|mult|mult
-5|0|mult|7|4|mult|sub
-5|0|mult|7|4|mult|add
-5|0|mult|7|4|sub|mult
-5|0|mult|7|4|add|mult
-5|0|mult|7|3|mult|mult
-5|0|mult|7|3|mult|sub
-5|0|mult|7|3|mult|add
-5|0|mult|7|3|sub|mult
-5|0|mult|7|3|add|mult
-5|0|mult|7|2|mult|mult
-5|0|mult|7|2|mult|sub
-5|0|mult|cbrt
-5|0|mult|7|5|mult|sub
-5|0|mult|7|5|mult|add
-5|0|mult|8|1|add|mult
-5|0|mult|9|mult
-5|0|mult|8|mult
-5|0|mult|7|mult
-5|0|mult|6|mult
-5|0|mult|5|mult
-5|0|mult|4|mult
-5|0|mult|3|mult
-5|0|mult|2|mult
-5|0|mult|1|mult
-5|0|mult|7|5|mult|mult
-5|0|mult|cb
-5|0|mult|sq
-5|0|mult|0|mult
-5|0|sub|5|0|add|mult
-5|0|sub|4|3|mult|mult
-5|0|sub|4|3|sub|mult
-5|0|sub|4|3|sub|sub
-5|0|sub|4|3|sub|add
-5|0|sub|4|3|add|mult
-5|0|sub|4|3|add|sub
-5|0|sub|4|3|add|add
-5|0|sub|5|1|add|mult
-5|0|mult|8|sq|mult
-5|0|mult|8|2|mult|mult
-5|0|mult|8|2|mult|sub
-5|0|mult|8|2|mult|add
-5|0|mult|8|2|sub|mult
-5|0|mult|8|2|add|mult
-5|0|mult|8|1|mult|mult
-5|0|mult|8|1|mult|sub
-5|0|mult|8|1|mult|add
-5|0|mult|8|1|sub|mult
-5|0|mult|7|5|sub|mult
-5|0|mult|8|cbrt|mult
-5|0|mult|8|cb|mult
-5|0|mult|9|4|add|mult
-5|0|mult|8|sq|sub
-5|0|mult|8|sq|add
-5|0|mult|8|0|mult|mult
-5|0|mult|8|0|mult|sub
-5|0|mult|8|0|mult|add
-5|0|mult|8|0|sub|mult
-5|0|mult|8|0|add|mult
-5|0|mult|7|6|mult|mult
-5|0|mult|7|6|mult|sub
-5|0|mult|7|6|mult|add
-5|0|mult|7|6|sub|mult
-5|0|mult|7|6|add|mult
-5|0|mult|3|1|mult|add
-5|0|mult|4|0|mult|add
-5|0|mult|3|0|mult|mult
-5|0|mult|3|0|mult|sub
-5|0|mult|3|0|mult|add
-5|0|mult|4|0|add|mult
-5|0|mult|3|2|mult|mult
-5|0|mult|3|2|mult|sub
-5|0|mult|3|2|mult|add
-5|0|mult|3|2|sub|mult
-5|0|mult|3|2|add|mult
-5|0|mult|3|1|mult|mult
-5|0|mult|3|1|mult|sub
-5|0|mult|4|0|mult|sub
-5|0|mult|3|1|sub|mult
-5|0|mult|3|1|add|mult
-5|0|mult|3|cbrt|mult
-5|0|mult|3|cb|mult
-5|0|mult|3|sq|mult
-5|0|mult|3|sq|sub
-5|0|mult|3|sq|add
-5|0|mult|4|0|sub|mult
-5|0|mult|9|1|mult|mult
-5|0|mult|9|1|mult|sub
-5|0|mult|9|1|mult|add
-5|0|mult|9|1|sub|mult
-5|0|mult|4|2|sub|mult
-5|0|mult|1|cb|mult
-5|0|mult|1|sq|mult
-5|0|mult|1|sq|sub
-5|0|mult|1|sq|add
-5|0|mult|1|0|mult|mult
-5|0|mult|1|0|mult|sub
-5|0|mult|1|0|mult|add
-5|0|mult|1|0|sub|mult
-5|0|mult|1|0|add|mult
-5|0|mult|0|cbrt|mult
-5|0|mult|0|cb|mult
-5|0|mult|2|0|sub|mult
-5|0|mult|9|1|add|mult
-5|0|mult|4|2|add|mult
-5|0|mult|4|1|mult|mult
-5|0|mult|4|1|mult|sub
-5|0|mult|4|1|mult|add
-5|0|mult|4|1|sub|mult
-5|0|mult|4|1|add|mult
-5|0|mult|4|cbrt|mult
-5|0|mult|4|cb|mult
-5|0|mult|4|sq|mult
-5|0|mult|4|sq|sub
-5|0|mult|4|sq|add
-5|0|mult|4|0|mult|mult
-5|0|mult|9|7|add|mult
-5|0|mult|8|7|mult|mult
-5|0|mult|8|7|mult|sub
-5|0|mult|8|7|mult|add
-5|0|mult|9|8|mult|mult
-5|0|mult|9|8|mult|sub
-5|0|mult|9|8|mult|add
-5|0|mult|9|8|sub|mult
-5|0|mult|9|8|add|mult
-5|0|mult|9|7|mult|mult
-5|0|mult|9|7|mult|sub
-5|0|mult|9|7|mult|add
-5|0|mult|9|7|sub|mult
-5|0|mult|8|4|mult|add
-5|0|mult|9|6|mult|mult
-5|0|mult|9|6|mult|sub
-5|0|mult|9|6|mult|add
-5|0|mult|9|6|sub|mult
-5|0|mult|9|6|add|mult
-5|0|mult|9|2|add|mult
-5|0|mult|9|5|sub|mult
-5|0|mult|9|5|add|mult
-5|0|mult|9|4|mult|mult
-5|0|mult|9|4|mult|sub
-5|0|mult|9|4|mult|add
-5|0|mult|9|4|sub|mult
-5|0|mult|8|7|add|mult
-5|0|mult|9|cbrt|mult
-5|0|mult|9|cb|mult
-5|0|mult|9|sq|mult
-5|0|mult|9|sq|sub
-5|0|mult|9|sq|add
-5|0|mult|9|0|mult|mult
-5|0|mult|9|0|mult|sub
-5|0|mult|9|0|mult|add
-5|0|mult|9|0|sub|mult
-5|0|mult|9|0|add|mult
-5|0|mult|6|5|sub|mult
-5|0|mult|8|7|sub|mult
-5|0|sub|5|1|add|add
-5|0|mult|8|6|mult|mult
-5|0|mult|8|6|mult|sub
-5|0|mult|8|6|mult|add
-5|0|mult|8|6|sub|mult
-5|0|mult|8|6|add|mult
-5|0|mult|8|5|mult|mult
-5|0|mult|8|5|mult|sub
-5|0|mult|8|5|mult|add
-5|0|mult|8|5|sub|mult
-5|0|mult|8|5|add|mult
-5|0|mult|8|4|mult|mult
-5|0|mult|8|4|mult|sub
-5|0|sub|8|5|add|mult
-5|0|sub|8|7|add|mult
-5|0|sub|8|7|add|sub
-5|0|sub|8|7|add|add
-5|0|sub|8|6|mult|mult
-5|0|sub|8|6|sub|mult
-5|0|sub|8|6|sub|sub
-5|0|sub|8|6|sub|add
-5|0|sub|8|6|add|mult
-5|0|sub|8|6|add|sub
-5|0|sub|8|6|add|add
-5|0|sub|8|5|mult|mult
-5|0|sub|8|5|sub|mult
-5|0|sub|8|5|sub|sub
-5|0|sub|8|7|sub|add
-5|0|sub|8|5|add|add
-5|0|sub|8|4|mult|mult
-5|0|sub|8|7|mult|mult
-5|0|sub|9|8|mult|mult
-5|0|sub|9|8|sub|mult
-5|0|sub|9|8|sub|sub
-5|0|sub|9|8|sub|add
-5|0|sub|9|8|add|mult
-5|0|sub|9|8|add|sub
-5|0|sub|9|8|add|add
-5|0|sub|9|7|mult|mult
-5|0|sub|9|7|sub|mult
-5|0|sub|9|1|add|add
-5|0|sub|3|1|add|add
-5|0|sub|3|cbrt|mult
-5|0|sub|3|cb|mult
-5|0|sub|3|sq|mult
-5|0|sub|4|0|sub|mult
-5|0|sub|4|0|sub|add
-5|0|sub|9|1|mult|mult
-5|0|sub|9|1|sub|mult
-5|0|sub|9|1|sub|sub
-5|0|sub|9|1|sub|add
-5|0|sub|9|1|add|mult
-5|0|sub|9|1|add|sub
-5|0|sub|9|7|sub|sub
-5|0|sub|9|cbrt|mult
-5|0|sub|9|cb|mult
-5|0|sub|9|sq|mult
-5|0|sub|9|0|mult|mult
-5|0|sub|9|0|sub|mult
-5|0|sub|9|0|sub|add
-5|0|sub|9|0|add|mult
-5|0|sub|9|0|add|sub
-5|0|sub|6|5|sub|mult
-5|0|sub|6|5|sub|sub
-5|0|sub|8|7|sub|mult
-5|0|sub|8|7|sub|sub
-5|0|sub|7|5|add|add
-5|0|sub|9|3|sub|mult
-5|0|sub|9|3|sub|sub
-5|0|sub|9|3|sub|add
-5|0|sub|9|3|add|mult
-5|0|sub|9|3|add|sub
-5|0|sub|9|3|add|add
-5|0|sub|9|2|mult|mult
-5|0|sub|9|2|sub|mult
-5|0|sub|9|2|sub|sub
-5|0|sub|9|2|sub|add
-5|0|sub|9|5|mult|mult
-5|0|sub|7|5|add|mult
-5|0|sub|9|3|mult|mult
-5|0|sub|7|4|mult|mult
-5|0|sub|7|4|sub|mult
-5|0|sub|7|4|sub|sub
-5|0|sub|7|4|sub|add
-5|0|sub|7|4|add|mult
-5|0|sub|7|4|add|sub
-5|0|sub|7|4|add|add
-5|0|sub|7|3|mult|mult
-5|0|sub|7|3|sub|mult
-5|0|sub|7|3|sub|sub
-5|0|sub|7|3|sub|add
-5|0|sub|7|3|add|mult
-5|0|sub|9|2|add|sub
-5|0|sub|9|7|sub|add
-5|0|sub|9|7|add|mult
-5|0|sub|9|7|add|sub
-5|0|sub|9|7|add|add
-5|0|sub|9|6|mult|mult
-5|0|sub|9|6|sub|mult
-5|0|sub|9|6|sub|sub
-5|0|sub|9|6|sub|add
-5|0|sub|9|6|add|mult
-5|0|sub|9|6|add|sub
-5|0|sub|9|6|add|add
-5|0|sub|9|2|add|mult
-5|0|sub|3|1|add|sub
-5|0|sub|9|2|add|add
-5|0|sub|9|5|sub|mult
-5|0|sub|9|5|sub|sub
-5|0|sub|9|5|add|mult
-5|0|sub|9|5|add|add
-5|0|sub|9|4|mult|mult
-5|0|sub|9|4|sub|mult
-5|0|sub|9|4|sub|sub
-5|0|sub|9|4|sub|add
-5|0|sub|9|4|add|mult
-5|0|sub|9|4|add|sub
-5|0|sub|9|4|add|add
-5|0|sub|6|2|add|mult
-5|0|sub|6|1|add|mult
-5|0|sub|6|1|add|sub
-5|0|sub|6|1|add|add
-5|0|sub|6|cbrt|mult
-5|0|sub|6|cb|mult
-5|0|sub|6|sq|mult
-5|0|sub|6|0|mult|mult
-5|0|sub|6|0|sub|mult
-5|0|sub|6|0|sub|add
-5|0|sub|6|0|add|mult
-5|0|sub|6|0|add|sub
-5|0|sub|5|4|mult|mult
-5|0|sub|6|1|sub|add
-5|0|sub|6|2|add|sub
-5|0|sub|6|2|add|add
-5|0|sub|3|0|sub|mult
-5|0|sub|3|0|sub|add
-5|0|sub|3|0|add|mult
-5|0|sub|3|0|add|sub
-5|0|sub|2|1|mult|mult
-5|0|sub|2|1|sub|mult
-5|0|sub|2|1|sub|sub
-5|0|sub|2|1|sub|add
-5|0|sub|2|1|add|mult
-5|0|sub|2|1|add|sub
-5|0|sub|6|3|sub|add
-5|0|sub|6|5|add|mult
-5|0|sub|6|5|add|add
-5|0|sub|6|4|mult|mult
-5|0|sub|6|4|sub|mult
-5|0|sub|6|4|sub|sub
-5|0|sub|6|4|sub|add
-5|0|sub|6|4|add|mult
-5|0|sub|6|4|add|sub
-5|0|sub|6|4|add|add
-5|0|sub|6|3|mult|mult
-5|0|sub|6|3|sub|mult
-5|0|sub|6|3|sub|sub
-5|0|sub|2|1|add|add
-5|0|sub|6|3|add|mult
-5|0|sub|6|3|add|sub
-5|0|sub|6|3|add|add
-5|0|sub|6|2|mult|mult
-5|0|sub|6|2|sub|mult
-5|0|sub|6|2|sub|sub
-5|0|sub|6|2|sub|add
-5|0|sub|5|4|sub|mult
-5|0|sub|5|4|sub|add
-5|0|sub|6|1|mult|mult
-5|0|sub|6|1|sub|mult
-5|0|sub|6|1|sub|sub
-5|0|sub|4|0|add|sub
-5|0|sub|4|1|sub|mult
-5|0|sub|4|1|sub|sub
-5|0|sub|4|1|sub|add
-5|0|sub|4|1|add|mult
-5|0|sub|4|1|add|sub
-5|0|sub|4|1|add|add
-5|0|sub|4|cbrt|mult
-5|0|sub|4|cb|mult
-5|0|sub|4|sq|mult
-5|0|sub|4|0|mult|mult
-5|0|sub|3|0|mult|mult
-5|0|sub|4|0|add|mult
-5|0|sub|4|1|mult|mult
-5|0|sub|3|2|mult|mult
-5|0|sub|3|2|sub|mult
-5|0|sub|3|2|sub|sub
-5|0|sub|3|2|sub|add
-5|0|sub|3|2|add|mult
-5|0|sub|3|2|add|sub
-5|0|sub|3|2|add|add
-5|0|sub|3|1|mult|mult
-5|0|sub|3|1|sub|mult
-5|0|sub|3|1|sub|sub
-5|0|sub|3|1|sub|add
-5|0|sub|3|1|add|mult
-5|0|sub|1|0|sub|add
-5|0|sub|2|cbrt|mult
-5|0|sub|2|cb|mult
-5|0|sub|2|sq|mult
-5|0|sub|2|0|mult|mult
-5|0|sub|4|2|mult|mult
-5|0|sub|2|0|add|mult
-5|0|sub|2|0|add|sub
-5|0|sub|1|cbrt|mult
-5|0|sub|1|cb|mult
-5|0|sub|1|sq|mult
-5|0|sub|1|0|mult|mult
-5|0|sub|1|0|sub|mult
-5|0|mult|1|cbrt|mult
-5|0|sub|1|0|add|mult
-5|0|sub|1|0|add|sub
-5|0|sub|0|cbrt|mult
-5|0|sub|0|cb|mult
-5|0|sub|2|0|sub|mult
-5|0|sub|2|0|sub|add
-5|0|sub|4|2|sub|mult
-5|0|sub|4|2|sub|sub
-5|0|sub|4|2|sub|add
-5|0|sub|4|2|add|mult
-5|0|sub|4|2|add|sub
-5|0|sub|4|2|add|add
-5|sq|5|4|mult|sub
-5|sq|6|1|mult|add
-5|sq|6|1|sub|mult
-5|sq|6|1|add|mult
-5|sq|6|cbrt|mult
-5|sq|6|cb|mult
-5|sq|6|sq|sub
-5|sq|6|sq|add
-5|sq|6|0|mult|mult
-5|sq|6|0|mult|sub
-5|sq|6|0|mult|add
-5|sq|6|0|sub|mult
-5|sq|6|0|add|mult
-5|sq|5|4|mult|mult
-5|sq|6|1|mult|sub
-5|sq|5|4|mult|add
-5|sq|6|2|add|mult
-5|sq|3|0|sub|mult
-5|sq|3|0|add|mult
-5|sq|2|1|mult|mult
-5|sq|2|1|mult|sub
-5|sq|2|1|mult|add
-5|sq|2|1|sub|mult
-5|sq|2|1|add|mult
-5|sq|2|cbrt|mult
-5|sq|2|cb|mult
-5|sq|2|sq|sub
-5|sq|6|4|sub|mult
-5|sq|5|0|sub|mult
-5|sq|5|0|add|mult
-5|sq|4|3|mult|mult
-5|sq|4|3|mult|sub
-5|sq|4|3|mult|add
-5|sq|4|3|sub|mult
-5|sq|4|3|add|mult
-5|sq|5|1|add|mult
-5|sq|6|5|add|mult
-5|sq|6|4|mult|mult
-5|sq|6|4|mult|sub
-5|sq|6|4|mult|add
-5|sq|2|sq|add
-5|sq|6|4|add|mult
-5|sq|6|3|mult|mult
-5|sq|6|3|mult|sub
-5|sq|6|3|mult|add
-5|sq|6|3|sub|mult
-5|sq|6|3|add|mult
-5|sq|6|2|mult|mult
-5|sq|6|2|mult|sub
-5|sq|6|2|mult|add
-5|sq|6|2|sub|mult
-5|sq|5|4|sub|mult
-5|sq|6|1|mult|mult
-5|sq|3|2|mult|sub
-5|sq|4|cbrt|mult
-5|sq|4|cb|mult
-5|sq|4|sq|sub
-5|sq|4|sq|add
-5|sq|4|0|mult|mult
-5|sq|4|0|mult|sub
-5|sq|4|0|mult|add
-5|sq|3|0|mult|mult
-5|sq|3|0|mult|sub
-5|sq|3|0|mult|add
-5|sq|4|0|add|mult
-5|sq|3|2|mult|mult
-5|sq|4|1|add|mult
-5|sq|3|2|mult|add
-5|sq|3|2|sub|mult
-5|sq|3|2|add|mult
-5|sq|3|1|mult|mult
-5|sq|3|1|mult|sub
-5|sq|3|1|mult|add
-5|sq|3|1|sub|mult
-5|sq|3|1|add|mult
-5|sq|3|cbrt|mult
-5|sq|3|cb|mult
-5|sq|3|sq|sub
-5|sq|3|sq|add
-5|sq|1|0|mult|sub
-5|sq|2|0|mult|mult
-5|sq|2|0|mult|sub
-5|sq|2|0|mult|add
-5|sq|4|2|mult|mult
-5|sq|4|2|mult|sub
-5|sq|4|2|mult|add
-5|sq|2|0|add|mult
-5|sq|1|cbrt|mult
-5|sq|1|cb|mult
-5|sq|1|sq|sub
-5|sq|1|sq|add
-5|sq|1|0|mult|mult
-5|sq|5|0|mult|add
-5|sq|1|0|mult|add
-5|sq|1|0|sub|mult
-5|sq|1|0|add|mult
-5|sq|0|cbrt|mult
-5|sq|0|cb|mult
-5|sq|2|0|sub|mult
-5|sq|4|2|sub|mult
-5|sq|4|2|add|mult
-5|sq|4|1|mult|mult
-5|sq|4|1|mult|sub
-5|sq|4|1|mult|add
-5|sq|4|1|sub|mult
-5|cb|9|4|sub|mult
-5|cb|9|8|sub|mult
-5|cb|9|8|add|mult
-5|cb|9|7|mult|mult
-5|cb|9|7|sub|mult
-5|cb|9|7|add|mult
-5|cb|9|6|mult|mult
-5|cb|9|6|sub|mult
-5|cb|9|6|add|mult
-5|cb|9|2|add|mult
-5|cb|9|5|sub|mult
-5|cb|9|5|add|mult
-5|cb|9|4|mult|mult
-5|cb|9|8|mult|mult
-5|cb|9|4|add|mult
-5|cb|9|3|mult|mult
-5|cb|9|3|sub|mult
-5|cb|9|3|add|mult
-5|cb|9|2|mult|mult
-5|cb|9|2|sub|mult
-5|cb|9|5|mult|mult
-5|cb|7|5|add|mult
-5|cb|7|4|mult|mult
-5|cb|7|4|sub|mult
-5|cb|7|4|add|mult
-5|cb|7|3|mult|mult
-5|cb|9|0|sub|mult
-5|cb|3|cb|sub
-5|cb|3|cb|add
-5|cb|3|sq|mult
-5|cb|4|0|sub|mult
-5|cb|9|1|mult|mult
-5|cb|9|1|sub|mult
-5|cb|9|1|add|mult
-5|cb|9|cbrt|mult
-5|cb|9|cb|sub
-5|cb|9|cb|add
-5|cb|9|sq|mult
-5|cb|9|0|mult|mult
-5|cb|7|3|sub|mult
-5|cb|9|0|add|mult
-5|cb|6|5|sub|mult
-5|cb|8|7|sub|mult
-5|cb|8|7|add|mult
-5|cb|8|6|mult|mult
-5|cb|8|6|sub|mult
-5|cb|8|6|add|mult
-5|cb|8|5|mult|mult
-5|cb|8|5|sub|mult
-5|cb|8|5|add|mult
-5|cb|8|4|mult|mult
-5|cb|8|7|mult|mult
-5|cb|9|mult
-5|cb|8|cbrt|mult
-5|cb|8|cb|sub
-5|cb|8|cb|add
-5|cb|8|sq|mult
-5|cb|8|0|mult|mult
-5|cb|8|0|sub|mult
-5|cb|8|0|add|mult
-5|cb|7|6|mult|mult
-5|cb|7|6|sub|mult
-5|cb|7|6|add|mult
-5|cb|7|5|mult|mult
-5|cb|8|1|add|mult
-5|cb|7|5|sub|mult
-5|cb|8|mult
-5|cb|7|mult
-5|cb|6|mult
-5|cb|4|mult
-5|cb|3|mult
-5|cb|2|mult
-5|cb|1|mult
-5|cb|cb
-5|cb|sq
-5|cb|0|mult
-5|sq|5|0|mult|mult
-5|sq|5|0|mult|sub
-5|cb|7|0|sub|mult
-5|cb|7|3|add|mult
-5|cb|7|2|mult|mult
-5|cb|7|2|sub|mult
-5|cb|8|4|sub|mult
-5|cb|7|1|mult|mult
-5|cb|7|1|sub|mult
-5|cb|7|1|add|mult
-5|cb|7|cbrt|mult
-5|cb|7|cb|sub
-5|cb|7|cb|add
-5|cb|7|sq|mult
-5|cb|7|0|mult|mult
-5|sq|4|0|sub|mult
-5|cb|7|0|add|mult
-5|cb|6|5|mult|mult
-5|cb|7|2|add|mult
-5|cb|8|4|add|mult
-5|cb|8|3|mult|mult
-5|cb|8|3|sub|mult
-5|cb|8|3|add|mult
-5|cb|8|2|mult|mult
-5|cb|8|2|sub|mult
-5|cb|8|2|add|mult
-5|cb|8|1|mult|mult
-5|cb|8|1|sub|mult
-5|sq|1|mult
-5|sq|7|6|sub|mult
-5|sq|7|6|add|mult
-5|sq|7|5|mult|mult
-5|sq|7|5|mult|sub
-5|sq|7|5|mult|add
-5|sq|8|1|add|mult
-5|sq|9|mult
-5|sq|8|mult
-5|sq|7|mult
-5|sq|6|mult
-5|sq|4|mult
-5|sq|3|mult
-5|sq|2|mult
-5|sq|7|6|mult|add
-5|sq|sq
-5|sq|0|mult
-5|0|mult|5|0|sub|mult
-5|0|mult|5|0|add|mult
-5|0|mult|4|3|mult|mult
-5|0|mult|4|3|mult|sub
-5|0|mult|4|3|mult|add
-5|0|mult|4|3|sub|mult
-5|0|mult|4|3|add|mult
-5|0|mult|5|1|add|mult
-5|0|mult|6|5|add|mult
-5|0|mult|6|4|mult|mult
-5|sq|8|1|sub|mult
-5|sq|8|3|mult|sub
-5|sq|8|3|mult|add
-5|sq|8|3|sub|mult
-5|sq|8|3|add|mult
-5|sq|8|2|mult|mult
-5|sq|8|2|mult|sub
-5|sq|8|2|mult|add
-5|sq|8|2|sub|mult
-5|sq|8|2|add|mult
-5|sq|8|1|mult|mult
-5|sq|8|1|mult|sub
-5|sq|8|1|mult|add
-5|0|mult|6|4|mult|sub
-5|sq|7|5|sub|mult
-5|sq|8|cbrt|mult
-5|sq|8|cb|mult
-5|sq|8|sq|sub
-5|sq|8|sq|add
-5|sq|8|0|mult|mult
-5|sq|8|0|mult|sub
-5|sq|8|0|mult|add
-5|sq|8|0|sub|mult
-5|sq|8|0|add|mult
-5|sq|7|6|mult|mult
-5|sq|7|6|mult|sub
-5|0|mult|2|1|add|mult
-5|0|mult|6|0|sub|mult
-5|0|mult|6|0|add|mult
-5|0|mult|5|4|mult|mult
-5|0|mult|5|4|mult|sub
-5|0|mult|5|4|mult|add
-5|0|mult|6|2|add|mult
-5|0|mult|3|0|sub|mult
-5|0|mult|3|0|add|mult
-5|0|mult|2|1|mult|mult
-5|0|mult|2|1|mult|sub
-5|0|mult|2|1|mult|add
-5|0|mult|2|1|sub|mult
-5|0|mult|6|0|mult|add
-5|0|mult|2|cbrt|mult
-5|0|mult|2|cb|mult
-5|0|mult|2|sq|mult
-5|0|mult|2|sq|sub
-5|0|mult|2|sq|add
-5|0|mult|2|0|mult|mult
-5|0|mult|2|0|mult|sub
-5|0|mult|2|0|mult|add
-5|0|mult|4|2|mult|mult
-5|0|mult|4|2|mult|sub
-5|0|mult|4|2|mult|add
-5|0|mult|2|0|add|mult
-5|0|mult|5|4|sub|mult
-5|0|mult|6|4|mult|add
-5|0|mult|6|4|sub|mult
-5|0|mult|6|4|add|mult
-5|0|mult|6|3|mult|mult
-5|0|mult|6|3|mult|sub
-5|0|mult|6|3|mult|add
-5|0|mult|6|3|sub|mult
-5|0|mult|6|3|add|mult
-5|0|mult|6|2|mult|mult
-5|0|mult|6|2|mult|sub
-5|0|mult|6|2|mult|add
-5|0|mult|6|2|sub|mult
-5|sq|8|3|mult|mult
-5|0|mult|6|1|mult|mult
-5|0|mult|6|1|mult|sub
-5|0|mult|6|1|mult|add
-5|0|mult|6|1|sub|mult
-5|0|mult|6|1|add|mult
-5|0|mult|6|cbrt|mult
-5|0|mult|6|cb|mult
-5|0|mult|6|sq|mult
-5|0|mult|6|sq|sub
-5|0|mult|6|sq|add
-5|0|mult|6|0|mult|mult
-5|0|mult|6|0|mult|sub
-5|sq|9|7|mult|mult
-5|sq|8|5|add|mult
-5|sq|8|4|mult|mult
-5|sq|8|4|mult|sub
-5|sq|8|4|mult|add
-5|sq|8|7|mult|mult
-5|sq|8|7|mult|sub
-5|sq|8|7|mult|add
-5|sq|9|8|mult|mult
-5|sq|9|8|mult|sub
-5|sq|9|8|mult|add
-5|sq|9|8|sub|mult
-5|sq|9|8|add|mult
-5|sq|8|5|sub|mult
-5|sq|9|7|mult|sub
-5|sq|9|7|mult|add
-5|sq|9|7|sub|mult
-5|sq|9|7|add|mult
-5|sq|9|6|mult|mult
-5|sq|9|6|mult|sub
-5|sq|9|6|mult|add
-5|sq|9|6|sub|mult
-5|sq|9|6|add|mult
-5|sq|9|2|add|mult
-5|sq|9|5|sub|mult
-5|sq|9|5|add|mult
-5|sq|9|0|sub|mult
-5|sq|9|1|mult|mult
-5|sq|9|1|mult|sub
-5|sq|9|1|mult|add
-5|sq|9|1|sub|mult
-5|sq|9|1|add|mult
-5|sq|9|cbrt|mult
-5|sq|9|cb|mult
-5|sq|9|sq|sub
-5|sq|9|sq|add
-5|sq|9|0|mult|mult
-5|sq|9|0|mult|sub
-5|sq|9|0|mult|add
-5|sq|9|4|mult|mult
-5|sq|9|0|add|mult
-5|sq|6|5|sub|mult
-5|sq|8|7|sub|mult
-5|sq|8|7|add|mult
-5|sq|8|6|mult|mult
-5|sq|8|6|mult|sub
-5|sq|8|6|mult|add
-5|sq|8|6|sub|mult
-5|sq|8|6|add|mult
-5|sq|8|5|mult|mult
-5|sq|8|5|mult|sub
-5|sq|8|5|mult|add
-5|sq|7|cb|mult
-5|sq|7|3|add|mult
-5|sq|7|2|mult|mult
-5|sq|7|2|mult|sub
-5|sq|7|2|mult|add
-5|sq|7|2|sub|mult
-5|sq|8|4|sub|mult
-5|sq|7|1|mult|mult
-5|sq|7|1|mult|sub
-5|sq|7|1|mult|add
-5|sq|7|1|sub|mult
-5|sq|7|1|add|mult
-5|sq|7|cbrt|mult
-5|sq|7|3|sub|mult
-5|sq|7|sq|sub
-5|sq|7|sq|add
-5|sq|7|0|mult|mult
-5|sq|7|0|mult|sub
-5|sq|7|0|mult|add
-5|sq|7|0|sub|mult
-5|sq|7|0|add|mult
-5|sq|6|5|mult|mult
-5|sq|6|5|mult|sub
-5|sq|6|5|mult|add
-5|sq|7|2|add|mult
-5|sq|8|4|add|mult
-5|sq|9|2|sub|mult
-5|sq|9|4|mult|sub
-5|sq|9|4|mult|add
-5|sq|9|4|sub|mult
-5|sq|9|4|add|mult
-5|sq|9|3|mult|mult
-5|sq|9|3|mult|sub
-5|sq|9|3|mult|add
-5|sq|9|3|sub|mult
-5|sq|9|3|add|mult
-5|sq|9|2|mult|mult
-5|sq|9|2|mult|sub
-5|sq|9|2|mult|add
-5|0|sub|7|3|add|sub
-5|sq|9|5|mult|mult
-5|sq|9|5|mult|sub
-5|sq|9|5|mult|add
-5|sq|7|5|add|mult
-5|sq|7|4|mult|mult
-5|sq|7|4|mult|sub
-5|sq|7|4|mult|add
-5|sq|7|4|sub|mult
-5|sq|7|4|add|mult
-5|sq|7|3|mult|mult
-5|sq|7|3|mult|sub
-5|sq|7|3|mult|add
-4|3|mult|9|8|sub|mult
-4|3|mult|8|5|mult|sub
-4|3|mult|8|5|mult|add
-4|3|mult|8|5|sub|mult
-4|3|mult|8|5|add|mult
-4|3|mult|8|4|mult|mult
-4|3|mult|8|4|mult|sub
-4|3|mult|8|4|mult|add
-4|3|mult|8|7|mult|mult
-4|3|mult|8|7|mult|sub
-4|3|mult|8|7|mult|add
-4|3|mult|9|8|mult|mult
-4|3|mult|9|8|mult|sub
-4|3|mult|9|8|mult|add
-4|3|mult|8|5|mult|mult
-4|3|mult|9|8|add|mult
-4|3|mult|9|7|mult|mult
-4|3|mult|9|7|mult|sub
-4|3|mult|9|7|mult|add
-4|3|mult|9|7|sub|mult
-4|3|mult|9|7|add|mult
-4|3|mult|9|6|mult|mult
-4|3|mult|9|6|mult|sub
-4|3|mult|9|6|mult|add
-4|3|mult|9|6|sub|mult
-4|3|mult|9|6|add|mult
-4|3|mult|9|2|add|mult
-4|3|mult|9|0|mult|mult
-4|3|mult|3|sq|add
-4|3|mult|4|0|sub|mult
-4|3|mult|9|1|mult|mult
-4|3|mult|9|1|mult|sub
-4|3|mult|9|1|mult|add
-4|3|mult|9|1|sub|mult
-4|3|mult|9|1|add|mult
-4|3|mult|9|cbrt|mult
-4|3|mult|9|cb|mult
-4|3|mult|9|sq|mult
-4|3|mult|9|sq|sub
-4|3|mult|9|sq|add
-4|3|mult|9|5|sub|mult
-4|3|mult|9|0|mult|sub
-4|3|mult|9|0|mult|add
-4|3|mult|9|0|sub|mult
-4|3|mult|9|0|add|mult
-4|3|mult|6|5|sub|mult
-4|3|mult|8|7|sub|mult
-4|3|mult|8|7|add|mult
-4|3|mult|8|6|mult|mult
-4|3|mult|8|6|mult|sub
-4|3|mult|8|6|mult|add
-4|3|mult|8|6|sub|mult
-4|3|mult|8|6|add|mult
-4|3|mult|7|1|add|mult
-4|3|mult|7|3|mult|add
-4|3|mult|7|3|sub|mult
-4|3|mult|7|3|add|mult
-4|3|mult|7|2|mult|mult
-4|3|mult|7|2|mult|sub
-4|3|mult|7|2|mult|add
-4|3|mult|7|2|sub|mult
-4|3|mult|8|4|sub|mult
-4|3|mult|7|1|mult|mult
-4|3|mult|7|1|mult|sub
-4|3|mult|7|1|mult|add
-4|3|mult|7|1|sub|mult
-4|3|mult|7|3|mult|sub
-4|3|mult|7|cbrt|mult
-4|3|mult|7|cb|mult
-4|3|mult|7|sq|mult
-4|3|mult|7|sq|sub
-4|3|mult|7|sq|add
-4|3|mult|7|0|mult|mult
-4|3|mult|7|0|mult|sub
-4|3|mult|7|0|mult|add
-4|3|mult|7|0|sub|mult
-4|3|mult|7|0|add|mult
-4|3|mult|6|5|mult|mult
-4|3|mult|6|5|mult|sub
-4|3|mult|9|2|mult|sub
-4|3|mult|9|5|add|mult
-4|3|mult|9|4|mult|mult
-4|3|mult|9|4|mult|sub
-4|3|mult|9|4|mult|add
-4|3|mult|9|4|sub|mult
-4|3|mult|9|4|add|mult
-4|3|mult|9|3|mult|mult
-4|3|mult|9|3|mult|sub
-4|3|mult|9|3|mult|add
-4|3|mult|9|3|sub|mult
-4|3|mult|9|3|add|mult
-4|3|mult|9|2|mult|mult
-4|3|mult|3|sq|sub
-4|3|mult|9|2|mult|add
-4|3|mult|9|2|sub|mult
-4|3|mult|9|5|mult|mult
-4|3|mult|9|5|mult|sub
-4|3|mult|9|5|mult|add
-4|3|mult|7|5|add|mult
-4|3|mult|7|4|mult|mult
-4|3|mult|7|4|mult|sub
-4|3|mult|7|4|mult|add
-4|3|mult|7|4|sub|mult
-4|3|mult|7|4|add|mult
-4|3|mult|7|3|mult|mult
-4|3|mult|6|2|add|mult
-4|3|mult|6|cb|mult
-4|3|mult|6|sq|mult
-4|3|mult|6|sq|sub
-4|3|mult|6|sq|add
-4|3|mult|6|0|mult|mult
-4|3|mult|6|0|mult|sub
-4|3|mult|6|0|mult|add
-4|3|mult|6|0|sub|mult
-4|3|mult|6|0|add|mult
-4|3|mult|5|4|mult|mult
-4|3|mult|5|4|mult|sub
-4|3|mult|5|4|mult|add
-4|3|mult|6|cbrt|mult
-4|3|mult|3|0|sub|mult
-4|3|mult|3|0|add|mult
-4|3|mult|2|1|mult|mult
-4|3|mult|2|1|mult|sub
-4|3|mult|2|1|mult|add
-4|3|mult|2|1|sub|mult
-4|3|mult|2|1|add|mult
-4|3|mult|2|cbrt|mult
-4|3|mult|2|cb|mult
-4|3|mult|2|sq|mult
-4|3|mult|2|sq|sub
-4|3|mult|2|sq|add
-4|3|mult|6|3|mult|add
-5|0|add|0|add
-4|3|mult|4|3|sub|mult
-4|3|mult|4|3|add|mult
-4|3|mult|5|1|add|mult
-4|3|mult|6|5|add|mult
-4|3|mult|6|4|mult|mult
-4|3|mult|6|4|mult|sub
-4|3|mult|6|4|mult|add
-4|3|mult|6|4|sub|mult
-4|3|mult|6|4|add|mult
-4|3|mult|6|3|mult|mult
-4|3|mult|6|3|mult|sub
-4|3|mult|2|0|mult|mult
-4|3|mult|6|3|sub|mult
-4|3|mult|6|3|add|mult
-4|3|mult|6|2|mult|mult
-4|3|mult|6|2|mult|sub
-4|3|mult|6|2|mult|add
-4|3|mult|6|2|sub|mult
-4|3|mult|5|4|sub|mult
-4|3|mult|6|1|mult|mult
-4|3|mult|6|1|mult|sub
-4|3|mult|6|1|mult|add
-4|3|mult|6|1|sub|mult
-4|3|mult|6|1|add|mult
-4|3|mult|3|2|mult|mult
-4|3|mult|4|cbrt|mult
-4|3|mult|4|cb|mult
-4|3|mult|4|sq|mult
-4|3|mult|4|sq|sub
-4|3|mult|4|sq|add
-4|3|mult|4|0|mult|mult
-4|3|mult|4|0|mult|sub
-4|3|mult|4|0|mult|add
-4|3|mult|3|0|mult|mult
-4|3|mult|3|0|mult|sub
-4|3|mult|3|0|mult|add
-4|3|mult|4|0|add|mult
-4|3|mult|4|1|add|mult
-4|3|mult|3|2|mult|sub
-4|3|mult|3|2|mult|add
-4|3|mult|3|2|sub|mult
-4|3|mult|3|2|add|mult
-4|3|mult|3|1|mult|mult
-4|3|mult|3|1|mult|sub
-4|3|mult|3|1|mult|add
-4|3|mult|3|1|sub|mult
-4|3|mult|3|1|add|mult
-4|3|mult|3|cbrt|mult
-4|3|mult|3|cb|mult
-4|3|mult|3|sq|mult
-4|3|mult|1|0|mult|sub
-4|3|mult|2|0|mult|sub
-4|3|mult|2|0|mult|add
-4|3|mult|4|2|mult|mult
-4|3|mult|4|2|mult|sub
-4|3|mult|4|2|mult|add
-4|3|mult|2|0|add|mult
-4|3|mult|1|cbrt|mult
-4|3|mult|1|cb|mult
-4|3|mult|1|sq|mult
-4|3|mult|1|sq|sub
-4|3|mult|1|sq|add
-4|3|mult|1|0|mult|mult
-4|3|mult|6|5|mult|add
-4|3|mult|1|0|mult|add
-4|3|mult|1|0|sub|mult
-4|3|mult|1|0|add|mult
-4|3|mult|0|cbrt|mult
-4|3|mult|0|cb|mult
-4|3|mult|2|0|sub|mult
-4|3|mult|4|2|sub|mult
-4|3|mult|4|2|add|mult
-4|3|mult|4|1|mult|mult
-4|3|mult|4|1|mult|sub
-4|3|mult|4|1|mult|add
-4|3|mult|4|1|sub|mult
-4|3|sub|3|2|mult|mult
-4|3|sub|4|2|add|add
-4|3|sub|4|1|mult|mult
-4|3|sub|4|1|sub|mult
-4|3|sub|4|1|sub|add
-4|3|sub|4|1|add|mult
-4|3|sub|4|1|add|add
-4|3|sub|4|cbrt|mult
-4|3|sub|4|cb|mult
-4|3|sub|4|sq|mult
-4|3|sub|4|0|mult|mult
-4|3|sub|3|0|mult|mult
-4|3|sub|4|0|add|mult
-4|3|sub|4|0|add|add
-4|3|sub|4|2|add|mult
-4|3|sub|3|2|sub|mult
-4|3|sub|3|2|sub|sub
-4|3|sub|3|2|add|mult
-4|3|sub|3|2|add|sub
-4|3|sub|3|1|mult|mult
-4|3|sub|3|1|sub|mult
-4|3|sub|3|1|sub|sub
-4|3|sub|3|1|add|mult
-4|3|sub|3|1|add|sub
-4|3|sub|3|cbrt|mult
-4|3|sub|3|cb|mult
-4|3|sub|3|sq|mult
-4|3|sub|1|0|sub|mult
-4|3|sub|2|cbrt|mult
-4|3|sub|2|cb|mult
-4|3|sub|2|sq|mult
-4|3|sub|2|0|mult|mult
-4|3|sub|4|2|mult|mult
-4|3|sub|2|0|add|mult
-4|3|sub|2|0|add|sub
-4|3|sub|2|0|add|add
-4|3|sub|1|cbrt|mult
-4|3|sub|1|cb|mult
-4|3|sub|1|sq|mult
-4|3|sub|1|0|mult|mult
-4|3|sub|4|0|sub|mult
-4|3|sub|1|0|sub|sub
-4|3|sub|1|0|sub|add
-4|3|sub|1|0|add|mult
-4|3|sub|1|0|add|sub
-4|3|sub|1|0|add|add
-4|3|sub|0|cbrt|mult
-4|3|sub|0|cb|mult
-4|3|sub|2|0|sub|mult
-4|3|sub|2|0|sub|sub
-4|3|sub|2|0|sub|add
-4|3|sub|4|2|sub|mult
-4|3|sub|4|2|sub|add
-4|3|sub|8|5|add|mult
-4|3|sub|8|7|add|add
-4|3|sub|8|6|mult|mult
-4|3|sub|8|6|sub|mult
-4|3|sub|8|6|sub|sub
-4|3|sub|8|6|sub|add
-4|3|sub|8|6|add|mult
-4|3|sub|8|6|add|sub
-4|3|sub|8|6|add|add
-4|3|sub|8|5|mult|mult
-4|3|sub|8|5|sub|mult
-4|3|sub|8|5|sub|sub
-4|3|sub|8|5|sub|add
-4|3|sub|8|7|add|sub
-4|3|sub|8|5|add|sub
-4|3|sub|8|5|add|add
-4|3|sub|8|4|mult|mult
-4|3|sub|8|7|mult|mult
-4|3|sub|9|8|mult|mult
-4|3|sub|9|8|sub|mult
-4|3|sub|9|8|sub|sub
-4|3|sub|9|8|sub|add
-4|3|sub|9|8|add|mult
-4|3|sub|9|8|add|sub
-4|3|sub|9|8|add|add
-4|3|sub|9|7|mult|mult
-4|3|sub|9|0|sub|mult
-4|3|sub|4|0|sub|add
-4|3|sub|9|1|mult|mult
-4|3|sub|9|1|sub|mult
-4|3|sub|9|1|sub|sub
-4|3|sub|9|1|sub|add
-4|3|sub|9|1|add|mult
-4|3|sub|9|1|add|sub
-4|3|sub|9|1|add|add
-4|3|sub|9|cbrt|mult
-4|3|sub|9|cb|mult
-4|3|sub|9|sq|mult
-4|3|sub|9|0|mult|mult
-4|3|sub|2|1|add|add
-4|3|sub|9|0|sub|sub
-4|3|sub|9|0|sub|add
-4|3|sub|9|0|add|mult
-4|3|sub|9|0|add|sub
-4|3|sub|9|0|add|add
-4|3|sub|6|5|sub|mult
-4|3|sub|6|5|sub|sub
-4|3|sub|6|5|sub|add
-4|3|sub|8|7|sub|mult
-4|3|sub|8|7|sub|sub
-4|3|sub|8|7|sub|add
-4|3|sub|8|7|add|mult
-4|3|mult|7|mult
-4|3|mult|8|0|add|mult
-4|3|mult|7|6|mult|mult
-4|3|mult|7|6|mult|sub
-4|3|mult|7|6|mult|add
-4|3|mult|7|6|sub|mult
-4|3|mult|7|6|add|mult
-4|3|mult|7|5|mult|mult
-4|3|mult|7|5|mult|sub
-4|3|mult|7|5|mult|add
-4|3|mult|8|1|add|mult
-4|3|mult|9|mult
-4|3|mult|8|mult
-4|3|mult|8|0|sub|mult
-4|3|mult|6|mult
-4|3|mult|5|mult
-4|3|mult|4|mult
-4|3|mult|3|mult
-4|3|mult|2|mult
-4|3|mult|1|mult
-4|3|mult|cbrt
-4|3|mult|cb
-4|3|mult|sq
-4|3|mult|0|mult
-4|3|sub|4|3|add|mult
-4|3|sub|5|1|add|mult
-4|3|mult|8|1|mult|mult
-4|3|mult|7|2|add|mult
-4|3|mult|8|4|add|mult
-4|3|mult|8|3|mult|mult
-4|3|mult|8|3|mult|sub
-4|3|mult|8|3|mult|add
-4|3|mult|8|3|sub|mult
-4|3|mult|8|3|add|mult
-4|3|mult|8|2|mult|mult
-4|3|mult|8|2|mult|sub
-4|3|mult|8|2|mult|add
-4|3|mult|8|2|sub|mult
-4|3|mult|8|2|add|mult
-4|3|sub|5|1|add|sub
-4|3|mult|8|1|mult|sub
-4|3|mult|8|1|mult|add
-4|3|mult|8|1|sub|mult
-4|3|mult|7|5|sub|mult
-4|3|mult|8|cbrt|mult
-4|3|mult|8|cb|mult
-4|3|mult|8|sq|mult
-4|3|mult|8|sq|sub
-4|3|mult|8|sq|add
-4|3|mult|8|0|mult|mult
-4|3|mult|8|0|mult|sub
-4|3|mult|8|0|mult|add
-4|3|sub|6|2|add|mult
-4|3|sub|6|1|add|add
-4|3|sub|6|cbrt|mult
-4|3|sub|6|cb|mult
-4|3|sub|6|sq|mult
-4|3|sub|6|0|mult|mult
-4|3|sub|6|0|sub|mult
-4|3|sub|6|0|sub|sub
-4|3|sub|6|0|sub|add
-4|3|sub|6|0|add|mult
-4|3|sub|6|0|add|sub
-4|3|sub|6|0|add|add
-4|3|sub|5|4|mult|mult
-4|3|sub|6|1|add|sub
-4|3|sub|6|2|add|sub
-4|3|sub|6|2|add|add
-4|3|sub|3|0|sub|mult
-4|3|sub|3|0|sub|sub
-4|3|sub|3|0|add|mult
-4|3|sub|3|0|add|sub
-4|3|sub|2|1|mult|mult
-4|3|sub|2|1|sub|mult
-4|3|sub|2|1|sub|sub
-4|3|sub|2|1|sub|add
-4|3|sub|2|1|add|mult
-4|3|sub|2|1|add|sub
-4|3|sub|6|3|add|mult
-4|3|sub|5|1|add|add
-4|3|sub|6|5|add|mult
-4|3|sub|6|5|add|sub
-4|3|sub|6|5|add|add
-4|3|sub|6|4|mult|mult
-4|3|sub|6|4|sub|mult
-4|3|sub|6|4|sub|sub
-4|3|sub|6|4|add|mult
-4|3|sub|6|4|add|add
-4|3|sub|6|3|mult|mult
-4|3|sub|6|3|sub|mult
-4|3|sub|6|3|sub|add
-5|0|add|0|mult
-4|3|sub|6|3|add|sub
-4|3|sub|6|2|mult|mult
-4|3|sub|6|2|sub|mult
-4|3|sub|6|2|sub|sub
-4|3|sub|6|2|sub|add
-4|3|sub|5|4|sub|mult
-4|3|sub|5|4|sub|sub
-4|3|sub|6|1|mult|mult
-4|3|sub|6|1|sub|mult
-4|3|sub|6|1|sub|sub
-4|3|sub|6|1|sub|add
-4|3|sub|6|1|add|mult
-5|0|add|6|0|sub|sub
-5|0|add|5|4|sub|add
-5|0|add|6|1|mult|mult
-5|0|add|6|1|sub|mult
-5|0|add|6|1|sub|sub
-5|0|add|6|1|sub|add
-5|0|add|6|1|add|mult
-5|0|add|6|1|add|sub
-5|0|add|6|1|add|add
-5|0|add|6|cbrt|mult
-5|0|add|6|cb|mult
-5|0|add|6|sq|mult
-5|0|add|6|0|mult|mult
-5|0|add|6|0|sub|mult
-5|0|add|5|4|sub|mult
-5|0|add|6|0|add|mult
-5|0|add|6|0|add|add
-5|0|add|5|4|mult|mult
-5|0|add|6|2|add|mult
-5|0|add|6|2|add|sub
-5|0|add|6|2|add|add
-5|0|add|3|0|sub|mult
-5|0|add|3|0|sub|sub
-5|0|add|3|0|add|mult
-5|0|add|3|0|add|add
-5|0|add|2|1|mult|mult
-5|0|add|2|1|sub|mult
-5|0|add|6|4|add|sub
-5|0|add|4|3|add|mult
-5|0|add|4|3|add|sub
-5|0|add|4|3|add|add
-5|0|add|5|1|add|mult
-5|0|add|5|1|add|add
-5|0|add|6|5|add|mult
-5|0|add|6|5|add|add
-5|0|add|6|4|mult|mult
-5|0|add|6|4|sub|mult
-5|0|add|6|4|sub|sub
-5|0|add|6|4|sub|add
-5|0|add|6|4|add|mult
-5|0|add|2|1|sub|sub
-5|0|add|6|4|add|add
-5|0|add|6|3|mult|mult
-5|0|add|6|3|sub|mult
-5|0|add|6|3|sub|sub
-5|0|add|6|3|sub|add
-5|0|add|6|3|add|mult
-5|0|add|6|3|add|sub
-5|0|add|6|3|add|add
-5|0|add|6|2|mult|mult
-5|0|add|6|2|sub|mult
-5|0|add|6|2|sub|sub
-5|0|add|6|2|sub|add
-5|0|add|4|sq|mult
-5|0|add|4|2|add|mult
-5|0|add|4|2|add|sub
-5|0|add|4|2|add|add
-5|0|add|4|1|mult|mult
-5|0|add|4|1|sub|mult
-5|0|add|4|1|sub|sub
-5|0|add|4|1|sub|add
-5|0|add|4|1|add|mult
-5|0|add|4|1|add|sub
-5|0|add|4|1|add|add
-5|0|add|4|cbrt|mult
-5|0|add|4|cb|mult
-5|0|add|4|2|sub|add
-5|0|add|4|0|mult|mult
-5|0|add|3|0|mult|mult
-5|0|add|4|0|add|mult
-5|0|add|4|0|add|add
-5|0|add|3|2|mult|mult
-5|0|add|3|2|sub|mult
-5|0|add|3|2|sub|sub
-5|0|add|3|2|sub|add
-5|0|add|3|2|add|mult
-5|0|add|3|2|add|sub
-5|0|add|3|2|add|add
-5|0|add|3|1|mult|mult
-5|0|add|1|cb|mult
-5|0|add|2|1|sub|add
-5|0|add|2|1|add|mult
-5|0|add|2|1|add|sub
-5|0|add|2|1|add|add
-5|0|add|2|cbrt|mult
-5|0|add|2|cb|mult
-5|0|add|2|sq|mult
-5|0|add|2|0|mult|mult
-5|0|add|4|2|mult|mult
-5|0|add|2|0|add|mult
-5|0|add|2|0|add|add
-5|0|add|1|cbrt|mult
-5|0|add|4|3|sub|add
-5|0|add|1|sq|mult
-5|0|add|1|0|mult|mult
-5|0|add|1|0|sub|mult
-5|0|add|1|0|sub|sub
-5|0|add|1|0|add|mult
-5|0|add|1|0|add|add
-5|0|add|0|cbrt|mult
-5|0|add|0|cb|mult
-5|0|add|2|0|sub|mult
-5|0|add|2|0|sub|sub
-5|0|add|4|2|sub|mult
-5|0|add|4|2|sub|sub
-5|0|sub|8|2|sub|mult
-5|0|sub|7|2|add|add
-5|0|sub|8|4|add|mult
-5|0|sub|8|4|add|sub
-5|0|sub|8|4|add|add
-5|0|sub|8|3|mult|mult
-5|0|sub|8|3|sub|mult
-5|0|sub|8|3|sub|sub
-5|0|sub|8|3|sub|add
-5|0|sub|8|3|add|mult
-5|0|sub|8|3|add|sub
-5|0|sub|8|3|add|add
-5|0|sub|8|2|mult|mult
-5|0|sub|7|2|add|sub
-5|0|sub|8|2|sub|sub
-5|0|sub|8|2|sub|add
-5|0|sub|8|2|add|mult
-5|0|sub|8|2|add|sub
-5|0|sub|8|2|add|add
-5|0|sub|8|1|mult|mult
-5|0|sub|8|1|sub|mult
-5|0|sub|8|1|sub|sub
-5|0|sub|8|1|sub|add
-5|0|sub|7|5|sub|mult
-5|0|sub|7|5|sub|sub
-5|0|sub|8|cbrt|mult
-5|0|sub|7|1|add|mult
-5|0|sub|7|3|add|add
-5|0|sub|7|2|mult|mult
-5|0|sub|7|2|sub|mult
-5|0|sub|7|2|sub|sub
-5|0|sub|7|2|sub|add
-5|0|sub|8|4|sub|mult
-5|0|sub|8|4|sub|sub
-5|0|sub|8|4|sub|add
-5|0|sub|7|1|mult|mult
-5|0|sub|7|1|sub|mult
-5|0|sub|7|1|sub|sub
-5|0|sub|7|1|sub|add
-5|0|sub|8|cb|mult
-5|0|sub|7|1|add|sub
-5|0|sub|7|1|add|add
-5|0|sub|7|cbrt|mult
-5|0|sub|7|cb|mult
-5|0|sub|7|sq|mult
-5|0|sub|7|0|mult|mult
-5|0|sub|7|0|sub|mult
-5|0|sub|7|0|sub|add
-5|0|sub|7|0|add|mult
-5|0|sub|7|0|add|sub
-5|0|sub|6|5|mult|mult
-5|0|sub|7|2|add|mult
-5|0|sub|2|sub
-5|0|sub|6|mult
-5|0|sub|6|sub
-5|0|sub|6|add
-5|0|sub|5|mult
-5|0|sub|5|add
-5|0|sub|4|mult
-5|0|sub|4|sub
-5|0|sub|4|add
-5|0|sub|3|mult
-5|0|sub|3|sub
-5|0|sub|3|add
-5|0|sub|2|mult
-5|0|sub|7|add
-5|0|sub|2|add
-5|0|sub|1|mult
-5|0|sub|1|sub
-5|0|sub|1|add
-5|0|sub|cbrt
-5|0|sub|cb
-5|0|sub|sq
-5|0|sub|0|mult
-5|0|sub|0|sub
-5|0|add|4|3|mult|mult
-5|0|add|4|3|sub|mult
-5|0|add|4|3|sub|sub
-5|0|sub|7|6|add|add
-5|0|sub|8|sq|mult
-5|0|sub|8|0|mult|mult
-5|0|sub|8|0|sub|mult
-5|0|sub|8|0|sub|add
-5|0|sub|8|0|add|mult
-5|0|sub|8|0|add|sub
-5|0|sub|7|6|mult|mult
-5|0|sub|7|6|sub|mult
-5|0|sub|7|6|sub|sub
-5|0|sub|7|6|sub|add
-5|0|sub|7|6|add|mult
-5|0|sub|7|6|add|sub
-5|0|add|3|1|sub|mult
-5|0|sub|7|5|mult|mult
-5|0|sub|8|1|add|mult
-5|0|sub|8|1|add|sub
-5|0|sub|8|1|add|add
-5|0|sub|9|mult
-5|0|sub|9|sub
-5|0|sub|9|add
-5|0|sub|8|mult
-5|0|sub|8|sub
-5|0|sub|8|add
-5|0|sub|7|mult
-5|0|sub|7|sub
-5|0|add|8|3|sub|add
-5|0|add|7|0|add|mult
-5|0|add|7|0|add|add
-5|0|add|6|5|mult|mult
-5|0|add|7|2|add|mult
-5|0|add|7|2|add|sub
-5|0|add|7|2|add|add
-5|0|add|8|4|add|mult
-5|0|add|8|4|add|sub
-5|0|add|8|4|add|add
-5|0|add|8|3|mult|mult
-5|0|add|8|3|sub|mult
-5|0|add|8|3|sub|sub
-5|0|add|7|0|sub|sub
-5|0|add|8|3|add|mult
-5|0|add|8|3|add|sub
-5|0|add|8|3|add|add
-5|0|add|8|2|mult|mult
-5|0|add|8|2|sub|mult
-5|0|add|8|2|sub|sub
-5|0|add|8|2|sub|add
-5|0|add|8|2|add|mult
-5|0|add|8|2|add|sub
-5|0|add|8|2|add|add
-5|0|add|8|1|mult|mult
-5|0|add|8|1|sub|mult
-5|0|add|8|4|sub|add
-5|0|add|7|3|sub|mult
-5|0|add|7|3|sub|sub
-5|0|add|7|3|sub|add
-5|0|add|7|3|add|mult
-5|0|add|7|3|add|sub
-5|0|add|7|3|add|add
-5|0|add|7|2|mult|mult
-5|0|add|7|2|sub|mult
-5|0|add|7|2|sub|sub
-5|0|add|7|2|sub|add
-5|0|add|8|4|sub|mult
-5|0|add|8|4|sub|sub
-5|0|add|8|1|sub|sub
-5|0|add|7|1|mult|mult
-5|0|add|7|1|sub|mult
-5|0|add|7|1|sub|sub
-5|0|add|7|1|sub|add
-5|0|add|7|1|add|mult
-5|0|add|7|1|add|sub
-5|0|add|7|1|add|add
-5|0|add|7|cbrt|mult
-5|0|add|7|cb|mult
-5|0|add|7|sq|mult
-5|0|add|7|0|mult|mult
-5|0|add|7|0|sub|mult
-5|0|add|4|add
-5|0|add|8|sub
-5|0|add|8|add
-5|0|add|7|mult
-5|0|add|7|sub
-5|0|add|7|add
-5|0|add|6|mult
-5|0|add|6|sub
-5|0|add|6|add
-5|0|add|5|mult
-5|0|add|5|add
-5|0|add|4|mult
-5|0|add|4|sub
-5|0|add|8|mult
-5|0|add|3|mult
-5|0|add|3|sub
-5|0|add|3|add
-5|0|add|2|mult
-5|0|add|2|sub
-5|0|add|2|add
-5|0|add|1|mult
-5|0|add|1|sub
-5|0|add|1|add
-5|0|add|cbrt
-5|0|add|cb
-5|0|add|sq
-5|0|add|7|6|sub|mult
-5|0|add|8|1|sub|add
-5|0|add|7|5|sub|mult
-5|0|add|7|5|sub|sub
-5|0|add|8|cbrt|mult
-5|0|add|8|cb|mult
-5|0|add|8|sq|mult
-5|0|add|8|0|mult|mult
-5|0|add|8|0|sub|mult
-5|0|add|8|0|sub|sub
-5|0|add|8|0|add|mult
-5|0|add|8|0|add|add
-5|0|add|7|6|mult|mult
-5|0|add|7|3|mult|mult
-5|0|add|7|6|sub|sub
-5|0|add|7|6|sub|add
-5|0|add|7|6|add|mult
-5|0|add|7|6|add|sub
-5|0|add|7|6|add|add
-5|0|add|7|5|mult|mult
-5|0|add|8|1|add|mult
-5|0|add|8|1|add|sub
-5|0|add|8|1|add|add
-5|0|add|9|mult
-5|0|add|9|sub
-5|0|add|9|add
-5|0|add|8|6|add|sub
-5|0|add|6|5|sub|sub
-5|0|add|8|7|sub|mult
-5|0|add|8|7|sub|sub
-5|0|add|8|7|sub|add
-5|0|add|8|7|add|mult
-5|0|add|8|7|add|sub
-5|0|add|8|7|add|add
-5|0|add|8|6|mult|mult
-5|0|add|8|6|sub|mult
-5|0|add|8|6|sub|sub
-5|0|add|8|6|sub|add
-5|0|add|8|6|add|mult
-5|0|add|6|5|sub|mult
-5|0|add|8|6|add|add
-5|0|add|8|5|mult|mult
-5|0|add|8|5|sub|mult
-5|0|add|8|5|sub|sub
-5|0|add|8|5|add|mult
-5|0|add|8|5|add|add
-5|0|add|8|4|mult|mult
-5|0|add|8|7|mult|mult
-5|0|add|9|8|mult|mult
-5|0|add|9|8|sub|mult
-5|0|add|9|8|sub|sub
-5|0|add|9|8|sub|add
-5|0|add|9|1|sub|sub
-5|0|add|3|1|sub|sub
-5|0|add|3|1|sub|add
-5|0|add|3|1|add|mult
-5|0|add|3|1|add|sub
-5|0|add|3|1|add|add
-5|0|add|3|cbrt|mult
-5|0|add|3|cb|mult
-5|0|add|3|sq|mult
-5|0|add|4|0|sub|mult
-5|0|add|4|0|sub|sub
-5|0|add|9|1|mult|mult
-5|0|add|9|1|sub|mult
-5|0|add|9|8|add|mult
-5|0|add|9|1|sub|add
-5|0|add|9|1|add|mult
-5|0|add|9|1|add|sub
-5|0|add|9|1|add|add
-5|0|add|9|cbrt|mult
-5|0|add|9|cb|mult
-5|0|add|9|sq|mult
-5|0|add|9|0|mult|mult
-5|0|add|9|0|sub|mult
-5|0|add|9|0|sub|sub
-5|0|add|9|0|add|mult
-5|0|add|9|0|add|add
-5|0|add|9|2|sub|mult
-5|0|add|9|4|sub|add
-5|0|add|9|4|add|mult
-5|0|add|9|4|add|sub
-5|0|add|9|4|add|add
-5|0|add|9|3|mult|mult
-5|0|add|9|3|sub|mult
-5|0|add|9|3|sub|sub
-5|0|add|9|3|sub|add
-5|0|add|9|3|add|mult
-5|0|add|9|3|add|sub
-5|0|add|9|3|add|add
-5|0|add|9|2|mult|mult
-5|0|add|9|4|sub|sub
-5|0|add|9|2|sub|sub
-5|0|add|9|2|sub|add
-5|0|add|9|5|mult|mult
-5|0|add|7|5|add|mult
-5|0|add|7|5|add|add
-5|0|add|7|4|mult|mult
-5|0|add|7|4|sub|mult
-5|0|add|7|4|sub|sub
-5|0|add|7|4|sub|add
-5|0|add|7|4|add|mult
-5|0|add|7|4|add|sub
-5|0|add|7|4|add|add
-5|0|add|9|6|sub|add
-5|0|add|9|8|add|sub
-5|0|add|9|8|add|add
-5|0|add|9|7|mult|mult
-5|0|add|9|7|sub|mult
-5|0|add|9|7|sub|sub
-5|0|add|9|7|sub|add
-5|0|add|9|7|add|mult
-5|0|add|9|7|add|sub
-5|0|add|9|7|add|add
-5|0|add|9|6|mult|mult
-5|0|add|9|6|sub|mult
-5|0|add|9|6|sub|sub
-2|0|add|9|6|mult|mult
-5|0|add|9|6|add|mult
-5|0|add|9|6|add|sub
-5|0|add|9|6|add|add
-5|0|add|9|2|add|mult
-5|0|add|9|2|add|sub
-5|0|add|9|2|add|add
-5|0|add|9|5|sub|mult
-5|0|add|9|5|sub|sub
-5|0|add|9|5|add|mult
-5|0|add|9|5|add|add
-5|0|add|9|4|mult|mult
-5|0|add|9|4|sub|mult
-9|7|mult|8|2|mult|mult
-9|7|mult|7|0|mult|add
-9|7|mult|7|0|sub|mult
-9|7|mult|7|0|add|mult
-9|7|mult|6|5|mult|mult
-9|7|mult|6|5|mult|sub
-9|7|mult|6|5|mult|add
-9|7|mult|7|2|add|mult
-9|7|mult|8|4|add|mult
-9|7|mult|8|3|mult|mult
-9|7|mult|8|3|mult|sub
-9|7|mult|8|3|mult|add
-9|7|mult|8|3|sub|mult
-9|7|mult|8|3|add|mult
-9|7|mult|7|0|mult|sub
-9|7|mult|8|2|mult|sub
-9|7|mult|8|2|mult|add
-9|7|mult|8|2|sub|mult
-9|7|mult|8|2|add|mult
-9|7|mult|8|1|mult|mult
-9|7|mult|8|1|mult|sub
-9|7|mult|8|1|mult|add
-9|7|mult|8|1|sub|mult
-9|7|mult|7|5|sub|mult
-9|7|mult|8|cbrt|mult
-9|7|mult|8|cb|mult
-9|7|mult|8|sq|mult
-9|7|mult|7|2|sub|mult
-9|7|mult|7|4|mult|sub
-9|7|mult|7|4|mult|add
-9|7|mult|7|4|sub|mult
-9|7|mult|7|4|add|mult
-9|7|mult|7|3|mult|mult
-9|7|mult|7|3|mult|sub
-9|7|mult|7|3|mult|add
-9|7|mult|7|3|sub|mult
-9|7|mult|7|3|add|mult
-9|7|mult|7|2|mult|mult
-9|7|mult|7|2|mult|sub
-9|7|mult|7|2|mult|add
-9|7|mult|8|sq|sub
-9|7|mult|8|4|sub|mult
-9|7|mult|7|1|mult|mult
-9|7|mult|7|1|mult|sub
-9|7|mult|7|1|mult|add
-9|7|mult|7|1|sub|mult
-9|7|mult|7|1|add|mult
-9|7|mult|7|cbrt|mult
-9|7|mult|7|cb|mult
-9|7|mult|7|sq|mult
-9|7|mult|7|sq|sub
-9|7|mult|7|sq|add
-9|7|mult|7|0|mult|mult
-9|7|sub|9|5|add|mult
-9|7|mult|sq
-9|7|mult|0|mult
-9|7|sub|9|7|add|mult
-9|7|sub|9|6|mult|mult
-9|7|sub|9|6|sub|mult
-9|7|sub|9|6|sub|add
-9|7|sub|9|6|add|mult
-9|7|sub|9|6|add|add
-9|7|sub|9|2|add|mult
-9|7|sub|9|2|add|add
-9|7|sub|9|5|sub|mult
-9|7|sub|9|5|sub|add
-9|7|mult|cb
-9|7|sub|9|5|add|add
-9|7|sub|9|4|mult|mult
-9|7|sub|9|4|sub|mult
-9|7|sub|9|4|sub|add
-9|7|sub|9|4|add|mult
-9|7|sub|9|4|add|add
-9|7|sub|9|3|mult|mult
-9|7|sub|9|3|sub|mult
-9|7|sub|9|3|sub|add
-9|7|sub|9|3|add|mult
-9|7|sub|9|3|add|add
-9|7|sub|9|2|mult|mult
-9|7|mult|7|5|mult|sub
-9|7|mult|8|sq|add
-9|7|mult|8|0|mult|mult
-9|7|mult|8|0|mult|sub
-9|7|mult|8|0|mult|add
-9|7|mult|8|0|sub|mult
-9|7|mult|8|0|add|mult
-9|7|mult|7|6|mult|mult
-9|7|mult|7|6|mult|sub
-9|7|mult|7|6|mult|add
-9|7|mult|7|6|sub|mult
-9|7|mult|7|6|add|mult
-9|7|mult|7|5|mult|mult
-9|7|mult|7|4|mult|mult
-9|7|mult|7|5|mult|add
-9|7|mult|8|1|add|mult
-9|7|mult|9|mult
-9|7|mult|8|mult
-9|7|mult|7|mult
-9|7|mult|6|mult
-9|7|mult|5|mult
-9|7|mult|4|mult
-9|7|mult|3|mult
-9|7|mult|2|mult
-9|7|mult|1|mult
-9|7|mult|cbrt
-9|8|add|7|6|add|mult
-9|8|add|8|cbrt|mult
-9|8|add|8|cb|mult
-9|8|add|8|sq|mult
-9|8|add|8|0|mult|mult
-9|8|add|8|0|sub|mult
-9|8|add|8|0|sub|add
-9|8|add|8|0|add|mult
-9|8|add|8|0|add|add
-9|8|add|7|6|mult|mult
-9|8|add|7|6|sub|mult
-9|8|add|7|6|sub|sub
-9|8|add|7|6|sub|add
-9|8|add|7|5|sub|add
-9|8|add|7|6|add|sub
-9|8|add|7|6|add|add
-9|8|add|7|5|mult|mult
-9|8|add|8|1|add|mult
-9|8|add|8|1|add|add
-9|8|add|9|mult
-9|8|add|9|add
-9|8|add|8|mult
-9|8|add|8|add
-9|8|add|7|mult
-9|8|add|7|sub
-9|8|add|7|add
-9|8|add|8|3|sub|add
-9|8|add|7|0|sub|add
-9|8|add|7|0|add|mult
-9|8|add|7|0|add|sub
-9|8|add|7|0|add|add
-9|8|add|6|5|mult|mult
-9|8|add|7|2|add|mult
-9|8|add|7|2|add|sub
-9|8|add|7|2|add|add
-9|8|add|8|4|add|mult
-9|8|add|8|4|add|add
-9|8|add|8|3|mult|mult
-9|8|add|8|3|sub|mult
-9|8|add|6|mult
-9|8|add|8|3|add|mult
-9|8|add|8|3|add|add
-9|8|add|8|2|mult|mult
-9|8|add|8|2|sub|mult
-9|8|add|8|2|sub|add
-9|8|add|8|2|add|mult
-9|8|add|8|2|add|add
-9|8|add|8|1|mult|mult
-9|8|add|8|1|sub|mult
-9|8|add|8|1|sub|add
-9|8|add|7|5|sub|mult
-9|8|add|7|5|sub|sub
-9|7|mult|9|3|mult|mult
-9|7|mult|9|6|mult|sub
-9|7|mult|9|6|mult|add
-9|7|mult|9|6|sub|mult
-9|7|mult|9|6|add|mult
-9|7|mult|9|2|add|mult
-9|7|mult|9|5|sub|mult
-9|7|mult|9|5|add|mult
-9|7|mult|9|4|mult|mult
-9|7|mult|9|4|mult|sub
-9|7|mult|9|4|mult|add
-9|7|mult|9|4|sub|mult
-9|7|mult|9|4|add|mult
-9|7|mult|9|6|mult|mult
-9|7|mult|9|3|mult|sub
-9|7|mult|9|3|mult|add
-9|7|mult|9|3|sub|mult
-9|7|mult|9|3|add|mult
-9|7|mult|9|2|mult|mult
-9|7|mult|9|2|mult|sub
-9|7|mult|9|2|mult|add
-9|7|mult|9|2|sub|mult
-9|7|mult|9|5|mult|mult
-9|7|mult|9|5|mult|sub
-9|7|mult|9|5|mult|add
-9|7|mult|7|5|add|mult
-9|8|add|2|sub
-9|8|add|6|sub
-9|8|add|6|add
-9|8|add|5|mult
-9|8|add|5|sub
-9|8|add|5|add
-9|8|add|4|mult
-9|8|add|4|sub
-9|8|add|4|add
-9|8|add|3|mult
-9|8|add|3|sub
-9|8|add|3|add
-9|8|add|2|mult
-9|7|sub|9|2|sub|mult
-9|8|add|2|add
-9|8|add|1|mult
-9|8|add|1|sub
-9|8|add|1|add
-9|8|add|cbrt
-9|8|add|cb
-9|8|add|sq
-9|8|add|0|mult
-9|8|add|0|sub
-9|8|add|0|add
-9|7|mult|9|7|sub|mult
-9|7|mult|9|7|add|mult
-9|7|add|7|3|sub|add
-9|7|add|9|2|mult|mult
-9|7|add|9|2|sub|mult
-9|7|add|9|2|sub|add
-9|7|add|9|5|mult|mult
-9|7|add|7|5|add|mult
-9|7|add|7|5|add|add
-9|7|add|7|4|mult|mult
-9|7|add|7|4|sub|mult
-9|7|add|7|4|sub|add
-9|7|add|7|4|add|mult
-9|7|add|7|4|add|add
-9|7|add|7|3|mult|mult
-9|7|add|7|3|sub|mult
-9|7|add|9|3|add|add
-9|7|add|7|3|add|mult
-9|7|add|7|3|add|add
-9|7|add|7|2|mult|mult
-9|7|add|7|2|sub|mult
-9|7|add|7|2|sub|add
-9|7|add|8|4|sub|mult
-9|7|add|8|4|sub|sub
-9|7|add|8|4|sub|add
-9|7|add|7|1|mult|mult
-9|7|add|7|1|sub|mult
-9|7|add|7|1|sub|add
-9|7|add|7|1|add|mult
-9|7|add|9|5|sub|mult
-9|7|sub|cb
-9|7|sub|sq
-9|7|sub|0|mult
-9|7|sub|0|sub
-9|7|sub|0|add
-9|7|add|9|6|mult|mult
-9|7|add|9|6|sub|mult
-9|7|add|9|6|sub|add
-9|7|add|9|6|add|mult
-9|7|add|9|6|add|add
-9|7|add|9|2|add|mult
-9|7|add|9|2|add|add
-9|7|add|7|1|add|add
-9|7|add|9|5|sub|add
-9|7|add|9|5|add|mult
-9|7|add|9|5|add|add
-9|7|add|9|4|mult|mult
-9|7|add|9|4|sub|mult
-9|7|add|9|4|sub|add
-9|7|add|9|4|add|mult
-9|7|add|9|4|add|add
-9|7|add|9|3|mult|mult
-9|7|add|9|3|sub|mult
-9|7|add|9|3|sub|add
-9|7|add|9|3|add|mult
-9|7|add|8|0|sub|mult
-9|7|add|8|2|add|sub
-9|7|add|8|2|add|add
-9|7|add|8|1|mult|mult
-9|7|add|8|1|sub|mult
-9|7|add|8|1|sub|sub
-9|7|add|8|1|sub|add
-9|7|add|7|5|sub|mult
-9|7|add|7|5|sub|add
-9|7|add|8|cbrt|mult
-9|7|add|8|cb|mult
-9|7|add|8|sq|mult
-9|7|add|8|0|mult|mult
-9|7|add|8|2|add|mult
-9|7|add|8|0|sub|sub
-9|7|add|8|0|sub|add
-9|7|add|8|0|add|mult
-9|7|add|8|0|add|sub
-9|7|add|8|0|add|add
-9|7|add|7|6|mult|mult
-9|7|add|7|6|sub|mult
-9|7|add|7|6|sub|add
-9|7|add|7|6|add|mult
-9|7|add|7|6|add|add
-9|7|add|7|5|mult|mult
-9|7|add|8|1|add|mult
-9|7|add|8|4|add|sub
-9|7|add|7|cbrt|mult
-9|7|add|7|cb|mult
-9|7|add|7|sq|mult
-9|7|add|7|0|mult|mult
-9|7|add|7|0|sub|mult
-9|7|add|7|0|sub|add
-9|7|add|7|0|add|mult
-9|7|add|7|0|add|add
-9|7|add|6|5|mult|mult
-9|7|add|7|2|add|mult
-9|7|add|7|2|add|add
-9|7|add|8|4|add|mult
-9|7|sub|cbrt
-9|7|add|8|4|add|add
-9|7|add|8|3|mult|mult
-9|7|add|8|3|sub|mult
-9|7|add|8|3|sub|sub
-9|7|add|8|3|sub|add
-9|7|add|8|3|add|mult
-9|7|add|8|3|add|sub
-9|7|add|8|3|add|add
-9|7|add|8|2|mult|mult
-9|7|add|8|2|sub|mult
-9|7|add|8|2|sub|sub
-9|7|add|8|2|sub|add
-9|7|sub|8|4|add|add
-9|7|sub|7|cb|mult
-9|7|sub|7|sq|mult
-9|7|sub|7|0|mult|mult
-9|7|sub|7|0|sub|mult
-9|7|sub|7|0|sub|sub
-9|7|sub|7|0|add|mult
-9|7|sub|7|0|add|sub
-9|7|sub|6|5|mult|mult
-9|7|sub|7|2|add|mult
-9|7|sub|7|2|add|sub
-9|7|sub|8|4|add|mult
-9|7|sub|8|4|add|sub
-9|7|sub|7|cbrt|mult
-9|7|sub|8|3|mult|mult
-9|7|sub|8|3|sub|mult
-9|7|sub|8|3|sub|sub
-9|7|sub|8|3|sub|add
-9|7|sub|8|3|add|mult
-9|7|sub|8|3|add|sub
-9|7|sub|8|3|add|add
-9|7|sub|8|2|mult|mult
-9|7|sub|8|2|sub|mult
-9|7|sub|8|2|sub|sub
-9|7|sub|8|2|sub|add
-9|7|sub|8|2|add|mult
-9|7|sub|7|3|add|mult
-9|7|sub|9|2|sub|add
-9|7|sub|9|5|mult|mult
-9|7|sub|7|5|add|mult
-9|7|sub|7|5|add|sub
-9|7|sub|7|4|mult|mult
-9|7|sub|7|4|sub|mult
-9|7|sub|7|4|sub|sub
-9|7|sub|7|4|add|mult
-9|7|sub|7|4|add|sub
-9|7|sub|7|3|mult|mult
-9|7|sub|7|3|sub|mult
-9|7|sub|7|3|sub|sub
-9|7|sub|8|2|add|sub
-9|7|sub|7|3|add|sub
-9|7|sub|7|2|mult|mult
-9|7|sub|7|2|sub|mult
-9|7|sub|7|2|sub|sub
-9|7|sub|8|4|sub|mult
-9|7|sub|8|4|sub|sub
-9|7|sub|8|4|sub|add
-9|7|sub|7|1|mult|mult
-9|7|sub|7|1|sub|mult
-9|7|sub|7|1|sub|sub
-9|7|sub|7|1|add|mult
-9|7|sub|7|1|add|sub
-9|7|sub|5|add
-9|7|sub|9|mult
-9|7|sub|9|add
-9|7|sub|8|mult
-9|7|sub|8|sub
-9|7|sub|8|add
-9|7|sub|7|mult
-9|7|sub|7|sub
-9|7|sub|6|mult
-9|7|sub|6|sub
-9|7|sub|6|add
-9|7|sub|5|mult
-9|7|sub|5|sub
-9|7|sub|8|1|add|add
-9|7|sub|4|mult
-9|7|sub|4|sub
-9|7|sub|4|add
-9|7|sub|3|mult
-9|7|sub|3|sub
-9|7|sub|3|add
-9|7|sub|2|mult
-9|7|sub|2|sub
-9|7|sub|2|add
-9|7|sub|1|mult
-9|7|sub|1|sub
-9|7|sub|1|add
-9|7|sub|8|0|sub|sub
-9|7|sub|8|2|add|add
-9|7|sub|8|1|mult|mult
-9|7|sub|8|1|sub|mult
-9|7|sub|8|1|sub|sub
-9|7|sub|8|1|sub|add
-9|7|sub|7|5|sub|mult
-9|7|sub|7|5|sub|sub
-9|7|sub|8|cbrt|mult
-9|7|sub|8|cb|mult
-9|7|sub|8|sq|mult
-9|7|sub|8|0|mult|mult
-9|7|sub|8|0|sub|mult
-9|8|add|7|0|sub|sub
-9|7|sub|8|0|sub|add
-9|7|sub|8|0|add|mult
-9|7|sub|8|0|add|sub
-9|7|sub|8|0|add|add
-9|7|sub|7|6|mult|mult
-9|7|sub|7|6|sub|mult
-9|7|sub|7|6|sub|sub
-9|7|sub|7|6|add|mult
-9|7|sub|7|6|add|sub
-9|7|sub|7|5|mult|mult
-9|7|sub|8|1|add|mult
-9|7|sub|8|1|add|sub
-9|8|mult|7|1|mult|mult
-9|8|mult|7|4|mult|add
-9|8|mult|7|4|sub|mult
-9|8|mult|7|4|add|mult
-9|8|mult|7|3|mult|mult
-9|8|mult|7|3|mult|sub
-9|8|mult|7|3|mult|add
-9|8|mult|7|3|sub|mult
-9|8|mult|7|3|add|mult
-9|8|mult|7|2|mult|mult
-9|8|mult|7|2|mult|sub
-9|8|mult|7|2|mult|add
-9|8|mult|7|2|sub|mult
-9|8|mult|8|4|sub|mult
-9|8|mult|7|4|mult|sub
-9|8|mult|7|1|mult|sub
-9|8|mult|7|1|mult|add
-9|8|mult|7|1|sub|mult
-9|8|mult|7|1|add|mult
-9|8|mult|7|cbrt|mult
-9|8|mult|7|cb|mult
-9|8|mult|7|sq|mult
-9|8|mult|7|sq|sub
-9|8|mult|7|sq|add
-9|8|mult|7|0|mult|mult
-9|8|mult|7|0|mult|sub
-9|8|mult|7|0|mult|add
-9|8|mult|9|3|mult|sub
-9|8|mult|9|6|mult|add
-9|8|mult|9|6|sub|mult
-9|8|mult|9|6|add|mult
-9|8|mult|9|2|add|mult
-9|8|mult|9|5|sub|mult
-9|8|mult|9|5|add|mult
-9|8|mult|9|4|mult|mult
-9|8|mult|9|4|mult|sub
-9|8|mult|9|4|mult|add
-9|8|mult|9|4|sub|mult
-9|8|mult|9|4|add|mult
-9|8|mult|9|3|mult|mult
-9|8|mult|7|0|sub|mult
-9|8|mult|9|3|mult|add
-9|8|mult|9|3|sub|mult
-9|8|mult|9|3|add|mult
-9|8|mult|9|2|mult|mult
-9|8|mult|9|2|mult|sub
-9|8|mult|9|2|mult|add
-9|8|mult|9|2|sub|mult
-9|8|mult|9|5|mult|mult
-9|8|mult|9|5|mult|sub
-9|8|mult|9|5|mult|add
-9|8|mult|7|5|add|mult
-9|8|mult|7|4|mult|mult
-9|8|mult|7|5|mult|add
-9|8|mult|8|0|mult|mult
-9|8|mult|8|0|mult|sub
-9|8|mult|8|0|mult|add
-9|8|mult|8|0|sub|mult
-9|8|mult|8|0|add|mult
-9|8|mult|7|6|mult|mult
-9|8|mult|7|6|mult|sub
-9|8|mult|7|6|mult|add
-9|8|mult|7|6|sub|mult
-9|8|mult|7|6|add|mult
-9|8|mult|7|5|mult|mult
-9|8|mult|7|5|mult|sub
-9|8|mult|8|sq|add
-9|8|mult|8|1|add|mult
-9|8|mult|9|mult
-9|8|mult|8|mult
-9|8|mult|7|mult
-9|8|mult|6|mult
-9|8|mult|5|mult
-9|8|mult|4|mult
-9|8|mult|3|mult
-9|8|mult|2|mult
-9|8|mult|1|mult
-9|8|mult|cbrt
-9|8|mult|cb
-9|8|mult|8|2|mult|sub
-9|8|mult|7|0|add|mult
-9|8|mult|6|5|mult|mult
-9|8|mult|6|5|mult|sub
-9|8|mult|6|5|mult|add
-9|8|mult|7|2|add|mult
-9|8|mult|8|4|add|mult
-9|8|mult|8|3|mult|mult
-9|8|mult|8|3|mult|sub
-9|8|mult|8|3|mult|add
-9|8|mult|8|3|sub|mult
-9|8|mult|8|3|add|mult
-9|8|mult|8|2|mult|mult
-9|8|mult|9|6|mult|sub
-9|8|mult|8|2|mult|add
-9|8|mult|8|2|sub|mult
-9|8|mult|8|2|add|mult
-9|8|mult|8|1|mult|mult
-9|8|mult|8|1|mult|sub
-9|8|mult|8|1|mult|add
-9|8|mult|8|1|sub|mult
-9|8|mult|7|5|sub|mult
-9|8|mult|8|cbrt|mult
-9|8|mult|8|cb|mult
-9|8|mult|8|sq|mult
-9|8|mult|8|sq|sub
-8|7|mult|7|0|mult|mult
-8|7|mult|7|2|sub|mult
-8|7|mult|8|4|sub|mult
-8|7|mult|7|1|mult|mult
-8|7|mult|7|1|mult|sub
-8|7|mult|7|1|mult|add
-8|7|mult|7|1|sub|mult
-8|7|mult|7|1|add|mult
-8|7|mult|7|cbrt|mult
-8|7|mult|7|cb|mult
-8|7|mult|7|sq|mult
-8|7|mult|7|sq|sub
-8|7|mult|7|sq|add
-8|7|mult|7|2|mult|add
-8|7|mult|7|0|mult|sub
-8|7|mult|7|0|mult|add
-8|7|mult|7|0|sub|mult
-8|7|mult|7|0|add|mult
-8|7|mult|6|5|mult|mult
-8|7|mult|6|5|mult|sub
-8|7|mult|6|5|mult|add
-8|7|mult|7|2|add|mult
-8|7|mult|8|4|add|mult
-8|7|mult|8|3|mult|mult
-8|7|mult|8|3|mult|sub
-8|7|mult|8|3|mult|add
-8|7|mult|7|5|add|mult
-8|7|mult|9|3|mult|mult
-8|7|mult|9|3|mult|sub
-8|7|mult|9|3|mult|add
-8|7|mult|9|3|sub|mult
-8|7|mult|9|3|add|mult
-8|7|mult|9|2|mult|mult
-8|7|mult|9|2|mult|sub
-8|7|mult|9|2|mult|add
-8|7|mult|9|2|sub|mult
-8|7|mult|9|5|mult|mult
-8|7|mult|9|5|mult|sub
-8|7|mult|9|5|mult|add
-8|7|mult|8|3|sub|mult
-8|7|mult|7|4|mult|mult
-8|7|mult|7|4|mult|sub
-8|7|mult|7|4|mult|add
-8|7|mult|7|4|sub|mult
-8|7|mult|7|4|add|mult
-8|7|mult|7|3|mult|mult
-8|7|mult|7|3|mult|sub
-8|7|mult|7|3|mult|add
-8|7|mult|7|3|sub|mult
-8|7|mult|7|3|add|mult
-8|7|mult|7|2|mult|mult
-8|7|mult|7|2|mult|sub
-8|7|mult|1|mult
-8|7|mult|7|5|mult|mult
-8|7|mult|7|5|mult|sub
-8|7|mult|7|5|mult|add
-8|7|mult|8|1|add|mult
-8|7|mult|9|mult
-8|7|mult|8|mult
-8|7|mult|7|mult
-8|7|mult|6|mult
-8|7|mult|5|mult
-8|7|mult|4|mult
-8|7|mult|3|mult
-8|7|mult|2|mult
-8|7|mult|7|6|add|mult
-8|7|mult|cbrt
-8|7|mult|cb
-8|7|mult|sq
-8|7|mult|0|mult
-9|8|mult|9|8|sub|mult
-9|8|mult|9|8|add|mult
-9|8|mult|9|7|mult|mult
-9|8|mult|9|7|mult|sub
-9|8|mult|9|7|mult|add
-9|8|mult|9|7|sub|mult
-9|8|mult|9|7|add|mult
-9|8|mult|9|6|mult|mult
-8|7|mult|8|cb|mult
-8|7|mult|8|3|add|mult
-8|7|mult|8|2|mult|mult
-8|7|mult|8|2|mult|sub
-8|7|mult|8|2|mult|add
-8|7|mult|8|2|sub|mult
-8|7|mult|8|2|add|mult
-8|7|mult|8|1|mult|mult
-8|7|mult|8|1|mult|sub
-8|7|mult|8|1|mult|add
-8|7|mult|8|1|sub|mult
-8|7|mult|7|5|sub|mult
-8|7|mult|8|cbrt|mult
-9|8|mult|sq
-8|7|mult|8|sq|mult
-8|7|mult|8|sq|sub
-8|7|mult|8|sq|add
-8|7|mult|8|0|mult|mult
-8|7|mult|8|0|mult|sub
-8|7|mult|8|0|mult|add
-8|7|mult|8|0|sub|mult
-8|7|mult|8|0|add|mult
-8|7|mult|7|6|mult|mult
-8|7|mult|7|6|mult|sub
-8|7|mult|7|6|mult|add
-8|7|mult|7|6|sub|mult
-9|8|add|9|7|mult|mult
-9|8|sub|3|add
-9|8|sub|2|mult
-9|8|sub|2|sub
-9|8|sub|2|add
-9|8|sub|1|mult
-9|8|sub|1|sub
-9|8|sub|1|add
-9|8|sub|cbrt
-9|8|sub|cb
-9|8|sub|sq
-9|8|sub|0|mult
-9|8|sub|0|sub
-9|8|sub|0|add
-9|8|sub|3|sub
-9|8|add|9|7|sub|mult
-9|8|add|9|7|sub|add
-9|8|add|9|7|add|mult
-9|8|add|9|7|add|add
-9|8|add|9|6|mult|mult
-9|8|add|9|6|sub|mult
-9|8|add|9|6|sub|add
-9|8|add|9|6|add|mult
-9|8|add|9|6|add|add
-9|8|add|9|2|add|mult
-9|8|add|9|2|add|add
-9|8|add|9|5|sub|mult
-9|8|sub|7|mult
-9|8|sub|7|6|sub|sub
-9|8|sub|7|6|sub|add
-9|8|sub|7|6|add|mult
-9|8|sub|7|6|add|sub
-9|8|sub|7|6|add|add
-9|8|sub|7|5|mult|mult
-9|8|sub|8|1|add|mult
-9|8|sub|8|1|add|sub
-9|8|sub|9|mult
-9|8|sub|9|add
-9|8|sub|8|mult
-9|8|sub|8|sub
-9|8|add|9|5|sub|add
-9|8|sub|7|sub
-9|8|sub|7|add
-9|8|sub|6|mult
-9|8|sub|6|sub
-9|8|sub|6|add
-9|8|sub|5|mult
-9|8|sub|5|sub
-9|8|sub|5|add
-9|8|sub|4|mult
-9|8|sub|4|sub
-9|8|sub|4|add
-9|8|sub|3|mult
-9|8|add|8|4|sub|add
-9|8|add|7|3|mult|mult
-9|8|add|7|3|sub|mult
-9|8|add|7|3|sub|sub
-9|8|add|7|3|sub|add
-9|8|add|7|3|add|mult
-9|8|add|7|3|add|sub
-9|8|add|7|3|add|add
-9|8|add|7|2|mult|mult
-9|8|add|7|2|sub|mult
-9|8|add|7|2|sub|sub
-9|8|add|7|2|sub|add
-9|8|add|8|4|sub|mult
-9|8|add|7|4|add|add
-9|8|add|7|1|mult|mult
-9|8|add|7|1|sub|mult
-9|8|add|7|1|sub|sub
-9|8|add|7|1|sub|add
-9|8|add|7|1|add|mult
-9|8|add|7|1|add|sub
-9|8|add|7|1|add|add
-9|8|add|7|cbrt|mult
-9|8|add|7|cb|mult
-9|8|add|7|sq|mult
-9|8|add|7|0|mult|mult
-9|8|add|7|0|sub|mult
-9|8|add|9|2|mult|mult
-9|8|add|9|5|add|mult
-9|8|add|9|5|add|add
-9|8|add|9|4|mult|mult
-9|8|add|9|4|sub|mult
-9|8|add|9|4|sub|add
-9|8|add|9|4|add|mult
-9|8|add|9|4|add|add
-9|8|add|9|3|mult|mult
-9|8|add|9|3|sub|mult
-9|8|add|9|3|sub|add
-9|8|add|9|3|add|mult
-9|8|add|9|3|add|add
-9|8|sub|7|6|sub|mult
-9|8|add|9|2|sub|mult
-9|8|add|9|2|sub|add
-9|8|add|9|5|mult|mult
-9|8|add|7|5|add|mult
-9|8|add|7|5|add|sub
-9|8|add|7|5|add|add
-9|8|add|7|4|mult|mult
-9|8|add|7|4|sub|mult
-9|8|add|7|4|sub|sub
-9|8|add|7|4|sub|add
-9|8|add|7|4|add|mult
-9|8|add|7|4|add|sub
-9|8|sub|7|4|sub|add
-9|8|sub|9|3|add|mult
-9|8|sub|9|3|add|add
-9|8|sub|9|2|mult|mult
-9|8|sub|9|2|sub|mult
-9|8|sub|9|2|sub|add
-9|8|sub|9|5|mult|mult
-9|8|sub|7|5|add|mult
-9|8|sub|7|5|add|sub
-9|8|sub|7|5|add|add
-9|8|sub|7|4|mult|mult
-9|8|sub|7|4|sub|mult
-9|8|sub|7|4|sub|sub
-9|8|sub|9|3|sub|add
-9|8|sub|7|4|add|mult
-9|8|sub|7|4|add|sub
-9|8|sub|7|4|add|add
-9|8|sub|7|3|mult|mult
-9|8|sub|7|3|sub|mult
-9|8|sub|7|3|sub|sub
-9|8|sub|7|3|sub|add
-9|8|sub|7|3|add|mult
-9|8|sub|7|3|add|sub
-9|8|sub|7|3|add|add
-9|8|sub|7|2|mult|mult
-9|8|sub|7|2|sub|mult
-9|8|sub|9|2|add|mult
-9|8|mult|0|mult
-9|8|sub|9|8|add|mult
-9|8|sub|9|7|mult|mult
-9|8|sub|9|7|sub|mult
-9|8|sub|9|7|sub|add
-9|8|sub|9|7|add|mult
-9|8|sub|9|7|add|add
-9|8|sub|9|6|mult|mult
-9|8|sub|9|6|sub|mult
-9|8|sub|9|6|sub|add
-9|8|sub|9|6|add|mult
-9|8|sub|9|6|add|add
-9|8|sub|7|2|sub|sub
-9|8|sub|9|2|add|add
-9|8|sub|9|5|sub|mult
-9|8|sub|9|5|sub|add
-9|8|sub|9|5|add|mult
-9|8|sub|9|5|add|add
-9|8|sub|9|4|mult|mult
-9|8|sub|9|4|sub|mult
-9|8|sub|9|4|sub|add
-9|8|sub|9|4|add|mult
-9|8|sub|9|4|add|add
-9|8|sub|9|3|mult|mult
-9|8|sub|9|3|sub|mult
-9|8|sub|8|1|sub|sub
-9|8|sub|8|3|mult|mult
-9|8|sub|8|3|sub|mult
-9|8|sub|8|3|sub|sub
-9|8|sub|8|3|add|mult
-9|8|sub|8|3|add|sub
-9|8|sub|8|2|mult|mult
-9|8|sub|8|2|sub|mult
-9|8|sub|8|2|sub|sub
-9|8|sub|8|2|add|mult
-9|8|sub|8|2|add|sub
-9|8|sub|8|1|mult|mult
-9|8|sub|8|1|sub|mult
-9|8|sub|8|4|add|sub
-9|8|sub|7|5|sub|mult
-9|8|sub|7|5|sub|sub
-9|8|sub|7|5|sub|add
-9|8|sub|8|cbrt|mult
-9|8|sub|8|cb|mult
-9|8|sub|8|sq|mult
-9|8|sub|8|0|mult|mult
-9|8|sub|8|0|sub|mult
-9|8|sub|8|0|sub|sub
-9|8|sub|8|0|add|mult
-9|8|sub|8|0|add|sub
-9|8|sub|7|6|mult|mult
-9|8|sub|7|sq|mult
-9|8|sub|7|2|sub|add
-9|8|sub|8|4|sub|mult
-9|8|sub|8|4|sub|sub
-9|8|sub|7|1|mult|mult
-9|8|sub|7|1|sub|mult
-9|8|sub|7|1|sub|sub
-9|8|sub|7|1|sub|add
-9|8|sub|7|1|add|mult
-9|8|sub|7|1|add|sub
-9|8|sub|7|1|add|add
-9|8|sub|7|cbrt|mult
-9|8|sub|7|cb|mult
-9|7|add|8|1|add|sub
-9|8|sub|7|0|mult|mult
-9|8|sub|7|0|sub|mult
-9|8|sub|7|0|sub|sub
-9|8|sub|7|0|sub|add
-9|8|sub|7|0|add|mult
-9|8|sub|7|0|add|sub
-9|8|sub|7|0|add|add
-9|8|sub|6|5|mult|mult
-9|8|sub|7|2|add|mult
-9|8|sub|7|2|add|sub
-9|8|sub|7|2|add|add
-9|8|sub|8|4|add|mult
-9|5|sub|9|3|add|add
-9|2|add|0|mult
-9|2|add|0|sub
-9|2|add|0|add
-9|5|sub|9|5|add|mult
-9|5|sub|9|4|mult|mult
-9|5|sub|9|4|sub|mult
-9|5|sub|9|4|sub|add
-9|5|sub|9|4|add|mult
-9|5|sub|9|4|add|add
-9|5|sub|9|3|mult|mult
-9|5|sub|9|3|sub|mult
-9|5|sub|9|3|sub|add
-9|5|sub|9|3|add|mult
-9|2|add|sq
-9|5|sub|9|2|mult|mult
-9|5|sub|9|2|sub|mult
-9|5|sub|9|2|sub|add
-9|5|sub|9|5|mult|mult
-9|5|sub|7|5|add|mult
-9|5|sub|7|5|add|sub
-9|5|sub|7|4|mult|mult
-9|5|sub|7|4|sub|mult
-9|5|sub|7|4|sub|sub
-9|5|sub|7|4|sub|add
-9|5|sub|7|4|add|mult
-9|5|sub|7|4|add|sub
-9|2|add|4|mult
-9|2|add|8|mult
-9|2|add|8|sub
-9|2|add|8|add
-9|2|add|7|mult
-9|2|add|7|sub
-9|2|add|7|add
-9|2|add|6|mult
-9|2|add|6|sub
-9|2|add|6|add
-9|2|add|5|mult
-9|2|add|5|sub
-9|2|add|5|add
-9|5|sub|7|4|add|add
-9|2|add|4|sub
-9|2|add|4|add
-9|2|add|3|mult
-9|2|add|3|sub
-9|2|add|3|add
-9|2|add|2|mult
-9|2|add|2|add
-9|2|add|1|mult
-9|2|add|1|sub
-9|2|add|1|add
-9|2|add|cbrt
-9|2|add|cb
-9|5|sub|8|3|mult|mult
-9|5|sub|7|0|sub|sub
-9|5|sub|7|0|sub|add
-9|5|sub|7|0|add|mult
-9|5|sub|7|0|add|sub
-9|5|sub|7|0|add|add
-9|5|sub|6|5|mult|mult
-9|5|sub|7|2|add|mult
-9|5|sub|7|2|add|sub
-9|5|sub|7|2|add|add
-9|5|sub|8|4|add|mult
-9|5|sub|8|4|add|sub
-9|5|sub|8|4|add|add
-9|5|sub|7|0|sub|mult
-9|5|sub|8|3|sub|mult
-9|5|sub|8|3|sub|sub
-9|5|sub|8|3|sub|add
-9|5|sub|8|3|add|mult
-9|5|sub|8|3|add|sub
-9|5|sub|8|3|add|add
-9|5|sub|8|2|mult|mult
-9|5|sub|8|2|sub|mult
-9|5|sub|8|2|sub|sub
-9|5|sub|8|2|sub|add
-9|5|sub|8|2|add|mult
-9|5|sub|8|2|add|sub
-9|5|sub|8|4|sub|sub
-9|5|sub|7|3|mult|mult
-9|5|sub|7|3|sub|mult
-9|5|sub|7|3|sub|sub
-9|5|sub|7|3|sub|add
-9|5|sub|7|3|add|mult
-9|5|sub|7|3|add|sub
-9|5|sub|7|3|add|add
-9|5|sub|7|2|mult|mult
-9|5|sub|7|2|sub|mult
-9|5|sub|7|2|sub|sub
-9|5|sub|7|2|sub|add
-9|5|sub|8|4|sub|mult
-9|2|add|9|add
-9|5|sub|8|4|sub|add
-9|5|sub|7|1|mult|mult
-9|5|sub|7|1|sub|mult
-9|5|sub|7|1|sub|sub
-9|5|sub|7|1|sub|add
-9|5|sub|7|1|add|mult
-9|5|sub|7|1|add|sub
-9|5|sub|7|1|add|add
-9|5|sub|7|cbrt|mult
-9|5|sub|7|cb|mult
-9|5|sub|7|sq|mult
-9|5|sub|7|0|mult|mult
-9|2|add|8|4|sub|add
-9|2|add|7|3|mult|mult
-9|2|add|7|3|sub|mult
-9|2|add|7|3|sub|sub
-9|2|add|7|3|sub|add
-9|2|add|7|3|add|mult
-9|2|add|7|3|add|sub
-9|2|add|7|3|add|add
-9|2|add|7|2|mult|mult
-9|2|add|7|2|sub|mult
-9|2|add|7|2|sub|sub
-9|2|add|8|4|sub|mult
-9|2|add|8|4|sub|sub
-9|2|add|7|4|add|add
-9|2|add|7|1|mult|mult
-9|2|add|7|1|sub|mult
-9|2|add|7|1|sub|sub
-9|2|add|7|1|sub|add
-9|2|add|7|1|add|mult
-9|2|add|7|1|add|sub
-9|2|add|7|1|add|add
-9|2|add|7|cbrt|mult
-9|2|add|7|cb|mult
-9|2|add|7|sq|mult
-9|2|add|7|0|mult|mult
-9|2|add|7|0|sub|mult
-9|2|add|9|3|add|add
-9|2|add|9|5|sub|add
-9|2|add|9|5|add|mult
-9|2|add|9|5|add|add
-9|2|add|9|4|mult|mult
-9|2|add|9|4|sub|mult
-9|2|add|9|4|sub|add
-9|2|add|9|4|add|mult
-9|2|add|9|4|add|add
-9|2|add|9|3|mult|mult
-9|2|add|9|3|sub|mult
-9|2|add|9|3|sub|add
-9|2|add|9|3|add|mult
-9|2|add|7|0|sub|sub
-9|2|add|9|2|mult|mult
-9|2|add|9|2|sub|mult
-9|2|add|9|5|mult|mult
-9|2|add|7|5|add|mult
-9|2|add|7|5|add|sub
-9|2|add|7|5|add|add
-9|2|add|7|4|mult|mult
-9|2|add|7|4|sub|mult
-9|2|add|7|4|sub|sub
-9|2|add|7|4|sub|add
-9|2|add|7|4|add|mult
-9|2|add|7|4|add|sub
-9|2|add|8|0|add|add
-9|2|add|7|5|sub|mult
-9|2|add|7|5|sub|sub
-9|2|add|7|5|sub|add
-9|2|add|8|cbrt|mult
-9|2|add|8|cb|mult
-9|2|add|8|sq|mult
-9|2|add|8|0|mult|mult
-9|2|add|8|0|sub|mult
-9|2|add|8|0|sub|sub
-9|2|add|8|0|sub|add
-9|2|add|8|0|add|mult
-9|2|add|8|0|add|sub
-9|2|add|8|1|sub|add
-9|2|add|7|6|mult|mult
-9|2|add|7|6|sub|mult
-9|2|add|7|6|sub|sub
-9|2|add|7|6|sub|add
-9|2|add|7|6|add|mult
-9|2|add|7|6|add|sub
-9|2|add|7|6|add|add
-9|2|add|7|5|mult|mult
-9|2|add|8|1|add|mult
-9|2|add|8|1|add|sub
-9|2|add|8|1|add|add
-9|2|add|9|mult
-9|2|add|8|3|sub|sub
-9|2|add|7|0|sub|add
-9|2|add|7|0|add|mult
-9|2|add|7|0|add|sub
-9|2|add|7|0|add|add
-9|2|add|6|5|mult|mult
-9|2|add|7|2|add|mult
-9|2|add|7|2|add|add
-9|2|add|8|4|add|mult
-9|2|add|8|4|add|sub
-9|2|add|8|4|add|add
-9|2|add|8|3|mult|mult
-9|2|add|8|3|sub|mult
-9|5|sub|8|2|add|add
-9|2|add|8|3|sub|add
-9|2|add|8|3|add|mult
-9|2|add|8|3|add|sub
-9|2|add|8|3|add|add
-9|2|add|8|2|mult|mult
-9|2|add|8|2|sub|mult
-9|2|add|8|2|sub|sub
-9|2|add|8|2|add|mult
-9|2|add|8|2|add|add
-9|2|add|8|1|mult|mult
-9|2|add|8|1|sub|mult
-9|2|add|8|1|sub|sub
-9|5|add|8|0|sub|mult
-9|5|add|8|2|add|mult
-9|5|add|8|2|add|sub
-9|5|add|8|2|add|add
-9|5|add|8|1|mult|mult
-9|5|add|8|1|sub|mult
-9|5|add|8|1|sub|sub
-9|5|add|8|1|sub|add
-9|5|add|7|5|sub|mult
-9|5|add|7|5|sub|sub
-9|5|add|8|cbrt|mult
-9|5|add|8|cb|mult
-9|5|add|8|sq|mult
-9|5|add|8|0|mult|mult
-9|5|add|8|2|sub|add
-9|5|add|8|0|sub|sub
-9|5|add|8|0|sub|add
-9|5|add|8|0|add|mult
-9|5|add|8|0|add|sub
-9|5|add|8|0|add|add
-9|5|add|7|6|mult|mult
-9|5|add|7|6|sub|mult
-9|5|add|7|6|sub|sub
-9|5|add|7|6|sub|add
-9|5|add|7|6|add|mult
-9|5|add|7|6|add|sub
-9|5|add|7|6|add|add
-9|5|add|8|4|add|mult
-9|5|add|7|sq|mult
-9|5|add|7|0|mult|mult
-9|5|add|7|0|sub|mult
-9|5|add|7|0|sub|sub
-9|5|add|7|0|sub|add
-9|5|add|7|0|add|mult
-9|5|add|7|0|add|sub
-9|5|add|7|0|add|add
-9|5|add|6|5|mult|mult
-9|5|add|7|2|add|mult
-9|5|add|7|2|add|sub
-9|5|add|7|2|add|add
-9|5|add|7|5|mult|mult
-9|5|add|8|4|add|sub
-9|5|add|8|4|add|add
-9|5|add|8|3|mult|mult
-9|5|add|8|3|sub|mult
-9|5|add|8|3|sub|sub
-9|5|add|8|3|sub|add
-9|5|add|8|3|add|mult
-9|5|add|8|3|add|sub
-9|5|add|8|3|add|add
-9|5|add|8|2|mult|mult
-9|5|add|8|2|sub|mult
-9|5|add|8|2|sub|sub
-9|4|mult|9|3|mult|add
-9|5|add|1|sub
-9|5|add|1|add
-9|5|add|cbrt
-9|5|add|cb
-9|5|add|sq
-9|5|add|0|mult
-9|5|add|0|sub
-9|5|add|0|add
-9|4|mult|9|4|sub|mult
-9|4|mult|9|4|add|mult
-9|4|mult|9|3|mult|mult
-9|4|mult|9|3|mult|sub
-9|5|add|1|mult
-9|4|mult|9|3|sub|mult
-9|4|mult|9|3|add|mult
-9|4|mult|9|2|mult|mult
-9|4|mult|9|2|mult|sub
-9|4|mult|9|2|mult|add
-9|4|mult|9|2|sub|mult
-9|4|mult|9|5|mult|mult
-9|4|mult|9|5|mult|sub
-9|4|mult|9|5|mult|add
-9|4|mult|7|5|add|mult
-9|4|mult|7|4|mult|mult
-9|4|mult|7|4|mult|sub
-9|5|add|6|sub
-9|5|add|8|1|add|mult
-9|5|add|8|1|add|sub
-9|5|add|8|1|add|add
-9|5|add|9|mult
-9|5|add|9|add
-9|5|add|8|mult
-9|5|add|8|sub
-9|5|add|8|add
-9|5|add|7|mult
-9|5|add|7|sub
-9|5|add|7|add
-9|5|add|6|mult
-9|5|add|7|cb|mult
-9|5|add|6|add
-9|5|add|5|mult
-9|5|add|5|add
-9|5|add|4|mult
-9|5|add|4|sub
-9|5|add|4|add
-9|5|add|3|mult
-9|5|add|3|sub
-9|5|add|3|add
-9|5|add|2|mult
-9|5|add|2|sub
-9|5|add|2|add
-9|5|sub|5|mult
-9|5|sub|8|1|add|add
-9|5|sub|9|mult
-9|5|sub|9|add
-9|5|sub|8|mult
-9|5|sub|8|sub
-9|5|sub|8|add
-9|5|sub|7|mult
-9|5|sub|7|sub
-9|5|sub|7|add
-9|5|sub|6|mult
-9|5|sub|6|sub
-9|5|sub|6|add
-9|5|sub|8|1|add|sub
-9|5|sub|5|sub
-9|5|sub|4|mult
-9|5|sub|4|sub
-9|5|sub|4|add
-9|5|sub|3|mult
-9|5|sub|3|sub
-9|5|sub|3|add
-9|5|sub|2|mult
-9|5|sub|2|sub
-9|5|sub|2|add
-9|5|sub|1|mult
-9|5|sub|1|sub
-9|5|sub|8|0|sub|add
-9|5|sub|8|1|mult|mult
-9|5|sub|8|1|sub|mult
-9|5|sub|8|1|sub|sub
-9|5|sub|8|1|sub|add
-9|5|sub|7|5|sub|mult
-9|5|sub|7|5|sub|add
-9|5|sub|8|cbrt|mult
-9|5|sub|8|cb|mult
-9|5|sub|8|sq|mult
-9|5|sub|8|0|mult|mult
-9|5|sub|8|0|sub|mult
-9|5|sub|8|0|sub|sub
-9|5|sub|1|add
-9|5|sub|8|0|add|mult
-9|5|sub|8|0|add|sub
-9|5|sub|8|0|add|add
-9|5|sub|7|6|mult|mult
-9|5|sub|7|6|sub|mult
-9|5|sub|7|6|sub|sub
-9|5|sub|7|6|sub|add
-9|5|sub|7|6|add|mult
-9|5|sub|7|6|add|sub
-9|5|sub|7|6|add|add
-9|5|sub|7|5|mult|mult
-9|5|sub|8|1|add|mult
-9|5|add|7|2|sub|sub
-9|5|add|7|4|add|mult
-9|5|add|7|4|add|sub
-9|5|add|7|4|add|add
-9|5|add|7|3|mult|mult
-9|5|add|7|3|sub|mult
-9|5|add|7|3|sub|sub
-9|5|add|7|3|sub|add
-9|5|add|7|3|add|mult
-9|5|add|7|3|add|sub
-9|5|add|7|3|add|add
-9|5|add|7|2|mult|mult
-9|5|add|7|2|sub|mult
-9|5|add|7|4|sub|add
-9|5|add|7|2|sub|add
-9|5|add|8|4|sub|mult
-9|5|add|8|4|sub|sub
-9|5|add|8|4|sub|add
-9|5|add|7|1|mult|mult
-9|5|add|7|1|sub|mult
-9|5|add|7|1|sub|sub
-9|5|add|7|1|sub|add
-9|5|add|7|1|add|mult
-9|5|add|7|1|add|sub
-9|5|add|7|1|add|add
-9|5|add|7|cbrt|mult
-9|5|add|9|3|sub|mult
-9|5|sub|cbrt
-9|5|sub|cb
-9|5|sub|sq
-9|5|sub|0|mult
-9|5|sub|0|sub
-9|5|sub|0|add
-9|5|add|9|4|mult|mult
-9|5|add|9|4|sub|mult
-9|5|add|9|4|sub|add
-9|5|add|9|4|add|mult
-9|5|add|9|4|add|add
-9|5|add|9|3|mult|mult
-9|2|add|9|5|sub|mult
-9|5|add|9|3|sub|add
-9|5|add|9|3|add|mult
-9|5|add|9|3|add|add
-9|5|add|9|2|mult|mult
-9|5|add|9|2|sub|mult
-9|5|add|9|2|sub|add
-9|5|add|9|5|mult|mult
-9|5|add|7|5|add|mult
-9|5|add|7|5|add|add
-9|5|add|7|4|mult|mult
-9|5|add|7|4|sub|mult
-9|5|add|7|4|sub|sub
-9|6|sub|9|5|add|add
-9|6|mult|3|mult
-9|6|mult|2|mult
-9|6|mult|1|mult
-9|6|mult|cbrt
-9|6|mult|cb
-9|6|mult|sq
-9|6|mult|0|mult
-9|6|sub|9|6|add|mult
-9|6|sub|9|2|add|mult
-9|6|sub|9|2|add|add
-9|6|sub|9|5|sub|mult
-9|6|sub|9|5|sub|add
-9|6|sub|9|5|add|mult
-9|6|mult|4|mult
-9|6|sub|9|4|mult|mult
-9|6|sub|9|4|sub|mult
-9|6|sub|9|4|sub|add
-9|6|sub|9|4|add|mult
-9|6|sub|9|4|add|add
-9|6|sub|9|3|mult|mult
-9|6|sub|9|3|sub|mult
-9|6|sub|9|3|sub|add
-9|6|sub|9|3|add|mult
-9|6|sub|9|3|add|add
-9|6|sub|9|2|mult|mult
-9|6|sub|9|2|sub|mult
-9|6|mult|7|6|mult|sub
-9|6|mult|7|5|sub|mult
-9|6|mult|8|cbrt|mult
-9|6|mult|8|cb|mult
-9|6|mult|8|sq|mult
-9|6|mult|8|sq|sub
-9|6|mult|8|sq|add
-9|6|mult|8|0|mult|mult
-9|6|mult|8|0|mult|sub
-9|6|mult|8|0|mult|add
-9|6|mult|8|0|sub|mult
-9|6|mult|8|0|add|mult
-9|6|mult|7|6|mult|mult
-9|6|sub|9|2|sub|add
-9|6|mult|7|6|mult|add
-9|6|mult|7|6|sub|mult
-9|6|mult|7|6|add|mult
-9|6|mult|7|5|mult|mult
-9|6|mult|7|5|mult|sub
-9|6|mult|7|5|mult|add
-9|6|mult|8|1|add|mult
-9|6|mult|9|mult
-9|6|mult|8|mult
-9|6|mult|7|mult
-9|6|mult|6|mult
-9|6|mult|5|mult
-9|6|sub|7|0|sub|add
-9|6|sub|7|1|sub|mult
-9|6|sub|7|1|sub|sub
-9|6|sub|7|1|sub|add
-9|6|sub|7|1|add|mult
-9|6|sub|7|1|add|sub
-9|6|sub|7|1|add|add
-9|6|sub|7|cbrt|mult
-9|6|sub|7|cb|mult
-9|6|sub|7|sq|mult
-9|6|sub|7|0|mult|mult
-9|6|sub|7|0|sub|mult
-9|6|sub|7|0|sub|sub
-9|6|sub|7|1|mult|mult
-9|6|sub|7|0|add|mult
-9|6|sub|7|0|add|sub
-9|6|sub|7|0|add|add
-9|6|sub|6|5|mult|mult
-9|6|sub|7|2|add|mult
-9|6|sub|7|2|add|sub
-9|6|sub|7|2|add|add
-9|6|sub|8|4|add|mult
-9|6|sub|8|4|add|sub
-9|6|sub|8|4|add|add
-9|6|sub|8|3|mult|mult
-9|6|sub|8|3|sub|mult
-9|6|sub|7|3|sub|mult
-9|6|sub|9|5|mult|mult
-9|6|sub|7|5|add|mult
-9|6|sub|7|5|add|sub
-9|6|sub|7|5|add|add
-9|6|sub|7|4|mult|mult
-9|6|sub|7|4|sub|mult
-9|6|sub|7|4|sub|sub
-9|6|sub|7|4|sub|add
-9|6|sub|7|4|add|mult
-9|6|sub|7|4|add|sub
-9|6|sub|7|4|add|add
-9|6|sub|7|3|mult|mult
-9|6|mult|8|1|sub|mult
-9|6|sub|7|3|sub|sub
-9|6|sub|7|3|sub|add
-9|6|sub|7|3|add|mult
-9|6|sub|7|3|add|sub
-9|6|sub|7|3|add|add
-9|6|sub|7|2|mult|mult
-9|6|sub|7|2|sub|mult
-9|6|sub|7|2|sub|sub
-9|6|sub|7|2|sub|add
-9|6|sub|8|4|sub|mult
-9|6|sub|8|4|sub|sub
-9|6|sub|8|4|sub|add
-9|6|mult|9|4|mult|sub
-9|7|add|cbrt
-9|7|add|cb
-9|7|add|sq
-9|7|add|0|mult
-9|7|add|0|sub
-9|7|add|0|add
-9|6|mult|9|6|sub|mult
-9|6|mult|9|6|add|mult
-9|6|mult|9|2|add|mult
-9|6|mult|9|5|sub|mult
-9|6|mult|9|5|add|mult
-9|6|mult|9|4|mult|mult
-9|7|add|1|add
-9|6|mult|9|4|mult|add
-9|6|mult|9|4|sub|mult
-9|6|mult|9|4|add|mult
-9|6|mult|9|3|mult|mult
-9|6|mult|9|3|mult|sub
-9|6|mult|9|3|mult|add
-9|6|mult|9|3|sub|mult
-9|6|mult|9|3|add|mult
-9|6|mult|9|2|mult|mult
-9|6|mult|9|2|mult|sub
-9|6|mult|9|2|mult|add
-9|6|mult|9|2|sub|mult
-9|7|add|5|sub
-9|7|add|8|1|add|add
-9|7|add|9|mult
-9|7|add|9|add
-9|7|add|8|mult
-9|7|add|8|sub
-9|7|add|8|add
-9|7|add|7|mult
-9|7|add|7|add
-9|7|add|6|mult
-9|7|add|6|sub
-9|7|add|6|add
-9|7|add|5|mult
-9|6|mult|9|5|mult|mult
-9|7|add|5|add
-9|7|add|4|mult
-9|7|add|4|sub
-9|7|add|4|add
-9|7|add|3|mult
-9|7|add|3|sub
-9|7|add|3|add
-9|7|add|2|mult
-9|7|add|2|sub
-9|7|add|2|add
-9|7|add|1|mult
-9|7|add|1|sub
-9|6|mult|8|3|mult|mult
-9|6|mult|7|sq|sub
-9|6|mult|7|sq|add
-9|6|mult|7|0|mult|mult
-9|6|mult|7|0|mult|sub
-9|6|mult|7|0|mult|add
-9|6|mult|7|0|sub|mult
-9|6|mult|7|0|add|mult
-9|6|mult|6|5|mult|mult
-9|6|mult|6|5|mult|sub
-9|6|mult|6|5|mult|add
-9|6|mult|7|2|add|mult
-9|6|mult|8|4|add|mult
-9|6|mult|7|sq|mult
-9|6|mult|8|3|mult|sub
-9|6|mult|8|3|mult|add
-9|6|mult|8|3|sub|mult
-9|6|mult|8|3|add|mult
-9|6|mult|8|2|mult|mult
-9|6|mult|8|2|mult|sub
-9|6|mult|8|2|mult|add
-9|6|mult|8|2|sub|mult
-9|6|mult|8|2|add|mult
-9|6|mult|8|1|mult|mult
-9|6|mult|8|1|mult|sub
-9|6|mult|8|1|mult|add
-9|6|mult|7|3|add|mult
-9|6|mult|9|5|mult|sub
-9|6|mult|9|5|mult|add
-9|6|mult|7|5|add|mult
-9|6|mult|7|4|mult|mult
-9|6|mult|7|4|mult|sub
-9|6|mult|7|4|mult|add
-9|6|mult|7|4|sub|mult
-9|6|mult|7|4|add|mult
-9|6|mult|7|3|mult|mult
-9|6|mult|7|3|mult|sub
-9|6|mult|7|3|mult|add
-9|6|mult|7|3|sub|mult
-9|6|sub|8|3|sub|sub
-9|6|mult|7|2|mult|mult
-9|6|mult|7|2|mult|sub
-9|6|mult|7|2|mult|add
-9|6|mult|7|2|sub|mult
-9|6|mult|8|4|sub|mult
-9|6|mult|7|1|mult|mult
-9|6|mult|7|1|mult|sub
-9|6|mult|7|1|mult|add
-9|6|mult|7|1|sub|mult
-9|6|mult|7|1|add|mult
-9|6|mult|7|cbrt|mult
-9|6|mult|7|cb|mult
-9|6|add|8|3|add|add
-9|6|add|7|2|add|mult
-9|6|add|7|2|add|sub
-9|6|add|7|2|add|add
-9|6|add|8|4|add|mult
-9|6|add|8|4|add|sub
-9|6|add|8|4|add|add
-9|6|add|8|3|mult|mult
-9|6|add|8|3|sub|mult
-9|6|add|8|3|sub|sub
-9|6|add|8|3|sub|add
-9|6|add|8|3|add|mult
-9|6|add|8|3|add|sub
-9|6|add|6|5|mult|mult
-9|6|add|8|2|mult|mult
-9|6|add|8|2|sub|mult
-9|6|add|8|2|sub|sub
-9|6|add|8|2|sub|add
-9|6|add|8|2|add|mult
-9|6|add|8|2|add|sub
-9|6|add|8|2|add|add
-9|6|add|8|1|mult|mult
-9|6|add|8|1|sub|mult
-9|6|add|8|1|sub|sub
-9|6|add|8|1|sub|add
-9|6|add|7|5|sub|mult
-9|6|add|7|1|add|mult
-9|6|add|7|3|add|add
-9|6|add|7|2|mult|mult
-9|6|add|7|2|sub|mult
-9|6|add|7|2|sub|sub
-9|6|add|7|2|sub|add
-9|6|add|8|4|sub|mult
-9|6|add|8|4|sub|sub
-9|6|add|8|4|sub|add
-9|6|add|7|1|mult|mult
-9|6|add|7|1|sub|mult
-9|6|add|7|1|sub|sub
-9|6|add|7|1|sub|add
-9|6|add|7|5|sub|sub
-9|6|add|7|1|add|sub
-9|6|add|7|1|add|add
-9|6|add|7|cbrt|mult
-9|6|add|7|cb|mult
-9|6|add|7|sq|mult
-9|6|add|7|0|mult|mult
-9|6|add|7|0|sub|mult
-9|6|add|7|0|sub|sub
-9|6|add|7|0|sub|add
-9|6|add|7|0|add|mult
-9|6|add|7|0|add|sub
-9|6|add|7|0|add|add
-9|6|add|3|add
-9|6|add|7|sub
-9|6|add|7|add
-9|6|add|6|mult
-9|6|add|6|add
-9|6|add|5|mult
-9|6|add|5|sub
-9|6|add|5|add
-9|6|add|4|mult
-9|6|add|4|sub
-9|6|add|4|add
-9|6|add|3|mult
-9|6|add|3|sub
-9|6|add|7|mult
-9|6|add|2|mult
-9|6|add|2|sub
-9|6|add|2|add
-9|6|add|1|mult
-9|6|add|1|sub
-9|6|add|1|add
-9|6|add|cbrt
-9|6|add|cb
-9|6|add|sq
-9|6|add|0|mult
-9|6|add|0|sub
-9|6|add|0|add
-9|6|add|7|6|sub|mult
-9|6|add|7|5|sub|add
-9|6|add|8|cbrt|mult
-9|6|add|8|cb|mult
-9|6|add|8|sq|mult
-9|6|add|8|0|mult|mult
-9|6|add|8|0|sub|mult
-9|6|add|8|0|sub|sub
-9|6|add|8|0|sub|add
-9|6|add|8|0|add|mult
-9|6|add|8|0|add|sub
-9|6|add|8|0|add|add
-9|6|add|7|6|mult|mult
-9|6|add|7|3|add|sub
-9|6|add|7|6|sub|sub
-9|6|add|7|6|add|mult
-9|6|add|7|6|add|add
-9|6|add|7|5|mult|mult
-9|6|add|8|1|add|mult
-9|6|add|8|1|add|sub
-9|6|add|8|1|add|add
-9|6|add|9|mult
-9|6|add|9|add
-9|6|add|8|mult
-9|6|add|8|sub
-9|6|add|8|add
-9|6|sub|9|add
-9|6|sub|8|0|add|sub
-9|6|sub|8|0|add|add
-9|6|sub|7|6|mult|mult
-9|6|sub|7|6|sub|mult
-9|6|sub|7|6|sub|add
-9|6|sub|7|6|add|mult
-9|6|sub|7|6|add|sub
-9|6|sub|7|5|mult|mult
-9|6|sub|8|1|add|mult
-9|6|sub|8|1|add|sub
-9|6|sub|8|1|add|add
-9|6|sub|9|mult
-9|6|sub|8|0|add|mult
-9|6|sub|8|mult
-9|6|sub|8|sub
-9|6|sub|8|add
-9|6|sub|7|mult
-9|6|sub|7|sub
-9|6|sub|7|add
-9|6|sub|6|mult
-9|6|sub|6|sub
-9|6|sub|5|mult
-9|6|sub|5|sub
-9|6|sub|5|add
-9|6|sub|4|mult
-9|6|sub|8|1|sub|mult
-9|6|sub|8|3|sub|add
-9|6|sub|8|3|add|mult
-9|6|sub|8|3|add|sub
-9|6|sub|8|3|add|add
-9|6|sub|8|2|mult|mult
-9|6|sub|8|2|sub|mult
-9|6|sub|8|2|sub|sub
-9|6|sub|8|2|sub|add
-9|6|sub|8|2|add|mult
-9|6|sub|8|2|add|sub
-9|6|sub|8|2|add|add
-9|6|sub|8|1|mult|mult
-9|6|sub|4|sub
-9|6|sub|8|1|sub|sub
-9|6|sub|8|1|sub|add
-9|6|sub|7|5|sub|mult
-9|6|sub|7|5|sub|sub
-9|6|sub|7|5|sub|add
-9|6|sub|8|cbrt|mult
-9|6|sub|8|cb|mult
-9|6|sub|8|sq|mult
-9|6|sub|8|0|mult|mult
-9|6|sub|8|0|sub|mult
-9|6|sub|8|0|sub|sub
-9|6|sub|8|0|sub|add
-9|6|add|7|5|add|add
-9|6|add|9|4|add|add
-9|6|add|9|3|mult|mult
-9|6|add|9|3|sub|mult
-9|6|add|9|3|sub|add
-9|6|add|9|3|add|mult
-9|6|add|9|3|add|add
-9|6|add|9|2|mult|mult
-9|6|add|9|2|sub|mult
-9|6|add|9|2|sub|add
-9|6|add|9|5|mult|mult
-9|6|add|7|5|add|mult
-9|6|add|7|5|add|sub
-9|6|add|9|4|add|mult
-9|6|add|7|4|mult|mult
-9|6|add|7|4|sub|mult
-9|6|add|7|4|sub|sub
-9|6|add|7|4|sub|add
-9|6|add|7|4|add|mult
-9|6|add|7|4|add|sub
-9|6|add|7|4|add|add
-9|6|add|7|3|mult|mult
-9|6|add|7|3|sub|mult
-9|6|add|7|3|sub|sub
-9|6|add|7|3|sub|add
-9|6|add|7|3|add|mult
-9|6|sub|sq
-9|6|sub|4|add
-9|6|sub|3|mult
-9|6|sub|3|sub
-9|6|sub|3|add
-9|6|sub|2|mult
-9|6|sub|2|sub
-9|6|sub|2|add
-9|6|sub|1|mult
-9|6|sub|1|sub
-9|6|sub|1|add
-9|6|sub|cbrt
-9|6|sub|cb
-8|7|mult|9|4|add|mult
-9|6|sub|0|mult
-9|6|sub|0|sub
-9|6|sub|0|add
-9|6|add|9|2|add|mult
-9|6|add|9|2|add|add
-9|6|add|9|5|sub|mult
-9|6|add|9|5|sub|add
-9|6|add|9|5|add|mult
-9|6|add|9|5|add|add
-9|6|add|9|4|mult|mult
-9|6|add|9|4|sub|mult
-9|6|add|9|4|sub|add
-8|7|add|7|sq|mult
-8|7|add|7|3|add|add
-8|7|add|7|2|mult|mult
-8|7|add|7|2|sub|mult
-8|7|add|7|2|sub|add
-8|7|add|8|4|sub|mult
-8|7|add|8|4|sub|add
-8|7|add|7|1|mult|mult
-8|7|add|7|1|sub|mult
-8|7|add|7|1|sub|add
-8|7|add|7|1|add|mult
-8|7|add|7|1|add|add
-8|7|add|7|cbrt|mult
-8|7|add|7|cb|mult
-8|7|add|7|3|add|mult
-8|7|add|7|0|mult|mult
-8|7|add|7|0|sub|mult
-8|7|add|7|0|sub|add
-8|7|add|7|0|add|mult
-8|7|add|7|0|add|add
-8|7|add|6|5|mult|mult
-8|7|add|7|2|add|mult
-8|7|add|7|2|add|add
-8|7|add|8|4|add|mult
-8|7|add|8|4|add|add
-8|7|add|8|3|mult|mult
-8|7|add|8|3|sub|mult
-8|7|add|9|2|sub|sub
-8|7|add|9|4|add|mult
-8|7|add|9|4|add|sub
-8|7|add|9|4|add|add
-8|7|add|9|3|mult|mult
-8|7|add|9|3|sub|mult
-8|7|add|9|3|sub|sub
-8|7|add|9|3|sub|add
-8|7|add|9|3|add|mult
-8|7|add|9|3|add|sub
-8|7|add|9|3|add|add
-8|7|add|9|2|mult|mult
-8|7|add|9|2|sub|mult
-8|7|add|8|3|sub|add
-8|7|add|9|2|sub|add
-8|7|add|9|5|mult|mult
-8|7|add|7|5|add|mult
-8|7|add|7|5|add|add
-8|7|add|7|4|mult|mult
-8|7|add|7|4|sub|mult
-8|7|add|7|4|sub|add
-8|7|add|7|4|add|mult
-8|7|add|7|4|add|add
-8|7|add|7|3|mult|mult
-8|7|add|7|3|sub|mult
-8|7|add|7|3|sub|add
-8|7|add|5|mult
-8|7|add|8|1|add|mult
-8|7|add|8|1|add|add
-8|7|add|9|mult
-8|7|add|9|sub
-8|7|add|9|add
-8|7|add|8|mult
-8|7|add|8|add
-8|7|add|7|mult
-8|7|add|7|add
-8|7|add|6|mult
-8|7|add|6|sub
-8|7|add|6|add
-8|7|add|7|5|mult|mult
-8|7|add|5|sub
-8|7|add|5|add
-8|7|add|4|mult
-8|7|add|4|sub
-8|7|add|4|add
-8|7|add|3|mult
-8|7|add|3|sub
-8|7|add|3|add
-8|7|add|2|mult
-8|7|add|2|sub
-8|7|add|2|add
-8|7|add|1|mult
-8|7|add|8|cbrt|mult
-8|7|add|8|3|add|mult
-8|7|add|8|3|add|add
-8|7|add|8|2|mult|mult
-8|7|add|8|2|sub|mult
-8|7|add|8|2|sub|add
-8|7|add|8|2|add|mult
-8|7|add|8|2|add|add
-8|7|add|8|1|mult|mult
-8|7|add|8|1|sub|mult
-8|7|add|8|1|sub|add
-8|7|add|7|5|sub|mult
-8|7|add|7|5|sub|add
-8|7|add|9|4|sub|add
-8|7|add|8|cb|mult
-8|7|add|8|sq|mult
-8|7|add|8|0|mult|mult
-8|7|add|8|0|sub|mult
-8|7|add|8|0|sub|add
-8|7|add|8|0|add|mult
-8|7|add|8|0|add|add
-8|7|add|7|6|mult|mult
-8|7|add|7|6|sub|mult
-8|7|add|7|6|sub|add
-8|7|add|7|6|add|mult
-8|7|add|7|6|add|add
-8|7|sub|6|mult
-8|7|sub|7|6|add|mult
-8|7|sub|7|6|add|sub
-8|7|sub|7|5|mult|mult
-8|7|sub|8|1|add|mult
-8|7|sub|8|1|add|add
-8|7|sub|9|mult
-8|7|sub|9|sub
-8|7|sub|9|add
-8|7|sub|8|mult
-8|7|sub|8|add
-8|7|sub|7|mult
-8|7|sub|7|sub
-8|7|sub|7|6|sub|sub
-8|7|sub|6|sub
-8|7|sub|6|add
-8|7|sub|5|mult
-8|7|sub|5|sub
-8|7|sub|5|add
-8|7|sub|4|mult
-8|7|sub|4|sub
-8|7|sub|4|add
-8|7|sub|3|mult
-8|7|sub|3|sub
-8|7|sub|3|add
-8|7|sub|2|mult
-8|7|sub|8|1|sub|add
-8|7|sub|8|3|mult|mult
-8|7|sub|8|3|sub|mult
-8|7|sub|8|3|sub|add
-8|7|sub|8|3|add|mult
-8|7|sub|8|3|add|add
-8|7|sub|8|2|mult|mult
-8|7|sub|8|2|sub|mult
-8|7|sub|8|2|sub|add
-8|7|sub|8|2|add|mult
-8|7|sub|8|2|add|add
-8|7|sub|8|1|mult|mult
-8|7|sub|8|1|sub|mult
-8|7|sub|2|sub
-8|7|sub|7|5|sub|mult
-8|7|sub|7|5|sub|sub
-8|7|sub|8|cbrt|mult
-8|7|sub|8|cb|mult
-8|7|sub|8|sq|mult
-8|7|sub|8|0|mult|mult
-8|7|sub|8|0|sub|mult
-8|7|sub|8|0|sub|add
-8|7|sub|8|0|add|mult
-8|7|sub|8|0|add|add
-8|7|sub|7|6|mult|mult
-8|7|sub|7|6|sub|mult
-8|7|add|9|6|add|add
-8|7|add|9|8|add|add
-8|7|add|9|7|mult|mult
-8|7|add|9|7|sub|mult
-8|7|add|9|7|sub|sub
-8|7|add|9|7|add|mult
-8|7|add|9|7|add|add
-8|7|add|9|6|mult|mult
-8|7|add|9|6|sub|mult
-8|7|add|9|6|sub|sub
-8|7|add|9|6|sub|add
-8|7|add|9|6|add|mult
-8|7|add|9|6|add|sub
-8|7|add|9|8|add|mult
-8|7|add|9|2|add|mult
-8|7|add|9|2|add|sub
-8|7|add|9|2|add|add
-8|7|add|9|5|sub|mult
-8|7|add|9|5|sub|sub
-8|7|add|9|5|sub|add
-8|7|add|9|5|add|mult
-8|7|add|9|5|add|sub
-8|7|add|9|5|add|add
-8|7|add|9|4|mult|mult
-8|7|add|9|4|sub|mult
-8|7|add|9|4|sub|sub
-8|7|add|8|6|sub|add
-8|7|sub|2|add
-8|7|sub|1|mult
-8|7|sub|1|sub
-8|7|sub|1|add
-8|7|sub|cbrt
-8|7|sub|cb
-8|7|sub|sq
-8|7|sub|0|mult
-8|7|sub|0|sub
-8|7|sub|0|add
-8|7|add|8|6|mult|mult
-8|7|add|8|6|sub|mult
-8|7|add|1|sub
-8|7|add|8|6|add|mult
-8|7|add|8|6|add|add
-8|7|add|8|5|mult|mult
-8|7|add|8|5|sub|mult
-8|7|add|8|5|sub|add
-8|7|add|8|5|add|mult
-8|7|add|8|5|add|add
-8|7|add|8|4|mult|mult
-8|7|add|8|7|mult|mult
-8|7|add|9|8|mult|mult
-8|7|add|9|8|sub|mult
-8|7|add|9|8|sub|sub
-8|6|sub|8|5|add|add
-8|6|mult|4|mult
-8|6|mult|3|mult
-8|6|mult|2|mult
-8|6|mult|1|mult
-8|6|mult|cbrt
-8|6|mult|cb
-8|6|mult|sq
-8|6|mult|0|mult
-8|6|sub|8|6|add|mult
-8|6|sub|8|5|mult|mult
-8|6|sub|8|5|sub|mult
-8|6|sub|8|5|sub|add
-8|6|sub|8|5|add|mult
-8|6|mult|5|mult
-8|6|sub|8|4|mult|mult
-8|6|sub|8|7|mult|mult
-8|6|sub|9|8|mult|mult
-8|6|sub|9|8|sub|mult
-8|6|sub|9|8|sub|sub
-8|6|sub|9|8|add|mult
-8|6|sub|9|8|add|add
-8|6|sub|9|7|mult|mult
-8|6|sub|9|7|sub|mult
-8|6|sub|9|7|sub|sub
-8|6|sub|9|7|sub|add
-8|6|sub|9|7|add|mult
-8|6|mult|7|6|mult|mult
-8|6|mult|8|1|sub|mult
-8|6|mult|7|5|sub|mult
-8|6|mult|8|cbrt|mult
-8|6|mult|8|cb|mult
-8|6|mult|8|sq|mult
-8|6|mult|8|sq|sub
-8|6|mult|8|sq|add
-8|6|mult|8|0|mult|mult
-8|6|mult|8|0|mult|sub
-8|6|mult|8|0|mult|add
-8|6|mult|8|0|sub|mult
-8|6|mult|8|0|add|mult
-8|6|sub|9|7|add|sub
-8|6|mult|7|6|mult|sub
-8|6|mult|7|6|mult|add
-8|6|mult|7|6|sub|mult
-8|6|mult|7|6|add|mult
-8|6|mult|7|5|mult|mult
-8|6|mult|7|5|mult|sub
-8|6|mult|7|5|mult|add
-8|6|mult|8|1|add|mult
-8|6|mult|9|mult
-8|6|mult|8|mult
-8|6|mult|7|mult
-8|6|mult|6|mult
-8|6|sub|7|4|sub|mult
-8|6|sub|9|3|add|mult
-8|6|sub|9|3|add|sub
-8|6|sub|9|3|add|add
-8|6|sub|9|2|mult|mult
-8|6|sub|9|2|sub|mult
-8|6|sub|9|2|sub|sub
-8|6|sub|9|2|sub|add
-8|6|sub|9|5|mult|mult
-8|6|sub|7|5|add|mult
-8|6|sub|7|5|add|sub
-8|6|sub|7|5|add|add
-8|6|sub|7|4|mult|mult
-8|6|sub|9|3|sub|add
-8|6|sub|7|4|sub|sub
-8|6|sub|7|4|sub|add
-8|6|sub|7|4|add|mult
-8|6|sub|7|4|add|sub
-8|6|sub|7|4|add|add
-8|6|sub|7|3|mult|mult
-8|6|sub|7|3|sub|mult
-8|6|sub|7|3|sub|sub
-8|6|sub|7|3|sub|add
-8|6|sub|7|3|add|mult
-8|6|sub|7|3|add|sub
-8|6|sub|7|3|add|add
-8|6|sub|9|5|add|mult
-8|6|sub|9|7|add|add
-8|6|sub|9|6|mult|mult
-8|6|sub|9|6|sub|mult
-8|6|sub|9|6|sub|add
-8|6|sub|9|6|add|mult
-8|6|sub|9|6|add|sub
-8|6|sub|9|2|add|mult
-8|6|sub|9|2|add|sub
-8|6|sub|9|2|add|add
-8|6|sub|9|5|sub|mult
-8|6|sub|9|5|sub|sub
-8|6|sub|9|5|sub|add
-8|6|mult|8|1|mult|add
-8|6|sub|9|5|add|sub
-8|6|sub|9|5|add|add
-8|6|sub|9|4|mult|mult
-8|6|sub|9|4|sub|mult
-8|6|sub|9|4|sub|sub
-8|6|sub|9|4|sub|add
-8|6|sub|9|4|add|mult
-8|6|sub|9|4|add|sub
-8|6|sub|9|4|add|add
-8|6|sub|9|3|mult|mult
-8|6|sub|9|3|sub|mult
-8|6|sub|9|3|sub|sub
-8|6|mult|9|4|mult|mult
-8|6|mult|9|7|mult|sub
-8|6|mult|9|7|mult|add
-8|6|mult|9|7|sub|mult
-8|6|mult|9|7|add|mult
-8|6|mult|9|6|mult|mult
-8|6|mult|9|6|mult|sub
-8|6|mult|9|6|mult|add
-8|6|mult|9|6|sub|mult
-8|6|mult|9|6|add|mult
-8|6|mult|9|2|add|mult
-8|6|mult|9|5|sub|mult
-8|6|mult|9|5|add|mult
-8|6|mult|9|7|mult|mult
-8|6|mult|9|4|mult|sub
-8|6|mult|9|4|mult|add
-8|6|mult|9|4|sub|mult
-8|6|mult|9|4|add|mult
-8|6|mult|9|3|mult|mult
-8|6|mult|9|3|mult|sub
-8|6|mult|9|3|mult|add
-8|6|mult|9|3|sub|mult
-8|6|mult|9|3|add|mult
-8|6|mult|9|2|mult|mult
-8|6|mult|9|2|mult|sub
-8|6|mult|9|2|mult|add
-8|6|mult|8|5|sub|mult
-8|7|add|1|add
-8|7|add|cbrt
-8|7|add|cb
-8|7|add|sq
-8|7|add|0|mult
-8|7|add|0|sub
-8|7|add|0|add
-8|6|mult|8|6|sub|mult
-8|6|mult|8|6|add|mult
-8|6|mult|8|5|mult|mult
-8|6|mult|8|5|mult|sub
-8|6|mult|8|5|mult|add
-8|6|mult|9|2|sub|mult
-8|6|mult|8|5|add|mult
-8|6|mult|8|4|mult|mult
-8|6|mult|8|4|mult|sub
-8|6|mult|8|4|mult|add
-8|6|mult|8|7|mult|mult
-8|6|mult|8|7|mult|sub
-8|6|mult|8|7|mult|add
-8|6|mult|9|8|mult|mult
-8|6|mult|9|8|mult|sub
-8|6|mult|9|8|mult|add
-8|6|mult|9|8|sub|mult
-8|6|mult|9|8|add|mult
-8|6|mult|8|4|add|mult
-8|6|mult|7|sq|mult
-8|6|mult|7|sq|sub
-8|6|mult|7|sq|add
-8|6|mult|7|0|mult|mult
-8|6|mult|7|0|mult|sub
-8|6|mult|7|0|mult|add
-8|6|mult|7|0|sub|mult
-8|6|mult|7|0|add|mult
-8|6|mult|6|5|mult|mult
-8|6|mult|6|5|mult|sub
-8|6|mult|6|5|mult|add
-8|6|mult|7|2|add|mult
-8|6|mult|7|cb|mult
-8|6|mult|8|3|mult|mult
-8|6|mult|8|3|mult|sub
-8|6|mult|8|3|mult|add
-8|6|mult|8|3|sub|mult
-8|6|mult|8|3|add|mult
-8|6|mult|8|2|mult|mult
-8|6|mult|8|2|mult|sub
-8|6|mult|8|2|mult|add
-8|6|mult|8|2|sub|mult
-8|6|mult|8|2|add|mult
-8|6|mult|8|1|mult|mult
-8|6|mult|8|1|mult|sub
-8|6|mult|7|3|sub|mult
-8|6|mult|9|5|mult|mult
-8|6|mult|9|5|mult|sub
-8|6|mult|9|5|mult|add
-8|6|mult|7|5|add|mult
-8|6|mult|7|4|mult|mult
-8|6|mult|7|4|mult|sub
-8|6|mult|7|4|mult|add
-8|6|mult|7|4|sub|mult
-8|6|mult|7|4|add|mult
-8|6|mult|7|3|mult|mult
-8|6|mult|7|3|mult|sub
-8|6|mult|7|3|mult|add
-8|7|sub|8|4|add|add
-8|6|mult|7|3|add|mult
-8|6|mult|7|2|mult|mult
-8|6|mult|7|2|mult|sub
-8|6|mult|7|2|mult|add
-8|6|mult|7|2|sub|mult
-8|6|mult|8|4|sub|mult
-8|6|mult|7|1|mult|mult
-8|6|mult|7|1|mult|sub
-8|6|mult|7|1|mult|add
-8|6|mult|7|1|sub|mult
-8|6|mult|7|1|add|mult
-8|6|mult|7|cbrt|mult
-9|0|add|0|mult
-9|0|add|4|add
-9|0|add|3|mult
-9|0|add|3|sub
-9|0|add|3|add
-9|0|add|2|mult
-9|0|add|2|sub
-9|0|add|2|add
-9|0|add|1|mult
-9|0|add|1|sub
-9|0|add|1|add
-9|0|add|cbrt
-9|0|add|cb
-9|0|add|sq
-9|0|add|4|sub
-9|0|add|0|add
-6|5|sub|8|7|sub|mult
-6|5|sub|8|7|sub|sub
-6|5|sub|8|7|sub|add
-6|5|sub|8|7|add|mult
-6|5|sub|8|7|add|sub
-6|5|sub|8|7|add|add
-6|5|sub|8|6|mult|mult
-6|5|sub|8|6|sub|mult
-6|5|sub|8|6|sub|sub
-6|5|sub|8|6|add|mult
-6|5|sub|8|6|add|add
-9|0|add|8|mult
-9|0|add|7|6|sub|mult
-9|0|add|7|6|sub|sub
-9|0|add|7|6|sub|add
-9|0|add|7|6|add|mult
-9|0|add|7|6|add|sub
-9|0|add|7|6|add|add
-9|0|add|7|5|mult|mult
-9|0|add|8|1|add|mult
-9|0|add|8|1|add|sub
-9|0|add|8|1|add|add
-9|0|add|9|mult
-9|0|add|9|add
-6|5|sub|8|5|mult|mult
-9|0|add|8|sub
-9|0|add|8|add
-9|0|add|7|mult
-9|0|add|7|sub
-9|0|add|7|add
-9|0|add|6|mult
-9|0|add|6|sub
-9|0|add|6|add
-9|0|add|5|mult
-9|0|add|5|sub
-9|0|add|5|add
-9|0|add|4|mult
-6|5|sub|9|4|add|add
-6|5|sub|9|2|add|sub
-6|5|sub|9|2|add|add
-6|5|sub|9|5|sub|mult
-6|5|sub|9|5|sub|add
-6|5|sub|9|5|add|mult
-6|5|sub|9|5|add|sub
-6|5|sub|9|4|mult|mult
-6|5|sub|9|4|sub|mult
-6|5|sub|9|4|sub|sub
-6|5|sub|9|4|sub|add
-6|5|sub|9|4|add|mult
-6|5|sub|9|4|add|sub
-6|5|sub|9|2|add|mult
-6|5|sub|9|3|mult|mult
-6|5|sub|9|3|sub|mult
-6|5|sub|9|3|sub|sub
-6|5|sub|9|3|sub|add
-6|5|sub|9|3|add|mult
-6|5|sub|9|3|add|sub
-6|5|sub|9|3|add|add
-6|5|sub|9|2|mult|mult
-6|5|sub|9|2|sub|mult
-6|5|sub|9|2|sub|sub
-6|5|sub|9|2|sub|add
-6|5|sub|9|5|mult|mult
-6|5|sub|9|8|add|add
-6|5|sub|8|5|sub|mult
-6|5|sub|8|5|sub|add
-6|5|sub|8|5|add|mult
-6|5|sub|8|5|add|sub
-6|5|sub|8|4|mult|mult
-6|5|sub|8|7|mult|mult
-6|5|sub|9|8|mult|mult
-6|5|sub|9|8|sub|mult
-6|5|sub|9|8|sub|sub
-6|5|sub|9|8|sub|add
-6|5|sub|9|8|add|mult
-6|5|sub|9|8|add|sub
-9|0|add|7|6|mult|mult
-6|5|sub|9|7|mult|mult
-6|5|sub|9|7|sub|mult
-6|5|sub|9|7|sub|sub
-6|5|sub|9|7|sub|add
-6|5|sub|9|7|add|mult
-6|5|sub|9|7|add|sub
-6|5|sub|9|7|add|add
-6|5|sub|9|6|mult|mult
-6|5|sub|9|6|sub|mult
-6|5|sub|9|6|sub|sub
-6|5|sub|9|6|add|mult
-6|5|sub|9|6|add|add
-9|0|add|7|3|mult|mult
-9|0|add|9|2|sub|add
-9|0|add|9|5|mult|mult
-9|0|add|7|5|add|mult
-9|0|add|7|5|add|sub
-9|0|add|7|5|add|add
-9|0|add|7|4|mult|mult
-9|0|add|7|4|sub|mult
-9|0|add|7|4|sub|sub
-9|0|add|7|4|sub|add
-9|0|add|7|4|add|mult
-9|0|add|7|4|add|sub
-9|0|add|7|4|add|add
-9|0|add|9|2|sub|mult
-9|0|add|7|3|sub|mult
-9|0|add|7|3|sub|sub
-9|0|add|7|3|sub|add
-9|0|add|7|3|add|mult
-9|0|add|7|3|add|sub
-9|0|add|7|3|add|add
-9|0|add|7|2|mult|mult
-9|0|add|7|2|sub|mult
-9|0|add|7|2|sub|sub
-9|0|add|7|2|sub|add
-9|0|add|8|4|sub|mult
-9|0|add|8|4|sub|sub
-9|0|add|9|5|add|mult
-9|0|add|9|7|sub|add
-9|0|add|9|7|add|mult
-9|0|add|9|7|add|add
-9|0|add|9|6|mult|mult
-9|0|add|9|6|sub|mult
-9|0|add|9|6|sub|add
-9|0|add|9|6|add|mult
-9|0|add|9|6|add|add
-9|0|add|9|2|add|mult
-9|0|add|9|2|add|add
-9|0|add|9|5|sub|mult
-9|0|add|9|5|sub|add
-9|0|add|8|4|sub|add
-9|0|add|9|5|add|add
-9|0|add|9|4|mult|mult
-9|0|add|9|4|sub|mult
-9|0|add|9|4|sub|add
-9|0|add|9|4|add|mult
-9|0|add|9|4|add|add
-9|0|add|9|3|mult|mult
-9|0|add|9|3|sub|mult
-9|0|add|9|3|sub|add
-9|0|add|9|3|add|mult
-9|0|add|9|3|add|add
-9|0|add|9|2|mult|mult
-9|0|add|8|1|sub|sub
-9|0|add|8|3|add|mult
-9|0|add|8|3|add|sub
-9|0|add|8|3|add|add
-9|0|add|8|2|mult|mult
-9|0|add|8|2|sub|mult
-9|0|add|8|2|sub|sub
-9|0|add|8|2|sub|add
-9|0|add|8|2|add|mult
-9|0|add|8|2|add|sub
-9|0|add|8|2|add|add
-9|0|add|8|1|mult|mult
-9|0|add|8|1|sub|mult
-9|0|add|8|3|sub|add
-9|0|add|8|1|sub|add
-9|0|add|7|5|sub|mult
-9|0|add|7|5|sub|sub
-9|0|add|7|5|sub|add
-9|0|add|8|cbrt|mult
-9|0|add|8|cb|mult
-9|0|add|8|sq|mult
-9|0|add|8|0|mult|mult
-9|0|add|8|0|sub|mult
-9|0|add|8|0|sub|sub
-9|0|add|8|0|add|mult
-9|0|add|8|0|add|add
-9|0|add|7|0|sub|sub
-9|0|add|7|1|mult|mult
-9|0|add|7|1|sub|mult
-9|0|add|7|1|sub|sub
-9|0|add|7|1|sub|add
-9|0|add|7|1|add|mult
-9|0|add|7|1|add|sub
-9|0|add|7|1|add|add
-9|0|add|7|cbrt|mult
-9|0|add|7|cb|mult
-9|0|add|7|sq|mult
-9|0|add|7|0|mult|mult
-9|0|add|7|0|sub|mult
-6|5|sub|7|5|add|mult
-9|0|add|7|0|add|mult
-9|0|add|7|0|add|add
-9|0|add|6|5|mult|mult
-9|0|add|7|2|add|mult
-9|0|add|7|2|add|sub
-9|0|add|7|2|add|add
-9|0|add|8|4|add|mult
-9|0|add|8|4|add|sub
-9|0|add|8|4|add|add
-9|0|add|8|3|mult|mult
-9|0|add|8|3|sub|mult
-9|0|add|8|3|sub|sub
-8|7|sub|9|6|add|mult
-8|7|sub|9|8|sub|mult
-8|7|sub|9|8|sub|sub
-8|7|sub|9|8|add|mult
-8|7|sub|9|8|add|add
-8|7|sub|9|7|mult|mult
-8|7|sub|9|7|sub|mult
-8|7|sub|9|7|sub|add
-8|7|sub|9|7|add|mult
-8|7|sub|9|7|add|sub
-8|7|sub|9|6|mult|mult
-8|7|sub|9|6|sub|mult
-8|7|sub|9|6|sub|sub
-8|7|sub|9|6|sub|add
-8|7|sub|9|8|mult|mult
-8|7|sub|9|6|add|sub
-8|7|sub|9|6|add|add
-8|7|sub|9|2|add|mult
-8|7|sub|9|2|add|sub
-8|7|sub|9|2|add|add
-8|7|sub|9|5|sub|mult
-8|7|sub|9|5|sub|sub
-8|7|sub|9|5|sub|add
-8|7|sub|9|5|add|mult
-8|7|sub|9|5|add|sub
-8|7|sub|9|5|add|add
-8|7|sub|9|4|mult|mult
-8|7|sub|8|7|add|mult
-6|5|sub|2|mult
-6|5|sub|2|sub
-6|5|sub|2|add
-6|5|sub|1|mult
-6|5|sub|1|sub
-6|5|sub|1|add
-6|5|sub|cbrt
-6|5|sub|cb
-6|5|sub|sq
-6|5|sub|0|mult
-6|5|sub|0|sub
-6|5|sub|0|add
-8|7|sub|9|4|sub|mult
-8|7|sub|8|6|mult|mult
-8|7|sub|8|6|sub|mult
-8|7|sub|8|6|sub|add
-8|7|sub|8|6|add|mult
-8|7|sub|8|6|add|add
-8|7|sub|8|5|mult|mult
-8|7|sub|8|5|sub|mult
-8|7|sub|8|5|sub|add
-8|7|sub|8|5|add|mult
-8|7|sub|8|5|add|add
-8|7|sub|8|4|mult|mult
-8|7|sub|8|7|mult|mult
-8|7|sub|7|1|add|sub
-8|7|sub|7|3|sub|sub
-8|7|sub|7|3|add|mult
-8|7|sub|7|3|add|sub
-8|7|sub|7|2|mult|mult
-8|7|sub|7|2|sub|mult
-8|7|sub|7|2|sub|sub
-8|7|sub|8|4|sub|mult
-8|7|sub|8|4|sub|add
-8|7|sub|7|1|mult|mult
-8|7|sub|7|1|sub|mult
-8|7|sub|7|1|sub|sub
-8|7|sub|7|1|add|mult
-8|7|sub|7|3|sub|mult
-8|7|sub|7|cbrt|mult
-8|7|sub|7|cb|mult
-8|7|sub|7|sq|mult
-8|7|sub|7|0|mult|mult
-8|7|sub|7|0|sub|mult
-8|7|sub|7|0|sub|sub
-8|7|sub|7|0|add|mult
-8|7|sub|7|0|add|sub
-8|7|sub|6|5|mult|mult
-8|7|sub|7|2|add|mult
-8|7|sub|7|2|add|sub
-8|7|sub|8|4|add|mult
-8|7|sub|9|2|mult|mult
-8|7|sub|9|4|sub|sub
-8|7|sub|9|4|sub|add
-8|7|sub|9|4|add|mult
-8|7|sub|9|4|add|sub
-8|7|sub|9|4|add|add
-8|7|sub|9|3|mult|mult
-8|7|sub|9|3|sub|mult
-8|7|sub|9|3|sub|sub
-8|7|sub|9|3|sub|add
-8|7|sub|9|3|add|mult
-8|7|sub|9|3|add|sub
-8|7|sub|9|3|add|add
-6|5|sub|3|add
-8|7|sub|9|2|sub|mult
-8|7|sub|9|2|sub|sub
-8|7|sub|9|2|sub|add
-8|7|sub|9|5|mult|mult
-8|7|sub|7|5|add|mult
-8|7|sub|7|5|add|sub
-8|7|sub|7|4|mult|mult
-8|7|sub|7|4|sub|mult
-8|7|sub|7|4|sub|sub
-8|7|sub|7|4|add|mult
-8|7|sub|7|4|add|sub
-8|7|sub|7|3|mult|mult
-6|5|sub|7|0|add|add
-6|5|sub|7|1|add|mult
-6|5|sub|7|1|add|sub
-6|5|sub|7|1|add|add
-6|5|sub|7|cbrt|mult
-6|5|sub|7|cb|mult
-6|5|sub|7|sq|mult
-6|5|sub|7|0|mult|mult
-6|5|sub|7|0|sub|mult
-6|5|sub|7|0|sub|sub
-6|5|sub|7|0|sub|add
-6|5|sub|7|0|add|mult
-6|5|sub|7|0|add|sub
-6|5|sub|7|1|sub|add
-6|5|sub|6|5|mult|mult
-6|5|sub|7|2|add|mult
-6|5|sub|7|2|add|sub
-6|5|sub|7|2|add|add
-6|5|sub|8|4|add|mult
-6|5|sub|8|4|add|sub
-6|5|sub|8|4|add|add
-6|5|sub|8|3|mult|mult
-6|5|sub|8|3|sub|mult
-6|5|sub|8|3|sub|sub
-6|5|sub|8|3|sub|add
-6|5|sub|8|3|add|mult
-6|5|sub|7|3|add|mult
-6|5|sub|7|5|add|sub
-6|5|sub|7|4|mult|mult
-6|5|sub|7|4|sub|mult
-6|5|sub|7|4|sub|sub
-6|5|sub|7|4|sub|add
-6|5|sub|7|4|add|mult
-6|5|sub|7|4|add|sub
-6|5|sub|7|4|add|add
-6|5|sub|7|3|mult|mult
-6|5|sub|7|3|sub|mult
-6|5|sub|7|3|sub|sub
-6|5|sub|7|3|sub|add
-6|5|sub|8|3|add|sub
-6|5|sub|7|3|add|sub
-6|5|sub|7|3|add|add
-6|5|sub|7|2|mult|mult
-6|5|sub|7|2|sub|mult
-6|5|sub|7|2|sub|sub
-6|5|sub|7|2|sub|add
-6|5|sub|8|4|sub|mult
-6|5|sub|8|4|sub|sub
-6|5|sub|8|4|sub|add
-6|5|sub|7|1|mult|mult
-6|5|sub|7|1|sub|mult
-6|5|sub|7|1|sub|sub
-6|5|sub|8|add
-6|5|sub|7|6|sub|sub
-6|5|sub|7|6|add|mult
-6|5|sub|7|6|add|add
-6|5|sub|7|5|mult|mult
-6|5|sub|8|1|add|mult
-6|5|sub|8|1|add|sub
-6|5|sub|8|1|add|add
-6|5|sub|9|mult
-6|5|sub|9|sub
-6|5|sub|9|add
-6|5|sub|8|mult
-6|5|sub|8|sub
-6|5|sub|7|6|sub|mult
-6|5|sub|7|mult
-6|5|sub|7|sub
-6|5|sub|7|add
-6|5|sub|6|mult
-6|5|sub|6|add
-6|5|sub|5|mult
-6|5|sub|5|sub
-6|5|sub|4|mult
-6|5|sub|4|sub
-6|5|sub|4|add
-6|5|sub|3|mult
-6|5|sub|3|sub
-6|5|sub|7|5|sub|mult
-6|5|sub|8|3|add|add
-6|5|sub|8|2|mult|mult
-6|5|sub|8|2|sub|mult
-6|5|sub|8|2|sub|sub
-6|5|sub|8|2|sub|add
-6|5|sub|8|2|add|mult
-6|5|sub|8|2|add|sub
-6|5|sub|8|2|add|add
-6|5|sub|8|1|mult|mult
-6|5|sub|8|1|sub|mult
-6|5|sub|8|1|sub|sub
-6|5|sub|8|1|sub|add
-8|6|sub|7|2|mult|mult
-6|5|sub|7|5|sub|add
-6|5|sub|8|cbrt|mult
-6|5|sub|8|cb|mult
-6|5|sub|8|sq|mult
-6|5|sub|8|0|mult|mult
-6|5|sub|8|0|sub|mult
-6|5|sub|8|0|sub|sub
-6|5|sub|8|0|sub|add
-6|5|sub|8|0|add|mult
-6|5|sub|8|0|add|sub
-6|5|sub|8|0|add|add
-6|5|sub|7|6|mult|mult
-8|5|add|9|5|sub|sub
-8|5|add|9|7|add|sub
-8|5|add|9|7|add|add
-8|5|add|9|6|mult|mult
-8|5|add|9|6|sub|mult
-8|5|add|9|6|sub|sub
-8|5|add|9|6|sub|add
-8|5|add|9|6|add|mult
-8|5|add|9|6|add|sub
-8|5|add|9|6|add|add
-8|5|add|9|2|add|mult
-8|5|add|9|2|add|sub
-8|5|add|9|2|add|add
-8|5|add|9|5|sub|mult
-8|5|add|9|7|add|mult
-8|5|add|9|5|add|mult
-8|5|add|9|5|add|add
-8|5|add|9|4|mult|mult
-8|5|add|9|4|sub|mult
-8|5|add|9|4|sub|sub
-8|5|add|9|4|sub|add
-8|5|add|9|4|add|mult
-8|5|add|9|4|add|sub
-8|5|add|9|4|add|add
-8|5|add|9|3|mult|mult
-8|5|add|9|3|sub|mult
-8|5|add|9|3|sub|sub
-8|5|sub|0|sub
-8|5|sub|3|sub
-8|5|sub|3|add
-8|5|sub|2|mult
-8|5|sub|2|sub
-8|5|sub|2|add
-8|5|sub|1|mult
-8|5|sub|1|sub
-8|5|sub|1|add
-8|5|sub|cbrt
-8|5|sub|cb
-8|5|sub|sq
-8|5|sub|0|mult
-8|5|add|9|3|sub|add
-8|5|sub|0|add
-8|5|add|8|4|mult|mult
-8|5|add|8|7|mult|mult
-8|5|add|9|8|mult|mult
-8|5|add|9|8|sub|mult
-8|5|add|9|8|sub|sub
-8|5|add|9|8|add|mult
-8|5|add|9|8|add|add
-8|5|add|9|7|mult|mult
-8|5|add|9|7|sub|mult
-8|5|add|9|7|sub|sub
-8|5|add|9|7|sub|add
-8|5|add|7|cb|mult
-8|5|add|7|2|sub|sub
-8|5|add|7|2|sub|add
-8|5|add|8|4|sub|mult
-8|5|add|8|4|sub|add
-8|5|add|7|1|mult|mult
-8|5|add|7|1|sub|mult
-8|5|add|7|1|sub|sub
-8|5|add|7|1|sub|add
-8|5|add|7|1|add|mult
-8|5|add|7|1|add|sub
-8|5|add|7|1|add|add
-8|5|add|7|cbrt|mult
-8|5|add|7|2|sub|mult
-8|5|add|7|sq|mult
-8|5|add|7|0|mult|mult
-8|5|add|7|0|sub|mult
-8|5|add|7|0|sub|sub
-8|5|add|7|0|sub|add
-8|5|add|7|0|add|mult
-8|5|add|7|0|add|sub
-8|5|add|7|0|add|add
-8|5|add|6|5|mult|mult
-8|5|add|7|2|add|mult
-8|5|add|7|2|add|sub
-8|5|add|7|2|add|add
-8|5|add|7|4|sub|sub
-8|5|add|9|3|add|mult
-8|5|add|9|3|add|sub
-8|5|add|9|3|add|add
-8|5|add|9|2|mult|mult
-8|5|add|9|2|sub|mult
-8|5|add|9|2|sub|sub
-8|5|add|9|2|sub|add
-8|5|add|9|5|mult|mult
-8|5|add|7|5|add|mult
-8|5|add|7|5|add|add
-8|5|add|7|4|mult|mult
-8|5|add|7|4|sub|mult
-8|5|sub|3|mult
-8|5|add|7|4|sub|add
-8|5|add|7|4|add|mult
-8|5|add|7|4|add|sub
-8|5|add|7|4|add|add
-8|5|add|7|3|mult|mult
-8|5|add|7|3|sub|mult
-8|5|add|7|3|sub|sub
-8|5|add|7|3|sub|add
-8|5|add|7|3|add|mult
-8|5|add|7|3|add|sub
-8|5|add|7|3|add|add
-8|5|add|7|2|mult|mult
-8|5|sub|7|cbrt|mult
-8|5|sub|7|2|sub|mult
-8|5|sub|7|2|sub|sub
-8|5|sub|7|2|sub|add
-8|5|sub|8|4|sub|mult
-8|5|sub|8|4|sub|add
-8|5|sub|7|1|mult|mult
-8|5|sub|7|1|sub|mult
-8|5|sub|7|1|sub|sub
-8|5|sub|7|1|sub|add
-8|5|sub|7|1|add|mult
-8|5|sub|7|1|add|sub
-8|5|sub|7|1|add|add
-8|5|sub|7|2|mult|mult
-8|5|sub|7|cb|mult
-8|5|sub|7|sq|mult
-8|5|sub|7|0|mult|mult
-8|5|sub|7|0|sub|mult
-8|5|sub|7|0|sub|sub
-8|5|sub|7|0|sub|add
-8|5|sub|7|0|add|mult
-8|5|sub|7|0|add|sub
-8|5|sub|7|0|add|add
-8|5|sub|6|5|mult|mult
-8|5|sub|7|2|add|mult
-8|5|sub|7|2|add|sub
-8|5|sub|7|4|sub|mult
-8|5|sub|9|3|sub|add
-8|5|sub|9|3|add|mult
-8|5|sub|9|3|add|sub
-8|5|sub|9|3|add|add
-8|5|sub|9|2|mult|mult
-8|5|sub|9|2|sub|mult
-8|5|sub|9|2|sub|sub
-8|5|sub|9|2|sub|add
-8|5|sub|9|5|mult|mult
-8|5|sub|7|5|add|mult
-8|5|sub|7|5|add|sub
-8|5|sub|7|4|mult|mult
-8|5|sub|7|2|add|add
-8|5|sub|7|4|sub|sub
-8|5|sub|7|4|sub|add
-8|5|sub|7|4|add|mult
-8|5|sub|7|4|add|sub
-8|5|sub|7|4|add|add
-8|5|sub|7|3|mult|mult
-8|5|sub|7|3|sub|mult
-8|5|sub|7|3|sub|sub
-8|5|sub|7|3|sub|add
-8|5|sub|7|3|add|mult
-8|5|sub|7|3|add|sub
-8|5|sub|7|3|add|add
-8|5|sub|8|mult
-8|5|sub|7|6|sub|mult
-8|5|sub|7|6|sub|sub
-8|5|sub|7|6|sub|add
-8|5|sub|7|6|add|mult
-8|5|sub|7|6|add|sub
-8|5|sub|7|6|add|add
-8|5|sub|7|5|mult|mult
-8|5|sub|8|1|add|mult
-8|5|sub|8|1|add|add
-8|5|sub|9|mult
-8|5|sub|9|sub
-8|5|sub|9|add
-8|5|sub|7|6|mult|mult
-8|5|sub|8|add
-8|5|sub|7|mult
-8|5|sub|7|sub
-8|5|sub|7|add
-8|5|sub|6|mult
-8|5|sub|6|sub
-8|5|sub|6|add
-8|5|sub|5|mult
-8|5|sub|5|sub
-8|5|sub|4|mult
-8|5|sub|4|sub
-8|5|sub|4|add
-8|5|sub|8|1|mult|mult
-8|5|sub|8|4|add|mult
-8|5|sub|8|4|add|add
-8|5|sub|8|3|mult|mult
-8|5|sub|8|3|sub|mult
-8|5|sub|8|3|sub|add
-8|5|sub|8|3|add|mult
-8|5|sub|8|3|add|add
-8|5|sub|8|2|mult|mult
-8|5|sub|8|2|sub|mult
-8|5|sub|8|2|sub|add
-8|5|sub|8|2|add|mult
-8|5|sub|8|2|add|add
-8|5|add|8|4|add|mult
-8|5|sub|8|1|sub|mult
-8|5|sub|8|1|sub|add
-8|5|sub|7|5|sub|mult
-8|5|sub|7|5|sub|add
-8|5|sub|8|cbrt|mult
-8|5|sub|8|cb|mult
-8|5|sub|8|sq|mult
-8|5|sub|8|0|mult|mult
-8|5|sub|8|0|sub|mult
-8|5|sub|8|0|sub|add
-8|5|sub|8|0|add|mult
-8|5|sub|8|0|add|add
-8|4|mult|8|3|add|mult
-8|4|mult|7|0|mult|sub
-8|4|mult|7|0|mult|add
-8|4|mult|7|0|sub|mult
-8|4|mult|7|0|add|mult
-8|4|mult|6|5|mult|mult
-8|4|mult|6|5|mult|sub
-8|4|mult|6|5|mult|add
-8|4|mult|7|2|add|mult
-8|4|mult|8|4|add|mult
-8|4|mult|8|3|mult|mult
-8|4|mult|8|3|mult|sub
-8|4|mult|8|3|mult|add
-8|4|mult|8|3|sub|mult
-8|4|mult|7|0|mult|mult
-8|4|mult|8|2|mult|mult
-8|4|mult|8|2|mult|sub
-8|4|mult|8|2|mult|add
-8|4|mult|8|2|sub|mult
-8|4|mult|8|2|add|mult
-8|4|mult|8|1|mult|mult
-8|4|mult|8|1|mult|sub
-8|4|mult|8|1|mult|add
-8|4|mult|8|1|sub|mult
-8|4|mult|7|5|sub|mult
-8|4|mult|8|cbrt|mult
-8|4|mult|8|cb|mult
-8|4|mult|7|2|mult|add
-8|4|mult|7|4|mult|mult
-8|4|mult|7|4|mult|sub
-8|4|mult|7|4|mult|add
-8|4|mult|7|4|sub|mult
-8|4|mult|7|4|add|mult
-8|4|mult|7|3|mult|mult
-8|4|mult|7|3|mult|sub
-8|4|mult|7|3|mult|add
-8|4|mult|7|3|sub|mult
-8|4|mult|7|3|add|mult
-8|4|mult|7|2|mult|mult
-8|4|mult|7|2|mult|sub
-8|4|mult|8|sq|mult
-8|4|mult|7|2|sub|mult
-8|4|mult|8|4|sub|mult
-8|4|mult|7|1|mult|mult
-8|4|mult|7|1|mult|sub
-8|4|mult|7|1|mult|add
-8|4|mult|7|1|sub|mult
-8|4|mult|7|1|add|mult
-8|4|mult|7|cbrt|mult
-8|4|mult|7|cb|mult
-8|4|mult|7|sq|mult
-8|4|mult|7|sq|sub
-8|4|mult|7|sq|add
-8|7|mult|9|7|add|mult
-8|4|mult|cb
-8|4|mult|sq
-8|4|mult|0|mult
-8|7|mult|9|8|mult|mult
-8|7|mult|9|8|mult|sub
-8|7|mult|9|8|mult|add
-8|7|mult|9|8|sub|mult
-8|7|mult|9|8|add|mult
-8|7|mult|9|7|mult|mult
-8|7|mult|9|7|mult|sub
-8|7|mult|9|7|mult|add
-8|7|mult|9|7|sub|mult
-8|4|mult|cbrt
-8|7|mult|9|6|mult|mult
-8|7|mult|9|6|mult|sub
-8|7|mult|9|6|mult|add
-8|7|mult|9|6|sub|mult
-8|7|mult|9|6|add|mult
-8|7|mult|9|2|add|mult
-8|7|mult|9|5|sub|mult
-8|7|mult|9|5|add|mult
-8|7|mult|9|4|mult|mult
-8|7|mult|9|4|mult|sub
-8|7|mult|9|4|mult|add
-8|7|mult|9|4|sub|mult
-8|4|mult|7|5|mult|mult
-8|4|mult|8|sq|sub
-8|4|mult|8|sq|add
-8|4|mult|8|0|mult|mult
-8|4|mult|8|0|mult|sub
-8|4|mult|8|0|mult|add
-8|4|mult|8|0|sub|mult
-8|4|mult|8|0|add|mult
-8|4|mult|7|6|mult|mult
-8|4|mult|7|6|mult|sub
-8|4|mult|7|6|mult|add
-8|4|mult|7|6|sub|mult
-8|4|mult|7|6|add|mult
-8|4|mult|7|5|add|mult
-8|4|mult|7|5|mult|sub
-8|4|mult|7|5|mult|add
-8|4|mult|8|1|add|mult
-8|4|mult|9|mult
-8|4|mult|8|mult
-8|4|mult|7|mult
-8|4|mult|6|mult
-8|4|mult|5|mult
-8|4|mult|4|mult
-8|4|mult|3|mult
-8|4|mult|2|mult
-8|4|mult|1|mult
-8|5|add|8|add
-8|5|add|7|6|sub|sub
-8|5|add|7|6|sub|add
-8|5|add|7|6|add|mult
-8|5|add|7|6|add|sub
-8|5|add|7|6|add|add
-8|5|add|7|5|mult|mult
-8|5|add|8|1|add|mult
-8|5|add|8|1|add|add
-8|5|add|9|mult
-8|5|add|9|sub
-8|5|add|9|add
-8|5|add|8|mult
-8|5|add|7|6|sub|mult
-8|5|add|7|mult
-8|5|add|7|sub
-8|5|add|7|add
-8|5|add|6|mult
-8|5|add|6|sub
-8|5|add|6|add
-8|5|add|5|mult
-8|5|add|5|add
-8|5|add|4|mult
-8|5|add|4|sub
-8|5|add|4|add
-8|5|add|3|mult
-8|5|add|8|1|sub|mult
-8|5|add|8|4|add|add
-8|5|add|8|3|mult|mult
-8|5|add|8|3|sub|mult
-8|5|add|8|3|sub|add
-8|5|add|8|3|add|mult
-8|5|add|8|3|add|add
-8|5|add|8|2|mult|mult
-8|5|add|8|2|sub|mult
-8|5|add|8|2|sub|add
-8|5|add|8|2|add|mult
-8|5|add|8|2|add|add
-8|5|add|8|1|mult|mult
-8|5|add|3|sub
-8|5|add|8|1|sub|add
-8|5|add|7|5|sub|mult
-8|5|add|7|5|sub|sub
-8|5|add|8|cbrt|mult
-8|5|add|8|cb|mult
-8|5|add|8|sq|mult
-8|5|add|8|0|mult|mult
-8|5|add|8|0|sub|mult
-8|5|add|8|0|sub|add
-8|5|add|8|0|add|mult
-8|5|add|8|0|add|add
-8|5|add|7|6|mult|mult
-8|4|mult|9|4|add|mult
-8|4|mult|9|6|mult|mult
-8|4|mult|9|6|mult|sub
-8|4|mult|9|6|mult|add
-8|4|mult|9|6|sub|mult
-8|4|mult|9|6|add|mult
-8|4|mult|9|2|add|mult
-8|4|mult|9|5|sub|mult
-8|4|mult|9|5|add|mult
-8|4|mult|9|4|mult|mult
-8|4|mult|9|4|mult|sub
-8|4|mult|9|4|mult|add
-8|4|mult|9|4|sub|mult
-8|4|mult|9|7|add|mult
-8|4|mult|9|3|mult|mult
-8|4|mult|9|3|mult|sub
-8|4|mult|9|3|mult|add
-8|4|mult|9|3|sub|mult
-8|4|mult|9|3|add|mult
-8|4|mult|9|2|mult|mult
-8|4|mult|9|2|mult|sub
-8|4|mult|9|2|mult|add
-8|4|mult|9|2|sub|mult
-8|4|mult|9|5|mult|mult
-8|4|mult|9|5|mult|sub
-8|4|mult|9|5|mult|add
-8|5|add|0|add
-8|5|add|3|add
-8|5|add|2|mult
-8|5|add|2|sub
-8|5|add|2|add
-8|5|add|1|mult
-8|5|add|1|sub
-8|5|add|1|add
-8|5|add|cbrt
-8|5|add|cb
-8|5|add|sq
-8|5|add|0|mult
-8|5|add|0|sub
-8|5|sub|9|3|sub|sub
-8|4|mult|8|7|mult|mult
-8|4|mult|8|7|mult|sub
-8|4|mult|8|7|mult|add
-8|4|mult|9|8|mult|mult
-8|4|mult|9|8|mult|sub
-8|4|mult|9|8|mult|add
-8|4|mult|9|8|sub|mult
-8|4|mult|9|8|add|mult
-8|4|mult|9|7|mult|mult
-8|4|mult|9|7|mult|sub
-8|4|mult|9|7|mult|add
-8|4|mult|9|7|sub|mult
-8|6|add|7|5|add|mult
-8|6|add|9|4|add|add
-8|6|add|9|3|mult|mult
-8|6|add|9|3|sub|mult
-8|6|add|9|3|sub|sub
-8|6|add|9|3|sub|add
-8|6|add|9|3|add|mult
-8|6|add|9|3|add|sub
-8|6|add|9|3|add|add
-8|6|add|9|2|mult|mult
-8|6|add|9|2|sub|mult
-8|6|add|9|2|sub|sub
-8|6|add|9|2|sub|add
-8|6|add|9|5|mult|mult
-8|6|add|9|4|add|sub
-8|6|add|7|5|add|sub
-8|6|add|7|5|add|add
-8|6|add|7|4|mult|mult
-8|6|add|7|4|sub|mult
-8|6|add|7|4|sub|sub
-8|6|add|7|4|sub|add
-8|6|add|7|4|add|mult
-8|6|add|7|4|add|sub
-8|6|add|7|4|add|add
-8|6|add|7|3|mult|mult
-8|6|add|7|3|sub|mult
-8|6|add|7|3|sub|sub
-8|6|add|9|2|add|sub
-8|6|add|9|7|sub|mult
-8|6|add|9|7|sub|sub
-8|6|add|9|7|sub|add
-8|6|add|9|7|add|mult
-8|6|add|9|7|add|sub
-8|6|add|9|7|add|add
-8|6|add|9|6|mult|mult
-8|6|add|9|6|sub|mult
-8|6|add|9|6|sub|sub
-8|6|add|9|6|add|mult
-8|6|add|9|6|add|add
-8|6|add|9|2|add|mult
-8|6|add|7|3|sub|add
-8|6|add|9|2|add|add
-8|6|add|9|5|sub|mult
-8|6|add|9|5|sub|sub
-8|6|add|9|5|sub|add
-8|6|add|9|5|add|mult
-8|6|add|9|5|add|sub
-8|6|add|9|5|add|add
-8|6|add|9|4|mult|mult
-8|6|add|9|4|sub|mult
-8|6|add|9|4|sub|sub
-8|6|add|9|4|sub|add
-8|6|add|9|4|add|mult
-8|6|add|8|2|sub|mult
-8|6|add|6|5|mult|mult
-8|6|add|7|2|add|mult
-8|6|add|7|2|add|sub
-8|6|add|7|2|add|add
-8|6|add|8|4|add|mult
-8|6|add|8|4|add|add
-8|6|add|8|3|mult|mult
-8|6|add|8|3|sub|mult
-8|6|add|8|3|sub|add
-8|6|add|8|3|add|mult
-8|6|add|8|3|add|add
-8|6|add|8|2|mult|mult
-8|6|add|7|0|add|add
-8|6|add|8|2|sub|add
-8|6|add|8|2|add|mult
-8|6|add|8|2|add|add
-8|6|add|8|1|mult|mult
-8|6|add|8|1|sub|mult
-8|6|add|8|1|sub|add
-8|6|add|7|5|sub|mult
-8|6|add|7|5|sub|sub
-8|6|add|7|5|sub|add
-8|6|add|8|cbrt|mult
-8|6|add|8|cb|mult
-8|6|add|8|sq|mult
-8|6|add|7|1|sub|add
-8|6|add|7|3|add|mult
-8|6|add|7|3|add|sub
-8|6|add|7|3|add|add
-8|6|add|7|2|mult|mult
-8|6|add|7|2|sub|mult
-8|6|add|7|2|sub|sub
-8|6|add|7|2|sub|add
-8|6|add|8|4|sub|mult
-8|6|add|8|4|sub|add
-8|6|add|7|1|mult|mult
-8|6|add|7|1|sub|mult
-8|6|add|7|1|sub|sub
-8|6|add|9|7|mult|mult
-8|6|add|7|1|add|mult
-8|6|add|7|1|add|sub
-8|6|add|7|1|add|add
-8|6|add|7|cbrt|mult
-8|6|add|7|cb|mult
-8|6|add|7|sq|mult
-8|6|add|7|0|mult|mult
-8|6|add|7|0|sub|mult
-8|6|add|7|0|sub|sub
-8|6|add|7|0|sub|add
-8|6|add|7|0|add|mult
-8|6|add|7|0|add|sub
-8|6|sub|8|1|mult|mult
-8|6|sub|8|4|add|mult
-8|6|sub|8|4|add|add
-8|6|sub|8|3|mult|mult
-8|6|sub|8|3|sub|mult
-8|6|sub|8|3|sub|add
-8|6|sub|8|3|add|mult
-8|6|sub|8|3|add|add
-8|6|sub|8|2|mult|mult
-8|6|sub|8|2|sub|mult
-8|6|sub|8|2|sub|add
-8|6|sub|8|2|add|mult
-8|6|sub|8|2|add|add
-8|6|sub|7|2|add|add
-8|6|sub|8|1|sub|mult
-8|6|sub|8|1|sub|add
-8|6|sub|7|5|sub|mult
-8|6|sub|7|5|sub|sub
-8|6|sub|7|5|sub|add
-8|6|sub|8|cbrt|mult
-8|6|sub|8|cb|mult
-8|6|sub|8|sq|mult
-8|6|sub|8|0|mult|mult
-8|6|sub|8|0|sub|mult
-8|6|sub|8|0|sub|add
-8|6|sub|8|0|add|mult
-8|6|sub|7|cbrt|mult
-8|6|sub|7|2|sub|mult
-8|6|sub|7|2|sub|sub
-8|6|sub|7|2|sub|add
-8|6|sub|8|4|sub|mult
-8|6|sub|8|4|sub|add
-8|6|sub|7|1|mult|mult
-8|6|sub|7|1|sub|mult
-8|6|sub|7|1|sub|sub
-8|6|sub|7|1|sub|add
-8|6|sub|7|1|add|mult
-8|6|sub|7|1|add|sub
-8|6|sub|7|1|add|add
-8|6|sub|8|0|add|add
-8|6|sub|7|cb|mult
-8|6|sub|7|sq|mult
-8|6|sub|7|0|mult|mult
-8|6|sub|7|0|sub|mult
-8|6|sub|7|0|sub|sub
-8|6|sub|7|0|sub|add
-8|6|sub|7|0|add|mult
-8|6|sub|7|0|add|sub
-8|6|sub|7|0|add|add
-8|6|sub|6|5|mult|mult
-8|6|sub|7|2|add|mult
-8|6|sub|7|2|add|sub
-8|6|sub|0|add
-8|6|sub|3|add
-8|6|sub|2|mult
-8|6|sub|2|sub
-8|6|sub|2|add
-8|6|sub|1|mult
-8|6|sub|1|sub
-8|6|sub|1|add
-8|6|sub|cbrt
-8|6|sub|cb
-8|6|sub|sq
-8|6|sub|0|mult
-8|6|sub|0|sub
-8|6|sub|3|sub
-8|6|add|8|5|mult|mult
-8|6|add|8|5|sub|mult
-8|6|add|8|5|sub|add
-8|6|add|8|5|add|mult
-8|6|add|8|5|add|add
-8|6|add|8|4|mult|mult
-8|6|add|8|7|mult|mult
-8|6|add|9|8|mult|mult
-8|6|add|9|8|sub|mult
-8|6|add|9|8|sub|sub
-8|6|add|9|8|add|mult
-8|6|add|9|8|add|add
-8|6|sub|8|add
-8|6|sub|7|6|mult|mult
-8|6|sub|7|6|sub|mult
-8|6|sub|7|6|sub|add
-8|6|sub|7|6|add|mult
-8|6|sub|7|6|add|sub
-8|6|sub|7|5|mult|mult
-8|6|sub|8|1|add|mult
-8|6|sub|8|1|add|add
-8|6|sub|9|mult
-8|6|sub|9|sub
-8|6|sub|9|add
-8|6|sub|8|mult
-8|6|add|8|0|mult|mult
-8|6|sub|7|mult
-8|6|sub|7|sub
-8|6|sub|7|add
-8|6|sub|6|mult
-8|6|sub|6|sub
-8|6|sub|5|mult
-8|6|sub|5|sub
-8|6|sub|5|add
-8|6|sub|4|mult
-8|6|sub|4|sub
-8|6|sub|4|add
-8|6|sub|3|mult
-8|5|mult|8|0|mult|mult
-8|5|mult|8|2|sub|mult
-8|5|mult|8|2|add|mult
-8|5|mult|8|1|mult|mult
-8|5|mult|8|1|mult|sub
-8|5|mult|8|1|mult|add
-8|5|mult|8|1|sub|mult
-8|5|mult|7|5|sub|mult
-8|5|mult|8|cbrt|mult
-8|5|mult|8|cb|mult
-8|5|mult|8|sq|mult
-8|5|mult|8|sq|sub
-8|5|mult|8|sq|add
-8|5|mult|8|2|mult|add
-8|5|mult|8|0|mult|sub
-8|5|mult|8|0|mult|add
-8|5|mult|8|0|sub|mult
-8|5|mult|8|0|add|mult
-8|5|mult|7|6|mult|mult
-8|5|mult|7|6|mult|sub
-8|5|mult|7|6|mult|add
-8|5|mult|7|6|sub|mult
-8|5|mult|7|6|add|mult
-8|5|mult|7|5|mult|mult
-8|5|mult|7|5|mult|sub
-8|5|mult|7|5|mult|add
-8|5|mult|7|0|add|mult
-8|5|mult|7|1|mult|add
-8|5|mult|7|1|sub|mult
-8|5|mult|7|1|add|mult
-8|5|mult|7|cbrt|mult
-8|5|mult|7|cb|mult
-8|5|mult|7|sq|mult
-8|5|mult|7|sq|sub
-8|5|mult|7|sq|add
-8|5|mult|7|0|mult|mult
-8|5|mult|7|0|mult|sub
-8|5|mult|7|0|mult|add
-8|5|mult|7|0|sub|mult
-8|5|mult|8|1|add|mult
-8|5|mult|6|5|mult|mult
-8|5|mult|6|5|mult|sub
-8|5|mult|6|5|mult|add
-8|5|mult|7|2|add|mult
-8|5|mult|8|4|add|mult
-8|5|mult|8|3|mult|mult
-8|5|mult|8|3|mult|sub
-8|5|mult|8|3|mult|add
-8|5|mult|8|3|sub|mult
-8|5|mult|8|3|add|mult
-8|5|mult|8|2|mult|mult
-8|5|mult|8|2|mult|sub
-8|5|sub|9|5|sub|mult
-8|5|sub|9|7|add|sub
-8|5|sub|9|7|add|add
-8|5|sub|9|6|mult|mult
-8|5|sub|9|6|sub|mult
-8|5|sub|9|6|sub|sub
-8|5|sub|9|6|sub|add
-8|5|sub|9|6|add|mult
-8|5|sub|9|6|add|sub
-8|5|sub|9|6|add|add
-8|5|sub|9|2|add|mult
-8|5|sub|9|2|add|sub
-8|5|sub|9|2|add|add
-8|5|sub|9|7|add|mult
-8|5|sub|9|5|sub|add
-8|5|sub|9|5|add|mult
-8|5|sub|9|5|add|sub
-8|5|sub|9|4|mult|mult
-8|5|sub|9|4|sub|mult
-8|5|sub|9|4|sub|sub
-8|5|sub|9|4|sub|add
-8|5|sub|9|4|add|mult
-8|5|sub|9|4|add|sub
-8|5|sub|9|4|add|add
-8|5|sub|9|3|mult|mult
-8|5|sub|9|3|sub|mult
-8|5|mult|0|mult
-8|5|mult|9|mult
-8|5|mult|8|mult
-8|5|mult|7|mult
-8|5|mult|6|mult
-8|5|mult|5|mult
-8|5|mult|4|mult
-8|5|mult|3|mult
-8|5|mult|2|mult
-8|5|mult|1|mult
-8|5|mult|cbrt
-8|5|mult|cb
-8|5|mult|sq
-8|5|mult|7|1|mult|sub
-8|5|sub|8|5|add|mult
-8|5|sub|8|4|mult|mult
-8|5|sub|8|7|mult|mult
-8|5|sub|9|8|mult|mult
-8|5|sub|9|8|sub|mult
-8|5|sub|9|8|sub|sub
-8|5|sub|9|8|add|mult
-8|5|sub|9|8|add|add
-8|5|sub|9|7|mult|mult
-8|5|sub|9|7|sub|mult
-8|5|sub|9|7|sub|sub
-8|5|sub|9|7|sub|add
-8|6|add|cb
-8|6|add|4|sub
-8|6|add|4|add
-8|6|add|3|mult
-8|6|add|3|sub
-8|6|add|3|add
-8|6|add|2|mult
-8|6|add|2|sub
-8|6|add|2|add
-8|6|add|1|mult
-8|6|add|1|sub
-8|6|add|1|add
-8|6|add|cbrt
-8|6|add|4|mult
-8|6|add|sq
-8|6|add|0|mult
-8|6|add|0|sub
-8|6|add|0|add
-8|5|mult|8|5|sub|mult
-8|5|mult|8|5|add|mult
-8|5|mult|8|4|mult|mult
-8|5|mult|8|4|mult|sub
-8|5|mult|8|4|mult|add
-8|5|mult|8|7|mult|mult
-8|5|mult|8|7|mult|sub
-8|5|mult|8|7|mult|add
-8|6|add|9|mult
-8|6|add|8|0|sub|mult
-8|6|add|8|0|sub|add
-8|6|add|8|0|add|mult
-8|6|add|8|0|add|add
-8|6|add|7|6|mult|mult
-8|6|add|7|6|sub|mult
-8|6|add|7|6|sub|sub
-8|6|add|7|6|add|mult
-8|6|add|7|6|add|add
-8|6|add|7|5|mult|mult
-8|6|add|8|1|add|mult
-8|6|add|8|1|add|add
-8|5|mult|9|8|mult|mult
-8|6|add|9|sub
-8|6|add|9|add
-8|6|add|8|mult
-8|6|add|8|add
-8|6|add|7|mult
-8|6|add|7|sub
-8|6|add|7|add
-8|6|add|6|mult
-8|6|add|6|add
-8|6|add|5|mult
-8|6|add|5|sub
-8|6|add|5|add
-8|5|mult|7|4|sub|mult
-8|5|mult|9|3|add|mult
-8|5|mult|9|2|mult|mult
-8|5|mult|9|2|mult|sub
-8|5|mult|9|2|mult|add
-8|5|mult|9|2|sub|mult
-8|5|mult|9|5|mult|mult
-8|5|mult|9|5|mult|sub
-8|5|mult|9|5|mult|add
-8|5|mult|7|5|add|mult
-8|5|mult|7|4|mult|mult
-8|5|mult|7|4|mult|sub
-8|5|mult|7|4|mult|add
-8|5|mult|9|3|sub|mult
-8|5|mult|7|4|add|mult
-8|5|mult|7|3|mult|mult
-8|5|mult|7|3|mult|sub
-8|5|mult|7|3|mult|add
-8|5|mult|7|3|sub|mult
-8|5|mult|7|3|add|mult
-8|5|mult|7|2|mult|mult
-8|5|mult|7|2|mult|sub
-8|5|mult|7|2|mult|add
-8|5|mult|7|2|sub|mult
-8|5|mult|8|4|sub|mult
-8|5|mult|7|1|mult|mult
-8|5|mult|9|6|sub|mult
-8|5|mult|9|8|mult|sub
-8|5|mult|9|8|mult|add
-8|5|mult|9|8|sub|mult
-8|5|mult|9|8|add|mult
-8|5|mult|9|7|mult|mult
-8|5|mult|9|7|mult|sub
-8|5|mult|9|7|mult|add
-8|5|mult|9|7|sub|mult
-8|5|mult|9|7|add|mult
-8|5|mult|9|6|mult|mult
-8|5|mult|9|6|mult|sub
-8|5|mult|9|6|mult|add
-9|4|mult|7|4|mult|add
-8|5|mult|9|6|add|mult
-8|5|mult|9|2|add|mult
-8|5|mult|9|5|sub|mult
-8|5|mult|9|5|add|mult
-8|5|mult|9|4|mult|mult
-8|5|mult|9|4|mult|sub
-8|5|mult|9|4|mult|add
-8|5|mult|9|4|sub|mult
-8|5|mult|9|4|add|mult
-8|5|mult|9|3|mult|mult
-8|5|mult|9|3|mult|sub
-8|5|mult|9|3|mult|add
-7|0|mult|7|6|mult|mult
-7|0|mult|8|1|mult|add
-7|0|mult|8|1|sub|mult
-7|0|mult|7|5|sub|mult
-7|0|mult|8|cbrt|mult
-7|0|mult|8|cb|mult
-7|0|mult|8|sq|mult
-7|0|mult|8|sq|sub
-7|0|mult|8|sq|add
-7|0|mult|8|0|mult|mult
-7|0|mult|8|0|mult|sub
-7|0|mult|8|0|mult|add
-7|0|mult|8|0|sub|mult
-7|0|mult|8|0|add|mult
-7|0|mult|8|1|mult|sub
-7|0|mult|7|6|mult|sub
-7|0|mult|7|6|mult|add
-7|0|mult|7|6|sub|mult
-7|0|mult|7|6|add|mult
-7|0|mult|7|5|mult|mult
-7|0|mult|7|5|mult|sub
-7|0|mult|7|5|mult|add
-7|0|mult|8|1|add|mult
-7|0|mult|9|mult
-7|0|mult|8|mult
-7|0|mult|7|mult
-7|0|mult|6|mult
-7|0|mult|7|2|add|mult
-7|sq|5|mult
-7|sq|4|mult
-7|sq|3|mult
-7|sq|2|mult
-7|sq|1|mult
-7|sq|sq
-7|sq|0|mult
-7|0|mult|7|0|sub|mult
-7|0|mult|7|0|add|mult
-7|0|mult|6|5|mult|mult
-7|0|mult|6|5|mult|sub
-7|0|mult|6|5|mult|add
-7|0|mult|5|mult
-7|0|mult|8|4|add|mult
-7|0|mult|8|3|mult|mult
-7|0|mult|8|3|mult|sub
-7|0|mult|8|3|mult|add
-7|0|mult|8|3|sub|mult
-7|0|mult|8|3|add|mult
-7|0|mult|8|2|mult|mult
-7|0|mult|8|2|mult|sub
-7|0|mult|8|2|mult|add
-7|0|mult|8|2|sub|mult
-7|0|mult|8|2|add|mult
-7|0|mult|8|1|mult|mult
-7|0|sub|8|0|mult|mult
-7|0|sub|8|2|add|mult
-7|0|sub|8|2|add|sub
-7|0|sub|8|2|add|add
-7|0|sub|8|1|mult|mult
-7|0|sub|8|1|sub|mult
-7|0|sub|8|1|sub|sub
-7|0|sub|8|1|sub|add
-7|0|sub|7|5|sub|mult
-7|0|sub|7|5|sub|add
-7|0|sub|8|cbrt|mult
-7|0|sub|8|cb|mult
-7|0|sub|8|sq|mult
-7|0|sub|8|2|sub|add
-7|0|sub|8|0|sub|mult
-7|0|sub|8|0|sub|add
-7|0|sub|8|0|add|mult
-7|0|sub|8|0|add|sub
-7|0|sub|7|6|mult|mult
-7|0|sub|7|6|sub|mult
-7|0|sub|7|6|sub|add
-7|0|sub|7|6|add|mult
-7|0|sub|7|6|add|add
-7|0|sub|7|5|mult|mult
-7|0|sub|8|1|add|mult
-7|0|sub|8|1|add|sub
-7|0|sub|8|4|add|mult
-7|0|mult|4|mult
-7|0|mult|3|mult
-7|0|mult|2|mult
-7|0|mult|1|mult
-7|0|mult|cbrt
-7|0|mult|cb
-7|0|mult|sq
-7|0|mult|0|mult
-7|0|sub|7|0|add|mult
-7|0|sub|6|5|mult|mult
-7|0|sub|7|2|add|mult
-7|0|sub|7|2|add|add
-7|sq|6|mult
-7|0|sub|8|4|add|sub
-7|0|sub|8|4|add|add
-7|0|sub|8|3|mult|mult
-7|0|sub|8|3|sub|mult
-7|0|sub|8|3|sub|sub
-7|0|sub|8|3|sub|add
-7|0|sub|8|3|add|mult
-7|0|sub|8|3|add|sub
-7|0|sub|8|3|add|add
-7|0|sub|8|2|mult|mult
-7|0|sub|8|2|sub|mult
-7|0|sub|8|2|sub|sub
-7|cb|8|sq|mult
-7|cb|8|3|mult|mult
-7|cb|8|3|sub|mult
-7|cb|8|3|add|mult
-7|cb|8|2|mult|mult
-7|cb|8|2|sub|mult
-7|cb|8|2|add|mult
-7|cb|8|1|mult|mult
-7|cb|8|1|sub|mult
-7|cb|7|5|sub|mult
-7|cb|8|cbrt|mult
-7|cb|8|cb|sub
-7|cb|8|cb|add
-7|cb|8|4|add|mult
-7|cb|8|0|mult|mult
-7|cb|8|0|sub|mult
-7|cb|8|0|add|mult
-7|cb|7|6|mult|mult
-7|cb|7|6|sub|mult
-7|cb|7|6|add|mult
-7|cb|7|5|mult|mult
-7|cb|8|1|add|mult
-7|cb|9|mult
-7|cb|8|mult
-7|cb|6|mult
-7|cb|5|mult
-7|cbrt|5|mult
-7|cbrt|8|sq|mult
-7|cbrt|8|0|mult|mult
-7|cbrt|8|0|sub|mult
-7|cbrt|8|0|add|mult
-7|cbrt|7|6|mult|mult
-7|cbrt|7|6|sub|mult
-7|cbrt|7|6|add|mult
-7|cbrt|7|5|mult|mult
-7|cbrt|8|1|add|mult
-7|cbrt|9|mult
-7|cbrt|8|mult
-7|cbrt|6|mult
-7|cb|4|mult
-7|cbrt|4|mult
-7|cbrt|3|mult
-7|cbrt|2|mult
-7|cbrt|1|mult
-7|cbrt|cbrt
-7|cbrt|sq
-7|cbrt|0|mult
-7|cb|7|0|mult|mult
-7|cb|7|0|sub|mult
-7|cb|7|0|add|mult
-7|cb|6|5|mult|mult
-7|cb|7|2|add|mult
-7|sq|8|0|sub|mult
-7|sq|8|1|mult|mult
-7|sq|8|1|mult|sub
-7|sq|8|1|mult|add
-7|sq|8|1|sub|mult
-7|sq|7|5|sub|mult
-7|sq|8|cbrt|mult
-7|sq|8|cb|mult
-7|sq|8|sq|sub
-7|sq|8|sq|add
-7|sq|8|0|mult|mult
-7|sq|8|0|mult|sub
-7|sq|8|0|mult|add
-7|sq|8|2|add|mult
-7|sq|8|0|add|mult
-7|sq|7|6|mult|mult
-7|sq|7|6|mult|sub
-7|sq|7|6|mult|add
-7|sq|7|6|sub|mult
-7|sq|7|6|add|mult
-7|sq|7|5|mult|mult
-7|sq|7|5|mult|sub
-7|sq|7|5|mult|add
-7|sq|8|1|add|mult
-7|sq|9|mult
-7|sq|8|mult
-7|sq|6|5|mult|sub
-7|cb|3|mult
-7|cb|2|mult
-7|cb|1|mult
-7|cb|cb
-7|cb|sq
-7|cb|0|mult
-7|sq|7|0|mult|mult
-7|sq|7|0|mult|sub
-7|sq|7|0|mult|add
-7|sq|7|0|sub|mult
-7|sq|7|0|add|mult
-7|sq|6|5|mult|mult
-7|0|sub|8|1|add|add
-7|sq|6|5|mult|add
-7|sq|7|2|add|mult
-7|sq|8|4|add|mult
-7|sq|8|3|mult|mult
-7|sq|8|3|mult|sub
-7|sq|8|3|mult|add
-7|sq|8|3|sub|mult
-7|sq|8|3|add|mult
-7|sq|8|2|mult|mult
-7|sq|8|2|mult|sub
-7|sq|8|2|mult|add
-7|sq|8|2|sub|mult
-6|5|mult|7|mult
-6|5|mult|8|0|sub|mult
-6|5|mult|8|0|add|mult
-6|5|mult|7|6|mult|mult
-6|5|mult|7|6|mult|sub
-6|5|mult|7|6|mult|add
-6|5|mult|7|6|sub|mult
-6|5|mult|7|6|add|mult
-6|5|mult|7|5|mult|mult
-6|5|mult|7|5|mult|sub
-6|5|mult|7|5|mult|add
-6|5|mult|8|1|add|mult
-6|5|mult|9|mult
-6|5|mult|8|mult
-6|5|mult|8|0|mult|add
-6|5|mult|6|mult
-6|5|mult|5|mult
-6|5|mult|4|mult
-6|5|mult|3|mult
-6|5|mult|2|mult
-6|5|mult|1|mult
-6|5|mult|cbrt
-6|5|mult|cb
-6|5|mult|sq
-6|5|mult|0|mult
-7|2|add|8|4|add|mult
-7|2|add|8|4|add|sub
-6|5|mult|8|2|add|mult
-7|0|add|0|add
-6|5|mult|7|2|add|mult
-6|5|mult|8|4|add|mult
-6|5|mult|8|3|mult|mult
-6|5|mult|8|3|mult|sub
-6|5|mult|8|3|mult|add
-6|5|mult|8|3|sub|mult
-6|5|mult|8|3|add|mult
-6|5|mult|8|2|mult|mult
-6|5|mult|8|2|mult|sub
-6|5|mult|8|2|mult|add
-6|5|mult|8|2|sub|mult
-7|2|add|8|4|add|add
-6|5|mult|8|1|mult|mult
-6|5|mult|8|1|mult|sub
-6|5|mult|8|1|mult|add
-6|5|mult|8|1|sub|mult
-6|5|mult|7|5|sub|mult
-6|5|mult|8|cbrt|mult
-6|5|mult|8|cb|mult
-6|5|mult|8|sq|mult
-6|5|mult|8|sq|sub
-6|5|mult|8|sq|add
-6|5|mult|8|0|mult|mult
-6|5|mult|8|0|mult|sub
-7|2|add|9|sub
-7|2|add|8|0|add|sub
-7|2|add|8|0|add|add
-7|2|add|7|6|mult|mult
-7|2|add|7|6|sub|mult
-7|2|add|7|6|sub|add
-7|2|add|7|6|add|mult
-7|2|add|7|6|add|add
-7|2|add|7|5|mult|mult
-7|2|add|8|1|add|mult
-7|2|add|8|1|add|sub
-7|2|add|8|1|add|add
-7|2|add|9|mult
-7|2|add|8|0|add|mult
-7|2|add|9|add
-7|2|add|8|mult
-7|2|add|8|sub
-7|2|add|8|add
-7|2|add|7|mult
-7|2|add|7|add
-7|2|add|6|mult
-7|2|add|6|sub
-7|2|add|6|add
-7|2|add|5|mult
-7|2|add|5|sub
-7|2|add|5|add
-7|2|add|8|1|mult|mult
-7|2|add|8|3|mult|mult
-7|2|add|8|3|sub|mult
-7|2|add|8|3|sub|sub
-7|2|add|8|3|sub|add
-7|2|add|8|3|add|mult
-7|2|add|8|3|add|sub
-7|2|add|8|3|add|add
-7|2|add|8|2|mult|mult
-7|2|add|8|2|sub|mult
-7|2|add|8|2|sub|sub
-7|2|add|8|2|add|mult
-7|2|add|8|2|add|add
-7|0|add|0|mult
-7|2|add|8|1|sub|mult
-7|2|add|8|1|sub|sub
-7|2|add|8|1|sub|add
-7|2|add|7|5|sub|mult
-7|2|add|7|5|sub|add
-7|2|add|8|cbrt|mult
-7|2|add|8|cb|mult
-7|2|add|8|sq|mult
-7|2|add|8|0|mult|mult
-7|2|add|8|0|sub|mult
-7|2|add|8|0|sub|sub
-7|2|add|8|0|sub|add
-7|0|add|8|3|sub|mult
-7|0|sub|cbrt
-7|0|sub|cb
-7|0|sub|sq
-7|0|sub|0|mult
-7|0|sub|0|sub
-7|0|add|6|5|mult|mult
-7|0|add|7|2|add|mult
-7|0|add|7|2|add|add
-7|0|add|8|4|add|mult
-7|0|add|8|4|add|sub
-7|0|add|8|4|add|add
-7|0|add|8|3|mult|mult
-7|0|sub|1|add
-7|0|add|8|3|sub|sub
-7|0|add|8|3|sub|add
-7|0|add|8|3|add|mult
-7|0|add|8|3|add|sub
-7|0|add|8|3|add|add
-7|0|add|8|2|mult|mult
-7|0|add|8|2|sub|mult
-7|0|add|8|2|sub|sub
-7|0|add|8|2|sub|add
-7|0|add|8|2|add|mult
-7|0|add|8|2|add|sub
-7|0|add|8|2|add|add
-7|0|sub|5|sub
-7|0|sub|9|mult
-7|0|sub|9|sub
-7|0|sub|9|add
-7|0|sub|8|mult
-7|0|sub|8|sub
-7|0|sub|8|add
-7|0|sub|7|mult
-7|0|sub|7|add
-7|0|sub|6|mult
-7|0|sub|6|sub
-7|0|sub|6|add
-7|0|sub|5|mult
-7|0|add|8|1|mult|mult
-7|0|sub|5|add
-7|0|sub|4|mult
-7|0|sub|4|sub
-7|0|sub|4|add
-7|0|sub|3|mult
-7|0|sub|3|sub
-7|0|sub|3|add
-7|0|sub|2|mult
-7|0|sub|2|sub
-7|0|sub|2|add
-7|0|sub|1|mult
-7|0|sub|1|sub
-7|0|add|4|add
-7|0|add|8|sub
-7|0|add|8|add
-7|0|add|7|mult
-7|0|add|7|add
-7|0|add|6|mult
-7|0|add|6|sub
-7|0|add|6|add
-7|0|add|5|mult
-7|0|add|5|sub
-7|0|add|5|add
-7|0|add|4|mult
-7|0|add|4|sub
-7|0|add|8|mult
-7|0|add|3|mult
-7|0|add|3|sub
-7|0|add|3|add
-7|0|add|2|mult
-7|0|add|2|sub
-7|0|add|2|add
-7|0|add|1|mult
-7|0|add|1|sub
-7|0|add|1|add
-7|0|add|cbrt
-7|0|add|cb
-7|0|add|sq
-7|0|add|8|0|add|add
-7|0|add|8|1|sub|mult
-7|0|add|8|1|sub|sub
-7|0|add|8|1|sub|add
-7|0|add|7|5|sub|mult
-7|0|add|7|5|sub|add
-7|0|add|8|cbrt|mult
-7|0|add|8|cb|mult
-7|0|add|8|sq|mult
-7|0|add|8|0|mult|mult
-7|0|add|8|0|sub|mult
-7|0|add|8|0|sub|sub
-7|0|add|8|0|add|mult
-7|cbrt|8|cb|mult
-7|0|add|7|6|mult|mult
-7|0|add|7|6|sub|mult
-7|0|add|7|6|sub|add
-7|0|add|7|6|add|mult
-7|0|add|7|6|add|add
-7|0|add|7|5|mult|mult
-7|0|add|8|1|add|mult
-7|0|add|8|1|add|sub
-7|0|add|8|1|add|add
-7|0|add|9|mult
-7|0|add|9|sub
-7|0|add|9|add
-8|4|sub|8|add
-8|4|sub|7|6|sub|mult
-8|4|sub|7|6|sub|sub
-8|4|sub|7|6|sub|add
-8|4|sub|7|6|add|mult
-8|4|sub|7|6|add|sub
-8|4|sub|7|6|add|add
-8|4|sub|7|5|mult|mult
-8|4|sub|8|1|add|mult
-8|4|sub|8|1|add|add
-8|4|sub|9|mult
-8|4|sub|9|sub
-8|4|sub|9|add
-8|4|sub|8|mult
-8|4|sub|7|6|mult|mult
-8|4|sub|7|mult
-8|4|sub|7|sub
-8|4|sub|7|add
-8|4|sub|6|mult
-8|4|sub|6|sub
-8|4|sub|6|add
-8|4|sub|5|mult
-8|4|sub|5|sub
-8|4|sub|5|add
-8|4|sub|4|mult
-8|4|sub|4|sub
-8|4|sub|3|mult
-8|4|sub|8|1|sub|mult
-8|4|sub|8|4|add|mult
-8|4|sub|8|3|mult|mult
-8|4|sub|8|3|sub|mult
-8|4|sub|8|3|sub|add
-8|4|sub|8|3|add|mult
-8|4|sub|8|3|add|add
-8|4|sub|8|2|mult|mult
-8|4|sub|8|2|sub|mult
-8|4|sub|8|2|sub|add
-8|4|sub|8|2|add|mult
-8|4|sub|8|2|add|add
-8|4|sub|8|1|mult|mult
-8|4|sub|3|sub
-8|4|sub|8|1|sub|add
-8|4|sub|7|5|sub|mult
-8|4|sub|7|5|sub|sub
-8|4|sub|7|5|sub|add
-8|4|sub|8|cbrt|mult
-8|4|sub|8|cb|mult
-8|4|sub|8|sq|mult
-8|4|sub|8|0|mult|mult
-8|4|sub|8|0|sub|mult
-8|4|sub|8|0|sub|add
-8|4|sub|8|0|add|mult
-8|4|sub|8|0|add|add
-7|1|mult|8|2|sub|mult
-7|1|mult|6|5|mult|sub
-7|1|mult|6|5|mult|add
-7|1|mult|7|2|add|mult
-7|1|mult|8|4|add|mult
-7|1|mult|8|3|mult|mult
-7|1|mult|8|3|mult|sub
-7|1|mult|8|3|mult|add
-7|1|mult|8|3|sub|mult
-7|1|mult|8|3|add|mult
-7|1|mult|8|2|mult|mult
-7|1|mult|8|2|mult|sub
-7|1|mult|8|2|mult|add
-7|1|mult|6|5|mult|mult
-7|1|mult|8|2|add|mult
-7|1|mult|8|1|mult|mult
-7|1|mult|8|1|mult|sub
-7|1|mult|8|1|mult|add
-7|1|mult|8|1|sub|mult
-7|1|mult|7|5|sub|mult
-7|1|mult|8|cbrt|mult
-7|1|mult|8|cb|mult
-7|1|mult|8|sq|mult
-7|1|mult|8|sq|sub
-7|1|mult|8|sq|add
-7|1|mult|8|0|mult|mult
-8|4|sub|0|add
-8|4|sub|3|add
-8|4|sub|2|mult
-8|4|sub|2|sub
-8|4|sub|2|add
-8|4|sub|1|mult
-8|4|sub|1|sub
-8|4|sub|1|add
-8|4|sub|cbrt
-8|4|sub|cb
-8|4|sub|sq
-8|4|sub|0|mult
-8|4|sub|0|sub
-8|4|sub|7|2|add|add
-7|1|mult|7|1|sub|mult
-7|1|mult|7|1|add|mult
-7|1|mult|7|cbrt|mult
-7|1|mult|7|cb|mult
-7|1|mult|7|sq|mult
-7|1|mult|7|sq|sub
-7|1|mult|7|sq|add
-7|1|mult|7|0|mult|mult
-7|1|mult|7|0|mult|sub
-7|1|mult|7|0|mult|add
-7|1|mult|7|0|sub|mult
-7|1|mult|7|0|add|mult
-7|2|sub|8|0|sub|sub
-7|2|sub|8|2|add|sub
-7|2|sub|8|1|mult|mult
-7|2|sub|8|1|sub|mult
-7|2|sub|8|1|sub|sub
-7|2|sub|8|1|sub|add
-7|2|sub|7|5|sub|mult
-7|2|sub|7|5|sub|add
-7|2|sub|8|cbrt|mult
-7|2|sub|8|cb|mult
-7|2|sub|8|sq|mult
-7|2|sub|8|0|mult|mult
-7|2|sub|8|0|sub|mult
-7|2|sub|8|2|add|mult
-7|2|sub|8|0|sub|add
-7|2|sub|8|0|add|mult
-7|2|sub|8|0|add|sub
-7|2|sub|8|0|add|add
-7|2|sub|7|6|mult|mult
-7|2|sub|7|6|sub|mult
-7|2|sub|7|6|sub|add
-7|2|sub|7|6|add|mult
-7|2|sub|7|6|add|add
-7|2|sub|7|5|mult|mult
-7|2|sub|8|1|add|mult
-7|2|sub|8|1|add|sub
-7|2|sub|8|4|add|mult
-7|2|sub|7|1|add|mult
-7|2|sub|7|1|add|add
-7|2|sub|7|cbrt|mult
-7|2|sub|7|cb|mult
-7|2|sub|7|sq|mult
-7|2|sub|7|0|mult|mult
-7|2|sub|7|0|sub|mult
-7|2|sub|7|0|sub|add
-7|2|sub|7|0|add|mult
-7|2|sub|7|0|add|add
-7|2|sub|6|5|mult|mult
-7|2|sub|7|2|add|mult
-7|2|sub|8|1|add|add
-7|2|sub|8|4|add|sub
-7|2|sub|8|4|add|add
-7|2|sub|8|3|mult|mult
-7|2|sub|8|3|sub|mult
-7|2|sub|8|3|sub|sub
-7|2|sub|8|3|sub|add
-7|2|sub|8|3|add|mult
-7|2|sub|8|3|add|sub
-7|2|sub|8|3|add|add
-7|2|sub|8|2|mult|mult
-7|2|sub|8|2|sub|mult
-7|2|sub|8|2|sub|add
-8|4|sub|7|cbrt|mult
-7|2|sub|cb
-7|2|sub|sq
-7|2|sub|0|mult
-7|2|sub|0|sub
-7|2|sub|0|add
-8|4|sub|7|1|mult|mult
-8|4|sub|7|1|sub|mult
-8|4|sub|7|1|sub|sub
-8|4|sub|7|1|sub|add
-8|4|sub|7|1|add|mult
-8|4|sub|7|1|add|sub
-8|4|sub|7|1|add|add
-7|2|sub|cbrt
-8|4|sub|7|cb|mult
-8|4|sub|7|sq|mult
-8|4|sub|7|0|mult|mult
-8|4|sub|7|0|sub|mult
-8|4|sub|7|0|sub|sub
-8|4|sub|7|0|sub|add
-8|4|sub|7|0|add|mult
-8|4|sub|7|0|add|sub
-8|4|sub|7|0|add|add
-8|4|sub|6|5|mult|mult
-8|4|sub|7|2|add|mult
-8|4|sub|7|2|add|sub
-7|2|sub|5|sub
-7|2|sub|9|mult
-7|2|sub|9|sub
-7|2|sub|9|add
-7|2|sub|8|mult
-7|2|sub|8|sub
-7|2|sub|8|add
-7|2|sub|7|mult
-7|2|sub|7|add
-7|2|sub|6|mult
-7|2|sub|6|sub
-7|2|sub|6|add
-7|2|sub|5|mult
-7|1|mult|8|0|mult|sub
-7|2|sub|5|add
-7|2|sub|4|mult
-7|2|sub|4|sub
-7|2|sub|4|add
-7|2|sub|3|mult
-7|2|sub|3|sub
-7|2|sub|3|add
-7|2|sub|2|mult
-7|2|sub|2|sub
-7|2|sub|1|mult
-7|2|sub|1|sub
-7|2|sub|1|add
-7|1|add|8|sq|mult
-7|1|add|8|2|sub|mult
-7|1|add|8|2|sub|sub
-7|1|add|8|2|sub|add
-7|1|add|8|2|add|mult
-7|1|add|8|2|add|sub
-7|1|add|8|2|add|add
-7|1|add|8|1|mult|mult
-7|1|add|8|1|sub|mult
-7|1|add|8|1|sub|sub
-7|1|add|7|5|sub|mult
-7|1|add|7|5|sub|add
-7|1|add|8|cbrt|mult
-7|1|add|8|cb|mult
-7|1|add|8|2|mult|mult
-7|1|add|8|0|mult|mult
-7|1|add|8|0|sub|mult
-7|1|add|8|0|sub|sub
-7|1|add|8|0|sub|add
-7|1|add|8|0|add|mult
-7|1|add|8|0|add|sub
-7|1|add|8|0|add|add
-7|1|add|7|6|mult|mult
-7|1|add|7|6|sub|mult
-7|1|add|7|6|sub|add
-7|1|add|7|6|add|mult
-7|1|add|7|6|add|add
-7|1|add|6|5|mult|mult
-7|1|sub|sq
-7|1|sub|0|mult
-7|1|sub|0|sub
-7|1|sub|0|add
-7|1|add|7|cbrt|mult
-7|1|add|7|cb|mult
-7|1|add|7|sq|mult
-7|1|add|7|0|mult|mult
-7|1|add|7|0|sub|mult
-7|1|add|7|0|sub|add
-7|1|add|7|0|add|mult
-7|1|add|7|0|add|add
-7|1|add|7|5|mult|mult
-7|1|add|7|2|add|mult
-7|1|add|7|2|add|add
-7|1|add|8|4|add|mult
-7|1|add|8|4|add|sub
-7|1|add|8|4|add|add
-7|1|add|8|3|mult|mult
-7|1|add|8|3|sub|mult
-7|1|add|8|3|sub|sub
-7|1|add|8|3|sub|add
-7|1|add|8|3|add|mult
-7|1|add|8|3|add|sub
-7|1|add|8|3|add|add
-7|cbrt|8|4|add|mult
-7|1|add|1|add
-7|1|add|cbrt
-7|1|add|cb
-7|1|add|sq
-7|1|add|0|mult
-7|1|add|0|sub
-7|1|add|0|add
-7|cbrt|7|0|mult|mult
-7|cbrt|7|0|sub|mult
-7|cbrt|7|0|add|mult
-7|cbrt|6|5|mult|mult
-7|cbrt|7|2|add|mult
-7|1|add|1|mult
-7|cbrt|8|3|mult|mult
-7|cbrt|8|3|sub|mult
-7|cbrt|8|3|add|mult
-7|cbrt|8|2|mult|mult
-7|cbrt|8|2|sub|mult
-7|cbrt|8|2|add|mult
-7|cbrt|8|1|mult|mult
-7|cbrt|8|1|sub|mult
-7|cbrt|7|5|sub|mult
-7|cbrt|8|cbrt|mult
-7|cbrt|8|cbrt|sub
-7|cbrt|8|cbrt|add
-7|1|add|6|add
-7|1|add|8|1|add|mult
-7|1|add|8|1|add|add
-7|1|add|9|mult
-7|1|add|9|sub
-7|1|add|9|add
-7|1|add|8|mult
-7|1|add|8|sub
-7|1|add|8|add
-7|1|add|7|mult
-7|1|add|7|add
-7|1|add|6|mult
-7|1|add|6|sub
-7|1|sub|cb
-7|1|add|5|mult
-7|1|add|5|sub
-7|1|add|5|add
-7|1|add|4|mult
-7|1|add|4|sub
-7|1|add|4|add
-7|1|add|3|mult
-7|1|add|3|sub
-7|1|add|3|add
-7|1|add|2|mult
-7|1|add|2|sub
-7|1|add|2|add
-7|1|sub|8|4|add|sub
-7|1|sub|7|cbrt|mult
-7|1|sub|7|cb|mult
-7|1|sub|7|sq|mult
-7|1|sub|7|0|mult|mult
-7|1|sub|7|0|sub|mult
-7|1|sub|7|0|sub|add
-7|1|sub|7|0|add|mult
-7|1|sub|7|0|add|add
-7|1|sub|6|5|mult|mult
-7|1|sub|7|2|add|mult
-7|1|sub|7|2|add|add
-7|1|sub|8|4|add|mult
-7|1|sub|7|1|add|mult
-7|1|sub|8|4|add|add
-7|1|sub|8|3|mult|mult
-7|1|sub|8|3|sub|mult
-7|1|sub|8|3|sub|sub
-7|1|sub|8|3|sub|add
-7|1|sub|8|3|add|mult
-7|1|sub|8|3|add|sub
-7|1|sub|8|3|add|add
-7|1|sub|8|2|mult|mult
-7|1|sub|8|2|sub|mult
-7|1|sub|8|2|sub|sub
-7|1|sub|8|2|sub|add
-7|1|mult|9|mult
-7|1|mult|8|0|mult|add
-7|1|mult|8|0|sub|mult
-7|1|mult|8|0|add|mult
-7|1|mult|7|6|mult|mult
-7|1|mult|7|6|mult|sub
-7|1|mult|7|6|mult|add
-7|1|mult|7|6|sub|mult
-7|1|mult|7|6|add|mult
-7|1|mult|7|5|mult|mult
-7|1|mult|7|5|mult|sub
-7|1|mult|7|5|mult|add
-7|1|mult|8|1|add|mult
-7|1|sub|8|2|add|mult
-7|1|mult|8|mult
-7|1|mult|7|mult
-7|1|mult|6|mult
-7|1|mult|5|mult
-7|1|mult|4|mult
-7|1|mult|3|mult
-7|1|mult|2|mult
-7|1|mult|1|mult
-7|1|mult|cbrt
-7|1|mult|cb
-7|1|mult|sq
-7|1|mult|0|mult
-7|1|sub|5|add
-7|1|sub|9|sub
-7|1|sub|9|add
-7|1|sub|8|mult
-7|1|sub|8|sub
-7|1|sub|8|add
-7|1|sub|7|mult
-7|1|sub|7|add
-7|1|sub|6|mult
-7|1|sub|6|sub
-7|1|sub|6|add
-7|1|sub|5|mult
-7|1|sub|5|sub
-7|1|sub|9|mult
-7|1|sub|4|mult
-7|1|sub|4|sub
-7|1|sub|4|add
-7|1|sub|3|mult
-7|1|sub|3|sub
-7|1|sub|3|add
-7|1|sub|2|mult
-7|1|sub|2|sub
-7|1|sub|2|add
-7|1|sub|1|mult
-7|1|sub|1|sub
-7|1|sub|cbrt
-7|1|sub|8|0|sub|sub
-7|1|sub|8|2|add|sub
-7|1|sub|8|2|add|add
-7|1|sub|8|1|mult|mult
-7|1|sub|8|1|sub|mult
-7|1|sub|8|1|sub|add
-7|1|sub|7|5|sub|mult
-7|1|sub|7|5|sub|add
-7|1|sub|8|cbrt|mult
-7|1|sub|8|cb|mult
-7|1|sub|8|sq|mult
-7|1|sub|8|0|mult|mult
-7|1|sub|8|0|sub|mult
-7|2|add|4|mult
-7|1|sub|8|0|sub|add
-7|1|sub|8|0|add|mult
-7|1|sub|8|0|add|sub
-7|1|sub|8|0|add|add
-7|1|sub|7|6|mult|mult
-7|1|sub|7|6|sub|mult
-7|1|sub|7|6|sub|add
-7|1|sub|7|6|add|mult
-7|1|sub|7|6|add|add
-7|1|sub|7|5|mult|mult
-7|1|sub|8|1|add|mult
-7|1|sub|8|1|add|sub
-8|cb|6|mult
-8|cbrt|cbrt
-8|cbrt|sq
-8|cbrt|0|mult
-8|cb|8|0|mult|mult
-8|cb|8|0|sub|mult
-8|cb|8|0|add|mult
-8|cb|7|6|mult|mult
-8|cb|7|6|sub|mult
-8|cb|7|6|add|mult
-8|cb|7|5|mult|mult
-8|cb|8|1|add|mult
-8|cb|9|mult
-8|cb|7|mult
-8|cbrt|1|mult
-8|cb|5|mult
-8|cb|4|mult
-8|cb|3|mult
-8|cb|2|mult
-8|cb|1|mult
-8|cb|cb
-8|cb|sq
-8|cb|0|mult
-8|sq|8|0|mult|mult
-8|sq|8|0|mult|sub
-8|sq|8|0|mult|add
-8|sq|8|0|sub|mult
-8|cbrt|8|0|add|mult
-7|5|sub|2|add
-7|5|sub|1|mult
-7|5|sub|1|sub
-7|5|sub|1|add
-7|5|sub|cbrt
-7|5|sub|cb
-7|5|sub|sq
-7|5|sub|0|mult
-7|5|sub|0|sub
-7|5|sub|0|add
-8|cbrt|8|0|mult|mult
-8|cbrt|8|0|sub|mult
-8|sq|8|0|add|mult
-8|cbrt|7|6|mult|mult
-8|cbrt|7|6|sub|mult
-8|cbrt|7|6|add|mult
-8|cbrt|7|5|mult|mult
-8|cbrt|8|1|add|mult
-8|cbrt|9|mult
-8|cbrt|7|mult
-8|cbrt|6|mult
-8|cbrt|5|mult
-8|cbrt|4|mult
-8|cbrt|3|mult
-8|cbrt|2|mult
-8|0|mult|1|mult
-8|0|mult|7|5|mult|mult
-8|0|mult|7|5|mult|sub
-8|0|mult|7|5|mult|add
-8|0|mult|8|1|add|mult
-8|0|mult|9|mult
-8|0|mult|8|mult
-8|0|mult|7|mult
-8|0|mult|6|mult
-8|0|mult|5|mult
-8|0|mult|4|mult
-8|0|mult|3|mult
-8|0|mult|2|mult
-8|0|mult|7|6|add|mult
-8|0|mult|cbrt
-8|0|mult|cb
-8|0|mult|sq
-8|0|mult|0|mult
-8|0|sub|8|0|add|mult
-8|0|sub|7|6|mult|mult
-8|0|sub|7|6|sub|mult
-8|0|sub|7|6|sub|sub
-8|0|sub|7|6|sub|add
-8|0|sub|7|6|add|mult
-8|0|sub|7|6|add|sub
-8|0|sub|7|6|add|add
-8|sq|5|mult
-8|sq|7|6|mult|mult
-8|sq|7|6|mult|sub
-8|sq|7|6|mult|add
-8|sq|7|6|sub|mult
-8|sq|7|6|add|mult
-8|sq|7|5|mult|mult
-8|sq|7|5|mult|sub
-8|sq|7|5|mult|add
-8|sq|8|1|add|mult
-8|sq|9|mult
-8|sq|7|mult
-8|sq|6|mult
-7|5|sub|2|sub
-8|sq|4|mult
-8|sq|3|mult
-8|sq|2|mult
-8|sq|1|mult
-8|sq|sq
-8|sq|0|mult
-8|0|mult|8|0|sub|mult
-8|0|mult|8|0|add|mult
-8|0|mult|7|6|mult|mult
-8|0|mult|7|6|mult|sub
-8|0|mult|7|6|mult|add
-8|0|mult|7|6|sub|mult
-8|1|sub|7|mult
-8|1|sub|7|6|sub|sub
-8|1|sub|7|6|sub|add
-8|1|sub|7|6|add|mult
-8|1|sub|7|6|add|sub
-8|1|sub|7|6|add|add
-8|1|sub|7|5|mult|mult
-8|1|sub|8|1|add|mult
-8|1|sub|9|mult
-8|1|sub|9|sub
-8|1|sub|9|add
-8|1|sub|8|mult
-8|1|sub|8|add
-8|1|sub|7|6|sub|mult
-8|1|sub|7|sub
-8|1|sub|7|add
-8|1|sub|6|mult
-8|1|sub|6|sub
-8|1|sub|6|add
-8|1|sub|5|mult
-8|1|sub|5|sub
-8|1|sub|5|add
-8|1|sub|4|mult
-8|1|sub|4|sub
-8|1|sub|4|add
-8|1|sub|3|mult
-8|1|mult|0|mult
-8|1|mult|9|mult
-8|1|mult|8|mult
-8|1|mult|7|mult
-8|1|mult|6|mult
-8|1|mult|5|mult
-8|1|mult|4|mult
-8|1|mult|3|mult
-8|1|mult|2|mult
-8|1|mult|1|mult
-8|1|mult|cbrt
-8|1|mult|cb
-8|1|mult|sq
-8|1|sub|3|sub
-8|1|sub|7|5|sub|mult
-8|1|sub|7|5|sub|sub
-8|1|sub|7|5|sub|add
-8|1|sub|8|cbrt|mult
-8|1|sub|8|cb|mult
-8|1|sub|8|sq|mult
-8|1|sub|8|0|mult|mult
-8|1|sub|8|0|sub|mult
-8|1|sub|8|0|sub|add
-8|1|sub|8|0|add|mult
-8|1|sub|8|0|add|add
-8|1|sub|7|6|mult|mult
-7|5|sub|7|add
-7|5|sub|7|6|add|add
-7|5|sub|7|5|mult|mult
-7|5|sub|8|1|add|mult
-7|5|sub|8|1|add|sub
-7|5|sub|8|1|add|add
-7|5|sub|9|mult
-7|5|sub|9|sub
-7|5|sub|9|add
-7|5|sub|8|mult
-7|5|sub|8|sub
-7|5|sub|8|add
-7|5|sub|7|mult
-7|5|sub|7|6|add|mult
-7|5|sub|6|mult
-7|5|sub|6|sub
-7|5|sub|6|add
-7|5|sub|5|mult
-7|5|sub|5|sub
-7|5|sub|4|mult
-7|5|sub|4|sub
-7|5|sub|4|add
-7|5|sub|3|mult
-7|5|sub|3|sub
-7|5|sub|3|add
-7|5|sub|2|mult
-7|5|sub|8|cbrt|mult
-8|1|sub|3|add
-8|1|sub|2|mult
-8|1|sub|2|sub
-8|1|sub|2|add
-8|1|sub|1|mult
-8|1|sub|1|sub
-8|1|sub|cbrt
-8|1|sub|cb
-8|1|sub|sq
-8|1|sub|0|mult
-8|1|sub|0|sub
-8|1|sub|0|add
-8|0|sub|7|5|mult|mult
-7|5|sub|8|cb|mult
-7|5|sub|8|sq|mult
-7|5|sub|8|0|mult|mult
-7|5|sub|8|0|sub|mult
-7|5|sub|8|0|sub|sub
-7|5|sub|8|0|sub|add
-7|5|sub|8|0|add|mult
-7|5|sub|8|0|add|sub
-7|5|sub|8|0|add|add
-7|5|sub|7|6|mult|mult
-7|5|sub|7|6|sub|mult
-7|5|sub|7|6|sub|add
-7|6|add|5|mult
-7|6|add|8|1|add|mult
-7|6|add|8|1|add|sub
-7|6|add|8|1|add|add
-7|6|add|9|mult
-7|6|add|9|sub
-7|6|add|9|add
-7|6|add|8|mult
-7|6|add|8|sub
-7|6|add|8|add
-7|6|add|7|mult
-7|6|add|7|add
-7|6|add|6|mult
-7|6|add|6|add
-7|6|add|7|5|mult|mult
-7|6|add|5|sub
-7|6|add|5|add
-7|6|add|4|mult
-7|6|add|4|sub
-7|6|add|4|add
-7|6|add|3|mult
-7|6|add|3|sub
-7|6|add|3|add
-7|6|add|2|mult
-7|6|add|2|sub
-7|6|add|2|add
-7|6|add|1|mult
-7|6|sub|3|add
-7|6|sub|7|mult
-7|6|sub|7|add
-7|6|sub|6|mult
-7|6|sub|6|sub
-7|6|sub|5|mult
-7|6|sub|5|sub
-7|6|sub|5|add
-7|6|sub|4|mult
-7|6|sub|4|sub
-7|6|sub|4|add
-7|6|sub|3|mult
-7|6|sub|3|sub
-7|6|add|1|sub
-7|6|sub|2|mult
-7|6|sub|2|sub
-7|6|sub|2|add
-7|6|sub|1|mult
-7|6|sub|1|sub
-7|6|sub|1|add
-7|6|sub|cbrt
-7|6|sub|cb
-7|6|sub|sq
-7|6|sub|0|mult
-7|6|sub|0|sub
-7|6|sub|0|add
-8|1|add|3|mult
-8|1|add|7|mult
-8|1|add|7|sub
-8|1|add|7|add
-8|1|add|6|mult
-8|1|add|6|sub
-8|1|add|6|add
-8|1|add|5|mult
-8|1|add|5|sub
-8|1|add|5|add
-8|1|add|4|mult
-8|1|add|4|sub
-8|1|add|4|add
-8|1|add|8|add
-8|1|add|3|sub
-8|1|add|3|add
-8|1|add|2|mult
-8|1|add|2|sub
-8|1|add|2|add
-8|1|add|1|mult
-8|1|add|1|add
-8|1|add|cbrt
-8|1|add|cb
-8|1|add|sq
-8|1|add|0|mult
-8|1|add|0|sub
-7|5|mult|5|mult
-7|6|add|1|add
-7|6|add|cbrt
-7|6|add|cb
-7|6|add|sq
-7|6|add|0|mult
-7|6|add|0|sub
-7|6|add|0|add
-7|5|mult|8|1|add|mult
-7|5|mult|9|mult
-7|5|mult|8|mult
-7|5|mult|7|mult
-7|5|mult|6|mult
-7|6|sub|8|add
-7|5|mult|4|mult
-7|5|mult|3|mult
-7|5|mult|2|mult
-7|5|mult|1|mult
-7|5|mult|cbrt
-7|5|mult|cb
-7|5|mult|sq
-7|5|mult|0|mult
-8|1|add|9|mult
-8|1|add|9|sub
-8|1|add|9|add
-8|1|add|8|mult
-8|0|add|7|6|add|sub
-8|0|sub|1|sub
-8|0|sub|1|add
-8|0|sub|cbrt
-8|0|sub|cb
-8|0|sub|sq
-8|0|sub|0|mult
-8|0|sub|0|sub
-8|0|add|7|6|mult|mult
-8|0|add|7|6|sub|mult
-8|0|add|7|6|sub|sub
-8|0|add|7|6|sub|add
-8|0|add|7|6|add|mult
-8|0|sub|1|mult
-8|0|add|7|6|add|add
-8|0|add|7|5|mult|mult
-8|0|add|8|1|add|mult
-8|0|add|8|1|add|add
-8|0|add|9|mult
-8|0|add|9|sub
-8|0|add|9|add
-8|0|add|8|mult
-8|0|add|8|add
-8|0|add|7|mult
-8|0|add|7|sub
-8|0|add|7|add
-8|0|sub|6|add
-8|0|sub|8|1|add|mult
-8|0|sub|8|1|add|add
-8|0|sub|9|mult
-8|0|sub|9|sub
-8|0|sub|9|add
-8|0|sub|8|mult
-8|0|sub|8|add
-8|0|sub|7|mult
-8|0|sub|7|sub
-8|0|sub|7|add
-8|0|sub|6|mult
-8|0|sub|6|sub
-8|0|add|6|mult
-8|0|sub|5|mult
-8|0|sub|5|sub
-8|0|sub|5|add
-8|0|sub|4|mult
-8|0|sub|4|sub
-8|0|sub|4|add
-8|0|sub|3|mult
-8|0|sub|3|sub
-8|0|sub|3|add
-8|0|sub|2|mult
-8|0|sub|2|sub
-8|0|sub|2|add
-7|6|mult|cb
-7|6|mult|7|5|mult|add
-7|6|mult|8|1|add|mult
-7|6|mult|9|mult
-7|6|mult|8|mult
-7|6|mult|7|mult
-7|6|mult|6|mult
-7|6|mult|5|mult
-7|6|mult|4|mult
-7|6|mult|3|mult
-7|6|mult|2|mult
-7|6|mult|1|mult
-7|6|mult|cbrt
-7|6|mult|7|5|mult|sub
-7|6|mult|sq
-7|6|mult|0|mult
-7|6|sub|7|6|add|mult
-7|6|sub|7|5|mult|mult
-7|6|sub|8|1|add|mult
-7|6|sub|8|1|add|sub
-7|6|sub|8|1|add|add
-7|6|sub|9|mult
-7|6|sub|9|sub
-7|6|sub|9|add
-7|6|sub|8|mult
-7|6|sub|8|sub
-8|0|add|2|sub
-8|0|add|6|sub
-8|0|add|6|add
-8|0|add|5|mult
-8|0|add|5|sub
-8|0|add|5|add
-8|0|add|4|mult
-8|0|add|4|sub
-8|0|add|4|add
-8|0|add|3|mult
-8|0|add|3|sub
-8|0|add|3|add
-8|0|add|2|mult
-8|1|mult|8|1|add|mult
-8|0|add|2|add
-8|0|add|1|mult
-8|0|add|1|sub
-8|0|add|1|add
-8|0|add|cbrt
-8|0|add|cb
-8|0|add|sq
-8|0|add|0|mult
-8|0|add|0|add
-7|6|mult|7|6|sub|mult
-7|6|mult|7|6|add|mult
-7|6|mult|7|5|mult|mult
-8|3|sub|8|0|add|mult
-8|3|sub|8|2|add|add
-8|3|sub|8|1|mult|mult
-8|3|sub|8|1|sub|mult
-8|3|sub|8|1|sub|add
-8|3|sub|7|5|sub|mult
-8|3|sub|7|5|sub|sub
-8|3|sub|7|5|sub|add
-8|3|sub|8|cbrt|mult
-8|3|sub|8|cb|mult
-8|3|sub|8|sq|mult
-8|3|sub|8|0|mult|mult
-8|3|sub|8|0|sub|mult
-8|3|sub|8|0|sub|add
-8|3|sub|8|2|add|mult
-8|3|sub|8|0|add|add
-8|3|sub|7|6|mult|mult
-8|3|sub|7|6|sub|mult
-8|3|sub|7|6|sub|sub
-8|3|sub|7|6|sub|add
-8|3|sub|7|6|add|mult
-8|3|sub|7|6|add|sub
-8|3|sub|7|6|add|add
-8|3|sub|7|5|mult|mult
-8|3|sub|8|1|add|mult
-8|3|sub|8|1|add|add
-8|3|sub|9|mult
-8|3|mult|5|mult
-8|3|mult|7|6|mult|sub
-8|3|mult|7|6|mult|add
-8|3|mult|7|6|sub|mult
-8|3|mult|7|6|add|mult
-8|3|mult|7|5|mult|mult
-8|3|mult|7|5|mult|sub
-8|3|mult|7|5|mult|add
-8|3|mult|8|1|add|mult
-8|3|mult|9|mult
-8|3|mult|8|mult
-8|3|mult|7|mult
-8|3|mult|6|mult
-8|3|sub|9|sub
-8|3|mult|4|mult
-8|3|mult|3|mult
-8|3|mult|2|mult
-8|3|mult|1|mult
-8|3|mult|cbrt
-8|3|mult|cb
-8|3|mult|sq
-8|3|mult|0|mult
-8|3|sub|8|3|add|mult
-8|3|sub|8|2|mult|mult
-8|3|sub|8|2|sub|mult
-8|3|sub|8|2|sub|add
-8|3|add|7|5|sub|sub
-8|3|sub|0|mult
-8|3|sub|0|sub
-8|3|sub|0|add
-8|3|add|8|2|mult|mult
-8|3|add|8|2|sub|mult
-8|3|add|8|2|sub|add
-8|3|add|8|2|add|mult
-8|3|add|8|2|add|add
-8|3|add|8|1|mult|mult
-8|3|add|8|1|sub|mult
-8|3|add|8|1|sub|add
-8|3|add|7|5|sub|mult
-8|3|sub|sq
-8|3|add|7|5|sub|add
-8|3|add|8|cbrt|mult
-8|3|add|8|cb|mult
-8|3|add|8|sq|mult
-8|3|add|8|0|mult|mult
-8|3|add|8|0|sub|mult
-8|3|add|8|0|sub|add
-8|3|add|8|0|add|mult
-8|3|add|8|0|add|add
-8|3|add|7|6|mult|mult
-8|3|add|7|6|sub|mult
-8|3|add|7|6|sub|sub
-8|3|sub|4|mult
-8|3|sub|9|add
-8|3|sub|8|mult
-8|3|sub|8|add
-8|3|sub|7|mult
-8|3|sub|7|sub
-8|3|sub|7|add
-8|3|sub|6|mult
-8|3|sub|6|sub
-8|3|sub|6|add
-8|3|sub|5|mult
-8|3|sub|5|sub
-8|3|sub|5|add
-8|3|mult|7|6|mult|mult
-8|3|sub|4|sub
-8|3|sub|4|add
-8|3|sub|3|mult
-8|3|sub|3|sub
-8|3|sub|2|mult
-8|3|sub|2|sub
-8|3|sub|2|add
-8|3|sub|1|mult
-8|3|sub|1|sub
-8|3|sub|1|add
-8|3|sub|cbrt
-8|3|sub|cb
-8|4|add|8|0|add|mult
-8|4|add|8|1|mult|mult
-8|4|add|8|1|sub|mult
-8|4|add|8|1|sub|add
-8|4|add|7|5|sub|mult
-8|4|add|7|5|sub|sub
-8|4|add|7|5|sub|add
-8|4|add|8|cbrt|mult
-8|4|add|8|cb|mult
-8|4|add|8|sq|mult
-8|4|add|8|0|mult|mult
-8|4|add|8|0|sub|mult
-8|4|add|8|0|sub|add
-8|4|add|8|2|add|add
-8|4|add|8|0|add|add
-8|4|add|7|6|mult|mult
-8|4|add|7|6|sub|mult
-8|4|add|7|6|sub|sub
-8|4|add|7|6|sub|add
-8|4|add|7|6|add|mult
-8|4|add|7|6|add|sub
-8|4|add|7|6|add|add
-8|4|add|7|5|mult|mult
-8|4|add|8|1|add|mult
-8|4|add|8|1|add|add
-8|4|add|9|mult
-7|2|add|sq
-7|2|add|4|sub
-7|2|add|4|add
-7|2|add|3|mult
-7|2|add|3|sub
-7|2|add|3|add
-7|2|add|2|mult
-7|2|add|2|add
-7|2|add|1|mult
-7|2|add|1|sub
-7|2|add|1|add
-7|2|add|cbrt
-7|2|add|cb
-8|4|add|9|sub
-7|2|add|0|mult
-7|2|add|0|sub
-7|2|add|0|add
-8|4|add|8|3|mult|mult
-8|4|add|8|3|sub|mult
-8|4|add|8|3|sub|add
-8|4|add|8|3|add|mult
-8|4|add|8|3|add|add
-8|4|add|8|2|mult|mult
-8|4|add|8|2|sub|mult
-8|4|add|8|2|sub|add
-8|4|add|8|2|add|mult
-8|3|mult|8|1|mult|add
-8|4|add|0|mult
-8|4|add|0|sub
-8|4|add|0|add
-8|3|mult|8|3|sub|mult
-8|3|mult|8|3|add|mult
-8|3|mult|8|2|mult|mult
-8|3|mult|8|2|mult|sub
-8|3|mult|8|2|mult|add
-8|3|mult|8|2|sub|mult
-8|3|mult|8|2|add|mult
-8|3|mult|8|1|mult|mult
-8|3|mult|8|1|mult|sub
-8|4|add|sq
-8|3|mult|8|1|sub|mult
-8|3|mult|7|5|sub|mult
-8|3|mult|8|cbrt|mult
-8|3|mult|8|cb|mult
-8|3|mult|8|sq|mult
-8|3|mult|8|sq|sub
-8|3|mult|8|sq|add
-8|3|mult|8|0|mult|mult
-8|3|mult|8|0|mult|sub
-8|3|mult|8|0|mult|add
-8|3|mult|8|0|sub|mult
-8|3|mult|8|0|add|mult
-8|4|add|4|mult
-8|4|add|9|add
-8|4|add|8|mult
-8|4|add|8|add
-8|4|add|7|mult
-8|4|add|7|sub
-8|4|add|7|add
-8|4|add|6|mult
-8|4|add|6|sub
-8|4|add|6|add
-8|4|add|5|mult
-8|4|add|5|sub
-8|4|add|5|add
-8|3|add|7|6|sub|add
-8|4|add|4|add
-8|4|add|3|mult
-8|4|add|3|sub
-8|4|add|3|add
-8|4|add|2|mult
-8|4|add|2|sub
-8|4|add|2|add
-8|4|add|1|mult
-8|4|add|1|sub
-8|4|add|1|add
-8|4|add|cbrt
-8|4|add|cb
-8|2|add|8|0|sub|mult
-8|2|sub|0|sub
-8|2|sub|0|add
-8|2|add|8|1|mult|mult
-8|2|add|8|1|sub|mult
-8|2|add|8|1|sub|add
-8|2|add|7|5|sub|mult
-8|2|add|7|5|sub|sub
-8|2|add|7|5|sub|add
-8|2|add|8|cbrt|mult
-8|2|add|8|cb|mult
-8|2|add|8|sq|mult
-8|2|add|8|0|mult|mult
-8|2|sub|0|mult
-8|2|add|8|0|sub|add
-8|2|add|8|0|add|mult
-8|2|add|8|0|add|add
-8|2|add|7|6|mult|mult
-8|2|add|7|6|sub|mult
-8|2|add|7|6|sub|sub
-8|2|add|7|6|sub|add
-8|2|add|7|6|add|mult
-8|2|add|7|6|add|sub
-8|2|add|7|6|add|add
-8|2|add|7|5|mult|mult
-8|2|add|8|1|add|mult
-8|2|sub|4|sub
-8|2|sub|8|mult
-8|2|sub|8|add
-8|2|sub|7|mult
-8|2|sub|7|sub
-8|2|sub|7|add
-8|2|sub|6|mult
-8|2|sub|6|sub
-8|2|sub|6|add
-8|2|sub|5|mult
-8|2|sub|5|sub
-8|2|sub|5|add
-8|2|sub|4|mult
-8|2|add|8|1|add|add
-8|2|sub|4|add
-8|2|sub|3|mult
-8|2|sub|3|sub
-8|2|sub|3|add
-8|2|sub|2|mult
-8|2|sub|2|sub
-8|2|sub|1|mult
-8|2|sub|1|sub
-8|2|sub|1|add
-8|2|sub|cbrt
-8|2|sub|cb
-8|2|sub|sq
-8|1|mult|8|0|mult|mult
-8|2|add|cb
-8|2|add|sq
-8|2|add|0|mult
-8|2|add|0|sub
-8|2|add|0|add
-8|1|mult|8|1|sub|mult
-8|1|mult|7|5|sub|mult
-8|1|mult|8|cbrt|mult
-8|1|mult|8|cb|mult
-8|1|mult|8|sq|mult
-8|1|mult|8|sq|sub
-8|1|mult|8|sq|add
-8|2|add|cbrt
-8|1|mult|8|0|mult|sub
-8|1|mult|8|0|mult|add
-8|1|mult|8|0|sub|mult
-8|1|mult|8|0|add|mult
-8|1|mult|7|6|mult|mult
-8|1|mult|7|6|mult|sub
-8|1|mult|7|6|mult|add
-8|1|mult|7|6|sub|mult
-8|1|mult|7|6|add|mult
-8|1|mult|7|5|mult|mult
-8|1|mult|7|5|mult|sub
-8|1|mult|7|5|mult|add
-8|2|add|5|sub
-8|2|add|9|mult
-8|2|add|9|sub
-8|2|add|9|add
-8|2|add|8|mult
-8|2|add|8|add
-8|2|add|7|mult
-8|2|add|7|sub
-8|2|add|7|add
-8|2|add|6|mult
-8|2|add|6|sub
-8|2|add|6|add
-8|2|add|5|mult
-8|2|sub|9|add
-8|2|add|5|add
-8|2|add|4|mult
-8|2|add|4|sub
-8|2|add|4|add
-8|2|add|3|mult
-8|2|add|3|sub
-8|2|add|3|add
-8|2|add|2|mult
-8|2|add|2|add
-8|2|add|1|mult
-8|2|add|1|sub
-8|2|add|1|add
-8|2|mult|8|2|add|mult
-8|3|add|2|sub
-8|3|add|2|add
-8|3|add|1|mult
-8|3|add|1|sub
-8|3|add|1|add
-8|3|add|cbrt
-8|3|add|cb
-8|3|add|sq
-8|3|add|0|mult
-8|3|add|0|sub
-8|3|add|0|add
-8|2|mult|8|2|sub|mult
-8|3|add|2|mult
-8|2|mult|8|1|mult|mult
-8|2|mult|8|1|mult|sub
-8|2|mult|8|1|mult|add
-8|2|mult|8|1|sub|mult
-8|2|mult|7|5|sub|mult
-8|2|mult|8|cbrt|mult
-8|2|mult|8|cb|mult
-8|2|mult|8|sq|mult
-8|2|mult|8|sq|sub
-8|2|mult|8|sq|add
-8|2|mult|8|0|mult|mult
-8|2|mult|8|0|mult|sub
-8|3|add|7|sub
-8|3|add|7|6|add|mult
-8|3|add|7|6|add|sub
-8|3|add|7|6|add|add
-8|3|add|7|5|mult|mult
-8|3|add|8|1|add|mult
-8|3|add|8|1|add|add
-8|3|add|9|mult
-8|3|add|9|sub
-8|3|add|9|add
-8|3|add|8|mult
-8|3|add|8|add
-8|3|add|7|mult
-8|2|mult|8|0|mult|add
-8|3|add|7|add
-8|3|add|6|mult
-8|3|add|6|sub
-8|3|add|6|add
-8|3|add|5|mult
-8|3|add|5|sub
-8|3|add|5|add
-8|3|add|4|mult
-8|3|add|4|sub
-8|3|add|4|add
-8|3|add|3|mult
-8|3|add|3|add
-8|2|sub|8|0|add|add
-8|2|sub|8|1|sub|mult
-8|2|sub|8|1|sub|add
-8|2|sub|7|5|sub|mult
-8|2|sub|7|5|sub|sub
-8|2|sub|7|5|sub|add
-8|2|sub|8|cbrt|mult
-8|2|sub|8|cb|mult
-8|2|sub|8|sq|mult
-8|2|sub|8|0|mult|mult
-8|2|sub|8|0|sub|mult
-8|2|sub|8|0|sub|add
-8|2|sub|8|0|add|mult
-8|2|sub|8|1|mult|mult
-8|2|sub|7|6|mult|mult
-8|2|sub|7|6|sub|mult
-8|2|sub|7|6|sub|sub
-8|2|sub|7|6|sub|add
-8|2|sub|7|6|add|mult
-8|2|sub|7|6|add|sub
-8|2|sub|7|6|add|add
-8|2|sub|7|5|mult|mult
-8|2|sub|8|1|add|mult
-8|2|sub|8|1|add|add
-8|2|sub|9|mult
-8|2|sub|9|sub
-8|2|mult|8|mult
-8|2|mult|8|0|sub|mult
-8|2|mult|8|0|add|mult
-8|2|mult|7|6|mult|mult
-8|2|mult|7|6|mult|sub
-8|2|mult|7|6|mult|add
-8|2|mult|7|6|sub|mult
-8|2|mult|7|6|add|mult
-8|2|mult|7|5|mult|mult
-8|2|mult|7|5|mult|sub
-8|2|mult|7|5|mult|add
-8|2|mult|8|1|add|mult
-8|2|mult|9|mult
-7|2|sub|7|1|sub|add
-8|2|mult|7|mult
-8|2|mult|6|mult
-8|2|mult|5|mult
-8|2|mult|4|mult
-8|2|mult|3|mult
-8|2|mult|2|mult
-8|2|mult|1|mult
-8|2|mult|cbrt
-8|2|mult|cb
-8|2|mult|sq
-8|2|mult|0|mult
-8|2|sub|8|2|add|mult
-9|3|add|7|3|sub|mult
-9|3|add|9|2|sub|add
-9|3|add|9|5|mult|mult
-9|3|add|7|5|add|mult
-9|3|add|7|5|add|sub
-9|3|add|7|5|add|add
-9|3|add|7|4|mult|mult
-9|3|add|7|4|sub|mult
-9|3|add|7|4|sub|sub
-9|3|add|7|4|sub|add
-9|3|add|7|4|add|mult
-9|3|add|7|4|add|sub
-9|3|add|7|4|add|add
-9|3|add|7|3|mult|mult
-9|3|add|9|2|sub|mult
-9|3|add|7|3|sub|sub
-9|3|add|7|3|add|mult
-9|3|add|7|3|add|add
-9|3|add|7|2|mult|mult
-9|3|add|7|2|sub|mult
-9|3|add|7|2|sub|sub
-9|3|add|7|2|sub|add
-9|3|add|8|4|sub|mult
-9|3|add|8|4|sub|sub
-9|3|add|8|4|sub|add
-9|3|add|7|1|mult|mult
-9|3|add|7|1|sub|mult
-9|3|sub|2|mult
-9|3|sub|7|add
-9|3|sub|6|mult
-9|3|sub|6|sub
-9|3|sub|6|add
-9|3|sub|5|mult
-9|3|sub|5|sub
-9|3|sub|5|add
-9|3|sub|4|mult
-9|3|sub|4|sub
-9|3|sub|4|add
-9|3|sub|3|mult
-9|3|sub|3|sub
-9|3|add|7|1|sub|sub
-9|3|sub|2|sub
-9|3|sub|2|add
-9|3|sub|1|mult
-9|3|sub|1|sub
-9|3|sub|1|add
-9|3|sub|cbrt
-9|3|sub|cb
-9|3|sub|sq
-9|3|sub|0|mult
-9|3|sub|0|sub
-9|3|sub|0|add
-9|3|add|9|2|mult|mult
-9|3|add|7|5|sub|sub
-9|3|add|8|2|mult|mult
-9|3|add|8|2|sub|mult
-9|3|add|8|2|sub|sub
-9|3|add|8|2|sub|add
-9|3|add|8|2|add|mult
-9|3|add|8|2|add|sub
-9|3|add|8|2|add|add
-9|3|add|8|1|mult|mult
-9|3|add|8|1|sub|mult
-9|3|add|8|1|sub|sub
-9|3|add|8|1|sub|add
-9|3|add|7|5|sub|mult
-9|3|add|8|3|add|add
-9|3|add|7|5|sub|add
-9|3|add|8|cbrt|mult
-9|3|add|8|cb|mult
-9|3|add|8|sq|mult
-9|3|add|8|0|mult|mult
-9|3|add|8|0|sub|mult
-9|3|add|8|0|sub|sub
-9|3|add|8|0|sub|add
-9|3|add|8|0|add|mult
-9|3|add|8|0|add|sub
-9|3|add|8|0|add|add
-9|3|add|7|6|mult|mult
-9|3|add|7|0|add|sub
-9|3|add|7|1|sub|add
-9|3|add|7|1|add|mult
-9|3|add|7|1|add|sub
-9|3|add|7|1|add|add
-9|3|add|7|cbrt|mult
-9|3|add|7|cb|mult
-9|3|add|7|sq|mult
-9|3|add|7|0|mult|mult
-9|3|add|7|0|sub|mult
-9|3|add|7|0|sub|sub
-9|3|add|7|0|sub|add
-9|3|add|7|0|add|mult
-9|3|sub|7|sub
-9|3|add|7|0|add|add
-9|3|add|6|5|mult|mult
-9|3|add|7|2|add|mult
-9|3|add|7|2|add|sub
-9|3|add|7|2|add|add
-9|3|add|8|4|add|mult
-9|3|add|8|4|add|sub
-9|3|add|8|4|add|add
-9|3|add|8|3|mult|mult
-9|3|add|8|3|sub|mult
-9|3|add|8|3|sub|sub
-9|3|add|8|3|add|mult
-9|3|sub|7|1|add|sub
-9|3|sub|7|2|mult|mult
-9|3|sub|7|2|sub|mult
-9|3|sub|7|2|sub|sub
-9|3|sub|7|2|sub|add
-9|3|sub|8|4|sub|mult
-9|3|sub|8|4|sub|sub
-9|3|sub|8|4|sub|add
-9|3|sub|7|1|mult|mult
-9|3|sub|7|1|sub|mult
-9|3|sub|7|1|sub|sub
-9|3|sub|7|1|sub|add
-9|3|sub|7|1|add|mult
-9|3|sub|7|3|add|sub
-9|3|sub|7|1|add|add
-9|3|sub|7|cbrt|mult
-9|3|sub|7|cb|mult
-9|3|sub|7|sq|mult
-9|3|sub|7|0|mult|mult
-9|3|sub|7|0|sub|mult
-9|3|sub|7|0|sub|sub
-9|3|sub|7|0|sub|add
-9|3|sub|7|0|add|mult
-9|3|sub|7|0|add|sub
-9|3|sub|7|0|add|add
-9|3|sub|6|5|mult|mult
-9|3|sub|7|5|add|sub
-9|3|mult|2|mult
-9|3|mult|1|mult
-9|3|mult|cbrt
-9|3|mult|cb
-9|3|mult|sq
-9|3|mult|0|mult
-9|3|sub|9|3|add|mult
-9|3|sub|9|2|mult|mult
-9|3|sub|9|2|sub|mult
-9|3|sub|9|2|sub|add
-9|3|sub|9|5|mult|mult
-9|3|sub|7|5|add|mult
-9|3|sub|7|2|add|mult
-9|3|sub|7|5|add|add
-9|3|sub|7|4|mult|mult
-9|3|sub|7|4|sub|mult
-9|3|sub|7|4|sub|sub
-9|3|sub|7|4|sub|add
-9|3|sub|7|4|add|mult
-9|3|sub|7|4|add|sub
-9|3|sub|7|4|add|add
-9|3|sub|7|3|mult|mult
-9|3|sub|7|3|sub|mult
-9|3|sub|7|3|sub|add
-9|3|sub|7|3|add|mult
-9|3|sub|7|6|add|mult
-9|3|sub|8|sq|mult
-9|3|sub|8|0|mult|mult
-9|3|sub|8|0|sub|mult
-9|3|sub|8|0|sub|sub
-9|3|sub|8|0|sub|add
-9|3|sub|8|0|add|mult
-9|3|sub|8|0|add|sub
-9|3|sub|8|0|add|add
-9|3|sub|7|6|mult|mult
-9|3|sub|7|6|sub|mult
-9|3|sub|7|6|sub|sub
-9|3|sub|7|6|sub|add
-9|3|sub|8|cb|mult
-9|3|sub|7|6|add|sub
-9|3|sub|7|6|add|add
-9|3|sub|7|5|mult|mult
-9|3|sub|8|1|add|mult
-9|3|sub|8|1|add|sub
-9|3|sub|8|1|add|add
-9|3|sub|9|mult
-9|3|sub|9|add
-9|3|sub|8|mult
-9|3|sub|8|sub
-9|3|sub|8|add
-9|3|sub|7|mult
-9|3|sub|8|2|sub|sub
-9|3|sub|7|2|add|sub
-9|3|sub|7|2|add|add
-9|3|sub|8|4|add|mult
-9|3|sub|8|4|add|sub
-9|3|sub|8|4|add|add
-9|3|sub|8|3|mult|mult
-9|3|sub|8|3|sub|mult
-9|3|sub|8|3|sub|add
-9|3|sub|8|3|add|mult
-9|3|sub|8|3|add|sub
-9|3|sub|8|2|mult|mult
-9|3|sub|8|2|sub|mult
-9|3|add|7|6|sub|mult
-9|3|sub|8|2|sub|add
-9|3|sub|8|2|add|mult
-9|3|sub|8|2|add|sub
-9|3|sub|8|2|add|add
-9|3|sub|8|1|mult|mult
-9|3|sub|8|1|sub|mult
-9|3|sub|8|1|sub|sub
-9|3|sub|8|1|sub|add
-9|3|sub|7|5|sub|mult
-9|3|sub|7|5|sub|sub
-9|3|sub|7|5|sub|add
-9|3|sub|8|cbrt|mult
-9|2|sub|7|3|add|sub
-9|2|sub|7|5|add|add
-9|2|sub|7|4|mult|mult
-9|2|sub|7|4|sub|mult
-9|2|sub|7|4|sub|sub
-9|2|sub|7|4|sub|add
-9|2|sub|7|4|add|mult
-9|2|sub|7|4|add|sub
-9|2|sub|7|4|add|add
-9|2|sub|7|3|mult|mult
-9|2|sub|7|3|sub|mult
-9|2|sub|7|3|sub|sub
-9|2|sub|7|3|sub|add
-9|2|sub|7|3|add|mult
-9|2|sub|7|5|add|sub
-9|2|sub|7|3|add|add
-9|2|sub|7|2|mult|mult
-9|2|sub|7|2|sub|mult
-9|2|sub|7|2|sub|add
-9|2|sub|8|4|sub|mult
-9|2|sub|8|4|sub|sub
-9|2|sub|8|4|sub|add
-9|2|sub|7|1|mult|mult
-9|2|sub|7|1|sub|mult
-9|2|sub|7|1|sub|sub
-9|2|sub|7|1|sub|add
-9|2|sub|7|1|add|mult
-9|2|mult|7|mult
-9|2|mult|8|0|add|mult
-9|2|mult|7|6|mult|mult
-9|2|mult|7|6|mult|sub
-9|2|mult|7|6|mult|add
-9|2|mult|7|6|sub|mult
-9|2|mult|7|6|add|mult
-9|2|mult|7|5|mult|mult
-9|2|mult|7|5|mult|sub
-9|2|mult|7|5|mult|add
-9|2|mult|8|1|add|mult
-9|2|mult|9|mult
-9|2|mult|8|mult
-9|2|sub|7|1|add|sub
-9|2|mult|6|mult
-9|2|mult|5|mult
-9|2|mult|4|mult
-9|2|mult|3|mult
-9|2|mult|2|mult
-9|2|mult|1|mult
-9|2|mult|cbrt
-9|2|mult|cb
-9|2|mult|sq
-9|2|mult|0|mult
-9|2|sub|9|5|mult|mult
-9|2|sub|7|5|add|mult
-9|2|sub|8|sq|mult
-9|2|sub|8|2|sub|add
-9|2|sub|8|2|add|mult
-9|2|sub|8|2|add|sub
-9|2|sub|8|1|mult|mult
-9|2|sub|8|1|sub|mult
-9|2|sub|8|1|sub|sub
-9|2|sub|8|1|sub|add
-9|2|sub|7|5|sub|mult
-9|2|sub|7|5|sub|sub
-9|2|sub|7|5|sub|add
-9|2|sub|8|cbrt|mult
-9|2|sub|8|cb|mult
-9|2|sub|8|2|sub|mult
-9|2|sub|8|0|mult|mult
-9|2|sub|8|0|sub|mult
-9|2|sub|8|0|sub|sub
-9|2|sub|8|0|sub|add
-9|2|sub|8|0|add|mult
-9|2|sub|8|0|add|sub
-9|2|sub|8|0|add|add
-9|2|sub|7|6|mult|mult
-9|2|sub|7|6|sub|mult
-9|2|sub|7|6|sub|sub
-9|2|sub|7|6|sub|add
-9|2|sub|7|6|add|mult
-9|2|sub|7|2|add|mult
-9|2|sub|7|1|add|add
-9|2|sub|7|cbrt|mult
-9|2|sub|7|cb|mult
-9|2|sub|7|sq|mult
-9|2|sub|7|0|mult|mult
-9|2|sub|7|0|sub|mult
-9|2|sub|7|0|sub|sub
-9|2|sub|7|0|sub|add
-9|2|sub|7|0|add|mult
-9|2|sub|7|0|add|sub
-9|2|sub|7|0|add|add
-9|2|sub|6|5|mult|mult
-9|2|mult|8|0|sub|mult
-9|2|sub|7|2|add|sub
-9|2|sub|8|4|add|mult
-9|2|sub|8|4|add|sub
-9|2|sub|8|4|add|add
-9|2|sub|8|3|mult|mult
-9|2|sub|8|3|sub|mult
-9|2|sub|8|3|sub|sub
-9|2|sub|8|3|sub|add
-9|2|sub|8|3|add|mult
-9|2|sub|8|3|add|sub
-9|2|sub|8|3|add|add
-9|2|sub|8|2|mult|mult
-9|3|add|0|sub
-9|3|add|3|mult
-9|3|add|3|add
-9|3|add|2|mult
-9|3|add|2|sub
-9|3|add|2|add
-9|3|add|1|mult
-9|3|add|1|sub
-9|3|add|1|add
-9|3|add|cbrt
-9|3|add|cb
-9|3|add|sq
-9|3|add|0|mult
-9|3|add|4|add
-9|3|add|0|add
-9|2|mult|9|2|sub|mult
-9|2|mult|9|5|mult|mult
-9|2|mult|9|5|mult|sub
-9|2|mult|9|5|mult|add
-9|2|mult|7|5|add|mult
-9|2|mult|7|4|mult|mult
-9|2|mult|7|4|mult|sub
-9|2|mult|7|4|mult|add
-9|2|mult|7|4|sub|mult
-9|2|mult|7|4|add|mult
-9|2|mult|7|3|mult|mult
-9|3|add|8|sub
-9|3|add|7|6|sub|sub
-9|3|add|7|6|sub|add
-9|3|add|7|6|add|mult
-9|3|add|7|6|add|sub
-9|3|add|7|6|add|add
-9|3|add|7|5|mult|mult
-9|3|add|8|1|add|mult
-9|3|add|8|1|add|sub
-9|3|add|8|1|add|add
-9|3|add|9|mult
-9|3|add|9|add
-9|3|add|8|mult
-9|2|mult|7|3|mult|sub
-9|3|add|8|add
-9|3|add|7|mult
-9|3|add|7|sub
-9|3|add|7|add
-9|3|add|6|mult
-9|3|add|6|sub
-9|3|add|6|add
-9|3|add|5|mult
-9|3|add|5|sub
-9|3|add|5|add
-9|3|add|4|mult
-9|3|add|4|sub
-9|2|mult|8|1|mult|mult
-9|2|mult|7|2|add|mult
-9|2|mult|8|4|add|mult
-9|2|mult|8|3|mult|mult
-9|2|mult|8|3|mult|sub
-9|2|mult|8|3|mult|add
-9|2|mult|8|3|sub|mult
-9|2|mult|8|3|add|mult
-9|2|mult|8|2|mult|mult
-9|2|mult|8|2|mult|sub
-9|2|mult|8|2|mult|add
-9|2|mult|8|2|sub|mult
-9|2|mult|8|2|add|mult
-9|2|mult|6|5|mult|add
-9|2|mult|8|1|mult|sub
-9|2|mult|8|1|mult|add
-9|2|mult|8|1|sub|mult
-9|2|mult|7|5|sub|mult
-9|2|mult|8|cbrt|mult
-9|2|mult|8|cb|mult
-9|2|mult|8|sq|mult
-9|2|mult|8|sq|sub
-9|2|mult|8|sq|add
-9|2|mult|8|0|mult|mult
-9|2|mult|8|0|mult|sub
-9|2|mult|8|0|mult|add
-9|2|mult|7|1|add|mult
-9|2|mult|7|3|mult|add
-9|2|mult|7|3|sub|mult
-9|2|mult|7|3|add|mult
-9|2|mult|7|2|mult|mult
-9|2|mult|7|2|mult|sub
-9|2|mult|7|2|mult|add
-9|2|mult|7|2|sub|mult
-9|2|mult|8|4|sub|mult
-9|2|mult|7|1|mult|mult
-9|2|mult|7|1|mult|sub
-9|2|mult|7|1|mult|add
-9|2|mult|7|1|sub|mult
-9|3|mult|3|mult
-9|2|mult|7|cbrt|mult
-9|2|mult|7|cb|mult
-9|2|mult|7|sq|mult
-9|2|mult|7|sq|sub
-9|2|mult|7|sq|add
-9|2|mult|7|0|mult|mult
-9|2|mult|7|0|mult|sub
-9|2|mult|7|0|mult|add
-9|2|mult|7|0|sub|mult
-9|2|mult|7|0|add|mult
-9|2|mult|6|5|mult|mult
-9|2|mult|6|5|mult|sub
-9|4|sub|8|2|sub|add
-9|4|sub|7|2|add|add
-9|4|sub|8|4|add|mult
-9|4|sub|8|4|add|sub
-9|4|sub|8|3|mult|mult
-9|4|sub|8|3|sub|mult
-9|4|sub|8|3|sub|sub
-9|4|sub|8|3|sub|add
-9|4|sub|8|3|add|mult
-9|4|sub|8|3|add|sub
-9|4|sub|8|3|add|add
-9|4|sub|8|2|mult|mult
-9|4|sub|8|2|sub|mult
-9|4|sub|8|2|sub|sub
-9|4|sub|7|2|add|sub
-9|4|sub|8|2|add|mult
-9|4|sub|8|2|add|sub
-9|4|sub|8|2|add|add
-9|4|sub|8|1|mult|mult
-9|4|sub|8|1|sub|mult
-9|4|sub|8|1|sub|sub
-9|4|sub|8|1|sub|add
-9|4|sub|7|5|sub|mult
-9|4|sub|7|5|sub|sub
-9|4|sub|7|5|sub|add
-9|4|sub|8|cbrt|mult
-9|4|sub|8|cb|mult
-9|4|sub|7|1|add|add
-9|4|sub|7|2|mult|mult
-9|4|sub|7|2|sub|mult
-9|4|sub|7|2|sub|sub
-9|4|sub|7|2|sub|add
-9|4|sub|8|4|sub|mult
-9|4|sub|8|4|sub|add
-9|4|sub|7|1|mult|mult
-9|4|sub|7|1|sub|mult
-9|4|sub|7|1|sub|sub
-9|4|sub|7|1|sub|add
-9|4|sub|7|1|add|mult
-9|4|sub|7|1|add|sub
-9|4|sub|8|sq|mult
-9|4|sub|7|cbrt|mult
-9|4|sub|7|cb|mult
-9|4|sub|7|sq|mult
-9|4|sub|7|0|mult|mult
-9|4|sub|7|0|sub|mult
-9|4|sub|7|0|sub|sub
-9|4|sub|7|0|sub|add
-9|4|sub|7|0|add|mult
-9|4|sub|7|0|add|sub
-9|4|sub|7|0|add|add
-9|4|sub|6|5|mult|mult
-9|4|sub|7|2|add|mult
-9|4|sub|2|sub
-9|4|sub|6|mult
-9|4|sub|6|sub
-9|4|sub|6|add
-9|4|sub|5|mult
-9|4|sub|5|sub
-9|4|sub|5|add
-9|4|sub|4|mult
-9|4|sub|4|sub
-9|4|sub|3|mult
-9|4|sub|3|sub
-9|4|sub|3|add
-9|4|sub|2|mult
-9|4|sub|7|add
-9|4|sub|2|add
-9|4|sub|1|mult
-9|4|sub|1|sub
-9|4|sub|1|add
-9|4|sub|cbrt
-9|4|sub|cb
-9|4|sub|sq
-9|4|sub|0|mult
-9|4|sub|0|sub
-9|4|sub|0|add
-9|4|add|9|3|mult|mult
-9|4|add|9|3|sub|mult
-9|4|sub|7|6|add|sub
-9|4|sub|8|0|mult|mult
-9|4|sub|8|0|sub|mult
-9|4|sub|8|0|sub|sub
-9|4|sub|8|0|sub|add
-9|4|sub|8|0|add|mult
-9|4|sub|8|0|add|sub
-9|4|sub|8|0|add|add
-9|4|sub|7|6|mult|mult
-9|4|sub|7|6|sub|mult
-9|4|sub|7|6|sub|sub
-9|4|sub|7|6|sub|add
-9|4|sub|7|6|add|mult
-9|4|sub|7|3|add|add
-9|4|sub|7|6|add|add
-9|4|sub|7|5|mult|mult
-9|4|sub|8|1|add|mult
-9|4|sub|8|1|add|sub
-9|4|sub|8|1|add|add
-9|4|sub|9|mult
-9|4|sub|9|add
-9|4|sub|8|mult
-9|4|sub|8|sub
-9|4|sub|8|add
-9|4|sub|7|mult
-9|4|sub|7|sub
-9|4|mult|8|2|mult|sub
-9|4|mult|7|0|add|mult
-9|4|mult|6|5|mult|mult
-9|4|mult|6|5|mult|sub
-9|4|mult|6|5|mult|add
-9|4|mult|7|2|add|mult
-9|4|mult|8|4|add|mult
-9|4|mult|8|3|mult|mult
-9|4|mult|8|3|mult|sub
-9|4|mult|8|3|mult|add
-9|4|mult|8|3|sub|mult
-9|4|mult|8|3|add|mult
-9|4|mult|8|2|mult|mult
-9|4|mult|7|0|sub|mult
-9|4|mult|8|2|mult|add
-9|4|mult|8|2|sub|mult
-9|4|mult|8|2|add|mult
-9|4|mult|8|1|mult|mult
-9|4|mult|8|1|mult|sub
-9|4|mult|8|1|mult|add
-9|4|mult|8|1|sub|mult
-9|4|mult|7|5|sub|mult
-9|4|mult|8|cbrt|mult
-9|4|mult|8|cb|mult
-9|4|mult|8|sq|mult
-9|4|mult|8|sq|sub
-9|4|mult|7|1|mult|mult
-9|4|mult|7|4|sub|mult
-9|4|mult|7|4|add|mult
-9|4|mult|7|3|mult|mult
-9|4|mult|7|3|mult|sub
-9|4|mult|7|3|mult|add
-9|4|mult|7|3|sub|mult
-9|4|mult|7|3|add|mult
-9|4|mult|7|2|mult|mult
-9|4|mult|7|2|mult|sub
-9|4|mult|7|2|mult|add
-9|4|mult|7|2|sub|mult
-9|4|mult|8|4|sub|mult
-9|4|mult|8|sq|add
-9|4|mult|7|1|mult|sub
-9|4|mult|7|1|mult|add
-9|4|mult|7|1|sub|mult
-9|4|mult|7|1|add|mult
-9|4|mult|7|cbrt|mult
-9|4|mult|7|cb|mult
-9|4|mult|7|sq|mult
-9|4|mult|7|sq|sub
-9|4|mult|7|sq|add
-9|4|mult|7|0|mult|mult
-9|4|mult|7|0|mult|sub
-9|4|mult|7|0|mult|add
-9|4|sub|7|5|add|sub
-9|4|mult|0|mult
-9|4|sub|9|4|add|mult
-9|4|sub|9|3|mult|mult
-9|4|sub|9|3|sub|mult
-9|4|sub|9|3|sub|add
-9|4|sub|9|3|add|mult
-9|4|sub|9|3|add|add
-9|4|sub|9|2|mult|mult
-9|4|sub|9|2|sub|mult
-9|4|sub|9|2|sub|add
-9|4|sub|9|5|mult|mult
-9|4|sub|7|5|add|mult
-9|4|mult|sq
-9|4|sub|7|5|add|add
-9|4|sub|7|4|mult|mult
-9|4|sub|7|4|sub|mult
-9|4|sub|7|4|sub|add
-9|4|sub|7|4|add|mult
-9|4|sub|7|4|add|sub
-9|4|sub|7|3|mult|mult
-9|4|sub|7|3|sub|mult
-9|4|sub|7|3|sub|sub
-9|4|sub|7|3|sub|add
-9|4|sub|7|3|add|mult
-9|4|sub|7|3|add|sub
-9|4|mult|7|5|mult|add
-9|4|mult|8|0|mult|mult
-9|4|mult|8|0|mult|sub
-9|4|mult|8|0|mult|add
-9|4|mult|8|0|sub|mult
-9|4|mult|8|0|add|mult
-9|4|mult|7|6|mult|mult
-9|4|mult|7|6|mult|sub
-9|4|mult|7|6|mult|add
-9|4|mult|7|6|sub|mult
-9|4|mult|7|6|add|mult
-9|4|mult|7|5|mult|mult
-9|4|mult|7|5|mult|sub
-9|4|add|9|3|sub|add
-9|4|mult|8|1|add|mult
-9|4|mult|9|mult
-9|4|mult|8|mult
-9|4|mult|7|mult
-9|4|mult|6|mult
-9|4|mult|5|mult
-9|4|mult|4|mult
-9|4|mult|3|mult
-9|4|mult|2|mult
-9|4|mult|1|mult
-9|4|mult|cbrt
-9|4|mult|cb
-9|3|mult|7|2|mult|mult
-9|3|mult|9|5|mult|sub
-9|3|mult|9|5|mult|add
-9|3|mult|7|5|add|mult
-9|3|mult|7|4|mult|mult
-9|3|mult|7|4|mult|sub
-9|3|mult|7|4|mult|add
-9|3|mult|7|4|sub|mult
-9|3|mult|7|4|add|mult
-9|3|mult|7|3|mult|mult
-9|3|mult|7|3|mult|sub
-9|3|mult|7|3|mult|add
-9|3|mult|7|3|sub|mult
-9|3|mult|7|3|add|mult
-9|3|mult|9|5|mult|mult
-9|3|mult|7|2|mult|sub
-9|3|mult|7|2|mult|add
-9|3|mult|7|2|sub|mult
-9|3|mult|8|4|sub|mult
-9|3|mult|7|1|mult|mult
-9|3|mult|7|1|mult|sub
-9|3|mult|7|1|mult|add
-9|3|mult|7|1|sub|mult
-9|3|mult|7|1|add|mult
-9|3|mult|7|cbrt|mult
-9|3|mult|7|cb|mult
-9|3|mult|7|sq|mult
-9|4|add|1|add
-9|4|add|5|sub
-9|4|add|5|add
-9|4|add|4|mult
-9|4|add|4|add
-9|4|add|3|mult
-9|4|add|3|sub
-9|4|add|3|add
-9|4|add|2|mult
-9|4|add|2|sub
-9|4|add|2|add
-9|4|add|1|mult
-9|4|add|1|sub
-9|3|mult|7|sq|sub
-9|4|add|cbrt
-9|4|add|cb
-9|4|add|sq
-9|4|add|0|mult
-9|4|add|0|sub
-9|4|add|0|add
-9|3|mult|9|3|sub|mult
-9|3|mult|9|3|add|mult
-9|3|mult|9|2|mult|mult
-9|3|mult|9|2|mult|sub
-9|3|mult|9|2|mult|add
-9|3|mult|9|2|sub|mult
-9|3|mult|7|6|mult|add
-9|3|mult|8|cbrt|mult
-9|3|mult|8|cb|mult
-9|3|mult|8|sq|mult
-9|3|mult|8|sq|sub
-9|3|mult|8|sq|add
-9|3|mult|8|0|mult|mult
-9|3|mult|8|0|mult|sub
-9|3|mult|8|0|mult|add
-9|3|mult|8|0|sub|mult
-9|3|mult|8|0|add|mult
-9|3|mult|7|6|mult|mult
-9|3|mult|7|6|mult|sub
-9|3|mult|7|5|sub|mult
-9|3|mult|7|6|sub|mult
-9|3|mult|7|6|add|mult
-9|3|mult|7|5|mult|mult
-9|3|mult|7|5|mult|sub
-9|3|mult|7|5|mult|add
-9|3|mult|8|1|add|mult
-9|3|mult|9|mult
-9|3|mult|8|mult
-9|3|mult|7|mult
-9|3|mult|6|mult
-9|3|mult|5|mult
-9|3|mult|4|mult
-9|3|mult|8|3|mult|sub
-9|3|mult|7|sq|add
-9|3|mult|7|0|mult|mult
-9|3|mult|7|0|mult|sub
-9|3|mult|7|0|mult|add
-9|3|mult|7|0|sub|mult
-9|3|mult|7|0|add|mult
-9|3|mult|6|5|mult|mult
-9|3|mult|6|5|mult|sub
-9|3|mult|6|5|mult|add
-9|3|mult|7|2|add|mult
-9|3|mult|8|4|add|mult
-9|3|mult|8|3|mult|mult
-9|4|add|5|mult
-9|3|mult|8|3|mult|add
-9|3|mult|8|3|sub|mult
-9|3|mult|8|3|add|mult
-9|3|mult|8|2|mult|mult
-9|3|mult|8|2|mult|sub
-9|3|mult|8|2|mult|add
-9|3|mult|8|2|sub|mult
-9|3|mult|8|2|add|mult
-9|3|mult|8|1|mult|mult
-9|3|mult|8|1|mult|sub
-9|3|mult|8|1|mult|add
-9|3|mult|8|1|sub|mult
-9|4|add|7|0|sub|mult
-9|4|add|8|4|sub|sub
-9|4|add|7|1|mult|mult
-9|4|add|7|1|sub|mult
-9|4|add|7|1|sub|sub
-9|4|add|7|1|sub|add
-9|4|add|7|1|add|mult
-9|4|add|7|1|add|sub
-9|4|add|7|1|add|add
-9|4|add|7|cbrt|mult
-9|4|add|7|cb|mult
-9|4|add|7|sq|mult
-9|4|add|7|0|mult|mult
-9|4|add|8|4|sub|mult
-9|4|add|7|0|sub|sub
-9|4|add|7|0|sub|add
-9|4|add|7|0|add|mult
-9|4|add|7|0|add|sub
-9|4|add|7|0|add|add
-9|4|add|6|5|mult|mult
-9|4|add|7|2|add|mult
-9|4|add|7|2|add|sub
-9|4|add|7|2|add|add
-9|4|add|8|4|add|mult
-9|4|add|8|4|add|add
-9|4|add|8|3|mult|mult
-9|4|add|7|4|add|mult
-9|4|add|9|3|add|mult
-9|4|add|9|3|add|add
-9|4|add|9|2|mult|mult
-9|4|add|9|2|sub|mult
-9|4|add|9|2|sub|add
-9|4|add|9|5|mult|mult
-9|4|add|7|5|add|mult
-9|4|add|7|5|add|sub
-9|4|add|7|5|add|add
-9|4|add|7|4|mult|mult
-9|4|add|7|4|sub|mult
-9|4|add|7|4|sub|sub
-9|4|add|8|3|sub|mult
-9|4|add|7|4|add|add
-9|4|add|7|3|mult|mult
-9|4|add|7|3|sub|mult
-9|4|add|7|3|sub|sub
-9|4|add|7|3|sub|add
-9|4|add|7|3|add|mult
-9|4|add|7|3|add|sub
-9|4|add|7|3|add|add
-9|4|add|7|2|mult|mult
-9|4|add|7|2|sub|mult
-9|4|add|7|2|sub|sub
-9|4|add|7|2|sub|add
-9|4|add|8|1|add|sub
-9|4|add|8|0|add|mult
-9|4|add|8|0|add|sub
-9|4|add|8|0|add|add
-9|4|add|7|6|mult|mult
-9|4|add|7|6|sub|mult
-9|4|add|7|6|sub|sub
-9|4|add|7|6|sub|add
-9|4|add|7|6|add|mult
-9|4|add|7|6|add|sub
-9|4|add|7|6|add|add
-9|4|add|7|5|mult|mult
-9|4|add|8|1|add|mult
-9|4|add|8|0|sub|add
-9|4|add|8|1|add|add
-9|4|add|9|mult
-9|4|add|9|add
-9|4|add|8|mult
-9|4|add|8|sub
-9|4|add|8|add
-9|4|add|7|mult
-9|4|add|7|sub
-9|4|add|7|add
-9|4|add|6|mult
-9|4|add|6|sub
-9|4|add|6|add
-9|4|add|8|1|mult|mult
-9|4|add|8|3|sub|sub
-9|4|add|8|3|sub|add
-9|4|add|8|3|add|mult
-9|4|add|8|3|add|sub
-9|4|add|8|3|add|add
-9|4|add|8|2|mult|mult
-9|4|add|8|2|sub|mult
-9|4|add|8|2|sub|sub
-9|4|add|8|2|sub|add
-9|4|add|8|2|add|mult
-9|4|add|8|2|add|sub
-9|4|add|8|2|add|add
-9|2|sub|7|6|add|sub
-9|4|add|8|1|sub|mult
-9|4|add|8|1|sub|sub
-9|4|add|8|1|sub|add
-9|4|add|7|5|sub|mult
-9|4|add|7|5|sub|sub
-9|4|add|7|5|sub|add
-9|4|add|8|cbrt|mult
-9|4|add|8|cb|mult
-9|4|add|8|sq|mult
-9|4|add|8|0|mult|mult
-9|4|add|8|0|sub|mult
-9|4|add|8|0|sub|sub
-7|3|mult|9|mult
-7|3|mult|8|0|mult|sub
-7|3|mult|8|0|mult|add
-7|3|mult|8|0|sub|mult
-7|3|mult|8|0|add|mult
-7|3|mult|7|6|mult|mult
-7|3|mult|7|6|mult|sub
-7|3|mult|7|6|mult|add
-7|3|mult|7|6|sub|mult
-7|3|mult|7|6|add|mult
-7|3|mult|7|5|mult|mult
-7|3|mult|7|5|mult|sub
-7|3|mult|7|5|mult|add
-7|3|mult|8|1|add|mult
-7|3|mult|8|0|mult|mult
-7|3|mult|8|mult
-7|3|mult|7|mult
-7|3|mult|6|mult
-7|3|mult|5|mult
-7|3|mult|4|mult
-7|3|mult|3|mult
-7|3|mult|2|mult
-7|3|mult|1|mult
-7|3|mult|cbrt
-7|3|mult|cb
-7|3|mult|sq
-7|3|mult|0|mult
-7|3|mult|8|2|mult|add
-7|3|mult|6|5|mult|mult
-7|3|mult|6|5|mult|sub
-7|3|mult|6|5|mult|add
-7|3|mult|7|2|add|mult
-7|3|mult|8|4|add|mult
-7|3|mult|8|3|mult|mult
-7|3|mult|8|3|mult|sub
-7|3|mult|8|3|mult|add
-7|3|mult|8|3|sub|mult
-7|3|mult|8|3|add|mult
-7|3|mult|8|2|mult|mult
-7|3|mult|8|2|mult|sub
-7|3|sub|7|3|add|mult
-7|3|mult|8|2|sub|mult
-7|3|mult|8|2|add|mult
-7|3|mult|8|1|mult|mult
-7|3|mult|8|1|mult|sub
-7|3|mult|8|1|mult|add
-7|3|mult|8|1|sub|mult
-7|3|mult|7|5|sub|mult
-7|3|mult|8|cbrt|mult
-7|3|mult|8|cb|mult
-7|3|mult|8|sq|mult
-7|3|mult|8|sq|sub
-7|3|mult|8|sq|add
-7|3|sub|8|1|sub|mult
-7|3|sub|8|3|sub|mult
-7|3|sub|8|3|sub|add
-7|3|sub|8|3|add|mult
-7|3|sub|8|3|add|sub
-7|3|sub|8|2|mult|mult
-7|3|sub|8|2|sub|mult
-7|3|sub|8|2|sub|sub
-7|3|sub|8|2|sub|add
-7|3|sub|8|2|add|mult
-7|3|sub|8|2|add|sub
-7|3|sub|8|2|add|add
-7|3|sub|8|1|mult|mult
-7|3|sub|8|3|mult|mult
-7|3|sub|8|1|sub|sub
-7|3|sub|8|1|sub|add
-7|3|sub|7|5|sub|mult
-7|3|sub|7|5|sub|add
-7|3|sub|8|cbrt|mult
-7|3|sub|8|cb|mult
-7|3|sub|8|sq|mult
-7|3|sub|8|0|mult|mult
-7|3|sub|8|0|sub|mult
-7|3|sub|8|0|sub|sub
-7|3|sub|8|0|sub|add
-7|3|sub|8|0|add|mult
-7|3|sub|7|cb|mult
-7|3|sub|7|2|mult|mult
-7|3|sub|7|2|sub|mult
-7|3|sub|7|2|sub|add
-7|3|sub|8|4|sub|mult
-7|3|sub|8|4|sub|sub
-7|3|sub|8|4|sub|add
-7|3|sub|7|1|mult|mult
-7|3|sub|7|1|sub|mult
-7|3|sub|7|1|sub|add
-7|3|sub|7|1|add|mult
-7|3|sub|7|1|add|add
-7|3|sub|7|cbrt|mult
-7|3|mult|7|0|add|mult
-7|3|sub|7|sq|mult
-7|3|sub|7|0|mult|mult
-7|3|sub|7|0|sub|mult
-7|3|sub|7|0|sub|add
-7|3|sub|7|0|add|mult
-7|3|sub|7|0|add|add
-7|3|sub|6|5|mult|mult
-7|3|sub|7|2|add|mult
-7|3|sub|7|2|add|add
-7|3|sub|8|4|add|mult
-7|3|sub|8|4|add|sub
-7|3|sub|8|4|add|add
-7|4|add|8|0|sub|add
-7|4|add|8|1|mult|mult
-7|4|add|8|1|sub|mult
-7|4|add|8|1|sub|sub
-7|4|add|8|1|sub|add
-7|4|add|7|5|sub|mult
-7|4|add|7|5|sub|add
-7|4|add|8|cbrt|mult
-7|4|add|8|cb|mult
-7|4|add|8|sq|mult
-7|4|add|8|0|mult|mult
-7|4|add|8|0|sub|mult
-7|4|add|8|0|sub|sub
-7|4|add|8|2|add|add
-7|4|add|8|0|add|mult
-7|4|add|8|0|add|sub
-7|4|add|8|0|add|add
-7|4|add|7|6|mult|mult
-7|4|add|7|6|sub|mult
-7|4|add|7|6|sub|add
-7|4|add|7|6|add|mult
-7|4|add|7|6|add|add
-7|4|add|7|5|mult|mult
-7|4|add|8|1|add|mult
-7|4|add|8|1|add|sub
-7|4|add|8|1|add|add
-7|4|add|8|3|mult|mult
-7|4|add|7|cb|mult
-7|4|add|7|sq|mult
-7|4|add|7|0|mult|mult
-7|4|add|7|0|sub|mult
-7|4|add|7|0|sub|add
-7|4|add|7|0|add|mult
-7|4|add|7|0|add|add
-7|4|add|6|5|mult|mult
-7|4|add|7|2|add|mult
-7|4|add|7|2|add|add
-7|4|add|8|4|add|mult
-7|4|add|8|4|add|add
-7|4|add|9|mult
-7|4|add|8|3|sub|mult
-7|4|add|8|3|sub|sub
-7|4|add|8|3|sub|add
-7|4|add|8|3|add|mult
-7|4|add|8|3|add|sub
-7|4|add|8|3|add|add
-7|4|add|8|2|mult|mult
-7|4|add|8|2|sub|mult
-7|4|add|8|2|sub|sub
-7|4|add|8|2|sub|add
-7|4|add|8|2|add|mult
-7|4|add|8|2|add|sub
-7|3|mult|7|1|mult|sub
-7|4|add|sq
-7|4|add|0|mult
-7|4|add|0|sub
-7|4|add|0|add
-7|3|mult|7|3|sub|mult
-7|3|mult|7|3|add|mult
-7|3|mult|7|2|mult|mult
-7|3|mult|7|2|mult|sub
-7|3|mult|7|2|mult|add
-7|3|mult|7|2|sub|mult
-7|3|mult|8|4|sub|mult
-7|3|mult|7|1|mult|mult
-7|4|add|cb
-7|3|mult|7|1|mult|add
-7|3|mult|7|1|sub|mult
-7|3|mult|7|1|add|mult
-7|3|mult|7|cbrt|mult
-7|3|mult|7|cb|mult
-7|3|mult|7|sq|mult
-7|3|mult|7|sq|sub
-7|3|mult|7|sq|add
-7|3|mult|7|0|mult|mult
-7|3|mult|7|0|mult|sub
-7|3|mult|7|0|mult|add
-7|3|mult|7|0|sub|mult
-7|4|add|5|add
-7|4|add|9|sub
-7|4|add|9|add
-7|4|add|8|mult
-7|4|add|8|sub
-7|4|add|8|add
-7|4|add|7|mult
-7|4|add|7|add
-7|4|add|6|mult
-7|4|add|6|sub
-7|4|add|6|add
-7|4|add|5|mult
-7|4|add|5|sub
-7|3|sub|8|0|add|sub
-7|4|add|4|mult
-7|4|add|4|add
-7|4|add|3|mult
-7|4|add|3|sub
-7|4|add|3|add
-7|4|add|2|mult
-7|4|add|2|sub
-7|4|add|2|add
-7|4|add|1|mult
-7|4|add|1|sub
-7|4|add|1|add
-7|4|add|cbrt
-7|2|mult|7|sq|mult
-7|3|add|sq
-7|3|add|0|mult
-7|3|add|0|sub
-7|3|add|0|add
-7|2|mult|7|2|sub|mult
-7|2|mult|8|4|sub|mult
-7|2|mult|7|1|mult|mult
-7|2|mult|7|1|mult|sub
-7|2|mult|7|1|mult|add
-7|2|mult|7|1|sub|mult
-7|2|mult|7|1|add|mult
-7|2|mult|7|cbrt|mult
-7|2|mult|7|cb|mult
-7|3|add|cb
-7|2|mult|7|sq|sub
-7|2|mult|7|sq|add
-7|2|mult|7|0|mult|mult
-7|2|mult|7|0|mult|sub
-7|2|mult|7|0|mult|add
-7|2|mult|7|0|sub|mult
-7|2|mult|7|0|add|mult
-7|2|mult|6|5|mult|mult
-7|2|mult|6|5|mult|sub
-7|2|mult|6|5|mult|add
-7|2|mult|7|2|add|mult
-7|2|mult|8|4|add|mult
-7|3|add|5|add
-7|3|add|9|sub
-7|3|add|9|add
-7|3|add|8|mult
-7|3|add|8|sub
-7|3|add|8|add
-7|3|add|7|mult
-7|3|add|7|add
-7|3|add|6|mult
-7|3|add|6|sub
-7|3|add|6|add
-7|3|add|5|mult
-7|3|add|5|sub
-7|2|mult|8|3|mult|mult
-7|3|add|4|mult
-7|3|add|4|sub
-7|3|add|4|add
-7|3|add|3|mult
-7|3|add|3|add
-7|3|add|2|mult
-7|3|add|2|sub
-7|3|add|2|add
-7|3|add|1|mult
-7|3|add|1|sub
-7|3|add|1|add
-7|3|add|cbrt
-7|2|mult|4|mult
-7|2|mult|7|6|mult|add
-7|2|mult|7|6|sub|mult
-7|2|mult|7|6|add|mult
-7|2|mult|7|5|mult|mult
-7|2|mult|7|5|mult|sub
-7|2|mult|7|5|mult|add
-7|2|mult|8|1|add|mult
-7|2|mult|9|mult
-7|2|mult|8|mult
-7|2|mult|7|mult
-7|2|mult|6|mult
-7|2|mult|5|mult
-7|2|mult|7|6|mult|sub
-7|2|mult|3|mult
-7|2|mult|2|mult
-7|2|mult|1|mult
-7|2|mult|cbrt
-7|2|mult|cb
-7|2|mult|sq
-7|2|mult|0|mult
-7|2|sub|8|4|sub|mult
-7|2|sub|8|4|sub|sub
-7|2|sub|8|4|sub|add
-7|2|sub|7|1|mult|mult
-7|2|sub|7|1|sub|mult
-7|2|mult|8|1|sub|mult
-7|2|mult|8|3|mult|sub
-7|2|mult|8|3|mult|add
-7|2|mult|8|3|sub|mult
-7|2|mult|8|3|add|mult
-7|2|mult|8|2|mult|mult
-7|2|mult|8|2|mult|sub
-7|2|mult|8|2|mult|add
-7|2|mult|8|2|sub|mult
-7|2|mult|8|2|add|mult
-7|2|mult|8|1|mult|mult
-7|2|mult|8|1|mult|sub
-7|2|mult|8|1|mult|add
-7|3|add|9|mult
-7|2|mult|7|5|sub|mult
-7|2|mult|8|cbrt|mult
-7|2|mult|8|cb|mult
-7|2|mult|8|sq|mult
-7|2|mult|8|sq|sub
-7|2|mult|8|sq|add
-7|2|mult|8|0|mult|mult
-7|2|mult|8|0|mult|sub
-7|2|mult|8|0|mult|add
-7|2|mult|8|0|sub|mult
-7|2|mult|8|0|add|mult
-7|2|mult|7|6|mult|mult
-7|3|sub|0|mult
-7|3|sub|4|add
-7|3|sub|3|mult
-7|3|sub|3|sub
-7|3|sub|2|mult
-7|3|sub|2|sub
-7|3|sub|2|add
-7|3|sub|1|mult
-7|3|sub|1|sub
-7|3|sub|1|add
-7|3|sub|cbrt
-7|3|sub|cb
-7|3|sub|sq
-7|3|sub|4|sub
-7|3|sub|0|sub
-7|3|sub|0|add
-7|3|add|7|2|mult|mult
-7|3|add|7|2|sub|mult
-7|3|add|7|2|sub|add
-7|3|add|8|4|sub|mult
-7|3|add|8|4|sub|sub
-7|3|add|8|4|sub|add
-7|3|add|7|1|mult|mult
-7|3|add|7|1|sub|mult
-7|3|add|7|1|sub|add
-7|3|add|7|1|add|mult
-7|3|sub|9|add
-7|3|sub|8|0|add|add
-7|3|sub|7|6|mult|mult
-7|3|sub|7|6|sub|mult
-7|3|sub|7|6|sub|add
-7|3|sub|7|6|add|mult
-7|3|sub|7|6|add|add
-7|3|sub|7|5|mult|mult
-7|3|sub|8|1|add|mult
-7|3|sub|8|1|add|sub
-7|3|sub|8|1|add|add
-7|3|sub|9|mult
-7|3|sub|9|sub
-7|3|add|7|1|add|add
-7|3|sub|8|mult
-7|3|sub|8|sub
-7|3|sub|8|add
-7|3|sub|7|mult
-7|3|sub|7|add
-7|3|sub|6|mult
-7|3|sub|6|sub
-7|3|sub|6|add
-7|3|sub|5|mult
-7|3|sub|5|sub
-7|3|sub|5|add
-7|3|sub|4|mult
-7|3|add|8|0|sub|add
-7|3|add|8|1|mult|mult
-7|3|add|8|1|sub|mult
-7|3|add|8|1|sub|sub
-7|3|add|8|1|sub|add
-7|3|add|7|5|sub|mult
-7|3|add|7|5|sub|add
-7|3|add|8|cbrt|mult
-7|3|add|8|cb|mult
-7|3|add|8|sq|mult
-7|3|add|8|0|mult|mult
-7|3|add|8|0|sub|mult
-7|3|add|8|0|sub|sub
-7|3|add|8|2|add|add
-7|3|add|8|0|add|mult
-7|3|add|8|0|add|sub
-7|3|add|8|0|add|add
-7|3|add|7|6|mult|mult
-7|3|add|7|6|sub|mult
-7|3|add|7|6|sub|add
-7|3|add|7|6|add|mult
-7|3|add|7|6|add|add
-7|3|add|7|5|mult|mult
-7|3|add|8|1|add|mult
-7|3|add|8|1|add|sub
-7|3|add|8|1|add|add
-7|3|add|8|4|add|sub
-7|3|add|7|cbrt|mult
-7|3|add|7|cb|mult
-7|3|add|7|sq|mult
-7|3|add|7|0|mult|mult
-7|3|add|7|0|sub|mult
-7|3|add|7|0|sub|add
-7|3|add|7|0|add|mult
-7|3|add|7|0|add|add
-7|3|add|6|5|mult|mult
-7|3|add|7|2|add|mult
-7|3|add|7|2|add|add
-7|3|add|8|4|add|mult
-7|4|add|7|cbrt|mult
-7|3|add|8|4|add|add
-7|3|add|8|3|mult|mult
-7|3|add|8|3|sub|mult
-7|3|add|8|3|sub|sub
-7|3|add|8|3|add|mult
-7|3|add|8|3|add|add
-7|3|add|8|2|mult|mult
-7|3|add|8|2|sub|mult
-7|3|add|8|2|sub|sub
-7|3|add|8|2|sub|add
-7|3|add|8|2|add|mult
-7|3|add|8|2|add|sub
-7|5|add|7|0|mult|mult
-7|5|add|7|2|sub|mult
-7|5|add|7|2|sub|add
-7|5|add|8|4|sub|mult
-7|5|add|8|4|sub|sub
-7|5|add|8|4|sub|add
-7|5|add|7|1|mult|mult
-7|5|add|7|1|sub|mult
-7|5|add|7|1|sub|add
-7|5|add|7|1|add|mult
-7|5|add|7|1|add|add
-7|5|add|7|cbrt|mult
-7|5|add|7|cb|mult
-7|5|add|7|sq|mult
-7|5|add|7|2|mult|mult
-7|5|add|7|0|sub|mult
-7|5|add|7|0|sub|add
-7|5|add|7|0|add|mult
-7|5|add|7|0|add|add
-7|5|add|6|5|mult|mult
-7|5|add|7|2|add|mult
-7|5|add|7|2|add|add
-7|5|add|8|4|add|mult
-7|5|add|8|4|add|sub
-7|5|add|8|4|add|add
-7|5|add|8|3|mult|mult
-7|5|add|8|3|sub|mult
-9|5|mult|cb
-9|5|mult|7|5|mult|add
-9|5|mult|8|1|add|mult
-9|5|mult|9|mult
-9|5|mult|8|mult
-9|5|mult|7|mult
-9|5|mult|6|mult
-9|5|mult|5|mult
-9|5|mult|4|mult
-9|5|mult|3|mult
-9|5|mult|2|mult
-9|5|mult|1|mult
-9|5|mult|cbrt
-7|5|add|8|3|sub|sub
-9|5|mult|sq
-9|5|mult|0|mult
-7|5|add|7|4|mult|mult
-7|5|add|7|4|sub|mult
-7|5|add|7|4|sub|add
-7|5|add|7|4|add|mult
-7|5|add|7|4|add|add
-7|5|add|7|3|mult|mult
-7|5|add|7|3|sub|mult
-7|5|add|7|3|sub|add
-7|5|add|7|3|add|mult
-7|5|add|7|3|add|add
-7|5|add|8|mult
-7|5|add|7|6|mult|mult
-7|5|add|7|6|sub|mult
-7|5|add|7|6|sub|add
-7|5|add|7|6|add|mult
-7|5|add|7|6|add|add
-7|5|add|7|5|mult|mult
-7|5|add|8|1|add|mult
-7|5|add|8|1|add|sub
-7|5|add|8|1|add|add
-7|5|add|9|mult
-7|5|add|9|sub
-7|5|add|9|add
-7|5|add|8|0|add|add
-7|5|add|8|sub
-7|5|add|8|add
-7|5|add|7|mult
-7|5|add|7|add
-7|5|add|6|mult
-7|5|add|6|sub
-7|5|add|6|add
-7|5|add|5|mult
-7|5|add|5|add
-7|5|add|4|mult
-7|5|add|4|sub
-7|5|add|4|add
-7|5|add|8|1|sub|mult
-7|5|add|8|3|sub|add
-7|5|add|8|3|add|mult
-7|5|add|8|3|add|sub
-7|5|add|8|3|add|add
-7|5|add|8|2|mult|mult
-7|5|add|8|2|sub|mult
-7|5|add|8|2|sub|sub
-7|5|add|8|2|sub|add
-7|5|add|8|2|add|mult
-7|5|add|8|2|add|sub
-7|5|add|8|2|add|add
-7|5|add|8|1|mult|mult
-9|5|mult|7|5|mult|sub
-7|5|add|8|1|sub|sub
-7|5|add|8|1|sub|add
-7|5|add|7|5|sub|mult
-7|5|add|8|cbrt|mult
-7|5|add|8|cb|mult
-7|5|add|8|sq|mult
-7|5|add|8|0|mult|mult
-7|5|add|8|0|sub|mult
-7|5|add|8|0|sub|sub
-7|5|add|8|0|sub|add
-7|5|add|8|0|add|mult
-7|5|add|8|0|add|sub
-9|5|mult|7|4|mult|sub
-9|2|sub|2|sub
-9|2|sub|1|mult
-9|2|sub|1|sub
-9|2|sub|1|add
-9|2|sub|cbrt
-9|2|sub|cb
-9|2|sub|sq
-9|2|sub|0|mult
-9|2|sub|0|sub
-9|2|sub|0|add
-9|5|mult|7|5|add|mult
-9|5|mult|7|4|mult|mult
-9|2|sub|2|mult
-9|5|mult|7|4|mult|add
-9|5|mult|7|4|sub|mult
-9|5|mult|7|4|add|mult
-9|5|mult|7|3|mult|mult
-9|5|mult|7|3|mult|sub
-9|5|mult|7|3|mult|add
-9|5|mult|7|3|sub|mult
-9|5|mult|7|3|add|mult
-9|5|mult|7|2|mult|mult
-9|5|mult|7|2|mult|sub
-9|5|mult|7|2|mult|add
-9|5|mult|7|2|sub|mult
-9|2|sub|7|add
-9|2|sub|7|6|add|add
-9|2|sub|7|5|mult|mult
-9|2|sub|8|1|add|mult
-9|2|sub|8|1|add|sub
-9|2|sub|8|1|add|add
-9|2|sub|9|mult
-9|2|sub|9|add
-9|2|sub|8|mult
-9|2|sub|8|sub
-9|2|sub|8|add
-9|2|sub|7|mult
-9|2|sub|7|sub
-9|5|mult|8|4|sub|mult
-9|2|sub|6|mult
-9|2|sub|6|sub
-9|2|sub|6|add
-9|2|sub|5|mult
-9|2|sub|5|sub
-9|2|sub|5|add
-9|2|sub|4|mult
-9|2|sub|4|sub
-9|2|sub|4|add
-9|2|sub|3|mult
-9|2|sub|3|sub
-9|2|sub|3|add
-9|5|mult|8|sq|sub
-9|5|mult|8|2|mult|sub
-9|5|mult|8|2|mult|add
-9|5|mult|8|2|sub|mult
-9|5|mult|8|2|add|mult
-9|5|mult|8|1|mult|mult
-9|5|mult|8|1|mult|sub
-9|5|mult|8|1|mult|add
-9|5|mult|8|1|sub|mult
-9|5|mult|7|5|sub|mult
-9|5|mult|8|cbrt|mult
-9|5|mult|8|cb|mult
-9|5|mult|8|sq|mult
-9|5|mult|8|2|mult|mult
-9|5|mult|8|sq|add
-9|5|mult|8|0|mult|mult
-9|5|mult|8|0|mult|sub
-9|5|mult|8|0|mult|add
-9|5|mult|8|0|sub|mult
-9|5|mult|8|0|add|mult
-9|5|mult|7|6|mult|mult
-9|5|mult|7|6|mult|sub
-9|5|mult|7|6|mult|add
-9|5|mult|7|6|sub|mult
-9|5|mult|7|6|add|mult
-9|5|mult|7|5|mult|mult
-9|5|mult|7|0|mult|add
-9|5|mult|7|1|mult|mult
-9|5|mult|7|1|mult|sub
-9|5|mult|7|1|mult|add
-9|5|mult|7|1|sub|mult
-9|5|mult|7|1|add|mult
-9|5|mult|7|cbrt|mult
-9|5|mult|7|cb|mult
-9|5|mult|7|sq|mult
-9|5|mult|7|sq|sub
-9|5|mult|7|sq|add
-9|5|mult|7|0|mult|mult
-9|5|mult|7|0|mult|sub
-7|5|add|3|mult
-9|5|mult|7|0|sub|mult
-9|5|mult|7|0|add|mult
-9|5|mult|6|5|mult|mult
-9|5|mult|6|5|mult|sub
-9|5|mult|6|5|mult|add
-9|5|mult|7|2|add|mult
-9|5|mult|8|4|add|mult
-9|5|mult|8|3|mult|mult
-9|5|mult|8|3|mult|sub
-9|5|mult|8|3|mult|add
-9|5|mult|8|3|sub|mult
-9|5|mult|8|3|add|mult
-7|4|sub|8|cbrt|mult
-7|4|sub|8|2|sub|mult
-7|4|sub|8|2|sub|sub
-7|4|sub|8|2|sub|add
-7|4|sub|8|2|add|mult
-7|4|sub|8|2|add|sub
-7|4|sub|8|2|add|add
-7|4|sub|8|1|mult|mult
-7|4|sub|8|1|sub|mult
-7|4|sub|8|1|sub|sub
-7|4|sub|8|1|sub|add
-7|4|sub|7|5|sub|mult
-7|4|sub|7|5|sub|add
-7|4|sub|8|2|mult|mult
-7|4|sub|8|cb|mult
-7|4|sub|8|sq|mult
-7|4|sub|8|0|mult|mult
-7|4|sub|8|0|sub|mult
-7|4|sub|8|0|sub|sub
-7|4|sub|8|0|sub|add
-7|4|sub|8|0|add|mult
-7|4|sub|8|0|add|sub
-7|4|sub|8|0|add|add
-7|4|sub|7|6|mult|mult
-7|4|sub|7|6|sub|mult
-7|4|sub|7|6|sub|add
-7|4|sub|7|0|add|add
-7|4|sub|7|1|mult|mult
-7|4|sub|7|1|sub|mult
-7|4|sub|7|1|sub|add
-7|4|sub|7|1|add|mult
-7|4|sub|7|1|add|add
-7|4|sub|7|cbrt|mult
-7|4|sub|7|cb|mult
-7|4|sub|7|sq|mult
-7|4|sub|7|0|mult|mult
-7|4|sub|7|0|sub|mult
-7|4|sub|7|0|sub|add
-7|4|sub|7|0|add|mult
-7|4|sub|7|6|add|mult
-7|4|sub|6|5|mult|mult
-7|4|sub|7|2|add|mult
-7|4|sub|7|2|add|add
-7|4|sub|8|4|add|mult
-7|4|sub|8|4|add|sub
-7|4|sub|8|3|mult|mult
-7|4|sub|8|3|sub|mult
-7|4|sub|8|3|sub|sub
-7|4|sub|8|3|sub|add
-7|4|sub|8|3|add|mult
-7|4|sub|8|3|add|sub
-7|4|sub|8|3|add|add
-7|4|add|7|3|sub|add
-7|4|sub|2|add
-7|4|sub|1|mult
-7|4|sub|1|sub
-7|4|sub|1|add
-7|4|sub|cbrt
-7|4|sub|cb
-7|4|sub|sq
-7|4|sub|0|mult
-7|4|sub|0|sub
-7|4|sub|0|add
-7|4|add|7|3|mult|mult
-7|4|add|7|3|sub|mult
-7|4|sub|2|sub
-7|4|add|7|3|add|mult
-7|4|add|7|3|add|add
-7|4|add|7|2|mult|mult
-7|4|add|7|2|sub|mult
-7|4|add|7|2|sub|add
-7|4|add|8|4|sub|mult
-7|4|add|8|4|sub|sub
-7|4|add|7|1|mult|mult
-7|4|add|7|1|sub|mult
-7|4|add|7|1|sub|add
-7|4|add|7|1|add|mult
-7|4|add|7|1|add|add
-7|4|sub|7|add
-7|4|sub|7|6|add|add
-7|4|sub|7|5|mult|mult
-7|4|sub|8|1|add|mult
-7|4|sub|8|1|add|sub
-7|4|sub|8|1|add|add
-7|4|sub|9|mult
-7|4|sub|9|sub
-7|4|sub|9|add
-7|4|sub|8|mult
-7|4|sub|8|sub
-7|4|sub|8|add
-7|4|sub|7|mult
-7|4|sub|8|4|sub|add
-7|4|sub|6|mult
-7|4|sub|6|sub
-7|4|sub|6|add
-7|4|sub|5|mult
-7|4|sub|5|sub
-7|4|sub|5|add
-7|4|sub|4|mult
-7|4|sub|4|sub
-7|4|sub|3|mult
-7|4|sub|3|sub
-7|4|sub|3|add
-7|4|sub|2|mult
-7|4|mult|7|0|mult|add
-7|4|mult|7|1|mult|mult
-7|4|mult|7|1|mult|sub
-7|4|mult|7|1|mult|add
-7|4|mult|7|1|sub|mult
-7|4|mult|7|1|add|mult
-7|4|mult|7|cbrt|mult
-7|4|mult|7|cb|mult
-7|4|mult|7|sq|mult
-7|4|mult|7|sq|sub
-7|4|mult|7|sq|add
-7|4|mult|7|0|mult|mult
-7|4|mult|7|0|mult|sub
-7|4|mult|8|4|sub|mult
-7|4|mult|7|0|sub|mult
-7|4|mult|7|0|add|mult
-7|4|mult|6|5|mult|mult
-7|4|mult|6|5|mult|sub
-7|4|mult|6|5|mult|add
-7|4|mult|7|2|add|mult
-7|4|mult|8|4|add|mult
-7|4|mult|8|3|mult|mult
-7|4|mult|8|3|mult|sub
-7|4|mult|8|3|mult|add
-7|4|mult|8|3|sub|mult
-7|4|mult|8|3|add|mult
-7|5|add|0|sub
-7|5|add|3|sub
-7|5|add|3|add
-7|5|add|2|mult
-7|5|add|2|sub
-7|5|add|2|add
-7|5|add|1|mult
-7|5|add|1|sub
-7|5|add|1|add
-7|5|add|cbrt
-7|5|add|cb
-7|5|add|sq
-7|5|add|0|mult
-7|4|mult|8|2|mult|mult
-7|5|add|0|add
-7|4|mult|7|4|sub|mult
-7|4|mult|7|4|add|mult
-7|4|mult|7|3|mult|mult
-7|4|mult|7|3|mult|sub
-7|4|mult|7|3|mult|add
-7|4|mult|7|3|sub|mult
-7|4|mult|7|3|add|mult
-7|4|mult|7|2|mult|mult
-7|4|mult|7|2|mult|sub
-7|4|mult|7|2|mult|add
-7|4|mult|7|2|sub|mult
-7|4|mult|cb
-7|4|mult|7|5|mult|add
-7|4|mult|8|1|add|mult
-7|4|mult|9|mult
-7|4|mult|8|mult
-7|4|mult|7|mult
-7|4|mult|6|mult
-7|4|mult|5|mult
-7|4|mult|4|mult
-7|4|mult|3|mult
-7|4|mult|2|mult
-7|4|mult|1|mult
-7|4|mult|cbrt
-7|4|mult|7|5|mult|sub
-7|4|mult|sq
-7|4|mult|0|mult
-7|4|sub|7|4|add|mult
-7|4|sub|7|3|mult|mult
-7|4|sub|7|3|sub|mult
-7|4|sub|7|3|sub|add
-7|4|sub|7|3|add|mult
-7|4|sub|7|3|add|add
-7|4|sub|7|2|mult|mult
-7|4|sub|7|2|sub|mult
-7|4|sub|7|2|sub|add
-7|4|sub|8|4|sub|mult
-7|4|mult|8|sq|sub
-7|4|mult|8|2|mult|sub
-7|4|mult|8|2|mult|add
-7|4|mult|8|2|sub|mult
-7|4|mult|8|2|add|mult
-7|4|mult|8|1|mult|mult
-7|4|mult|8|1|mult|sub
-7|4|mult|8|1|mult|add
-7|4|mult|8|1|sub|mult
-7|4|mult|7|5|sub|mult
-7|4|mult|8|cbrt|mult
-7|4|mult|8|cb|mult
-7|4|mult|8|sq|mult
-9|0|add|9|7|sub|mult
-7|4|mult|8|sq|add
-7|4|mult|8|0|mult|mult
-7|4|mult|8|0|mult|sub
-7|4|mult|8|0|mult|add
-7|4|mult|8|0|sub|mult
-7|4|mult|8|0|add|mult
-7|4|mult|7|6|mult|mult
-7|4|mult|7|6|mult|sub
-7|4|mult|7|6|mult|add
-7|4|mult|7|6|sub|mult
-7|4|mult|7|6|add|mult
-7|4|mult|7|5|mult|mult
-4|1|mult|3|sq|add
-4|1|mult|3|2|mult|sub
-4|1|mult|3|2|mult|add
-4|1|mult|3|2|sub|mult
-4|1|mult|3|2|add|mult
-4|1|mult|3|1|mult|mult
-4|1|mult|3|1|mult|sub
-4|1|mult|3|1|mult|add
-4|1|mult|3|1|sub|mult
-4|1|mult|3|1|add|mult
-4|1|mult|3|cbrt|mult
-4|1|mult|3|cb|mult
-4|1|mult|3|sq|mult
-4|1|mult|3|sq|sub
-4|1|mult|3|2|mult|mult
-4|1|mult|4|0|sub|mult
-4|1|mult|9|1|mult|mult
-4|1|mult|9|1|mult|sub
-4|1|mult|9|1|mult|add
-4|1|mult|9|1|sub|mult
-4|1|mult|9|1|add|mult
-4|1|mult|9|cbrt|mult
-4|1|mult|9|cb|mult
-4|1|mult|9|sq|mult
-4|1|mult|9|sq|sub
-4|1|mult|9|sq|add
-4|1|mult|9|0|mult|mult
-4|1|mult|4|1|add|mult
-4|2|add|2|mult
-4|2|add|2|add
-4|2|add|1|mult
-4|2|add|1|sub
-4|2|add|1|add
-4|2|add|cbrt
-4|2|add|cb
-4|2|add|sq
-4|2|add|0|mult
-4|2|add|0|sub
-4|2|add|0|add
-4|1|mult|4|1|sub|mult
-4|1|mult|9|0|mult|sub
-4|1|mult|4|cbrt|mult
-4|1|mult|4|cb|mult
-4|1|mult|4|sq|mult
-4|1|mult|4|sq|sub
-4|1|mult|4|sq|add
-4|1|mult|4|0|mult|mult
-4|1|mult|4|0|mult|sub
-4|1|mult|4|0|mult|add
-4|1|mult|3|0|mult|mult
-4|1|mult|3|0|mult|sub
-4|1|mult|3|0|mult|add
-4|1|mult|4|0|add|mult
-4|1|mult|9|5|sub|mult
-4|1|mult|9|8|add|mult
-4|1|mult|9|7|mult|mult
-4|1|mult|9|7|mult|sub
-4|1|mult|9|7|mult|add
-4|1|mult|9|7|sub|mult
-4|1|mult|9|7|add|mult
-4|1|mult|9|6|mult|mult
-4|1|mult|9|6|mult|sub
-4|1|mult|9|6|mult|add
-4|1|mult|9|6|sub|mult
-4|1|mult|9|6|add|mult
-4|1|mult|9|2|add|mult
-4|1|mult|9|8|sub|mult
-4|1|mult|9|5|add|mult
-4|1|mult|9|4|mult|mult
-4|1|mult|9|4|mult|sub
-4|1|mult|9|4|mult|add
-4|1|mult|9|4|sub|mult
-4|1|mult|9|4|add|mult
-4|1|mult|9|3|mult|mult
-4|1|mult|9|3|mult|sub
-4|1|mult|9|3|mult|add
-4|1|mult|9|3|sub|mult
-4|1|mult|9|3|add|mult
-4|1|mult|9|2|mult|mult
-4|1|mult|8|5|mult|sub
-4|1|mult|9|0|mult|add
-4|1|mult|9|0|sub|mult
-4|1|mult|9|0|add|mult
-4|1|mult|6|5|sub|mult
-4|1|mult|8|7|sub|mult
-4|1|mult|8|7|add|mult
-4|1|mult|8|6|mult|mult
-4|1|mult|8|6|mult|sub
-4|1|mult|8|6|mult|add
-4|1|mult|8|6|sub|mult
-4|1|mult|8|6|add|mult
-4|1|mult|8|5|mult|mult
-4|2|add|3|add
-4|1|mult|8|5|mult|add
-4|1|mult|8|5|sub|mult
-4|1|mult|8|5|add|mult
-4|1|mult|8|4|mult|mult
-4|1|mult|8|4|mult|sub
-4|1|mult|8|4|mult|add
-4|1|mult|8|7|mult|mult
-4|1|mult|8|7|mult|sub
-4|1|mult|8|7|mult|add
-4|1|mult|9|8|mult|mult
-4|1|mult|9|8|mult|sub
-4|1|mult|9|8|mult|add
-4|2|add|7|0|add|add
-4|2|add|7|1|add|mult
-4|2|add|7|1|add|sub
-4|2|add|7|1|add|add
-4|2|add|7|cbrt|mult
-4|2|add|7|cb|mult
-4|2|add|7|sq|mult
-4|2|add|7|0|mult|mult
-4|2|add|7|0|sub|mult
-4|2|add|7|0|sub|sub
-4|2|add|7|0|sub|add
-4|2|add|7|0|add|mult
-4|2|add|7|0|add|sub
-4|2|add|7|1|sub|add
-4|2|add|6|5|mult|mult
-4|2|add|7|2|add|mult
-4|2|add|7|2|add|add
-4|2|add|8|4|add|mult
-4|2|add|8|4|add|add
-4|2|add|8|3|mult|mult
-4|2|add|8|3|sub|mult
-4|2|add|8|3|sub|sub
-4|2|add|8|3|sub|add
-4|2|add|8|3|add|mult
-4|2|add|8|3|add|sub
-4|2|add|8|3|add|add
-4|2|add|7|3|sub|sub
-4|2|add|9|2|sub|sub
-4|2|add|9|5|mult|mult
-4|2|add|7|5|add|mult
-4|2|add|7|5|add|sub
-4|2|add|7|5|add|add
-4|2|add|7|4|mult|mult
-4|2|add|7|4|sub|mult
-4|2|add|7|4|sub|sub
-4|2|add|7|4|add|mult
-4|2|add|7|4|add|add
-4|2|add|7|3|mult|mult
-4|2|add|7|3|sub|mult
-4|2|add|8|2|mult|mult
-4|2|add|7|3|sub|add
-4|2|add|7|3|add|mult
-4|2|add|7|3|add|sub
-4|2|add|7|3|add|add
-4|2|add|7|2|mult|mult
-4|2|add|7|2|sub|mult
-4|2|add|7|2|sub|sub
-4|2|add|8|4|sub|mult
-4|2|add|8|4|sub|sub
-4|2|add|7|1|mult|mult
-4|2|add|7|1|sub|mult
-4|2|add|7|1|sub|sub
-4|2|add|7|mult
-4|2|add|7|6|add|sub
-4|2|add|7|6|add|add
-4|2|add|7|5|mult|mult
-4|2|add|8|1|add|mult
-4|2|add|8|1|add|sub
-4|2|add|8|1|add|add
-4|2|add|9|mult
-4|2|add|9|sub
-4|2|add|9|add
-4|2|add|8|mult
-4|2|add|8|sub
-4|2|add|8|add
-4|2|add|7|6|add|mult
-4|2|add|7|sub
-4|2|add|7|add
-4|2|add|6|mult
-4|2|add|6|sub
-4|2|add|6|add
-4|2|add|5|mult
-4|2|add|5|sub
-4|2|add|5|add
-4|2|add|4|mult
-4|2|add|4|add
-4|2|add|3|mult
-4|2|add|3|sub
-4|2|add|8|cb|mult
-4|2|add|8|2|sub|mult
-4|2|add|8|2|sub|sub
-4|2|add|8|2|add|mult
-4|2|add|8|2|add|add
-4|2|add|8|1|mult|mult
-4|2|add|8|1|sub|mult
-4|2|add|8|1|sub|sub
-4|2|add|8|1|sub|add
-4|2|add|7|5|sub|mult
-4|2|add|7|5|sub|sub
-4|2|add|7|5|sub|add
-4|2|add|8|cbrt|mult
-4|1|mult|9|2|mult|sub
-4|2|add|8|sq|mult
-4|2|add|8|0|mult|mult
-4|2|add|8|0|sub|mult
-4|2|add|8|0|sub|sub
-4|2|add|8|0|sub|add
-4|2|add|8|0|add|mult
-4|2|add|8|0|add|sub
-4|2|add|8|0|add|add
-4|2|add|7|6|mult|mult
-4|2|add|7|6|sub|mult
-4|2|add|7|6|sub|sub
-4|2|add|7|6|sub|add
-4|1|sub|8|6|add|add
-4|1|sub|6|5|sub|add
-4|1|sub|8|7|sub|mult
-4|1|sub|8|7|sub|sub
-4|1|sub|8|7|sub|add
-4|1|sub|8|7|add|mult
-4|1|sub|8|7|add|sub
-4|1|sub|8|7|add|add
-4|1|sub|8|6|mult|mult
-4|1|sub|8|6|sub|mult
-4|1|sub|8|6|sub|sub
-4|1|sub|8|6|sub|add
-4|1|sub|8|6|add|mult
-4|1|sub|8|6|add|sub
-4|1|sub|6|5|sub|sub
-4|1|sub|8|5|mult|mult
-4|1|sub|8|5|sub|mult
-4|1|sub|8|5|sub|sub
-4|1|sub|8|5|sub|add
-4|1|sub|8|5|add|mult
-4|1|sub|8|5|add|sub
-4|1|sub|8|5|add|add
-4|1|sub|8|4|mult|mult
-4|1|sub|8|7|mult|mult
-4|1|sub|9|8|mult|mult
-4|1|sub|9|8|sub|mult
-4|1|sub|9|8|sub|sub
-4|1|sub|9|1|add|mult
-4|1|sub|3|1|sub|mult
-4|1|sub|3|1|sub|add
-4|1|sub|3|1|add|mult
-4|1|sub|3|1|add|sub
-4|1|sub|3|cbrt|mult
-4|1|sub|3|cb|mult
-4|1|sub|3|sq|mult
-4|1|sub|4|0|sub|mult
-4|1|sub|4|0|sub|add
-4|1|sub|9|1|mult|mult
-4|1|sub|9|1|sub|mult
-4|1|sub|9|1|sub|add
-4|1|sub|9|8|sub|add
-4|1|sub|9|1|add|sub
-4|1|sub|9|cbrt|mult
-4|1|sub|9|cb|mult
-4|1|sub|9|sq|mult
-4|1|sub|9|0|mult|mult
-4|1|sub|9|0|sub|mult
-4|1|sub|9|0|sub|sub
-4|1|sub|9|0|sub|add
-4|1|sub|9|0|add|mult
-4|1|sub|9|0|add|sub
-4|1|sub|9|0|add|add
-4|1|sub|6|5|sub|mult
-4|1|sub|9|2|mult|mult
-4|1|sub|9|4|mult|mult
-4|1|sub|9|4|sub|mult
-4|1|sub|9|4|sub|sub
-4|1|sub|9|4|add|mult
-4|1|sub|9|4|add|add
-4|1|sub|9|3|mult|mult
-4|1|sub|9|3|sub|mult
-4|1|sub|9|3|sub|sub
-4|1|sub|9|3|sub|add
-4|1|sub|9|3|add|mult
-4|1|sub|9|3|add|sub
-4|1|sub|9|3|add|add
-4|1|sub|9|5|add|add
-4|1|sub|9|2|sub|mult
-4|1|sub|9|2|sub|sub
-4|1|sub|9|2|sub|add
-4|1|sub|9|5|mult|mult
-4|1|sub|7|5|add|mult
-4|1|sub|7|5|add|sub
-4|1|sub|7|5|add|add
-4|1|sub|7|4|mult|mult
-4|1|sub|7|4|sub|mult
-4|1|sub|7|4|sub|sub
-4|1|sub|7|4|add|mult
-4|1|sub|7|4|add|add
-4|1|sub|9|6|sub|sub
-4|1|sub|9|8|add|mult
-4|1|sub|9|8|add|sub
-4|1|sub|9|8|add|add
-4|1|sub|9|7|mult|mult
-4|1|sub|9|7|sub|mult
-4|1|sub|9|7|sub|sub
-4|1|sub|9|7|sub|add
-4|1|sub|9|7|add|mult
-4|1|sub|9|7|add|sub
-4|1|sub|9|7|add|add
-4|1|sub|9|6|mult|mult
-4|1|sub|9|6|sub|mult
-4|1|sub|3|1|mult|mult
-4|1|sub|9|6|sub|add
-4|1|sub|9|6|add|mult
-4|1|sub|9|6|add|sub
-4|1|sub|9|6|add|add
-4|1|sub|9|2|add|mult
-4|1|sub|9|2|add|sub
-4|1|sub|9|2|add|add
-4|1|sub|9|5|sub|mult
-4|1|sub|9|5|sub|sub
-4|1|sub|9|5|sub|add
-4|1|sub|9|5|add|mult
-4|1|sub|9|5|add|sub
-4|1|mult|6|5|mult|add
-4|1|mult|7|cbrt|mult
-4|1|mult|7|cb|mult
-4|1|mult|7|sq|mult
-4|1|mult|7|sq|sub
-4|1|mult|7|sq|add
-4|1|mult|7|0|mult|mult
-4|1|mult|7|0|mult|sub
-4|1|mult|7|0|mult|add
-4|1|mult|7|0|sub|mult
-4|1|mult|7|0|add|mult
-4|1|mult|6|5|mult|mult
-4|1|mult|6|5|mult|sub
-4|1|mult|7|1|add|mult
-4|1|mult|7|2|add|mult
-4|1|mult|8|4|add|mult
-4|1|mult|8|3|mult|mult
-4|1|mult|8|3|mult|sub
-4|1|mult|8|3|mult|add
-4|1|mult|8|3|sub|mult
-4|1|mult|8|3|add|mult
-4|1|mult|8|2|mult|mult
-4|1|mult|8|2|mult|sub
-4|1|mult|8|2|mult|add
-4|1|mult|8|2|sub|mult
-4|1|mult|8|2|add|mult
-4|1|mult|7|3|mult|sub
-4|1|mult|9|2|mult|add
-4|1|mult|9|2|sub|mult
-4|1|mult|9|5|mult|mult
-4|1|mult|9|5|mult|sub
-4|1|mult|9|5|mult|add
-4|1|mult|7|5|add|mult
-4|1|mult|7|4|mult|mult
-4|1|mult|7|4|mult|sub
-4|1|mult|7|4|mult|add
-4|1|mult|7|4|sub|mult
-4|1|mult|7|4|add|mult
-4|1|mult|7|3|mult|mult
-4|1|mult|8|1|mult|mult
-4|1|mult|7|3|mult|add
-4|1|mult|7|3|sub|mult
-4|1|mult|7|3|add|mult
-4|1|mult|7|2|mult|mult
-4|1|mult|7|2|mult|sub
-4|1|mult|7|2|mult|add
-4|1|mult|7|2|sub|mult
-4|1|mult|8|4|sub|mult
-4|1|mult|7|1|mult|mult
-4|1|mult|7|1|mult|sub
-4|1|mult|7|1|mult|add
-4|1|mult|7|1|sub|mult
-4|1|sub|4|cb|mult
-4|1|mult|6|mult
-4|1|mult|5|mult
-4|1|mult|4|mult
-4|1|mult|3|mult
-4|1|mult|2|mult
-4|1|mult|1|mult
-4|1|mult|cbrt
-4|1|mult|cb
-4|1|mult|sq
-4|1|mult|0|mult
-4|1|sub|4|1|add|mult
-4|1|sub|4|cbrt|mult
-4|1|mult|7|mult
-4|1|sub|4|sq|mult
-4|1|sub|4|0|mult|mult
-4|1|sub|3|0|mult|mult
-4|1|sub|4|0|add|mult
-4|1|sub|4|0|add|add
-4|1|sub|3|2|mult|mult
-4|1|sub|3|2|sub|mult
-4|1|sub|3|2|sub|sub
-4|1|sub|3|2|sub|add
-4|1|sub|3|2|add|mult
-4|1|sub|3|2|add|sub
-4|1|sub|3|2|add|add
-4|1|mult|8|0|sub|mult
-4|1|mult|8|1|mult|sub
-4|1|mult|8|1|mult|add
-4|1|mult|8|1|sub|mult
-4|1|mult|7|5|sub|mult
-4|1|mult|8|cbrt|mult
-4|1|mult|8|cb|mult
-4|1|mult|8|sq|mult
-4|1|mult|8|sq|sub
-4|1|mult|8|sq|add
-4|1|mult|8|0|mult|mult
-4|1|mult|8|0|mult|sub
-4|1|mult|8|0|mult|add
-4|2|add|9|2|sub|mult
-4|1|mult|8|0|add|mult
-4|1|mult|7|6|mult|mult
-4|1|mult|7|6|mult|sub
-4|1|mult|7|6|mult|add
-4|1|mult|7|6|sub|mult
-4|1|mult|7|6|add|mult
-4|1|mult|7|5|mult|mult
-4|1|mult|7|5|mult|sub
-4|1|mult|7|5|mult|add
-4|1|mult|8|1|add|mult
-4|1|mult|9|mult
-4|1|mult|8|mult
-4|2|sub|8|5|add|add
-4|2|sub|8|6|mult|mult
-4|2|sub|8|6|sub|mult
-4|2|sub|8|6|sub|sub
-4|2|sub|8|6|sub|add
-4|2|sub|8|6|add|mult
-4|2|sub|8|6|add|sub
-4|2|sub|8|6|add|add
-4|2|sub|8|5|mult|mult
-4|2|sub|8|5|sub|mult
-4|2|sub|8|5|sub|sub
-4|2|sub|8|5|sub|add
-4|2|sub|8|5|add|mult
-4|2|sub|8|5|add|sub
-4|2|sub|8|7|add|add
-4|2|sub|8|4|mult|mult
-4|2|sub|8|7|mult|mult
-4|2|sub|9|8|mult|mult
-4|2|sub|9|8|sub|mult
-4|2|sub|9|8|sub|sub
-4|2|sub|9|8|sub|add
-4|2|sub|9|8|add|mult
-4|2|sub|9|8|add|sub
-4|2|sub|9|8|add|add
-4|2|sub|9|7|mult|mult
-4|2|sub|9|7|sub|mult
-4|2|sub|9|7|sub|sub
-4|2|sub|9|0|sub|sub
-4|2|sub|9|1|mult|mult
-4|2|sub|9|1|sub|mult
-4|2|sub|9|1|sub|sub
-4|2|sub|9|1|sub|add
-4|2|sub|9|1|add|mult
-4|2|sub|9|1|add|sub
-4|2|sub|9|1|add|add
-4|2|sub|9|cbrt|mult
-4|2|sub|9|cb|mult
-4|2|sub|9|sq|mult
-4|2|sub|9|0|mult|mult
-4|2|sub|9|0|sub|mult
-4|2|sub|9|7|sub|add
-4|2|sub|9|0|sub|add
-4|2|sub|9|0|add|mult
-4|2|sub|9|0|add|sub
-4|2|sub|9|0|add|add
-4|2|sub|6|5|sub|mult
-4|2|sub|6|5|sub|sub
-4|2|sub|6|5|sub|add
-4|2|sub|8|7|sub|mult
-4|2|sub|8|7|sub|sub
-4|2|sub|8|7|sub|add
-4|2|sub|8|7|add|mult
-4|2|sub|8|7|add|sub
-4|2|sub|7|4|sub|mult
-4|2|sub|9|3|sub|add
-4|2|sub|9|3|add|mult
-4|2|sub|9|3|add|sub
-4|2|sub|9|3|add|add
-4|2|sub|9|2|mult|mult
-4|2|sub|9|2|sub|mult
-4|2|sub|9|2|sub|add
-4|2|sub|9|5|mult|mult
-4|2|sub|7|5|add|mult
-4|2|sub|7|5|add|sub
-4|2|sub|7|5|add|add
-4|2|sub|7|4|mult|mult
-4|2|sub|9|3|sub|sub
-4|2|sub|7|4|sub|sub
-4|2|sub|7|4|add|mult
-4|2|sub|7|4|add|add
-4|2|sub|7|3|mult|mult
-4|2|sub|7|3|sub|mult
-4|2|sub|7|3|sub|sub
-4|2|sub|7|3|sub|add
-4|2|sub|7|3|add|mult
-4|2|sub|7|3|add|sub
-4|2|sub|7|3|add|add
-4|2|sub|7|2|mult|mult
-4|2|sub|7|2|sub|mult
-4|2|sub|9|5|sub|mult
-4|2|sub|9|7|add|mult
-4|2|sub|9|7|add|sub
-4|2|sub|9|7|add|add
-4|2|sub|9|6|mult|mult
-4|2|sub|9|6|sub|mult
-4|2|sub|9|6|sub|sub
-4|2|sub|9|6|sub|add
-4|2|sub|9|6|add|mult
-4|2|sub|9|6|add|sub
-4|2|sub|9|6|add|add
-4|2|sub|9|2|add|mult
-4|2|sub|9|2|add|sub
-4|2|sub|4|0|sub|add
-4|2|sub|9|5|sub|sub
-4|2|sub|9|5|sub|add
-4|2|sub|9|5|add|mult
-4|2|sub|9|5|add|sub
-4|2|sub|9|5|add|add
-4|2|sub|9|4|mult|mult
-4|2|sub|9|4|sub|mult
-4|2|sub|9|4|sub|sub
-4|2|sub|9|4|add|mult
-4|2|sub|9|4|add|add
-4|2|sub|9|3|mult|mult
-4|2|sub|9|3|sub|mult
-2|0|sub|7|6|add|add
-2|0|sub|8|sq|mult
-2|0|sub|8|0|mult|mult
-2|0|sub|8|0|sub|mult
-2|0|sub|8|0|sub|add
-2|0|sub|8|0|add|mult
-2|0|sub|8|0|add|sub
-2|0|sub|7|6|mult|mult
-2|0|sub|7|6|sub|mult
-2|0|sub|7|6|sub|sub
-2|0|sub|7|6|sub|add
-2|0|sub|7|6|add|mult
-2|0|sub|7|6|add|sub
-2|0|sub|8|cb|mult
-2|0|sub|7|5|mult|mult
-2|0|sub|8|1|add|mult
-2|0|sub|8|1|add|sub
-2|0|sub|8|1|add|add
-2|0|sub|9|mult
-2|0|sub|9|sub
-2|0|sub|9|add
-2|0|sub|8|mult
-2|0|sub|8|sub
-2|0|sub|8|add
-2|0|sub|7|mult
-2|0|sub|7|sub
-2|0|sub|8|2|mult|mult
-2|0|sub|7|2|add|mult
-2|0|sub|7|2|add|add
-2|0|sub|8|4|add|mult
-2|0|sub|8|4|add|sub
-2|0|sub|8|4|add|add
-2|0|sub|8|3|mult|mult
-2|0|sub|8|3|sub|mult
-2|0|sub|8|3|sub|sub
-2|0|sub|8|3|sub|add
-2|0|sub|8|3|add|mult
-2|0|sub|8|3|add|sub
-2|0|sub|8|3|add|add
-2|0|sub|7|add
-2|0|sub|8|2|sub|mult
-2|0|sub|8|2|sub|sub
-2|0|sub|8|2|add|mult
-2|0|sub|8|2|add|add
-2|0|sub|8|1|mult|mult
-2|0|sub|8|1|sub|mult
-2|0|sub|8|1|sub|sub
-2|0|sub|8|1|sub|add
-2|0|sub|7|5|sub|mult
-2|0|sub|7|5|sub|sub
-2|0|sub|7|5|sub|add
-2|0|sub|8|cbrt|mult
-4|2|sub|3|2|add|mult
-4|2|sub|4|1|add|mult
-4|2|sub|4|1|add|add
-4|2|sub|4|cbrt|mult
-4|2|sub|4|cb|mult
-4|2|sub|4|sq|mult
-4|2|sub|4|0|mult|mult
-4|2|sub|3|0|mult|mult
-4|2|sub|4|0|add|mult
-4|2|sub|4|0|add|add
-4|2|sub|3|2|mult|mult
-4|2|sub|3|2|sub|mult
-4|2|sub|3|2|sub|add
-4|2|sub|4|1|sub|add
-4|2|sub|3|2|add|sub
-4|2|sub|3|1|mult|mult
-4|2|sub|3|1|sub|mult
-4|2|sub|3|1|sub|sub
-4|2|sub|3|1|sub|add
-4|2|sub|3|1|add|mult
-4|2|sub|3|1|add|sub
-4|2|sub|3|1|add|add
-4|2|sub|3|cbrt|mult
-4|2|sub|3|cb|mult
-4|2|sub|3|sq|mult
-4|2|sub|4|0|sub|mult
-2|0|sub|2|mult
-2|0|sub|6|mult
-2|0|sub|6|sub
-2|0|sub|6|add
-2|0|sub|5|mult
-2|0|sub|5|sub
-2|0|sub|5|add
-2|0|sub|4|mult
-2|0|sub|4|sub
-2|0|sub|4|add
-2|0|sub|3|mult
-2|0|sub|3|sub
-2|0|sub|3|add
-4|2|sub|7|2|sub|add
-2|0|sub|2|add
-2|0|sub|1|mult
-2|0|sub|1|sub
-2|0|sub|1|add
-2|0|sub|cbrt
-2|0|sub|cb
-2|0|sub|sq
-2|0|sub|0|mult
-2|0|sub|0|sub
-4|2|sub|4|2|add|mult
-4|2|sub|4|1|mult|mult
-4|2|sub|4|1|sub|mult
-4|2|add|6|5|sub|add
-4|2|add|9|1|add|add
-4|2|add|9|cbrt|mult
-4|2|add|9|cb|mult
-4|2|add|9|sq|mult
-4|2|add|9|0|mult|mult
-4|2|add|9|0|sub|mult
-4|2|add|9|0|sub|sub
-4|2|add|9|0|sub|add
-4|2|add|9|0|add|mult
-4|2|add|9|0|add|sub
-4|2|add|9|0|add|add
-4|2|add|6|5|sub|mult
-4|2|add|6|5|sub|sub
-4|2|add|9|1|add|sub
-4|2|add|8|7|sub|mult
-4|2|add|8|7|sub|sub
-4|2|add|8|7|sub|add
-4|2|add|8|7|add|mult
-4|2|add|8|7|add|sub
-4|2|add|8|7|add|add
-4|2|add|8|6|mult|mult
-4|2|add|8|6|sub|mult
-4|2|add|8|6|sub|sub
-4|2|add|8|6|sub|add
-4|2|add|8|6|add|mult
-4|2|add|8|6|add|sub
-4|2|add|3|1|add|mult
-4|2|add|3|0|mult|mult
-4|2|add|4|0|add|mult
-4|2|add|4|0|add|add
-4|2|add|3|2|mult|mult
-4|2|add|3|2|sub|mult
-4|2|add|3|2|sub|sub
-4|2|add|3|2|add|mult
-4|2|add|3|2|add|add
-4|2|add|3|1|mult|mult
-4|2|add|3|1|sub|mult
-4|2|add|3|1|sub|sub
-4|2|add|3|1|sub|add
-4|2|add|8|6|add|add
-4|2|add|3|1|add|sub
-4|2|add|3|1|add|add
-4|2|add|3|cbrt|mult
-4|2|add|3|cb|mult
-4|2|add|3|sq|mult
-4|2|add|4|0|sub|mult
-4|2|add|4|0|sub|add
-4|2|add|9|1|mult|mult
-4|2|add|9|1|sub|mult
-4|2|add|9|1|sub|sub
-4|2|add|9|1|sub|add
-4|2|add|9|1|add|mult
-4|2|add|9|4|mult|mult
-4|2|add|9|6|sub|add
-4|2|add|9|6|add|mult
-4|2|add|9|6|add|sub
-4|2|add|9|6|add|add
-4|2|add|9|2|add|mult
-4|2|add|9|2|add|add
-4|2|add|9|5|sub|mult
-4|2|add|9|5|sub|sub
-4|2|add|9|5|sub|add
-4|2|add|9|5|add|mult
-4|2|add|9|5|add|sub
-4|2|add|9|5|add|add
-4|2|add|9|6|sub|sub
-4|2|add|9|4|sub|mult
-4|2|add|9|4|sub|sub
-4|2|add|9|4|add|mult
-4|2|add|9|4|add|add
-4|2|add|9|3|mult|mult
-4|2|add|9|3|sub|mult
-4|2|add|9|3|sub|sub
-4|2|add|9|3|sub|add
-4|2|add|9|3|add|mult
-4|2|add|9|3|add|sub
-4|2|add|9|3|add|add
-4|2|add|9|2|mult|mult
-4|2|add|9|8|sub|add
-4|2|add|8|5|mult|mult
-4|2|add|8|5|sub|mult
-4|2|add|8|5|sub|sub
-4|2|add|8|5|sub|add
-4|2|add|8|5|add|mult
-4|2|add|8|5|add|sub
-4|2|add|8|5|add|add
-4|2|add|8|4|mult|mult
-4|2|add|8|7|mult|mult
-4|2|add|9|8|mult|mult
-4|2|add|9|8|sub|mult
-4|2|add|9|8|sub|sub
-4|2|add|4|0|mult|mult
-4|2|add|9|8|add|mult
-4|2|add|9|8|add|sub
-4|2|add|9|8|add|add
-4|2|add|9|7|mult|mult
-4|2|add|9|7|sub|mult
-4|2|add|9|7|sub|sub
-4|2|add|9|7|sub|add
-4|2|add|9|7|add|mult
-4|2|add|9|7|add|sub
-4|2|add|9|7|add|add
-4|2|add|9|6|mult|mult
-4|2|add|9|6|sub|mult
-4|2|sub|8|1|sub|sub
-4|2|sub|8|3|sub|sub
-4|2|sub|8|3|sub|add
-4|2|sub|8|3|add|mult
-4|2|sub|8|3|add|sub
-4|2|sub|8|3|add|add
-4|2|sub|8|2|mult|mult
-4|2|sub|8|2|sub|mult
-4|2|sub|8|2|sub|add
-4|2|sub|8|2|add|mult
-4|2|sub|8|2|add|sub
-4|2|sub|8|1|mult|mult
-4|2|sub|8|1|sub|mult
-4|2|sub|8|3|sub|mult
-4|2|sub|8|1|sub|add
-4|2|sub|7|5|sub|mult
-4|2|sub|7|5|sub|sub
-4|2|sub|7|5|sub|add
-4|2|sub|8|cbrt|mult
-4|2|sub|8|cb|mult
-4|2|sub|8|sq|mult
-4|2|sub|8|0|mult|mult
-4|2|sub|8|0|sub|mult
-4|2|sub|8|0|sub|sub
-4|2|sub|8|0|sub|add
-4|2|sub|8|0|add|mult
-4|2|sub|7|0|mult|mult
-4|2|sub|8|4|sub|mult
-4|2|sub|8|4|sub|sub
-4|2|sub|7|1|mult|mult
-4|2|sub|7|1|sub|mult
-4|2|sub|7|1|sub|sub
-4|2|sub|7|1|sub|add
-4|2|sub|7|1|add|mult
-4|2|sub|7|1|add|sub
-4|2|sub|7|1|add|add
-4|2|sub|7|cbrt|mult
-4|2|sub|7|cb|mult
-4|2|sub|7|sq|mult
-4|2|sub|8|0|add|sub
-4|2|sub|7|0|sub|mult
-4|2|sub|7|0|sub|sub
-4|2|sub|7|0|sub|add
-4|2|sub|7|0|add|mult
-4|2|sub|7|0|add|sub
-4|2|sub|7|0|add|add
-4|2|sub|6|5|mult|mult
-4|2|sub|7|2|add|mult
-4|2|sub|7|2|add|sub
-4|2|sub|8|4|add|mult
-4|2|sub|8|4|add|add
-4|2|sub|8|3|mult|mult
-4|2|sub|cb
-4|2|sub|5|add
-4|2|sub|4|mult
-4|2|sub|4|add
-4|2|sub|3|mult
-4|2|sub|3|sub
-4|2|sub|3|add
-4|2|sub|2|mult
-4|2|sub|2|sub
-4|2|sub|1|mult
-4|2|sub|1|sub
-4|2|sub|1|add
-4|2|sub|cbrt
-4|2|sub|5|sub
-4|2|sub|sq
-4|2|sub|0|mult
-4|2|sub|0|sub
-4|2|sub|0|add
-4|2|add|4|1|mult|mult
-4|2|add|4|1|sub|mult
-4|2|add|4|1|sub|add
-4|2|add|4|1|add|mult
-4|2|add|4|1|add|add
-4|2|add|4|cbrt|mult
-4|2|add|4|cb|mult
-4|2|add|4|sq|mult
-4|2|sub|9|mult
-4|2|sub|8|0|add|add
-4|2|sub|7|6|mult|mult
-4|2|sub|7|6|sub|mult
-4|2|sub|7|6|sub|sub
-4|2|sub|7|6|sub|add
-4|2|sub|7|6|add|mult
-4|2|sub|7|6|add|sub
-4|2|sub|7|6|add|add
-4|2|sub|7|5|mult|mult
-4|2|sub|8|1|add|mult
-4|2|sub|8|1|add|sub
-4|2|sub|8|1|add|add
-4|1|sub|7|3|mult|mult
-4|2|sub|9|sub
-4|2|sub|9|add
-4|2|sub|8|mult
-4|2|sub|8|sub
-4|2|sub|8|add
-4|2|sub|7|mult
-4|2|sub|7|sub
-4|2|sub|7|add
-4|2|sub|6|mult
-4|2|sub|6|sub
-4|2|sub|6|add
-4|2|sub|5|mult
-4|sq|4|0|add|mult
-4|cb|5|mult
-4|cb|3|mult
-4|cb|2|mult
-4|cb|1|mult
-4|cb|cb
-4|cb|sq
-4|cb|0|mult
-4|sq|4|0|mult|mult
-4|sq|4|0|mult|sub
-4|sq|4|0|mult|add
-4|sq|3|0|mult|mult
-4|sq|3|0|mult|sub
-4|sq|3|0|mult|add
-4|cb|6|mult
-4|sq|3|2|mult|mult
-4|sq|3|2|mult|sub
-4|sq|3|2|mult|add
-4|sq|3|2|sub|mult
-4|sq|3|2|add|mult
-4|sq|3|1|mult|mult
-4|sq|3|1|mult|sub
-4|sq|3|1|mult|add
-4|sq|3|1|sub|mult
-4|sq|3|1|add|mult
-4|sq|3|cbrt|mult
-4|sq|3|cb|mult
-4|cb|8|cb|add
-4|cb|8|4|add|mult
-4|cb|8|3|mult|mult
-4|cb|8|3|sub|mult
-4|cb|8|3|add|mult
-4|cb|8|2|mult|mult
-4|cb|8|2|sub|mult
-4|cb|8|2|add|mult
-4|cb|8|1|mult|mult
-4|cb|8|1|sub|mult
-4|cb|7|5|sub|mult
-4|cb|8|cbrt|mult
-4|cb|8|cb|sub
-4|sq|3|sq|sub
-4|cb|8|sq|mult
-4|cb|8|0|mult|mult
-4|cb|8|0|sub|mult
-4|cb|8|0|add|mult
-4|cb|7|6|mult|mult
-4|cb|7|6|sub|mult
-4|cb|7|6|add|mult
-4|cb|7|5|mult|mult
-4|cb|8|1|add|mult
-4|cb|9|mult
-4|cb|8|mult
-4|cb|7|mult
-4|sq|9|8|sub|mult
-4|sq|8|5|mult|add
-4|sq|8|5|sub|mult
-4|sq|8|5|add|mult
-4|sq|8|4|mult|mult
-4|sq|8|4|mult|sub
-4|sq|8|4|mult|add
-4|sq|8|7|mult|mult
-4|sq|8|7|mult|sub
-4|sq|8|7|mult|add
-4|sq|9|8|mult|mult
-4|sq|9|8|mult|sub
-4|sq|9|8|mult|add
-4|sq|8|5|mult|sub
-4|sq|9|8|add|mult
-4|sq|9|7|mult|mult
-4|sq|9|7|mult|sub
-4|sq|9|7|mult|add
-4|sq|9|7|sub|mult
-4|sq|9|7|add|mult
-4|sq|9|6|mult|mult
-4|sq|9|6|mult|sub
-4|sq|9|6|mult|add
-4|sq|9|6|sub|mult
-4|sq|9|6|add|mult
-4|sq|9|2|add|mult
-4|sq|9|0|mult|sub
-4|sq|3|sq|add
-4|sq|4|0|sub|mult
-4|sq|9|1|mult|mult
-4|sq|9|1|mult|sub
-4|sq|9|1|mult|add
-4|sq|9|1|sub|mult
-4|sq|9|1|add|mult
-4|sq|9|cbrt|mult
-4|sq|9|cb|mult
-4|sq|9|sq|sub
-4|sq|9|sq|add
-4|sq|9|0|mult|mult
-4|cb|7|2|add|mult
-4|sq|9|0|mult|add
-4|sq|9|0|sub|mult
-4|sq|9|0|add|mult
-4|sq|6|5|sub|mult
-4|sq|8|7|sub|mult
-4|sq|8|7|add|mult
-4|sq|8|6|mult|mult
-4|sq|8|6|mult|sub
-4|sq|8|6|mult|add
-4|sq|8|6|sub|mult
-4|sq|8|6|add|mult
-4|sq|8|5|mult|mult
-4|cb|3|sq|mult
-4|cb|4|0|mult|mult
-4|cb|3|0|mult|mult
-4|cb|4|0|add|mult
-4|cb|3|2|mult|mult
-4|cb|3|2|sub|mult
-4|cb|3|2|add|mult
-4|cb|3|1|mult|mult
-4|cb|3|1|sub|mult
-4|cb|3|1|add|mult
-4|cb|3|cbrt|mult
-4|cb|3|cb|sub
-4|cb|3|cb|add
-4|cbrt|0|mult
-4|cb|4|0|sub|mult
-4|cb|9|1|mult|mult
-4|cb|9|1|sub|mult
-4|cb|9|1|add|mult
-4|cb|9|cbrt|mult
-4|cb|9|cb|sub
-4|cb|9|cb|add
-4|cb|9|sq|mult
-4|cb|9|0|mult|mult
-4|cb|9|0|sub|mult
-4|cb|9|0|add|mult
-4|cb|6|5|sub|mult
-4|cbrt|7|6|add|mult
-4|cbrt|8|1|sub|mult
-4|cbrt|7|5|sub|mult
-4|cbrt|8|cbrt|mult
-4|cbrt|8|cbrt|sub
-4|cbrt|8|cbrt|add
-4|cbrt|8|cb|mult
-4|cbrt|8|sq|mult
-4|cbrt|8|0|mult|mult
-4|cbrt|8|0|sub|mult
-4|cbrt|8|0|add|mult
-4|cbrt|7|6|mult|mult
-4|cbrt|7|6|sub|mult
-4|cb|8|7|sub|mult
-4|cbrt|7|5|mult|mult
-4|cbrt|8|1|add|mult
-4|cbrt|9|mult
-4|cbrt|8|mult
-4|cbrt|7|mult
-4|cbrt|6|mult
-4|cbrt|5|mult
-4|cbrt|3|mult
-4|cbrt|2|mult
-4|cbrt|1|mult
-4|cbrt|cbrt
-4|cbrt|sq
-4|cb|7|2|sub|mult
-4|cb|9|3|add|mult
-4|cb|9|2|mult|mult
-4|cb|9|2|sub|mult
-4|cb|9|5|mult|mult
-4|cb|7|5|add|mult
-4|cb|7|4|mult|mult
-4|cb|7|4|sub|mult
-4|cb|7|4|add|mult
-4|cb|7|3|mult|mult
-4|cb|7|3|sub|mult
-4|cb|7|3|add|mult
-4|cb|7|2|mult|mult
-4|cb|9|3|sub|mult
-4|cb|8|4|sub|mult
-4|cb|7|1|mult|mult
-4|cb|7|1|sub|mult
-4|cb|7|1|add|mult
-4|cb|7|cbrt|mult
-4|cb|7|cb|sub
-4|cb|7|cb|add
-4|cb|7|sq|mult
-4|cb|7|0|mult|mult
-4|cb|7|0|sub|mult
-4|cb|7|0|add|mult
-4|cb|6|5|mult|mult
-4|cb|9|7|mult|mult
-4|cb|8|7|add|mult
-4|cb|8|6|mult|mult
-4|cb|8|6|sub|mult
-4|cb|8|6|add|mult
-4|cb|8|5|mult|mult
-4|cb|8|5|sub|mult
-4|cb|8|5|add|mult
-4|cb|8|4|mult|mult
-4|cb|8|7|mult|mult
-4|cb|9|8|mult|mult
-4|cb|9|8|sub|mult
-4|cb|9|8|add|mult
-4|sq|9|5|sub|mult
-4|cb|9|7|sub|mult
-4|cb|9|7|add|mult
-4|cb|9|6|mult|mult
-4|cb|9|6|sub|mult
-4|cb|9|6|add|mult
-4|cb|9|2|add|mult
-4|cb|9|5|sub|mult
-4|cb|9|5|add|mult
-4|cb|9|4|mult|mult
-4|cb|9|4|sub|mult
-4|cb|9|4|add|mult
-4|cb|9|3|mult|mult
-4|0|mult|8|5|add|mult
-4|0|mult|9|0|add|mult
-4|0|mult|6|5|sub|mult
-4|0|mult|8|7|sub|mult
-4|0|mult|8|7|add|mult
-4|0|mult|8|6|mult|mult
-4|0|mult|8|6|mult|sub
-4|0|mult|8|6|mult|add
-4|0|mult|8|6|sub|mult
-4|0|mult|8|6|add|mult
-4|0|mult|8|5|mult|mult
-4|0|mult|8|5|mult|sub
-4|0|mult|8|5|mult|add
-4|0|mult|8|5|sub|mult
-4|0|mult|9|0|sub|mult
-4|0|mult|8|4|mult|mult
-4|0|mult|8|4|mult|sub
-4|0|mult|8|4|mult|add
-4|0|mult|8|7|mult|mult
-4|0|mult|8|7|mult|sub
-4|0|mult|8|7|mult|add
-4|0|mult|9|8|mult|mult
-4|0|mult|9|8|mult|sub
-4|0|mult|9|8|mult|add
-4|0|mult|9|8|sub|mult
-4|0|mult|9|8|add|mult
-4|0|mult|9|7|mult|mult
-4|0|mult|9|1|mult|mult
-4|0|mult|3|2|add|mult
-4|0|mult|3|1|mult|mult
-4|0|mult|3|1|mult|sub
-4|0|mult|3|1|mult|add
-4|0|mult|3|1|sub|mult
-4|0|mult|3|1|add|mult
-4|0|mult|3|cbrt|mult
-4|0|mult|3|cb|mult
-4|0|mult|3|sq|mult
-4|0|mult|3|sq|sub
-4|0|mult|3|sq|add
-4|0|mult|4|0|sub|mult
-4|0|mult|9|7|mult|sub
-4|0|mult|9|1|mult|sub
-4|0|mult|9|1|mult|add
-4|0|mult|9|1|sub|mult
-4|0|mult|9|1|add|mult
-4|0|mult|9|cbrt|mult
-4|0|mult|9|cb|mult
-4|0|mult|9|sq|mult
-4|0|mult|9|sq|sub
-4|0|mult|9|sq|add
-4|0|mult|9|0|mult|mult
-4|0|mult|9|0|mult|sub
-4|0|mult|9|0|mult|add
-4|0|mult|7|3|add|mult
-4|0|mult|9|5|mult|sub
-4|0|mult|9|5|mult|add
-4|0|mult|7|5|add|mult
-4|0|mult|7|4|mult|mult
-4|0|mult|7|4|mult|sub
-4|0|mult|7|4|mult|add
-4|0|mult|7|4|sub|mult
-4|0|mult|7|4|add|mult
-4|0|mult|7|3|mult|mult
-4|0|mult|7|3|mult|sub
-4|0|mult|7|3|mult|add
-4|0|mult|7|3|sub|mult
-4|0|mult|9|5|mult|mult
-4|0|mult|7|2|mult|mult
-4|0|mult|7|2|mult|sub
-4|0|mult|7|2|mult|add
-4|0|mult|7|2|sub|mult
-4|0|mult|8|4|sub|mult
-4|0|mult|7|1|mult|mult
-4|0|mult|7|1|mult|sub
-4|0|mult|7|1|mult|add
-4|0|mult|7|1|sub|mult
-4|0|mult|7|1|add|mult
-4|0|mult|7|cbrt|mult
-4|0|mult|7|cb|mult
-4|0|mult|9|4|mult|sub
-4|0|mult|9|7|mult|add
-4|0|mult|9|7|sub|mult
-4|0|mult|9|7|add|mult
-4|0|mult|9|6|mult|mult
-4|0|mult|9|6|mult|sub
-4|0|mult|9|6|mult|add
-4|0|mult|9|6|sub|mult
-4|0|mult|9|6|add|mult
-4|0|mult|9|2|add|mult
-4|0|mult|9|5|sub|mult
-4|0|mult|9|5|add|mult
-4|0|mult|9|4|mult|mult
-4|0|mult|3|2|sub|mult
-4|0|mult|9|4|mult|add
-4|0|mult|9|4|sub|mult
-4|0|mult|9|4|add|mult
-4|0|mult|9|3|mult|mult
-4|0|mult|9|3|mult|sub
-4|0|mult|9|3|mult|add
-4|0|mult|9|3|sub|mult
-4|0|mult|9|3|add|mult
-4|0|mult|9|2|mult|mult
-4|0|mult|9|2|mult|sub
-4|0|mult|9|2|mult|add
-4|0|mult|9|2|sub|mult
-4|sq|7|1|add|mult
-4|sq|7|3|mult|add
-4|sq|7|3|sub|mult
-4|sq|7|3|add|mult
-4|sq|7|2|mult|mult
-4|sq|7|2|mult|sub
-4|sq|7|2|mult|add
-4|sq|7|2|sub|mult
-4|sq|8|4|sub|mult
-4|sq|7|1|mult|mult
-4|sq|7|1|mult|sub
-4|sq|7|1|mult|add
-4|sq|7|1|sub|mult
-4|sq|7|3|mult|sub
-4|sq|7|cbrt|mult
-4|sq|7|cb|mult
-4|sq|7|sq|sub
-4|sq|7|sq|add
-4|sq|7|0|mult|mult
-4|sq|7|0|mult|sub
-4|sq|7|0|mult|add
-4|sq|7|0|sub|mult
-4|sq|7|0|add|mult
-4|sq|6|5|mult|mult
-4|sq|6|5|mult|sub
-4|sq|6|5|mult|add
-4|sq|9|2|mult|sub
-4|sq|9|5|add|mult
-4|sq|9|4|mult|mult
-4|sq|9|4|mult|sub
-4|sq|9|4|mult|add
-4|sq|9|4|sub|mult
-4|sq|9|4|add|mult
-4|sq|9|3|mult|mult
-4|sq|9|3|mult|sub
-4|sq|9|3|mult|add
-4|sq|9|3|sub|mult
-4|sq|9|3|add|mult
-4|sq|9|2|mult|mult
-4|sq|7|2|add|mult
-4|sq|9|2|mult|add
-4|sq|9|2|sub|mult
-4|sq|9|5|mult|mult
-4|sq|9|5|mult|sub
-4|sq|9|5|mult|add
-4|sq|7|5|add|mult
-4|sq|7|4|mult|mult
-4|sq|7|4|mult|sub
-4|sq|7|4|mult|add
-4|sq|7|4|sub|mult
-4|sq|7|4|add|mult
-4|sq|7|3|mult|mult
-4|sq|5|mult
-4|sq|7|6|mult|sub
-4|sq|7|6|mult|add
-4|sq|7|6|sub|mult
-4|sq|7|6|add|mult
-4|sq|7|5|mult|mult
-4|sq|7|5|mult|sub
-4|sq|7|5|mult|add
-4|sq|8|1|add|mult
-4|sq|9|mult
-4|sq|8|mult
-4|sq|7|mult
-4|sq|6|mult
-4|sq|7|6|mult|mult
-4|sq|3|mult
-4|sq|2|mult
-4|sq|1|mult
-4|sq|sq
-4|sq|0|mult
-4|0|mult|3|0|mult|mult
-4|0|mult|3|0|mult|sub
-4|0|mult|3|0|mult|add
-4|0|mult|4|0|add|mult
-4|0|mult|3|2|mult|mult
-4|0|mult|3|2|mult|sub
-4|0|mult|3|2|mult|add
-4|sq|8|1|mult|sub
-4|sq|8|4|add|mult
-4|sq|8|3|mult|mult
-4|sq|8|3|mult|sub
-4|sq|8|3|mult|add
-4|sq|8|3|sub|mult
-4|sq|8|3|add|mult
-4|sq|8|2|mult|mult
-4|sq|8|2|mult|sub
-4|sq|8|2|mult|add
-4|sq|8|2|sub|mult
-4|sq|8|2|add|mult
-4|sq|8|1|mult|mult
-4|cbrt|8|1|mult|mult
-4|sq|8|1|mult|add
-4|sq|8|1|sub|mult
-4|sq|7|5|sub|mult
-4|sq|8|cbrt|mult
-4|sq|8|cb|mult
-4|sq|8|sq|sub
-4|sq|8|sq|add
-4|sq|8|0|mult|mult
-4|sq|8|0|mult|sub
-4|sq|8|0|mult|add
-4|sq|8|0|sub|mult
-4|sq|8|0|add|mult
-4|1|add|6|5|sub|mult
-4|1|add|9|1|sub|sub
-4|1|add|9|1|add|mult
-4|1|add|9|1|add|add
-4|1|add|9|cbrt|mult
-4|1|add|9|cb|mult
-4|1|add|9|sq|mult
-4|1|add|9|0|mult|mult
-4|1|add|9|0|sub|mult
-4|1|add|9|0|sub|sub
-4|1|add|9|0|sub|add
-4|1|add|9|0|add|mult
-4|1|add|9|0|add|sub
-4|1|add|9|0|add|add
-4|1|add|9|1|sub|mult
-4|1|add|6|5|sub|sub
-4|1|add|6|5|sub|add
-4|1|add|8|7|sub|mult
-4|1|add|8|7|sub|sub
-4|1|add|8|7|sub|add
-4|1|add|8|7|add|mult
-4|1|add|8|7|add|sub
-4|1|add|8|7|add|add
-4|1|add|8|6|mult|mult
-4|1|add|8|6|sub|mult
-4|1|add|8|6|sub|sub
-4|1|add|8|6|sub|add
-4|1|add|3|2|add|sub
-4|1|add|4|cbrt|mult
-4|1|add|4|cb|mult
-4|1|add|4|sq|mult
-4|1|add|4|0|mult|mult
-4|1|add|3|0|mult|mult
-4|1|add|4|0|add|mult
-4|1|add|4|0|add|add
-4|1|add|3|2|mult|mult
-4|1|add|3|2|sub|mult
-4|1|add|3|2|sub|sub
-4|1|add|3|2|sub|add
-4|1|add|3|2|add|mult
-4|1|add|8|6|add|mult
-4|1|add|3|2|add|add
-4|1|add|3|1|mult|mult
-4|1|add|3|1|sub|mult
-4|1|add|3|1|sub|sub
-4|1|add|3|1|add|mult
-4|1|add|3|1|add|add
-4|1|add|3|cbrt|mult
-4|1|add|3|cb|mult
-4|1|add|3|sq|mult
-4|1|add|4|0|sub|mult
-4|1|add|4|0|sub|add
-4|1|add|9|1|mult|mult
-4|1|add|9|5|add|mult
-4|1|add|9|6|sub|mult
-4|1|add|9|6|sub|sub
-4|1|add|9|6|sub|add
-4|1|add|9|6|add|mult
-4|1|add|9|6|add|sub
-4|1|add|9|6|add|add
-4|1|add|9|2|add|mult
-4|1|add|9|2|add|sub
-4|1|add|9|2|add|add
-4|1|add|9|5|sub|mult
-4|1|add|9|5|sub|sub
-4|1|add|9|5|sub|add
-4|1|add|9|6|mult|mult
-4|1|add|9|5|add|sub
-4|1|add|9|5|add|add
-4|1|add|9|4|mult|mult
-4|1|add|9|4|sub|mult
-4|1|add|9|4|sub|sub
-4|1|add|9|4|add|mult
-4|1|add|9|4|add|add
-4|1|add|9|3|mult|mult
-4|1|add|9|3|sub|mult
-4|1|add|9|3|sub|sub
-4|1|add|9|3|sub|add
-4|1|add|9|3|add|mult
-4|1|add|9|8|sub|mult
-4|1|add|8|6|add|sub
-4|1|add|8|6|add|add
-4|1|add|8|5|mult|mult
-4|1|add|8|5|sub|mult
-4|1|add|8|5|sub|sub
-4|1|add|8|5|sub|add
-4|1|add|8|5|add|mult
-4|1|add|8|5|add|sub
-4|1|add|8|5|add|add
-4|1|add|8|4|mult|mult
-4|1|add|8|7|mult|mult
-4|1|add|9|8|mult|mult
-4|1|sub|0|add
-4|1|add|9|8|sub|sub
-4|1|add|9|8|sub|add
-4|1|add|9|8|add|mult
-4|1|add|9|8|add|sub
-4|1|add|9|8|add|add
-4|1|add|9|7|mult|mult
-4|1|add|9|7|sub|mult
-4|1|add|9|7|sub|sub
-4|1|add|9|7|sub|add
-4|1|add|9|7|add|mult
-4|1|add|9|7|add|sub
-4|1|add|9|7|add|add
-4|1|sub|8|3|add|sub
-4|1|sub|7|0|add|add
-4|1|sub|6|5|mult|mult
-4|1|sub|7|2|add|mult
-4|1|sub|7|2|add|sub
-4|1|sub|7|2|add|add
-4|1|sub|8|4|add|mult
-4|1|sub|8|4|add|add
-4|1|sub|8|3|mult|mult
-4|1|sub|8|3|sub|mult
-4|1|sub|8|3|sub|sub
-4|1|sub|8|3|sub|add
-4|1|sub|8|3|add|mult
-4|1|sub|7|0|add|sub
-4|1|sub|8|3|add|add
-4|1|sub|8|2|mult|mult
-4|1|sub|8|2|sub|mult
-4|1|sub|8|2|sub|sub
-4|1|sub|8|2|sub|add
-4|1|sub|8|2|add|mult
-4|1|sub|8|2|add|sub
-4|1|sub|8|2|add|add
-4|1|sub|8|1|mult|mult
-4|1|sub|8|1|sub|mult
-4|1|sub|8|1|sub|add
-4|1|sub|7|5|sub|mult
-4|1|sub|7|1|mult|mult
-4|1|sub|7|3|sub|mult
-4|1|sub|7|3|sub|sub
-4|1|sub|7|3|sub|add
-4|1|sub|7|3|add|mult
-4|1|sub|7|3|add|sub
-4|1|sub|7|3|add|add
-4|1|sub|7|2|mult|mult
-4|1|sub|7|2|sub|mult
-4|1|sub|7|2|sub|sub
-4|1|sub|7|2|sub|add
-4|1|sub|8|4|sub|mult
-4|1|sub|8|4|sub|sub
-4|1|sub|7|5|sub|sub
-4|1|sub|7|1|sub|mult
-4|1|sub|7|1|sub|add
-4|1|sub|7|1|add|mult
-4|1|sub|7|1|add|sub
-4|1|sub|7|cbrt|mult
-4|1|sub|7|cb|mult
-4|1|sub|7|sq|mult
-4|1|sub|7|0|mult|mult
-4|1|sub|7|0|sub|mult
-4|1|sub|7|0|sub|sub
-4|1|sub|7|0|sub|add
-4|1|sub|7|0|add|mult
-4|1|sub|3|mult
-4|1|sub|8|add
-4|1|sub|7|mult
-4|1|sub|7|sub
-4|1|sub|7|add
-4|1|sub|6|mult
-4|1|sub|6|sub
-4|1|sub|6|add
-4|1|sub|5|mult
-4|1|sub|5|sub
-4|1|sub|5|add
-4|1|sub|4|mult
-4|1|sub|4|add
-4|1|sub|8|sub
-4|1|sub|3|sub
-4|1|sub|3|add
-4|1|sub|2|mult
-4|1|sub|2|sub
-4|1|sub|2|add
-4|1|sub|1|mult
-4|1|sub|1|sub
-4|1|sub|cbrt
-4|1|sub|cb
-4|1|sub|sq
-4|1|sub|0|mult
-4|1|sub|0|sub
-4|1|sub|7|6|sub|mult
-4|1|sub|7|5|sub|add
-4|1|sub|8|cbrt|mult
-4|1|sub|8|cb|mult
-4|1|sub|8|sq|mult
-4|1|sub|8|0|mult|mult
-4|1|sub|8|0|sub|mult
-4|1|sub|8|0|sub|sub
-4|1|sub|8|0|sub|add
-4|1|sub|8|0|add|mult
-4|1|sub|8|0|add|sub
-4|1|sub|8|0|add|add
-4|1|sub|7|6|mult|mult
-4|1|add|9|3|add|sub
-4|1|sub|7|6|sub|sub
-4|1|sub|7|6|sub|add
-4|1|sub|7|6|add|mult
-4|1|sub|7|6|add|sub
-4|1|sub|7|6|add|add
-4|1|sub|7|5|mult|mult
-4|1|sub|8|1|add|mult
-4|1|sub|8|1|add|sub
-4|1|sub|9|mult
-4|1|sub|9|sub
-4|1|sub|9|add
-4|1|sub|8|mult
-4|cbrt|9|0|mult|mult
-4|cbrt|3|cbrt|add
-4|cbrt|3|cb|mult
-4|cbrt|3|sq|mult
-4|cbrt|4|0|sub|mult
-4|cbrt|9|1|mult|mult
-4|cbrt|9|1|sub|mult
-4|cbrt|9|1|add|mult
-4|cbrt|9|cbrt|mult
-4|cbrt|9|cbrt|sub
-4|cbrt|9|cbrt|add
-4|cbrt|9|cb|mult
-4|cbrt|9|sq|mult
-4|cbrt|3|cbrt|sub
-4|cbrt|9|0|sub|mult
-4|cbrt|9|0|add|mult
-4|cbrt|6|5|sub|mult
-4|cbrt|8|7|sub|mult
-4|cbrt|8|7|add|mult
-4|cbrt|8|6|mult|mult
-4|cbrt|8|6|sub|mult
-4|cbrt|8|6|add|mult
-4|cbrt|8|5|mult|mult
-4|cbrt|8|5|sub|mult
-4|cbrt|8|5|add|mult
-4|cbrt|8|4|mult|mult
-4|1|add|0|mult
-4|1|add|4|add
-4|1|add|3|mult
-4|1|add|3|sub
-4|1|add|3|add
-4|1|add|2|mult
-4|1|add|2|sub
-4|1|add|2|add
-4|1|add|1|mult
-4|1|add|1|add
-4|1|add|cbrt
-4|1|add|cb
-4|1|add|sq
-4|cbrt|8|7|mult|mult
-4|1|add|0|sub
-4|1|add|0|add
-4|cbrt|4|0|mult|mult
-4|cbrt|3|0|mult|mult
-4|cbrt|4|0|add|mult
-4|cbrt|3|2|mult|mult
-4|cbrt|3|2|sub|mult
-4|cbrt|3|2|add|mult
-4|cbrt|3|1|mult|mult
-4|cbrt|3|1|sub|mult
-4|cbrt|3|1|add|mult
-4|cbrt|3|cbrt|mult
-4|cbrt|7|sq|mult
-4|cbrt|7|3|sub|mult
-4|cbrt|7|3|add|mult
-4|cbrt|7|2|mult|mult
-4|cbrt|7|2|sub|mult
-4|cbrt|8|4|sub|mult
-4|cbrt|7|1|mult|mult
-4|cbrt|7|1|sub|mult
-4|cbrt|7|1|add|mult
-4|cbrt|7|cbrt|mult
-4|cbrt|7|cbrt|sub
-4|cbrt|7|cbrt|add
-4|cbrt|7|cb|mult
-4|cbrt|7|3|mult|mult
-4|cbrt|7|0|mult|mult
-4|cbrt|7|0|sub|mult
-4|cbrt|7|0|add|mult
-4|cbrt|6|5|mult|mult
-4|cbrt|7|2|add|mult
-4|cbrt|8|4|add|mult
-4|cbrt|8|3|mult|mult
-4|cbrt|8|3|sub|mult
-4|cbrt|8|3|add|mult
-4|cbrt|8|2|mult|mult
-4|cbrt|8|2|sub|mult
-4|cbrt|8|2|add|mult
-4|cbrt|9|4|mult|mult
-4|cbrt|9|8|mult|mult
-4|cbrt|9|8|sub|mult
-4|cbrt|9|8|add|mult
-4|cbrt|9|7|mult|mult
-4|cbrt|9|7|sub|mult
-4|cbrt|9|7|add|mult
-4|cbrt|9|6|mult|mult
-4|cbrt|9|6|sub|mult
-4|cbrt|9|6|add|mult
-4|cbrt|9|2|add|mult
-4|cbrt|9|5|sub|mult
-4|cbrt|9|5|add|mult
-4|1|add|4|mult
-4|cbrt|9|4|sub|mult
-4|cbrt|9|4|add|mult
-4|cbrt|9|3|mult|mult
-4|cbrt|9|3|sub|mult
-4|cbrt|9|3|add|mult
-4|cbrt|9|2|mult|mult
-4|cbrt|9|2|sub|mult
-4|cbrt|9|5|mult|mult
-4|cbrt|7|5|add|mult
-4|cbrt|7|4|mult|mult
-4|cbrt|7|4|sub|mult
-4|cbrt|7|4|add|mult
-4|1|add|7|0|sub|add
-4|1|add|8|4|sub|sub
-4|1|add|7|1|mult|mult
-4|1|add|7|1|sub|mult
-4|1|add|7|1|sub|sub
-4|1|add|7|1|add|mult
-4|1|add|7|1|add|add
-4|1|add|7|cbrt|mult
-4|1|add|7|cb|mult
-4|1|add|7|sq|mult
-4|1|add|7|0|mult|mult
-4|1|add|7|0|sub|mult
-4|1|add|7|0|sub|sub
-4|1|add|8|4|sub|mult
-4|1|add|7|0|add|mult
-4|1|add|7|0|add|sub
-4|1|add|7|0|add|add
-4|1|add|6|5|mult|mult
-4|1|add|7|2|add|mult
-4|1|add|7|2|add|sub
-4|1|add|7|2|add|add
-4|1|add|8|4|add|mult
-4|1|add|8|4|add|add
-4|1|add|8|3|mult|mult
-4|1|add|8|3|sub|mult
-4|1|add|8|3|sub|sub
-4|1|add|7|4|add|mult
-4|1|add|9|3|add|add
-4|1|add|9|2|mult|mult
-4|1|add|9|2|sub|mult
-4|1|add|9|2|sub|sub
-4|1|add|9|2|sub|add
-4|1|add|9|5|mult|mult
-4|1|add|7|5|add|mult
-4|1|add|7|5|add|sub
-4|1|add|7|5|add|add
-4|1|add|7|4|mult|mult
-4|1|add|7|4|sub|mult
-4|1|add|7|4|sub|sub
-4|1|add|8|3|sub|add
-4|1|add|7|4|add|add
-4|1|add|7|3|mult|mult
-4|1|add|7|3|sub|mult
-4|1|add|7|3|sub|sub
-4|1|add|7|3|sub|add
-4|1|add|7|3|add|mult
-4|1|add|7|3|add|sub
-4|1|add|7|3|add|add
-4|1|add|7|2|mult|mult
-4|1|add|7|2|sub|mult
-4|1|add|7|2|sub|sub
-4|1|add|7|2|sub|add
-4|1|add|9|add
-4|1|add|7|6|mult|mult
-4|1|add|7|6|sub|mult
-4|1|add|7|6|sub|sub
-4|1|add|7|6|sub|add
-4|1|add|7|6|add|mult
-4|1|add|7|6|add|sub
-4|1|add|7|6|add|add
-4|1|add|7|5|mult|mult
-4|1|add|8|1|add|mult
-4|1|add|8|1|add|add
-4|1|add|9|mult
-4|1|add|9|sub
-4|1|add|8|0|add|add
-4|1|add|8|mult
-4|1|add|8|sub
-4|1|add|8|add
-4|1|add|7|mult
-4|1|add|7|sub
-4|1|add|7|add
-4|1|add|6|mult
-4|1|add|6|sub
-4|1|add|6|add
-4|1|add|5|mult
-4|1|add|5|sub
-4|1|add|5|add
-4|1|add|8|1|sub|sub
-4|1|add|8|3|add|mult
-4|1|add|8|3|add|sub
-4|1|add|8|3|add|add
-4|1|add|8|2|mult|mult
-4|1|add|8|2|sub|mult
-4|1|add|8|2|sub|sub
-4|1|add|8|2|sub|add
-4|1|add|8|2|add|mult
-4|1|add|8|2|add|sub
-4|1|add|8|2|add|add
-4|1|add|8|1|mult|mult
-4|1|add|8|1|sub|mult
-2|0|sub|6|5|mult|mult
-4|1|add|7|5|sub|mult
-4|1|add|7|5|sub|sub
-4|1|add|7|5|sub|add
-4|1|add|8|cbrt|mult
-4|1|add|8|cb|mult
-4|1|add|8|sq|mult
-4|1|add|8|0|mult|mult
-4|1|add|8|0|sub|mult
-4|1|add|8|0|sub|sub
-4|1|add|8|0|sub|add
-4|1|add|8|0|add|mult
-4|1|add|8|0|add|sub
-1|sq|8|1|mult|add
-1|sq|8|4|add|mult
-1|sq|8|3|mult|mult
-1|sq|8|3|mult|sub
-1|sq|8|3|mult|add
-1|sq|8|3|sub|mult
-1|sq|8|3|add|mult
-1|sq|8|2|mult|mult
-1|sq|8|2|mult|sub
-1|sq|8|2|mult|add
-1|sq|8|2|sub|mult
-1|sq|8|2|add|mult
-1|sq|8|1|mult|mult
-1|sq|8|1|mult|sub
-1|sq|7|2|add|mult
-1|sq|8|1|sub|mult
-1|sq|7|5|sub|mult
-1|sq|8|cbrt|mult
-1|sq|8|cb|mult
-1|sq|8|sq|sub
-1|sq|8|sq|add
-1|sq|8|0|mult|mult
-1|sq|8|0|mult|sub
-1|sq|8|0|mult|add
-1|sq|8|0|sub|mult
-1|sq|8|0|add|mult
-1|sq|7|6|mult|mult
-1|sq|7|1|add|mult
-1|sq|7|3|mult|add
-1|sq|7|3|sub|mult
-1|sq|7|3|add|mult
-1|sq|7|2|mult|mult
-1|sq|7|2|mult|sub
-1|sq|7|2|mult|add
-1|sq|7|2|sub|mult
-1|sq|8|4|sub|mult
-1|sq|7|1|mult|mult
-1|sq|7|1|mult|sub
-1|sq|7|1|mult|add
-1|sq|7|1|sub|mult
-1|sq|7|6|mult|sub
-1|sq|7|cbrt|mult
-1|sq|7|cb|mult
-1|sq|7|sq|sub
-1|sq|7|sq|add
-1|sq|7|0|mult|mult
-1|sq|7|0|mult|sub
-1|sq|7|0|mult|add
-1|sq|7|0|sub|mult
-1|sq|7|0|add|mult
-1|sq|6|5|mult|mult
-1|sq|6|5|mult|sub
-1|sq|6|5|mult|add
-1|0|mult|3|0|mult|sub
-1|0|mult|4|1|mult|add
-1|0|mult|4|1|sub|mult
-1|0|mult|4|1|add|mult
-1|0|mult|4|cbrt|mult
-1|0|mult|4|cb|mult
-1|0|mult|4|sq|mult
-1|0|mult|4|sq|sub
-1|0|mult|4|sq|add
-1|0|mult|4|0|mult|mult
-1|0|mult|4|0|mult|sub
-1|0|mult|4|0|mult|add
-1|0|mult|3|0|mult|mult
-1|0|mult|4|1|mult|sub
-1|0|mult|3|0|mult|add
-1|0|mult|4|0|add|mult
-1|0|mult|3|2|mult|mult
-1|0|mult|3|2|mult|sub
-1|0|mult|3|2|mult|add
-1|0|mult|3|2|sub|mult
-1|0|mult|3|2|add|mult
-1|0|mult|3|1|mult|mult
-1|0|mult|3|1|mult|sub
-1|0|mult|3|1|mult|add
-1|0|mult|3|1|sub|mult
-1|0|mult|3|1|add|mult
-1|sq|4|mult
-1|sq|7|6|mult|add
-1|sq|7|6|sub|mult
-1|sq|7|6|add|mult
-1|sq|7|5|mult|mult
-1|sq|7|5|mult|sub
-1|sq|7|5|mult|add
-1|sq|8|1|add|mult
-1|sq|9|mult
-1|sq|8|mult
-1|sq|7|mult
-1|sq|6|mult
-1|sq|5|mult
-1|sq|7|3|mult|sub
-1|sq|3|mult
-1|sq|2|mult
-1|sq|sq
-1|sq|0|mult
-1|0|mult|1|0|sub|mult
-1|0|mult|1|0|add|mult
-1|0|mult|0|cbrt|mult
-1|0|mult|0|cb|mult
-1|0|mult|2|0|sub|mult
-1|0|mult|4|2|sub|mult
-1|0|mult|4|2|add|mult
-1|0|mult|4|1|mult|mult
-1|sq|9|0|mult|sub
-1|sq|3|sq|add
-1|sq|4|0|sub|mult
-1|sq|9|1|mult|mult
-1|sq|9|1|mult|sub
-1|sq|9|1|mult|add
-1|sq|9|1|sub|mult
-1|sq|9|1|add|mult
-1|sq|9|cbrt|mult
-1|sq|9|cb|mult
-1|sq|9|sq|sub
-1|sq|9|sq|add
-1|sq|9|0|mult|mult
-1|sq|3|sq|sub
-1|sq|9|0|mult|add
-1|sq|9|0|sub|mult
-1|sq|9|0|add|mult
-1|sq|6|5|sub|mult
-1|sq|8|7|sub|mult
-1|sq|8|7|add|mult
-1|sq|8|6|mult|mult
-1|sq|8|6|mult|sub
-1|sq|8|6|mult|add
-1|sq|8|6|sub|mult
-1|sq|8|6|add|mult
-1|sq|8|5|mult|mult
-1|sq|4|0|add|mult
-1|sq|4|1|sub|mult
-1|sq|4|1|add|mult
-1|sq|4|cbrt|mult
-1|sq|4|cb|mult
-1|sq|4|sq|sub
-1|sq|4|sq|add
-1|sq|4|0|mult|mult
-1|sq|4|0|mult|sub
-1|sq|4|0|mult|add
-1|sq|3|0|mult|mult
-1|sq|3|0|mult|sub
-1|sq|3|0|mult|add
-1|sq|8|5|mult|sub
-1|sq|3|2|mult|mult
-1|sq|3|2|mult|sub
-1|sq|3|2|mult|add
-1|sq|3|2|sub|mult
-1|sq|3|2|add|mult
-1|sq|3|1|mult|mult
-1|sq|3|1|mult|sub
-1|sq|3|1|mult|add
-1|sq|3|1|sub|mult
-1|sq|3|1|add|mult
-1|sq|3|cbrt|mult
-1|sq|3|cb|mult
-1|sq|9|2|mult|sub
-1|sq|9|5|add|mult
-1|sq|9|4|mult|mult
-1|sq|9|4|mult|sub
-1|sq|9|4|mult|add
-1|sq|9|4|sub|mult
-1|sq|9|4|add|mult
-1|sq|9|3|mult|mult
-1|sq|9|3|mult|sub
-1|sq|9|3|mult|add
-1|sq|9|3|sub|mult
-1|sq|9|3|add|mult
-1|sq|9|2|mult|mult
-1|sq|9|5|sub|mult
-1|sq|9|2|mult|add
-1|sq|9|2|sub|mult
-1|sq|9|5|mult|mult
-1|sq|9|5|mult|sub
-1|sq|9|5|mult|add
-1|sq|7|5|add|mult
-1|sq|7|4|mult|mult
-1|sq|7|4|mult|sub
-1|sq|7|4|mult|add
-1|sq|7|4|sub|mult
-1|sq|7|4|add|mult
-1|sq|7|3|mult|mult
-1|sq|9|8|sub|mult
-1|sq|8|5|mult|add
-1|sq|8|5|sub|mult
-1|sq|8|5|add|mult
-1|sq|8|4|mult|mult
-1|sq|8|4|mult|sub
-1|sq|8|4|mult|add
-1|sq|8|7|mult|mult
-1|sq|8|7|mult|sub
-1|sq|8|7|mult|add
-1|sq|9|8|mult|mult
-1|sq|9|8|mult|sub
-1|sq|9|8|mult|add
-1|0|mult|3|cbrt|mult
-1|sq|9|8|add|mult
-1|sq|9|7|mult|mult
-1|sq|9|7|mult|sub
-1|sq|9|7|mult|add
-1|sq|9|7|sub|mult
-1|sq|9|7|add|mult
-1|sq|9|6|mult|mult
-1|sq|9|6|mult|sub
-1|sq|9|6|mult|add
-1|sq|9|6|sub|mult
-1|sq|9|6|add|mult
-1|sq|9|2|add|mult
-1|0|mult|8|1|add|mult
-1|0|mult|8|0|mult|mult
-1|0|mult|8|0|mult|sub
-1|0|mult|8|0|mult|add
-1|0|mult|8|0|sub|mult
-1|0|mult|8|0|add|mult
-1|0|mult|7|6|mult|mult
-1|0|mult|7|6|mult|sub
-1|0|mult|7|6|mult|add
-1|0|mult|7|6|sub|mult
-1|0|mult|7|6|add|mult
-1|0|mult|7|5|mult|mult
-1|0|mult|7|5|mult|sub
-1|0|mult|7|5|mult|add
-1|0|mult|8|sq|add
-1|0|mult|9|mult
-1|0|mult|8|mult
-1|0|mult|7|mult
-1|0|mult|6|mult
-1|0|mult|5|mult
-1|0|mult|4|mult
-1|0|mult|3|mult
-1|0|mult|2|mult
-1|0|mult|1|mult
-1|0|mult|cbrt
-1|0|mult|cb
-1|0|mult|sq
-1|0|mult|8|2|mult|sub
-1|0|mult|7|0|add|mult
-1|0|mult|6|5|mult|mult
-1|0|mult|6|5|mult|sub
-1|0|mult|6|5|mult|add
-1|0|mult|7|2|add|mult
-1|0|mult|8|4|add|mult
-1|0|mult|8|3|mult|mult
-1|0|mult|8|3|mult|sub
-1|0|mult|8|3|mult|add
-1|0|mult|8|3|sub|mult
-1|0|mult|8|3|add|mult
-1|0|mult|8|2|mult|mult
-1|0|mult|0|mult
-1|0|mult|8|2|mult|add
-1|0|mult|8|2|sub|mult
-1|0|mult|8|2|add|mult
-1|0|mult|8|1|mult|mult
-1|0|mult|8|1|mult|sub
-1|0|mult|8|1|mult|add
-1|0|mult|8|1|sub|mult
-1|0|mult|7|5|sub|mult
-1|0|mult|8|cbrt|mult
-1|0|mult|8|cb|mult
-1|0|mult|8|sq|mult
-1|0|mult|8|sq|sub
-1|0|sub|4|0|sub|mult
-1|0|sub|3|2|sub|add
-1|0|sub|3|2|add|mult
-1|0|sub|3|2|add|sub
-1|0|sub|3|2|add|add
-1|0|sub|3|1|mult|mult
-1|0|sub|3|1|sub|mult
-1|0|sub|3|1|sub|sub
-1|0|sub|3|1|add|mult
-1|0|sub|3|1|add|add
-1|0|sub|3|cbrt|mult
-1|0|sub|3|cb|mult
-1|0|sub|3|sq|mult
-1|0|sub|3|2|sub|sub
-1|0|sub|4|0|sub|add
-1|0|sub|9|1|mult|mult
-1|0|sub|9|1|sub|mult
-1|0|sub|9|1|sub|sub
-1|0|sub|9|1|add|mult
-1|0|sub|9|1|add|add
-1|0|sub|9|cbrt|mult
-1|0|sub|9|cb|mult
-1|0|sub|9|sq|mult
-1|0|sub|9|0|mult|mult
-1|0|sub|9|0|sub|mult
-1|0|sub|9|0|sub|add
-1|0|sub|4|1|sub|mult
-1|0|sub|1|0|add|mult
-1|0|sub|0|cbrt|mult
-1|0|sub|0|cb|mult
-1|0|sub|2|0|sub|mult
-1|0|sub|2|0|sub|add
-1|0|sub|4|2|sub|mult
-1|0|sub|4|2|sub|sub
-1|0|sub|4|2|sub|add
-1|0|sub|4|2|add|mult
-1|0|sub|4|2|add|sub
-1|0|sub|4|2|add|add
-1|0|sub|4|1|mult|mult
-1|0|mult|7|0|sub|mult
-1|0|sub|4|1|sub|sub
-1|0|sub|4|1|add|mult
-1|0|sub|4|1|add|add
-1|0|sub|4|cbrt|mult
-1|0|sub|4|cb|mult
-1|0|sub|4|sq|mult
-1|0|sub|4|0|mult|mult
-1|0|sub|3|0|mult|mult
-1|0|sub|4|0|add|mult
-1|0|sub|4|0|add|sub
-1|0|sub|3|2|mult|mult
-1|0|sub|3|2|sub|mult
-1|0|mult|8|7|mult|add
-1|0|mult|8|6|sub|mult
-1|0|mult|8|6|add|mult
-1|0|mult|8|5|mult|mult
-1|0|mult|8|5|mult|sub
-1|0|mult|8|5|mult|add
-1|0|mult|8|5|sub|mult
-1|0|mult|8|5|add|mult
-1|0|mult|8|4|mult|mult
-1|0|mult|8|4|mult|sub
-1|0|mult|8|4|mult|add
-1|0|mult|8|7|mult|mult
-1|0|mult|8|7|mult|sub
-1|0|mult|8|6|mult|add
-1|0|mult|9|8|mult|mult
-1|0|mult|9|8|mult|sub
-1|0|mult|9|8|mult|add
-1|0|mult|9|8|sub|mult
-1|0|mult|9|8|add|mult
-1|0|mult|9|7|mult|mult
-1|0|mult|9|7|mult|sub
-1|0|mult|9|7|mult|add
-1|0|mult|9|7|sub|mult
-1|0|mult|9|7|add|mult
-1|0|mult|9|6|mult|mult
-1|0|mult|9|6|mult|sub
-1|0|mult|9|sq|mult
-1|0|mult|3|cb|mult
-1|0|mult|3|sq|mult
-1|0|mult|3|sq|sub
-1|0|mult|3|sq|add
-1|0|mult|4|0|sub|mult
-1|0|mult|9|1|mult|mult
-1|0|mult|9|1|mult|sub
-1|0|mult|9|1|mult|add
-1|0|mult|9|1|sub|mult
-1|0|mult|9|1|add|mult
-1|0|mult|9|cbrt|mult
-1|0|mult|9|cb|mult
-1|0|mult|9|6|mult|add
-1|0|mult|9|sq|sub
-1|0|mult|9|sq|add
-1|0|mult|9|0|mult|mult
-1|0|mult|9|0|mult|sub
-1|0|mult|9|0|mult|add
-1|0|mult|9|0|sub|mult
-1|0|mult|9|0|add|mult
-1|0|mult|6|5|sub|mult
-1|0|mult|8|7|sub|mult
-1|0|mult|8|7|add|mult
-1|0|mult|8|6|mult|mult
-1|0|mult|8|6|mult|sub
-1|0|mult|7|1|mult|mult
-1|0|mult|7|4|sub|mult
-1|0|mult|7|4|add|mult
-1|0|mult|7|3|mult|mult
-1|0|mult|7|3|mult|sub
-1|0|mult|7|3|mult|add
-1|0|mult|7|3|sub|mult
-1|0|mult|7|3|add|mult
-1|0|mult|7|2|mult|mult
-1|0|mult|7|2|mult|sub
-1|0|mult|7|2|mult|add
-1|0|mult|7|2|sub|mult
-1|0|mult|8|4|sub|mult
-1|0|mult|7|4|mult|add
-1|0|mult|7|1|mult|sub
-1|0|mult|7|1|mult|add
-1|0|mult|7|1|sub|mult
-1|0|mult|7|1|add|mult
-1|0|mult|7|cbrt|mult
-1|0|mult|7|cb|mult
-1|0|mult|7|sq|mult
-1|0|mult|7|sq|sub
-1|0|mult|7|sq|add
-1|0|mult|7|0|mult|mult
-1|0|mult|7|0|mult|sub
-1|0|mult|7|0|mult|add
-1|0|mult|9|3|mult|add
-1|0|mult|9|6|sub|mult
-1|0|mult|9|6|add|mult
-1|0|mult|9|2|add|mult
-1|0|mult|9|5|sub|mult
-1|0|mult|9|5|add|mult
-1|0|mult|9|4|mult|mult
-1|0|mult|9|4|mult|sub
-1|0|mult|9|4|mult|add
-1|0|mult|9|4|sub|mult
-1|0|mult|9|4|add|mult
-1|0|mult|9|3|mult|mult
-1|0|mult|9|3|mult|sub
-1|sq|4|1|mult|add
-1|0|mult|9|3|sub|mult
-1|0|mult|9|3|add|mult
-1|0|mult|9|2|mult|mult
-1|0|mult|9|2|mult|sub
-1|0|mult|9|2|mult|add
-1|0|mult|9|2|sub|mult
-1|0|mult|9|5|mult|mult
-1|0|mult|9|5|mult|sub
-1|0|mult|9|5|mult|add
-1|0|mult|7|5|add|mult
-1|0|mult|7|4|mult|mult
-1|0|mult|7|4|mult|sub
-2|0|add|0|mult
-2|0|add|4|sub
-2|0|add|4|add
-2|0|add|3|mult
-2|0|add|3|sub
-2|0|add|3|add
-2|0|add|2|mult
-2|0|add|2|add
-2|0|add|1|mult
-2|0|add|1|sub
-2|0|add|1|add
-2|0|add|cbrt
-2|0|add|cb
-2|0|add|sq
-2|0|add|4|mult
-2|0|add|0|add
-1|cbrt|1|0|mult|mult
-1|cbrt|1|0|sub|mult
-1|cbrt|1|0|add|mult
-1|cbrt|0|cbrt|mult
-1|cbrt|0|cbrt|sub
-1|cbrt|0|cbrt|add
-1|cbrt|0|cb|mult
-1|cbrt|2|0|sub|mult
-1|cbrt|4|2|sub|mult
-1|cbrt|4|2|add|mult
-1|cbrt|4|1|mult|mult
-2|0|add|9|add
-2|0|add|7|6|sub|mult
-2|0|add|7|6|sub|sub
-2|0|add|7|6|sub|add
-2|0|add|7|6|add|mult
-2|0|add|7|6|add|sub
-2|0|add|7|6|add|add
-2|0|add|7|5|mult|mult
-2|0|add|8|1|add|mult
-2|0|add|8|1|add|sub
-2|0|add|8|1|add|add
-2|0|add|9|mult
-2|0|add|9|sub
-1|cbrt|4|1|sub|mult
-2|0|add|8|mult
-2|0|add|8|sub
-2|0|add|8|add
-2|0|add|7|mult
-2|0|add|7|sub
-2|0|add|7|add
-2|0|add|6|mult
-2|0|add|6|sub
-2|0|add|6|add
-2|0|add|5|mult
-2|0|add|5|sub
-2|0|add|5|add
-1|cbrt|8|5|mult|mult
-1|cbrt|9|cbrt|add
-1|cbrt|9|cb|mult
-1|cbrt|9|sq|mult
-1|cbrt|9|0|mult|mult
-1|cbrt|9|0|sub|mult
-1|cbrt|9|0|add|mult
-1|cbrt|6|5|sub|mult
-1|cbrt|8|7|sub|mult
-1|cbrt|8|7|add|mult
-1|cbrt|8|6|mult|mult
-1|cbrt|8|6|sub|mult
-1|cbrt|8|6|add|mult
-1|cbrt|9|cbrt|sub
-1|cbrt|8|5|sub|mult
-1|cbrt|8|5|add|mult
-1|cbrt|8|4|mult|mult
-1|cbrt|8|7|mult|mult
-1|cbrt|9|8|mult|mult
-1|cbrt|9|8|sub|mult
-1|cbrt|9|8|add|mult
-1|cbrt|9|7|mult|mult
-1|cbrt|9|7|sub|mult
-1|cbrt|9|7|add|mult
-1|cbrt|9|6|mult|mult
-1|cbrt|9|6|sub|mult
-1|cbrt|3|1|mult|mult
-1|cbrt|4|1|add|mult
-1|cbrt|4|cbrt|mult
-1|cbrt|4|cbrt|sub
-1|cbrt|4|cbrt|add
-1|cbrt|4|cb|mult
-1|cbrt|4|sq|mult
-1|cbrt|4|0|mult|mult
-1|cbrt|3|0|mult|mult
-1|cbrt|4|0|add|mult
-1|cbrt|3|2|mult|mult
-1|cbrt|3|2|sub|mult
-1|cbrt|3|2|add|mult
-2|0|add|7|6|mult|mult
-1|cbrt|3|1|sub|mult
-1|cbrt|3|1|add|mult
-1|cbrt|3|cbrt|mult
-1|cbrt|3|cbrt|sub
-1|cbrt|3|cbrt|add
-1|cbrt|3|cb|mult
-1|cbrt|3|sq|mult
-1|cbrt|4|0|sub|mult
-1|cbrt|9|1|mult|mult
-1|cbrt|9|1|sub|mult
-1|cbrt|9|1|add|mult
-1|cbrt|9|cbrt|mult
-2|0|add|7|4|sub|add
-2|0|add|9|3|add|sub
-2|0|add|9|3|add|add
-2|0|add|9|2|mult|mult
-2|0|add|9|2|sub|mult
-2|0|add|9|2|sub|sub
-2|0|add|9|5|mult|mult
-2|0|add|7|5|add|mult
-2|0|add|7|5|add|sub
-2|0|add|7|5|add|add
-2|0|add|7|4|mult|mult
-2|0|add|7|4|sub|mult
-2|0|add|7|4|sub|sub
-2|0|add|9|3|add|mult
-2|0|add|7|4|add|mult
-2|0|add|7|4|add|sub
-2|0|add|7|4|add|add
-2|0|add|7|3|mult|mult
-2|0|add|7|3|sub|mult
-2|0|add|7|3|sub|sub
-2|0|add|7|3|sub|add
-2|0|add|7|3|add|mult
-2|0|add|7|3|add|sub
-2|0|add|7|3|add|add
-2|0|add|7|2|mult|mult
-2|0|add|7|2|sub|mult
-2|0|add|9|5|add|sub
-2|0|add|9|6|sub|mult
-2|0|add|9|6|sub|sub
-2|0|add|9|6|sub|add
-2|0|add|9|6|add|mult
-2|0|add|9|6|add|sub
-2|0|add|9|6|add|add
-2|0|add|9|2|add|mult
-2|0|add|9|2|add|add
-2|0|add|9|5|sub|mult
-2|0|add|9|5|sub|sub
-2|0|add|9|5|sub|add
-2|0|add|9|5|add|mult
-2|0|add|7|2|sub|sub
-2|0|add|9|5|add|add
-2|0|add|9|4|mult|mult
-2|0|add|9|4|sub|mult
-2|0|add|9|4|sub|sub
-2|0|add|9|4|sub|add
-2|0|add|9|4|add|mult
-2|0|add|9|4|add|sub
-2|0|add|9|4|add|add
-2|0|add|9|3|mult|mult
-2|0|add|9|3|sub|mult
-2|0|add|9|3|sub|sub
-2|0|add|9|3|sub|add
-2|0|add|8|1|sub|sub
-2|0|add|8|3|sub|sub
-2|0|add|8|3|sub|add
-2|0|add|8|3|add|mult
-2|0|add|8|3|add|sub
-2|0|add|8|3|add|add
-2|0|add|8|2|mult|mult
-2|0|add|8|2|sub|mult
-2|0|add|8|2|sub|sub
-2|0|add|8|2|add|mult
-2|0|add|8|2|add|add
-2|0|add|8|1|mult|mult
-2|0|add|8|1|sub|mult
-2|0|add|8|3|sub|mult
-2|0|add|8|1|sub|add
-2|0|add|7|5|sub|mult
-2|0|add|7|5|sub|sub
-2|0|add|7|5|sub|add
-2|0|add|8|cbrt|mult
-2|0|add|8|cb|mult
-2|0|add|8|sq|mult
-2|0|add|8|0|mult|mult
-2|0|add|8|0|sub|mult
-2|0|add|8|0|sub|sub
-2|0|add|8|0|add|mult
-2|0|add|8|0|add|add
-2|0|add|7|sq|mult
-2|0|add|8|4|sub|mult
-2|0|add|8|4|sub|sub
-2|0|add|8|4|sub|add
-2|0|add|7|1|mult|mult
-2|0|add|7|1|sub|mult
-2|0|add|7|1|sub|sub
-2|0|add|7|1|sub|add
-2|0|add|7|1|add|mult
-2|0|add|7|1|add|sub
-2|0|add|7|1|add|add
-2|0|add|7|cbrt|mult
-2|0|add|7|cb|mult
-1|cbrt|9|6|add|mult
-2|0|add|7|0|mult|mult
-2|0|add|7|0|sub|mult
-2|0|add|7|0|sub|sub
-2|0|add|7|0|add|mult
-2|0|add|7|0|add|add
-2|0|add|6|5|mult|mult
-2|0|add|7|2|add|mult
-2|0|add|7|2|add|add
-2|0|add|8|4|add|mult
-2|0|add|8|4|add|sub
-2|0|add|8|4|add|add
-2|0|add|8|3|mult|mult
-1|cb|7|4|sub|mult
-1|cb|9|5|sub|mult
-1|cb|9|5|add|mult
-1|cb|9|4|mult|mult
-1|cb|9|4|sub|mult
-1|cb|9|4|add|mult
-1|cb|9|3|mult|mult
-1|cb|9|3|sub|mult
-1|cb|9|3|add|mult
-1|cb|9|2|mult|mult
-1|cb|9|2|sub|mult
-1|cb|9|5|mult|mult
-1|cb|7|5|add|mult
-1|cb|7|4|mult|mult
-1|cb|9|2|add|mult
-1|cb|7|4|add|mult
-1|cb|7|3|mult|mult
-1|cb|7|3|sub|mult
-1|cb|7|3|add|mult
-1|cb|7|2|mult|mult
-1|cb|7|2|sub|mult
-1|cb|8|4|sub|mult
-1|cb|7|1|mult|mult
-1|cb|7|1|sub|mult
-1|cb|7|1|add|mult
-1|cb|7|cbrt|mult
-1|cb|7|cb|sub
-1|cb|8|5|sub|mult
-1|cb|9|cb|add
-1|cb|9|sq|mult
-1|cb|9|0|mult|mult
-1|cb|9|0|sub|mult
-1|cb|9|0|add|mult
-1|cb|6|5|sub|mult
-1|cb|8|7|sub|mult
-1|cb|8|7|add|mult
-1|cb|8|6|mult|mult
-1|cb|8|6|sub|mult
-1|cb|8|6|add|mult
-1|cb|8|5|mult|mult
-1|cb|7|cb|add
-1|cb|8|5|add|mult
-1|cb|8|4|mult|mult
-1|cb|8|7|mult|mult
-1|cb|9|8|mult|mult
-1|cb|9|8|sub|mult
-1|cb|9|8|add|mult
-1|cb|9|7|mult|mult
-1|cb|9|7|sub|mult
-1|cb|9|7|add|mult
-1|cb|9|6|mult|mult
-1|cb|9|6|sub|mult
-1|cb|9|6|add|mult
-1|cb|0|mult
-1|cb|7|5|mult|mult
-1|cb|8|1|add|mult
-1|cb|9|mult
-1|cb|8|mult
-1|cb|7|mult
-1|cb|6|mult
-1|cb|5|mult
-1|cb|4|mult
-1|cb|3|mult
-1|cb|2|mult
-1|cb|cb
-1|cb|sq
-1|cb|7|6|add|mult
-1|sq|1|0|mult|mult
-1|sq|1|0|mult|sub
-1|sq|1|0|mult|add
-1|sq|1|0|sub|mult
-1|sq|1|0|add|mult
-1|sq|0|cbrt|mult
-1|sq|0|cb|mult
-1|sq|2|0|sub|mult
-1|sq|4|2|sub|mult
-1|sq|4|2|add|mult
-1|sq|4|1|mult|mult
-1|sq|4|1|mult|sub
-1|cb|8|2|add|mult
-1|cb|7|sq|mult
-1|cb|7|0|mult|mult
-1|cb|7|0|sub|mult
-1|cb|7|0|add|mult
-1|cb|6|5|mult|mult
-1|cb|7|2|add|mult
-1|cb|8|4|add|mult
-1|cb|8|3|mult|mult
-1|cb|8|3|sub|mult
-1|cb|8|3|add|mult
-1|cb|8|2|mult|mult
-1|cb|8|2|sub|mult
-1|cb|9|cb|sub
-1|cb|8|1|mult|mult
-1|cb|8|1|sub|mult
-1|cb|7|5|sub|mult
-1|cb|8|cbrt|mult
-1|cb|8|cb|sub
-1|cb|8|cb|add
-1|cb|8|sq|mult
-1|cb|8|0|mult|mult
-1|cb|8|0|sub|mult
-1|cb|8|0|add|mult
-1|cb|7|6|mult|mult
-1|cb|7|6|sub|mult
-1|cbrt|8|3|add|mult
-1|cbrt|7|cbrt|sub
-1|cbrt|7|cbrt|add
-1|cbrt|7|cb|mult
-1|cbrt|7|sq|mult
-1|cbrt|7|0|mult|mult
-1|cbrt|7|0|sub|mult
-1|cbrt|7|0|add|mult
-1|cbrt|6|5|mult|mult
-1|cbrt|7|2|add|mult
-1|cbrt|8|4|add|mult
-1|cbrt|8|3|mult|mult
-1|cbrt|8|3|sub|mult
-1|cbrt|7|cbrt|mult
-1|cbrt|8|2|mult|mult
-1|cbrt|8|2|sub|mult
-1|cbrt|8|2|add|mult
-1|cbrt|8|1|mult|mult
-1|cbrt|8|1|sub|mult
-1|cbrt|7|5|sub|mult
-1|cbrt|8|cbrt|mult
-1|cbrt|8|cbrt|sub
-1|cbrt|8|cbrt|add
-1|cbrt|8|cb|mult
-1|cbrt|8|sq|mult
-1|cbrt|8|0|mult|mult
-1|cbrt|7|5|add|mult
-1|cbrt|9|2|add|mult
-1|cbrt|9|5|sub|mult
-1|cbrt|9|5|add|mult
-1|cbrt|9|4|mult|mult
-1|cbrt|9|4|sub|mult
-1|cbrt|9|4|add|mult
-1|cbrt|9|3|mult|mult
-1|cbrt|9|3|sub|mult
-1|cbrt|9|3|add|mult
-1|cbrt|9|2|mult|mult
-1|cbrt|9|2|sub|mult
-1|cbrt|9|5|mult|mult
-1|cbrt|8|0|sub|mult
-1|cbrt|7|4|mult|mult
-1|cbrt|7|4|sub|mult
-1|cbrt|7|4|add|mult
-1|cbrt|7|3|mult|mult
-1|cbrt|7|3|sub|mult
-1|cbrt|7|3|add|mult
-1|cbrt|7|2|mult|mult
-1|cbrt|7|2|sub|mult
-1|cbrt|8|4|sub|mult
-1|cbrt|7|1|mult|mult
-1|cbrt|7|1|sub|mult
-1|cbrt|7|1|add|mult
-1|cb|3|2|add|mult
-1|cb|4|1|mult|mult
-1|cb|4|1|sub|mult
-1|cb|4|1|add|mult
-1|cb|4|cbrt|mult
-1|cb|4|cb|sub
-1|cb|4|cb|add
-1|cb|4|sq|mult
-1|cb|4|0|mult|mult
-1|cb|3|0|mult|mult
-1|cb|4|0|add|mult
-1|cb|3|2|mult|mult
-1|cb|3|2|sub|mult
-1|cb|4|2|add|mult
-1|cb|3|1|mult|mult
-1|cb|3|1|sub|mult
-1|cb|3|1|add|mult
-1|cb|3|cbrt|mult
-1|cb|3|cb|sub
-1|cb|3|cb|add
-1|cb|3|sq|mult
-1|cb|4|0|sub|mult
-1|cb|9|1|mult|mult
-1|cb|9|1|sub|mult
-1|cb|9|1|add|mult
-1|cb|9|cbrt|mult
-1|cbrt|3|mult
-1|cbrt|8|0|add|mult
-1|cbrt|7|6|mult|mult
-1|cbrt|7|6|sub|mult
-1|cbrt|7|6|add|mult
-1|cbrt|7|5|mult|mult
-1|cbrt|8|1|add|mult
-1|cbrt|9|mult
-1|cbrt|8|mult
-1|cbrt|7|mult
-1|cbrt|6|mult
-1|cbrt|5|mult
-1|cbrt|4|mult
-1|0|sub|9|0|add|mult
-1|cbrt|2|mult
-1|cbrt|cbrt
-1|cbrt|sq
-1|cbrt|0|mult
-1|cb|1|0|mult|mult
-1|cb|1|0|sub|mult
-1|cb|1|0|add|mult
-1|cb|0|cbrt|mult
-1|cb|0|cb|sub
-1|cb|0|cb|add
-1|cb|2|0|sub|mult
-1|cb|4|2|sub|mult
-0|cb|4|cb|sub
-0|cbrt|4|mult
-0|cbrt|3|mult
-0|cbrt|2|mult
-0|cbrt|1|mult
-0|cbrt|cbrt
-0|cbrt|sq
-0|cb|2|0|sub|mult
-0|cb|4|2|sub|mult
-0|cb|4|2|add|mult
-0|cb|4|1|mult|mult
-0|cb|4|1|sub|mult
-0|cb|4|1|add|mult
-0|cb|4|cbrt|mult
-0|cbrt|5|mult
-0|cb|4|cb|add
-0|cb|4|sq|mult
-0|cb|4|0|mult|mult
-0|cb|3|0|mult|mult
-0|cb|4|0|add|mult
-0|cb|3|2|mult|mult
-0|cb|3|2|sub|mult
-0|cb|3|2|add|mult
-0|cb|3|1|mult|mult
-0|cb|3|1|sub|mult
-0|cb|3|1|add|mult
-0|cb|3|cbrt|mult
-0|cbrt|8|sq|mult
-0|cbrt|8|3|sub|mult
-0|cbrt|8|3|add|mult
-0|cbrt|8|2|mult|mult
-0|cbrt|8|2|sub|mult
-0|cbrt|8|2|add|mult
-0|cbrt|8|1|mult|mult
-0|cbrt|8|1|sub|mult
-0|cbrt|7|5|sub|mult
-0|cbrt|8|cbrt|mult
-0|cbrt|8|cbrt|sub
-0|cbrt|8|cbrt|add
-0|cbrt|8|cb|mult
-0|cb|3|cb|sub
-0|cbrt|8|0|mult|mult
-0|cbrt|8|0|sub|mult
-0|cbrt|8|0|add|mult
-0|cbrt|7|6|mult|mult
-0|cbrt|7|6|sub|mult
-0|cbrt|7|6|add|mult
-0|cbrt|7|5|mult|mult
-0|cbrt|8|1|add|mult
-0|cbrt|9|mult
-0|cbrt|8|mult
-0|cbrt|7|mult
-0|cbrt|6|mult
-0|cb|9|4|add|mult
-0|cb|9|8|add|mult
-0|cb|9|7|mult|mult
-0|cb|9|7|sub|mult
-0|cb|9|7|add|mult
-0|cb|9|6|mult|mult
-0|cb|9|6|sub|mult
-0|cb|9|6|add|mult
-0|cb|9|2|add|mult
-0|cb|9|5|sub|mult
-0|cb|9|5|add|mult
-0|cb|9|4|mult|mult
-0|cb|9|4|sub|mult
-0|cb|9|8|sub|mult
-0|cb|9|3|mult|mult
-0|cb|9|3|sub|mult
-0|cb|9|3|add|mult
-0|cb|9|2|mult|mult
-0|cb|9|2|sub|mult
-0|cb|9|5|mult|mult
-0|cb|7|5|add|mult
-0|cb|7|4|mult|mult
-0|cb|7|4|sub|mult
-0|cb|7|4|add|mult
-0|cb|7|3|mult|mult
-0|cb|7|3|sub|mult
-0|cb|9|0|add|mult
-0|cb|3|cb|add
-0|cb|3|sq|mult
-0|cb|4|0|sub|mult
-0|cb|9|1|mult|mult
-0|cb|9|1|sub|mult
-0|cb|9|1|add|mult
-0|cb|9|cbrt|mult
-0|cb|9|cb|sub
-0|cb|9|cb|add
-0|cb|9|sq|mult
-0|cb|9|0|mult|mult
-0|cb|9|0|sub|mult
-0|cbrt|8|3|mult|mult
-0|cb|6|5|sub|mult
-0|cb|8|7|sub|mult
-0|cb|8|7|add|mult
-0|cb|8|6|mult|mult
-0|cb|8|6|sub|mult
-0|cb|8|6|add|mult
-0|cb|8|5|mult|mult
-0|cb|8|5|sub|mult
-0|cb|8|5|add|mult
-0|cb|8|4|mult|mult
-0|cb|8|7|mult|mult
-0|cb|9|8|mult|mult
-0|cbrt|9|1|add|mult
-0|cbrt|3|2|add|mult
-0|cbrt|3|1|mult|mult
-0|cbrt|3|1|sub|mult
-0|cbrt|3|1|add|mult
-0|cbrt|3|cbrt|mult
-0|cbrt|3|cbrt|sub
-0|cbrt|3|cbrt|add
-0|cbrt|3|cb|mult
-0|cbrt|3|sq|mult
-0|cbrt|4|0|sub|mult
-0|cbrt|9|1|mult|mult
-0|cbrt|9|1|sub|mult
-0|cbrt|3|2|sub|mult
-0|cbrt|9|cbrt|mult
-0|cbrt|9|cbrt|sub
-0|cbrt|9|cbrt|add
-0|cbrt|9|cb|mult
-0|cbrt|9|sq|mult
-0|cbrt|9|0|mult|mult
-0|cbrt|9|0|sub|mult
-0|cbrt|9|0|add|mult
-0|cbrt|6|5|sub|mult
-0|cbrt|8|7|sub|mult
-0|cbrt|8|7|add|mult
-0|cbrt|8|6|mult|mult
-0|cbrt|4|2|add|mult
-1|0|add|2|mult
-1|0|add|2|sub
-1|0|add|2|add
-1|0|add|1|mult
-1|0|add|1|add
-1|0|add|cbrt
-1|0|add|cb
-1|0|add|sq
-1|0|add|0|mult
-1|0|add|0|add
-0|cbrt|2|0|sub|mult
-0|cbrt|4|2|sub|mult
-0|cbrt|8|6|sub|mult
-0|cbrt|4|1|mult|mult
-0|cbrt|4|1|sub|mult
-0|cbrt|4|1|add|mult
-0|cbrt|4|cbrt|mult
-0|cbrt|4|cbrt|sub
-0|cbrt|4|cbrt|add
-0|cbrt|4|cb|mult
-0|cbrt|4|sq|mult
-0|cbrt|4|0|mult|mult
-0|cbrt|3|0|mult|mult
-0|cbrt|4|0|add|mult
-0|cbrt|3|2|mult|mult
-0|cbrt|7|1|sub|mult
-0|cbrt|9|5|mult|mult
-0|cbrt|7|5|add|mult
-0|cbrt|7|4|mult|mult
-0|cbrt|7|4|sub|mult
-0|cbrt|7|4|add|mult
-0|cbrt|7|3|mult|mult
-0|cbrt|7|3|sub|mult
-0|cbrt|7|3|add|mult
-0|cbrt|7|2|mult|mult
-0|cbrt|7|2|sub|mult
-0|cbrt|8|4|sub|mult
-0|cbrt|7|1|mult|mult
-0|cbrt|9|2|sub|mult
-0|cbrt|7|1|add|mult
-0|cbrt|7|cbrt|mult
-0|cbrt|7|cbrt|sub
-0|cbrt|7|cbrt|add
-0|cbrt|7|cb|mult
-0|cbrt|7|sq|mult
-0|cbrt|7|0|mult|mult
-0|cbrt|7|0|sub|mult
-0|cbrt|7|0|add|mult
-0|cbrt|6|5|mult|mult
-0|cbrt|7|2|add|mult
-0|cbrt|8|4|add|mult
-0|cbrt|9|6|mult|mult
-0|cbrt|8|6|add|mult
-0|cbrt|8|5|mult|mult
-0|cbrt|8|5|sub|mult
-0|cbrt|8|5|add|mult
-0|cbrt|8|4|mult|mult
-0|cbrt|8|7|mult|mult
-0|cbrt|9|8|mult|mult
-0|cbrt|9|8|sub|mult
-0|cbrt|9|8|add|mult
-0|cbrt|9|7|mult|mult
-0|cbrt|9|7|sub|mult
-0|cbrt|9|7|add|mult
-0|cb|7|3|add|mult
-0|cbrt|9|6|sub|mult
-0|cbrt|9|6|add|mult
-0|cbrt|9|2|add|mult
-0|cbrt|9|5|sub|mult
-0|cbrt|9|5|add|mult
-0|cbrt|9|4|mult|mult
-0|cbrt|9|4|sub|mult
-0|cbrt|9|4|add|mult
-0|cbrt|9|3|mult|mult
-0|cbrt|9|3|sub|mult
-0|cbrt|9|3|add|mult
-0|cbrt|9|2|mult|mult
-2|0|sub|9|6|add|add
-2|0|sub|9|7|mult|mult
-2|0|sub|9|7|sub|mult
-2|0|sub|9|7|sub|sub
-2|0|sub|9|7|sub|add
-2|0|sub|9|7|add|mult
-2|0|sub|9|7|add|sub
-2|0|sub|9|7|add|add
-2|0|sub|9|6|mult|mult
-2|0|sub|9|6|sub|mult
-2|0|sub|9|6|sub|sub
-2|0|sub|9|6|sub|add
-2|0|sub|9|6|add|mult
-2|0|sub|9|6|add|sub
-2|0|sub|9|8|add|add
-2|0|sub|9|2|add|mult
-2|0|sub|9|2|add|add
-2|0|sub|9|5|sub|mult
-2|0|sub|9|5|sub|sub
-2|0|sub|9|5|sub|add
-2|0|sub|9|5|add|mult
-2|0|sub|9|5|add|sub
-2|0|sub|9|5|add|add
-2|0|sub|9|4|mult|mult
-2|0|sub|9|4|sub|mult
-2|0|sub|9|4|sub|sub
-2|0|sub|9|4|sub|add
-2|0|sub|8|5|sub|sub
-2|0|sub|8|7|add|mult
-2|0|sub|8|7|add|sub
-2|0|sub|8|7|add|add
-2|0|sub|8|6|mult|mult
-2|0|sub|8|6|sub|mult
-2|0|sub|8|6|sub|sub
-2|0|sub|8|6|sub|add
-2|0|sub|8|6|add|mult
-2|0|sub|8|6|add|sub
-2|0|sub|8|6|add|add
-2|0|sub|8|5|mult|mult
-2|0|sub|8|5|sub|mult
-2|0|sub|9|4|add|mult
-2|0|sub|8|5|sub|add
-2|0|sub|8|5|add|mult
-2|0|sub|8|5|add|sub
-2|0|sub|8|5|add|add
-2|0|sub|8|4|mult|mult
-2|0|sub|8|7|mult|mult
-2|0|sub|9|8|mult|mult
-2|0|sub|9|8|sub|mult
-2|0|sub|9|8|sub|sub
-2|0|sub|9|8|sub|add
-2|0|sub|9|8|add|mult
-2|0|sub|9|8|add|sub
-2|0|sub|7|1|sub|sub
-2|0|sub|7|3|sub|add
-2|0|sub|7|3|add|mult
-2|0|sub|7|3|add|sub
-2|0|sub|7|3|add|add
-2|0|sub|7|2|mult|mult
-2|0|sub|7|2|sub|mult
-2|0|sub|7|2|sub|sub
-2|0|sub|8|4|sub|mult
-2|0|sub|8|4|sub|sub
-2|0|sub|8|4|sub|add
-2|0|sub|7|1|mult|mult
-2|0|sub|7|1|sub|mult
-2|0|sub|7|3|sub|sub
-2|0|sub|7|1|sub|add
-2|0|sub|7|1|add|mult
-2|0|sub|7|1|add|sub
-2|0|sub|7|1|add|add
-2|0|sub|7|cbrt|mult
-2|0|sub|7|cb|mult
-2|0|sub|7|sq|mult
-2|0|sub|7|0|mult|mult
-2|0|sub|7|0|sub|mult
-2|0|sub|7|0|sub|add
-2|0|sub|7|0|add|mult
-2|0|sub|7|0|add|sub
-2|0|sub|9|5|mult|mult
-2|0|sub|9|4|add|sub
-2|0|sub|9|4|add|add
-2|0|sub|9|3|mult|mult
-2|0|sub|9|3|sub|mult
-2|0|sub|9|3|sub|sub
-2|0|sub|9|3|sub|add
-2|0|sub|9|3|add|mult
-2|0|sub|9|3|add|sub
-2|0|sub|9|3|add|add
-2|0|sub|9|2|mult|mult
-2|0|sub|9|2|sub|mult
-2|0|sub|9|2|sub|sub
-2|0|sub|8|7|sub|add
-2|0|sub|7|5|add|mult
-2|0|sub|7|5|add|sub
-2|0|sub|7|5|add|add
-2|0|sub|7|4|mult|mult
-2|0|sub|7|4|sub|mult
-2|0|sub|7|4|sub|sub
-2|0|sub|7|4|sub|add
-2|0|sub|7|4|add|mult
-2|0|sub|7|4|add|sub
-2|0|sub|7|4|add|add
-2|0|sub|7|3|mult|mult
-2|0|sub|7|3|sub|mult
-0|cb|8|mult
-0|cb|8|cb|sub
-0|cb|8|cb|add
-0|cb|8|sq|mult
-0|cb|8|0|mult|mult
-0|cb|8|0|sub|mult
-0|cb|8|0|add|mult
-0|cb|7|6|mult|mult
-0|cb|7|6|sub|mult
-0|cb|7|6|add|mult
-0|cb|7|5|mult|mult
-0|cb|8|1|add|mult
-0|cb|9|mult
-0|cb|8|cbrt|mult
-0|cb|7|mult
-0|cb|6|mult
-0|cb|5|mult
-0|cb|4|mult
-0|cb|3|mult
-0|cb|2|mult
-0|cb|1|mult
-0|cb|cb
-0|cb|sq
-2|0|sub|4|2|sub|mult
-2|0|sub|4|2|sub|sub
-2|0|sub|4|2|add|mult
-0|cb|7|0|add|mult
-0|cb|7|2|mult|mult
-0|cb|7|2|sub|mult
-0|cb|8|4|sub|mult
-0|cb|7|1|mult|mult
-0|cb|7|1|sub|mult
-0|cb|7|1|add|mult
-0|cb|7|cbrt|mult
-0|cb|7|cb|sub
-0|cb|7|cb|add
-0|cb|7|sq|mult
-0|cb|7|0|mult|mult
-0|cb|7|0|sub|mult
-2|0|sub|4|2|add|add
-0|cb|6|5|mult|mult
-0|cb|7|2|add|mult
-0|cb|8|4|add|mult
-0|cb|8|3|mult|mult
-0|cb|8|3|sub|mult
-0|cb|8|3|add|mult
-0|cb|8|2|mult|mult
-0|cb|8|2|sub|mult
-0|cb|8|2|add|mult
-0|cb|8|1|mult|mult
-0|cb|8|1|sub|mult
-0|cb|7|5|sub|mult
-2|0|sub|9|cbrt|mult
-2|0|sub|3|cbrt|mult
-2|0|sub|3|cb|mult
-2|0|sub|3|sq|mult
-2|0|sub|4|0|sub|mult
-2|0|sub|4|0|sub|add
-2|0|sub|9|1|mult|mult
-2|0|sub|9|1|sub|mult
-2|0|sub|9|1|sub|sub
-2|0|sub|9|1|sub|add
-2|0|sub|9|1|add|mult
-2|0|sub|9|1|add|sub
-2|0|sub|9|1|add|add
-2|0|sub|3|1|add|add
-2|0|sub|9|cb|mult
-2|0|sub|9|sq|mult
-2|0|sub|9|0|mult|mult
-2|0|sub|9|0|sub|mult
-2|0|sub|9|0|sub|add
-2|0|sub|9|0|add|mult
-2|0|sub|9|0|add|sub
-2|0|sub|6|5|sub|mult
-2|0|sub|6|5|sub|sub
-2|0|sub|6|5|sub|add
-2|0|sub|8|7|sub|mult
-2|0|sub|8|7|sub|sub
-2|0|sub|4|0|add|mult
-2|0|sub|4|1|mult|mult
-2|0|sub|4|1|sub|mult
-2|0|sub|4|1|sub|sub
-2|0|sub|4|1|sub|add
-2|0|sub|4|1|add|mult
-2|0|sub|4|1|add|sub
-2|0|sub|4|1|add|add
-2|0|sub|4|cbrt|mult
-2|0|sub|4|cb|mult
-2|0|sub|4|sq|mult
-2|0|sub|4|0|mult|mult
-2|0|sub|3|0|mult|mult
-1|0|add|3|add
-2|0|sub|4|0|add|sub
-2|0|sub|3|2|mult|mult
-2|0|sub|3|2|sub|mult
-2|0|sub|3|2|sub|sub
-2|0|sub|3|2|add|mult
-2|0|sub|3|2|add|add
-2|0|sub|3|1|mult|mult
-2|0|sub|3|1|sub|mult
-2|0|sub|3|1|sub|sub
-2|0|sub|3|1|sub|add
-2|0|sub|3|1|add|mult
-2|0|sub|3|1|add|sub
-1|0|sub|8|0|sub|mult
-1|0|sub|8|2|add|mult
-1|0|sub|8|2|add|sub
-1|0|sub|8|2|add|add
-1|0|sub|8|1|mult|mult
-1|0|sub|8|1|sub|mult
-1|0|sub|8|1|sub|sub
-1|0|sub|7|5|sub|mult
-1|0|sub|7|5|sub|sub
-1|0|sub|7|5|sub|add
-1|0|sub|8|cbrt|mult
-1|0|sub|8|cb|mult
-1|0|sub|8|sq|mult
-1|0|sub|8|0|mult|mult
-1|0|sub|8|2|sub|add
-1|0|sub|8|0|sub|add
-1|0|sub|8|0|add|mult
-1|0|sub|8|0|add|sub
-1|0|sub|7|6|mult|mult
-1|0|sub|7|6|sub|mult
-1|0|sub|7|6|sub|sub
-1|0|sub|7|6|sub|add
-1|0|sub|7|6|add|mult
-1|0|sub|7|6|add|sub
-1|0|sub|7|6|add|add
-1|0|sub|7|5|mult|mult
-1|0|sub|8|1|add|mult
-1|0|sub|8|4|add|mult
-1|0|sub|7|cbrt|mult
-1|0|sub|7|cb|mult
-1|0|sub|7|sq|mult
-1|0|sub|7|0|mult|mult
-1|0|sub|7|0|sub|mult
-1|0|sub|7|0|sub|add
-1|0|sub|7|0|add|mult
-1|0|sub|7|0|add|sub
-1|0|sub|6|5|mult|mult
-1|0|sub|7|2|add|mult
-1|0|sub|7|2|add|sub
-1|0|sub|7|2|add|add
-1|0|sub|8|1|add|add
-1|0|sub|8|4|add|sub
-1|0|sub|8|4|add|add
-1|0|sub|8|3|mult|mult
-1|0|sub|8|3|sub|mult
-1|0|sub|8|3|sub|sub
-1|0|sub|8|3|sub|add
-1|0|sub|8|3|add|mult
-1|0|sub|8|3|add|sub
-1|0|sub|8|3|add|add
-1|0|sub|8|2|mult|mult
-1|0|sub|8|2|sub|mult
-1|0|sub|8|2|sub|sub
-1|0|add|4|2|add|mult
-1|0|sub|cbrt
-1|0|sub|cb
-1|0|sub|sq
-1|0|sub|0|mult
-1|0|sub|0|sub
-1|0|add|0|cbrt|mult
-1|0|add|0|cb|mult
-1|0|add|2|0|sub|mult
-1|0|add|2|0|sub|sub
-1|0|add|4|2|sub|mult
-1|0|add|4|2|sub|sub
-1|0|add|4|2|sub|add
-1|0|sub|1|add
-1|0|add|4|2|add|sub
-1|0|add|4|2|add|add
-1|0|add|4|1|mult|mult
-1|0|add|4|1|sub|mult
-1|0|add|4|1|sub|sub
-1|0|add|4|1|add|mult
-1|0|add|4|1|add|add
-1|0|add|4|cbrt|mult
-1|0|add|4|cb|mult
-1|0|add|4|sq|mult
-1|0|add|4|0|mult|mult
-1|0|add|3|0|mult|mult
-1|0|sub|5|mult
-1|0|sub|9|mult
-1|0|sub|9|sub
-1|0|sub|9|add
-1|0|sub|8|mult
-1|0|sub|8|sub
-1|0|sub|8|add
-1|0|sub|7|mult
-1|0|sub|7|sub
-1|0|sub|7|add
-1|0|sub|6|mult
-1|0|sub|6|sub
-1|0|sub|6|add
-1|0|sub|7|1|add|add
-1|0|sub|5|sub
-1|0|sub|5|add
-1|0|sub|4|mult
-1|0|sub|4|sub
-1|0|sub|4|add
-1|0|sub|3|mult
-1|0|sub|3|sub
-1|0|sub|3|add
-1|0|sub|2|mult
-1|0|sub|2|sub
-1|0|sub|2|add
-1|0|sub|1|mult
-1|0|sub|9|7|add|sub
-1|0|sub|9|8|mult|mult
-1|0|sub|9|8|sub|mult
-1|0|sub|9|8|sub|sub
-1|0|sub|9|8|sub|add
-1|0|sub|9|8|add|mult
-1|0|sub|9|8|add|sub
-1|0|sub|9|8|add|add
-1|0|sub|9|7|mult|mult
-1|0|sub|9|7|sub|mult
-1|0|sub|9|7|sub|sub
-1|0|sub|9|7|sub|add
-1|0|sub|9|7|add|mult
-1|0|sub|8|7|mult|mult
-1|0|sub|9|7|add|add
-1|0|sub|9|6|mult|mult
-1|0|sub|9|6|sub|mult
-1|0|sub|9|6|sub|sub
-1|0|sub|9|6|sub|add
-1|0|sub|9|6|add|mult
-1|0|sub|9|6|add|sub
-1|0|sub|9|6|add|add
-1|0|sub|9|2|add|mult
-1|0|sub|9|2|add|sub
-1|0|sub|9|2|add|add
-1|0|sub|9|5|sub|mult
-1|0|sub|8|6|sub|sub
-1|0|sub|9|0|add|sub
-1|0|sub|6|5|sub|mult
-1|0|sub|6|5|sub|sub
-1|0|sub|6|5|sub|add
-1|0|sub|8|7|sub|mult
-1|0|sub|8|7|sub|sub
-1|0|sub|8|7|sub|add
-1|0|sub|8|7|add|mult
-1|0|sub|8|7|add|sub
-1|0|sub|8|7|add|add
-1|0|sub|8|6|mult|mult
-1|0|sub|8|6|sub|mult
-1|0|sub|9|5|sub|sub
-1|0|sub|8|6|sub|add
-1|0|sub|8|6|add|mult
-1|0|sub|8|6|add|sub
-1|0|sub|8|6|add|add
-1|0|sub|8|5|mult|mult
-1|0|sub|8|5|sub|mult
-1|0|sub|8|5|sub|sub
-1|0|sub|8|5|sub|add
-1|0|sub|8|5|add|mult
-1|0|sub|8|5|add|sub
-1|0|sub|8|5|add|add
-1|0|sub|8|4|mult|mult
-1|0|sub|7|3|add|sub
-1|0|sub|7|4|mult|mult
-1|0|sub|7|4|sub|mult
-1|0|sub|7|4|sub|sub
-1|0|sub|7|4|sub|add
-1|0|sub|7|4|add|mult
-1|0|sub|7|4|add|sub
-1|0|sub|7|4|add|add
-1|0|sub|7|3|mult|mult
-1|0|sub|7|3|sub|mult
-1|0|sub|7|3|sub|sub
-1|0|sub|7|3|sub|add
-1|0|sub|7|3|add|mult
-1|0|sub|7|5|add|add
-1|0|sub|7|3|add|add
-1|0|sub|7|2|mult|mult
-1|0|sub|7|2|sub|mult
-1|0|sub|7|2|sub|sub
-1|0|sub|7|2|sub|add
-1|0|sub|8|4|sub|mult
-1|0|sub|8|4|sub|sub
-1|0|sub|8|4|sub|add
-1|0|sub|7|1|mult|mult
-1|0|sub|7|1|sub|mult
-1|0|sub|7|1|sub|sub
-1|0|sub|7|1|add|mult
-1|0|sub|9|3|sub|mult
-1|0|sub|9|5|sub|add
-1|0|sub|9|5|add|mult
-1|0|sub|9|5|add|sub
-1|0|sub|9|5|add|add
-1|0|sub|9|4|mult|mult
-1|0|sub|9|4|sub|mult
-1|0|sub|9|4|sub|sub
-1|0|sub|9|4|sub|add
-1|0|sub|9|4|add|mult
-1|0|sub|9|4|add|sub
-1|0|sub|9|4|add|add
-1|0|sub|9|3|mult|mult
-1|0|add|4|0|add|mult
-1|0|sub|9|3|sub|sub
-1|0|sub|9|3|sub|add
-1|0|sub|9|3|add|mult
-1|0|sub|9|3|add|sub
-1|0|sub|9|3|add|add
-1|0|sub|9|2|mult|mult
-1|0|sub|9|2|sub|mult
-1|0|sub|9|2|sub|sub
-1|0|sub|9|2|sub|add
-1|0|sub|9|5|mult|mult
-1|0|sub|7|5|add|mult
-1|0|sub|7|5|add|sub
-1|0|add|6|5|mult|mult
-1|0|add|7|1|sub|mult
-1|0|add|7|1|sub|sub
-1|0|add|7|1|add|mult
-1|0|add|7|1|add|add
-1|0|add|7|cbrt|mult
-1|0|add|7|cb|mult
-1|0|add|7|sq|mult
-1|0|add|7|0|mult|mult
-1|0|add|7|0|sub|mult
-1|0|add|7|0|sub|sub
-1|0|add|7|0|add|mult
-1|0|add|7|0|add|add
-1|0|add|7|1|mult|mult
-1|0|add|7|2|add|mult
-1|0|add|7|2|add|sub
-1|0|add|7|2|add|add
-1|0|add|8|4|add|mult
-1|0|add|8|4|add|sub
-1|0|add|8|4|add|add
-1|0|add|8|3|mult|mult
-1|0|add|8|3|sub|mult
-1|0|add|8|3|sub|sub
-1|0|add|8|3|sub|add
-1|0|add|8|3|add|mult
-1|0|add|8|3|add|sub
-1|0|add|7|3|sub|mult
-1|0|add|9|5|mult|mult
-1|0|add|7|5|add|mult
-1|0|add|7|5|add|sub
-1|0|add|7|5|add|add
-1|0|add|7|4|mult|mult
-1|0|add|7|4|sub|mult
-1|0|add|7|4|sub|sub
-1|0|add|7|4|sub|add
-1|0|add|7|4|add|mult
-1|0|add|7|4|add|sub
-1|0|add|7|4|add|add
-1|0|add|7|3|mult|mult
-1|0|add|8|3|add|add
-1|0|add|7|3|sub|sub
-1|0|add|7|3|sub|add
-1|0|add|7|3|add|mult
-1|0|add|7|3|add|sub
-1|0|add|7|3|add|add
-1|0|add|7|2|mult|mult
-1|0|add|7|2|sub|mult
-1|0|add|7|2|sub|sub
-1|0|add|7|2|sub|add
-1|0|add|8|4|sub|mult
-1|0|add|8|4|sub|sub
-1|0|add|8|4|sub|add
-1|0|add|7|sub
-1|0|add|7|6|add|sub
-1|0|add|7|6|add|add
-1|0|add|7|5|mult|mult
-1|0|add|8|1|add|mult
-1|0|add|8|1|add|add
-1|0|add|9|mult
-1|0|add|9|sub
-1|0|add|9|add
-1|0|add|8|mult
-1|0|add|8|sub
-1|0|add|8|add
-1|0|add|7|mult
-1|0|add|7|6|add|mult
-1|0|add|7|add
-1|0|add|6|mult
-1|0|add|6|sub
-1|0|add|6|add
-1|0|add|5|mult
-1|0|add|5|sub
-1|0|add|5|add
-1|0|add|4|mult
-1|0|add|4|sub
-1|0|add|4|add
-1|0|add|3|mult
-1|0|add|3|sub
-1|0|add|7|5|sub|add
-1|0|add|8|2|mult|mult
-1|0|add|8|2|sub|mult
-1|0|add|8|2|sub|sub
-1|0|add|8|2|sub|add
-1|0|add|8|2|add|mult
-1|0|add|8|2|add|sub
-1|0|add|8|2|add|add
-1|0|add|8|1|mult|mult
-1|0|add|8|1|sub|mult
-1|0|add|8|1|sub|sub
-1|0|add|7|5|sub|mult
-1|0|add|7|5|sub|sub
-1|0|add|9|2|sub|add
-1|0|add|8|cbrt|mult
-1|0|add|8|cb|mult
-1|0|add|8|sq|mult
-1|0|add|8|0|mult|mult
-1|0|add|8|0|sub|mult
-1|0|add|8|0|sub|sub
-1|0|add|8|0|add|mult
-1|0|add|8|0|add|add
-1|0|add|7|6|mult|mult
-1|0|add|7|6|sub|mult
-1|0|add|7|6|sub|sub
-1|0|add|7|6|sub|add
-1|0|add|8|7|add|sub
-1|0|add|9|0|mult|mult
-1|0|add|9|0|sub|mult
-1|0|add|9|0|sub|sub
-1|0|add|9|0|add|mult
-1|0|add|9|0|add|add
-1|0|add|6|5|sub|mult
-1|0|add|6|5|sub|sub
-1|0|add|6|5|sub|add
-1|0|add|8|7|sub|mult
-1|0|add|8|7|sub|sub
-1|0|add|8|7|sub|add
-1|0|add|8|7|add|mult
-1|0|add|9|sq|mult
-1|0|add|8|7|add|add
-1|0|add|8|6|mult|mult
-1|0|add|8|6|sub|mult
-1|0|add|8|6|sub|sub
-1|0|add|8|6|sub|add
-1|0|add|8|6|add|mult
-1|0|add|8|6|add|sub
-1|0|add|8|6|add|add
-1|0|add|8|5|mult|mult
-1|0|add|8|5|sub|mult
-1|0|add|8|5|sub|sub
-1|0|add|8|5|sub|add
-1|0|add|3|1|add|add
-1|0|add|4|0|add|add
-1|0|add|3|2|mult|mult
-1|0|add|3|2|sub|mult
-1|0|add|3|2|sub|sub
-1|0|add|3|2|sub|add
-1|0|add|3|2|add|mult
-1|0|add|3|2|add|sub
-1|0|add|3|2|add|add
-1|0|add|3|1|mult|mult
-1|0|add|3|1|sub|mult
-1|0|add|3|1|sub|sub
-1|0|add|3|1|add|mult
-1|0|add|8|5|add|mult
-1|0|add|3|cbrt|mult
-1|0|add|3|cb|mult
-1|0|add|3|sq|mult
-1|0|add|4|0|sub|mult
-1|0|add|4|0|sub|sub
-1|0|add|9|1|mult|mult
-1|0|add|9|1|sub|mult
-1|0|add|9|1|sub|sub
-1|0|add|9|1|add|mult
-1|0|add|9|1|add|add
-1|0|add|9|cbrt|mult
-1|0|add|9|cb|mult
-1|0|add|9|4|add|mult
-1|0|add|9|2|add|sub
-1|0|add|9|2|add|add
-1|0|add|9|5|sub|mult
-1|0|add|9|5|sub|sub
-1|0|add|9|5|sub|add
-1|0|add|9|5|add|mult
-1|0|add|9|5|add|sub
-1|0|add|9|5|add|add
-1|0|add|9|4|mult|mult
-1|0|add|9|4|sub|mult
-1|0|add|9|4|sub|sub
-1|0|add|9|4|sub|add
-1|0|add|9|2|add|mult
-1|0|add|9|4|add|sub
-1|0|add|9|4|add|add
-1|0|add|9|3|mult|mult
-1|0|add|9|3|sub|mult
-1|0|add|9|3|sub|sub
-1|0|add|9|3|sub|add
-1|0|add|9|3|add|mult
-1|0|add|9|3|add|sub
-1|0|add|9|3|add|add
-1|0|add|9|2|mult|mult
-1|0|add|9|2|sub|mult
-1|0|add|9|2|sub|sub
-1|0|add|9|7|sub|mult
-1|0|add|8|5|add|sub
-1|0|add|8|5|add|add
-1|0|add|8|4|mult|mult
-1|0|add|8|7|mult|mult
-1|0|add|9|8|mult|mult
-1|0|add|9|8|sub|mult
-1|0|add|9|8|sub|sub
-1|0|add|9|8|sub|add
-1|0|add|9|8|add|mult
-1|0|add|9|8|add|sub
-1|0|add|9|8|add|add
-1|0|add|9|7|mult|mult
-4|0|mult|7|sq|mult
-1|0|add|9|7|sub|sub
-1|0|add|9|7|sub|add
-1|0|add|9|7|add|mult
-1|0|add|9|7|add|sub
-1|0|add|9|7|add|add
-1|0|add|9|6|mult|mult
-1|0|add|9|6|sub|mult
-1|0|add|9|6|sub|sub
-1|0|add|9|6|sub|add
-1|0|add|9|6|add|mult
-1|0|add|9|6|add|sub
-1|0|add|9|6|add|add
-9|1|mult|7|2|mult|sub
-9|1|mult|9|5|mult|add
-9|1|mult|7|5|add|mult
-9|1|mult|7|4|mult|mult
-9|1|mult|7|4|mult|sub
-9|1|mult|7|4|mult|add
-9|1|mult|7|4|sub|mult
-9|1|mult|7|4|add|mult
-9|1|mult|7|3|mult|mult
-9|1|mult|7|3|mult|sub
-9|1|mult|7|3|mult|add
-9|1|mult|7|3|sub|mult
-9|1|mult|7|3|add|mult
-9|1|mult|7|2|mult|mult
-9|1|mult|9|5|mult|sub
-9|1|mult|7|2|mult|add
-9|1|mult|7|2|sub|mult
-9|1|mult|8|4|sub|mult
-9|1|mult|7|1|mult|mult
-9|1|mult|7|1|mult|sub
-9|1|mult|7|1|mult|add
-9|1|mult|7|1|sub|mult
-9|1|mult|7|1|add|mult
-9|1|mult|7|cbrt|mult
-9|1|mult|7|cb|mult
-9|1|mult|7|sq|mult
-9|1|mult|7|sq|sub
-9|1|mult|9|4|mult|add
-9|1|mult|9|7|sub|mult
-9|1|mult|9|7|add|mult
-9|1|mult|9|6|mult|mult
-9|1|mult|9|6|mult|sub
-9|1|mult|9|6|mult|add
-9|1|mult|9|6|sub|mult
-9|1|mult|9|6|add|mult
-9|1|mult|9|2|add|mult
-9|1|mult|9|5|sub|mult
-9|1|mult|9|5|add|mult
-9|1|mult|9|4|mult|mult
-9|1|mult|9|4|mult|sub
-9|1|mult|7|sq|add
-9|1|mult|9|4|sub|mult
-9|1|mult|9|4|add|mult
-9|1|mult|9|3|mult|mult
-9|1|mult|9|3|mult|sub
-9|1|mult|9|3|mult|add
-9|1|mult|9|3|sub|mult
-9|1|mult|9|3|add|mult
-9|1|mult|9|2|mult|mult
-9|1|mult|9|2|mult|sub
-9|1|mult|9|2|mult|add
-9|1|mult|9|2|sub|mult
-9|1|mult|9|5|mult|mult
-9|1|mult|7|6|sub|mult
-9|1|mult|8|cb|mult
-9|1|mult|8|sq|mult
-9|1|mult|8|sq|sub
-9|1|mult|8|sq|add
-9|1|mult|8|0|mult|mult
-9|1|mult|8|0|mult|sub
-9|1|mult|8|0|mult|add
-9|1|mult|8|0|sub|mult
-9|1|mult|8|0|add|mult
-9|1|mult|7|6|mult|mult
-9|1|mult|7|6|mult|sub
-9|1|mult|7|6|mult|add
-9|1|mult|8|cbrt|mult
-9|1|mult|7|6|add|mult
-9|1|mult|7|5|mult|mult
-9|1|mult|7|5|mult|sub
-9|1|mult|7|5|mult|add
-9|1|mult|8|1|add|mult
-9|1|mult|9|mult
-9|1|mult|8|mult
-9|1|mult|7|mult
-9|1|mult|6|mult
-9|1|mult|5|mult
-9|1|mult|4|mult
-9|1|mult|3|mult
-9|1|mult|8|3|mult|add
-9|1|mult|7|0|mult|mult
-9|1|mult|7|0|mult|sub
-9|1|mult|7|0|mult|add
-9|1|mult|7|0|sub|mult
-9|1|mult|7|0|add|mult
-9|1|mult|6|5|mult|mult
-9|1|mult|6|5|mult|sub
-9|1|mult|6|5|mult|add
-9|1|mult|7|2|add|mult
-9|1|mult|8|4|add|mult
-9|1|mult|8|3|mult|mult
-9|1|mult|8|3|mult|sub
-9|1|mult|9|7|mult|add
-9|1|mult|8|3|sub|mult
-9|1|mult|8|3|add|mult
-9|1|mult|8|2|mult|mult
-9|1|mult|8|2|mult|sub
-9|1|mult|8|2|mult|add
-9|1|mult|8|2|sub|mult
-9|1|mult|8|2|add|mult
-9|1|mult|8|1|mult|mult
-9|1|mult|8|1|mult|sub
-9|1|mult|8|1|mult|add
-9|1|mult|8|1|sub|mult
-9|1|mult|7|5|sub|mult
-4|0|sub|8|sub
-4|0|sub|7|6|sub|add
-4|0|sub|7|6|add|mult
-4|0|sub|7|6|add|sub
-4|0|sub|7|6|add|add
-4|0|sub|7|5|mult|mult
-4|0|sub|8|1|add|mult
-4|0|sub|8|1|add|sub
-4|0|sub|8|1|add|add
-4|0|sub|9|mult
-4|0|sub|9|sub
-4|0|sub|9|add
-4|0|sub|8|mult
-4|0|sub|7|6|sub|sub
-4|0|sub|8|add
-4|0|sub|7|mult
-4|0|sub|7|sub
-4|0|sub|7|add
-4|0|sub|6|mult
-4|0|sub|6|sub
-4|0|sub|6|add
-4|0|sub|5|mult
-4|0|sub|5|sub
-4|0|sub|5|add
-4|0|sub|4|mult
-4|0|sub|4|add
-4|0|sub|7|5|sub|mult
-4|0|sub|8|3|add|add
-4|0|sub|8|2|mult|mult
-4|0|sub|8|2|sub|mult
-4|0|sub|8|2|sub|sub
-4|0|sub|8|2|sub|add
-4|0|sub|8|2|add|mult
-4|0|sub|8|2|add|sub
-4|0|sub|8|2|add|add
-4|0|sub|8|1|mult|mult
-4|0|sub|8|1|sub|mult
-4|0|sub|8|1|sub|sub
-4|0|sub|8|1|sub|add
-4|0|sub|3|mult
-4|0|sub|7|5|sub|sub
-4|0|sub|7|5|sub|add
-4|0|sub|8|cbrt|mult
-4|0|sub|8|cb|mult
-4|0|sub|8|sq|mult
-4|0|sub|8|0|mult|mult
-4|0|sub|8|0|sub|mult
-4|0|sub|8|0|sub|add
-4|0|sub|8|0|add|mult
-4|0|sub|8|0|add|sub
-4|0|sub|7|6|mult|mult
-4|0|sub|7|6|sub|mult
-9|1|mult|8|4|mult|mult
-9|1|mult|8|7|sub|mult
-9|1|mult|8|7|add|mult
-9|1|mult|8|6|mult|mult
-9|1|mult|8|6|mult|sub
-9|1|mult|8|6|mult|add
-9|1|mult|8|6|sub|mult
-9|1|mult|8|6|add|mult
-9|1|mult|8|5|mult|mult
-9|1|mult|8|5|mult|sub
-9|1|mult|8|5|mult|add
-9|1|mult|8|5|sub|mult
-9|1|mult|8|5|add|mult
-9|1|mult|6|5|sub|mult
-9|1|mult|8|4|mult|sub
-9|1|mult|8|4|mult|add
-9|1|mult|8|7|mult|mult
-9|1|mult|8|7|mult|sub
-9|1|mult|8|7|mult|add
-9|1|mult|9|8|mult|mult
-9|1|mult|9|8|mult|sub
-9|1|mult|9|8|mult|add
-9|1|mult|9|8|sub|mult
-9|1|mult|9|8|add|mult
-9|1|mult|9|7|mult|mult
-9|1|mult|9|7|mult|sub
-4|0|sub|0|sub
-4|0|sub|3|sub
-4|0|sub|3|add
-4|0|sub|2|mult
-4|0|sub|2|sub
-4|0|sub|2|add
-4|0|sub|1|mult
-4|0|sub|1|sub
-4|0|sub|1|add
-4|0|sub|cbrt
-4|0|sub|cb
-4|0|sub|sq
-4|0|sub|0|mult
-9|1|mult|2|mult
-9|1|mult|9|1|sub|mult
-9|1|mult|9|1|add|mult
-9|1|mult|9|cbrt|mult
-9|1|mult|9|cb|mult
-9|1|mult|9|sq|mult
-9|1|mult|9|sq|sub
-9|1|mult|9|sq|add
-9|1|mult|9|0|mult|mult
-9|1|mult|9|0|mult|sub
-9|1|mult|9|0|mult|add
-9|1|mult|9|0|sub|mult
-9|1|mult|9|0|add|mult
-9|1|sub|8|0|mult|mult
-9|1|sub|8|2|sub|add
-9|1|sub|8|2|add|mult
-9|1|sub|8|2|add|sub
-9|1|sub|8|2|add|add
-9|1|sub|8|1|mult|mult
-9|1|sub|8|1|sub|mult
-9|1|sub|8|1|sub|add
-9|1|sub|7|5|sub|mult
-9|1|sub|7|5|sub|sub
-9|1|sub|7|5|sub|add
-9|1|sub|8|cbrt|mult
-9|1|sub|8|cb|mult
-9|1|sub|8|sq|mult
-9|1|sub|8|2|sub|sub
-9|1|sub|8|0|sub|mult
-9|1|sub|8|0|sub|sub
-9|1|sub|8|0|sub|add
-9|1|sub|8|0|add|mult
-9|1|sub|8|0|add|sub
-9|1|sub|8|0|add|add
-9|1|sub|7|6|mult|mult
-9|1|sub|7|6|sub|mult
-9|1|sub|7|6|sub|sub
-9|1|sub|7|6|sub|add
-9|1|sub|7|6|add|mult
-9|1|sub|7|6|add|sub
-9|1|sub|7|2|add|add
-9|1|sub|7|cb|mult
-9|1|sub|7|sq|mult
-9|1|sub|7|0|mult|mult
-9|1|sub|7|0|sub|mult
-9|1|sub|7|0|sub|sub
-9|1|sub|7|0|sub|add
-9|1|sub|7|0|add|mult
-9|1|sub|7|0|add|sub
-9|1|sub|7|0|add|add
-9|1|sub|6|5|mult|mult
-9|1|sub|7|2|add|mult
-9|1|sub|7|2|add|sub
-9|1|sub|7|6|add|add
-9|1|sub|8|4|add|mult
-9|1|sub|8|4|add|sub
-9|1|sub|8|4|add|add
-9|1|sub|8|3|mult|mult
-9|1|sub|8|3|sub|mult
-9|1|sub|8|3|sub|sub
-9|1|sub|8|3|sub|add
-9|1|sub|8|3|add|mult
-9|1|sub|8|3|add|sub
-9|1|sub|8|3|add|add
-9|1|sub|8|2|mult|mult
-9|1|sub|8|2|sub|mult
-9|1|add|9|0|sub|mult
-9|1|sub|1|mult
-9|1|sub|1|sub
-9|1|sub|cbrt
-9|1|sub|cb
-9|1|sub|sq
-9|1|sub|0|mult
-9|1|sub|0|sub
-9|1|sub|0|add
-9|1|add|9|cbrt|mult
-9|1|add|9|cb|mult
-9|1|add|9|sq|mult
-9|1|add|9|0|mult|mult
-9|1|sub|2|add
-9|1|add|9|0|sub|add
-9|1|add|9|0|add|mult
-9|1|add|9|0|add|add
-9|1|add|6|5|sub|mult
-9|1|add|6|5|sub|sub
-9|1|add|6|5|sub|add
-9|1|add|8|7|sub|mult
-9|1|add|8|7|sub|sub
-9|1|add|8|7|sub|add
-9|1|add|8|7|add|mult
-9|1|add|8|7|add|sub
-9|1|add|8|7|add|add
-9|1|sub|6|sub
-9|1|sub|7|5|mult|mult
-9|1|sub|8|1|add|mult
-9|1|sub|8|1|add|sub
-9|1|sub|9|mult
-9|1|sub|9|add
-9|1|sub|8|mult
-9|1|sub|8|sub
-9|1|sub|8|add
-9|1|sub|7|mult
-9|1|sub|7|sub
-9|1|sub|7|add
-9|1|sub|6|mult
-9|1|sub|7|cbrt|mult
-9|1|sub|6|add
-9|1|sub|5|mult
-9|1|sub|5|sub
-9|1|sub|5|add
-9|1|sub|4|mult
-9|1|sub|4|sub
-9|1|sub|4|add
-9|1|sub|3|mult
-9|1|sub|3|sub
-9|1|sub|3|add
-9|1|sub|2|mult
-9|1|sub|2|sub
-9|1|sub|8|7|mult|mult
-9|1|sub|8|6|sub|add
-9|1|sub|8|6|add|mult
-9|1|sub|8|6|add|sub
-9|1|sub|8|6|add|add
-9|1|sub|8|5|mult|mult
-9|1|sub|8|5|sub|mult
-9|1|sub|8|5|sub|sub
-9|1|sub|8|5|sub|add
-9|1|sub|8|5|add|mult
-9|1|sub|8|5|add|sub
-9|1|sub|8|5|add|add
-9|1|sub|8|4|mult|mult
-9|1|sub|8|6|sub|sub
-9|1|sub|9|8|mult|mult
-9|1|sub|9|8|sub|mult
-9|1|sub|9|8|sub|add
-9|1|sub|9|8|add|mult
-9|1|sub|9|8|add|add
-9|1|sub|9|7|mult|mult
-9|1|sub|9|7|sub|mult
-9|1|sub|9|7|sub|add
-9|1|sub|9|7|add|mult
-9|1|sub|9|7|add|add
-9|1|sub|9|6|mult|mult
-9|1|sub|9|6|sub|mult
-9|1|sub|9|0|add|mult
-9|1|mult|1|mult
-9|1|mult|cbrt
-9|1|mult|cb
-9|1|mult|sq
-9|1|mult|0|mult
-9|1|sub|9|1|add|mult
-9|1|sub|9|cbrt|mult
-9|1|sub|9|cb|mult
-9|1|sub|9|sq|mult
-9|1|sub|9|0|mult|mult
-9|1|sub|9|0|sub|mult
-9|1|sub|9|0|sub|add
-9|1|sub|9|6|sub|add
-9|1|sub|9|0|add|add
-9|1|sub|6|5|sub|mult
-9|1|sub|6|5|sub|sub
-9|1|sub|6|5|sub|add
-9|1|sub|8|7|sub|mult
-9|1|sub|8|7|sub|sub
-9|1|sub|8|7|sub|add
-9|1|sub|8|7|add|mult
-9|1|sub|8|7|add|sub
-9|1|sub|8|7|add|add
-9|1|sub|8|6|mult|mult
-9|1|sub|8|6|sub|mult
-9|1|sub|7|3|add|add
-9|1|sub|7|4|sub|mult
-9|1|sub|7|4|sub|sub
-9|1|sub|7|4|sub|add
-9|1|sub|7|4|add|mult
-9|1|sub|7|4|add|sub
-9|1|sub|7|4|add|add
-9|1|sub|7|3|mult|mult
-9|1|sub|7|3|sub|mult
-9|1|sub|7|3|sub|sub
-9|1|sub|7|3|sub|add
-9|1|sub|7|3|add|mult
-9|1|sub|7|3|add|sub
-9|1|sub|7|4|mult|mult
-9|1|sub|7|2|mult|mult
-9|1|sub|7|2|sub|mult
-9|1|sub|7|2|sub|sub
-9|1|sub|7|2|sub|add
-9|1|sub|8|4|sub|mult
-9|1|sub|8|4|sub|sub
-9|1|sub|8|4|sub|add
-9|1|sub|7|1|mult|mult
-9|1|sub|7|1|sub|mult
-9|1|sub|7|1|sub|add
-9|1|sub|7|1|add|mult
-9|1|sub|7|1|add|sub
-9|1|sub|9|4|add|add
-9|1|sub|9|6|add|mult
-9|1|sub|9|6|add|add
-9|1|sub|9|2|add|mult
-9|1|sub|9|2|add|add
-9|1|sub|9|5|sub|mult
-9|1|sub|9|5|sub|add
-9|1|sub|9|5|add|mult
-9|1|sub|9|5|add|add
-9|1|sub|9|4|mult|mult
-9|1|sub|9|4|sub|mult
-9|1|sub|9|4|sub|add
-9|1|sub|9|4|add|mult
-4|0|sub|8|3|add|sub
-9|1|sub|9|3|mult|mult
-9|1|sub|9|3|sub|mult
-9|1|sub|9|3|sub|add
-9|1|sub|9|3|add|mult
-9|1|sub|9|3|add|add
-9|1|sub|9|2|mult|mult
-9|1|sub|9|2|sub|mult
-9|1|sub|9|2|sub|add
-9|1|sub|9|5|mult|mult
-9|1|sub|7|5|add|mult
-9|1|sub|7|5|add|sub
-9|1|sub|7|5|add|add
-3|sq|9|cb|mult
-3|cb|4|mult
-3|cb|2|mult
-3|cb|1|mult
-3|cb|cb
-3|cb|sq
-3|cb|0|mult
-3|sq|4|0|sub|mult
-3|sq|9|1|mult|mult
-3|sq|9|1|mult|sub
-3|sq|9|1|mult|add
-3|sq|9|1|sub|mult
-3|sq|9|1|add|mult
-3|sq|9|cbrt|mult
-3|cb|5|mult
-3|sq|9|sq|sub
-3|sq|9|sq|add
-3|sq|9|0|mult|mult
-3|sq|9|0|mult|sub
-3|sq|9|0|mult|add
-3|sq|9|0|sub|mult
-3|sq|9|0|add|mult
-3|sq|6|5|sub|mult
-3|sq|8|7|sub|mult
-3|sq|8|7|add|mult
-3|sq|8|6|mult|mult
-3|sq|8|6|mult|sub
-3|cb|8|sq|mult
-3|cb|8|3|mult|mult
-3|cb|8|3|sub|mult
-3|cb|8|3|add|mult
-3|cb|8|2|mult|mult
-3|cb|8|2|sub|mult
-3|cb|8|2|add|mult
-3|cb|8|1|mult|mult
-3|cb|8|1|sub|mult
-3|cb|7|5|sub|mult
-3|cb|8|cbrt|mult
-3|cb|8|cb|sub
-3|cb|8|cb|add
-3|sq|8|6|mult|add
-3|cb|8|0|mult|mult
-3|cb|8|0|sub|mult
-3|cb|8|0|add|mult
-3|cb|7|6|mult|mult
-3|cb|7|6|sub|mult
-3|cb|7|6|add|mult
-3|cb|7|5|mult|mult
-3|cb|8|1|add|mult
-3|cb|9|mult
-3|cb|8|mult
-3|cb|7|mult
-3|cb|6|mult
-3|sq|9|3|mult|add
-3|sq|9|6|sub|mult
-3|sq|9|6|add|mult
-3|sq|9|2|add|mult
-3|sq|9|5|sub|mult
-3|sq|9|5|add|mult
-3|sq|9|4|mult|mult
-3|sq|9|4|mult|sub
-3|sq|9|4|mult|add
-3|sq|9|4|sub|mult
-3|sq|9|4|add|mult
-3|sq|9|3|mult|mult
-3|sq|9|3|mult|sub
-3|sq|9|6|mult|add
-3|sq|9|3|sub|mult
-3|sq|9|3|add|mult
-3|sq|9|2|mult|mult
-3|sq|9|2|mult|sub
-3|sq|9|2|mult|add
-3|sq|9|2|sub|mult
-3|sq|9|5|mult|mult
-3|sq|9|5|mult|sub
-3|sq|9|5|mult|add
-3|sq|7|5|add|mult
-3|sq|7|4|mult|mult
-3|sq|7|4|mult|sub
-3|sq|8|7|mult|add
-3|sq|8|6|sub|mult
-3|sq|8|6|add|mult
-3|sq|8|5|mult|mult
-3|sq|8|5|mult|sub
-3|sq|8|5|mult|add
-3|sq|8|5|sub|mult
-3|sq|8|5|add|mult
-3|sq|8|4|mult|mult
-3|sq|8|4|mult|sub
-3|sq|8|4|mult|add
-3|sq|8|7|mult|mult
-3|sq|8|7|mult|sub
-3|cb|8|4|add|mult
-3|sq|9|8|mult|mult
-3|sq|9|8|mult|sub
-3|sq|9|8|mult|add
-3|sq|9|8|sub|mult
-3|sq|9|8|add|mult
-3|sq|9|7|mult|mult
-3|sq|9|7|mult|sub
-3|sq|9|7|mult|add
-3|sq|9|7|sub|mult
-3|sq|9|7|add|mult
-3|sq|9|6|mult|mult
-3|sq|9|6|mult|sub
-3|cb|4|0|sub|mult
-3|cbrt|8|1|add|mult
-3|cbrt|9|mult
-3|cbrt|8|mult
-3|cbrt|7|mult
-3|cbrt|6|mult
-3|cbrt|5|mult
-3|cbrt|4|mult
-3|cbrt|2|mult
-3|cbrt|1|mult
-3|cbrt|cbrt
-3|cbrt|sq
-3|cbrt|0|mult
-3|cbrt|7|5|mult|mult
-3|cb|9|1|mult|mult
-3|cb|9|1|sub|mult
-3|cb|9|1|add|mult
-3|cb|9|cbrt|mult
-3|cb|9|cb|sub
-3|cb|9|cb|add
-3|cb|9|sq|mult
-3|cb|9|0|mult|mult
-3|cb|9|0|sub|mult
-3|cb|9|0|add|mult
-3|cb|6|5|sub|mult
-3|cb|8|7|sub|mult
-3|cbrt|8|1|sub|mult
-3|cbrt|7|0|sub|mult
-3|cbrt|7|0|add|mult
-3|cbrt|6|5|mult|mult
-3|cbrt|7|2|add|mult
-3|cbrt|8|4|add|mult
-3|cbrt|8|3|mult|mult
-3|cbrt|8|3|sub|mult
-3|cbrt|8|3|add|mult
-3|cbrt|8|2|mult|mult
-3|cbrt|8|2|sub|mult
-3|cbrt|8|2|add|mult
-3|cbrt|8|1|mult|mult
-3|cb|8|7|add|mult
-3|cbrt|7|5|sub|mult
-3|cbrt|8|cbrt|mult
-3|cbrt|8|cbrt|sub
-3|cbrt|8|cbrt|add
-3|cbrt|8|cb|mult
-3|cbrt|8|sq|mult
-3|cbrt|8|0|mult|mult
-3|cbrt|8|0|sub|mult
-3|cbrt|8|0|add|mult
-3|cbrt|7|6|mult|mult
-3|cbrt|7|6|sub|mult
-3|cbrt|7|6|add|mult
-3|cb|8|4|sub|mult
-3|cb|9|2|mult|mult
-3|cb|9|2|sub|mult
-3|cb|9|5|mult|mult
-3|cb|7|5|add|mult
-3|cb|7|4|mult|mult
-3|cb|7|4|sub|mult
-3|cb|7|4|add|mult
-3|cb|7|3|mult|mult
-3|cb|7|3|sub|mult
-3|cb|7|3|add|mult
-3|cb|7|2|mult|mult
-3|cb|7|2|sub|mult
-3|cb|9|3|add|mult
-3|cb|7|1|mult|mult
-3|cb|7|1|sub|mult
-3|cb|7|1|add|mult
-3|cb|7|cbrt|mult
-3|cb|7|cb|sub
-3|cb|7|cb|add
-3|cb|7|sq|mult
-3|cb|7|0|mult|mult
-3|cb|7|0|sub|mult
-3|cb|7|0|add|mult
-3|cb|6|5|mult|mult
-3|cb|7|2|add|mult
-3|cb|9|7|sub|mult
-3|cb|8|6|mult|mult
-3|cb|8|6|sub|mult
-3|cb|8|6|add|mult
-3|cb|8|5|mult|mult
-3|cb|8|5|sub|mult
-3|cb|8|5|add|mult
-3|cb|8|4|mult|mult
-3|cb|8|7|mult|mult
-3|cb|9|8|mult|mult
-3|cb|9|8|sub|mult
-3|cb|9|8|add|mult
-3|cb|9|7|mult|mult
-3|sq|7|4|mult|add
-3|cb|9|7|add|mult
-3|cb|9|6|mult|mult
-3|cb|9|6|sub|mult
-3|cb|9|6|add|mult
-3|cb|9|2|add|mult
-3|cb|9|5|sub|mult
-3|cb|9|5|add|mult
-3|cb|9|4|mult|mult
-3|cb|9|4|sub|mult
-3|cb|9|4|add|mult
-3|cb|9|3|mult|mult
-3|cb|9|3|sub|mult
-4|0|sub|9|5|add|add
-4|0|sub|9|6|sub|sub
-4|0|sub|9|6|sub|add
-4|0|sub|9|6|add|mult
-4|0|sub|9|6|add|sub
-4|0|sub|9|6|add|add
-4|0|sub|9|2|add|mult
-4|0|sub|9|2|add|sub
-4|0|sub|9|2|add|add
-4|0|sub|9|5|sub|mult
-4|0|sub|9|5|sub|sub
-4|0|sub|9|5|sub|add
-4|0|sub|9|5|add|mult
-4|0|sub|9|5|add|sub
-4|0|sub|9|6|sub|mult
-4|0|sub|9|4|mult|mult
-4|0|sub|9|4|sub|mult
-4|0|sub|9|4|sub|sub
-4|0|sub|9|4|add|mult
-4|0|sub|9|4|add|add
-4|0|sub|9|3|mult|mult
-4|0|sub|9|3|sub|mult
-4|0|sub|9|3|sub|sub
-4|0|sub|9|3|sub|add
-4|0|sub|9|3|add|mult
-4|0|sub|9|3|add|sub
-4|0|sub|9|3|add|add
-4|0|sub|9|8|sub|sub
-4|0|sub|8|6|add|add
-4|0|sub|8|5|mult|mult
-4|0|sub|8|5|sub|mult
-4|0|sub|8|5|sub|sub
-4|0|sub|8|5|sub|add
-4|0|sub|8|5|add|mult
-4|0|sub|8|5|add|sub
-4|0|sub|8|5|add|add
-4|0|sub|8|4|mult|mult
-4|0|sub|8|7|mult|mult
-4|0|sub|9|8|mult|mult
-4|0|sub|9|8|sub|mult
-4|0|sub|9|2|mult|mult
-4|0|sub|9|8|sub|add
-4|0|sub|9|8|add|mult
-4|0|sub|9|8|add|sub
-4|0|sub|9|8|add|add
-4|0|sub|9|7|mult|mult
-4|0|sub|9|7|sub|mult
-4|0|sub|9|7|sub|sub
-4|0|sub|9|7|sub|add
-4|0|sub|9|7|add|mult
-4|0|sub|9|7|add|sub
-4|0|sub|9|7|add|add
-4|0|sub|9|6|mult|mult
-4|0|sub|7|0|add|mult
-4|0|sub|7|1|sub|mult
-4|0|sub|7|1|sub|sub
-4|0|sub|7|1|sub|add
-4|0|sub|7|1|add|mult
-4|0|sub|7|1|add|sub
-4|0|sub|7|1|add|add
-4|0|sub|7|cbrt|mult
-4|0|sub|7|cb|mult
-4|0|sub|7|sq|mult
-4|0|sub|7|0|mult|mult
-4|0|sub|7|0|sub|mult
-4|0|sub|7|0|sub|add
-4|0|sub|7|1|mult|mult
-4|0|sub|7|0|add|sub
-4|0|sub|6|5|mult|mult
-4|0|sub|7|2|add|mult
-4|0|sub|7|2|add|sub
-4|0|sub|7|2|add|add
-4|0|sub|8|4|add|mult
-4|0|sub|8|4|add|add
-4|0|sub|8|3|mult|mult
-4|0|sub|8|3|sub|mult
-4|0|sub|8|3|sub|sub
-4|0|sub|8|3|sub|add
-4|0|sub|8|3|add|mult
-4|0|sub|7|3|mult|mult
-4|0|sub|9|2|sub|mult
-4|0|sub|9|2|sub|sub
-4|0|sub|9|2|sub|add
-4|0|sub|9|5|mult|mult
-4|0|sub|7|5|add|mult
-4|0|sub|7|5|add|sub
-4|0|sub|7|5|add|add
-4|0|sub|7|4|mult|mult
-4|0|sub|7|4|sub|mult
-4|0|sub|7|4|sub|sub
-4|0|sub|7|4|add|mult
-4|0|sub|7|4|add|add
-4|0|sub|8|6|add|sub
-4|0|sub|7|3|sub|mult
-4|0|sub|7|3|sub|sub
-4|0|sub|7|3|sub|add
-4|0|sub|7|3|add|mult
-4|0|sub|7|3|add|sub
-4|0|sub|7|3|add|add
-4|0|sub|7|2|mult|mult
-4|0|sub|7|2|sub|mult
-4|0|sub|7|2|sub|sub
-4|0|sub|7|2|sub|add
-4|0|sub|8|4|sub|mult
-4|0|sub|8|4|sub|sub
-3|sq|8|2|mult|add
-3|sq|6|5|mult|mult
-3|sq|6|5|mult|sub
-3|sq|6|5|mult|add
-3|sq|7|2|add|mult
-3|sq|8|4|add|mult
-3|sq|8|3|mult|mult
-3|sq|8|3|mult|sub
-3|sq|8|3|mult|add
-3|sq|8|3|sub|mult
-3|sq|8|3|add|mult
-3|sq|8|2|mult|mult
-3|sq|8|2|mult|sub
-3|sq|7|0|add|mult
-3|sq|8|2|sub|mult
-3|sq|8|2|add|mult
-3|sq|8|1|mult|mult
-3|sq|8|1|mult|sub
-3|sq|8|1|mult|add
-3|sq|8|1|sub|mult
-3|sq|7|5|sub|mult
-3|sq|8|cbrt|mult
-3|sq|8|cb|mult
-3|sq|8|sq|sub
-3|sq|8|sq|add
-3|sq|8|0|mult|mult
-3|sq|7|1|mult|mult
-3|sq|7|4|sub|mult
-3|sq|7|4|add|mult
-3|sq|7|3|mult|mult
-3|sq|7|3|mult|sub
-3|sq|7|3|mult|add
-3|sq|7|3|sub|mult
-3|sq|7|3|add|mult
-3|sq|7|2|mult|mult
-3|sq|7|2|mult|sub
-3|sq|7|2|mult|add
-3|sq|7|2|sub|mult
-3|sq|8|4|sub|mult
-3|sq|8|0|mult|sub
-3|sq|7|1|mult|sub
-3|sq|7|1|mult|add
-3|sq|7|1|sub|mult
-3|sq|7|1|add|mult
-3|sq|7|cbrt|mult
-3|sq|7|cb|mult
-3|sq|7|sq|sub
-3|sq|7|sq|add
-3|sq|7|0|mult|mult
-3|sq|7|0|mult|sub
-3|sq|7|0|mult|add
-3|sq|7|0|sub|mult
-4|0|sub|6|5|sub|sub
-4|0|sub|9|1|add|mult
-4|0|sub|9|1|add|sub
-4|0|sub|9|1|add|add
-4|0|sub|9|cbrt|mult
-4|0|sub|9|cb|mult
-4|0|sub|9|sq|mult
-4|0|sub|9|0|mult|mult
-4|0|sub|9|0|sub|mult
-4|0|sub|9|0|sub|add
-4|0|sub|9|0|add|mult
-4|0|sub|9|0|add|sub
-4|0|sub|6|5|sub|mult
-4|0|sub|9|1|sub|add
-4|0|sub|6|5|sub|add
-4|0|sub|8|7|sub|mult
-4|0|sub|8|7|sub|sub
-4|0|sub|8|7|sub|add
-4|0|sub|8|7|add|mult
-4|0|sub|8|7|add|sub
-4|0|sub|8|7|add|add
-4|0|sub|8|6|mult|mult
-4|0|sub|8|6|sub|mult
-4|0|sub|8|6|sub|sub
-4|0|sub|8|6|sub|add
-4|0|sub|8|6|add|mult
-3|sq|9|mult
-3|sq|8|0|mult|add
-3|sq|8|0|sub|mult
-3|sq|8|0|add|mult
-3|sq|7|6|mult|mult
-3|sq|7|6|mult|sub
-3|sq|7|6|mult|add
-3|sq|7|6|sub|mult
-3|sq|7|6|add|mult
-3|sq|7|5|mult|mult
-3|sq|7|5|mult|sub
-3|sq|7|5|mult|add
-3|sq|8|1|add|mult
-9|1|add|8|6|mult|mult
-3|sq|8|mult
-3|sq|7|mult
-3|sq|6|mult
-3|sq|5|mult
-3|sq|4|mult
-3|sq|2|mult
-3|sq|1|mult
-3|sq|sq
-3|sq|0|mult
-4|0|sub|9|1|mult|mult
-4|0|sub|9|1|sub|mult
-4|0|sub|9|1|sub|sub
-9|0|mult|7|1|mult|add
-9|0|mult|7|4|add|mult
-9|0|mult|7|3|mult|mult
-9|0|mult|7|3|mult|sub
-9|0|mult|7|3|mult|add
-9|0|mult|7|3|sub|mult
-9|0|mult|7|3|add|mult
-9|0|mult|7|2|mult|mult
-9|0|mult|7|2|mult|sub
-9|0|mult|7|2|mult|add
-9|0|mult|7|2|sub|mult
-9|0|mult|8|4|sub|mult
-9|0|mult|7|1|mult|mult
-9|0|mult|7|1|mult|sub
-9|0|mult|7|4|sub|mult
-9|0|mult|7|1|sub|mult
-9|0|mult|7|1|add|mult
-9|0|mult|7|cbrt|mult
-9|0|mult|7|cb|mult
-9|0|mult|7|sq|mult
-9|0|mult|7|sq|sub
-9|0|mult|7|sq|add
-9|0|mult|7|0|mult|mult
-9|0|mult|7|0|mult|sub
-9|0|mult|7|0|mult|add
-9|0|mult|7|0|sub|mult
-9|0|mult|7|0|add|mult
-9|0|mult|9|3|sub|mult
-9|0|mult|9|6|add|mult
-9|0|mult|9|2|add|mult
-9|0|mult|9|5|sub|mult
-9|0|mult|9|5|add|mult
-9|0|mult|9|4|mult|mult
-9|0|mult|9|4|mult|sub
-9|0|mult|9|4|mult|add
-9|0|mult|9|4|sub|mult
-9|0|mult|9|4|add|mult
-9|0|mult|9|3|mult|mult
-9|0|mult|9|3|mult|sub
-9|0|mult|9|3|mult|add
-9|0|mult|6|5|mult|mult
-9|0|mult|9|3|add|mult
-9|0|mult|9|2|mult|mult
-9|0|mult|9|2|mult|sub
-9|0|mult|9|2|mult|add
-9|0|mult|9|2|sub|mult
-9|0|mult|9|5|mult|mult
-9|0|mult|9|5|mult|sub
-9|0|mult|9|5|mult|add
-9|0|mult|7|5|add|mult
-9|0|mult|7|4|mult|mult
-9|0|mult|7|4|mult|sub
-9|0|mult|7|4|mult|add
-9|0|mult|9|mult
-9|0|mult|8|0|mult|add
-9|0|mult|8|0|sub|mult
-9|0|mult|8|0|add|mult
-9|0|mult|7|6|mult|mult
-9|0|mult|7|6|mult|sub
-9|0|mult|7|6|mult|add
-9|0|mult|7|6|sub|mult
-9|0|mult|7|6|add|mult
-9|0|mult|7|5|mult|mult
-9|0|mult|7|5|mult|sub
-9|0|mult|7|5|mult|add
-9|0|mult|8|1|add|mult
-9|0|mult|8|0|mult|sub
-9|0|mult|8|mult
-9|0|mult|7|mult
-9|0|mult|6|mult
-9|0|mult|5|mult
-9|0|mult|4|mult
-9|0|mult|3|mult
-9|0|mult|2|mult
-9|0|mult|1|mult
-9|0|mult|cbrt
-9|0|mult|cb
-9|0|mult|sq
-9|0|mult|0|mult
-9|0|mult|8|2|sub|mult
-9|0|mult|6|5|mult|sub
-9|0|mult|6|5|mult|add
-9|0|mult|7|2|add|mult
-9|0|mult|8|4|add|mult
-9|0|mult|8|3|mult|mult
-9|0|mult|8|3|mult|sub
-9|0|mult|8|3|mult|add
-9|0|mult|8|3|sub|mult
-9|0|mult|8|3|add|mult
-9|0|mult|8|2|mult|mult
-9|0|mult|8|2|mult|sub
-9|0|mult|8|2|mult|add
-9|0|mult|9|6|sub|mult
-9|0|mult|8|2|add|mult
-9|0|mult|8|1|mult|mult
-9|0|mult|8|1|mult|sub
-9|0|mult|8|1|mult|add
-9|0|mult|8|1|sub|mult
-9|0|mult|7|5|sub|mult
-9|0|mult|8|cbrt|mult
-9|0|mult|8|cb|mult
-9|0|mult|8|sq|mult
-9|0|mult|8|sq|sub
-9|0|mult|8|sq|add
-9|0|mult|8|0|mult|mult
-9|sq|8|1|mult|add
-9|sq|8|3|mult|mult
-9|sq|8|3|mult|sub
-9|sq|8|3|mult|add
-9|sq|8|3|sub|mult
-9|sq|8|3|add|mult
-9|sq|8|2|mult|mult
-9|sq|8|2|mult|sub
-9|sq|8|2|mult|add
-9|sq|8|2|sub|mult
-9|sq|8|2|add|mult
-9|sq|8|1|mult|mult
-9|sq|8|1|mult|sub
-9|sq|8|4|add|mult
-9|sq|8|1|sub|mult
-9|sq|7|5|sub|mult
-9|sq|8|cbrt|mult
-9|sq|8|cb|mult
-9|sq|8|sq|sub
-9|sq|8|sq|add
-9|sq|8|0|mult|mult
-9|sq|8|0|mult|sub
-9|sq|8|0|mult|add
-9|sq|8|0|sub|mult
-9|sq|8|0|add|mult
-9|sq|7|6|mult|mult
-9|sq|7|cbrt|mult
-9|sq|7|3|sub|mult
-9|sq|7|3|add|mult
-9|sq|7|2|mult|mult
-9|sq|7|2|mult|sub
-9|sq|7|2|mult|add
-9|sq|7|2|sub|mult
-9|sq|8|4|sub|mult
-9|sq|7|1|mult|mult
-9|sq|7|1|mult|sub
-9|sq|7|1|mult|add
-9|sq|7|1|sub|mult
-9|sq|7|1|add|mult
-9|sq|7|6|mult|sub
-9|sq|7|cb|mult
-9|sq|7|sq|sub
-9|sq|7|sq|add
-9|sq|7|0|mult|mult
-9|sq|7|0|mult|sub
-9|sq|7|0|mult|add
-9|sq|7|0|sub|mult
-9|sq|7|0|add|mult
-9|sq|6|5|mult|mult
-9|sq|6|5|mult|sub
-9|sq|6|5|mult|add
-9|sq|7|2|add|mult
-9|0|mult|9|8|mult|mult
-9|0|mult|8|6|add|mult
-9|0|mult|8|5|mult|mult
-9|0|mult|8|5|mult|sub
-9|0|mult|8|5|mult|add
-9|0|mult|8|5|sub|mult
-9|0|mult|8|5|add|mult
-9|0|mult|8|4|mult|mult
-9|0|mult|8|4|mult|sub
-9|0|mult|8|4|mult|add
-9|0|mult|8|7|mult|mult
-9|0|mult|8|7|mult|sub
-9|0|mult|8|7|mult|add
-9|0|mult|8|6|sub|mult
-9|0|mult|9|8|mult|sub
-9|0|mult|9|8|mult|add
-9|0|mult|9|8|sub|mult
-9|0|mult|9|8|add|mult
-9|0|mult|9|7|mult|mult
-9|0|mult|9|7|mult|sub
-9|0|mult|9|7|mult|add
-9|0|mult|9|7|sub|mult
-9|0|mult|9|7|add|mult
-9|0|mult|9|6|mult|mult
-9|0|mult|9|6|mult|sub
-9|0|mult|9|6|mult|add
-9|sq|3|mult
-9|sq|7|6|mult|add
-9|sq|7|6|sub|mult
-9|sq|7|6|add|mult
-9|sq|7|5|mult|mult
-9|sq|7|5|mult|sub
-9|sq|7|5|mult|add
-9|sq|8|1|add|mult
-9|sq|8|mult
-9|sq|7|mult
-9|sq|6|mult
-9|sq|5|mult
-9|sq|4|mult
-9|0|sub|9|0|add|mult
-9|sq|2|mult
-9|sq|1|mult
-9|sq|sq
-9|sq|0|mult
-9|0|mult|9|0|sub|mult
-9|0|mult|9|0|add|mult
-9|0|mult|6|5|sub|mult
-9|0|mult|8|7|sub|mult
-9|0|mult|8|7|add|mult
-9|0|mult|8|6|mult|mult
-9|0|mult|8|6|mult|sub
-9|0|mult|8|6|mult|add
-9|0|sub|8|1|add|mult
-9|0|sub|8|0|mult|mult
-9|0|sub|8|0|sub|mult
-9|0|sub|8|0|sub|add
-9|0|sub|8|0|add|mult
-9|0|sub|8|0|add|sub
-9|0|sub|7|6|mult|mult
-9|0|sub|7|6|sub|mult
-9|0|sub|7|6|sub|sub
-9|0|sub|7|6|sub|add
-9|0|sub|7|6|add|mult
-9|0|sub|7|6|add|sub
-9|0|sub|7|6|add|add
-9|0|sub|7|5|mult|mult
-9|0|sub|8|sq|mult
-9|0|sub|8|1|add|sub
-9|0|sub|8|1|add|add
-9|0|sub|9|mult
-9|0|sub|9|add
-9|0|sub|8|mult
-9|0|sub|8|sub
-9|0|sub|8|add
-9|0|sub|7|mult
-9|0|sub|7|sub
-9|0|sub|7|add
-9|0|sub|6|mult
-9|0|sub|6|sub
-9|0|sub|8|2|sub|add
-9|0|sub|8|4|add|sub
-9|0|sub|8|4|add|add
-9|0|sub|8|3|mult|mult
-9|0|sub|8|3|sub|mult
-9|0|sub|8|3|sub|sub
-9|0|sub|8|3|sub|add
-9|0|sub|8|3|add|mult
-9|0|sub|8|3|add|sub
-9|0|sub|8|3|add|add
-9|0|sub|8|2|mult|mult
-9|0|sub|8|2|sub|mult
-9|0|sub|8|2|sub|sub
-9|0|sub|6|add
-9|0|sub|8|2|add|mult
-9|0|sub|8|2|add|sub
-9|0|sub|8|2|add|add
-9|0|sub|8|1|mult|mult
-9|0|sub|8|1|sub|mult
-9|0|sub|8|1|sub|sub
-9|0|sub|8|1|sub|add
-9|0|sub|7|5|sub|mult
-9|0|sub|7|5|sub|sub
-9|0|sub|7|5|sub|add
-9|0|sub|8|cbrt|mult
-9|0|sub|8|cb|mult
-9|0|add|8|5|sub|sub
-9|0|add|8|7|add|mult
-9|0|add|8|7|add|sub
-9|0|add|8|7|add|add
-9|0|add|8|6|mult|mult
-9|0|add|8|6|sub|mult
-9|0|add|8|6|sub|sub
-9|0|add|8|6|sub|add
-9|0|add|8|6|add|mult
-9|0|add|8|6|add|sub
-9|0|add|8|6|add|add
-9|0|add|8|5|mult|mult
-9|0|add|8|5|sub|mult
-9|0|add|8|7|sub|add
-9|0|add|8|5|sub|add
-9|0|add|8|5|add|mult
-9|0|add|8|5|add|sub
-9|0|add|8|5|add|add
-9|0|add|8|4|mult|mult
-9|0|add|8|7|mult|mult
-9|0|add|9|8|mult|mult
-9|0|add|9|8|sub|mult
-9|0|add|9|8|sub|add
-9|0|add|9|8|add|mult
-9|0|add|9|8|add|add
-9|0|add|9|7|mult|mult
-9|0|sub|1|mult
-9|0|sub|5|mult
-9|0|sub|5|sub
-9|0|sub|5|add
-9|0|sub|4|mult
-9|0|sub|4|sub
-9|0|sub|4|add
-9|0|sub|3|mult
-9|0|sub|3|sub
-9|0|sub|3|add
-9|0|sub|2|mult
-9|0|sub|2|sub
-9|0|sub|2|add
-9|0|sub|8|4|add|mult
-9|0|sub|1|sub
-9|0|sub|1|add
-9|0|sub|cbrt
-9|0|sub|cb
-9|0|sub|sq
-9|0|sub|0|mult
-9|0|sub|0|sub
-9|0|add|6|5|sub|mult
-9|0|add|6|5|sub|sub
-9|0|add|6|5|sub|add
-9|0|add|8|7|sub|mult
-9|0|add|8|7|sub|sub
-9|0|sub|9|6|add|mult
-9|0|sub|9|8|sub|mult
-9|0|sub|9|8|sub|add
-9|0|sub|9|8|add|mult
-9|0|sub|9|8|add|add
-9|0|sub|9|7|mult|mult
-9|0|sub|9|7|sub|mult
-9|0|sub|9|7|sub|add
-9|0|sub|9|7|add|mult
-9|0|sub|9|7|add|add
-9|0|sub|9|6|mult|mult
-9|0|sub|9|6|sub|mult
-9|0|sub|9|6|sub|add
-9|0|sub|9|8|mult|mult
-9|0|sub|9|6|add|add
-9|0|sub|9|2|add|mult
-9|0|sub|9|2|add|add
-9|0|sub|9|5|sub|mult
-9|0|sub|9|5|sub|add
-9|0|sub|9|5|add|mult
-9|0|sub|9|5|add|add
-9|0|sub|9|4|mult|mult
-9|0|sub|9|4|sub|mult
-9|0|sub|9|4|sub|add
-9|0|sub|9|4|add|mult
-9|0|sub|9|4|add|add
-9|0|sub|8|6|sub|add
-9|0|sub|6|5|sub|mult
-9|0|sub|6|5|sub|sub
-9|0|sub|6|5|sub|add
-9|0|sub|8|7|sub|mult
-9|0|sub|8|7|sub|sub
-9|0|sub|8|7|sub|add
-9|0|sub|8|7|add|mult
-9|0|sub|8|7|add|sub
-9|0|sub|8|7|add|add
-9|0|sub|8|6|mult|mult
-9|0|sub|8|6|sub|mult
-9|0|sub|8|6|sub|sub
-9|0|sub|9|3|mult|mult
-9|0|sub|8|6|add|mult
-9|0|sub|8|6|add|sub
-9|0|sub|8|6|add|add
-9|0|sub|8|5|mult|mult
-9|0|sub|8|5|sub|mult
-9|0|sub|8|5|sub|sub
-9|0|sub|8|5|sub|add
-9|0|sub|8|5|add|mult
-9|0|sub|8|5|add|sub
-9|0|sub|8|5|add|add
-9|0|sub|8|4|mult|mult
-9|0|sub|8|7|mult|mult
-9|0|sub|7|1|add|add
-9|0|sub|7|2|sub|mult
-9|0|sub|7|2|sub|sub
-9|0|sub|7|2|sub|add
-9|0|sub|8|4|sub|mult
-9|0|sub|8|4|sub|sub
-9|0|sub|8|4|sub|add
-9|0|sub|7|1|mult|mult
-9|0|sub|7|1|sub|mult
-9|0|sub|7|1|sub|sub
-9|0|sub|7|1|sub|add
-9|0|sub|7|1|add|mult
-9|0|sub|7|1|add|sub
-9|0|sub|7|2|mult|mult
-9|0|sub|7|cbrt|mult
-9|0|sub|7|cb|mult
-9|0|sub|7|sq|mult
-9|0|sub|7|0|mult|mult
-9|0|sub|7|0|sub|mult
-9|0|sub|7|0|sub|add
-9|0|sub|7|0|add|mult
-9|0|sub|7|0|add|sub
-9|0|sub|6|5|mult|mult
-9|0|sub|7|2|add|mult
-9|0|sub|7|2|add|sub
-9|0|sub|7|2|add|add
-9|0|sub|7|4|sub|mult
-9|0|sub|9|3|sub|mult
-9|0|sub|9|3|sub|add
-9|0|sub|9|3|add|mult
-9|0|sub|9|3|add|add
-9|0|sub|9|2|mult|mult
-9|0|sub|9|2|sub|mult
-9|0|sub|9|2|sub|add
-9|0|sub|9|5|mult|mult
-9|0|sub|7|5|add|mult
-9|0|sub|7|5|add|sub
-9|0|sub|7|5|add|add
-9|0|sub|7|4|mult|mult
-9|sq|7|3|mult|add
-9|0|sub|7|4|sub|sub
-9|0|sub|7|4|sub|add
-9|0|sub|7|4|add|mult
-9|0|sub|7|4|add|sub
-9|0|sub|7|4|add|add
-9|0|sub|7|3|mult|mult
-9|0|sub|7|3|sub|mult
-9|0|sub|7|3|sub|sub
-9|0|sub|7|3|sub|add
-9|0|sub|7|3|add|mult
-9|0|sub|7|3|add|sub
-9|0|sub|7|3|add|add
-9|1|add|7|add
-9|1|add|7|6|add|mult
-9|1|add|7|6|add|sub
-9|1|add|7|6|add|add
-9|1|add|7|5|mult|mult
-9|1|add|8|1|add|mult
-9|1|add|8|1|add|add
-9|1|add|9|mult
-9|1|add|9|add
-9|1|add|8|mult
-9|1|add|8|sub
-9|1|add|8|add
-9|1|add|7|mult
-9|1|add|7|sub
-9|1|add|7|6|sub|add
-9|1|add|6|mult
-9|1|add|6|sub
-9|1|add|6|add
-9|1|add|5|mult
-9|1|add|5|sub
-9|1|add|5|add
-9|1|add|4|mult
-9|1|add|4|sub
-9|1|add|4|add
-9|1|add|3|mult
-9|1|add|3|sub
-9|1|add|3|add
-9|1|add|8|cbrt|mult
-9|1|add|8|2|sub|mult
-9|1|add|8|2|sub|sub
-9|1|add|8|2|sub|add
-9|1|add|8|2|add|mult
-9|1|add|8|2|add|sub
-9|1|add|8|2|add|add
-9|1|add|8|1|mult|mult
-9|1|add|8|1|sub|mult
-9|1|add|8|1|sub|sub
-9|1|add|7|5|sub|mult
-9|1|add|7|5|sub|sub
-9|1|add|7|5|sub|add
-9|1|add|2|mult
-9|1|add|8|cb|mult
-9|1|add|8|sq|mult
-9|1|add|8|0|mult|mult
-9|1|add|8|0|sub|mult
-9|1|add|8|0|sub|sub
-9|1|add|8|0|sub|add
-9|1|add|8|0|add|mult
-9|1|add|8|0|add|sub
-9|1|add|8|0|add|add
-9|1|add|7|6|mult|mult
-9|1|add|7|6|sub|mult
-9|1|add|7|6|sub|sub
-9|cbrt|9|4|add|mult
-9|cbrt|9|8|add|mult
-9|cbrt|9|7|mult|mult
-9|cbrt|9|7|sub|mult
-9|cbrt|9|7|add|mult
-9|cbrt|9|6|mult|mult
-9|cbrt|9|6|sub|mult
-9|cbrt|9|6|add|mult
-9|cbrt|9|2|add|mult
-9|cbrt|9|5|sub|mult
-9|cbrt|9|5|add|mult
-9|cbrt|9|4|mult|mult
-9|cbrt|9|4|sub|mult
-9|cbrt|9|8|sub|mult
-9|cbrt|9|3|mult|mult
-9|cbrt|9|3|sub|mult
-9|cbrt|9|3|add|mult
-9|cbrt|9|2|mult|mult
-9|cbrt|9|2|sub|mult
-9|cbrt|9|5|mult|mult
-9|cbrt|7|5|add|mult
-9|cbrt|7|4|mult|mult
-9|cbrt|7|4|sub|mult
-9|cbrt|7|4|add|mult
-9|cbrt|7|3|mult|mult
-9|cbrt|7|3|sub|mult
-9|cbrt|9|0|add|mult
-9|1|add|2|sub
-9|1|add|2|add
-9|1|add|1|mult
-9|1|add|1|add
-9|1|add|cbrt
-9|1|add|cb
-9|1|add|sq
-9|1|add|0|mult
-9|1|add|0|sub
-9|1|add|0|add
-9|cbrt|9|0|mult|mult
-9|cbrt|9|0|sub|mult
-9|1|add|8|2|mult|mult
-9|cbrt|6|5|sub|mult
-9|cbrt|8|7|sub|mult
-9|cbrt|8|7|add|mult
-9|cbrt|8|6|mult|mult
-9|cbrt|8|6|sub|mult
-9|cbrt|8|6|add|mult
-9|cbrt|8|5|mult|mult
-9|cbrt|8|5|sub|mult
-9|cbrt|8|5|add|mult
-9|cbrt|8|4|mult|mult
-9|cbrt|8|7|mult|mult
-9|cbrt|9|8|mult|mult
-9|1|add|9|4|sub|add
-9|1|add|9|6|sub|mult
-9|1|add|9|6|sub|add
-9|1|add|9|6|add|mult
-9|1|add|9|6|add|add
-9|1|add|9|2|add|mult
-9|1|add|9|2|add|add
-9|1|add|9|5|sub|mult
-9|1|add|9|5|sub|add
-9|1|add|9|5|add|mult
-9|1|add|9|5|add|add
-9|1|add|9|4|mult|mult
-9|1|add|9|4|sub|mult
-9|1|add|9|6|mult|mult
-9|1|add|9|4|add|mult
-9|1|add|9|4|add|add
-9|1|add|9|3|mult|mult
-9|1|add|9|3|sub|mult
-9|1|add|9|3|sub|add
-9|1|add|9|3|add|mult
-9|1|add|9|3|add|add
-9|1|add|9|2|mult|mult
-9|1|add|9|2|sub|mult
-9|1|add|9|2|sub|add
-9|1|add|9|5|mult|mult
-9|1|add|7|5|add|mult
-9|1|add|8|5|add|add
-9|1|add|8|6|sub|mult
-9|1|add|8|6|sub|sub
-9|1|add|8|6|sub|add
-9|1|add|8|6|add|mult
-9|1|add|8|6|add|sub
-9|1|add|8|6|add|add
-9|1|add|8|5|mult|mult
-9|1|add|8|5|sub|mult
-9|1|add|8|5|sub|sub
-9|1|add|8|5|sub|add
-9|1|add|8|5|add|mult
-9|1|add|8|5|add|sub
-9|1|add|7|5|add|sub
-9|1|add|8|4|mult|mult
-9|1|add|8|7|mult|mult
-9|1|add|9|8|mult|mult
-9|1|add|9|8|sub|mult
-9|1|add|9|8|sub|add
-9|1|add|9|8|add|mult
-9|1|add|9|8|add|add
-9|1|add|9|7|mult|mult
-9|1|add|9|7|sub|mult
-9|1|add|9|7|sub|add
-9|1|add|9|7|add|mult
-9|1|add|9|7|add|add
-9|1|add|7|2|add|mult
-9|1|add|7|1|add|add
-9|1|add|7|cbrt|mult
-9|1|add|7|cb|mult
-9|1|add|7|sq|mult
-9|1|add|7|0|mult|mult
-9|1|add|7|0|sub|mult
-9|1|add|7|0|sub|sub
-9|1|add|7|0|sub|add
-9|1|add|7|0|add|mult
-9|1|add|7|0|add|sub
-9|1|add|7|0|add|add
-9|1|add|6|5|mult|mult
-9|1|add|7|1|add|mult
-9|1|add|7|2|add|sub
-9|1|add|7|2|add|add
-9|1|add|8|4|add|mult
-9|1|add|8|4|add|sub
-9|1|add|8|4|add|add
-9|1|add|8|3|mult|mult
-9|1|add|8|3|sub|mult
-9|1|add|8|3|sub|sub
-9|1|add|8|3|sub|add
-9|1|add|8|3|add|mult
-9|1|add|8|3|add|sub
-9|1|add|8|3|add|add
-9|1|add|7|3|add|mult
-9|1|add|7|5|add|add
-9|1|add|7|4|mult|mult
-9|1|add|7|4|sub|mult
-9|1|add|7|4|sub|sub
-9|1|add|7|4|sub|add
-9|1|add|7|4|add|mult
-9|1|add|7|4|add|sub
-9|1|add|7|4|add|add
-9|1|add|7|3|mult|mult
-9|1|add|7|3|sub|mult
-9|1|add|7|3|sub|sub
-9|1|add|7|3|sub|add
-9|cbrt|7|3|add|mult
-9|1|add|7|3|add|sub
-9|1|add|7|3|add|add
-9|1|add|7|2|mult|mult
-9|1|add|7|2|sub|mult
-9|1|add|7|2|sub|sub
-9|1|add|7|2|sub|add
-9|1|add|8|4|sub|mult
-9|1|add|8|4|sub|sub
-9|1|add|8|4|sub|add
-9|1|add|7|1|mult|mult
-9|1|add|7|1|sub|mult
-9|1|add|7|1|sub|sub
-9|sq|9|0|mult|add
-9|cb|7|mult
-9|cb|6|mult
-9|cb|5|mult
-9|cb|4|mult
-9|cb|3|mult
-9|cb|2|mult
-9|cb|1|mult
-9|cb|cb
-9|cb|sq
-9|cb|0|mult
-9|sq|9|0|mult|mult
-9|sq|9|0|mult|sub
-9|cb|8|mult
-9|sq|9|0|sub|mult
-9|sq|9|0|add|mult
-9|sq|6|5|sub|mult
-9|sq|8|7|sub|mult
-9|sq|8|7|add|mult
-9|sq|8|6|mult|mult
-9|sq|8|6|mult|sub
-9|sq|8|6|mult|add
-9|sq|8|6|sub|mult
-9|sq|8|6|add|mult
-9|sq|8|5|mult|mult
-9|sq|8|5|mult|sub
-9|cb|7|5|sub|mult
-9|cb|7|0|add|mult
-9|cb|6|5|mult|mult
-9|cb|7|2|add|mult
-9|cb|8|4|add|mult
-9|cb|8|3|mult|mult
-9|cb|8|3|sub|mult
-9|cb|8|3|add|mult
-9|cb|8|2|mult|mult
-9|cb|8|2|sub|mult
-9|cb|8|2|add|mult
-9|cb|8|1|mult|mult
-9|cb|8|1|sub|mult
-9|sq|8|5|mult|add
-9|cb|8|cbrt|mult
-9|cb|8|cb|sub
-9|cb|8|cb|add
-9|cb|8|sq|mult
-9|cb|8|0|mult|mult
-9|cb|8|0|sub|mult
-9|cb|8|0|add|mult
-9|cb|7|6|mult|mult
-9|cb|7|6|sub|mult
-9|cb|7|6|add|mult
-9|cb|7|5|mult|mult
-9|cb|8|1|add|mult
-9|sq|9|2|mult|add
-9|sq|9|4|mult|mult
-9|sq|9|4|mult|sub
-9|sq|9|4|mult|add
-9|sq|9|4|sub|mult
-9|sq|9|4|add|mult
-9|sq|9|3|mult|mult
-9|sq|9|3|mult|sub
-9|sq|9|3|mult|add
-9|sq|9|3|sub|mult
-9|sq|9|3|add|mult
-9|sq|9|2|mult|mult
-9|sq|9|2|mult|sub
-9|sq|9|5|add|mult
-9|sq|9|2|sub|mult
-9|sq|9|5|mult|mult
-9|sq|9|5|mult|sub
-9|sq|9|5|mult|add
-9|sq|7|5|add|mult
-9|sq|7|4|mult|mult
-9|sq|7|4|mult|sub
-9|sq|7|4|mult|add
-9|sq|7|4|sub|mult
-9|sq|7|4|add|mult
-9|sq|7|3|mult|mult
-9|sq|7|3|mult|sub
-9|sq|9|8|add|mult
-9|sq|8|5|sub|mult
-9|sq|8|5|add|mult
-9|sq|8|4|mult|mult
-9|sq|8|4|mult|sub
-9|sq|8|4|mult|add
-9|sq|8|7|mult|mult
-9|sq|8|7|mult|sub
-9|sq|8|7|mult|add
-9|sq|9|8|mult|mult
-9|sq|9|8|mult|sub
-9|sq|9|8|mult|add
-9|sq|9|8|sub|mult
-9|cb|7|0|sub|mult
-9|sq|9|7|mult|mult
-9|sq|9|7|mult|sub
-9|sq|9|7|mult|add
-9|sq|9|7|sub|mult
-9|sq|9|7|add|mult
-9|sq|9|6|mult|mult
-9|sq|9|6|mult|sub
-9|sq|9|6|mult|add
-9|sq|9|6|sub|mult
-9|sq|9|6|add|mult
-9|sq|9|2|add|mult
-9|sq|9|5|sub|mult
-9|cbrt|8|1|add|mult
-9|cbrt|8|cbrt|mult
-9|cbrt|8|cbrt|sub
-9|cbrt|8|cbrt|add
-9|cbrt|8|cb|mult
-9|cbrt|8|sq|mult
-9|cbrt|8|0|mult|mult
-9|cbrt|8|0|sub|mult
-9|cbrt|8|0|add|mult
-9|cbrt|7|6|mult|mult
-9|cbrt|7|6|sub|mult
-9|cbrt|7|6|add|mult
-9|cbrt|7|5|mult|mult
-9|cbrt|7|5|sub|mult
-9|cbrt|8|mult
-9|cbrt|7|mult
-9|cbrt|6|mult
-9|cbrt|5|mult
-9|cbrt|4|mult
-9|cbrt|3|mult
-9|cbrt|2|mult
-9|cbrt|1|mult
-9|cbrt|cbrt
-9|cbrt|sq
-9|cbrt|0|mult
-9|cb|9|0|mult|mult
-9|cbrt|7|0|sub|mult
-9|cbrt|7|2|mult|mult
-9|cbrt|7|2|sub|mult
-9|cbrt|8|4|sub|mult
-9|cbrt|7|1|mult|mult
-9|cbrt|7|1|sub|mult
-9|cbrt|7|1|add|mult
-9|cbrt|7|cbrt|mult
-9|cbrt|7|cbrt|sub
-9|cbrt|7|cbrt|add
-9|cbrt|7|cb|mult
-9|cbrt|7|sq|mult
-9|cbrt|7|0|mult|mult
-9|cb|9|0|sub|mult
-9|cbrt|7|0|add|mult
-9|cbrt|6|5|mult|mult
-9|cbrt|7|2|add|mult
-9|cbrt|8|4|add|mult
-9|cbrt|8|3|mult|mult
-9|cbrt|8|3|sub|mult
-9|cbrt|8|3|add|mult
-9|cbrt|8|2|mult|mult
-9|cbrt|8|2|sub|mult
-9|cbrt|8|2|add|mult
-9|cbrt|8|1|mult|mult
-9|cbrt|8|1|sub|mult
-9|cb|7|3|sub|mult
-9|cb|9|4|add|mult
-9|cb|9|3|mult|mult
-9|cb|9|3|sub|mult
-9|cb|9|3|add|mult
-9|cb|9|2|mult|mult
-9|cb|9|2|sub|mult
-9|cb|9|5|mult|mult
-9|cb|7|5|add|mult
-9|cb|7|4|mult|mult
-9|cb|7|4|sub|mult
-9|cb|7|4|add|mult
-9|cb|7|3|mult|mult
-9|cb|9|4|sub|mult
-9|cb|7|3|add|mult
-9|cb|7|2|mult|mult
-9|cb|7|2|sub|mult
-9|cb|8|4|sub|mult
-9|cb|7|1|mult|mult
-9|cb|7|1|sub|mult
-9|cb|7|1|add|mult
-9|cb|7|cbrt|mult
-9|cb|7|cb|sub
-9|cb|7|cb|add
-9|cb|7|sq|mult
-9|cb|7|0|mult|mult
-9|cb|9|8|mult|mult
-9|cb|9|0|add|mult
-9|cb|6|5|sub|mult
-9|cb|8|7|sub|mult
-9|cb|8|7|add|mult
-9|cb|8|6|mult|mult
-9|cb|8|6|sub|mult
-9|cb|8|6|add|mult
-9|cb|8|5|mult|mult
-9|cb|8|5|sub|mult
-9|cb|8|5|add|mult
-9|cb|8|4|mult|mult
-9|cb|8|7|mult|mult
-3|cbrt|7|0|mult|mult
-9|cb|9|8|sub|mult
-9|cb|9|8|add|mult
-9|cb|9|7|mult|mult
-9|cb|9|7|sub|mult
-9|cb|9|7|add|mult
-9|cb|9|6|mult|mult
-9|cb|9|6|sub|mult
-9|cb|9|6|add|mult
-9|cb|9|2|add|mult
-9|cb|9|5|sub|mult
-9|cb|9|5|add|mult
-9|cb|9|4|mult|mult
-3|2|mult|6|5|mult|sub
-3|2|mult|7|1|sub|mult
-3|2|mult|7|1|add|mult
-3|2|mult|7|cbrt|mult
-3|2|mult|7|cb|mult
-3|2|mult|7|sq|mult
-3|2|mult|7|sq|sub
-3|2|mult|7|sq|add
-3|2|mult|7|0|mult|mult
-3|2|mult|7|0|mult|sub
-3|2|mult|7|0|mult|add
-3|2|mult|7|0|sub|mult
-3|2|mult|7|0|add|mult
-3|2|mult|6|5|mult|mult
-3|2|mult|7|1|mult|add
-3|2|mult|6|5|mult|add
-3|2|mult|7|2|add|mult
-3|2|mult|8|4|add|mult
-3|2|mult|8|3|mult|mult
-3|2|mult|8|3|mult|sub
-3|2|mult|8|3|mult|add
-3|2|mult|8|3|sub|mult
-3|2|mult|8|3|add|mult
-3|2|mult|8|2|mult|mult
-3|2|mult|8|2|mult|sub
-3|2|mult|8|2|mult|add
-3|2|mult|8|2|sub|mult
-3|2|mult|7|4|add|mult
-3|2|mult|9|2|mult|mult
-3|2|mult|9|2|mult|sub
-3|2|mult|9|2|mult|add
-3|2|mult|9|2|sub|mult
-3|2|mult|9|5|mult|mult
-3|2|mult|9|5|mult|sub
-3|2|mult|9|5|mult|add
-3|2|mult|7|5|add|mult
-3|2|mult|7|4|mult|mult
-3|2|mult|7|4|mult|sub
-3|2|mult|7|4|mult|add
-3|2|mult|7|4|sub|mult
-3|2|mult|8|2|add|mult
-3|2|mult|7|3|mult|mult
-3|2|mult|7|3|mult|sub
-3|2|mult|7|3|mult|add
-3|2|mult|7|3|sub|mult
-3|2|mult|7|3|add|mult
-3|2|mult|7|2|mult|mult
-3|2|mult|7|2|mult|sub
-3|2|mult|7|2|mult|add
-3|2|mult|7|2|sub|mult
-3|2|mult|8|4|sub|mult
-3|2|mult|7|1|mult|mult
-3|2|mult|7|1|mult|sub
-3|2|sub|3|1|mult|mult
-3|2|mult|7|mult
-3|2|mult|6|mult
-3|2|mult|5|mult
-3|2|mult|4|mult
-3|2|mult|3|mult
-3|2|mult|2|mult
-3|2|mult|1|mult
-3|2|mult|cbrt
-3|2|mult|cb
-3|2|mult|sq
-3|2|mult|0|mult
-3|2|sub|3|2|add|mult
-3|2|mult|8|mult
-3|2|sub|3|1|sub|mult
-3|2|sub|3|1|sub|add
-3|2|sub|3|1|add|mult
-3|2|sub|3|1|add|add
-3|2|sub|3|cbrt|mult
-3|2|sub|3|cb|mult
-3|2|sub|3|sq|mult
-3|2|sub|4|0|sub|mult
-3|2|sub|4|0|sub|sub
-3|2|sub|4|0|sub|add
-3|2|sub|9|1|mult|mult
-3|2|sub|9|1|sub|mult
-3|2|mult|8|0|mult|add
-3|2|mult|8|1|mult|mult
-3|2|mult|8|1|mult|sub
-3|2|mult|8|1|mult|add
-3|2|mult|8|1|sub|mult
-3|2|mult|7|5|sub|mult
-3|2|mult|8|cbrt|mult
-3|2|mult|8|cb|mult
-3|2|mult|8|sq|mult
-3|2|mult|8|sq|sub
-3|2|mult|8|sq|add
-3|2|mult|8|0|mult|mult
-3|2|mult|8|0|mult|sub
-3|2|mult|9|3|add|mult
-3|2|mult|8|0|sub|mult
-3|2|mult|8|0|add|mult
-3|2|mult|7|6|mult|mult
-3|2|mult|7|6|mult|sub
-3|2|mult|7|6|mult|add
-3|2|mult|7|6|sub|mult
-3|2|mult|7|6|add|mult
-3|2|mult|7|5|mult|mult
-3|2|mult|7|5|mult|sub
-3|2|mult|7|5|mult|add
-3|2|mult|8|1|add|mult
-3|2|mult|9|mult
-3|2|mult|3|sq|mult
-4|0|add|sq
-4|0|add|0|mult
-4|0|add|0|add
-3|2|mult|3|2|sub|mult
-3|2|mult|3|2|add|mult
-3|2|mult|3|1|mult|mult
-3|2|mult|3|1|mult|sub
-3|2|mult|3|1|mult|add
-3|2|mult|3|1|sub|mult
-3|2|mult|3|1|add|mult
-3|2|mult|3|cbrt|mult
-3|2|mult|3|cb|mult
-4|0|add|cb
-3|2|mult|3|sq|sub
-3|2|mult|3|sq|add
-3|2|mult|4|0|sub|mult
-3|2|mult|9|1|mult|mult
-3|2|mult|9|1|mult|sub
-3|2|mult|9|1|mult|add
-3|2|mult|9|1|sub|mult
-3|2|mult|9|1|add|mult
-3|2|mult|9|cbrt|mult
-3|2|mult|9|cb|mult
-3|2|mult|9|sq|mult
-3|2|mult|9|sq|sub
-4|0|add|5|add
-4|0|add|9|add
-4|0|add|8|mult
-4|0|add|8|sub
-4|0|add|8|add
-4|0|add|7|mult
-4|0|add|7|sub
-4|0|add|7|add
-4|0|add|6|mult
-4|0|add|6|sub
-4|0|add|6|add
-4|0|add|5|mult
-4|0|add|5|sub
-3|2|mult|9|sq|add
-4|0|add|4|mult
-4|0|add|4|add
-4|0|add|3|mult
-4|0|add|3|sub
-4|0|add|3|add
-4|0|add|2|mult
-4|0|add|2|sub
-4|0|add|2|add
-4|0|add|1|mult
-4|0|add|1|sub
-4|0|add|1|add
-4|0|add|cbrt
-3|2|mult|9|6|add|mult
-3|2|mult|9|8|mult|add
-3|2|mult|9|8|sub|mult
-3|2|mult|9|8|add|mult
-3|2|mult|9|7|mult|mult
-3|2|mult|9|7|mult|sub
-3|2|mult|9|7|mult|add
-3|2|mult|9|7|sub|mult
-3|2|mult|9|7|add|mult
-3|2|mult|9|6|mult|mult
-3|2|mult|9|6|mult|sub
-3|2|mult|9|6|mult|add
-3|2|mult|9|6|sub|mult
-3|2|mult|9|8|mult|sub
-3|2|mult|9|2|add|mult
-3|2|mult|9|5|sub|mult
-3|2|mult|9|5|add|mult
-3|2|mult|9|4|mult|mult
-3|2|mult|9|4|mult|sub
-3|2|mult|9|4|mult|add
-3|2|mult|9|4|sub|mult
-3|2|mult|9|4|add|mult
-3|2|mult|9|3|mult|mult
-3|2|mult|9|3|mult|sub
-3|2|mult|9|3|mult|add
-3|2|mult|9|3|sub|mult
-3|2|mult|8|6|add|mult
-3|2|mult|9|0|mult|mult
-3|2|mult|9|0|mult|sub
-3|2|mult|9|0|mult|add
-3|2|mult|9|0|sub|mult
-3|2|mult|9|0|add|mult
-3|2|mult|6|5|sub|mult
-3|2|mult|8|7|sub|mult
-3|2|mult|8|7|add|mult
-3|2|mult|8|6|mult|mult
-3|2|mult|8|6|mult|sub
-3|2|mult|8|6|mult|add
-3|2|mult|8|6|sub|mult
-3|2|sub|9|1|sub|sub
-3|2|mult|8|5|mult|mult
-3|2|mult|8|5|mult|sub
-3|2|mult|8|5|mult|add
-3|2|mult|8|5|sub|mult
-3|2|mult|8|5|add|mult
-3|2|mult|8|4|mult|mult
-3|2|mult|8|4|mult|sub
-3|2|mult|8|4|mult|add
-3|2|mult|8|7|mult|mult
-3|2|mult|8|7|mult|sub
-3|2|mult|8|7|mult|add
-3|2|mult|9|8|mult|mult
-3|2|sub|7|5|sub|sub
-3|2|sub|8|3|sub|sub
-3|2|sub|8|3|add|mult
-3|2|sub|8|3|add|add
-3|2|sub|8|2|mult|mult
-3|2|sub|8|2|sub|mult
-3|2|sub|8|2|sub|add
-3|2|sub|8|2|add|mult
-3|2|sub|8|2|add|sub
-3|2|sub|8|1|mult|mult
-3|2|sub|8|1|sub|mult
-3|2|sub|8|1|sub|sub
-3|2|sub|8|1|sub|add
-3|2|sub|7|5|sub|mult
-3|2|sub|8|3|sub|mult
-3|2|sub|7|5|sub|add
-3|2|sub|8|cbrt|mult
-3|2|sub|8|cb|mult
-3|2|sub|8|sq|mult
-3|2|sub|8|0|mult|mult
-3|2|sub|8|0|sub|mult
-3|2|sub|8|0|sub|sub
-3|2|sub|8|0|sub|add
-3|2|sub|8|0|add|mult
-3|2|sub|8|0|add|sub
-3|2|sub|8|0|add|add
-3|2|sub|7|6|mult|mult
-3|2|sub|7|0|sub|mult
-3|2|sub|8|4|sub|add
-3|2|sub|7|1|mult|mult
-3|2|sub|7|1|sub|mult
-3|2|sub|7|1|sub|sub
-3|2|sub|7|1|sub|add
-3|2|sub|7|1|add|mult
-3|2|sub|7|1|add|sub
-3|2|sub|7|1|add|add
-3|2|sub|7|cbrt|mult
-3|2|sub|7|cb|mult
-3|2|sub|7|sq|mult
-3|2|sub|7|0|mult|mult
-3|2|sub|7|6|sub|mult
-3|2|sub|7|0|sub|sub
-3|2|sub|7|0|sub|add
-3|2|sub|7|0|add|mult
-3|2|sub|7|0|add|sub
-3|2|sub|7|0|add|add
-3|2|sub|6|5|mult|mult
-3|2|sub|7|2|add|mult
-3|2|sub|7|2|add|sub
-3|2|sub|8|4|add|mult
-3|2|sub|8|4|add|sub
-3|2|sub|8|4|add|add
-3|2|sub|8|3|mult|mult
-3|2|sub|0|sub
-3|2|sub|4|add
-3|2|sub|3|mult
-3|2|sub|3|add
-3|2|sub|2|mult
-3|2|sub|2|sub
-3|2|sub|1|mult
-3|2|sub|1|sub
-3|2|sub|1|add
-3|2|sub|cbrt
-3|2|sub|cb
-3|2|sub|sq
-3|2|sub|0|mult
-3|2|sub|4|sub
-3|2|sub|0|add
-3|2|add|3|1|mult|mult
-3|2|add|3|1|sub|mult
-3|2|add|3|1|sub|add
-3|2|add|3|1|add|mult
-3|2|add|3|1|add|add
-3|2|add|3|cbrt|mult
-3|2|add|3|cb|mult
-3|2|add|3|sq|mult
-3|2|add|4|0|sub|mult
-3|2|add|4|0|sub|sub
-3|2|add|4|0|sub|add
-3|2|sub|8|mult
-3|2|sub|7|6|sub|sub
-3|2|sub|7|6|sub|add
-3|2|sub|7|6|add|mult
-3|2|sub|7|6|add|sub
-3|2|sub|7|6|add|add
-3|2|sub|7|5|mult|mult
-3|2|sub|8|1|add|mult
-3|2|sub|8|1|add|sub
-3|2|sub|8|1|add|add
-3|2|sub|9|mult
-3|2|sub|9|sub
-3|2|sub|9|add
-3|2|sub|8|4|sub|sub
-3|2|sub|8|sub
-3|2|sub|8|add
-3|2|sub|7|mult
-3|2|sub|7|sub
-3|2|sub|7|add
-3|2|sub|6|mult
-3|2|sub|6|sub
-3|2|sub|6|add
-3|2|sub|5|mult
-3|2|sub|5|sub
-3|2|sub|5|add
-3|2|sub|4|mult
-3|2|sub|8|7|mult|mult
-3|2|sub|8|6|sub|add
-3|2|sub|8|6|add|mult
-3|2|sub|8|6|add|sub
-3|2|sub|8|6|add|add
-3|2|sub|8|5|mult|mult
-3|2|sub|8|5|sub|mult
-3|2|sub|8|5|sub|sub
-3|2|sub|8|5|sub|add
-3|2|sub|8|5|add|mult
-3|2|sub|8|5|add|sub
-3|2|sub|8|5|add|add
-3|2|sub|8|4|mult|mult
-3|2|sub|8|6|sub|sub
-3|2|sub|9|8|mult|mult
-3|2|sub|9|8|sub|mult
-3|2|sub|9|8|sub|sub
-3|2|sub|9|8|sub|add
-3|2|sub|9|8|add|mult
-3|2|sub|9|8|add|sub
-3|2|sub|9|8|add|add
-3|2|sub|9|7|mult|mult
-3|2|sub|9|7|sub|mult
-3|2|sub|9|7|sub|sub
-3|2|sub|9|7|sub|add
-3|2|sub|9|7|add|mult
-3|2|sub|9|0|add|sub
-3|2|sub|9|1|sub|add
-3|2|sub|9|1|add|mult
-3|2|sub|9|1|add|sub
-3|2|sub|9|1|add|add
-3|2|sub|9|cbrt|mult
-3|2|sub|9|cb|mult
-3|2|sub|9|sq|mult
-3|2|sub|9|0|mult|mult
-3|2|sub|9|0|sub|mult
-3|2|sub|9|0|sub|sub
-3|2|sub|9|0|sub|add
-3|2|sub|9|0|add|mult
-3|2|sub|9|7|add|sub
-3|2|sub|9|0|add|add
-3|2|sub|6|5|sub|mult
-3|2|sub|6|5|sub|sub
-3|2|sub|6|5|sub|add
-3|2|sub|8|7|sub|mult
-3|2|sub|8|7|sub|sub
-3|2|sub|8|7|sub|add
-3|2|sub|8|7|add|mult
-3|2|sub|8|7|add|sub
-3|2|sub|8|7|add|add
-3|2|sub|8|6|mult|mult
-3|2|sub|8|6|sub|mult
-3|2|sub|7|4|sub|add
-3|2|sub|9|3|add|mult
-3|2|sub|9|3|add|add
-3|2|sub|9|2|mult|mult
-3|2|sub|9|2|sub|mult
-3|2|sub|9|2|sub|add
-3|2|sub|9|5|mult|mult
-3|2|sub|7|5|add|mult
-3|2|sub|7|5|add|sub
-3|2|sub|7|5|add|add
-3|2|sub|7|4|mult|mult
-3|2|sub|7|4|sub|mult
-3|2|sub|7|4|sub|sub
-3|2|sub|9|3|sub|sub
-3|2|sub|7|4|add|mult
-3|2|sub|7|4|add|sub
-3|2|sub|7|4|add|add
-3|2|sub|7|3|mult|mult
-3|2|sub|7|3|sub|mult
-3|2|sub|7|3|sub|sub
-3|2|sub|7|3|add|mult
-3|2|sub|7|3|add|add
-3|2|sub|7|2|mult|mult
-3|2|sub|7|2|sub|mult
-3|2|sub|7|2|sub|add
-3|2|sub|8|4|sub|mult
-3|2|sub|9|5|sub|add
-3|2|sub|9|7|add|add
-3|2|sub|9|6|mult|mult
-3|2|sub|9|6|sub|mult
-3|2|sub|9|6|sub|sub
-3|2|sub|9|6|sub|add
-3|2|sub|9|6|add|mult
-3|2|sub|9|6|add|sub
-3|2|sub|9|6|add|add
-3|2|sub|9|2|add|mult
-3|2|sub|9|2|add|sub
-3|2|sub|9|5|sub|mult
-3|2|sub|9|5|sub|sub
-4|0|add|9|sub
-3|2|sub|9|5|add|mult
-3|2|sub|9|5|add|sub
-3|2|sub|9|5|add|add
-3|2|sub|9|4|mult|mult
-3|2|sub|9|4|sub|mult
-3|2|sub|9|4|sub|sub
-3|2|sub|9|4|sub|add
-3|2|sub|9|4|add|mult
-3|2|sub|9|4|add|sub
-3|2|sub|9|4|add|add
-3|2|sub|9|3|mult|mult
-3|2|sub|9|3|sub|mult
-3|0|mult|9|5|mult|sub
-3|0|mult|9|4|mult|add
-3|0|mult|9|4|sub|mult
-3|0|mult|9|4|add|mult
-3|0|mult|9|3|mult|mult
-3|0|mult|9|3|mult|sub
-3|0|mult|9|3|mult|add
-3|0|mult|9|3|sub|mult
-3|0|mult|9|3|add|mult
-3|0|mult|9|2|mult|mult
-3|0|mult|9|2|mult|sub
-3|0|mult|9|2|mult|add
-3|0|mult|9|2|sub|mult
-3|0|mult|9|5|mult|mult
-3|0|mult|9|4|mult|sub
-3|0|mult|9|5|mult|add
-3|0|mult|7|5|add|mult
-3|0|mult|7|4|mult|mult
-3|0|mult|7|4|mult|sub
-3|0|mult|7|4|mult|add
-3|0|mult|7|4|sub|mult
-3|0|mult|7|4|add|mult
-3|0|mult|7|3|mult|mult
-3|0|mult|7|3|mult|sub
-3|0|mult|7|3|mult|add
-3|0|mult|7|3|sub|mult
-3|0|mult|7|3|add|mult
-3|0|mult|9|7|mult|sub
-3|0|mult|8|4|mult|mult
-3|0|mult|8|4|mult|sub
-3|0|mult|8|4|mult|add
-3|0|mult|8|7|mult|mult
-3|0|mult|8|7|mult|sub
-3|0|mult|8|7|mult|add
-3|0|mult|9|8|mult|mult
-3|0|mult|9|8|mult|sub
-3|0|mult|9|8|mult|add
-3|0|mult|9|8|sub|mult
-3|0|mult|9|8|add|mult
-3|0|mult|9|7|mult|mult
-3|0|mult|7|2|mult|mult
-3|0|mult|9|7|mult|add
-3|0|mult|9|7|sub|mult
-3|0|mult|9|7|add|mult
-3|0|mult|9|6|mult|mult
-3|0|mult|9|6|mult|sub
-3|0|mult|9|6|mult|add
-3|0|mult|9|6|sub|mult
-3|0|mult|9|6|add|mult
-3|0|mult|9|2|add|mult
-3|0|mult|9|5|sub|mult
-3|0|mult|9|5|add|mult
-3|0|mult|9|4|mult|mult
-3|0|mult|7|5|sub|mult
-3|0|mult|8|3|mult|add
-3|0|mult|8|3|sub|mult
-3|0|mult|8|3|add|mult
-3|0|mult|8|2|mult|mult
-3|0|mult|8|2|mult|sub
-3|0|mult|8|2|mult|add
-3|0|mult|8|2|sub|mult
-3|0|mult|8|2|add|mult
-3|0|mult|8|1|mult|mult
-3|0|mult|8|1|mult|sub
-3|0|mult|8|1|mult|add
-3|0|mult|8|1|sub|mult
-3|0|mult|8|3|mult|sub
-3|0|mult|8|cbrt|mult
-3|0|mult|8|cb|mult
-3|0|mult|8|sq|mult
-3|0|mult|8|sq|sub
-3|0|mult|8|sq|add
-3|0|mult|8|0|mult|mult
-3|0|mult|8|0|mult|sub
-3|0|mult|8|0|mult|add
-3|0|mult|8|0|sub|mult
-3|0|mult|8|0|add|mult
-3|0|mult|7|6|mult|mult
-3|0|mult|7|6|mult|sub
-3|0|mult|7|sq|sub
-3|0|mult|7|2|mult|sub
-3|0|mult|7|2|mult|add
-3|0|mult|7|2|sub|mult
-3|0|mult|8|4|sub|mult
-3|0|mult|7|1|mult|mult
-3|0|mult|7|1|mult|sub
-3|0|mult|7|1|mult|add
-3|0|mult|7|1|sub|mult
-3|0|mult|7|1|add|mult
-3|0|mult|7|cbrt|mult
-3|0|mult|7|cb|mult
-3|0|mult|7|sq|mult
-3|0|mult|8|5|add|mult
-3|0|mult|7|sq|add
-3|0|mult|7|0|mult|mult
-3|0|mult|7|0|mult|sub
-3|0|mult|7|0|mult|add
-3|0|mult|7|0|sub|mult
-3|0|mult|7|0|add|mult
-3|0|mult|6|5|mult|mult
-3|0|mult|6|5|mult|sub
-3|0|mult|6|5|mult|add
-3|0|mult|7|2|add|mult
-3|0|mult|8|4|add|mult
-3|0|mult|8|3|mult|mult
-4|0|mult|7|6|mult|sub
-4|0|mult|7|5|sub|mult
-4|0|mult|8|cbrt|mult
-4|0|mult|8|cb|mult
-4|0|mult|8|sq|mult
-4|0|mult|8|sq|sub
-4|0|mult|8|sq|add
-4|0|mult|8|0|mult|mult
-4|0|mult|8|0|mult|sub
-4|0|mult|8|0|mult|add
-4|0|mult|8|0|sub|mult
-4|0|mult|8|0|add|mult
-4|0|mult|7|6|mult|mult
-4|0|mult|8|1|sub|mult
-4|0|mult|7|6|mult|add
-4|0|mult|7|6|sub|mult
-4|0|mult|7|6|add|mult
-4|0|mult|7|5|mult|mult
-4|0|mult|7|5|mult|sub
-4|0|mult|7|5|mult|add
-4|0|mult|8|1|add|mult
-4|0|mult|9|mult
-4|0|mult|8|mult
-4|0|mult|7|mult
-4|0|mult|6|mult
-4|0|mult|5|mult
-4|0|mult|8|3|mult|mult
-4|0|mult|7|sq|sub
-4|0|mult|7|sq|add
-4|0|mult|7|0|mult|mult
-4|0|mult|7|0|mult|sub
-4|0|mult|7|0|mult|add
-4|0|mult|7|0|sub|mult
-4|0|mult|7|0|add|mult
-4|0|mult|6|5|mult|mult
-4|0|mult|6|5|mult|sub
-4|0|mult|6|5|mult|add
-4|0|mult|7|2|add|mult
-4|0|mult|8|4|add|mult
-4|0|mult|4|mult
-4|0|mult|8|3|mult|sub
-4|0|mult|8|3|mult|add
-4|0|mult|8|3|sub|mult
-4|0|mult|8|3|add|mult
-4|0|mult|8|2|mult|mult
-4|0|mult|8|2|mult|sub
-4|0|mult|8|2|mult|add
-4|0|mult|8|2|sub|mult
-4|0|mult|8|2|add|mult
-4|0|mult|8|1|mult|mult
-4|0|mult|8|1|mult|sub
-4|0|mult|8|1|mult|add
-3|0|mult|9|0|add|mult
-3|0|mult|9|1|mult|add
-3|0|mult|9|1|sub|mult
-3|0|mult|9|1|add|mult
-3|0|mult|9|cbrt|mult
-3|0|mult|9|cb|mult
-3|0|mult|9|sq|mult
-3|0|mult|9|sq|sub
-3|0|mult|9|sq|add
-3|0|mult|9|0|mult|mult
-3|0|mult|9|0|mult|sub
-3|0|mult|9|0|mult|add
-3|0|mult|9|0|sub|mult
-3|0|mult|9|1|mult|sub
-3|0|mult|6|5|sub|mult
-3|0|mult|8|7|sub|mult
-3|0|mult|8|7|add|mult
-3|0|mult|8|6|mult|mult
-3|0|mult|8|6|mult|sub
-3|0|mult|8|6|mult|add
-3|0|mult|8|6|sub|mult
-3|0|mult|8|6|add|mult
-3|0|mult|8|5|mult|mult
-3|0|mult|8|5|mult|sub
-3|0|mult|8|5|mult|add
-3|0|mult|8|5|sub|mult
-3|0|mult|3|2|add|mult
-4|0|mult|3|mult
-4|0|mult|2|mult
-4|0|mult|1|mult
-4|0|mult|cbrt
-4|0|mult|cb
-4|0|mult|sq
-4|0|mult|0|mult
-3|0|mult|4|0|add|mult
-3|0|mult|3|2|mult|mult
-3|0|mult|3|2|mult|sub
-3|0|mult|3|2|mult|add
-3|0|mult|3|2|sub|mult
-3|0|mult|7|6|mult|add
-3|0|mult|3|1|mult|mult
-3|0|mult|3|1|mult|sub
-3|0|mult|3|1|mult|add
-3|0|mult|3|1|sub|mult
-3|0|mult|3|1|add|mult
-3|0|mult|3|cbrt|mult
-3|0|mult|3|cb|mult
-3|0|mult|3|sq|mult
-3|0|mult|3|sq|sub
-3|0|mult|3|sq|add
-3|0|mult|4|0|sub|mult
-3|0|mult|9|1|mult|mult
-4|0|add|7|2|sub|add
-4|0|add|7|4|add|mult
-4|0|add|7|4|add|add
-4|0|add|7|3|mult|mult
-4|0|add|7|3|sub|mult
-4|0|add|7|3|sub|sub
-4|0|add|7|3|sub|add
-4|0|add|7|3|add|mult
-4|0|add|7|3|add|sub
-4|0|add|7|3|add|add
-4|0|add|7|2|mult|mult
-4|0|add|7|2|sub|mult
-4|0|add|7|2|sub|sub
-4|0|add|7|4|sub|sub
-4|0|add|8|4|sub|mult
-4|0|add|8|4|sub|sub
-4|0|add|7|1|mult|mult
-4|0|add|7|1|sub|mult
-4|0|add|7|1|sub|sub
-4|0|add|7|1|sub|add
-4|0|add|7|1|add|mult
-4|0|add|7|1|add|sub
-4|0|add|7|1|add|add
-4|0|add|7|cbrt|mult
-4|0|add|7|cb|mult
-4|0|add|7|sq|mult
-4|0|add|9|3|add|mult
-4|0|add|9|5|add|mult
-4|0|add|9|5|add|sub
-4|0|add|9|5|add|add
-4|0|add|9|4|mult|mult
-4|0|add|9|4|sub|mult
-4|0|add|9|4|sub|sub
-4|0|add|9|4|add|mult
-4|0|add|9|4|add|add
-4|0|add|9|3|mult|mult
-4|0|add|9|3|sub|mult
-4|0|add|9|3|sub|sub
-4|0|add|9|3|sub|add
-4|0|add|7|0|mult|mult
-4|0|add|9|3|add|sub
-4|0|add|9|3|add|add
-4|0|add|9|2|mult|mult
-4|0|add|9|2|sub|mult
-4|0|add|9|2|sub|sub
-4|0|add|9|2|sub|add
-4|0|add|9|5|mult|mult
-4|0|add|7|5|add|mult
-4|0|add|7|5|add|sub
-4|0|add|7|5|add|add
-4|0|add|7|4|mult|mult
-4|0|add|7|4|sub|mult
-4|0|add|8|0|add|add
-4|0|add|8|1|sub|sub
-4|0|add|8|1|sub|add
-4|0|add|7|5|sub|mult
-4|0|add|7|5|sub|sub
-4|0|add|7|5|sub|add
-4|0|add|8|cbrt|mult
-4|0|add|8|cb|mult
-4|0|add|8|sq|mult
-4|0|add|8|0|mult|mult
-4|0|add|8|0|sub|mult
-4|0|add|8|0|sub|sub
-4|0|add|8|0|add|mult
-4|0|add|8|1|sub|mult
-4|0|add|7|6|mult|mult
-4|0|add|7|6|sub|mult
-4|0|add|7|6|sub|sub
-4|0|add|7|6|sub|add
-4|0|add|7|6|add|mult
-4|0|add|7|6|add|sub
-4|0|add|7|6|add|add
-4|0|add|7|5|mult|mult
-4|0|add|8|1|add|mult
-4|0|add|8|1|add|sub
-4|0|add|8|1|add|add
-4|0|add|9|mult
-4|0|add|8|3|sub|sub
-4|0|add|7|0|sub|mult
-4|0|add|7|0|sub|sub
-4|0|add|7|0|add|mult
-4|0|add|7|0|add|add
-4|0|add|6|5|mult|mult
-4|0|add|7|2|add|mult
-4|0|add|7|2|add|sub
-4|0|add|7|2|add|add
-4|0|add|8|4|add|mult
-4|0|add|8|4|add|add
-4|0|add|8|3|mult|mult
-4|0|add|8|3|sub|mult
-4|0|add|9|5|sub|add
-4|0|add|8|3|sub|add
-4|0|add|8|3|add|mult
-4|0|add|8|3|add|sub
-4|0|add|8|3|add|add
-4|0|add|8|2|mult|mult
-4|0|add|8|2|sub|mult
-4|0|add|8|2|sub|sub
-4|0|add|8|2|sub|add
-4|0|add|8|2|add|mult
-4|0|add|8|2|add|sub
-4|0|add|8|2|add|add
-4|0|add|8|1|mult|mult
-4|0|add|9|1|sub|mult
-4|0|add|3|1|mult|mult
-4|0|add|3|1|sub|mult
-4|0|add|3|1|sub|sub
-4|0|add|3|1|sub|add
-4|0|add|3|1|add|mult
-4|0|add|3|1|add|sub
-4|0|add|3|1|add|add
-4|0|add|3|cbrt|mult
-4|0|add|3|cb|mult
-4|0|add|3|sq|mult
-4|0|add|4|0|sub|mult
-4|0|add|9|1|mult|mult
-4|0|add|3|2|add|add
-4|0|add|9|1|sub|sub
-4|0|add|9|1|sub|add
-4|0|add|9|1|add|mult
-4|0|add|9|1|add|sub
-4|0|add|9|1|add|add
-4|0|add|9|cbrt|mult
-4|0|add|9|cb|mult
-4|0|add|9|sq|mult
-4|0|add|9|0|mult|mult
-4|0|add|9|0|sub|mult
-4|0|add|9|0|sub|sub
-4|0|add|9|0|add|mult
-3|0|mult|3|mult
-3|0|mult|7|6|sub|mult
-3|0|mult|7|6|add|mult
-3|0|mult|7|5|mult|mult
-3|0|mult|7|5|mult|sub
-3|0|mult|7|5|mult|add
-3|0|mult|8|1|add|mult
-3|0|mult|9|mult
-3|0|mult|8|mult
-3|0|mult|7|mult
-3|0|mult|6|mult
-3|0|mult|5|mult
-3|0|mult|4|mult
-4|0|add|9|0|add|add
-3|0|mult|2|mult
-3|0|mult|1|mult
-3|0|mult|cbrt
-3|0|mult|cb
-3|0|mult|sq
-3|0|mult|0|mult
-4|0|add|3|2|mult|mult
-4|0|add|3|2|sub|mult
-4|0|add|3|2|sub|sub
-4|0|add|3|2|sub|add
-4|0|add|3|2|add|mult
-4|0|add|3|2|add|sub
-4|0|add|9|7|add|add
-4|0|add|9|8|sub|mult
-4|0|add|9|8|sub|sub
-4|0|add|9|8|sub|add
-4|0|add|9|8|add|mult
-4|0|add|9|8|add|sub
-4|0|add|9|8|add|add
-4|0|add|9|7|mult|mult
-4|0|add|9|7|sub|mult
-4|0|add|9|7|sub|sub
-4|0|add|9|7|sub|add
-4|0|add|9|7|add|mult
-4|0|add|9|7|add|sub
-4|0|add|9|8|mult|mult
-4|0|add|9|6|mult|mult
-4|0|add|9|6|sub|mult
-4|0|add|9|6|sub|sub
-4|0|add|9|6|sub|add
-4|0|add|9|6|add|mult
-4|0|add|9|6|add|sub
-4|0|add|9|6|add|add
-4|0|add|9|2|add|mult
-4|0|add|9|2|add|sub
-4|0|add|9|2|add|add
-4|0|add|9|5|sub|mult
-4|0|add|9|5|sub|sub
-4|0|add|8|6|sub|add
-4|0|add|6|5|sub|mult
-4|0|add|6|5|sub|sub
-4|0|add|6|5|sub|add
-4|0|add|8|7|sub|mult
-4|0|add|8|7|sub|sub
-4|0|add|8|7|sub|add
-4|0|add|8|7|add|mult
-4|0|add|8|7|add|sub
-4|0|add|8|7|add|add
-4|0|add|8|6|mult|mult
-4|0|add|8|6|sub|mult
-4|0|add|8|6|sub|sub
-3|2|add|9|1|mult|mult
-4|0|add|8|6|add|mult
-4|0|add|8|6|add|sub
-4|0|add|8|6|add|add
-4|0|add|8|5|mult|mult
-4|0|add|8|5|sub|mult
-4|0|add|8|5|sub|sub
-4|0|add|8|5|sub|add
-4|0|add|8|5|add|mult
-4|0|add|8|5|add|sub
-4|0|add|8|5|add|add
-4|0|add|8|4|mult|mult
-4|0|add|8|7|mult|mult
-3|1|sub|cbrt
-3|1|sub|5|mult
-3|1|sub|5|sub
-3|1|sub|5|add
-3|1|sub|4|mult
-3|1|sub|4|sub
-3|1|sub|4|add
-3|1|sub|3|mult
-3|1|sub|3|add
-3|1|sub|2|mult
-3|1|sub|2|sub
-3|1|sub|2|add
-3|1|sub|1|mult
-3|1|sub|1|sub
-3|1|sub|6|add
-3|1|sub|cb
-3|1|sub|sq
-3|1|sub|0|mult
-3|1|sub|0|sub
-3|1|sub|0|add
-3|1|add|3|cbrt|mult
-3|1|add|3|cb|mult
-3|1|add|3|sq|mult
-3|1|add|4|0|sub|mult
-3|1|add|4|0|sub|sub
-3|1|add|4|0|sub|add
-3|1|add|9|1|mult|mult
-3|1|sub|8|1|add|mult
-3|1|sub|8|0|sub|add
-3|1|sub|8|0|add|mult
-3|1|sub|8|0|add|sub
-3|1|sub|8|0|add|add
-3|1|sub|7|6|mult|mult
-3|1|sub|7|6|sub|mult
-3|1|sub|7|6|sub|sub
-3|1|sub|7|6|sub|add
-3|1|sub|7|6|add|mult
-3|1|sub|7|6|add|sub
-3|1|sub|7|6|add|add
-3|1|sub|7|5|mult|mult
-3|1|add|9|1|sub|mult
-3|1|sub|8|1|add|sub
-3|1|sub|9|mult
-3|1|sub|9|sub
-3|1|sub|9|add
-3|1|sub|8|mult
-3|1|sub|8|sub
-3|1|sub|8|add
-3|1|sub|7|mult
-3|1|sub|7|sub
-3|1|sub|7|add
-3|1|sub|6|mult
-3|1|sub|6|sub
-3|1|add|9|8|mult|mult
-3|1|add|8|6|add|mult
-3|1|add|8|6|add|sub
-3|1|add|8|6|add|add
-3|1|add|8|5|mult|mult
-3|1|add|8|5|sub|mult
-3|1|add|8|5|sub|sub
-3|1|add|8|5|sub|add
-3|1|add|8|5|add|mult
-3|1|add|8|5|add|sub
-3|1|add|8|5|add|add
-3|1|add|8|4|mult|mult
-3|1|add|8|7|mult|mult
-3|1|add|8|6|sub|add
-3|1|add|9|8|sub|mult
-3|1|add|9|8|sub|sub
-3|1|add|9|8|sub|add
-3|1|add|9|8|add|mult
-3|1|add|9|8|add|sub
-3|1|add|9|8|add|add
-3|1|add|9|7|mult|mult
-3|1|add|9|7|sub|mult
-3|1|add|9|7|sub|sub
-3|1|add|9|7|sub|add
-3|1|add|9|7|add|mult
-3|1|add|9|7|add|sub
-3|1|add|9|0|add|add
-3|1|add|9|1|sub|sub
-3|1|add|9|1|add|mult
-3|1|add|9|1|add|add
-3|1|add|9|cbrt|mult
-3|1|add|9|cb|mult
-3|1|add|9|sq|mult
-3|1|add|9|0|mult|mult
-3|1|add|9|0|sub|mult
-3|1|add|9|0|sub|sub
-3|1|add|9|0|sub|add
-3|1|add|9|0|add|mult
-3|1|add|9|0|add|sub
-3|1|sub|8|0|sub|sub
-3|1|add|6|5|sub|mult
-3|1|add|6|5|sub|sub
-3|1|add|6|5|sub|add
-3|1|add|8|7|sub|mult
-3|1|add|8|7|sub|sub
-3|1|add|8|7|sub|add
-3|1|add|8|7|add|mult
-3|1|add|8|7|add|sub
-3|1|add|8|7|add|add
-3|1|add|8|6|mult|mult
-3|1|add|8|6|sub|mult
-3|1|add|8|6|sub|sub
-3|1|sub|7|5|add|add
-3|1|sub|9|3|mult|mult
-3|1|sub|9|3|sub|mult
-3|1|sub|9|3|sub|sub
-3|1|sub|9|3|add|mult
-3|1|sub|9|3|add|add
-3|1|sub|9|2|mult|mult
-3|1|sub|9|2|sub|mult
-3|1|sub|9|2|sub|sub
-3|1|sub|9|2|sub|add
-3|1|sub|9|5|mult|mult
-3|1|sub|7|5|add|mult
-3|1|sub|7|5|add|sub
-3|1|sub|9|4|add|add
-3|1|sub|7|4|mult|mult
-3|1|sub|7|4|sub|mult
-3|1|sub|7|4|sub|sub
-3|1|sub|7|4|sub|add
-3|1|sub|7|4|add|mult
-3|1|sub|7|4|add|sub
-3|1|sub|7|4|add|add
-3|1|sub|7|3|mult|mult
-3|1|sub|7|3|sub|mult
-3|1|sub|7|3|sub|sub
-3|1|sub|7|3|add|mult
-3|1|sub|7|3|add|add
-3|1|sub|9|2|add|add
-3|1|sub|9|7|add|mult
-3|1|sub|9|7|add|sub
-3|1|sub|9|7|add|add
-3|1|sub|9|6|mult|mult
-3|1|sub|9|6|sub|mult
-3|1|sub|9|6|sub|sub
-3|1|sub|9|6|sub|add
-3|1|sub|9|6|add|mult
-3|1|sub|9|6|add|sub
-3|1|sub|9|6|add|add
-3|1|sub|9|2|add|mult
-3|1|sub|9|2|add|sub
-3|1|sub|7|2|mult|mult
-3|1|sub|9|5|sub|mult
-3|1|sub|9|5|sub|sub
-3|1|sub|9|5|sub|add
-3|1|sub|9|5|add|mult
-3|1|sub|9|5|add|sub
-3|1|sub|9|5|add|add
-3|1|sub|9|4|mult|mult
-3|1|sub|9|4|sub|mult
-3|1|sub|9|4|sub|sub
-3|1|sub|9|4|sub|add
-3|1|sub|9|4|add|mult
-3|1|sub|9|4|add|sub
-3|1|sub|8|2|add|sub
-3|1|sub|8|4|add|sub
-3|1|sub|8|4|add|add
-3|1|sub|8|3|mult|mult
-3|1|sub|8|3|sub|mult
-3|1|sub|8|3|sub|sub
-3|1|sub|8|3|add|mult
-3|1|sub|8|3|add|add
-3|1|sub|8|2|mult|mult
-3|1|sub|8|2|sub|mult
-3|1|sub|8|2|sub|sub
-3|1|sub|8|2|sub|add
-3|1|sub|8|2|add|mult
-3|1|sub|8|4|add|mult
-3|1|sub|8|2|add|add
-3|1|sub|8|1|mult|mult
-3|1|sub|8|1|sub|mult
-3|1|sub|8|1|sub|add
-3|1|sub|7|5|sub|mult
-3|1|sub|7|5|sub|sub
-3|1|sub|7|5|sub|add
-3|1|sub|8|cbrt|mult
-3|1|sub|8|cb|mult
-3|1|sub|8|sq|mult
-3|1|sub|8|0|mult|mult
-3|1|sub|8|0|sub|mult
-3|1|sub|7|cb|mult
-3|1|sub|7|2|sub|mult
-3|1|sub|7|2|sub|sub
-3|1|sub|7|2|sub|add
-3|1|sub|8|4|sub|mult
-3|1|sub|8|4|sub|sub
-3|1|sub|8|4|sub|add
-3|1|sub|7|1|mult|mult
-3|1|sub|7|1|sub|mult
-3|1|sub|7|1|sub|add
-3|1|sub|7|1|add|mult
-3|1|sub|7|1|add|sub
-3|1|sub|7|cbrt|mult
-3|1|add|9|7|add|add
-3|1|sub|7|sq|mult
-3|1|sub|7|0|mult|mult
-3|1|sub|7|0|sub|mult
-3|1|sub|7|0|sub|sub
-3|1|sub|7|0|sub|add
-3|1|sub|7|0|add|mult
-3|1|sub|7|0|add|sub
-3|1|sub|7|0|add|add
-3|1|sub|6|5|mult|mult
-3|1|sub|7|2|add|mult
-3|1|sub|7|2|add|sub
-3|1|sub|7|2|add|add
-3|1|add|0|mult
-3|1|add|4|mult
-3|1|add|4|sub
-3|1|add|4|add
-3|1|add|3|mult
-3|1|add|3|add
-3|1|add|2|mult
-3|1|add|2|sub
-3|1|add|2|add
-3|1|add|1|mult
-3|1|add|1|add
-3|1|add|cbrt
-3|1|add|cb
-3|1|add|sq
-3|1|add|5|add
-3|1|add|0|sub
-3|1|add|0|add
-3|cbrt|4|0|sub|mult
-3|cbrt|9|1|mult|mult
-3|cbrt|9|1|sub|mult
-3|cbrt|9|1|add|mult
-3|cbrt|9|cbrt|mult
-3|cbrt|9|cbrt|sub
-3|cbrt|9|cbrt|add
-3|cbrt|9|cb|mult
-3|cbrt|9|sq|mult
-3|cbrt|9|0|mult|mult
-3|1|add|9|sub
-3|1|add|8|0|add|add
-3|1|add|7|6|mult|mult
-3|1|add|7|6|sub|mult
-3|1|add|7|6|sub|sub
-3|1|add|7|6|sub|add
-3|1|add|7|6|add|mult
-3|1|add|7|6|add|sub
-3|1|add|7|6|add|add
-3|1|add|7|5|mult|mult
-3|1|add|8|1|add|mult
-3|1|add|8|1|add|add
-3|1|add|9|mult
-3|cbrt|9|0|sub|mult
-3|1|add|9|add
-3|1|add|8|mult
-3|1|add|8|sub
-3|1|add|8|add
-3|1|add|7|mult
-3|1|add|7|sub
-3|1|add|7|add
-3|1|add|6|mult
-3|1|add|6|sub
-3|1|add|6|add
-3|1|add|5|mult
-3|1|add|5|sub
-3|cbrt|7|3|sub|mult
-3|cbrt|9|4|add|mult
-3|cbrt|9|3|mult|mult
-3|cbrt|9|3|sub|mult
-3|cbrt|9|3|add|mult
-3|cbrt|9|2|mult|mult
-3|cbrt|9|2|sub|mult
-3|cbrt|9|5|mult|mult
-3|cbrt|7|5|add|mult
-3|cbrt|7|4|mult|mult
-3|cbrt|7|4|sub|mult
-3|cbrt|7|4|add|mult
-3|cbrt|7|3|mult|mult
-3|cbrt|9|4|sub|mult
-3|cbrt|7|3|add|mult
-3|cbrt|7|2|mult|mult
-3|cbrt|7|2|sub|mult
-3|cbrt|8|4|sub|mult
-3|cbrt|7|1|mult|mult
-3|cbrt|7|1|sub|mult
-3|cbrt|7|1|add|mult
-3|cbrt|7|cbrt|mult
-3|cbrt|7|cbrt|sub
-3|cbrt|7|cbrt|add
-3|cbrt|7|cb|mult
-3|cbrt|7|sq|mult
-3|cbrt|9|8|mult|mult
-3|cbrt|9|0|add|mult
-3|cbrt|6|5|sub|mult
-3|cbrt|8|7|sub|mult
-3|cbrt|8|7|add|mult
-3|cbrt|8|6|mult|mult
-3|cbrt|8|6|sub|mult
-3|cbrt|8|6|add|mult
-3|cbrt|8|5|mult|mult
-3|cbrt|8|5|sub|mult
-3|cbrt|8|5|add|mult
-3|cbrt|8|4|mult|mult
-3|cbrt|8|7|mult|mult
-3|1|add|8|0|add|sub
-3|cbrt|9|8|sub|mult
-3|cbrt|9|8|add|mult
-3|cbrt|9|7|mult|mult
-3|cbrt|9|7|sub|mult
-3|cbrt|9|7|add|mult
-3|cbrt|9|6|mult|mult
-3|cbrt|9|6|sub|mult
-3|cbrt|9|6|add|mult
-3|cbrt|9|2|add|mult
-3|cbrt|9|5|sub|mult
-3|cbrt|9|5|add|mult
-3|cbrt|9|4|mult|mult
-3|1|add|7|4|sub|sub
-3|1|add|9|3|add|mult
-3|1|add|9|3|add|add
-3|1|add|9|2|mult|mult
-3|1|add|9|2|sub|mult
-3|1|add|9|2|sub|sub
-3|1|add|9|2|sub|add
-3|1|add|9|5|mult|mult
-3|1|add|7|5|add|mult
-3|1|add|7|5|add|sub
-3|1|add|7|5|add|add
-3|1|add|7|4|mult|mult
-3|1|add|7|4|sub|mult
-3|1|add|9|3|sub|sub
-3|1|add|7|4|sub|add
-3|1|add|7|4|add|mult
-3|1|add|7|4|add|sub
-3|1|add|7|4|add|add
-3|1|add|7|3|mult|mult
-3|1|add|7|3|sub|mult
-3|1|add|7|3|sub|sub
-3|1|add|7|3|add|mult
-3|1|add|7|3|add|add
-3|1|add|7|2|mult|mult
-3|1|add|7|2|sub|mult
-3|1|add|7|2|sub|sub
-3|1|add|9|5|sub|add
-3|1|add|9|6|mult|mult
-3|1|add|9|6|sub|mult
-3|1|add|9|6|sub|sub
-3|1|add|9|6|sub|add
-3|1|add|9|6|add|mult
-3|1|add|9|6|add|sub
-3|1|add|9|6|add|add
-3|1|add|9|2|add|mult
-3|1|add|9|2|add|sub
-3|1|add|9|2|add|add
-3|1|add|9|5|sub|mult
-3|1|add|9|5|sub|sub
-3|1|add|7|2|sub|add
-3|1|add|9|5|add|mult
-3|1|add|9|5|add|sub
-3|1|add|9|5|add|add
-3|1|add|9|4|mult|mult
-3|1|add|9|4|sub|mult
-3|1|add|9|4|sub|sub
-3|1|add|9|4|sub|add
-3|1|add|9|4|add|mult
-3|1|add|9|4|add|sub
-3|1|add|9|4|add|add
-3|1|add|9|3|mult|mult
-3|1|add|9|3|sub|mult
-3|1|add|8|1|sub|mult
-3|1|add|8|3|sub|mult
-3|1|add|8|3|sub|sub
-3|1|add|8|3|add|mult
-3|1|add|8|3|add|add
-3|1|add|8|2|mult|mult
-3|1|add|8|2|sub|mult
-3|1|add|8|2|sub|sub
-3|1|add|8|2|sub|add
-3|1|add|8|2|add|mult
-3|1|add|8|2|add|sub
-3|1|add|8|2|add|add
-3|1|add|8|1|mult|mult
-3|1|add|8|3|mult|mult
-3|1|add|8|1|sub|sub
-3|1|add|7|5|sub|mult
-3|1|add|7|5|sub|sub
-3|1|add|7|5|sub|add
-3|1|add|8|cbrt|mult
-3|1|add|8|cb|mult
-3|1|add|8|sq|mult
-3|1|add|8|0|mult|mult
-3|1|add|8|0|sub|mult
-3|1|add|8|0|sub|sub
-3|1|add|8|0|sub|add
-3|1|add|8|0|add|mult
-3|1|add|7|0|sub|mult
-3|1|add|8|4|sub|mult
-3|1|add|8|4|sub|sub
-3|1|add|8|4|sub|add
-3|1|add|7|1|mult|mult
-3|1|add|7|1|sub|mult
-3|1|add|7|1|sub|sub
-3|1|add|7|1|add|mult
-3|1|add|7|1|add|add
-3|1|add|7|cbrt|mult
-3|1|add|7|cb|mult
-3|1|add|7|sq|mult
-3|1|add|7|0|mult|mult
-3|1|sub|9|7|sub|add
-3|1|add|7|0|sub|sub
-3|1|add|7|0|sub|add
-3|1|add|7|0|add|mult
-3|1|add|7|0|add|sub
-3|1|add|7|0|add|add
-3|1|add|6|5|mult|mult
-3|1|add|7|2|add|mult
-3|1|add|7|2|add|sub
-3|1|add|7|2|add|add
-3|1|add|8|4|add|mult
-3|1|add|8|4|add|sub
-3|1|add|8|4|add|add
-3|2|add|8|1|sub|add
-3|2|add|8|3|mult|mult
-3|2|add|8|3|sub|mult
-3|2|add|8|3|sub|sub
-3|2|add|8|3|add|mult
-3|2|add|8|3|add|add
-3|2|add|8|2|mult|mult
-3|2|add|8|2|sub|mult
-3|2|add|8|2|sub|sub
-3|2|add|8|2|add|mult
-3|2|add|8|2|add|add
-3|2|add|8|1|mult|mult
-3|2|add|8|1|sub|mult
-3|2|add|8|1|sub|sub
-3|2|add|8|4|add|add
-3|2|add|7|5|sub|mult
-3|2|add|7|5|sub|sub
-3|2|add|7|5|sub|add
-3|2|add|8|cbrt|mult
-3|2|add|8|cb|mult
-3|2|add|8|sq|mult
-3|2|add|8|0|mult|mult
-3|2|add|8|0|sub|mult
-3|2|add|8|0|sub|sub
-3|2|add|8|0|sub|add
-3|2|add|8|0|add|mult
-3|2|add|8|0|add|sub
-3|2|add|7|sq|mult
-3|2|add|8|4|sub|mult
-3|2|add|8|4|sub|sub
-3|2|add|8|4|sub|add
-3|2|add|7|1|mult|mult
-3|2|add|7|1|sub|mult
-3|2|add|7|1|sub|sub
-3|2|add|7|1|sub|add
-3|2|add|7|1|add|mult
-3|2|add|7|1|add|sub
-3|2|add|7|1|add|add
-3|2|add|7|cbrt|mult
-3|2|add|7|cb|mult
-3|2|add|8|0|add|add
-3|2|add|7|0|mult|mult
-3|2|add|7|0|sub|mult
-3|2|add|7|0|sub|sub
-3|2|add|7|0|sub|add
-3|2|add|7|0|add|mult
-3|2|add|7|0|add|sub
-3|2|add|7|0|add|add
-3|2|add|6|5|mult|mult
-3|2|add|7|2|add|mult
-3|2|add|7|2|add|add
-3|2|add|8|4|add|mult
-3|2|add|8|4|add|sub
-3|2|add|sq
-3|2|add|4|mult
-3|2|add|4|sub
-3|2|add|4|add
-3|2|add|3|mult
-3|2|add|3|add
-3|2|add|2|mult
-3|2|add|2|add
-3|2|add|1|mult
-3|2|add|1|sub
-3|2|add|1|add
-3|2|add|cbrt
-3|2|add|cb
-3|2|add|5|add
-3|2|add|0|mult
-3|2|add|0|sub
-3|2|add|0|add
-3|1|mult|3|1|sub|mult
-3|1|mult|3|1|add|mult
-3|1|mult|3|cbrt|mult
-3|1|mult|3|cb|mult
-3|1|mult|3|sq|mult
-3|1|mult|3|sq|sub
-3|1|mult|3|sq|add
-3|1|mult|4|0|sub|mult
-3|1|mult|9|1|mult|mult
-3|2|add|9|sub
-3|2|add|7|6|mult|mult
-3|2|add|7|6|sub|mult
-3|2|add|7|6|sub|sub
-3|2|add|7|6|sub|add
-3|2|add|7|6|add|mult
-3|2|add|7|6|add|sub
-3|2|add|7|6|add|add
-3|2|add|7|5|mult|mult
-3|2|add|8|1|add|mult
-3|2|add|8|1|add|sub
-3|2|add|8|1|add|add
-3|2|add|9|mult
-3|2|add|7|2|sub|sub
-3|2|add|9|add
-3|2|add|8|mult
-3|2|add|8|sub
-3|2|add|8|add
-3|2|add|7|mult
-3|2|add|7|sub
-3|2|add|7|add
-3|2|add|6|mult
-3|2|add|6|sub
-3|2|add|6|add
-3|2|add|5|mult
-3|2|add|5|sub
-3|2|add|8|5|add|add
-3|2|add|8|6|sub|mult
-3|2|add|8|6|sub|sub
-3|2|add|8|6|sub|add
-3|2|add|8|6|add|mult
-3|2|add|8|6|add|sub
-3|2|add|8|6|add|add
-3|2|add|8|5|mult|mult
-3|2|add|8|5|sub|mult
-3|2|add|8|5|sub|sub
-3|2|add|8|5|sub|add
-3|2|add|8|5|add|mult
-3|2|add|8|5|add|sub
-3|2|add|8|6|mult|mult
-3|2|add|8|4|mult|mult
-3|2|add|8|7|mult|mult
-3|2|add|9|8|mult|mult
-3|2|add|9|8|sub|mult
-3|2|add|9|8|sub|sub
-3|2|add|9|8|sub|add
-3|2|add|9|8|add|mult
-3|2|add|9|8|add|sub
-3|2|add|9|8|add|add
-3|2|add|9|7|mult|mult
-3|2|add|9|7|sub|mult
-3|2|add|9|7|sub|sub
-3|2|add|9|0|sub|add
-3|2|add|9|1|sub|mult
-3|2|add|9|1|sub|sub
-3|2|add|9|1|sub|add
-3|2|add|9|1|add|mult
-3|2|add|9|1|add|sub
-3|2|add|9|1|add|add
-3|2|add|9|cbrt|mult
-3|2|add|9|cb|mult
-3|2|add|9|sq|mult
-3|2|add|9|0|mult|mult
-3|2|add|9|0|sub|mult
-3|2|add|9|0|sub|sub
-3|2|add|9|7|sub|add
-3|2|add|9|0|add|mult
-3|2|add|9|0|add|sub
-3|2|add|9|0|add|add
-3|2|add|6|5|sub|mult
-3|2|add|6|5|sub|sub
-3|2|add|6|5|sub|add
-3|2|add|8|7|sub|mult
-3|2|add|8|7|sub|sub
-3|2|add|8|7|sub|add
-3|2|add|8|7|add|mult
-3|2|add|8|7|add|sub
-3|2|add|8|7|add|add
-3|2|add|7|4|sub|mult
-3|2|add|9|3|sub|mult
-3|2|add|9|3|sub|sub
-3|2|add|9|3|add|mult
-3|2|add|9|3|add|add
-3|2|add|9|2|mult|mult
-3|2|add|9|2|sub|mult
-3|2|add|9|2|sub|sub
-3|2|add|9|5|mult|mult
-3|2|add|7|5|add|mult
-3|2|add|7|5|add|sub
-3|2|add|7|5|add|add
-3|2|add|7|4|mult|mult
-3|2|add|9|3|mult|mult
-3|2|add|7|4|sub|sub
-3|2|add|7|4|sub|add
-3|2|add|7|4|add|mult
-3|2|add|7|4|add|sub
-3|2|add|7|4|add|add
-3|2|add|7|3|mult|mult
-3|2|add|7|3|sub|mult
-3|2|add|7|3|sub|sub
-3|2|add|7|3|add|mult
-3|2|add|7|3|add|add
-3|2|add|7|2|mult|mult
-3|2|add|7|2|sub|mult
-3|2|add|9|5|sub|mult
-3|2|add|9|7|add|mult
-3|2|add|9|7|add|sub
-3|2|add|9|7|add|add
-3|2|add|9|6|mult|mult
-3|2|add|9|6|sub|mult
-3|2|add|9|6|sub|sub
-3|2|add|9|6|sub|add
-3|2|add|9|6|add|mult
-3|2|add|9|6|add|sub
-3|2|add|9|6|add|add
-3|2|add|9|2|add|mult
-3|2|add|9|2|add|add
-3|1|mult|9|1|mult|sub
-3|2|add|9|5|sub|sub
-3|2|add|9|5|sub|add
-3|2|add|9|5|add|mult
-3|2|add|9|5|add|sub
-3|2|add|9|5|add|add
-3|2|add|9|4|mult|mult
-3|2|add|9|4|sub|mult
-3|2|add|9|4|sub|sub
-3|2|add|9|4|sub|add
-3|2|add|9|4|add|mult
-3|2|add|9|4|add|sub
-3|2|add|9|4|add|add
-3|1|mult|4|mult
-3|1|mult|7|6|mult|add
-3|1|mult|7|6|sub|mult
-3|1|mult|7|6|add|mult
-3|1|mult|7|5|mult|mult
-3|1|mult|7|5|mult|sub
-3|1|mult|7|5|mult|add
-3|1|mult|8|1|add|mult
-3|1|mult|9|mult
-3|1|mult|8|mult
-3|1|mult|7|mult
-3|1|mult|6|mult
-3|1|mult|5|mult
-3|1|mult|7|6|mult|sub
-3|1|mult|3|mult
-3|1|mult|2|mult
-3|1|mult|1|mult
-3|1|mult|cbrt
-3|1|mult|cb
-3|1|mult|sq
-3|1|mult|0|mult
-3|1|sub|3|1|add|mult
-3|1|sub|3|cbrt|mult
-3|1|sub|3|cb|mult
-3|1|sub|3|sq|mult
-3|1|sub|4|0|sub|mult
-3|1|mult|8|1|sub|mult
-3|1|mult|8|3|mult|sub
-3|1|mult|8|3|mult|add
-3|1|mult|8|3|sub|mult
-3|1|mult|8|3|add|mult
-3|1|mult|8|2|mult|mult
-3|1|mult|8|2|mult|sub
-3|1|mult|8|2|mult|add
-3|1|mult|8|2|sub|mult
-3|1|mult|8|2|add|mult
-3|1|mult|8|1|mult|mult
-3|1|mult|8|1|mult|sub
-3|1|mult|8|1|mult|add
-3|1|sub|4|0|sub|sub
-3|1|mult|7|5|sub|mult
-3|1|mult|8|cbrt|mult
-3|1|mult|8|cb|mult
-3|1|mult|8|sq|mult
-3|1|mult|8|sq|sub
-3|1|mult|8|sq|add
-3|1|mult|8|0|mult|mult
-3|1|mult|8|0|mult|sub
-3|1|mult|8|0|mult|add
-3|1|mult|8|0|sub|mult
-3|1|mult|8|0|add|mult
-3|1|mult|7|6|mult|mult
-3|1|sub|8|5|add|add
-3|1|sub|8|6|sub|mult
-3|1|sub|8|6|sub|sub
-3|1|sub|8|6|sub|add
-3|1|sub|8|6|add|mult
-3|1|sub|8|6|add|sub
-3|1|sub|8|6|add|add
-3|1|sub|8|5|mult|mult
-3|1|sub|8|5|sub|mult
-3|1|sub|8|5|sub|sub
-3|1|sub|8|5|sub|add
-3|1|sub|8|5|add|mult
-3|1|sub|8|5|add|sub
-3|1|sub|8|6|mult|mult
-3|1|sub|8|4|mult|mult
-3|1|sub|8|7|mult|mult
-3|1|sub|9|8|mult|mult
-3|1|sub|9|8|sub|mult
-3|1|sub|9|8|sub|sub
-3|1|sub|9|8|sub|add
-3|1|sub|9|8|add|mult
-3|1|sub|9|8|add|sub
-3|1|sub|9|8|add|add
-3|1|sub|9|7|mult|mult
-3|1|sub|9|7|sub|mult
-3|1|sub|9|7|sub|sub
-3|1|sub|9|0|sub|add
-3|1|sub|4|0|sub|add
-3|1|sub|9|1|mult|mult
-3|1|sub|9|1|sub|mult
-3|1|sub|9|1|sub|add
-3|1|sub|9|1|add|mult
-3|1|sub|9|1|add|sub
-3|1|sub|9|cbrt|mult
-3|1|sub|9|cb|mult
-3|1|sub|9|sq|mult
-3|1|sub|9|0|mult|mult
-3|1|sub|9|0|sub|mult
-3|1|sub|9|0|sub|sub
-3|1|mult|8|3|mult|mult
-3|1|sub|9|0|add|mult
-3|1|sub|9|0|add|sub
-3|1|sub|9|0|add|add
-3|1|sub|6|5|sub|mult
-3|1|sub|6|5|sub|sub
-3|1|sub|6|5|sub|add
-3|1|sub|8|7|sub|mult
-3|1|sub|8|7|sub|sub
-3|1|sub|8|7|sub|add
-3|1|sub|8|7|add|mult
-3|1|sub|8|7|add|sub
-3|1|sub|8|7|add|add
-3|1|mult|9|7|mult|sub
-3|1|mult|8|4|mult|mult
-3|1|mult|8|4|mult|sub
-3|1|mult|8|4|mult|add
-3|1|mult|8|7|mult|mult
-3|1|mult|8|7|mult|sub
-3|1|mult|8|7|mult|add
-3|1|mult|9|8|mult|mult
-3|1|mult|9|8|mult|sub
-3|1|mult|9|8|mult|add
-3|1|mult|9|8|sub|mult
-3|1|mult|9|8|add|mult
-3|1|mult|9|7|mult|mult
-3|1|mult|8|5|add|mult
-3|1|mult|9|7|mult|add
-3|1|mult|9|7|sub|mult
-3|1|mult|9|7|add|mult
-3|1|mult|9|6|mult|mult
-3|1|mult|9|6|mult|sub
-3|1|mult|9|6|mult|add
-3|1|mult|9|6|sub|mult
-3|1|mult|9|6|add|mult
-3|1|mult|9|2|add|mult
-3|1|mult|9|5|sub|mult
-3|1|mult|9|5|add|mult
-3|1|mult|9|4|mult|mult
-3|1|mult|9|0|add|mult
-3|1|mult|9|1|mult|add
-3|1|mult|9|1|sub|mult
-3|1|mult|9|1|add|mult
-3|1|mult|9|cbrt|mult
-3|1|mult|9|cb|mult
-3|1|mult|9|sq|mult
-3|1|mult|9|sq|sub
-3|1|mult|9|sq|add
-3|1|mult|9|0|mult|mult
-3|1|mult|9|0|mult|sub
-3|1|mult|9|0|mult|add
-3|1|mult|9|0|sub|mult
-3|1|mult|9|4|mult|sub
-3|1|mult|6|5|sub|mult
-3|1|mult|8|7|sub|mult
-3|1|mult|8|7|add|mult
-3|1|mult|8|6|mult|mult
-3|1|mult|8|6|mult|sub
-3|1|mult|8|6|mult|add
-3|1|mult|8|6|sub|mult
-3|1|mult|8|6|add|mult
-3|1|mult|8|5|mult|mult
-3|1|mult|8|5|mult|sub
-3|1|mult|8|5|mult|add
-3|1|mult|8|5|sub|mult
-3|1|mult|7|sq|mult
-3|1|mult|7|2|mult|mult
-3|1|mult|7|2|mult|sub
-3|1|mult|7|2|mult|add
-3|1|mult|7|2|sub|mult
-3|1|mult|8|4|sub|mult
-3|1|mult|7|1|mult|mult
-3|1|mult|7|1|mult|sub
-3|1|mult|7|1|mult|add
-3|1|mult|7|1|sub|mult
-3|1|mult|7|1|add|mult
-3|1|mult|7|cbrt|mult
-3|1|mult|7|cb|mult
-3|1|mult|7|3|add|mult
-3|1|mult|7|sq|sub
-3|1|mult|7|sq|add
-3|1|mult|7|0|mult|mult
-3|1|mult|7|0|mult|sub
-3|1|mult|7|0|mult|add
-3|1|mult|7|0|sub|mult
-3|1|mult|7|0|add|mult
-3|1|mult|6|5|mult|mult
-3|1|mult|6|5|mult|sub
-3|1|mult|6|5|mult|add
-3|1|mult|7|2|add|mult
-3|1|mult|8|4|add|mult
-3|1|mult|9|5|mult|mult
-3|1|mult|9|4|mult|add
-3|1|mult|9|4|sub|mult
-3|1|mult|9|4|add|mult
-3|1|mult|9|3|mult|mult
-3|1|mult|9|3|mult|sub
-3|1|mult|9|3|mult|add
-3|1|mult|9|3|sub|mult
-3|1|mult|9|3|add|mult
-3|1|mult|9|2|mult|mult
-3|1|mult|9|2|mult|sub
-3|1|mult|9|2|mult|add
-3|1|mult|9|2|sub|mult
-8|1|add|0|add
-3|1|mult|9|5|mult|sub
-3|1|mult|9|5|mult|add
-3|1|mult|7|5|add|mult
-3|1|mult|7|4|mult|mult
-3|1|mult|7|4|mult|sub
-3|1|mult|7|4|mult|add
-3|1|mult|7|4|sub|mult
-3|1|mult|7|4|add|mult
-3|1|mult|7|3|mult|mult
-3|1|mult|7|3|mult|sub
-3|1|mult|7|3|sub|mult
diff --git a/tests/pytest/test_feature_creation/test_feature_space/test_feature_space.py b/tests/pytest/test_feature_creation/test_feature_space/test_feature_space.py
index 878373f5d89a4f1875b78f613c994dd0e1d46003..bbee1225d57f35892cf5605acf06846eb315900d 100644
--- a/tests/pytest/test_feature_creation/test_feature_space/test_feature_space.py
+++ b/tests/pytest/test_feature_creation/test_feature_space/test_feature_space.py
@@ -22,6 +22,10 @@ from sissopp import (
     initialize_values_arr,
 )
 
+import pathlib
+
+parent = pathlib.Path(__file__).parent.absolute()
+
 
 def test_feature_space():
     task_sizes_train = [90]
@@ -49,6 +53,7 @@ def test_feature_space():
     inputs.calc_type = "regression"
     inputs.max_rung = 2
     inputs.n_sis_select = 10
+    inputs.phi_out_file = str(parent / "feature_space" / "phi.txt")
 
     try:
         inputs.n_rung_generate = 2
@@ -83,14 +88,12 @@ def test_feature_space():
 
     feat_space.sis(inputs.prop_train)
 
-    shutil.rmtree("feature_space/")
-
     assert feat_space.phi_selected[0].postfix_expr == "1|0|add|sq"
+    assert feat_space.phi_selected[1].d_mat_ind == 1
+    assert len(feat_space.phi_selected) == 10
 
     feat_space.sis(list(inputs.prop_train))
-    shutil.rmtree("feature_space/")
-    assert feat_space.phi_selected[0].postfix_expr == "1|0|add|sq"
-
+    assert len(feat_space.phi_selected) == 20
     assert (
         np.abs(
             np.corrcoef(inputs.prop_train, inputs.phi_0[0].value)[0, 1] ** 2.0
@@ -104,7 +107,6 @@ def test_feature_space():
     assert feat_space.start_rung[0] == 0
     assert feat_space.start_rung[1] == 10
     assert feat_space.get_feature(0).expr == "feat_0"
-    assert feat_space.phi_selected[1].d_mat_ind == 1
 
     try:
         feat_space.remove_feature(feat_space.phi_selected[0].feat_ind)
@@ -125,6 +127,24 @@ def test_feature_space():
             inputs.max_param_depth = 0
             pass
 
+    feat_space.output_phi()
+    feat_space_2 = FeatureSpace(
+        f"{parent}/feature_space/phi.txt",
+        inputs.phi_0,
+        inputs.prop_train,
+        inputs.task_sizes_train,
+        inputs.calc_type,
+        inputs.n_sis_select,
+        inputs.cross_cor_max,
+    )
+    assert feat_space.n_feat == feat_space_2.n_feat
+
+    feat_space_2.sis(inputs.prop_train)
+    assert feat_space.phi_selected[0].expr == feat_space_2.phi_selected[0].expr
+
+    shutil.rmtree(f"{parent}/feature_space/")
+    shutil.rmtree("feature_space/")
+
 
 if __name__ == "__main__":
     test_feature_space()
diff --git a/tests/pytest/test_feature_creation/test_feature_space/test_gen_feature_space_from_file.py b/tests/pytest/test_feature_creation/test_feature_space/test_gen_feature_space_from_file.py
index 63f5083dd5fa5d74c24947a476f1e9aa1476fc48..07b038da068df6acb89fbdf400fba9f9c11c04a1 100644
--- a/tests/pytest/test_feature_creation/test_feature_space/test_gen_feature_space_from_file.py
+++ b/tests/pytest/test_feature_creation/test_feature_space/test_gen_feature_space_from_file.py
@@ -45,7 +45,7 @@ def test_gen_feature_space_from_file():
     prop = np.power(phi_0[0].value + phi_0[1].value, 2.0)
 
     feat_space = FeatureSpace(
-        f"{parent}/phi.txt", phi_0, prop, task_sizes_train, "regression", 1, 1.0
+        f"{parent}/phi.txt", phi_0, prop, task_sizes_train, "regression", 1, 1.0, []
     )
     feat_space.sis(prop)
     assert feat_space.phi_selected[0].postfix_expr == "1|0|add|sq"