{ "beaker": "2", "evaluators": [ { "name": "HTML", "plugin": "HTML", "view": { "cm": { "mode": "htmlmixed" } } }, { "name": "JavaScript", "plugin": "JavaScript", "view": { "cm": { "mode": "javascript", "background": "#FFE0F0" } }, "languageVersion": "ES2015" }, { "name": "IPython", "plugin": "IPython", "setup": "%matplotlib inline\nimport numpy\nimport matplotlib\nfrom matplotlib import pylab, mlab, pyplot\nnp = numpy\nplt = pyplot\nfrom IPython.display import display\nfrom IPython.core.pylabtools import figsize, getfigs\nfrom pylab import *\nfrom numpy import *\n", "view": { "cm": { "mode": "python" } } }, { "name": "Groovy", "plugin": "Groovy", "imports": "graxxia.*\njava.util.concurrent.TimeUnit\ncom.twosigma.beaker.NamespaceClient\ncom.twosigma.beaker.BeakerProgressUpdate\ncom.twosigma.beaker.chart.Color\ncom.twosigma.beaker.chart.GradientColor\ncom.twosigma.beaker.chart.legend.*\ncom.twosigma.beaker.chart.Filter\ncom.twosigma.beaker.chart.xychart.*\ncom.twosigma.beaker.chart.xychart.plotitem.*\ncom.twosigma.beaker.chart.categoryplot.*\ncom.twosigma.beaker.chart.categoryplot.plotitem.*\ncom.twosigma.beaker.chart.histogram.*\ncom.twosigma.beaker.chart.treemap.*\ncom.twosigma.beaker.chart.treemap.util.*\nnet.sf.jtreemap.swing.*\ncom.twosigma.beaker.chart.heatmap.HeatMap\ncom.twosigma.beaker.chart.KeyboardCodes\ncom.twosigma.beaker.jvm.object.*\ncom.twosigma.beaker.easyform.*\ncom.twosigma.beaker.easyform.formitem.*\ncom.twosigma.beaker.table.*\ncom.twosigma.beaker.table.format.*\ncom.twosigma.beaker.table.renderer.*\ncom.twosigma.beaker.table.highlight.*", "view": { "cm": { "mode": "groovy" } } } ], "cells": [ { "id": "code0eMtHu", "type": "code", "evaluator": "IPython", "input": { "body": [ "import os", "os.chdir(\"/data/shared/tutorialsNew/molecules-delta-ml/python-modules/molkrr\")", "", "" ], "hidden": true }, "output": { "state": {}, "selectedType": "Hidden", "pluginName": "IPython", "shellId": "C074E3DBE84B47A7807B5EAD0AE3C347", "elapsedTime": 409, "height": 81, "hidden": true }, "evaluatorReader": true, "lineCount": 4, "initialization": true, "isError": false }, { "id": "codeE6GBbQ", "type": "code", "evaluator": "HTML", "input": { "body": [ "
", "", "", "", "

Alejandro Perez Paz, Ask Hjorth Larsen, Joaquim Jornet Somoza, Carlos Manuel de Armas Morejón [version 2017-03-27]

", "", "", "
", "In this tutorial we predict the first excitation energy of molecules", "from their geometric structure and from electronic properties of the", "ground state.", "
", "", "", "", "", "
", "\"Run\" to check the algorithm; \"Background\" for a breve explanation; \"Instructions\" to know how things works. \"Settings\" to change the algorithm inputs and outputs.", "
", "
", "", "
" ], "hidden": true }, "output": { "state": {}, "result": { "type": "BeakerDisplay", "innertype": "Html", "object": "\n
\n\n\n\n

Alejandro Perez Paz, Ask Hjorth Larsen, Joaquim Jornet Somoza, Carlos Manuel de Armas Morejón [version 2017-03-27]

\n\n\n
\nIn this tutorial we predict the first excitation energy of molecules\nfrom their geometric structure and from electronic properties of the\nground state.\n
\n\n\n\n\n
\n\"Run\" to check the algorithm; \"Background\" for a breve explanation; \"Instructions\" to know how things works. \"Settings\" to change the algorithm inputs and outputs.\n
\n
\n\n
" }, "selectedType": "BeakerDisplay", "elapsedTime": 1, "height": 200 }, "evaluatorReader": true, "lineCount": 30, "isError": false }, { "id": "codezSZfYL", "type": "code", "evaluator": "HTML", "input": { "body": [ "", "", "", "", "      ", "", "", "", "", "      ", "", "", "
", "
", "
", "
", " ", "

Background

", "
", "
", "

We have ground-state and excited-state calculations of 22,000 molecules [RHTL2015]. The question is: Knowing ground-state data and", " excitation energy for a subset of these molecules — the training set — how well can we predict the excitation energies for other molecules in the set from only their ground-state data?

", "", "

We here use the simple Kernel Ridge Regression algorithm [MW-KRR]. The algorithm relies on numerical descriptors that express the similarity of two molecules as a distance. The predicted value is calculated by weighting known reference values from the training set according to their similarity to the test molecule.

", "", "

Choose different sizes of training set and different descriptors. The sorted Coulomb matrix (determined by the geometric structure) or the HOMO–LUMO gap (energy difference between highest occupied molecular orbital and lowest unoccupied molecular orbital which correlates with the actual excitation energy). Different types of descriptor can be weighted differently when determining the distance; these weights (called sigma) will affect how well the quantities are taken into account and affect the quality of predictions.

", "", "

Some exact definitions: The distance between two molecules is the L1 norm of the difference between their descriptors. The descriptor of a molecule is the vector containing all values of the sorted Coulomb matrix of the molecule divided by the structural normalization factor, and the HOMO–LUMO gap of the molecule divided by the electronic normalization factor. The kernel is the matrix of all values [exp(-|d(i) - d(j)|)] for each pair of descriptors d(i) and d(j).

", "", " ", "
", "
", "

References:

", "
    ", "
  1. [RHTL2015] The Journal of Chemical Physics 143, 084111 (2015)
  2. ", "
  3. [MW-KRR] Kernel-Ridge.pdf
  4. ", "
", "
", "
", " ", "
", "
", "
", "
", "", "", "      ", "", "", "
", "
", "
", "
", " ", "

Instructions

", "
", "
", "

Instructions list

", "", "

This Beaker is preset with a small group of parameters are used by default, if you want to change something, the button Settings, allow you to do that.

", "", "

The section “Settings” has tree subsections:

", "
    ", " ", "
  • ML algorithm settings:
  • ", "
      ", " ", "
    • Training set size: Number of molecules used to train the algorithm
    • ", "
    • Control set size: Number of molecules for which to test predictions
    • ", "
    • Norm: Method for calculating distances between two descriptors. L1 is the sum of absolute values of the differences between descriptors. L2 is the square root of the sum of the squared differences.
    • ", "
    • Regulatization λ: The learning mechanism stores information as a matrix K based on the distances between descriptors. If descriptors are very similar, the calculation will be badly conditioned. λ is added to the diagonal to improve the condition number, but a large value of λ will reduce the accuracy of the calculation.
    • ", " ", "
    ", " ", "
  • Descriptors:
  • ", "
      ", "", "
    • Structural Descriptor: The structural descriptor attempts to capture the geometric similarity of two molecules as a single number. The structural descriptor does not describe excitation energies well, but structurally similar molecules are likely to have similar excitation energies.
    • ", "
    • Structural normalization (σ): Distances between Coulomb matrices are divided by this number. Distances are on the order of 1000 (in the units of the internal representation); hence reasonable normalizations are on the order of 1000. When using two descriptors at the same time, they should be normalized to similar values to achieve a good combination.
    • ", "
    • Electronic Descriptor: The HOMO-LUMO gap is the energy difference between highest occupied state and lowest unoccupied state in the ground-state calculation. This is a reasonable approximation of the excitation energy, and hence a good descriptor for predicting excitation energies. However it is only a single number and therefore cannot distinguish well between two different molecules that have (close to) the same HOMO-LUMO gap without the help of another descriptor.
    • ", "
    • Electronic normalization (σ): Distances between electronic descriptors are divided by this number. Distances are typically between 1 to 10 eV; hence a reasonable normalization is on the order of 1 to 10.
    • ", "
    ", "
  • Feature to predict:
  • ", "
      ", "
    • Property to predict: Here yo can chose from two properties “Excitations energy” or the “Oscillations Strength”
    • ", "
    ", "
", "

After you feel comfortable with the parameters press the RUN button button and wait for the results.

", " ", "
", "
", " ", "", "
", "
", "
", "
", "", "", "      ", "Some feed back" ], "hidden": true }, "output": { "state": {}, "result": { "type": "BeakerDisplay", "innertype": "Html", "object": "\n\n\n\n\n      \n\n\n\n\n      \n\n\n
\n
\n
\n
\n \n

Background

\n
\n
\n

We have ground-state and excited-state calculations of 22,000 molecules [RHTL2015]. The question is: Knowing ground-state data and\n excitation energy for a subset of these molecules — the training set — how well can we predict the excitation energies for other molecules in the set from only their ground-state data?

\n\n

We here use the simple Kernel Ridge Regression algorithm [MW-KRR].The algorithm relies on numerical descriptors that are used to express the similarity of two molecules as a distance. The predicted value is taken by weighting known reference values from the training set according to their similarity to the test molecule.

\n\n

Choose different sizes of training set and different descriptors. The sorted Coulomb matrix (determined by the geometric structure) or the HOMO–LUMO gap (energy difference between highest occupied molecular orbital and lowest unoccupied molecular orbital which correlates with the actual excitation energy). Different types of descriptor can be weighted differently when determining the distance; these weights (called sigma) will affect how well the quantities are taken into account and affect the quality of predictions.

\n\n \n \n \n
\n
\n

References:

\n
    \n
  1. [RHTL2015] The Journal of Chemical Physics 143, 084111 (2015)
  2. \n
  3. [MW-KRR] Kernel-Ridge.pdf
  4. \n
\n
\n
\n \n
\n
\n
\n
\n\n\n      \n\n\n
\n
\n
\n
\n \n

Instructions

\n
\n
\n

Instructions list

\n\n

This Beaker is preset with a small group of parameters are used by default, if you want to change something, the button Settings, allow you to do that.

\n\n

The section “Settings” has three subsections:

\n
    \n \n
  • ML algorithm settings:
  • \n
      \n \n
    • Training set size: Number of molecules used to train the algorithm
    • \n
    • Control set size: Number of molecules for which to test predictions
    • \n
    • Norm: Method for calculating distances between two descriptors. L1 is the sum of absolute values of the differences between descriptors. L2 is the square root of the sum of the squared differences.
    • \n
    • Regulatization λ: The learning mechanism stores information as a matrix K based on the distances between descriptors. If descriptors are very similar, the calculation will be badly conditioned. λ is added to the diagonal to improve the condition number, but a large value of λ will reduce the accuracy of the calculation.
    • \n \n
    \n \n
  • Descriptors:
  • \n
      \n\n
    • Structural Descriptor: The structural descriptor attempts to capture the geometric similarity of two molecules as a single number. The structural descriptor does not describe excitation energies well, but structurally similar molecules are likely to have similar excitation energies.
    • \n
    • Structural normalization (σ): Distances between Coulomb matrices are divided by this number. Distances are on the order of 1000 (in the units of the internal representation); hence reasonable normalizations are on the order of 1000. When using two descriptors at the same time, they should be normalized to similar values to achieve a good combination.
    • \n
    • Electronic Descriptor: The HOMO-LUMO gap is the energy difference between highest occupied state and lowest unoccupied state in the ground-state calculation. This is a reasonable approximation of the excitation energy, and hence a good descriptor for predicting excitation energies. However it is only a single number and therefore cannot distinguish well between two different molecules that have (close to) the same HOMO-LUMO gap without the help of another descriptor.
    • \n
    • Electronic normalization (σ): Distances between electronic descriptors are divided by this number. Distances are typically between 1 to 10 eV; hence a reasonable normalization is on the order of 1 to 10.
    • \n
    \n
  • Feature to predict:
  • \n
      \n
    • Property to predict: Here yo can chose from two properties “Excitations energy” or the “Oscillations Strength”
    • \n
    \n
\n

After you feel comfortable with the parameters press the RUN button button and wait for the results.

\n \n
\n
\n \n\n
\n
\n
\n
\n\n\n      \nSome feed back" }, "selectedType": "BeakerDisplay", "elapsedTime": 1, "height": 72 }, "evaluatorReader": true, "lineCount": 189, "isError": false }, { "id": "settings-cell", "type": "code", "evaluator": "HTML", "input": { "body": [ "", "", "
", "
", "
", "

ML algorithm settings:

", "
", " ", " ", " ", " ", " ", "
", "
", " ", " ", " ", " ", "
", "
", "
", "

Descriptors:

", "
", " ", " ", "
", "
", " ", " ", " ", "
", "
", "
", "

Feature to predict:

", "
", " ", " ", " ", "
", "
", "
", "
" ], "hidden": true }, "output": { "state": {}, "result": { "type": "BeakerDisplay", "innertype": "Html", "object": "\n\n\n
\n
\n
\n

ML algorithm settings:

\n
\n \n \n \n \n \n
\n
\n \n \n \n \n
\n
\n
\n

Descriptors:

\n
\n \n \n
\n
\n \n \n \n
\n
\n
\n

Feature to predict:

\n
\n \n \n \n
\n
\n
\n
" }, "selectedType": "BeakerDisplay", "elapsedTime": 0, "height": 281 }, "evaluatorReader": true, "tags": "settings", "isError": false, "lineCount": 185 }, { "id": "main_entry_point", "type": "code", "evaluator": "IPython", "input": { "body": [ "import ml_chemical_space as ml", "reload(ml)", "import ml_chemical_space as ml", "# print beaker.param", "errs, ref_values, prediction , outfile_path = ml.beaker_entry(beaker.param)", "# print errs, ref_values, prediction , outfile_path", "beaker.errs = np.reshape(errs,(len(errs)))", "beaker.ref_values = np.reshape(ref_values,(len(errs)))", "beaker.prediction = np.reshape(prediction,(len(errs)))", "outfile = []", "with open(outfile_path) as fd:", " first = True", " for line in fd:", " if first:", " first = False", " continue", " outfile.append(line.split('|'))", "beaker.outfile_data = outfile" ], "hidden": true }, "output": { "state": {}, "selectedType": "Results", "pluginName": "IPython", "shellId": "C074E3DBE84B47A7807B5EAD0AE3C347", "elapsedTime": 5069, "height": 33, "dataresult": [ "java.lang.NullPointerException: Cannot invoke method getAt() on null object
", "\tat script149026592776170181916.run(script149026592776170181916.groovy:18)", "\tat com.twosigma.beaker.groovy.utils.GroovyEvaluator$workerThread$MyRunnable.run(GroovyEvaluator.java:382)", "" ] }, "evaluatorReader": true, "lineCount": 18, "isError": false, "tags": "action_cell" }, { "id": "graph_cell", "type": "code", "evaluator": "Groovy", "input": { "body": [ "", "try", "{", " def ref_pred_plot = new Plot( xLabel: \"References values (R)\", yLabel: \"Predicted values (P)\");", " ", " def out_put_label = \"\";", " if(beaker.param[\"proper\"] == 1)", " {", " out_put_label = \"Excitation energy\";", " }", " if(beaker.param[\"proper\"] == 2)", " {", " out_put_label = \"Oscillation Strength\";", " }", " def ntestsys = beaker.errs.size();", " def std_dev_plus = [];", " def std_dev_minus = [];", " ", " def prediction = beaker.prediction;", " def ref_values = beaker.ref_values;", " ", " def min_values = [ref_values.min(),prediction.min()];", " def max_values = [ref_values.max(),prediction.max()];", " def output_file_data = beaker.outfile_data;", " def mae = beaker.errs.sum() / ntestsys;", " //def mean = beaker.ref_values.sum() / ntestsys;", " def variance = 0;", " ", " def errs = beaker.errs;", " for (int i = 0; i < ntestsys; i++)", " {", " variance += ((errs[i] - mae)**2)", " }", " ", " def outfile_data = beaker.outfile_data", " ", " def devi = Math.sqrt(variance / (ntestsys));", " //def devi = variance / (ntestsys);", " //y: [min_values.min(), max_values.max()], x: [min_values.min(), max_values.max()],", " ref_pred_plot << new Line(y: [0,10], x: [0,10],", " displayName:\"Ideal (R=P).\",", " toolTip: {xs, ys -> \"MAE: \" + mae.round(3) + \" eV\"});", " ref_pred_plot << new Area(y: [min_values.min() + mae, max_values.max() + mae], ", " x: [min_values.min(), max_values.max()], ", " base: [min_values.min() - mae, max_values.max() - mae], ", " color: new Color(255, 0, 0, 50), ", " displayName: \"MAE: \" + mae.rount(3) )", " ref_pred_plot << new Area(y: [min_values.min() + (mae +devi), max_values.max() + (mae+devi)], ", " x: [min_values.min(), max_values.max()], ", " base: [min_values.min() - (mae+devi), max_values.max() - (mae+devi)], ", " color: new Color(255, 0, 0, 50), ", " displayName: \"Standard deviation: \" + devi.round(3))", " ref_pred_plot << new Points(x:ref_values, y: prediction,", " color: Color.blue,", " displayName:out_put_label + \" values\",", " toolTip: {xs, ys, h -> \"real_value = \" + xs.round(3) + ", " \", predicted_value = \" + ys.round(3) + ", " \", molecule = \" + ", " outfile_data[h][2]});", "}", "catch(Exception)", "{", "}", "/*cplot.add(ref_pred_plot,3);", "", "if (ref_range > 1)", "{", " mae_err_plot << new Line(y: mae_ener_level, x: (1..ref_range).toArray(), displayName: \"MAE\");", " mae_err_plot << new Area(y: std_dev_plus, x: (1..ref_range).toArray(),base: std_dev_minus, ", " color: new Color(255, 0, 0, 50), displayName: \"Standar Deviation range\")", "}", " ", "mae_err_plot << new Stems(y: std_dev_plus, x: (1..ref_range).toArray(), color: colors, width: 2, base: mae_ener_level);", "mae_err_plot << new Stems(y: std_dev_minus, x: (1..ref_range).toArray(), color: colors, width: 2, base: mae_ener_level);", "//, toolTip: { xs, ys -> \"Max value= \" + ys + \", std devi = \" + (ys - mae_ener_level[xs-1])}", "//, toolTip: { xs, ys -> \"Min value= \" + ys + \", std devi = \" + (ys + mae_ener_level[xs-1])}", "mae_err_plot << new Points(x: (1..ref_range).toArray(), y: mae_ener_level, color: colors,", " toolTip: {xs, ys -> \"energy level= \" + xs + \", mae = \" + ys });", "cplot.add(mae_err_plot,3);", "", "cplot*/", "" ], "hidden": true }, "output": { "state": {}, "selectedType": "Plot", "pluginName": "Groovy", "shellId": "8ff09230-a17c-4b8e-8457-606ae940b56a", "elapsedTime": 1797, "height": 502 }, "evaluatorReader": true, "lineCount": 82, "isError": false } ], "namespace": { "selected_feature_list": [], "selected_input_feature_list": [], "selected_output_feature_list": [], "param": { "type": "TableDisplay", "values": [ [ "training_set_size", 500 ], [ "test_set_size", 100 ], [ "theory_type", 3 ], [ "ml_norm", 1 ], [ "ganma", 0.02 ], [ "s_desc", 1 ], [ "s_sigma", 1000 ], [ "e_desc", 2 ], [ "e_sigma", 1 ], [ "method", 2 ], [ "range", 1 ], [ "db_type", 1 ], [ "proper", 1 ] ], "subtype": "Dictionary", "columnNames": [ "Key", "Value" ] }, "errs": [ 0.09114314015416092, 0.036160225510661004, 0.19888283212514768, 0.15214010696478564, 0.041067197566996505, 0.0009675922768845879, 0.2650520882568488, 0.21817118243152223, 0.18049566616660861, 0.01703624043682961, 0.058204562587771846, 0.20804406253617636, 0.058614578562053765, 0.11241934310069546, 0.2527004348755568, 0.023343453162084415, 0.24232566653411247, 0.09258000545100487, 0.09074172556146909, 0.08430643612998079, 0.24830827732035576, 0.3146806871558372, 0.24904823097287254, 0.2754966260941627, 0.30037231954709487, 0.0032770452571329045, 0.15656722221021013, 0.1554530953972071, 0.1492113096016645, 0.2652357354992567, 0.2364779910488357, 0.01629549864553903, 0.2430899569559486, 0.25834571298842857, 0.3926761789262425, 0.19633795891041306, 0.026537342899784377, 0.3122918691248664, 0.11088582680422743, 0.19202740105897576, 0.4064716470885186, 0.07677128643924469, 0.29001940500046386, 0.3643499505125698, 0.011514444060703788, 0.2803091736298313, 0.05831069462850902, 0.7653873490254997, 0.07075916166375684, 0.33516854997539713, 0.12211830774886145, 0.06546027721426206, 0.16890392691132483, 0.03917460718953514, 0.0876233678416618, 0.10007556152942154, 0.13169819316498543, 0.0944167973431087, 0.37141292498790346, 0.2258482716276129, 0.36015713562308527, 0.4164297778767283, 0.08253905521664695, 0.4542234576715227, 0.2734261503857107, 0.3079615408106644, 0.38665274519110415, 0.512617874860696, 0.29851203800921056, 0.18046932636411572, 0.4142309526829928, 0.4988376043828566, 0.04991610967989146, 0.04243147228707045, 0.1985543703276358, 0.10346212645831532, 0.2592531832384939, 0.5522847856226738, 0.09449022528933337, 0.1679745358695719, 0.25288627422565835, 0.009289845542507003, 0.03341758747600565, 0.1543695161183165, 0.07836633742071486, 0.07899602421456287, 0.021382198340634595, 0.4789698684173871, 0.41035084157462887, 0.2620402220577849, 0.41196209970538344, 0.24741989936802344, 0.03702945905541544, 0.04320257830648622, 0.3411720846964297, 0.24840386596800457, 0.07965213515229141, 0.06502205650493309, 0.14213285979411516, 0.24151799337740254 ], "ref_values": [ 6.761336274467595, 3.9126157004704174, 4.802461953452166, 7.1602922974914724, 4.424831194882296, 6.337967783007705, 6.609802912748475, 4.48280615801424, 7.063597101284026, 4.485583401757086, 6.794068075722585, 6.334818586977869, 7.4140877413133, 5.671677252915618, 6.348642813644276, 6.85033205833438, 7.143975990502243, 5.786957665062925, 4.870504425151931, 4.2758767023529645, 5.790639992704111, 7.069635126742806, 3.9462897808524438, 4.48937731508437, 5.704260273255812, 6.2878534115407865, 5.6615725491190965, 4.24092558578561, 4.923284454675601, 6.719826399239677, 6.507094487901382, 3.9093177235257857, 6.626379586338597, 5.921294432713609, 6.410324901236537, 6.8489806316916555, 6.843884885359912, 5.9794553719890455, 5.94197497987017, 4.339368957741903, 5.920079388576112, 4.3077406149383135, 3.6254065428674553, 4.539578475418252, 4.402117308556865, 5.705723285584634, 7.03876308692276, 6.8469596909323505, 7.091803483047322, 5.736855692005572, 4.510652985900113, 6.366657702744086, 6.530639067667754, 3.8468173409021498, 6.077935939174037, 5.7908631640763035, 7.319227509721664, 6.21100806904896, 5.722498333727815, 4.208094597254091, 6.336603957955414, 4.719702569597223, 5.651083494626021, 5.7428937174643515, 6.712895688292124, 6.89370169499724, 4.880931487597175, 4.169585137141214, 7.6748386929018135, 6.655367067904568, 6.617006388706487, 5.582979030878425, 6.941200002045673, 7.156498384164189, 4.603864229019433, 6.033772804298934, 6.876678678662732, 5.95588599540354, 6.8511627517753215, 5.615450465532521, 7.206079624019758, 6.88456406714689, 6.944361596485075, 3.8660100789107568, 3.652422677312387, 6.159281904338425, 6.3959799413683465, 6.110308186551603, 5.42072104488447, 3.9336805983235332, 7.797830915799348, 6.282968438171671, 6.052060458409202, 6.375609354450943, 7.609437082439667, 5.998003392700205, 5.889914058101344, 5.616095182829969, 5.724779641088012, 4.3382159056522385 ], "prediction": [ 6.670193134313434, 3.8764554749597564, 5.001344785577314, 7.008152190526687, 4.3837639973153, 6.33700019073082, 6.344750824491626, 4.700977340445762, 6.883101435117418, 4.502619642193916, 6.852272638310357, 6.126774524441693, 7.355473162751246, 5.7840965960163135, 6.601343248519833, 6.826988605172295, 7.3863016570363556, 5.87953767051393, 4.779762699590462, 4.191570266222984, 6.038948270024466, 6.754954439586969, 4.195338011825316, 4.764873941178533, 6.004632592802907, 6.291130456797919, 5.505005326908886, 4.396378681182817, 4.774073145073936, 6.985062134738934, 6.743572478950218, 3.9256132221713247, 6.869469543294546, 6.179640145702037, 6.017648722310295, 6.652642672781242, 6.870422228259696, 6.291747241113912, 6.052860806674397, 4.531396358800879, 5.5136077414875935, 4.230969328499069, 3.915425947867919, 4.903928425930822, 4.413631752617569, 5.986032459214465, 6.980452392294251, 6.081572341906851, 7.162562644711079, 5.401687142030175, 4.632771293648974, 6.301197425529824, 6.699542994579079, 3.885991948091685, 6.165559307015699, 5.690787602546882, 7.450925702886649, 6.116591271705851, 6.0939112587157185, 4.4339428688817035, 5.976446822332329, 5.136132347473951, 5.568544439409374, 6.197117175135874, 6.4394695379064135, 6.585740154186576, 4.494278742406071, 3.6569672622805176, 7.376326654892603, 6.4748977415404525, 7.03123734138948, 6.081816635261282, 6.891283892365782, 7.114066911877119, 4.405309858691798, 6.137234930757249, 6.617425495424238, 6.508170781026214, 6.945652977064655, 5.783425001402093, 6.9531933497941, 6.893853912689397, 6.91094400900907, 4.020379595029073, 3.730789014733102, 6.2382779285529875, 6.417362139708981, 5.631338318134216, 5.010370203309841, 4.195720820381318, 7.385868816093964, 6.530388337539694, 6.015030999353787, 6.418811932757429, 7.268264997743238, 5.749599526732201, 5.969566193253636, 5.681117239334902, 5.582646781293897, 4.579733899029641 ], "outfile_path": "./ml_out_put/output_01_33_34.out", "outfile": { "values": [], "subtype": "ListOfMaps", "type": "TableDisplay", "columnNames": [] }, "outfile_data": [ [ " 0", " 19341", "COC3OC2H8", " 0.0", " 0", "0.0000000000", "0.0911431402", "6.7613362745", "6.6701931343\n" ], [ " 1", " 5190", "NC2NC2NCH3", " 0.0", " 0", "0.0000000000", "0.0361602255", "3.9126157005", "3.8764554750\n" ], [ " 2", " 8572", "C2NC2OC2H9", " 0.0", " 0", "0.0000000000", "0.1988828321", "4.8024619535", "5.0013447856\n" ], [ " 3", " 12708", "C2OC4OH10", " 0.0", " 0", "0.0000000000", "0.1521401070", "7.1602922975", "7.0081521905\n" ], [ " 4", " 21405", "OCNCN2CNH4", " 0.0", " 0", "0.0000000000", "0.0410671976", "4.4248311949", "4.3837639973\n" ], [ " 5", " 15725", "C4OC2OH10", " 0.0", " 0", "0.0000000000", "0.0009675923", "6.3379677830", "6.3370001907\n" ], [ " 6", " 1091", "C3NCNOH10", " 0.0", " 0", "0.0000000000", "0.2650520883", "6.6098029127", "6.3447508245\n" ], [ " 7", " 13240", "C2OC2OCOH8", " 0.0", " 0", "0.0000000000", "0.2181711824", "4.4828061580", "4.7009773404\n" ], [ " 8", " 13291", "C5OCOH12 ", " 0.0", " 0", "0.0000000000", "0.1804956662", "7.0635971013", "6.8831014351\n" ], [ " 9", " 927", "OCNC3NH4 ", " 0.0", " 0", "0.0000000000", "0.0170362404", "4.4855834018", "4.5026196422\n" ], [ " 10", " 19091", "C3OC3OH8 ", " 0.0", " 0", "0.0000000000", "0.0582045626", "6.7940680757", "6.8522726383\n" ], [ " 11", " 8231", "C4OCOCH8 ", " 0.0", " 0", "0.0000000000", "0.2080440625", "6.3348185870", "6.1267745244\n" ], [ " 12", " 18707", "C8H12 ", " 0.0", " 0", "0.0000000000", "0.0586145786", "7.4140877413", "7.3554731628\n" ], [ " 13", " 1195", "NCOCOCOH5", " 0.0", " 0", "0.0000000000", "0.1124193431", "5.6716772529", "5.7840965960\n" ], [ " 14", " 14462", "C7NH7 ", " 0.0", " 0", "0.0000000000", "0.2527004349", "6.3486428136", "6.6013432485\n" ], [ " 15", " 17671", "OC2OC4H10", " 0.0", " 0", "0.0000000000", "0.0233434532", "6.8503320583", "6.8269886052\n" ], [ " 16", " 6031", "C6OCH14 ", " 0.0", " 0", "0.0000000000", "0.2423256665", "7.1439759905", "7.3863016570\n" ], [ " 17", " 8163", "C6O2H8 ", " 0.0", " 0", "0.0000000000", "0.0925800055", "5.7869576651", "5.8795376705\n" ], [ " 18", " 13497", "NCOC2NC2H8", " 0.0", " 0", "0.0000000000", "0.0907417256", "4.8705044252", "4.7797626996\n" ], [ " 19", " 13118", "C7OH12 ", " 0.0", " 0", "0.0000000000", "0.0843064361", "4.2758767024", "4.1915702662\n" ], [ " 20", " 276", "C4NOH9 ", " 0.0", " 0", "0.0000000000", "0.2483082773", "5.7906399927", "6.0389482700\n" ], [ " 21", " 640", "C5OH8 ", " 0.0", " 0", "0.0000000000", "0.3146806872", "7.0696351267", "6.7549544396\n" ], [ " 22", " 5653", "C5OCNH9 ", " 0.0", " 0", "0.0000000000", "0.2490482310", "3.9462897809", "4.1953380118\n" ], [ " 23", " 4311", "OC5NOH5 ", " 0.0", " 0", "0.0000000000", "0.2754966261", "4.4893773151", "4.7648739412\n" ], [ " 24", " 8910", "OC2ONC3H7", " 0.0", " 0", "0.0000000000", "0.3003723195", "5.7042602733", "6.0046325928\n" ], [ " 25", " 10982", "C2OC2OC2H8", " 0.0", " 0", "0.0000000000", "0.0032770453", "6.2878534115", "6.2911304568\n" ], [ " 26", " 10523", "C3OCNCNH10", " 0.0", " 0", "0.0000000000", "0.1565672222", "5.6615725491", "5.5050053269\n" ], [ " 27", " 8924", "CNCONC2OH8", " 0.0", " 0", "0.0000000000", "0.1554530954", "4.2409255858", "4.3963786812\n" ], [ " 28", " 11269", "NCOC5H7 ", " 0.0", " 0", "0.0000000000", "0.1492113096", "4.9232844547", "4.7740731451\n" ], [ " 29", " 14028", "CNC2OC3H9", " 0.0", " 0", "0.0000000000", "0.2652357355", "6.7198263992", "6.9850621347\n" ], [ " 30", " 11748", "C3OC2NCH11", " 0.0", " 0", "0.0000000000", "0.2364779910", "6.5070944879", "6.7435724790\n" ], [ " 31", " 20727", "CNC3ONCH6", " 0.0", " 0", "0.0000000000", "0.0162954986", "3.9093177235", "3.9256132222\n" ], [ " 32", " 20414", "C3N2C3H8 ", " 0.0", " 0", "0.0000000000", "0.2430899570", "6.6263795863", "6.8694695433\n" ], [ " 33", " 9604", "CNCOC4H11", " 0.0", " 0", "0.0000000000", "0.2583457130", "5.9212944327", "6.1796401457\n" ], [ " 34", " 19970", "C4NOC2H5 ", " 0.0", " 0", "0.0000000000", "0.3926761789", "6.4103249012", "6.0176487223\n" ], [ " 35", " 10829", "OC5O2H10 ", " 0.0", " 0", "0.0000000000", "0.1963379589", "6.8489806317", "6.6526426728\n" ], [ " 36", " 13697", "C8H12 ", " 0.0", " 0", "0.0000000000", "0.0265373429", "6.8438848854", "6.8704222283\n" ], [ " 37", " 14837", "C2OCNC3H11", " 0.0", " 0", "0.0000000000", "0.3122918691", "5.9794553720", "6.2917472411\n" ], [ " 38", " 20744", "CNCONCNOH5", " 0.0", " 0", "0.0000000000", "0.1108858268", "5.9419749799", "6.0528608067\n" ], [ " 39", " 10991", "C7OH12 ", " 0.0", " 0", "0.0000000000", "0.1920274011", "4.3393689577", "4.5313963588\n" ], [ " 40", " 9462", "C3O2C3H10", " 0.0", " 0", "0.0000000000", "0.4064716471", "5.9200793886", "5.5136077415\n" ], [ " 41", " 3895", "C2OC3NOH9", " 0.0", " 0", "0.0000000000", "0.0767712864", "4.3077406149", "4.2309693285\n" ], [ " 42", " 21179", "NCNC2ONOH3", " 0.0", " 0", "0.0000000000", "0.2900194050", "3.6254065429", "3.9154259479\n" ], [ " 43", " 19029", "OC6NH7 ", " 0.0", " 0", "0.0000000000", "0.3643499505", "4.5395784754", "4.9039284259\n" ], [ " 44", " 886", "OCNCOCNH2", " 0.0", " 0", "0.0000000000", "0.0115144441", "4.4021173086", "4.4136317526\n" ], [ " 45", " 7302", "NCOCOCOCH7", " 0.0", " 0", "0.0000000000", "0.2803091736", "5.7057232856", "5.9860324592\n" ], [ " 46", " 1250", "NCO2C2OH7", " 0.0", " 0", "0.0000000000", "0.0583106946", "7.0387630869", "6.9804523923\n" ], [ " 47", " 12857", "NC2NC2OCH8", " 0.0", " 0", "0.0000000000", "0.7653873490", "6.8469596909", "6.0815723419\n" ], [ " 48", " 19946", "C2NC5H11 ", " 0.0", " 0", "0.0000000000", "0.0707591617", "7.0918034830", "7.1625626447\n" ], [ " 49", " 15585", "NC3NC2OH6", " 0.0", " 0", "0.0000000000", "0.3351685500", "5.7368556920", "5.4016871420\n" ], [ " 50", " 8187", "C4OCOCH8 ", " 0.0", " 0", "0.0000000000", "0.1221183077", "4.5106529859", "4.6327712936\n" ], [ " 51", " 6588", "C4OC2NH9 ", " 0.0", " 0", "0.0000000000", "0.0654602772", "6.3666577027", "6.3011974255\n" ], [ " 52", " 9567", "C5OC2H10 ", " 0.0", " 0", "0.0000000000", "0.1689039269", "6.5306390677", "6.6995429946\n" ], [ " 53", " 2438", "OC3OC2H4 ", " 0.0", " 0", "0.0000000000", "0.0391746072", "3.8468173409", "3.8859919481\n" ], [ " 54", " 6680", "C4NC3H11 ", " 0.0", " 0", "0.0000000000", "0.0876233678", "6.0779359392", "6.1655593070\n" ], [ " 55", " 12943", "OCOC4OH8 ", " 0.0", " 0", "0.0000000000", "0.1000755615", "5.7908631641", "5.6907876025\n" ], [ " 56", " 16945", "C6OCH10 ", " 0.0", " 0", "0.0000000000", "0.1316981932", "7.3192275097", "7.4509257029\n" ], [ " 57", " 15606", "OC3OC2NH9", " 0.0", " 0", "0.0000000000", "0.0944167973", "6.2110080690", "6.1165912717\n" ], [ " 58", " 5979", "C2OC3NOH9", " 0.0", " 0", "0.0000000000", "0.3714129250", "5.7224983337", "6.0939112587\n" ], [ " 59", " 7731", "C4OC2OH8 ", " 0.0", " 0", "0.0000000000", "0.2258482716", "4.2080945973", "4.4339428689\n" ], [ " 60", " 7870", "C3NC2OCH11", " 0.0", " 0", "0.0000000000", "0.3601571356", "6.3366039580", "5.9764468223\n" ], [ " 61", " 7053", "C2OCOC3H8", " 0.0", " 0", "0.0000000000", "0.4164297779", "4.7197025696", "5.1361323475\n" ], [ " 62", " 14196", "NC2NC2NCH7", " 0.0", " 0", "0.0000000000", "0.0825390552", "5.6510834946", "5.5685444394\n" ], [ " 63", " 13124", "C3OCNCOH9", " 0.0", " 0", "0.0000000000", "0.4542234577", "5.7428937175", "6.1971171751\n" ], [ " 64", " 17007", "C3NC3OH11", " 0.0", " 0", "0.0000000000", "0.2734261504", "6.7128956883", "6.4394695379\n" ], [ " 65", " 19623", "OC2OC4H10", " 0.0", " 0", "0.0000000000", "0.3079615408", "6.8937016950", "6.5857401542\n" ], [ " 66", " 4214", "NC3ONCNH5", " 0.0", " 0", "0.0000000000", "0.3866527452", "4.8809314876", "4.4942787424\n" ], [ " 67", " 6858", "CNC2OC2OH9", " 0.0", " 0", "0.0000000000", "0.5126178749", "4.1695851371", "3.6569672623\n" ], [ " 68", " 17013", "C2OC2OC2H10", " 0.0", " 0", "0.0000000000", "0.2985120380", "7.6748386929", "7.3763266549\n" ], [ " 69", " 11108", "C3OC2NOH9", " 0.0", " 0", "0.0000000000", "0.1804693264", "6.6553670679", "6.4748977415\n" ], [ " 70", " 6937", "C4OC3H12 ", " 0.0", " 0", "0.0000000000", "0.4142309527", "6.6170063887", "7.0312373414\n" ], [ " 71", " 5487", "OCNC4OH3 ", " 0.0", " 0", "0.0000000000", "0.4988376044", "5.5829790309", "6.0818166353\n" ], [ " 72", " 16855", "OC6OH8 ", " 0.0", " 0", "0.0000000000", "0.0499161097", "6.9412000020", "6.8912838924\n" ], [ " 73", " 14673", "OC2OC3OH10", " 0.0", " 0", "0.0000000000", "0.0424314723", "7.1564983842", "7.1140669119\n" ], [ " 74", " 7602", "NC3O2CNH4", " 0.0", " 0", "0.0000000000", "0.1985543703", "4.6038642290", "4.4053098587\n" ], [ " 75", " 20268", "C5N3H7 ", " 0.0", " 0", "0.0000000000", "0.1034621265", "6.0337728043", "6.1372349308\n" ], [ " 76", " 6045", "C2OCOC3H12", " 0.0", " 0", "0.0000000000", "0.2592531832", "6.8766786787", "6.6174254954\n" ], [ " 77", " 6912", "C4O2C2H12", " 0.0", " 0", "0.0000000000", "0.5522847856", "5.9558859954", "6.5081707810\n" ], [ " 78", " 10976", "C5OCNH9 ", " 0.0", " 0", "0.0000000000", "0.0944902253", "6.8511627518", "6.9456529771\n" ], [ " 79", " 8282", "OC6OH8 ", " 0.0", " 0", "0.0000000000", "0.1679745359", "5.6154504655", "5.7834250014\n" ], [ " 80", " 12828", "COC3OC2H12", " 0.0", " 0", "0.0000000000", "0.2528862742", "7.2060796240", "6.9531933498\n" ], [ " 81", " 17122", "C4OC2NH9 ", " 0.0", " 0", "0.0000000000", "0.0092898455", "6.8845640671", "6.8938539127\n" ], [ " 82", " 1876", "C4OC2H10 ", " 0.0", " 0", "0.0000000000", "0.0334175875", "6.9443615965", "6.9109440090\n" ], [ " 83", " 7628", "C4OC2OH8 ", " 0.0", " 0", "0.0000000000", "0.1543695161", "3.8660100789", "4.0203795950\n" ], [ " 84", " 15268", "CNCNC3OH8", " 0.0", " 0", "0.0000000000", "0.0783663374", "3.6524226773", "3.7307890147\n" ], [ " 85", " 15038", "C4NC3H11 ", " 0.0", " 0", "0.0000000000", "0.0789960242", "6.1592819043", "6.2382779286\n" ], [ " 86", " 9194", "C3NC3NH10", " 0.0", " 0", "0.0000000000", "0.0213821983", "6.3959799414", "6.4173621397\n" ], [ " 87", " 3675", "C2N5H5 ", " 0.0", " 0", "0.0000000000", "0.4789698684", "6.1103081866", "5.6313383181\n" ], [ " 88", " 18354", "OC4NC2H9 ", " 0.0", " 0", "0.0000000000", "0.4103508416", "5.4207210449", "5.0103702033\n" ], [ " 89", " 12400", "C2OC4OH8 ", " 0.0", " 0", "0.0000000000", "0.2620402221", "3.9336805983", "4.1957208204\n" ], [ " 90", " 17274", "C7OH14 ", " 0.0", " 0", "0.0000000000", "0.4119620997", "7.7978309158", "7.3858688161\n" ], [ " 91", " 15770", "C4OC2NH7 ", " 0.0", " 0", "0.0000000000", "0.2474198994", "6.2829684382", "6.5303883375\n" ], [ " 92", " 14833", "COC5OH8 ", " 0.0", " 0", "0.0000000000", "0.0370294591", "6.0520604584", "6.0150309994\n" ], [ " 93", " 16949", "C3OC2NCH9", " 0.0", " 0", "0.0000000000", "0.0432025783", "6.3756093545", "6.4188119328\n" ], [ " 94", " 9490", "C3NC4H11 ", " 0.0", " 0", "0.0000000000", "0.3411720847", "7.6094370824", "7.2682649977\n" ], [ " 95", " 12191", "C8H12 ", " 0.0", " 0", "0.0000000000", "0.2484038660", "5.9980033927", "5.7495995267\n" ], [ " 96", " 14814", "CNCOC3NH10", " 0.0", " 0", "0.0000000000", "0.0796521352", "5.8899140581", "5.9695661933\n" ], [ " 97", " 20629", "CNC2OC2NH8", " 0.0", " 0", "0.0000000000", "0.0650220565", "5.6160951828", "5.6811172393\n" ], [ " 98", " 5283", "C3NCNCNH5", " 0.0", " 0", "0.0000000000", "0.1421328598", "5.7247796411", "5.5826467813\n" ], [ " 99", " 18303", "OC7H8 ", " 0.0", " 0", "0.0000000000", "0.2415179934", "4.3382159057", "4.5797338990\n" ] ] }, "locked": true }