diff --git a/beaker-notebooks/sis_cscl.bkr b/beaker-notebooks/sis_cscl.bkr
index 7b506b82f33b50baae5518e6264d8fde18115ca0..7ca9a0539cf7cc2a07567978af7fabed1a76b35c 100644
--- a/beaker-notebooks/sis_cscl.bkr
+++ b/beaker-notebooks/sis_cscl.bkr
@@ -161,7 +161,7 @@
                     "        <h4 class=\"modal-title\" id=\"lasso-motivation-modal-label\">Background</h4>",
                     "      </div>",
                     "      <div class=\"modal-body lasso_instructions\">",
-                    "        <p>We present a tool for predicting the crystal structure of octet binary compounds, by using a set of descriptive parameters (a descriptor) based on free-atom data of the atomic species constituting the binary material. This task is similar to the one presented in the tutorial <a href=\"http://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0\">\"[Predicting energy differences between different crystal structures I: large feature space]\"</a>. In contrast to that tutorial, here we apply a newly developed method: Sure Independence Screening + L0-regularization (SIS+L0), that allows to find an optimal descriptor in a huge feature space containing billions of features.",
+                    "        <p>We present a tool for predicting the crystal structure of octet binary compounds, by using a set of descriptive parameters (a descriptor) based on free-atom data of the atomic species constituting the binary material. We apply a newly developed method: Sure Independence Screening + L0-regularization (SIS+L0), that allows to find an optimal descriptor in a huge feature space containing billions of features &#167;.",
                     "The method is described in:",
                     "<div style=\"padding: 1ex; margin-top: 1ex; margin-bottom: 1ex; border-style: dotted; border-width: 1pt; border-color: blue; border-radius: 3px;\">",
                     "R. Ouyang, E. Ahmetcik, L. M. Ghiringhelli, and M. Scheffler: <span style=\"font-style: italic;\">Descriptor identification for material properties via compressed sensing</span>, in preparation.",
@@ -175,13 +175,14 @@
                     "",
                     "",
                     "        <p> By running the tutorial with the default setting, the (RS vs. ZB) results of the <a href=\"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105503\" target=\"_blank\">PRL 2015</a> identified by the LASSO+L0 method can be recovered.</p>",
-                    "        ",
+                    "",
+                    "<p>&#167; The same task is also addressed in the tutorial <a href=\"http://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0\">\"[Predicting energy differences between different crystal structures I: large feature space]\"</a>, where an alternative method, LASSO+L0, is used to find an optimal descriptor in a moderately large feature space. LASSO+L0 was introduced in [PRL 2015] and SIS+L0 was introduced more recently in order to cope with much larger and highly correlated feature spaces.</p>",
                     "",
                     "        <p>References:</p>",
                     "        <ol>",
                     "          <li>J. A. van Vechten, Phys. Rev. 182, 891 (1969).</li>",
                     "          <li>J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).</li>",
-                    "          <li>J. St. John and A.N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>",
+                    "          <li>J. John and A. N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>",
                     "          <li>J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).</li>",
                     "          <li>A. Zunger, Phys. Rev. B 22, 5839 (1980).</li>",
                     "          <li>D. G. Pettifor, Solid State Commun. 51, 31 (1984).</li>",
@@ -257,14 +258,14 @@
                 "result": {
                     "type": "BeakerDisplay",
                     "innertype": "Html",
-                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<script>\nvar run_lasso = function() {\n  $(\"#lasso_result_button\").removeClass(\"active\").addClass(\"disabled\");\n  getFeatures();\n  getOperators();\n  beaker.max_dim = $(\"#lasso_max_dim_selector\").val();\n  beaker.structures_diff = $(\"#lasso_structures_diff\").val();\n  beaker.n_comb = $(\"#n_comb\").val();\n  beaker.n_sis = $(\"#n_sis\").val();\n  beaker.units = $(\"#units_select\").val();\n  beaker.evaluate(\"calc_cell\"); // evaluate cells with tag \"lasso_cell\"\n // view_result()\n};\nvar reset_lasso = function(){\n  beaker.evaluate(\"lasso-settings-cell\");\n  var e = document.getElementById('lasso-hidden-settings-div');\n  var b = document.getElementById('lasso-hidden-settings-button');\n  e.style.display = 'block';\n  b.style.display = 'inline';\n};\nvar getFeatures = function() {\n    beaker.selected_feature_list = [];\n    $('#lasso_features_select input:checkbox').each(function () {\n        if(this.checked )\n          beaker.selected_feature_list.push(this.value);\n    });\n};\nvar getOperators = function() {\n    beaker.allowed_operations = [];\n    $('#lasso_operators_select input:checkbox').each(function () {\n        if(this.checked )\n          beaker.allowed_operations.push(this.value);\n    });\n};  \n\nvar toggle_settings = function(){\n  var e = document.getElementById('lasso-hidden-settings-div');\n  var b = document.getElementById('lasso-hidden-settings-button');\n  if(e.style.display == 'block'){\n    e.style.display = 'none';\n    b.style.display = 'none';\n  }\n  else{\n    e.style.display = 'block';\n    b.style.display = 'inline';\n  }\n};\nbeaker.view_result = function(result_link) {\n//   beaker.evaluate(\"lasso_viewer_result\").then(function(x) {\n    $(\"#lasso_result_button\").attr(\"href\", result_link);\n//   }); \n  $(\"#lasso_result_button\").removeClass(\"disabled\").addClass(\"active\");\n}\n\n\n\n\n\n\n\n</script>\n<style type=\"text/css\">\n .lasso_instructions{\n    font-size: 15px;\n  } \n</style>\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-motivation-modal\">\n Background\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<!-- Modal -->\n<div class=\"modal fade\" id=\"lasso-motivation-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-motivation-modal-label\" style=\"display: none;\">\n  <div class=\"modal-dialog modal-lg\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-motivation-modal-label\">Background</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n        <p>We present a tool for predicting the crystal structure of octet binary compounds, by using a set of descriptive parameters (a descriptor) based on free-atom data of the atomic species constituting the binary material. This task is similar to the one presented in the tutorial <a href=\"http://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0\">\"[Predicting energy differences between different crystal structures I: large feature space]\"</a>. In contrast to that tutorial, here we apply a newly developed method: Sure Independence Screening + L0-regularization (SIS+L0), that allows to find an optimal descriptor in a huge feature space containing billions of features.\nThe method is described in:\n</p><div style=\"padding: 1ex; margin-top: 1ex; margin-bottom: 1ex; border-style: dotted; border-width: 1pt; border-color: blue; border-radius: 3px;\">\nR. Ouyang, E. Ahmetcik, L. M. Ghiringhelli, and M. Scheffler: <span style=\"font-style: italic;\">Descriptor identification for material properties via compressed sensing</span>, in preparation.\n</div>\n<p></p>\n \n<p>SIS+L0 works iteratively. In the first iteration, a number k of features is collected that have the largest correlation (scalar product) with the property vector. The feature with the largest correlation is simply the 1D descriptor. Next, a residual is constructed as the error made at the first iteration. A new set of k features is now selected as those having the largest  correlation with the residual. The 2D descriptor is the pair of features that yield the smallest fitting error upon least square regression, among all possible pairs contained in the union of the sets selected in this and the first iteration. In each next iteration a new residual is constructed as the error made in the previous iteration, then a new set of k features is extracted as those that have largest correlation with each new residual. The nD descriptor is the n-tuple of features that yield the smallest fitting error upon least square regression, among all possible n-tuples contained in the union of the sets obtained in each new iteration and all the previous iterations. If k=1 the method collapses to the so-called orthogonal matching pursuit.\n</p>\n\n        <p>The prediction of the ground-state structure for binary compounds from a simple descriptor has a notable history in materials science [1-7], where descriptors were designed by chemically/physically-inspired intuition. The tool presented here allows for the machine-learning-aided automatic discovery of a descriptor and a model for the prediction of the difference in energy between a selected pair of structures for 82 octet binary materials.</p>\n\n\n        <p> By running the tutorial with the default setting, the (RS vs. ZB) results of the <a href=\"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105503\" target=\"_blank\">PRL 2015</a> identified by the LASSO+L0 method can be recovered.</p>\n        \n\n        <p>References:</p>\n        <ol>\n          <li>J. A. van Vechten, Phys. Rev. 182, 891 (1969).</li>\n          <li>J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).</li>\n          <li>J. St. John and A.N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>\n          <li>J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).</li>\n          <li>A. Zunger, Phys. Rev. B 22, 5839 (1980).</li>\n          <li>D. G. Pettifor, Solid State Commun. 51, 31 (1984).</li>\n          <li>Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).</li>\n        </ol>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>\n\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-instructions-modal\">\n Instructions\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<!-- Modal -->\n<div class=\"modal fade\" id=\"lasso-instructions-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-instructions-modal-label\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-instructions-modal-label\">Instructions</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n<p>In this example, you can run a compressed-sensing based algorithm for finding the optimal descriptor and model that predicts the difference in energy between crystal structures (here, zincblende vs. rocksalt, CsCl, NiAs or CrB structure). </p>\n\n<p>The descriptor is selected out of a large number of candidates constructed as functions of basic input features, the primary features. </p>\n\n<p>By clicking <b>Settings</b> you can select the structure pair of interest (either RS/ZB, CsCl/ZB, NiAs/ZB or CrB/ZB), the primary features as well as which kind of unary and binary operations are allowed during feature space construction from the checklist below. Moreover the dimension of the output energies (kcal/mol or eV) and the following three parameters of the SIS+L0 algorithm can be specified: \n        </p><ul>\n          <li>Number of iterations for the construction for the feature space: How often the selected operations are applied to build the feature space. At each step the opreations are applied on all features created until the current step. </li>\n          <li>Maximum dimension of optimal descriptor: Number of SIS+SA iterations.</li>\n          <li>Number of collected features per SIS iteration.</li>\n        </ul>    \n        \n<p></p>\n    \n  \n<p>        After the preferred settings have been adjusted, click <b>RUN</b> for performing the calculations (loading the values of the primary features, creation of the feature space, and optimization via SIS+L0). </p>\n\nDuring the run, a brief summary is printed out below the <b>RUN</b> button. At the end of the run: \n  <ul>\n  <li> the solution (machine-learned descriptor, model, and its performance in terms of training error) is printed out underneath starting from the one-dimensional solution to the selected maximum dimensionality and</li>\n<li> the “View interactive 2D scatter plot” button unlocks. By clicking this button, the scatter plot with the two-dimensional descriptor appears in a separate tab. If a descriptor dimensionality greater than two was selected, the scatter plot displays the two-dimensional descriptor.</li>\n</ul>\n<p>Note: the scatter plot remains active even if another run is performed, which enables the output of several sets of input parameters to be compared.</p>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>\n\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" onclick=\"toggle_settings()\">\n Settings\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<a target=\"_blank\" href=\"https://nomad-forum.rz-berlin.mpg.de/\" class=\"btn btn-primary\"> Tell us what you think</a>\n\n"
+                    "object": "<script>\nvar beaker = bkHelper.getBeakerObject().beakerObj;\n</script>\n<script>\nvar run_lasso = function() {\n  $(\"#lasso_result_button\").removeClass(\"active\").addClass(\"disabled\");\n  getFeatures();\n  getOperators();\n  beaker.max_dim = $(\"#lasso_max_dim_selector\").val();\n  beaker.structures_diff = $(\"#lasso_structures_diff\").val();\n  beaker.n_comb = $(\"#n_comb\").val();\n  beaker.n_sis = $(\"#n_sis\").val();\n  beaker.units = $(\"#units_select\").val();\n  beaker.evaluate(\"calc_cell\"); // evaluate cells with tag \"lasso_cell\"\n // view_result()\n};\nvar reset_lasso = function(){\n  beaker.evaluate(\"lasso-settings-cell\");\n  var e = document.getElementById('lasso-hidden-settings-div');\n  var b = document.getElementById('lasso-hidden-settings-button');\n  e.style.display = 'block';\n  b.style.display = 'inline';\n};\nvar getFeatures = function() {\n    beaker.selected_feature_list = [];\n    $('#lasso_features_select input:checkbox').each(function () {\n        if(this.checked )\n          beaker.selected_feature_list.push(this.value);\n    });\n};\nvar getOperators = function() {\n    beaker.allowed_operations = [];\n    $('#lasso_operators_select input:checkbox').each(function () {\n        if(this.checked )\n          beaker.allowed_operations.push(this.value);\n    });\n};  \n\nvar toggle_settings = function(){\n  var e = document.getElementById('lasso-hidden-settings-div');\n  var b = document.getElementById('lasso-hidden-settings-button');\n  if(e.style.display == 'block'){\n    e.style.display = 'none';\n    b.style.display = 'none';\n  }\n  else{\n    e.style.display = 'block';\n    b.style.display = 'inline';\n  }\n};\nbeaker.view_result = function(result_link) {\n//   beaker.evaluate(\"lasso_viewer_result\").then(function(x) {\n    $(\"#lasso_result_button\").attr(\"href\", result_link);\n//   }); \n  $(\"#lasso_result_button\").removeClass(\"disabled\").addClass(\"active\");\n}\n\n\n\n\n\n\n\n</script>\n<style type=\"text/css\">\n .lasso_instructions{\n    font-size: 15px;\n  } \n</style>\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-motivation-modal\">\n Background\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<!-- Modal -->\n<div class=\"modal fade\" id=\"lasso-motivation-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-motivation-modal-label\">\n  <div class=\"modal-dialog modal-lg\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-motivation-modal-label\">Background</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n        <p>We present a tool for predicting the crystal structure of octet binary compounds, by using a set of descriptive parameters (a descriptor) based on free-atom data of the atomic species constituting the binary material. We apply a newly developed method: Sure Independence Screening + L0-regularization (SIS+L0), that allows to find an optimal descriptor in a huge feature space containing billions of features §.\nThe method is described in:\n</p><div style=\"padding: 1ex; margin-top: 1ex; margin-bottom: 1ex; border-style: dotted; border-width: 1pt; border-color: blue; border-radius: 3px;\">\nR. Ouyang, E. Ahmetcik, L. M. Ghiringhelli, and M. Scheffler: <span style=\"font-style: italic;\">Descriptor identification for material properties via compressed sensing</span>, in preparation.\n</div>\n<p></p>\n \n<p>SIS+L0 works iteratively. In the first iteration, a number k of features is collected that have the largest correlation (scalar product) with the property vector. The feature with the largest correlation is simply the 1D descriptor. Next, a residual is constructed as the error made at the first iteration. A new set of k features is now selected as those having the largest  correlation with the residual. The 2D descriptor is the pair of features that yield the smallest fitting error upon least square regression, among all possible pairs contained in the union of the sets selected in this and the first iteration. In each next iteration a new residual is constructed as the error made in the previous iteration, then a new set of k features is extracted as those that have largest correlation with each new residual. The nD descriptor is the n-tuple of features that yield the smallest fitting error upon least square regression, among all possible n-tuples contained in the union of the sets obtained in each new iteration and all the previous iterations. If k=1 the method collapses to the so-called orthogonal matching pursuit.\n</p>\n\n        <p>The prediction of the ground-state structure for binary compounds from a simple descriptor has a notable history in materials science [1-7], where descriptors were designed by chemically/physically-inspired intuition. The tool presented here allows for the machine-learning-aided automatic discovery of a descriptor and a model for the prediction of the difference in energy between a selected pair of structures for 82 octet binary materials.</p>\n\n\n        <p> By running the tutorial with the default setting, the (RS vs. ZB) results of the <a href=\"http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.105503\" target=\"_blank\">PRL 2015</a> identified by the LASSO+L0 method can be recovered.</p>\n\n<p>§ The same task is also addressed in the tutorial <a href=\"http://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0\">\"[Predicting energy differences between different crystal structures I: large feature space]\"</a>, where an alternative method, LASSO+L0, is used to find an optimal descriptor in a moderately large feature space. LASSO+L0 was introduced in [PRL 2015] and SIS+L0 was introduced more recently in order to cope with much larger and highly correlated feature spaces.</p>\n\n        <p>References:</p>\n        <ol>\n          <li>J. A. van Vechten, Phys. Rev. 182, 891 (1969).</li>\n          <li>J. C. Phillips, Rev. Mod. Phys. 42, 317 (1970).</li>\n          <li>J. John and A. N. Bloch, Phys. Rev. Lett. 33, 1095 (1974).</li>\n          <li>J. R. Chelikowsky and J. C. Phillips, Phys. Rev. B 17, 2453 (1978).</li>\n          <li>A. Zunger, Phys. Rev. B 22, 5839 (1980).</li>\n          <li>D. G. Pettifor, Solid State Commun. 51, 31 (1984).</li>\n          <li>Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. Andreoni, Phys. Rev. B 85, 104104 (2012).</li>\n        </ol>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>\n\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" data-toggle=\"modal\" data-target=\"#lasso-instructions-modal\">\n Instructions\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<!-- Modal -->\n<div class=\"modal fade\" id=\"lasso-instructions-modal\" tabindex=\"-1\" role=\"dialog\" aria-labelledby=\"lasso-instructions-modal-label\">\n  <div class=\"modal-dialog\" role=\"document\">\n    <div class=\"modal-content\">\n      <div class=\"modal-header\">\n        <button type=\"button\" class=\"close\" data-dismiss=\"modal\" aria-label=\"Close\"><span aria-hidden=\"true\">×</span></button>\n        <h4 class=\"modal-title\" id=\"lasso-instructions-modal-label\">Instructions</h4>\n      </div>\n      <div class=\"modal-body lasso_instructions\">\n<p>In this example, you can run a compressed-sensing based algorithm for finding the optimal descriptor and model that predicts the difference in energy between crystal structures (here, zincblende vs. rocksalt, CsCl, NiAs or CrB structure). </p>\n\n<p>The descriptor is selected out of a large number of candidates constructed as functions of basic input features, the primary features. </p>\n\n<p>By clicking <b>Settings</b> you can select the structure pair of interest (either RS/ZB, CsCl/ZB, NiAs/ZB or CrB/ZB), the primary features as well as which kind of unary and binary operations are allowed during feature space construction from the checklist below. Moreover the dimension of the output energies (kcal/mol or eV) and the following three parameters of the SIS+L0 algorithm can be specified: \n        </p><ul>\n          <li>Number of iterations for the construction for the feature space: How often the selected operations are applied to build the feature space. At each step the opreations are applied on all features created until the current step. </li>\n          <li>Maximum dimension of optimal descriptor: Number of SIS+SA iterations.</li>\n          <li>Number of collected features per SIS iteration.</li>\n        </ul>    \n        \n<p></p>\n    \n  \n<p>        After the preferred settings have been adjusted, click <b>RUN</b> for performing the calculations (loading the values of the primary features, creation of the feature space, and optimization via SIS+L0). </p>\n\nDuring the run, a brief summary is printed out below the <b>RUN</b> button. At the end of the run: \n  <ul>\n  <li> the solution (machine-learned descriptor, model, and its performance in terms of training error) is printed out underneath starting from the one-dimensional solution to the selected maximum dimensionality and</li>\n<li> the “View interactive 2D scatter plot” button unlocks. By clicking this button, the scatter plot with the two-dimensional descriptor appears in a separate tab. If a descriptor dimensionality greater than two was selected, the scatter plot displays the two-dimensional descriptor.</li>\n</ul>\n<p>Note: the scatter plot remains active even if another run is performed, which enables the output of several sets of input parameters to be compared.</p>\n      </div>\n      <div class=\"modal-footer\">\n        <button type=\"button\" class=\"btn btn-default\" data-dismiss=\"modal\">Close</button>\n<!--         <button type=\"button\" class=\"btn btn-primary\">Save changes</button> -->\n      </div>\n    </div>\n  </div>\n</div>\n\n<!-- Button trigger modal -->\n<button type=\"button\" class=\"btn btn-default\" onclick=\"toggle_settings()\">\n Settings\n</button>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n\n<a target=\"_blank\" href=\"https://nomad-forum.rz-berlin.mpg.de/\" class=\"btn btn-primary\"> Tell us what you think</a>\n\n"
                 },
                 "selectedType": "BeakerDisplay",
                 "elapsedTime": 0,
                 "height": 72
             },
             "evaluatorReader": true,
-            "lineCount": 168
+            "lineCount": 169
         },
         {
             "id": "lasso-settings-cell",