diff --git a/conv-nn-bigmax-2019/bigmax_mnist_example_tutorial.ipynb b/conv-nn-bigmax-2019/bigmax_mnist_example_tutorial.ipynb index 7711a524373f33e714b5e5fc67692b628a1ab03c..0552178c40ebd67c740a0295119419dd2b62d637 100644 --- a/conv-nn-bigmax-2019/bigmax_mnist_example_tutorial.ipynb +++ b/conv-nn-bigmax-2019/bigmax_mnist_example_tutorial.ipynb @@ -9,7 +9,7 @@ "\n", "##### Authors: Angelo Ziletti, Andreas Leitherer, and Luca M. Ghiringhelli - Fritz Haber Institute of the Max Planck Society, Berlin\n", "\n", - "In this tutorial, we briefly introduce the main concepts of convolutional neural network, build a neural network model, and finally explain the classification decision process using attentive response maps." + "In this tutorial, we briefly introduce the main ideas behind convolutional neural networks, build a neural network model, and finally explain the classification decision process using attentive response maps." ] }, { @@ -23,7 +23,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "We first install the packages that we will need to perform this tutorial, and then we load the necessary Python libraries." + "We first install the packages that we will need to perform this tutorial, and then we load the necessary Python libraries. This tutorial has been tested on Python 3.5." ] }, { @@ -38,91 +38,67 @@ "output_type": "stream", "text": [ "Requirement already satisfied: tensorflow in /home/ziletti/.local/lib/python3.6/site-packages (1.12.0)\n", - "Requirement already satisfied: numpy>=1.13.3 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorflow) (1.15.1)\n", - "Requirement already satisfied: grpcio>=1.8.6 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (1.18.0)\n", - "Requirement already satisfied: gast>=0.2.0 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (0.2.2)\n", - "Requirement already satisfied: astor>=0.6.0 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (0.7.1)\n", "Requirement already satisfied: tensorboard<1.13.0,>=1.12.0 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (1.12.2)\n", - "Requirement already satisfied: wheel>=0.26 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorflow) (0.31.1)\n", "Requirement already satisfied: keras-preprocessing>=1.0.5 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (1.0.9)\n", + "Requirement already satisfied: wheel>=0.26 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorflow) (0.31.1)\n", + "Requirement already satisfied: termcolor>=1.1.0 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (1.1.0)\n", + "Requirement already satisfied: astor>=0.6.0 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (0.7.1)\n", + "Requirement already satisfied: numpy>=1.13.3 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorflow) (1.15.1)\n", "Requirement already satisfied: keras-applications>=1.0.6 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (1.0.7)\n", + "Requirement already satisfied: grpcio>=1.8.6 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (1.18.0)\n", "Requirement already satisfied: absl-py>=0.1.6 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (0.7.0)\n", - "Requirement already satisfied: termcolor>=1.1.0 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (1.1.0)\n", - "Requirement already satisfied: six>=1.10.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorflow) (1.11.0)\n", "Requirement already satisfied: protobuf>=3.6.1 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (3.6.1)\n", - "Requirement already satisfied: werkzeug>=0.11.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorboard<1.13.0,>=1.12.0->tensorflow) (0.14.1)\n", + "Requirement already satisfied: gast>=0.2.0 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorflow) (0.2.2)\n", + "Requirement already satisfied: six>=1.10.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorflow) (1.11.0)\n", "Requirement already satisfied: markdown>=2.6.8 in /home/ziletti/.local/lib/python3.6/site-packages (from tensorboard<1.13.0,>=1.12.0->tensorflow) (3.0.1)\n", + "Requirement already satisfied: werkzeug>=0.11.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from tensorboard<1.13.0,>=1.12.0->tensorflow) (0.14.1)\n", "Requirement already satisfied: h5py in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras-applications>=1.0.6->tensorflow) (2.8.0)\n", "Requirement already satisfied: setuptools in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from protobuf>=3.6.1->tensorflow) (40.2.0)\n", "\u001b[31mtwisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.\u001b[0m\n", "\u001b[33mYou are using pip version 10.0.1, however version 19.0.2 is available.\n", "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", "Requirement already satisfied: keras in /home/ziletti/.local/lib/python3.6/site-packages (2.2.4)\n", - "Requirement already satisfied: h5py in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (2.8.0)\n", - "Requirement already satisfied: scipy>=0.14 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (1.1.0)\n", - "Requirement already satisfied: six>=1.9.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (1.11.0)\n", + "Requirement already satisfied: keras-preprocessing>=1.0.5 in /home/ziletti/.local/lib/python3.6/site-packages (from keras) (1.0.9)\n", "Requirement already satisfied: keras-applications>=1.0.6 in /home/ziletti/.local/lib/python3.6/site-packages (from keras) (1.0.7)\n", - "Requirement already satisfied: pyyaml in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (3.13)\n", + "Requirement already satisfied: six>=1.9.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (1.11.0)\n", "Requirement already satisfied: numpy>=1.9.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (1.15.1)\n", - "Requirement already satisfied: keras-preprocessing>=1.0.5 in /home/ziletti/.local/lib/python3.6/site-packages (from keras) (1.0.9)\n", + "Requirement already satisfied: pyyaml in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (3.13)\n", + "Requirement already satisfied: scipy>=0.14 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (1.1.0)\n", + "Requirement already satisfied: h5py in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras) (2.8.0)\n", "\u001b[31mtwisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.\u001b[0m\n", "\u001b[33mYou are using pip version 10.0.1, however version 19.0.2 is available.\n", "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", - "Requirement already satisfied: shap in /home/ziletti/.local/lib/python3.6/site-packages (0.28.3)\n", - "Requirement already satisfied: tqdm in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (4.26.0)\n", - "Requirement already satisfied: numpy in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (1.15.1)\n", - "Requirement already satisfied: ipython in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (6.5.0)\n", - "Requirement already satisfied: matplotlib in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (2.2.3)\n", - "Requirement already satisfied: scikit-image in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (0.14.0)\n", - "Requirement already satisfied: scikit-learn in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (0.19.2)\n", - "Requirement already satisfied: pandas in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (0.23.4)\n", - "Requirement already satisfied: scipy in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from shap) (1.1.0)\n", - "Requirement already satisfied: traitlets>=4.2 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (4.3.2)\n", - "Requirement already satisfied: pickleshare in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (0.7.4)\n", - "Requirement already satisfied: pygments in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (2.2.0)\n", - "Requirement already satisfied: setuptools>=18.5 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (40.2.0)\n", - "Requirement already satisfied: simplegeneric>0.8 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (0.8.1)\n", - "Requirement already satisfied: jedi>=0.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (0.12.1)\n", - "Requirement already satisfied: decorator in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (4.3.0)\n", - "Requirement already satisfied: pexpect; sys_platform != \"win32\" in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (4.6.0)\n", - "Requirement already satisfied: backcall in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (0.1.0)\n", - "Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.15 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from ipython->shap) (1.0.15)\n", - "Requirement already satisfied: cycler>=0.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->shap) (0.10.0)\n", - "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->shap) (2.2.0)\n", - "Requirement already satisfied: python-dateutil>=2.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->shap) (2.7.3)\n", - "Requirement already satisfied: pytz in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->shap) (2018.5)\n", - "Requirement already satisfied: six>=1.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->shap) (1.11.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->shap) (1.0.1)\n", - "Requirement already satisfied: networkx>=1.8 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->shap) (2.1)\n", - "Requirement already satisfied: pillow>=4.3.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->shap) (5.2.0)\n", - "Requirement already satisfied: PyWavelets>=0.4.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->shap) (1.0.0)\n", - "Requirement already satisfied: dask[array]>=0.9.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->shap) (0.19.1)\n", - "Requirement already satisfied: cloudpickle>=0.2.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->shap) (0.5.5)\n", - "Requirement already satisfied: ipython-genutils in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from traitlets>=4.2->ipython->shap) (0.2.0)\n", - "Requirement already satisfied: parso>=0.3.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from jedi>=0.10->ipython->shap) (0.3.1)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from pexpect; sys_platform != \"win32\"->ipython->shap) (0.6.0)\n", - "Requirement already satisfied: wcwidth in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from prompt-toolkit<2.0.0,>=1.0.15->ipython->shap) (0.1.7)\n", - "Requirement already satisfied: toolz>=0.7.3; extra == \"array\" in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from dask[array]>=0.9.0->scikit-image->shap) (0.9.0)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Requirement already satisfied: matplotlib in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (2.2.3)\n", + "Requirement already satisfied: numpy>=1.7.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib) (1.15.1)\n", + "Requirement already satisfied: cycler>=0.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib) (2.2.0)\n", + "Requirement already satisfied: python-dateutil>=2.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib) (2.7.3)\n", + "Requirement already satisfied: pytz in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib) (2018.5)\n", + "Requirement already satisfied: six>=1.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib) (1.11.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib) (1.0.1)\n", + "Requirement already satisfied: setuptools in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib) (40.2.0)\n", + "\u001b[31mtwisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.\u001b[0m\n", + "\u001b[33mYou are using pip version 10.0.1, however version 19.0.2 is available.\n", + "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", + "Requirement already satisfied: scipy in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (1.1.0)\n", + "\u001b[31mtwisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.\u001b[0m\n", + "\u001b[33mYou are using pip version 10.0.1, however version 19.0.2 is available.\n", + "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", + "Requirement already satisfied: numpy in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (1.15.1)\n", "\u001b[31mtwisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.\u001b[0m\n", "\u001b[33mYou are using pip version 10.0.1, however version 19.0.2 is available.\n", "You should consider upgrading via the 'pip install --upgrade pip' command.\u001b[0m\n", "Collecting git+https://github.com/raghakot/keras-vis.git\n", - " Cloning https://github.com/raghakot/keras-vis.git to /tmp/pip-req-build-z_jmzf3p\n", + " Cloning https://github.com/raghakot/keras-vis.git to /tmp/pip-req-build-epbr_4s0\n", "Requirement not upgraded as not directly required: keras in /home/ziletti/.local/lib/python3.6/site-packages (from keras-vis==0.4.1) (2.2.4)\n", "Requirement not upgraded as not directly required: six in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras-vis==0.4.1) (1.11.0)\n", "Requirement not upgraded as not directly required: scikit-image in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras-vis==0.4.1) (0.14.0)\n", "Requirement not upgraded as not directly required: matplotlib in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras-vis==0.4.1) (2.2.3)\n", "Requirement not upgraded as not directly required: h5py in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras-vis==0.4.1) (2.8.0)\n", - "Requirement not upgraded as not directly required: numpy>=1.9.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras->keras-vis==0.4.1) (1.15.1)\n", "Requirement not upgraded as not directly required: keras-preprocessing>=1.0.5 in /home/ziletti/.local/lib/python3.6/site-packages (from keras->keras-vis==0.4.1) (1.0.9)\n", "Requirement not upgraded as not directly required: scipy>=0.14 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras->keras-vis==0.4.1) (1.1.0)\n", "Requirement not upgraded as not directly required: keras-applications>=1.0.6 in /home/ziletti/.local/lib/python3.6/site-packages (from keras->keras-vis==0.4.1) (1.0.7)\n", + "Requirement not upgraded as not directly required: numpy>=1.9.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras->keras-vis==0.4.1) (1.15.1)\n", "Requirement not upgraded as not directly required: pyyaml in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from keras->keras-vis==0.4.1) (3.13)\n", "Requirement not upgraded as not directly required: networkx>=1.8 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->keras-vis==0.4.1) (2.1)\n", "Requirement not upgraded as not directly required: pillow>=4.3.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->keras-vis==0.4.1) (5.2.0)\n", @@ -130,7 +106,13 @@ "Requirement not upgraded as not directly required: dask[array]>=0.9.0 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->keras-vis==0.4.1) (0.19.1)\n", "Requirement not upgraded as not directly required: cloudpickle>=0.2.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from scikit-image->keras-vis==0.4.1) (0.5.5)\n", "Requirement not upgraded as not directly required: cycler>=0.10 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->keras-vis==0.4.1) (0.10.0)\n", - "Requirement not upgraded as not directly required: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->keras-vis==0.4.1) (2.2.0)\n", + "Requirement not upgraded as not directly required: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->keras-vis==0.4.1) (2.2.0)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "Requirement not upgraded as not directly required: python-dateutil>=2.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->keras-vis==0.4.1) (2.7.3)\n", "Requirement not upgraded as not directly required: pytz in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->keras-vis==0.4.1) (2018.5)\n", "Requirement not upgraded as not directly required: kiwisolver>=1.0.1 in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from matplotlib->keras-vis==0.4.1) (1.0.1)\n", @@ -139,7 +121,7 @@ "Requirement not upgraded as not directly required: setuptools in /home/ziletti/anaconda2/envs/py36/lib/python3.6/site-packages (from kiwisolver>=1.0.1->matplotlib->keras-vis==0.4.1) (40.2.0)\n", "Building wheels for collected packages: keras-vis\n", " Running setup.py bdist_wheel for keras-vis ... \u001b[?25ldone\n", - "\u001b[?25h Stored in directory: /tmp/pip-ephem-wheel-cache-nwbaidz1/wheels/c5/ae/e7/b34d1cb48b1898f606a5cce08ebc9521fa0588f37f1e590d9f\n", + "\u001b[?25h Stored in directory: /tmp/pip-ephem-wheel-cache-3ikp3hx6/wheels/c5/ae/e7/b34d1cb48b1898f606a5cce08ebc9521fa0588f37f1e590d9f\n", "Successfully built keras-vis\n", "\u001b[31mtwisted 18.7.0 requires PyHamcrest>=1.9.0, which is not installed.\u001b[0m\n", "Installing collected packages: keras-vis\n", @@ -157,6 +139,13 @@ "! pip install --user tensorflow\n", "! pip install --user keras\n", "\n", + "# to visualize images\n", + "! pip install matplotlib\n", + "\n", + "# to calculate convolution\n", + "! pip install scipy\n", + "! pip install numpy\n", + "\n", "# package for neural network attention map visualization\n", "! pip install git+https://github.com/raghakot/keras-vis.git -U" ] @@ -207,8 +196,9 @@ "source": [ "Convolutional networks are a specialized kind of neural network for processing data that has a known **grid-like topology**; they are networks that use convolution in place of general matrix multiplication in at least one of their layers.\n", "\n", - "Examples include time-series data (1-D grid with samples at regular time intervals) and image data (2-D grid of pixels). \n", - "Convolutional networks have been tremendously successful in practical applications. \n", + "Examples of such data include time-series data (1-D grid with samples at regular time intervals) and image data (2-D grid of pixels). \n", + "Convolutional networks have been tremendously successful in practical applications, especially in computer vision. \n", + "\n", "The name \"convolutional neural network\" indicates that the network employs a mathematical operation called convolution. Convolution is a specialized kind of linear operation. \n", "\n", "\n", @@ -218,7 +208,7 @@ "2. **Detector** stage: each linear activation is run through a nonlinear activation function (e.g. rectified linear \n", "activation function)\n", "\n", - "3. **Pooling** stage: a pooling function is used to modify (downsample) the output of the layer. A pooling function replaces the output of the net at a certain location with a summary statistic of the nearby outputs. For example, the max pooling operation reports the maximum output within a rectangular neighborhood. Other popular pooling functions include the average of a rectangular neighborhood, the $L^2$ norm of a rectangular neighborhood, or a weighted average based on the distance from the central pixel.\n", + "3. **Pooling** stage: a pooling function is used to modify (downsample) the output of the layer. A pooling function replaces the output of the network at a certain location with a summary statistic of the nearby outputs. For example, the max pooling operation reports the maximum output within a rectangular neighborhood. Other popular pooling functions include the average of a rectangular neighborhood, the $L^2$ norm of a rectangular neighborhood, or a weighted average based on the distance from the central pixel.\n", "\n", "#### Max pooling example\n", "\n", @@ -244,14 +234,15 @@ "- **sparse interactions**\n", "- **parameter sharing**\n", "- **equivariant representations** \n", - "Moreover, convolution provides a means for working with inputs of variable size.\n", + "\n", + "Moreover, convolution provides a means for working with inputs of variable size - while this is not possible with fully connected neural networks (also called multi-layer perceptrons).\n", "\n", "#### 2.1 Sparse interactions\n", "##### Fully connected NN\n", "It uses matrix multiplication by a matrix of parameters with a separate parameter describing the interaction between each input unit and each output unit. This means that every output unit interacts with every input unit. This do not scale well to full images. For example, an image of 200x200x3 would lead to neurons that have 200x200x3 = 120,000 weights. Moreover, we would almost certainly want to have several such neurons. Clearly, this full connectivity is wasteful and the huge number of parameters would quickly lead to overfitting.\n", "##### CNN\n", - "It achieves sparse interactions (sparse connectivity) by making the kernel smaller than the input. When processing an image, we can detect small, meaningful features such as edges with kernels that occupy only tens or hundreds of pixels. This means that we need to store fewer parameters, which both reduces the memory requirements of the model and improves its statistical efficiency. It also means that computing the output requires fewer operations. If there are m inputs and n outputs, then matrix multiplication requires m×n parameters, and the algorithms used in practice have O(m×n) runtime (per example). If we limit the number of connections each output may have to k, then the sparsely connected approach requires only k×n parameters and O(k×n) runtime. For many practical applications, k is several orders of magnitude smaller\n", - "than m.\n", + "It achieves sparse interactions (sparse connectivity) by making the kernel smaller than the input. When processing an image, we can detect small, meaningful features such as edges with kernels that occupy only tens or hundreds of pixels. (*see Sec. 3.3.2 for two concrete examples*). \n", + "This means that we need to store fewer parameters, which both reduces the memory requirements of the model and improves its statistical efficiency. It also means that computing the output requires fewer operations. If there are $m$ inputs and $n$ outputs, then matrix multiplication requires $m \\times n$ parameters, and the algorithms used in practice have $O(m \\times n)$ runtime (per example). If we limit the number of connections each output may have to $k$, then the sparsely connected approach requires only $k \\times n$ parameters and $O(k \\times n)$ runtime. For many practical applications, $k$ is several orders of magnitude smaller than $m$.\n", "\n", "#### 2.2 Parameter sharing\n", "It refers to using the same parameter for more than one function in a model. \n", @@ -260,15 +251,14 @@ "Each element of the weight matrix is used exactly once when computing the output of a layer.\n", "\n", "##### CNN\n", - "Each member of the kernel is used at every position of the input. The parameter sharing used by the convolution operation means that rather than learning a separate set of parameters for every location, we learn only one set. This further reduce the storage requirements of the model to k parameters. Recall that k is usually several orders of magnitude smaller than m. Since m and n are usually roughly the same size, k is practically insignificant compared to m × n . Convolution is thus dramatically more efficient than dense matrix multiplication in terms of the memory requirements and statistical efficiency. \n", + "Each member of the kernel is used at every position of the input. The parameter sharing used by the convolution operation means that rather than learning a separate set of parameters for every location, we learn only one set. This further reduce the storage requirements of the model to $k$ parameters. Recall that $k$ is usually several orders of magnitude smaller than $m$. Since $m$ and $n$ are usually roughly the same size, $k$ is practically insignificant compared to $m \\times n$. Convolution is thus dramatically more efficient than dense matrix multiplication in terms of the memory requirements and statistical efficiency. \n", "\n", "\n", "#### 2.3 Equivariant representations\n", "\n", "Parameter sharing causes the layer to have **equivariance to translation**. To say a function is equivariant means that if the input changes, the output changes in the same way.\n", "\n", - "When processing time-series data, this means that convolution produces a sort of timeline that shows when different features appear in the input. If we move an event later in time in the input, the exact same representation of it will appear in the output, just later. Similarly with images, convolution creates a 2-D map of where certain features appear in the input. If we move the object in the input, its representation will move the same amount in the output. This is useful\n", - "for when we know that some function of a small number of neighboring pixels is useful when applied to multiple input locations." + "When processing time-series data, this means that convolution produces a sort of timeline that shows when different features appear in the input. If we move an event later in time in the input, the exact same representation of it will appear in the output, just later. Similarly with images, convolution creates a 2-D map of where certain features appear in the input. If we move the object in the input, its representation will move the same amount in the output. This is useful for when we know that some function of a small number of neighboring pixels is useful when applied to multiple input locations." ] }, { @@ -278,15 +268,15 @@ "## 3. The convolution operation\n", "\n", "### 3.1 Summary and intuition\n", - "The CONV layer's parameters consist of a set of learnable filters. Every filter is small spatially (along width and height), but extends through the full depth of the input volume. For example, a typical filter on a first layer of a ConvNet might have size 5x5x3 (i.e. 5 pixels width and height, and 3 because images have depth 3, the color channels). \n", + "The convolutional layer's parameters consist of a set of learnable filters. Every filter is small spatially (along width and height), but extends through the full depth of the input volume. For example, a typical filter on a first layer of a ConvNet might have size 5x5x3 (i.e. 5 pixels width and height, and 3 because images have depth 3, the color channels). \n", "\n", "* During the forward pass, we slide (more precisely, convolve) each filter across the width and height of the input volume and compute dot products between the entries of the filter and the input at any position. Intuitively, a convolution can be thought as a sliding (weigthed) average. \n", "\n", "* As we slide the filter over the width and height of the input volume we will produce a 2-dimensional activation map that gives the responses of that filter at every spatial position. Intuitively, the network will learn filters that activate when they see some type of visual feature such as an edge of some orientation or a blotch of some color on the first layer, or eventually entire honeycomb or wheel-like patterns on higher layers of the network. \n", "\n", - "* Now, we will have an entire set of filters in each CONV layer (e.g. 12 filters), and each of them will produce a separate 2-dimensional activation map. We will stack these activation maps along the depth dimension and produce the output volume.\n", + "* At this stage, we have an entire set of filters in each convolutional layer (e.g. 12 filters), and each of them produce a separate 2-dimensional activation map. We stack these activation maps along the depth dimension and produce the output volume.\n", "\n", - "Below, you can see a representation on how the convolution is performed.\n", + "Below, you can see a representation on how the convolution operation is performed.\n", "\n", "\n", "Animation from: https://github.com/vdumoulin/conv_arithmetic/blob/master/gif/padding_strides.gif" @@ -297,9 +287,9 @@ "metadata": {}, "source": [ "### 3.2 Mathematical formulation - from Ref. [1]\n", - "Suppose we are tracking the location of a spaceship with a laser sensor. Our laser sensor provides a single output $x(t)$, the position of the spaceship at time $t$.\n", "\n", - "Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy estimate of the spaceship’s position, we would like to average several measurements. Of course, more recent measurements are more relevant, so we will want this to be a weighted average that gives more weight to recent measurements. We can do this with a weighting function $w(a)$, where a is the age of a measurement. \n", + "#### Main idea\n", + "Suppose we are tracking the location of a spaceship with a laser sensor. Our laser sensor provides a single output $x(t)$, the position of the spaceship at time $t$. Now suppose that our laser sensor is somewhat noisy. To obtain a less noisy estimate of the spaceship’s position, we would like to average several measurements. Of course, more recent measurements are more relevant, so we will want this to be a weighted average that gives more weight to recent measurements. We can do this with a weighting function $w(a)$, where $a$ is the age of a measurement. \n", "If we apply such a weighted average operation at every moment, we obtain a new function $s$ providing a smoothed estimate of the position of the spaceship: \n", "\n", "$s(t) = \\int x(a)w(t− a)da$\n", @@ -340,7 +330,7 @@ "## 3.3 Examples\n", "\n", "### 3.3.1 Example: computing output value of a discrete convolution (from Ref. [3])\n", - "We present below the calculation of the discrete convolution of a 3x3 kernel $K_{\\rm ex}$ with no padding and stride 1: \n", + "We present below the calculation of the discrete convolution of a 3x3 kernel $K_{\\rm ex}$ (with no padding and stride 1): \n", "$K_{\\rm ex} = \\begin{pmatrix}\n", "0 & 1 & 2 \\\\ \n", "2 & 2 & 0 \\\\ \n", @@ -366,34 +356,33 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Retrieving picture of Max Planck. Saving image to './img_max_planck.jpg'.\n", - "Retrieving picture of Berlin landscape. Saving image to './img_berlin_landscape.jpg'.\n", - "Done.\n" - ] - } - ], + "outputs": [], "source": [ + "# this can be skipped because the images are already saved on the server\n", + "\n", "# retrieve image of Max Planck from wikipedia\n", - "print(\"Retrieving picture of Max Planck. Saving image to './img_max_planck.jpg'.\")\n", - "urllib.request.urlretrieve(\"https://upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Max_Planck_1933.jpg/220px-Max_Planck_1933.jpg\", \"./img_max_planck.jpg\")\n", + "#print(\"Retrieving picture of Max Planck. Saving image to './img_max_planck.jpg'.\")\n", + "#urllib.request.urlretrieve(\"https://upload.wikimedia.org/wikipedia/commons/thumb/c/c7/Max_Planck_1933.jpg/220px-Max_Planck_1933.jpg\", \"./img_max_planck.jpg\")\n", "\n", "# retrive a picture of Berlin\n", - "print(\"Retrieving picture of Berlin landscape. Saving image to './img_berlin_landscape.jpg'.\")\n", - "urllib.request.urlretrieve(\"http://vivalifestyleandtravel.com/images/cache/c-1509326560-44562570.jpg\", \"./img_berlin_landscape.jpg\")\n", + "#print(\"Retrieving picture of Berlin landscape. Saving image to './img_berlin_landscape.jpg'.\")\n", + "#urllib.request.urlretrieve(\"http://vivalifestyleandtravel.com/images/cache/c-1509326560-44562570.jpg\", \"./img_berlin_landscape.jpg\")\n", "\n", - "print(\"Done.\")" + "#print(\"Done.\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We define a function to display images in a single figure; it is not important for the purpose of this tutorial to understand this function implementation." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": { "code_folding": [ 7 @@ -438,7 +427,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -521,7 +510,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -568,7 +557,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -585,7 +574,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -616,7 +605,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -656,7 +645,9 @@ "4. highlighting edges\n", "5. embossing (i.e. raising the pattern against the background)\n", "\n", - "As you can see above, the effect are similar for both pictures, and it is defined by the kernel with which the image is convolved." + "As you can see above, the effect are similar for both pictures, and it is defined by the kernel with which the image is convolved.\n", + "\n", + "In the case of **convolutional neural network**, the **kernels** will not be the one reported above, but they are going to be **learned by the network** from the data (by minimizing the classification error). " ] }, { @@ -697,7 +688,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "metadata": { "code_folding": [] }, @@ -756,7 +747,7 @@ "\n", "For more information on Keras, please visit https://keras.io/\n", "\n", - "We start with defining the architecture (i.e. the shape) of the network. We use two convolutional layers, one max pooling, and one fully connected layer. There is no particular reason behind this choice, and other - better performing - choices are possible." + "We start by defining the architecture (i.e. the shape) of the network. We use two convolutional layers, one max pooling, and one fully connected layer. There is no particular reason behind this choice, and other - better performing - choices are possible." ] }, { @@ -818,7 +809,7 @@ "\n", "An **epoch** is a single step in training a neural network; one epoch is completed when the neural network has seen every training sample once. \n", "\n", - "<span style=\"color:red\"> **Run the cell below to start training your first convolutional neural network. The full optimization should take approximately 7 minutes; please take this time to read carefully the materials above, and maybe check out some external references.**</span>." + "<span style=\"color:red\"> **Run the cell below to start training your first convolutional neural network. The full optimization should take approximately 7 minutes (~1 min per epoch); please take this time to read carefully the materials above, and maybe check out some external references.**</span>." ] }, { @@ -832,21 +823,21 @@ "text": [ "Train on 60000 samples, validate on 10000 samples\n", "Epoch 1/7\n", - "60000/60000 [==============================] - 67s 1ms/step - loss: 0.1929 - acc: 0.9408 - val_loss: 0.0693 - val_acc: 0.9759\n", + "60000/60000 [==============================] - 70s 1ms/step - loss: 0.2028 - acc: 0.9379 - val_loss: 0.0561 - val_acc: 0.9829\n", "Epoch 2/7\n", - "60000/60000 [==============================] - 69s 1ms/step - loss: 0.0480 - acc: 0.9855 - val_loss: 0.0421 - val_acc: 0.9870\n", + "60000/60000 [==============================] - 68s 1ms/step - loss: 0.0472 - acc: 0.9859 - val_loss: 0.0360 - val_acc: 0.9881\n", "Epoch 3/7\n", - "60000/60000 [==============================] - 68s 1ms/step - loss: 0.0294 - acc: 0.9907 - val_loss: 0.0298 - val_acc: 0.9886\n", + "60000/60000 [==============================] - 66s 1ms/step - loss: 0.0306 - acc: 0.9904 - val_loss: 0.0328 - val_acc: 0.9891\n", "Epoch 4/7\n", - "60000/60000 [==============================] - 70s 1ms/step - loss: 0.0203 - acc: 0.9941 - val_loss: 0.0309 - val_acc: 0.9893\n", + "60000/60000 [==============================] - 68s 1ms/step - loss: 0.0207 - acc: 0.9936 - val_loss: 0.0304 - val_acc: 0.9904\n", "Epoch 5/7\n", - "60000/60000 [==============================] - 73s 1ms/step - loss: 0.0140 - acc: 0.9959 - val_loss: 0.0302 - val_acc: 0.9894\n", + "60000/60000 [==============================] - 67s 1ms/step - loss: 0.0147 - acc: 0.9953 - val_loss: 0.0298 - val_acc: 0.9892\n", "Epoch 6/7\n", - "60000/60000 [==============================] - 70s 1ms/step - loss: 0.0091 - acc: 0.9974 - val_loss: 0.0294 - val_acc: 0.9912\n", + "60000/60000 [==============================] - 67s 1ms/step - loss: 0.0097 - acc: 0.9973 - val_loss: 0.0317 - val_acc: 0.9913\n", "Epoch 7/7\n", - "60000/60000 [==============================] - 67s 1ms/step - loss: 0.0061 - acc: 0.9984 - val_loss: 0.0379 - val_acc: 0.9905\n", - "Test loss: 0.03785699036198257\n", - "Test accuracy: 0.9905\n" + "60000/60000 [==============================] - 67s 1ms/step - loss: 0.0066 - acc: 0.9983 - val_loss: 0.0328 - val_acc: 0.9911\n", + "Test loss: 0.03277341276791031\n", + "Test accuracy: 0.9911\n" ] } ], @@ -881,7 +872,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8VfWd7//XJxeSALlAEhIg3KVKBOQSta223pWL9drW2nE6tVrGc9qppz3OHD2//urUjqNtbacX/bXHVnq006nT0WptDUWr4KVWKyoSQRFEkZAEEiAkgdz35/fHWsFNSEhIstnZO+/n47EfWff9WbWsz/5+1nd9l7k7IiIiR5MS7wBERGT4U7IQEZE+KVmIiEiflCxERKRPShYiItInJQsREemTkoWMeGY23czczNL6se3nzez54xGXyHCiZCEJxczeM7M2Myvotnx9eMGfHp/IRJKbkoUkoneBq7tmzGwekBW/cIaH/rSMRAZKyUIS0S+Bz0XN/x3wQPQGZpZrZg+YWa2ZbTezr5tZSrgu1czuMrM6M9sGLO9h3/vMrNrMdprZv5hZan8CM7P/MrMaM9tvZs+a2clR67LM7HthPPvN7HkzywrXnWlmL5hZvZntMLPPh8vXmtn1Ucc4rAwWtqa+ZGZbgC3hsh+Gx2gws1fM7GNR26ea2f82s3fMrDFcP8XM7jGz73U7l9+b2f/oz3lL8lOykET0IpBjZnPCi/hVwL932+bHQC4wEziLILlcG677InAxsBAoAz7Zbd/7gQ7ghHCbC4Hr6Z9VwGxgAvAq8KuodXcBi4GPAuOBfwIiZjY13O/HQCGwAFjfz+8DuAw4HSgN518OjzEe+A/gv8wsM1z3NYJW2TIgB/gCcDA856ujEmoBcB7w62OIQ5KZu+ujT8J8gPeA84GvA3cAS4AngTTAgelAKtAKlEbt9/fA2nD6aeCGqHUXhvumAUXhvllR668G1oTTnwee72eseeFxcwl+mDUDp/Sw3S3AI70cYy1wfdT8Yd8fHv/cPuLY1/W9wGbg0l62exO4IJz+MlAe7//e+gyfj2qckqh+CTwLzKBbCQooAEYB26OWbQcmh9OTgB3d1nWZBqQD1WbWtSyl2/Y9Cls5twOfImghRKLiyQAygXd62HVKL8v767DYzOx/ErSEJhEkk5wwhr6+637gGoLkew3ww0HEJElGZShJSO6+neBG9zLgt91W1wHtBBf+LlOBneF0NcFFM3pdlx0ELYsCd88LPznufjJ9+yxwKUHLJ5eglQNgYUwtwKwe9tvRy3KAA8DoqPniHrY5NHR0eH/ifwGfBsa5ex6wP4yhr+/6d+BSMzsFmAM82st2MgIpWUgiu46gBHMgeqG7dwK/AW43s2wzm0ZQq++6r/Eb4CtmVmJm44Cbo/atBp4AvmdmOWaWYmazzOysfsSTTZBo9hBc4P816rgRYCXwfTObFN5o/oiZZRDc1zjfzD5tZmlmlm9mC8Jd1wNXmNloMzshPOe+YugAaoE0M/sGQcuiy8+Bb5nZbAvMN7P8MMZKgvsdvwQedvfmfpyzjBBKFpKw3P0dd1/Xy+p/IPhVvg14nuBG78pw3c+A1cDrBDehu7dMPkdQxtpEUO9/CJjYj5AeIChp7Qz3fbHb+puACoIL8l7g20CKu79P0EL6n+Hy9cAp4T7/BrQBuwjKRL/i6FYT3Cx/O4ylhcPLVN8nSJZPAA3AfRze7fh+YB5BwhA5xNz18iMRCZjZxwlaYNPD1pAIoJaFiITMLB24Efi5EoV0p2QhIpjZHKCeoNz2gziHI8OQylAiItIntSxERKRPSfNQXkFBgU+fPj3eYYiIJJRXXnmlzt0L+9ouZsnCzFYSjL+z293n9rDeCJ4QXUYwNs3n3f3VcN3fEQznAPAv7n5/X983ffp01q3rrReliIj0xMy2971VbMtQ/5dg3J7eLCUYcG02sAL4CYCZjQduJRgY7TTg1vDBKRERiZOYJQt3f5bgAaPeXAo84IEXgTwzmwhcBDzp7nvdfR/BODVHSzoiIhJj8bzBPZnDnyytDJf1tlxEROIknje4rYdlfpTlRx7AbAVBCYupU6cesb69vZ3KykpaWloGEWZiyczMpKSkhPT09HiHIiJJJJ7JopLDR/4sAarC5Wd3W762pwO4+73AvQBlZWVHJJTKykqys7OZPn06UcNNJy13Z8+ePVRWVjJjxox4hyMiSSSeZajHgM+FI19+GNgfjvi5GrjQzMaFN7YvDJcds5aWFvLz80dEogAwM/Lz80dUS0pEjo9Ydp39NUELocDMKgl6OKUDuPtPgXKCbrNbCbrOXhuu22tm3yIYmRPgNnc/2o3yvuIY6K4JaaSdr4gcHzFLFu5+dR/rHfhSL+tW8sFw0iIiI1pHZ4SGlg72N7cf8Wlobmfc6FF89vQj79sOpaR5gns42rNnD+eddx4ANTU1pKamUlgYPCj517/+lVGjRvV5jGuvvZabb76ZE088Maaxikhs9XrBP9jWYxLY39xBQzjd1Npx1GMvmpqnZJHI8vPzWb9+PQD//M//zNixY7npppsO26brZegpKT3fPvrFL34R8zhFpH/aOyOHLuDdf90P9oKfmZ5Cblb6oc/kvEzmTMw+bFlPn5ysdDLTU2N+7koWcbB161Yuu+wyzjzzTF566SX+8Ic/8M1vfpNXX32V5uZmrrrqKr7xjW8AcOaZZ3L33Xczd+5cCgoKuOGGG1i1ahWjR4/md7/7HRMmTIjz2YgkFnenqbWD2sbWHn7l93zR77rgH2jrPOqx+7rg52Wlkzv6yIt9blY6GWmxv+APxohJFt/8/UY2VTUM6TFLJ+Vw6ydOHtC+mzZt4he/+AU//elPAbjzzjsZP348HR0dnHPOOXzyk5+ktLT0sH3279/PWWedxZ133snXvvY1Vq5cyc0339zT4UVGpJb2TnY3tLKrsYVdDS3U7G9hd2Mruxpawk8wffAoF/2s9NTDLuYl40aTOyn6Ap+WsBf8wRgxyWK4mTVrFqeeeuqh+V//+tfcd999dHR0UFVVxaZNm45IFllZWSxduhSAxYsX89xzzx3XmEXipaMzQl1TW5AAGlrYHXXhD+aDBFF/sP2IfUelpVCck0lRTgalk3I458QJFOdmUDA2g7zRI+uCPxgjJlkMtAUQK2PGjDk0vWXLFn74wx/y17/+lby8PK655poen5WIviGemppKR8fRa6Aiw527s+9gOzX7W9jVGCSBmv2th6Z3NbRS09BCXVMr3d/TlppiFI7NoCgng6n5ozltxniKcjKYkJNJUU7moQSRm5WuLuVDYMQki+GsoaGB7OxscnJyqK6uZvXq1SxZorETJbE1trSzq6E1SABRLYHdjUF5aFdDK7WNrbR1Hvm67/FjRjEhO4Pi3ExKJ+ZQlJNBUW4mRdlBIijKySB/bAapKUoCx4uSxTCwaNEiSktLmTt3LjNnzuSMM86Id0givWpp76S2sTVMAC3dEkJYEmpo6fFmcHZGGhNyMijKyQxbAsGFP/pvYXaGSkHDUNK8g7usrMy7v/zozTffZM6cOXGKKH5G6nnL4Lk7ew+0sbO+mZ37mtlZ30zlvmaq6oPpqvpm9vVyX6AoJyP45X+oBdCVBDIPlYfGZuj36XBjZq+4e1lf2+m/nMgI0tEZYVdja5gIDoZ/W8LkcJCq+haa2w9vEYwelcrkvCwmj8vilCl5TMwJE0KYBIpzMnVfYARQshBJIi3tnYe1CqrC6crwb01DC52Rw6sJ+WNGMSkvi9kTsjn7xAmHEsPkvCxKxmUpEQigZCGSMNydhuYOKsMWQVdpKDo51DW1HbZPikFxTiaTx2Vx6vRxYRIYfSgZTM7LImuU7g9I35QsRIaJSMSpbWo97B5BVxLo+tt9yIiMtJRDLYE5E3MOaxVMHpdFcU4maanxfBOBJAslC5HjpK0jQvX+npPAzvpmqutbjuhGmpuVzqS8LKaMH81HZuUfkQzyx4xSiUiOCyULkRjYe6CNV7fv49X3g8+7dQfY3Xj4g2VmMCE7g0l5WcybnMuSucWUHEoGo5mUl0l2pl6PK8ODkkUMDcUQ5QArV65k2bJlFBcXxyxWGbhIxNmyu4lXupLD9n1sqzsAQFqKUToph4/NLjzUGuhKCMW5mXqeQBKGkkUM9WeI8v5YuXIlixYtUrIYJhpb2lm/oz5MDvW89v4+GluCewnjx4xi0dRxfKpsCounjWPe5FzdQJakoGQRJ/fffz/33HMPbW1tfPSjH+Xuu+8mEolw7bXXsn79etydFStWUFRUxPr167nqqqvIyso6phaJDJ67s33PQV7Zvo9XwlbD5l2NuAdlpBOLsvnEKZNYPHUci6eNY1r+aN1DkKQ0cpLFqpuhpmJoj1k8D5beecy7vfHGGzzyyCO88MILpKWlsWLFCh588EFmzZpFXV0dFRVBnPX19eTl5fHjH/+Yu+++mwULFgxt/HKElvZONlTuD5LD9n289v4+9hwIuqNmZ6SxYGoeS+YWs3jaOE6ZkkeO7inICDFyksUw8qc//YmXX36ZsrLgCfvm5mamTJnCRRddxObNm7nxxhtZtmwZF154YZwjTX5V9c28+n6QGF7dvo+NVQ10hA+tzSwYw9knTmDxtKDVcMKEsRq4TkaskZMsBtACiBV35wtf+ALf+ta3jli3YcMGVq1axY9+9CMefvhh7r333jhEmJzaOiJsqm7g1aiSUvX+YCj4zPQUTinJ44sfn8niqeNYODWP/LEZcY5YZPgYOcliGDn//PP55Cc/yY033khBQQF79uzhwIEDZGVlkZmZyac+9SlmzJjBDTfcAEB2djaNjY1xjjrx1DW1ht1X63l1+z5er6yntSN4jmFyXhZl08ezeGoei6aNY87EHNL18JpIr5Qs4mDevHnceuutnH/++UQiEdLT0/npT39Kamoq1113He6OmfHtb38bgGuvvZbrr79eN7iPojPivL2r8bDuq+/tOQhAeqpx8qRcrvnwNBZPG8eiqeMozs2Mc8QiiUVDlCehkXDe+5s/6L762vv7eO39+kNDYRSMDbqvdt1rmDs5l8x0dV8V6YmGKJek4e68W3fgUKvhle372LK7CfdgoLyTinO4bOGkIDlMHc+U8VnqvirgDk27Yf8OqH8//Lvjg/mDe2HUaBg1BkaNDf92nx4Do7J7WRdOZ4yF9DGQktxlTCULGXbcnY1VDTzzdu2hITO6XriTk5nGomnjuHj+pEPdV/VCnRGqswMaqz+4+NfvgP3vRyWEHdDZevg+mbmQOxXGTYfJi6GjBdoOQFsTNO+D/ZUfzLc2QeTIFz31Kn30UZLKUZJRRi/JKH0MpA6f/2/HNBIzWwL8EEgFfu7ud3ZbPw1YCRQCe4Fr3L0yXPdtYHm46bfc/T8HEkNX/X+kSOSy4vt7DvK79Tt5dP1O3qkNhsuYVTiGC0qLDpWVZhWOJUXdV0eGjtbg4h3dKoiebtgJ3u3VrWMKIW8qFM2FE5cGiSFvCuROCf5m5h5jDG1B4mg7EPWJnm/sZXk439IADdWHr++ewI4mLTMqgXRv8UTNj58JZdce27kdo5glCzNLBe4BLgAqgZfN7DF33xS12V3AA+5+v5mdC9wB/K2ZLQcWAQuADOAZM1vl7g3HEkNmZiZ79uwhPz9/RCQMd2fPnj1kZibOzdu9B9p4fEMVj66v4pXt+wA4bfp4vnDmDJacXKzuq8mstfHwslD3MlHTrsO3txTInhRc9Kd+OPibNzVMBFMhtwTSs4Y2xrRRkDYeRo8fumN2tndLKo1HSUZhC6f78qbdh89PnJ+4yQI4Ddjq7tsAzOxB4FIgOlmUAl8Np9cAj0Ytf8bdO4AOM3sdWAL85lgCKCkpobKyktra2oGfRYLJzMykpKQk3mEcVXNbJ09squF366t49u1aOiLOh4rG8k9LTuSSUyZRMm50vEOUwXIPyjqHksD7RyaG5n2H75OSHlzw86bC7AuObBXkTIbUJHhiPjUdsvKCz1CJRPreZpBimSwmAzui5iuB07tt8zpwJUGp6nIg28zyw+W3mtn3gdHAORyeZAAwsxXACoCpU6ceEUB6ejozZswY9InI4HV0RvjzO3v43Ws7Wb2xhgNtnRTnZHLdmTO4dMFk5kzMHhGtv6QRiQS//Lu3CqKn2w8cvk/6mA8u/iVlH7QIuloHY4uS/iZxzByH/91imSx6+pffvaB+E3C3mX0eeBbYCXS4+xNmdirwAlAL/AXo6LYv7n4vcC8EXWeHLnQZCu7Ohsr9PLp+J79/vZq6playM9O4eP4kLls4mdNnjE+O+w+RCLQf7L1u3XYAOtvAI4AHv7o9EvU3ErUuat7pY33UcXpdF+nhe7utp/vyo8TV2QGNVcG9hM7DX+FKZl6QDPJPgJnnHN4qyJ0alHL0gyBhxTJZVAJTouZLgKroDdy9CrgCwMzGAle6+/5w3e3A7eG6/wC2xDBWGULv1R3g0fU7+d36Kt6tO8Co1BTOPWkCly2cxNknTojvMw+RSPCLt6c68BHTR1sXTrc2HfkLOlYsJfhgH0xbSnABjv7b6/quddbzusP27f43XJeSChNPgZMuPrxVkDcl6NUjSSuWyeJlYLaZzSBoMXwG+Gz0BmZWAOx19whwC0HPqK6b43nuvsfM5gPzgSdiGKsMUl1TK394PbhRvX5HPWZw+ozx3HDWTJbMnUhu1gBqzZ0dwYW4+0W6tfuF/Bgu9O0H+//9KWk9dHscE1wce+2TP7aH3iujIXVUDxfl/ly0u9bpF7nEV8yShbt3mNmXgdUEXWdXuvtGM7sNWOfujwFnA3eYmROUob4U7p4OPBfWsBsIutQeUYaS+DrQ2sGTm3bxyGs7eX5rHZ0RZ87EHG5ZehKXLJjExNxeeqa4Q8t+aKgKPo3h34ad4d/qYLqlvv/BpGb0fPEeXRDVn/1o/d27X+DHBj1hRARI8uE+ZOi1d0Z4fksdj67fyRMbd9Hc3snkvCwuWTCJyxZM5sQJY+Bg3QeJoCsBNFZHJYOqHn7hW9BHPmdS0OslZxKMKQgu2kdc5Ht4eEkXdpEB0XAfMmTcndd21PP7V7fz0oY3yWyuYWZGA9+d0sHivIMU215sZxW8FbYKuj/1mpIG2RODBFA0F2ZfFCaFqM/YYl3wRYYxJQsJtDdHtQCCFsH+XdvZvfNdOup3Mrmzlq+zn1Tz4DFJCLor7M6CnIlBa2DqR4ILf3a3RDCmMLgxKiIJS8liJGhpOEpJKJxu3nvEbuajifh42rOKOTh5Lh1TZ5E6Pnw4qqulkDVON19FRgAli2TSUA2v/N/goajo+wNtTUduO6YwuODnltA+qYzNzTn8eXc6z9WMosrHM37iNJYsPIFPnDKJopzEGT5ERGJDySJZbH0KfrsiaCF0/eqfMAdmnXfk/YHsibSRzrNv1/Lo+p38ad0uWtojTBmfxWVnT+afF0zihAnqMy8iH1CySHSdHbD2Dnjue0FyuLYcCk/scVN355Xt+3j0mbd5fEM1+w62M250Op9aPIXLFk5i0dRxGnJDRHqkZJHIGqrh4etg+59h4d/C0u8ED4B1s2VX46Enqiv3NZOZnsIFpcVcvnASH5tdqHdPi0iflCwSVVfZqf0gXPZTWHD1Yatr9rfw+9ereHT9TjZWNZBicObsQr52wYe48ORivTBIRI6JrhiJprMDnrkTnr0LCk+CT99/qOwUiTgPv1rJI6/t5C/b9uAOp5Tk8o2LS7n4lIlMyNaNahEZGCWLRNJQDQ9fD9ufh4XXwNLvHlZ2+s91O7jltxVMzx/NV86dzaULJjGzcGwcAxaRZKFkkSjeeRoe/mKvZSeAx9ZXMatwDH/62lm6US0iQ0p3Noe7SCc8fTv88opgrKQvrukxUdQ1tfLSu3tYPm+iEoWIDDm1LIazxpqg7PTec7DgGlj2nWDgvB6s3lhDxGHpvInHOUgRGQmULIard9bAb78YvIPhsp/Ags8edfPyimpmFozhpGI9TCciQ09lqOEm0glr/hV+eTmMzg/LTkdPFHuaWnlx216WqQQlIjGilsVwEl12OuWzsPyuXstO0Z7YtIvOiLN0XvFxCFJERiIli+Fi29qgt1NrI1z6/8HCv+n3ruUV1UzPH03pxJzYxSciI5rKUPEW6YQ1d8ADlwXDfa9Yc0yJYt+BNl54Z49KUCISU2pZxFPjrmBsp/eeg1OuhuXf61fZKdoTm2rojDjL1AtKRGJIySJeBlF2ivZ4RQ1Tx4/m5EkqQYlI7KgMdbxFOmHtnWHZKQ+++PSAE0X9wTZe2FrH0nnFKkGJSEypZXE8Ne6C314P7z4L8z8TlJ0yBj520xObdtERcZarBCUiMaZkcbxseyboFtvaCJfeAwv+ZtDvrl5VUU3JuCzmTc4doiBFRHqmMlSsRTph7bfhl9Flp2sGnSj2N7fz/NY69YISkeNCLYtYatodtCbefQbmXwXLvz+oslO0Jzftor1TvaBE5PiIacvCzJaY2WYz22pmN/ewfpqZPWVmG8xsrZmVRK37jpltNLM3zexHlmg/n999Fn56Jux4CS65Gy7/P0OWKCAoQU3Oy+KUEpWgRCT2YpYszCwVuAdYCpQCV5tZabfN7gIecPf5wG3AHeG+HwXOAOYDc4FTgbNiFeuQinTCM9+BBy6FjJyg7LTobwdddorW0NLOc1vqWDpXvaBE5PiIZRnqNGCru28DMLMHgUuBTVHblAJfDafXAI+G0w5kAqMAA9KBXTGMdWg07Q5Git22FuZ9Gi7+tyFtTXT506ZdtHVGWDZfJSgROT5iWYaaDOyImq8Ml0V7HbgynL4cyDazfHf/C0HyqA4/q939ze5fYGYrzGydma2rra0d8hM4Ju8+F5Sd3n8RLvkxXHFvTBIFQHlFDRNzM1lQkheT44uIdBfLZNFTfcS7zd8EnGVmrxGUmXYCHWZ2AjAHKCFIMOea2cePOJj7ve5e5u5lhYWFQxt9f0U64ZnvwgOXQEY2XP8ULPrckJadojW2tPPsllqWzp1ISopKUCJyfMSyDFUJTImaLwGqojdw9yrgCgAzGwtc6e77zWwF8KK7N4XrVgEfBp6NYbzHrqk2LDutgXmfCstOsX350NNv7aatI8Ly+RqOXESOn1i2LF4GZpvZDDMbBXwGeCx6AzMrMLOuGG4BVobT7xO0ONLMLJ2g1XFEGSquDpWd/gKf+BFc8bOYJwqAxzdUU5yTycIp42L+XSIiXWKWLNy9A/gysJrgQv8bd99oZreZ2SXhZmcDm83sbaAIuD1c/hDwDlBBcF/jdXf/faxiPSaRSFTZaWxQdlr8dzErO0Vrau1g7du1LJlbrBKUiBxXMX0oz93LgfJuy74RNf0QQWLovl8n8PexjG1AostOcz8Jn/jBcWlNdPmgBKVeUCJyfOkJ7v5673l46Dpo3gef+CEsOj6tiWjlG6qZkJ3B4qkqQYnI8aWxofoSicCzd8H9nwjKTl98ChZ//rgnigOtHazZvJulKkGJSByoZXE0B+qCstM7T8el7BRtzebdtHZEWKqxoEQkDpQsevPen4NXnh7cCxf/IC6tiWjlFdUUjM3g1Onj4xaDiIxcKkN1F4nAc9+D+y+G9NFw/Z+g7Nq4JoqDbR2seauWpXOLSVUJSkTiQC2LaAfq4Lcr4J2n4OQrghvZmfF/t/XazbU0t3eydJ4exBOR+FCy6LL9BXjoC2HZ6d9gcXxbE9Eer6gmf8woTp+RH+9QRGSEUrKIRODP/wZP3w7jpgVlp4nz4x3VIc1tnax5azeXLZysEpSIxI2Sxd5twWtPSy8dNmWnaM+8vZuDbZ0sVy8oEYkjJYuCE+Dvn4XCE4dN2Sna4xU1jB8zitNnqBeUiMRPn72hzOzLZpbcjwxPOGlYJoqW9k6efnMXF51cRFqqOq6JSPz05wpUDLxsZr8J36k9/K6qSeqZt2s50NbJMpWgRCTO+kwW7v51YDZwH/B5YIuZ/auZzYpxbCPeqopqxo1O58Mz1QtKROKrX7UNd3egJvx0AOOAh8zsOzGMbURrae/kT2/u5sLSYtJVghKROOvzBreZfQX4O6AO+Dnwj+7eHr60aAvwT7ENcWR6bksdTa0dLNNw5CIyDPSnN1QBcIW7b49e6O4RM7s4NmHJqopqcrPS+egslaBEJP76U98oB/Z2zZhZtpmdDuDuw+tVp0mitaOTJzft4sLSIpWgRGRY6M+V6CdAU9T8gXCZxMjzW+poVAlKRIaR/iQLC29wA0H5CT3MF1PlFTXkZKZxxqyCeIciIgL0L1lsM7OvmFl6+LkR2BbrwEaqto4IT26q4YLSYkalqQQlIsNDf65GNwAfBXYClcDpwIpYBjWS/fmdOhpaOlg+X8ORi8jw0Wc5yd13A585DrEIUL6hmuyMNM44QSUoERk++vOcRSZwHXAykNm13N2/EMO4RqT2zghPbNrFBaVFZKSlxjscEZFD+lOG+iXB+FAXAc8AJUBjLIMaqV54Zw/7m9tZqrGgRGSY6U+yOMHd/1/ggLvfDywH5sU2rJGpfEM1YzPS+NhslaBEZHjpT7JoD//Wm9lcIBeY3p+Dh6PUbjazrWZ2cw/rp5nZU2a2wczWmllJuPwcM1sf9Wkxs8v6eU4Jqb0zwupNNZw/ZwKZ6SpBicjw0p9kcW/4PouvA48Bm4Bv97WTmaUC9wBLgVLgajMr7bbZXcAD7j4fuA24A8Dd17j7AndfAJwLHASe6N8pJaYXt+2h/qBKUCIyPB31Bnc4WGCDu+8DngVmHsOxTwO2uvu28FgPApcSJJsupcBXw+k1wKM9HOeTwCp3P3gM351wyiuqGTMqlbM+VBjvUEREjnDUlkX4tPaXB3jsycCOqPnKcFm014Erw+nLgWwz6z5y3meAXw8whoTQ0Rlh9cZdnDenSCUoERmW+lOGetLMbjKzKWY2vuvTj/16eqOed5u/CTjLzF4DziJ48K/j0AHMJhLcTF/d4xeYrTCzdWa2rra2th8hDU8vvbuXvQfaWDZPD+KJyPDUnzGeup6n+FLUMqfvklQlMCVqvgSoit7A3auAKwDMbCxwpbvvj9rk08Aj7t5OD9z9XuBegLKysu6JKGE8XlHN6FGpnH3ihHiHIiLSo/5cuBvgAAARmElEQVQ8wT1jgMd+GZhtZjMIWgyfAT4bvYGZFQB7w3LXLcDKbse4OlyetDojzuo3ajjnJPWCEpHhqz9PcH+up+Xu/sDR9nP3DjP7MkEJKRVY6e4bzew2YJ27PwacDdxhZk5wA/1Q68XMphO0TJ7p15kkqJfe3cOeA20sVy8oERnG+lOGOjVqOhM4D3gVOGqyAHD3coKXJ0Uv+0bU9EPAQ73s+x5H3hBPOuUV1WSlp3KOSlAiMoz1pwz1D9HzZpZLMASIDFJnxPnjG7s456RCskapBCUiw9dAXphwEJg91IGMRC+/t5e6plaWqQQlIsNcf+5Z/J4PurymEDxI95tYBjVSrKqoJjM9RSUoERn2+nPP4q6o6Q5gu7tXxiieESMScVa9UcPZH5rAmAy9pVZEhrf+XKXeB6rdvQXAzLLMbHp4A1oGaN32fexubGXZfJWgRGT46889i/8CIlHzneEyGYTyimpGpaVw7kkqQYnI8NefZJHm7m1dM+H0qNiFlPyCElQ1Z3+okLEqQYlIAuhPsqg1s0u6ZszsUqAudiElv1ff38euhlaWqwQlIgmiPz9rbwB+ZWZ3h/OVQI9PdUv/lFfUqAQlIgmlPw/lvQN8OBzoz9xd798ehK4S1MdnF5KdmR7vcERE+qXPMpSZ/auZ5bl7k7s3mtk4M/uX4xFcMnptRz3V+1tYPl/DkYtI4ujPPYul7l7fNRO+NW9Z7EJKbqsqqhmVmsJ5c4riHYqISL/1J1mkmllG14yZZQEZR9leeuEePIj3sdkF5KgEJSIJpD/J4t+Bp8zsOjO7DngSuD+2YSWn1yv3s7O+maUaC0pEEkx/bnB/x8w2AOcTvCr1j8C0WAeWjMorqklPNS4oVQlKRBJLf0edrSF4ivtKgvdZvBmziJKUu/P4hmrOPKGA3CyVoEQksfTasjCzDxG8CvVqYA/wnwRdZ885TrEllYqdQQnqxvM1uruIJJ6jlaHeAp4DPuHuWwHM7KvHJaok9HhFNWkpxoUqQYlIAjpaGepKgvLTGjP7mZmdR3DPQo6Ru1NeUc0ZJxSQN1rDaolI4uk1Wbj7I+5+FXASsBb4KlBkZj8xswuPU3xJYWNVAzv2NrNsnh7EE5HE1OcNbnc/4O6/cveLgRJgPXBzzCNLIo9XVJOaYlxYqmQhIonpmN7B7e573f3/uPu5sQoo2bg7qyqq+eisfMaNUQlKRBLTMSULOXabqht4b89BlulBPBFJYEoWMVYelqAuOlklKBFJXEoWMRT0gqrhwzPHM14lKBFJYEoWMfRWTSPv1h1QCUpEEl5Mk4WZLTGzzWa21cyO6EFlZtPM7Ckz22Bma82sJGrdVDN7wszeNLNNZjY9lrHGQnlFNSmGSlAikvBilizMLBW4B1gKlAJXm1lpt83uAh5w9/nAbcAdUeseAL7r7nOA04DdsYo1FtydxyuqOX1GPgVjNaK7iCS2WLYsTgO2uvs2d28DHgQu7bZNKfBUOL2ma32YVNLc/UmA8C19B2MY65B7e1cT22oPsGy+SlAikvhimSwmAzui5ivDZdFeJxhWBOByINvM8oEPAfVm9lsze83Mvhu2VA5jZivMbJ2ZrautrY3BKQxceUU1ZnDRyRoLSkQSXyyTRU/jSHm3+ZuAs8zsNeAsYCfQQTDA4cfC9acCM4HPH3Ew93vdvczdywoLC4cw9MErr6jmtOnjmZCdGe9QREQGLZbJohKYEjVfAlRFb+DuVe5+hbsvBP6fcNn+cN/XwhJWB/AosCiGsQ6pLbsa2bK7ieUqQYlIkohlsngZmG1mM8xsFMG7MR6L3sDMCsysK4ZbgJVR+44zs67mwrnAphjGOqTKK2owgyXqBSUiSSJmySJsEXwZWE3wZr3fuPtGM7vNzC4JNzsb2GxmbwNFwO3hvp0EJainzKyCoKT1s1jFOtTKK6o5ddp4JuSoBCUiyaHPd3APhruXA+Xdln0javoh4KFe9n0SmB/L+GJh6+4mNu9q5NZPdO8lLCKSuPQE9xBbVVENwNK5ul8hIslDyWKIPV5RTdm0cRTnqgQlIslDyWIIbatt4q2aRpZqLCgRSTJKFkNo1Rs1AHp9qogkHSWLIfT4hmoWTc1jYm5WvEMRERlSShZD5L26A2yqbtBw5CKSlJQshkj5G2EvKCULEUlCShZDpLyimlOm5DE5TyUoEUk+ShZD4P09B3ljZwPLdWNbRJKUksUQOFSC0oN4IpKklCyGwKqKauaX5DJl/Oh4hyIiEhNKFoO0Y+9BXq/cr15QIpLUlCwGaVVYglqmEpSIJDEli0Eqr6hh7uQcpuarBCUiyUvJYhB21jezfke9SlAikvSULAahazhylaBEJNkpWQxCeUU1pRNzmF4wJt6hiIjElJLFAFXVN/Pq+/Usn69WhYgkPyWLAfpjOBz50rl6altEkp+SxQCVV1RzUnE2MwvHxjsUEZGYU7IYgJr9Lazbvo/l6gUlIiOEksUA/FHDkYvICKNkMQDlFTWcWJTNCRNUghKRkUHJ4hjtbmjh5e17WarhyEVkBFGyOEZ/3FiDO7pfISIjSkyThZktMbPNZrbVzG7uYf00M3vKzDaY2VozK4la12lm68PPY7GM81g8vqGa2RPGMrsoO96hiIgcNzFLFmaWCtwDLAVKgavNrLTbZncBD7j7fOA24I6odc3uviD8XBKrOI9FbWMrf31vr25si8iIE8uWxWnAVnff5u5twIPApd22KQWeCqfX9LB+WFEJSkRGqlgmi8nAjqj5ynBZtNeBK8Ppy4FsM8sP5zPNbJ2ZvWhml/X0BWa2ItxmXW1t7VDG3qPyDdXMKhzDh4rUC0pERpZYJgvrYZl3m78JOMvMXgPOAnYCHeG6qe5eBnwW+IGZzTriYO73unuZu5cVFhYOYehHqmtq5aV397Bs3kTMejo1EZHklRbDY1cCU6LmS4Cq6A3cvQq4AsDMxgJXuvv+qHW4+zYzWwssBN6JYbxHtXpjDRFH764QkREpli2Ll4HZZjbDzEYBnwEO69VkZgVm1hXDLcDKcPk4M8vo2gY4A9gUw1j7VF5RzYyCMZxUrF5QIjLyxCxZuHsH8GVgNfAm8Bt332hmt5lZV++ms4HNZvY2UATcHi6fA6wzs9cJbnzf6e5xSxZ7mlp5cdtels0rVglKREakWJahcPdyoLzbsm9ETT8EPNTDfi8A82IZ27F4YtMuOiOuEpSIjFh6grsfyiuqmZY/mtKJOfEORUQkLpQs+rDvQBsvvKNeUCIysilZ9OGJTTV0RlwP4onIiKZk0YfyihqmjM/i5EkqQYnIyKVkcRT1B9v489Y6laBEZMRTsjiKJzbtoiPiLJurEpSIjGxKFkexqqKaknFZzC/JjXcoIiJxpWTRi/3N7TyvEpSICKBk0as/bdpFe6ezdK5enyoiomTRi/KKaiblZrJgSl68QxERiTslix40tLTz3JY6lqoEJSICKFn06Kk3d9HWGdFYUCIiISWLHjy+oYaJuZksVAlKRARQsjhCY0s7z26pZcncYlJSVIISEQEliyM8/dZu2joiGgtKRCSKkkU3j2+opigng0VTx8U7FBGRYUPJIkpTawdr365l6dyJKkGJiERRsojSVYJSLygRkcMpWUQp31BNYXYGi6epBCUiEk3JInSgtYM1m3ezdG4xqSpBiYgcRskitGbzblpVghIR6ZGSRai8opqCsRmcOn18vEMRERl2lCyAg20drHmrliVzi1SCEhHpgZIFsHZzLc3tnSpBiYj0QsmCoASVP2YUp6kEJSLSo5gmCzNbYmabzWyrmd3cw/ppZvaUmW0ws7VmVtJtfY6Z7TSzu2MVY0t7J0+/tZuL5haTlqrcKSLSk5hdHc0sFbgHWAqUAlebWWm3ze4CHnD3+cBtwB3d1n8LeCZWMULw+tTz5xRxySmTYvk1IiIJLZY/pU8Dtrr7NndvAx4ELu22TSnwVDi9Jnq9mS0GioAnYhgjRTmZ/OjqhXx4Zn4sv0ZEJKHFMllMBnZEzVeGy6K9DlwZTl8OZJtZvpmlAN8D/jGG8YmISD/FMln01AfVu83fBJxlZq8BZwE7gQ7gvwPl7r6DozCzFWa2zszW1dbWDkXMIiLSg7QYHrsSmBI1XwJURW/g7lXAFQBmNha40t33m9lHgI+Z2X8HxgKjzKzJ3W/utv+9wL0AZWVl3RORiIgMkVgmi5eB2WY2g6DF8Bngs9EbmFkBsNfdI8AtwEoAd/+bqG0+D5R1TxQiInL8xKwM5e4dwJeB1cCbwG/cfaOZ3WZml4SbnQ1sNrO3CW5m3x6reEREZODMPTmqN2VlZb5u3bp4hyEiklDM7BV3L+trOz2FJiIifVKyEBGRPiVNGcrMaoHtgzhEAVA3ROHEU7KcB+hchqtkOZdkOQ8Y3LlMc/fCvjZKmmQxWGa2rj91u+EuWc4DdC7DVbKcS7KcBxyfc1EZSkRE+qRkISIifVKy+MC98Q5giCTLeYDOZbhKlnNJlvOA43AuumchIiJ9UstCRET6pGQhIiJ9GvHJoq9XvyYKM1tpZrvN7I14xzJYZjbFzNaY2ZtmttHMbox3TANhZplm9lczez08j2/GO6bBMrNUM3vNzP4Q71gGw8zeM7MKM1tvZgk9TpCZ5ZnZQ2b2Vvhv5iMx+Z6RfM8ifPXr28AFBEOqvwxc7e6b4hrYAJjZx4EmgtfUzo13PINhZhOBie7+qpllA68AlyXafxczM2CMuzeZWTrwPHCju78Y59AGzMy+BpQBOe5+cbzjGSgze49gNOuEfyjPzO4HnnP3n5vZKGC0u9cP9feM9JZFf179mhDc/Vlgb7zjGAruXu3ur4bTjQSjFnd/y+Kw54GmcDY9/CTsrzMzKwGWAz+PdywSMLMc4OPAfQDu3haLRAFKFv159avEkZlNBxYCL8U3koEJyzbrgd3Ak+6ekOcR+gHwT0Ak3oEMAQeeMLNXzGxFvIMZhJlALfCLsDz4czMbE4svGunJoj+vfpU4Cd+e+DDwP9y9Id7xDIS7d7r7AoI3RZ5mZglZIjSzi4Hd7v5KvGMZIme4+yJgKfClsIybiNKARcBP3H0hcACIyb3XkZ4s+nz1q8RHWON/GPiVu/823vEMVlgaWAssiXMoA3UGcElY638QONfM/j2+IQ1c+Epn3H038AhBSToRVQKVUS3WhwiSx5Ab6cni0KtfwxtDnwEei3NMI154Y/g+4E13/3684xkoMys0s7xwOgs4H3grvlENjLvf4u4l7j6d4N/J0+5+TZzDGhAzGxN2nCAs2VwIJGQvQnevAXaY2YnhovOAmHQEieU7uIc9d+8ws65Xv6YCK919Y5zDGhAz+zXBa2oLzKwSuNXd74tvVAN2BvC3QEVY7wf43+5eHseYBmIicH/Y6y6F4NXCCd3lNEkUAY8Ev0lIA/7D3f8Y35AG5R+AX4U/eLcB18biS0Z011kREemfkV6GEhGRflCyEBGRPilZiIhIn5QsRESkT0oWIiLSJyULkWNgZp3hSKVdnyF7WtbMpifDqMGSnEb0cxYiA9AcDt8hMqKoZSEyBML3I3w7fH/FX83shHD5NDN7ysw2hH+nhsuLzOyR8F0Xr5vZR8NDpZrZz8L3XzwRPvktEndKFiLHJqtbGeqqqHUN7n4acDfBCK2E0w+4+3zgV8CPwuU/Ap5x91MIxvLpGjlgNnCPu58M1ANXxvh8RPpFT3CLHAMza3L3sT0sfw841923hYMg1rh7vpnVEbzIqT1cXu3uBWZWC5S4e2vUMaYTDGM+O5z/X0C6u/9L7M9M5OjUshAZOt7LdG/b9KQ1aroT3VeUYULJQmToXBX19y/h9AsEo7QC/A3Bq1UBngL+Gxx6QVLO8QpSZCD0q0Xk2GRFjYQL8Ed37+o+m2FmLxH8CLs6XPYVYKWZ/SPBG826RgS9EbjXzK4jaEH8N6A65tGLDJDuWYgMgfCeRZm718U7FpFYUBlKRET6pJaFiIj0SS0LERHpk5KFiIj0SclCRET6pGQhIiJ9UrIQEZE+/f9T1SLJCDMX3QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4nPV97/33V7tka7Mky4tsy3jD8sJmSAIEG+IYm6QhCWkJadqGJA8nPaHlnJSektM2NKQ0JE37NAlczUODU2jTUEpKSnthG0IxJCEJNmCMbGNjDMayNZYsWZIXyVrm+/xx35JHsmSNZY1Go/m8rmsu3evMd1juz/x+v3sxd0dERORsMpJdgIiIjH8KCxERGZbCQkREhqWwEBGRYSksRERkWAoLEREZlsJC0p6ZVZuZm1lWHNt+xsx+PhZ1iYwnCgtJKWb2jpl1mln5gOXbwgN+dXIqE5nYFBaSit4GbumdMbNlQH7yyhkf4mkZiYyUwkJS0T8Bvxsz/3vAI7EbmFmxmT1iZo1mtt/M/szMMsJ1mWb2LTM7Ymb7gA8Nsu9DZlZvZgfN7C/NLDOewszs38wsYmatZvaCmS2JWZdvZn8T1tNqZj83s/xw3dVm9qKZtZjZATP7TLh8s5l9PuY9+nWDha2pL5rZm8Cb4bJvh+/RZmYvm9n7Y7bPNLP/a2ZvmdmxcP0sM3vAzP5mwHf5TzP7X/F8b5n4FBaSin4FFJnZ4vAgfjPwzwO2+S5QDFwArCQIl1vDdf8P8GHgEmAF8IkB+z4MdAPzw23WAJ8nPhuABcBU4BXghzHrvgVcBlwJTAH+DxA1s9nhft8FKoCLgW1xfh7AR4H3ADXh/JbwPaYA/wL8m5nlheu+RNAquwEoAj4LnAy/8y0xgVoOfAD40TnUIROZu+ulV8q8gHeA1cCfAV8H1gLPAFmAA9VAJnAKqInZ738Am8Pp/wa+ELNuTbhvFlAZ7psfs/4W4Llw+jPAz+OstSR832KCH2btwEWDbPdl4Ikh3mMz8PmY+X6fH77/dcPUcbT3c4HdwI1DbLcL+GA4fTvwVLL/fes1fl7q45RU9U/AC8BcBnRBAeVADrA/Ztl+YGY4PQM4MGBdrzlANlBvZr3LMgZsP6iwlXMv8JsELYRoTD25QB7w1iC7zhpiebz61WZmf0TQEppBECZFYQ3DfdbDwKcJwvfTwLfPoyaZYNQNJSnJ3fcTDHTfAPz7gNVHgC6CA3+v2cDBcLqe4KAZu67XAYKWRbm7l4SvIndfwvA+BdxI0PIpJmjlAFhYUwcwb5D9DgyxHOAEUBAzP22QbfpuHR2OT/wJ8FtAqbuXAK1hDcN91j8DN5rZRcBi4CdDbCdpSGEhqexzBF0wJ2IXunsP8Bhwr5kVmtkcgr763nGNx4A/NLMqMysF7orZtx54GvgbMysyswwzm2dmK+Oop5AgaJoIDvB/FfO+UWA98LdmNiMcaH6fmeUSjGusNrPfMrMsMyszs4vDXbcBHzezAjObH37n4WroBhqBLDP7CkHLotf3ga+Z2QILLDezsrDGOoLxjn8Cfuzu7XF8Z0kTCgtJWe7+lrtvHWL1HxD8Kt8H/JxgoHd9uO4fgE3AawSD0ANbJr9L0I21k6C//3FgehwlPULQpXUw3PdXA9bfCbxOcEBuBr4BZLj7uwQtpD8Kl28DLgr3+X+BTuAwQTfRDzm7TQSD5XvCWjro3031twRh+TTQBjxE/9OOHwaWEQSGSB9z18OPRCRgZtcQtMCqw9aQCKCWhYiEzCwbuAP4voJCBlJYiAhmthhoIehu+7sklyPjkLqhRERkWGpZiIjIsCbMRXnl5eVeXV2d7DJERFLKyy+/fMTdK4bbbsKERXV1NVu3DnUWpYiIDMbM9g+/VQK7ocxsvZk1mFntEOvNzL5jZnvNbLuZXRqz7vfM7M3w9XuJqlFEROKTyDGLfyS4ydtQ1hHcnXMBcBvw9wBmNgW4m+AumlcAd4dX2YqISJIkLCzc/QWCq1GHciPwiAd+BZSY2XTgeuAZd29296MENzU7W+iIiEiCJXPMYib9b0NQFy4bavkZzOw2glYJs2fPPmN9V1cXdXV1dHR0jFLJ419eXh5VVVVkZ2cnuxQRmUCSGRY2yDI/y/IzF7o/CDwIsGLFijO2qauro7CwkOrqamJuNz1huTtNTU3U1dUxd+7cZJcjIhNIMq+zqKP/baKrgENnWX7OOjo6KCsrS4ugADAzysrK0qolJSJjI5lh8STwu+FZUe8FWsPbQ28C1phZaTiwvSZcNiLpEhS90u37isjYSFg3lJn9CFgFlJtZHcEZTtkA7v494CmC2zLvJXgG8K3humYz+xrBbZwB7nH3sw2Ui4hMaKe6e2hr76a1vYu2jq7gb++ro5vSghw+9Z4zx21HU8LCwt1vGWa9A18cYt16Tj97IGU1NTXxgQ98AIBIJEJmZiYVFcGFki+99BI5OTnDvsett97KXXfdxaJFixJaq4gkTjTqHO/spq2990DfffqAH3Pwbw0P/v3nu+joOvtNgC+ZXZK6YSFQVlbGtm3bAPiLv/gLJk+ezJ133tlvm96HoWdkDN4j+IMf/CDhdYrI8Ib7dT/wAB8bCsc6uoie5Z6tZlCYm0VxQTZFedkU52czr2IyxfnZFOVnhX+D5UV5vdNZFIXzedmZCf/+Cosk2Lt3Lx/96Ee5+uqr+fWvf81//dd/8dWvfpVXXnmF9vZ2br75Zr7yla8AcPXVV3P//fezdOlSysvL+cIXvsCGDRsoKCjgP/7jP5g6dWqSv41IaunsjnKopZ361o6+A3vbML/sW9uH/3Wfm5XR76BeMTmX+RWT+x3kew/+Rf3msynMzSIjY3yPN6ZNWHz1P3ew81DbqL5nzYwi7v6NJSPad+fOnfzgBz/ge9/7HgD33XcfU6ZMobu7m2uvvZZPfOIT1NTU9NuntbWVlStXct999/GlL32J9evXc9dddw329iJpq7snSn1rBweOnqTuaDt1zcHf3vlIWweDPZnBjPBXe1bfwX3+1MnBQb0gm6K807/wiwYe/Mfo130ypU1YjDfz5s3j8ssv75v/0Y9+xEMPPUR3dzeHDh1i586dZ4RFfn4+69atA+Cyyy7jZz/72ZjWLDIe9ESdw20dQQCEQVB39GRfGNS3dtAT0+eTYTC9OJ+q0nyunFdOVWk+s6YUMKM473S3T0E2k3PG/6/7ZEqbsBhpCyBRJk2a1Df95ptv8u1vf5uXXnqJkpISPv3pTw96rUTsgHhmZibd3d1jUqvIWIpGnSPHT3EgDIHYUDhw9CSHWtrp6unfNKgsymVWaQEr5pQya0pBEAilBVSVFjC9JI/sTD2653ylTViMZ21tbRQWFlJUVER9fT2bNm1i7VrdDksmJnen+URnXxgcaO5tGQR/Dx5t51R3//GB8sm5VJXms7yqhBuWTQ+DIGgtzCzNJzdrYncBjQcKi3Hg0ksvpaamhqVLl3LBBRdw1VVXJbskkRFzd1rbu85oEdTFtBROdvb026e0IJtZUwq4cFohqxdXMqs0n6rSAmZNyWdmSQH5OQqDZJswz+BesWKFD3z40a5du1i8eHGSKkqedP3eMnaOdXT1tQhiw+BAc9AyOHaqfxdpYV5WX2ugXzfRlCAUJufqd2uymNnL7r5iuO30b0hE+unuidJw7BT1re0caunoO830YEs79a3tHGhup7W9q98+BTmZzApbAu+9oCzsIjodDsX5ugtyqlNYiKQRd+foyS4OtbT3hcChMBTqw2WHj53qdzYRBBeMzSjJZ3pJHhfPKukbPJ4VtgxKC7J1X7IJTmEhMoGc7OyOaQ30bxkcamnnUGv7GReX5WRmML0kj+nFebx3XhkzivP7gmFmST7Ti/MozFPLIN0pLERSRFdPlMNtHUEroLU96Bbqmw7+tpzs3z1kBlMLc5lenM/i6UVcd+FUZpTkM6MkLwiE4nzKJuXo+gIZlsJCZBxwd5pOdIbdQwNaBq1BKDQc6zjj/kLF+dlMLw5aAJfNKQmCoDhoDcwoyaeyKI+cLF1jIOdPYSEyBo51dJ3uChrQMjjUGnQTdQ64tiA3K6OvFXD1gvIwCPKYXpLPzJI8phfnM0lnEckY0X9pCTQatygHWL9+PTfccAPTpk1LWK0yeo4cP8X2uhZeO9DK9roWXj/YypHjnf22yTCoLAp+/S+bWczaJdOY3hcEQctgyqQcDRrLuKGwSKB4blEej/Xr13PppZcqLMahto4uautaea0uCIbtda0cbGkHgvGCBVMns2rRVOZPndzXXTS9JJ/KwlyydAsKSSEKiyR5+OGHeeCBB+js7OTKK6/k/vvvJxqNcuutt7Jt2zbcndtuu43Kykq2bdvGzTffTH5+/jm1SGR0dXT1sLO+je0HglB4ra6FtxpP9K2fPaWAS2aX8Jkrq1leVczSmcXqJpIJI33+S95wF0ReH933nLYM1t13zrvV1tbyxBNP8OKLL5KVlcVtt93Go48+yrx58zhy5Aivvx7U2dLSQklJCd/97ne5//77ufjii0e3fhlSd0+UPYePB91JYathd+QY3eEIc0VhLhdVFXPjxTO5aFYJy2cWUzpJIS4TV/qExTjy05/+lC1btrBiRXCFfXt7O7NmzeL6669n9+7d3HHHHdxwww2sWbMmyZWmB3fnnaaTfeMMr9W1sONQa9/1CEV5WSyvKuG2ay5geVUJF80qZlpRnsYTJK2kT1iMoAWQKO7OZz/7Wb72ta+dsW779u1s2LCB73znO/z4xz/mwQcfTEKFE5e7E2nr6Bt83h62Gto6gnsZ5WVnsGRGMbdcMZuLZ5WwvKqEOVMKdB2CpL30CYtxZPXq1XziE5/gjjvuoLy8nKamJk6cOEF+fj55eXn85m/+JnPnzuULX/gCAIWFhRw7dizJVaemoyc62X6wle0Hgu6k1+paaDx2CoCsDGPRtEI+tHwGF1UVs7yqhIWVkzXwLDIIhUUSLFu2jLvvvpvVq1cTjUbJzs7me9/7HpmZmXzuc5/D3TEzvvGNbwBw66238vnPf14D3MM4caqb2oOtfYPP2+taebf5ZN/6eRWTeP/8cpZXFbN8Vgk104sm/KMwJcapY3D0HWh+O/h7/HBwypplQkYWZGSG05kDprPAMmKmh1luGQPeLwsyMuL8nMxg237v1/s3ua1b3aJ8AkqH793ZHeWNSFvQWjjQwva6FvY2HO+7wnlmSX4QClUlXFRVzNKqYop0f6OJzR2OReDo2zGhEDN98kj/7bMLgn28B6I9wd/xzM4SODMugd/+t5G97Xi4RbmZrQW+DWQC33f3+wasnwOsByqAZuDT7l4XrvsG8KFw06+5+78mslYZv3qizluNx8NQCMYYdtUfo7MnGIAum5TD8qpi1i2dzkWzgoAon5yb5KolIbpPQcu7ZwbB0bfh6H7obj+9rWVAcRWUVsOFH4Ipc4Pp0vBvfkn/93YHj54Ojmh3OB2NmT7b8p4B093hdDRmunf5YJ8z8D1iP6dnwHsM+JySWQn/R5+wsDCzTOAB4INAHbDFzJ50950xm30LeMTdHzaz64CvA79jZh8CLgUuBnKB581sg7u3JapeGT9OnOrml2818dI7zWw70MKOg62cCJ+sNjk3i6Uzi7j1quq+M5NmluQn/8ykaA+cbA5+vZ5ohBNHgtfJ8G9mNhSUQcGU4G9++Ld3WZbCDQgO2O1Hg4N/b3dRbxA0vw1tB4GY3pDsguDgXzYf5q8OQmDK3GBZ8SzIOocu274uKXVNDiaRLYsrgL3uvg/AzB4FbgRiw6IG+N/h9HPAT2KWP+/u3UC3mb0GrAUeO9cievv/00Uqdiu6O3sbjrN5dyOb9zSw5e2jdPZEycnKoGZ6EZ+4rKovGC4onzw2ZyZFo8FB60Tj0AHQN90YBAWD/bM3yC8NwuRU69Cfl1MIBaUxAVIWEypTBiyfEiw/lwPheBLtgda600EQGwrN75z5z2lyZRAC1Vf3bx1MmQuTKpLel58uEhkWM4EDMfN1wHsGbPMacBNBV9XHgEIzKwuX321mfwsUANfSP2QAMLPbgNsAZs+efUYBeXl5NDU1UVZWlhaB4e40NTWRl5eX7FKGdfxUNy/uPcLmPY08v7ux7xYZCysn85mrqlm1sILLqkvJzRqlX3nRKHS09D/ADzzgx86fbAqa/4PJLw0OUgXlUL4Q5lx5en5SWcx0RXBg7/2l2t0ZBNDJptOv9uZwujlmeTMceTP423mWs+Byi4ZuqfT72xs8pUELZyx0nug/mBwbCi3vQjTmVuoZ2VAyOwiBqstPB0FpdfDKmTQ2NctZJTIsBjs6D/zpdSdwv5l9BngBOAh0u/vTZnY58CLQCPwS6B6wL+7+IPAgBAPcA9dXVVVRV1dHY2Pj+XyPlJKXl0dVVVWyyziDu7Pn8HE2727g+T2NbHmnma4eZ1JOJlfNL+eL185n5aIKZpbkx/uG4cG/acCv/6Hmm4YewMwrgUnhwb1sHsx+7+n5gvDgP6k8CICCMsgc4f82WTlQWBm84tV9KgiN9ub+IXNyQMicaITG3cF014mh3y+veECw9IbKwGVhAOWXDv593eF4w9CDySca+m+fWwxTqoO7Hiz+jdNdRaXVwbiCun7GvUSGRR0QO+pSBRyK3cDdDwEfBzCzycBN7t4arrsXuDdc9y/Am+daQHZ2NnPnzh1R8XL+jnV08Yu9TTy/p4HndzdyqLUDgAunFfLZq+eycmEFK+ZMIScDONUGHYehvhXaW6CjNThA9h7wBzv4R7sG/+Dc4vBgXx4clKpWnD7gnxEAZWP3a3sksnKhaHrwildXxxDhMmDZsXpo2BkGzMmh3y+v5HSA5BYG+x19Z8A+BkUzg4P/wjWng6A3FPJL1V2U4hIZFluABWY2l6DF8EngU7EbmFk50OzuUeDLBGdG9Q6Ol7h7k5ktB5YDTyewVjlfXR14+1HePniI197cz+53DtDQcJhJfoLpWe18tSTKvIpupud1kt/dBvtbYXcYCh1tDN7fH8otOv3LvmQWzLzkdDdPbygUxARBqvblj5bsPMieAUUz4t+n8+SAgBkkXNrDFk7JHJi7sn/roGR28LkyYSUsLNy928xuBzYRnDq73t13mNk9wFZ3fxJYBXzdzJygG+qL4e7ZwM/CcYY2glNqz+iGklEUjQYDix0xv+w7Woadj7a34O0tZEY7MeCC8AX0/6/r5CSIFkNnSdAVUjQTptYEpy/mFQe/XvOKw/ne6dIgCHSmUOLlFASv4vHXhSnjw4S+KC8tHW8IfhEOebBvGeTg3xp0A53t171lQl4xnl9CR+ZkjnTnU9eewzsncmj1AjqyCqmsmEp11UwWVc9iStnU0wf/3CL92hcZp8bFRXkyRhregB1PwM6fQOMbQ2+XPan/L/miKqhcOsgv+/7zrV7AL97tCM5c2tPI4bbg3ko104tYdXEFqxZN5ZLZJWTrnkoiE5bCIlU17gkCYscT0LgLMJhzFay5NxgMzQu7c/oO/sVxD+S6OzsOtfH8rkY2736XV95toSfqFOVl8f4FFaxcVMGqhRVMLVIftUi6UFikkiNvwo6fBAHRsIMgIK6EdX8NNR+BwpE/drX1ZBc/29vI5t1B66H3zqxLZxbx+yvnsWpRBRfPKtEdWUXSlMJivDuyF3Y+EYTE4dpg2ez3wbpvwuKPnNsplTGiUWdnfRubdzeweXcjr7x7lKhDcX42719QzqpFU7lmYTlTC9V6EBGFxfjU9FYw/rDjidOPgp31Hlh7H9TceG6nRMZoOdnJC28eYfPuBl7Yc4Qjx4PWw7KZxXzx2vmsWlTBRVVqPYjImRQW40XzvtNdTJHtwbKqK+D6rwddTCM4pTEadWoPtQb3XNrdwLYDLUQdSgqyuWZBBasWVXDNwgrdoVVEhqWwSKaj75wOiPptwbKZK4JB6pobR3Tb4aMnOnnhzeB+Sy+82ciR452YwfKZxdx+3YK+1kOmHhMqIudAYTHWju4/3cV06NVg2czLYM1fhgFx5g0R4/XrfU18+qFf09XjlBZkc83CsPWwoIIytR5E5DwoLMZCy7uw8z+CgDj4crBsxiXwwXuCgCitHpWPeXTLASblZvGPt17BspnFaj2IyKhRWCRKa93pLqaD4ZXl0y+G1V8NAmLK6N7gsLM7yk93HWbtkmlcPKtk+B1ERM6BwmI0tR483YKoeylYNm05fOBuWPJRmHLB2fc/Dy++dYRjHd2sWzbyay1ERIaisDhfbYfCgPgJHPhVsGzaMrjuz2HJx4LnI4yBjbURJudmcdX88jH5PBFJLwqLkWirh11PBi2Id38ZLKtcCtf9GdR8DMrnj2k5PVHn6Z2Hue7CqaP3ZDkRkRgKi3gdO3w6IPa/CDhMXQLX/inUfBQqFiattJfebqb5RCfrlqoLSkQSQ2FxNscbTncx7f8F4FCxGFZ9ORiDqFiU7AoB2FhbT152BisXVSS7FBGZoBQWAx1vjGlB/AI8CuWLYOWfBAExdXGyK+wnGnU27TjMyoUVFOToX6eIJIaOLgAnjoQB8RN452dBQJQtgGv+OBikHmcBEWtbXQuRtg7uWnphsksRkQlMYdH8Nnz3MvAeKJsP7/+jMCBqUuIB8xtrI2RnGtdeODXZpYjIBKawKK2G1XfDvOuCM5pSICB6uTsbayNcNb+c4vz4HmwkIjISCgszuOqOZFcxIjvr23i3+SRfvHZsruUQkfSlBxeksE21ETIMVi+uTHYpIjLBKSxS2IbaCO+ZW6Y7yopIwiksUtTehuO82XBc94ISkTGhsEhRm3ZEAFhTo7AQkcRLaFiY2Voz221me83srkHWzzGzZ81su5ltNrOqmHXfNLMdZrbLzL5jlkKnKY2BDbX1XDq7hGnFeckuRUTSQMLCwswygQeAdUANcIuZ1QzY7FvAI+6+HLgH+Hq475XAVcByYClwObAyUbWmmgPNJ6k92MZa3QtKRMZIIlsWVwB73X2fu3cCjwI3DtimBng2nH4uZr0DeUAOkAtkA4cTWGtK6e2CWrd0epIrEZF0kciwmAkciJmvC5fFeg24KZz+GFBoZmXu/kuC8KgPX5vcfdfADzCz28xsq5ltbWxsHPUvMF5tqI2wZEYRs6YUJLsUEUkTiQyLwcYYfMD8ncBKM3uVoJvpINBtZvOBxUAVQcBcZ2bXnPFm7g+6+wp3X1FRkR53XG1o6+Dl/UdZu0RdUCIydhJ5BXcdMCtmvgo4FLuBux8CPg5gZpOBm9y91cxuA37l7sfDdRuA9wIvJLDelNDXBaVTZkVkDCWyZbEFWGBmc80sB/gk8GTsBmZWbma9NXwZWB9Ov0vQ4sgys2yCVscZ3VDpaENthHkVk5g/tTDZpYhIGklYWLh7N3A7sIngQP+Yu+8ws3vM7CPhZquA3Wa2B6gE7g2XPw68BbxOMK7xmrv/Z6JqTRXNJzr59dvNGtgWkTGX0BsJuvtTwFMDln0lZvpxgmAYuF8P8D8SWVsq+unOw/REXafMisiY0xXcKWRDbT1VpfksmVGU7FJEJM0oLFJEW0cXv9jbxLql09DF7CIy1hQWKeK5Nxro7ImyVuMVIpIECosUseH1CJVFuVwyqyTZpYhIGlJYpID2zh4272ng+iXTyMhQF5SIjD2FRQp4fk8DHV1RXbUtIkmjsEgBG2sjlBZkc8XcKckuRUTSlMJinDvV3cOzuxpYUzONrEz96xKR5NDRZ5x7cW8Tx05160I8EUkqhcU4t7E2QmFuFlfOL0t2KSKSxhQW41h3T5Snd0b4wOKp5GZlJrscEUljCotx7KW3mzl6sktdUCKSdAqLcWzjjgh52RmsXDg12aWISJobNizM7HYzKx2LYuS0aNTZWBth1cKp5OeoC0pEkiuelsU0YIuZPWZma013sRsTrx44SsOxU3oinoiMC8OGhbv/GbAAeAj4DPCmmf2Vmc1LcG1pbWNthJzMDK67UF1QIpJ8cY1ZuLsDkfDVDZQCj5vZNxNYW9pydzbURrhqfhmFednJLkdEJK4xiz80s5eBbwK/AJa5++8DlwE3Jbi+tLTjUBt1R9v1+FQRGTfieaxqOfBxd98fu9Ddo2b24cSUld421kbIzDBW11QmuxQRESC+bqingObeGTMrNLP3ALj7rkQVls421NbznrlTmDIpJ9mliIgA8YXF3wPHY+ZPhMskAfY2HOOtxhOs04V4IjKOxBMWFg5wA0H3E/F1X8kIbHg9AsAaPbtCRMaReMJiXzjInR2+7gD2JbqwdLWhNsJlc0qpLMpLdikiIn3iCYsvAFcCB4E64D3AbYksKl2923SSnfVt6oISkXEnnovyGtz9k+4+1d0r3f1T7t4Qz5uHV3zvNrO9ZnbXIOvnmNmzZrbdzDabWVW4/Foz2xbz6jCzj57710stG3fUA3C9uqBEZJwZduzBzPKAzwFLgL6+EXf/7DD7ZQIPAB8kaJFsMbMn3X1nzGbfAh5x94fN7Drg68DvuPtzwMXh+0wB9gJPn8sXS0UbayMsnVnErCkFyS5FRKSfeLqh/ong/lDXA88DVcCxOPa7Atjr7vvcvRN4FLhxwDY1wLPh9HODrAf4BLDB3U/G8ZkpK9LawSvvtuhCPBEZl+IJi/nu/ufACXd/GPgQsCyO/WYCB2Lm68JlsV7j9FXgHwMKzWzgI+E+CfxosA8ws9vMbKuZbW1sbIyjpPFr047gLCh1QYnIeBRPWHSFf1vMbClQDFTHsd9gd6f1AfN3AivN7FVgJcEgenffG5hNJwimTYN9gLs/6O4r3H1FRUVFHCWNXxtrIyyYOpn5UycnuxQRkTPEc73Eg+HzLP4MeBKYDPx5HPvVAbNi5quAQ7EbuPsh4OMAZjYZuMndW2M2+S3gCXfvYgJrOn6KX7/dxBevnZ/sUkREBnXWsDCzDKDN3Y8CLwAXnMN7bwEWmNlcghbDJ4FPDXj/cqA5vNDvy8D6Ae9xS7h8Qntm52Gijh6fKiLj1lm7ocKD+O0jeWN37w733QTsAh5z9x1mdo+ZfSTcbBWw28z2AJXAvb37m1k1Qcvk+ZF8firZuCPC7CkF1EwvSnYpIiKDiqcb6hkzuxP4V4L7QgHg7s1D79K3zVMENyKMXfaVmOmrmo4HAAASFklEQVTHgceH2PcdzhwQn3Ba27v4xd4j3HrVXPQQQhEZr+IJi97rKb4Ys8w5ty4pGcJ/v3GYrh5XF5SIjGvDhoW7zx2LQtLVxtoI04ryuLiqJNmliIgMKZ4ruH93sOXu/sjol5NeTnZ28/yeRm5eMYuMDHVBicj4FU831OUx03nAB4BXAIXFeXp+dyMdXVHW6qptERnn4umG+oPYeTMrJrgFiJynDbURpkzK4fLq0mSXIiJyVvFcwT3QSWDBaBeSbk519/DfbzSwpqaSrMyR/GsQERk78YxZ/Cenb9ORQXDzv8cSWVQ6+MXeIxw/1a2zoEQkJcQzZvGtmOluYL+71yWonrSx4fUIhXlZXDmvPNmliIgMK56weBeod/cOADPLN7Pq8KI5GYGunijP7DrM6sWV5GSpC0pExr94jlT/BkRj5nvCZTJCL73dTMvJLt2OXERSRjxhkRU+vAiAcDoncSVNfBtq68nPzmTlwtS+rbqIpI94wqIx5sZ/mNmNwJHElTSxRaPOph2HufbCCvJzMpNdjohIXOIZs/gC8EMzuz+crwMGvapbhvfKu0dpPHZKXVAiklLiuSjvLeC94cOJzN3jef62DGFDbYSczAyuu3BqsksREYnbsN1QZvZXZlbi7sfd/ZiZlZrZX45FcRONu7OxNsL7F5RTmJed7HJEROIWz5jFOndv6Z0Jn5p3Q+JKmrhqD7ZxsKWd63UhnoikmHjCItPMcntnzCwfyD3L9jKEDbX1ZGYYH1xcmexSRETOSTwD3P8MPGtmPwjnbwUeTlxJE1NvF9R7L5hC6SSdeSwiqSWeAe5vmtl2YDVgwEZgTqILm2jebDjOviMnuPVqPUtKRFJPvPeaiBBcxX0TwfMsdiWsoglqw+sRzOD6GnVBiUjqGbJlYWYLgU8CtwBNwL8SnDp77RjVNqFs3BHhstmlTC3KS3YpIiLn7GwtizcIWhG/4e5Xu/t3Ce4LJedof9MJdtW36XbkIpKyzhYWNxF0Pz1nZv9gZh8gGLOQc7SxNgKgsBCRlDVkWLj7E+5+M3AhsBn430Clmf29ma2J583NbK2Z7TazvWZ21yDr55jZs2a23cw2m1lVzLrZZva0me0ys51mVn2O323c2FAbYdnMYqpKC5JdiojIiAw7wO3uJ9z9h+7+YaAK2AacceAfyMwygQeAdQRP17vFzGoGbPYt4BF3Xw7cA3w9Zt0jwF+7+2LgCqAhju8z7tS3trPtQItaFSKS0s7pyTvu3uzu/5+7XxfH5lcAe919X3hb80eBGwdsUwM8G04/17s+DJUsd38m/Nzj7n7yXGodLzapC0pEJoBEPqZtJnAgZr4uXBbrNYKxEYCPAYVmVgYsBFrM7N/N7FUz++uwpZJyNtRGWFg5mXkVk5NdiojIiCUyLAYbDPcB83cCK83sVWAlcJDgOd9ZwPvD9ZcDFwCfOeMDzG4zs61mtrWxsXEUSx8dR46fYss7zaxdOj3ZpYiInJdEhkUdMCtmvgo4FLuBux9y94+7+yXAn4bLWsN9Xw27sLqBnwCXDvwAd3/Q3Ve4+4qKivH31Llndh4m6rBWz64QkRSXyLDYAiwws7lmlkNwgd+TsRuYWbmZ9dbwZWB9zL6lZtabANcBOxNYa0JsqI0wp6yAxdMLk12KiMh5SVhYhC2C24FNBLcHeczdd5jZPTGPaV0F7DazPUAlcG+4bw9BF9SzZvY6QZfWPySq1kRoPdnFi3uPsHbpNMx0eYqIpLZ47jo7Yu7+FPDUgGVfiZl+HHh8iH2fAZYnsr5EevaNw3RHXV1QIjIhJLIbKq1tqI0wvTiPi6pKkl2KiMh5U1gkwIlT3bywp5Hrl0wjI0NdUCKS+hQWCbB5dyOnuqO6EE9EJgyFRQJsqK2nbFIOl1dPSXYpIiKjQmExyjq6enjujQbWLKkkU11QIjJBKCxG2c/fPMKJzh5dtS0iE4rCYpRtqI1QlJfF+y4oS3YpIiKjRmExirp6ovx012FWL64kJ0v/aEVk4tARbRT9al8Tre1dOgtKRCYchcUo2lgboSAnk2sWjr+bGoqInA+FxSjpiTqbdhzm2kVTyctOyUdviIgMSWExSl7ef5Qjx0+pC0pEJiSFxSjZWBshJyuDay+cmuxSRERGncJiFLg7m3ZEuGZBOZNzE3ojXxGRpFBYjILtda0cbGnXhXgiMmEpLEbBxh0RsjKM1YvVBSUiE5PC4jy5OxtrI7xvXhklBTnJLkdEJCEUFudp9+FjvH3kBNfriXgiMoEpLM7TxtoIZrBmSWWySxERSRiFxXnaWBvh8jlTmFqYl+xSREQSRmFxHt4+coI3Ise4XhfiicgEp7A4DxtrIwC6altEJjyFxXnYWFvP8qpiZpbkJ7sUEZGEUliM0MGWdl6ra1WrQkTSQkLDwszWmtluM9trZncNsn6OmT1rZtvNbLOZVcWs6zGzbeHryUTWORKberugdMqsiKSBhN3IyMwygQeADwJ1wBYze9Ldd8Zs9i3gEXd/2MyuA74O/E64rt3dL05UfedrY22ERZWFXFAxOdmliIgkXCJbFlcAe919n7t3Ao8CNw7YpgZ4Npx+bpD141LjsVNs2d+sLigRSRuJDIuZwIGY+bpwWazXgJvC6Y8BhWZWFs7nmdlWM/uVmX10sA8ws9vCbbY2NjaOZu1n9fTOCO6wbpnCQkTSQyLDwgZZ5gPm7wRWmtmrwErgINAdrpvt7iuATwF/Z2bzzngz9wfdfYW7r6ioGLtHmW6sjVBdVsCiysIx+0wRkWRKZFjUAbNi5quAQ7EbuPshd/+4u18C/Gm4rLV3Xfh3H7AZuCSBtcat5WQnv3yribVLp2M2WB6KiEw8iQyLLcACM5trZjnAJ4F+ZzWZWbmZ9dbwZWB9uLzUzHJ7twGuAmIHxpPmp7sa6I66xitEJK0kLCzcvRu4HdgE7AIec/cdZnaPmX0k3GwVsNvM9gCVwL3h8sXAVjN7jWDg+74BZ1ElzcbaCDOK87ioqjjZpYiIjJmEPgPU3Z8Cnhqw7Csx048Djw+y34vAskTWNhLHT3XzwpuN/PZ7ZqsLSkTSiq7gPgfPvdFAZ3dUF+KJSNpRWJyDjTsilE/OYUX1lGSXIiIyphQWcero6uG5NxpYs2QamRnqghKR9KKwiNMLexo52dmjLigRSUsKizht3BGhKC+L980rG35jEZEJRmERh87uKD/deZjVNZVkZ+ofmYikHx354vCrfU20dXSzbun0ZJciIpIUCos4bKiNUJCTyfsXlCe7FBGRpFBYDKMn6jyzM8K1F04lLzsz2eWIiCSFwmIYW99p5sjxTtbpXlAiksYUFsPYUBshJyuDaxdNTXYpIiJJo7A4i2jU2bQjwjULKpiUm9DbaImIjGsKi7PYfrCV+tYOdUGJSNpTWJzFhtp6sjKM1Ysrk12KiEhSKSyG4O5srI3wvnllFBdkJ7scEZGkUlgM4Y3IMfY3ndSFeCIiKCyGtKE2ghl8sEZdUCIiCoshbKqNcHn1FCoKc5NdiohI0iksBrGv8Ti7Dx/TWVAiIiGFxSA21EYAuF7PrhARARQWg9q0I8JFs0qYUZKf7FJERMYFhcUAdUdPsr2uVU/EExGJobAYYGPYBaXxChGR0xQWA2zaEeHCaYVUl09KdikiIuNGQsPCzNaa2W4z22tmdw2yfo6ZPWtm281ss5lVDVhfZGYHzez+RNbZq+FYB1v3H2WtWhUiIv0kLCzMLBN4AFgH1AC3mFnNgM2+BTzi7suBe4CvD1j/NeD5RNU40KYdh3FHV22LiAyQyJbFFcBed9/n7p3Ao8CNA7apAZ4Np5+LXW9mlwGVwNMJrLGfTbURLiifxMLKyWP1kSIiKSGRYTETOBAzXxcui/UacFM4/TGg0MzKzCwD+Bvgj8/2AWZ2m5ltNbOtjY2N51Xs0ROd/HJfE9cvnYaZndd7iYhMNIkMi8GOuD5g/k5gpZm9CqwEDgLdwP8EnnL3A5yFuz/o7ivcfUVFRcV5FfvTXYfpibrOghIRGUQiH/9WB8yKma8CDsVu4O6HgI8DmNlk4CZ3bzWz9wHvN7P/CUwGcszsuLufMUg+WjbWRphZks+ymcWJ+ggRkZSVyLDYAiwws7kELYZPAp+K3cDMyoFmd48CXwbWA7j7b8ds8xlgRSKD4lhHFz978wiffu8cdUGJiAwiYd1Q7t4N3A5sAnYBj7n7DjO7x8w+Em62CthtZnsIBrPvTVQ9Z/Pc7kY6e6KsW6YuKBGRwSSyZYG7PwU8NWDZV2KmHwceH+Y9/hH4xwSU12djbT3lk3O5dHZpIj9GRCRlpf0V3O2dPTz3RiPXL6kkM0NdUCIig0n7sDjW0cUHayr58PIZyS5FRGTcSmg3VCqYWpTHd265JNlliIiMa2nfshARkeEpLEREZFgKCxERGZbCQkREhqWwEBGRYSksRERkWAoLEREZlsJCRESGZe4DHzGRmsysEdh/Hm9RDhwZpXKSaaJ8D9B3Ga8myneZKN8Dzu+7zHH3YR8INGHC4nyZ2VZ3X5HsOs7XRPkeoO8yXk2U7zJRvgeMzXdRN5SIiAxLYSEiIsNSWJz2YLILGCUT5XuAvst4NVG+y0T5HjAG30VjFiIiMiy1LEREZFgKCxERGVbah4WZrTWz3Wa218zuSnY9I2Vm682swcxqk13L+TKzWWb2nJntMrMdZnZHsmsaCTPLM7OXzOy18Ht8Ndk1nS8zyzSzV83sv5Jdy/kws3fM7HUz22ZmW5Ndz/kwsxIze9zM3gj/n3lfQj4nnccszCwT2AN8EKgDtgC3uPvOpBY2AmZ2DXAceMTdlya7nvNhZtOB6e7+ipkVAi8DH021fy9mZsAkdz9uZtnAz4E73P1XSS5txMzsS8AKoMjdP5zsekbKzN4BVrh7yl+UZ2YPAz9z9++bWQ5Q4O4to/056d6yuALY6+773L0TeBS4Mck1jYi7vwA0J7uO0eDu9e7+Sjh9DNgFzExuVefOA8fD2ezwlbK/zsysCvgQ8P1k1yIBMysCrgEeAnD3zkQEBSgsZgIHYubrSMGD0kRmZtXAJcCvk1vJyITdNtuABuAZd0/J7xH6O+D/ANFkFzIKHHjazF42s9uSXcx5uABoBH4Qdg9+38wmJeKD0j0sbJBlKfvLb6Ixs8nAj4H/5e5tya5nJNy9x90vBqqAK8wsJbsIzezDQIO7v5zsWkbJVe5+KbAO+GLYjZuKsoBLgb9390uAE0BCxl7TPSzqgFkx81XAoSTVIjHCPv4fAz90939Pdj3nK+wa2AysTXIpI3UV8JGwr/9R4Doz++fkljRy7n4o/NsAPEHQJZ2K6oC6mBbr4wThMerSPSy2AAvMbG44MPRJ4Mkk15T2woHhh4Bd7v63ya5npMyswsxKwul8YDXwRnKrGhl3/7K7V7l7NcH/J//t7p9OclkjYmaTwhMnCLts1gApeRahu0eAA2a2KFz0ASAhJ4JkJeJNU4W7d5vZ7cAmIBNY7+47klzWiJjZj4BVQLmZ1QF3u/tDya1qxK4Cfgd4PezvB/i/7v5UEmsaienAw+FZdxnAY+6e0qecThCVwBPBbxKygH9x943JLem8/AHww/AH7z7g1kR8SFqfOisiIvFJ924oERGJg8JCRESGpbAQEZFhKSxERGRYCgsRERmWwkLkHJhZT3in0t7XqF0ta2bVE+GuwTIxpfV1FiIj0B7evkMkrahlITIKwucjfCN8fsVLZjY/XD7HzJ41s+3h39nh8kozeyJ81sVrZnZl+FaZZvYP4fMvng6v/BZJOoWFyLnJH9ANdXPMujZ3vwK4n+AOrYTTj7j7cuCHwHfC5d8Bnnf3iwju5dN754AFwAPuvgRoAW5K8PcRiYuu4BY5B2Z23N0nD7L8HeA6d98X3gQx4u5lZnaE4EFOXeHyencvN7NGoMrdT8W8RzXBbcwXhPN/AmS7+18m/puJnJ1aFiKjx4eYHmqbwZyKme5B44oyTigsREbPzTF/fxlOv0hwl1aA3yZ4tCrAs8DvQ98DkorGqkiRkdCvFpFzkx9zJ1yAje7ee/psrpn9muBH2C3hsj8E1pvZHxM80az3jqB3AA+a2ecIWhC/D9QnvHqREdKYhcgoCMcsVrj7kWTXIpII6oYSEZFhqWUhIiLDUstCRESGpbAQEZFhKSxERGRYCgsRERmWwkJERIb1/wMLW//nMl5YGQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -910,7 +901,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8leWd///XJycrWVkCCQQEBRcgFjVarXWtC0tbnVarttalzvDQ73T5jo/2W/ud/qZTW2f0O7+ZWqut41SttrVotf7Kd5Si1mq1LhCQIovIIpJIgIQAAUL2z++P+05yCNmTc06W9/PxOI9z7uteznWz5J37uq77us3dERER6a+kRFdARESGNwWJiIgMiIJEREQGREEiIiIDoiAREZEBUZCIiMiAKEhEYsTMppuZm1lyL7a9ycxeH+hxRBJBQSICmNl2M2swswkdyteEP8SnJ6ZmIkOfgkSk3QfAda0LZlYMZCSuOiLDg4JEpN0vgRuilm8EHo/ewMxyzexxM6s0sw/N7LtmlhSui5jZ/2tmVWa2DVjUyb4Pm1mFmX1kZj80s0hfK2lmk81sqZlVm9kWM/u7qHVnmVmpmdWY2W4z+4+wPN3MfmVme81sv5mtNLNJff1ukc4oSETavQXkmNkp4Q/4a4BfddjmJ0AucDxwAUHw3Byu+zvg08BpQAlwVYd9HwOagJnhNpcBf9uPev4GKAcmh9/xL2b2qXDdj4Efu3sOcALwVFh+Y1jvqcB44FbgSD++W+QYChKRo7VelVwKvAd81LoiKly+4+4H3X078O/Al8NNvgDc6+5l7l4N/GvUvpOABcD/dPfD7r4H+BFwbV8qZ2ZTgU8C33b3OndfA/w8qg6NwEwzm+Duh9z9rajy8cBMd29291XuXtOX7xbpioJE5Gi/BL4I3ESHZi1gApAKfBhV9iEwJfw8GSjrsK7VcUAKUBE2Le0H/hOY2Mf6TQaq3f1gF3W4BTgReC9svvp01HktB5aY2U4z+z9mltLH7xbplIJEJIq7f0jQ6b4Q+F2H1VUEv9kfF1U2jfarlgqCpqPoda3KgHpggrvnha8cd5/TxyruBMaZWXZndXD3ze5+HUFA3QM8bWaZ7t7o7t9399nAJwia4G5AZBAoSESOdQtwsbsfji5092aCPoe7zCzbzI4Dbqe9H+Up4OtmVmRmY4E7ovatAF4A/t3McswsycxOMLML+lIxdy8D3gD+NexAPzWs768BzOx6M8t39xZgf7hbs5ldZGbFYfNcDUEgNvflu0W6oiAR6cDdt7p7aRervwYcBrYBrwNPAI+E6/6LoPnor8Bqjr2iuYGgaWwDsA94GijsRxWvA6YTXJ08C3zP3V8M180H1pvZIYKO92vdvQ4oCL+vBtgIvMqxAwlE+sX0YCsRERkIXZGIiMiAKEhERGRAFCQiIjIgChIRERmQmE5LbWbzCUaORICfu/vdHdbfTjBFRBNQCXwlHMePmd0IfDfc9Ifu/lhYfgbwC4LJ9J4HvuE9jBiYMGGCT58+fZDOSkRkdFi1alWVu+f3tF3MRm2F49XfJ5hqohxYCVzn7huitrkIeNvda83sNuBCd7/GzMYBpQTzFTmwCjjD3feZ2QrgGwTzIj0P3Ofuy7qrS0lJiZeWdjWaU0REOmNmq9y9pKftYtm0dRawxd23uXsDsAS4InoDd/+Tu9eGi28BReHny4EX3b3a3fcBLwLzzawQyHH3N8OrkMeBK2N4DiIi0oNYBskUjp53qJz2+YA6cwvQemXR1b5Tws89HtPMFofTaZdWVlb2seoiItJbsQwS66Ss03Y0M7ueoBnr33rYt9fHdPeH3L3E3Uvy83ts4hMRkX6KZWd7OUdPYFdEMKXDUczsEuAfgQvcvT5q3ws77PtKWF7UofyYY/ZGY2Mj5eXl1NXV9Wf3YSc9PZ2ioiJSUjThq4gMrlgGyUpglpnNIJiZ9FqC6bnbmNlpBFNpzw+fz9BqOcHDesaGy5cRPAOi2swOmtnZwNsEcxf9pD+VKy8vJzs7m+nTp2PW2YXOyOHu7N27l/LycmbMmJHo6ojICBOzpi13bwK+ShAKG4Gn3H29md1pZp8NN/s3IAv4rZmtMbOl4b7VwA8IwmglcGdYBnAbwYN8tgBbae9X6ZO6ujrGjx8/4kMEwMwYP378qLn6EpH4iul9JO7+PMEQ3eiyf4r6fEk3+z5C+6yq0eWlwNzBqN9oCJFWo+lcRSS+dGd7N/bXNrD3UH3PG4qIjGIKkm4cONLI7pp6YnHT5t69e5k3bx7z5s2joKCAKVOmtC03NDT06hg333wzmzZtGvS6iYj0RUybtoa73IwUDhxp5HB9M1npg/tHNX78eNasWQPAP//zP5OVlcU3v/nNo7Zxd9ydpKTO8/7RRx8d1DqJiPSHrki6kZ2eQpIZB+oa4/adW7ZsYe7cudx6662cfvrpVFRUsHjxYkpKSpgzZw533nln27af/OQnWbNmDU1NTeTl5XHHHXfwsY99jHPOOYc9e/Z08y0iIoNHVyTA9//vejbsrOl0XX1TM80tMCY10qdjzp6cw/c+M6df9dmwYQOPPvooDz74IAB3330348aNo6mpiYsuuoirrrqK2bNnH7XPgQMHuOCCC7j77ru5/fbbeeSRR7jjjjs6O7yIyKDSFUkPIklJuDvNcXwk8QknnMCZZ57Ztvyb3/yG008/ndNPP52NGzeyYcOGY/bJyMhgwYIFAJxxxhls3749XtUVkVFOVyTQ7ZVDc4uzsaKGcZmpTM7LiEt9MjMz2z5v3ryZH//4x6xYsYK8vDyuv/76Tu8HSU1NbfsciURoamqKS11FRHRF0oNIkpGdnsyBI40xGb3Vk5qaGrKzs8nJyaGiooLly5fHvQ4iIt3RFUkvtI7eqm1oJjMtvn9kp59+OrNnz2bu3Lkcf/zxnHvuuXH9fhGRnsTswVZDSWcPttq4cSOnnHJKr/ZvbnE2VNQwPo7NW7HQl3MWERkKD7YaMSJJRnZa4pq3RESGMgVJL+WOSaGxuYXahuZEV0VEZEhRkPRSTnoyZsaBI/G7OVFEZDhQkPRSJClJzVsiIp1QkPRBboaat0REOlKQ9EF2hpq3REQ6UpD0QXLYvFUzCM1bgzGNPMAjjzzCrl27BlQXEZGBiGmQmNl8M9tkZlvM7JgZBM3sfDNbbWZNZnZVVPlF4aN3W191ZnZluO4XZvZB1Lp5sTyHjnIyUmhobuFI48Cat1qnkV+zZg233nor//AP/9C2HD3dSU8UJCKSaDG7TdvMIsADwKVAObDSzJa6e/SMgzuAm4CjHsTh7n8C5oXHGUfwfPYXojb5lrs/Hau6dyd69NaY1Nj88T322GM88MADNDQ08IlPfIL777+flpYWbr75ZtasWYO7s3jxYiZNmsSaNWu45ppryMjIYMWKFX0KIRGRwRDL+T7OAra4+zYAM1sCXAG0BYm7bw/XtXRznKuAZe5eG7OaLrsDdr3bq02TgZmNzcFDp1IjGF08C72gGBbc3eeqrFu3jmeffZY33niD5ORkFi9ezJIlSzjhhBOoqqri3XeDeu7fv5+8vDx+8pOfcP/99zNvXlwvzERE2sSyaWsKUBa1XB6W9dW1wG86lN1lZmvN7EdmltbZTma22MxKzay0srKyH1/bteSI0eLQEoNRwC+99BIrV66kpKSEefPm8eqrr7J161ZmzpzJpk2b+MY3vsHy5cvJzc0d/C8XEemHWF6RdParep9+9JpZIVAMRE95+x1gF5AKPAR8G7iz477u/lC4npKSku6/t49XDtbcwgcVB5mQnUph7uDOveXufOUrX+EHP/jBMevWrl3LsmXLuO+++3jmmWd46KGHBvW7RUT6I5ZXJOXA1KjlImBnH4/xBeBZd28bb+vuFR6oBx4laEKLq+RIElkxmlr+kksu4amnnqKqqgoIRnft2LGDyspK3J2rr76a73//+6xevRqA7OxsDh48OKh1EBHpi1hekawEZpnZDOAjgiaqL/bxGNcRXIG0MbNCd68wMwOuBNYNRmX7KjcjmfJ9jRxpbB7UTvfi4mK+973vcckll9DS0kJKSgoPPvggkUiEW265BXfHzLjnnnsAuPnmm/nbv/1bdbaLSMLEdBp5M1sI3AtEgEfc/S4zuxModfelZnYm8CwwFqgDdrn7nHDf6cBfgKnu3hJ1zJeBfIKmszXAre5+qLt6DHQa+c40NbewMUbNW7GiaeRFpC96O418TJ/S5O7PA893KPunqM8rCZq8Ott3O510zrv7xYNby/5JjiSRmRbhwJFGCnLSCS6QRERGH93ZPgC5Y1JoaGqhboA3J4qIDGejOkgG2qyXm56CMTzm3tKMxSISK6M2SNLT09m7d++AfsC2N281Dekf1O7O3r17SU9PT3RVRGQEimkfyVBWVFREeXk5A71Z8XB9E/tqG6mvSiMlMnRzOT09naKiTrujREQGZNQGSUpKCjNmzBjwcaoO1fOFu17if1w4k29eftIg1ExEZHgZur9CDxMTstI4+/jxPP9uxZBu3hIRiRUFySBYWFzItqrDbNqtO8xFZPRRkAyCy+cUkGTw/NqKRFdFRCTuFCSDID87jbNmjOM5NW+JyCikIBkki4oL2Vp5mM17up2tRURkxFGQDJLL5xZgBs+peUtERhkFySCZmJ3OmdPH8fy7ChIRGV0UJINoUXEhm/ccYrNGb4nIKKIgGUTzw+at59/dleiqiIjEjYJkEE3KSafkuLFq3hKRUUVBMsgWFheyafdBtmj0loiMEgqSQbZgbiEAy3RVIiKjREyDxMzmm9kmM9tiZnd0sv58M1ttZk1mdlWHdc1mtiZ8LY0qn2Fmb5vZZjN70syG1EPKC3KD5q3nFCQiMkrELEjMLAI8ACwAZgPXmdnsDpvtAG4CnujkEEfcfV74+mxU+T3Aj9x9FrAPuGXQKz9AC4oLeW/XQbZVqnlLREa+WF6RnAVscfdt7t4ALAGuiN7A3be7+1qgpTcHtODB6BcDT4dFjwFXDl6VB8fC4gIAlq3T6C0RGfliGSRTgLKo5fKwrLfSzazUzN4ys9awGA/sd/emfh4zLgpzMzh9Wp7ucheRUSGWQWKdlPVlRsNp7l4CfBG418xO6MsxzWxxGESlA30KYn8sLC5kQ0UN26sOx/27RUTiKZZBUg5MjVouAnb2dmd33xm+bwNeAU4DqoA8M2t9smOXx3T3h9y9xN1L8vPz+177AVpQHIzeUqe7iIx0sQySlcCscJRVKnAtsLSHfQAws7FmlhZ+ngCcC2zwYI72PwGtI7xuBH4/6DUfBFPyMpg3NY9l6xQkIjKyxSxIwn6MrwLLgY3AU+6+3szuNLPPApjZmWZWDlwN/KeZrQ93PwUoNbO/EgTH3e6+IVz3beB2M9tC0GfycKzOYaAWFRey7qMaduytTXRVRERixkbDg5hKSkq8tLQ07t9bVl3Lef/nT3x7/sncduEJcf9+EZGBMLNVYV91t3RnewxNHTeGjxXlqnlLREY0BUmMLSwuZG35Acqq1bwlIiOTgiTGFoajtzQjsIiMVAqSGJs6bgzFU3IVJCIyYilI4mBhcSF/LT9A+T41b4nIyKMgiYO2ubf05EQRGYEUJHFw3PhM5kzO0V3uIjIiKUjiZGFxIWvK9vPR/iOJroqIyKBSkMTJomI9OVFERiYFSZxMn5DJ7MIcjd4SkRFHQRJHC4sLWL1jPzvVvCUiI4iCJI5ab078g56cKCIjiIIkjo7Pz+Lkgmw1b4nIiKIgibOFxYWUfriPXQfqEl0VEZFBoSCJs9bmLc0ILCIjhYIkzmZOzOKkSdm6y11ERgwFSQIsLC5k5YfV7KlR85aIDH8KkgRYWFyAOyzT6C0RGQFiGiRmNt/MNpnZFjO7o5P155vZajNrMrOrosrnmdmbZrbezNaa2TVR635hZh+Y2ZrwNS+W5xALsyZlM2tilkZviciIELMgMbMI8ACwAJgNXGdmsztstgO4CXiiQ3ktcIO7zwHmA/eaWV7U+m+5+7zwtSYmJxBjC4sLWbG9mj0H1bwlIsNbLK9IzgK2uPs2d28AlgBXRG/g7tvdfS3Q0qH8fXffHH7eCewB8mNY17hbdGoh7rBczVsiMszFMkimAGVRy+VhWZ+Y2VlAKrA1qviusMnrR2aW1sV+i82s1MxKKysr+/q1MTdrYhYn5GdqankRGfZiGSTWSZn36QBmhcAvgZvdvfWq5TvAycCZwDjg253t6+4PuXuJu5fk5w+9ixkzY1FxISs+qKbyYH2iqyMi0m+xDJJyYGrUchGws7c7m1kO8BzwXXd/q7Xc3Ss8UA88StCENiwtPLWQFofl69W8JSLDVyyDZCUwy8xmmFkqcC2wtDc7hts/Czzu7r/tsK4wfDfgSmDdoNY6jk6alM3xEzI1ektEhrWYBYm7NwFfBZYDG4Gn3H29md1pZp8FMLMzzawcuBr4TzNbH+7+BeB84KZOhvn+2szeBd4FJgA/jNU5xJqZsbC4kLe27WXvITVvicjwZO596rYYlkpKSry0tDTR1ejUhp01LLzvNf7lb4r54senJbo6IiJtzGyVu5f0tJ3ubE+wUwqzmaHmLREZxhQkCWZmLJhbwJvb9lJ9uCHR1RER6TMFyRCwsLiQ5hbnBY3eEpFhSEEyBMyZnMNx48fo5kQRGZYUJENA0LxVyBtb97JPzVsiMswoSIaIRa3NWxvUvCUiw4uCZIiYOyWHqeMyeF5PThSRYUZBMkS03pz4ly1V7K9V85aIDB8KkiFk4dxCmlqcFzbsTnRVRER6TUEyhJxalEvR2AyWafSWiAwjCpIhpLV56/UtVRw40pjo6oiI9IqCZIhZWFxIY7Pzopq3RGSYUJAMMR8rymVKXobm3hKRYaNXQWJmJ7Q+0tbMLjSzr5tZXmyrNjq1zr312uZKaurUvCUiQ19vr0ieAZrNbCbwMDADeCJmtRrlFp4aNG+9pOYtERkGehskLeGDqv4GuNfd/wEojF21Rrd5RXkU5qareUtEhoXeBkmjmV0H3Aj8d1iWEpsqSVJSMPfWn9+v4qCat0RkiOttkNwMnAPc5e4fmNkM4Fc97WRm881sk5ltMbM7Oll/vpmtNrMmM7uqw7obzWxz+LoxqvwMM3s3POZ94bPbR5xFpxbQ0NzCHzfuSXRVRES61asgcfcN7v51d/+NmY0Fst397u72MbMI8ACwAJgNXGdmsztstgO4iQ79LWY2Dvge8HHgLOB74fcC/AxYDMwKX/N7cw7DzWlTx1KQk66p5UVkyOvtqK1XzCwn/AH/V+BRM/uPHnY7C9ji7tvcvQFYAlwRvYG7b3f3tUBLh30vB15092p33we8CMw3s0Igx93f9OBh848DV/bmHIabpCRj/twCXn2/Us1bIjKk9bZpK9fda4DPAY+6+xnAJT3sMwUoi1ouD8t6o6t9p4Sf+3PMYWfRqYU0NLXw8ntq3hKRoau3QZIcXg18gfbO9p501nfhA9y318c0s8VmVmpmpZWVlb382qHljGljmZidptFbIjKk9TZI7gSWA1vdfaWZHQ9s7mGfcmBq1HIRsLOX39fVvuXh5x6P6e4PuXuJu5fk5+f38muHlmD0VgGvbKrkcH1ToqsjItKp3na2/9bdT3X328Llbe7++R52WwnMMrMZZpYKXAss7WW9lgOXmdnYsJP9MmC5u1cAB83s7HC01g3A73t5zGFpYXEh9WreEpEhrLed7UVm9qyZ7TGz3Wb2jJkVdbdPeAPjVwlCYSPwlLuvN7M7zeyz4XHPNLNy4GrgP81sfbhvNfADgjBaCdwZlgHcBvwc2AJsBZb18ZyHlZLp48hX85aIDGHJvdzuUYIhuleHy9eHZZd2t5O7Pw8836Hsn6I+r+Topqro7R4BHumkvBSY28t6D3uRsHnrqdIyahuaGJPa278yEZH46G0fSb67P+ruTeHrF8Dw7HgYhhbMLaSuUc1bIjI09TZIqszsejOLhK/rgb2xrJi0O2vGOCZkpbHs3V2JroqIyDF6GyRfIRj6uwuoAK4imDZF4iCSZMyfO4mX39vDkYbmRFdHROQovR21tcPdP+vu+e4+0d2vJLg5UeJk4dxCjjQ286dNat4SkaFlIE9IvH3QaiE9OmvGOMZnpmr0logMOQMJkhE56+5QlRxJ4vK5Bbz83h7qGtW8JSJDx0CCpLfTncggWVRcSG1DM6+oeUtEhpBug8TMDppZTSevg8DkONVRQh+fMY5xmak8p9FbIjKEdHt3m7tnx6si0rPkSBKXz5nE0jU7qWtsJj0lkugqiYgMqGlLEmBhcSGHG5p59f3hOaOxiIw8CpJh5uzjxzN2TIpGb4nIkKEgGWZSIklcNruAP27U6C0RGRoUJMPQwlMLOVTfxGubqxJdFRERBclw9IkTxpOboeYtERkaFCTDUNC8NYmXNuymvknNWyKSWAqSYWrhqYUcrG/idTVviUiCKUiGqXNPmEBOejLPqXlLRBJMQTJMpSYncdmcAl5U85aIJFhMg8TM5pvZJjPbYmZ3dLI+zcyeDNe/bWbTw/IvmdmaqFeLmc0L170SHrN13cRYnsNQtrC4gIN1Tfxli5q3RCRxYhYkZhYBHgAWALOB68xsdofNbgH2uftM4EfAPQDu/mt3n+fu84AvA9vdfU3Ufl9qXe/uo3YGw0/OzCc7PZnnNfeWiCRQLK9IzgK2uPs2d28AlgBXdNjmCuCx8PPTwKfMrOP09NcBv4lhPYet1OQkLp09iRfW76KhqSXR1RGRUSqWQTIFKItaLg/LOt3G3ZuAA8D4Dttcw7FB8mjYrPX/dBI8AJjZYjMrNbPSysqROy/VwrmF1NQ18Zetat4SkcSIZZB09gO+4zNMut3GzD4O1Lr7uqj1X3L3YuC88PXlzr7c3R9y9xJ3L8nPz+9bzYeR806cQHZaMss0ektEEiSWQVIOTI1aLgJ2drWNmSUDuUB11Ppr6XA14u4fhe8HgScImtBGrbTkCJfMnsQLG3bT2KzmLRGJv1gGyUpglpnNMLNUglBY2mGbpcCN4eergJfd3QHMLAm4mqBvhbAs2cwmhJ9TgE8D6xjlFhYXsr+2kTe27k10VURkFIpZkIR9Hl8FlgMbgafcfb2Z3Wlmnw03exgYb2ZbgNuB6CHC5wPl7r4tqiwNWG5ma4E1wEfAf8XqHIaL82ZNICstmefXqnlLROKv2yckDpS7Pw8836Hsn6I+1xFcdXS27yvA2R3KDgNnDHpFu/LyXXBkH1z4HcjsOAZg6EhPifCpUyayfMMuftg8l5SI7jMVkfjRT5zuNNZC6SNw32nw5gPQ1JDoGnWptXnrrW1q3hKR+FKQdOfyu+C2v0BRCSz/3/DTs+G958A7Dj5LvAtOzCczNaKp5UUk7hQkPZl4Cnz5d/ClpyEpGZZ8ER7/LOx6N9E1O0p6SoSLT5nE8vW7adLoLRGJIwVJb826NLg6WfBvQYg8eB4s/RocGjoztCwqLqD6cANvf1Dd88YiIoNEQdIXkRT4+GL4+jtw9m2w5gm473R47T+gsS7RtePCkyYyJjWiqeVFJK4UJP2RMRbm/yv8j7dh+ifhj9+HB86E9c8mtP8kPSXCRSdPZPm6XWreEpG4UZAMxISZ8MUlcMPvITUbfnsTPLoAPlqdsCotKi5k7+EGVmxX85aIxIeCZDAcfyHc+hp8+l6o2gz/dRE8eyvUdJwRJvYuOmkiGSkavSUi8aMgGSxJESi5Gb6+Gs79Bqx7Bn5yBrxyDzTUxq0aGakRLj55In9Yt5vmlqE3TFlERh4FyWBLz4VL74S/XxGM9HrlX+D+Elj7FLTEp99iQXEBVYfqWaHRWyISBwqSWBk3A77wONz0PGROgN/9HTx8CZStiPlXX3zyRNJTkli2Ts1bIhJ7CpJYm34u/N0rcOXP4MBH8PCl8PRXYP+OmH3lmNRkLjppIsvW7VLzlojEnIIkHpKSYN4X4Wur4Pz/FUyzcv+Z8Mc7of5gTL5yQXEhlQfrKdXoLRGJMQVJPKVlwcX/CF8thVM+A6/9e9Ahv/qX0NI8qF/1qZMnkpacxLJ1uwb1uCIiHSlIEiFvKnz+53DLS5A3DZZ+FR66ELa/PmhfkZmWzIUn5bNsXQUtat4SkRhSkCTS1DPhlhfh8w9DbTX8YhE8eT1Ub+t5315YWFzI7pp6Vu3YNyjHExHpjIIk0cyg+Cr4Wilc9F3Y8jI88HF44btQd2BAh/7UKZNITU7iOT05UURiKKZBYmbzzWyTmW0xszs6WZ9mZk+G6982s+lh+XQzO2Jma8LXg1H7nGFm74b73GdmFstziJuUDLjgW0GHfPHV8Mb9wYSQKx+G5qZ+HTIrLZkLTsznD+t2qXlLRGImZkFiZhHgAWABMBu4zsxmd9jsFmCfu88EfgTcE7Vuq7vPC1+3RpX/DFgMzApf82N1DgmRUwhX/hQWvwL5J8Fzt8ODn4Qtf+zX4RYVF7Krpo53ytS8JSKxEcsrkrOALe6+zd0bgCXAFR22uQJ4LPz8NPCp7q4wzKwQyHH3N93dgceBKwe/6kPA5Hlw03PBTY2NtfCrz8GvvwCV7/fpMBefMpHUSBLPrdXoLRGJjVgGyRSgLGq5PCzrdBt3bwIOAOPDdTPM7B0ze9XMzovavryHYwJgZovNrNTMSisrKwd2JoliBrOvgK+uDKZd+fAN+Nk5sOzbQed8L+Skp3D+iRM0ektEYiaWQdLZlUXHn2RdbVMBTHP304DbgSfMLKeXxwwK3R9y9xJ3L8nPz+9DtYeg5LRgIsivr4bTrocVD8F9p8FbD0JzY4+7LywupOJAHe+U7Y9DZUVktIllkJQDU6OWi4CO86q3bWNmyUAuUO3u9e6+F8DdVwFbgRPD7Yt6OObIlTURPvNjuPX1oOnrD9+Gn54Dm/7Q7QO1Lpk9iYyUCDc8/DZ3PLOW1Tv24Ql8AJeIjCyxDJKVwCwzm2FmqcC1wNIO2ywFbgw/XwW87O5uZvlhZz1mdjxBp/o2d68ADprZ2WFfyg3A72N4DkPTpDnw5f8PrnsScPjNNfDLv4HdGzrdPCc9hadvO4dFpxby+zU7+dxP3+Dye//Mw69/QPXhhvjWXURGHIvlb6ZmthC4F4gAj7j7XWZ2J1Cdol+vAAAT4ElEQVTq7kvNLB34JXAaUA1c6+7bzOzzwJ1AE9AMfM/d/294zBLgF0AGsAz4mvdwEiUlJV5aWhqTc0y4pgYofRhe+ddg3q4zboKL/jGYcbgTB+sa+e+1FTy5sow1ZftJjSRx6ZxJXFMylU/OnEBS0sgYTS0iA2dmq9y9pMftRkMTx4gOkla11fDK3bDy55CaCed/Ez5+a9C/0oX3dtXw5Moynn3nI/bXNjIlL4OrS4q4umQqU/Iy4lh5ERmKFCRRRkWQtKrcFNwVv/kFGDsdLv1BMEFkN/dt1jc18+KG3Ty5sozXNldhBufNyufaM6dySXh3vIiMPgqSKKMqSFpteQmW/yNUvgfHfRIuvyvooO9BWXUtv11Vzm9Ly6g4UMe4zFQ+d9oUrjlzKrMmZceh4iIyVChIoozKIIFgapXVv4CX74Ij++C4T8CM82H6eVBU0m2zV3OL89rmSp5cWcaLG3bT1OKcPi2Pa8+cxqJTC8lMS47feYhIQihIoozaIGl1ZD+89VN4fzlU/BVwSM6AaWcHwTLjfCicB5HOw6HqUD3Prv6IJSt3sLXyMJmpET7zsclcc+ZU5k3NY6RMdyYiR1OQRBn1QRLtyD7Y/hfY/hp88GfYEw4ZTs0OHgvcGiwT5wRPdozi7qzesY8lK8r477UVHGls5sRJWVxz5jT+5rQpjMtMTcAJiUisKEiiKEi6cWhPe6h88BpUbw3KM8bB9E+GwXIBTJh1VId96zDiJSvL+KuGEYuMSAqSKAqSPjhQHgTKB38OXjXh1GZZBTDjvPYrlrHT23bpbBjxF0qmcnVJEZM1jFgkvlpa4MCO4AblPevh7L+H1DH9OpSCJIqCpJ/cYd8H7aHywZ/hcDgBZt60sOP+/CBgciZT19g+jPj1LcEw4vNn5XONhhGLxEZtNexeHzRRt77v2QgNh9q3ufV1KCju1+EVJFEUJIPEPbhP5YM/wwevBs+Yrwsnghw/K7xaOQ+mn0dZ/Rh+W1rGU6Xl7KqpY3xmKp87PRhGPHOihhGL9EljXTCUPzowdm+AQ1GPh8gYG/RtTpoNE2cHUylNPAXS+v//TUESRUESIy3NsHtd+9XKh2+0/yY0aS7MOJ/m487jL00n8cSa/by0MRhGfMZxY7mmZKqGEYt01NIStAK0BsWe9cF79VbwlmCbSFrw0LtJc8LAmB0ESHZBtzce94eCJIqCJE6aG2HnO+3BUvY2NNWBJUHhPGqnnMufGk7mga0T2FDVrGHEMrodqmwPitb3yveCB9kBYEFfZMfAGHd8l0P1B5uCJIqCJEEa66B8ZfuosPKV0NKEJ6VwaMLHeNPn8qtdx/FW4/FMnzRWw4hlZGqohcqNYWBENU0djnrg3pgJ7UHR+j7x5GDevARSkERRkAwR9Yeg7K32ocYVa8BbaEpKY13kFF6oPZGVVkzBKefwhbOmc+4JGkYsw0hLM1RvO7bzu/oD2p6/l5wRBETHvoysiQmtelcUJFEUJEPUkf1Bv0prU9ie9QAcIoO3m09mQ9rHGD/3Ei684GImj03sb2aDpqUZmhvCV2OwnJQMSZHwPbl9WU19Q5M7HNp9dKf3nvXBQJSmumAbSwqaoNo6vcP3sdODv9thQkESRUEyTByugu2v0bT1Vere/xNZh7YDsM+z2DJmHmNOvJBZZy8iteCUY3/ItrRAS2P7D+jWH9ZNDUf/4D7qc30X5X3dr6fva32vb+8w7Q3rJFz6shxJHtj+xyx3VRb9Sup6n7bz6eq4HcqHQpDWHwqG07b1ZYRXGkeq27fJmtQhMGZD/smQMvzvoVKQRFGQDFM1O6l69yV2/fUFxu95k0KqADgSySYpOY1kmkhqacSa66GlKTZ1iKQGo2QiKeHn1PbPyanHlrV97mKfjvuZhSHYFPVq7rDcWVl3y4193L6T5b4EXqxYh1DquHxU8HQSRL0KsU72g/Ymqv0fttcnJTMYTtuxLyNzfGL+fOJAQRJFQTL8NTe3sOKd1Wx+exkpu97B3aknBUtOITczk3E5WYzPzSI/L4sJuTlEUrr6Id9ZeUowE3LHbYfKb8WJ0NIC3kXYNDd2EV5hIB61X2fH6CbE2vbtab9Owta7C+RuvveY+jYHN9weFRizIe+4Y+afG+l6GyQaxC/DQiSSxDklJZxTUsKRhmY27T7I+p0H2LCzhvU7a3ivvIa6D4LfolMjSZxYkMWcwlxmT85hzuQcTi7MIUv3rPReUhKQFASrSA9i+j/LzOYDPyZ4ZvvP3f3uDuvTgMeBM4C9wDXuvt3MLgXuBlKBBuBb7v5yuM8rQCFwJDzMZe6+J5bnIUNLRmqEeVPzmDc1r62sucX5oOoQ63fWtIXLCxt28WRpGRBcWEwfn8nswpy2cJk9OYeJ2emJOg2RESNmQWJmEeAB4FKgHFhpZkvdfUPUZrcA+9x9ppldC9wDXANUAZ9x951mNhdYDkyJ2u9L7q62KmkTSTJmTsxm5sRsrpgX/FNxd3bV1LUFy4adNaz9aD/PvVvRtl9+dhqzC9uDZc7kXI4bN0bDjkX6IJZXJGcBW9x9G4CZLQGuAKKD5Argn8PPTwP3m5m5+ztR26wH0s0szd3rY1hfGWHMjMLcDApzM/jUKZPayg8caWRjRfuVy4aKGv7y5200tQT9hZmpEU6JvnIpzOXEgizSkofPsE2ReIplkEwByqKWy4GPd7WNuzeZ2QFgPITDcwKfB97pECKPmlkz8AzwQ+9kxICZLQYWA0ybNm2ApyIjSW5GCmcfP56zj28fbVPf1Mzm3YfCcDnAhooanllVzuNvNgOQnGTMnJjVdtXS2kSWm6E+BJFYBklnbQMdf+B3u42ZzSFo7rosav2X3P0jM8smCJIvE/SzHH0Q94eAhyAYtdW3qstok5YcYe6UXOZOyQWmAtDS4uyorg2vWg6wfmcNr2+u4nerP2rbr2hsRttVS2vzWGFuuuYNk1EllkFSTuv/yEARsLOLbcrNLBnIBaoBzKwIeBa4wd23tu7g7h+F7wfN7AmCJrRjgkRkoJKSjOkTMpk+IZNFpxa2lVcerGdDRU3bqLENO2t4YcNuWq+Lx45JabtyCUImh+Pzs4io30VGqFgGyUpglpnNAD4CrgW+2GGbpcCNwJvAVcDL7u5mlgc8B3zH3f/SunEYNnnuXmVmKcCngZdieA4ix8jPTuOC7HwuODG/rexwfRPv7ao5atTYL97YTkNTMCQ5PSWJkwpy2oJlzuQcTi7IISNV/S4y/MX0hkQzWwjcSzD89xF3v8vM7gRK3X2pmaUDvwROI7gSudbdt5nZd4HvAJujDncZcBj4M5ASHvMl4HZ3b+6uHrohURKhsbmFrZWHjho1tn7nAWrqgrvwk8IhyVPHjWFa+Jo6bgxTx2UwbdwYstPV/yKJpTvboyhIZKhwdz7af6QtWN7ffZCyfbWUVR/hwJHGo7YdOyaFaePGUBQVNNPGjWHq2DEU5qWTEhldd1lL/OnOdpEhyMwoGjuGorFjuHxOwVHrDtQ2Uravlh3VtZRVB+87qmtZ/9EBXli/i8bm9l/6IknG5Lz0tmCZ2iFs8sakqMNf4kZBIjJE5I5JIXdM68ixozW3BDdX7tgbhExr4OyoruWljbupOtRw1PZZaclhuGRENZkFITMlL4P0FPXNyOBRkIgMA5EkY0peBlPyMjjnhGNnmz1c30T5viNt4VIWvrZVHuaVTZXUNx09m29BTvoxfTKtr/zsNF3NSJ8oSERGgMy0ZE4qyOakguxj1rk7lYfq25vL9h5pu6J5Y2sVu96pI7qrNC056aimsqKxYdCMD5rRMjX5pXSgfxEiI5yZMTE7nYnZ6Zxx3Lhj1tc1NvPR/iNtVzHtVzVHWPFBNYfqj37Wy/jM1A4jzTKYGjaZTcpJV7PZKKQgERnl0lMinJCfxQn5Wcesc3f2Rw0CaG82O8KasmACzOaWo0d+5makMCknjUk5QXhNykmjILf986ScdPKz0zTqbARRkIhIl8yMsZmpjM1M5dSivGPWNzW3UHGgjh3VtVQcqGN3TfSrnq17qthzsL5tQsz24wZXNhOz0ynIDQImCJr2sJmUk874zFTNxDwMKEhEpN+SI0ltI8K60tLiVNc2sOtAHXsOBgHTGjR7aurYVVPH2vID7D1cT8fb2pKTjPzsNCbmpDMpO+2YoGldzs3QcOdEUpCISEwlJRkTstKYkJVGMJ1e5xqbW6g6VB8VNO1XNrtr6vhwby0rtlezv7bxmH1Tk5OCJrSc9DB02gNnYvhekJOugQIxoj9VERkSUiJJbc+P6U5dYzN7aurZfbDumCub3TV1bNxZw59q9lDbcOzMSVlpyUGwHBU0QchE999owEDfKEhEZFhJT4kwbXwwHLk7h+qbgqA5UBeGTnBlsyd8L/1wH3tq6mlobjlm3zGpEXLSU8jJSA7fU8hJTw7fO5YfvZydnjzqBhIoSERkRMpKSyari9ForVpHpR0dNHXsr22kpq6RmiNN1NQ1sudgHVv2NIVljbT0MEVhd0GUnd51CLVuM9yCSEEiIqNW9Ki0kwt63h6C8KltaD4qaGqORAXPkaNDqKaukcqD9WytPBSuazpmyHRHGSmRfl0NJSqIFCQiIn1gZmSmJZOZlkxh12MHutSfIKo61MC2qsP9CqKHbihhxoTMfp5t7yhIRETiKN5BlJkW+4EDChIRkWFkoEEUC8OrR0dERIacmAaJmc03s01mtsXM7uhkfZqZPRmuf9vMpket+05YvsnMLu/tMUVEJL5iFiRmFgEeABYAs4HrzGx2h81uAfa5+0zgR8A94b6zgWuBOcB84KdmFunlMUVEJI5ieUVyFrDF3be5ewOwBLiiwzZXAI+Fn58GPmXBhDlXAEvcvd7dPwC2hMfrzTFFRCSOYhkkU4CyqOXysKzTbdy9CTgAjO9m394cEwAzW2xmpWZWWllZOYDTEBGR7sQySDqbirPj4Oeutulr+bGF7g+5e4m7l+Tn53dbURER6b9YBkk5MDVquQjY2dU2ZpZMMDVodTf79uaYIiISR7EMkpXALDObYWapBJ3nSztssxS4Mfx8FfCyu3tYfm04qmsGMAtY0ctjiohIHMXshkR3bzKzrwLLgQjwiLuvN7M7gVJ3Xwo8DPzSzLYQXIlcG+673syeAjYATcDfu3szQGfH7Kkuq1atqjKzD/t5KhOAqn7uO9SMlHMZKecBOpehaqScy0DP47jebGTe8ZFkchQzK3X3kkTXYzCMlHMZKecBOpehaqScS7zOQ3e2i4jIgChIRERkQBQkPXso0RUYRCPlXEbKeYDOZagaKecSl/NQH4mIiAyIrkhERGRAFCQiIjIgCpJujJQp683sETPbY2brEl2XgTCzqWb2JzPbaGbrzewbia5Tf5lZupmtMLO/hufy/UTXaSDC2bnfMbP/TnRdBsLMtpvZu2a2xsxKE12fgTCzPDN72szeC//PnBOz71IfSefCKevfBy4lmJplJXCdu29IaMX6wczOBw4Bj7v73ETXp7/MrBAodPfVZpYNrAKuHKZ/JwZkuvshM0sBXge+4e5vJbhq/WJmtwMlQI67fzrR9ekvM9sOlLj7sL8Z0cweA15z95+HM4GMcff9sfguXZF0bcRMWe/ufyaYOWBYc/cKd18dfj4IbKSL2Z+HOg8cChdTwtew/K3OzIqARcDPE10XCZhZDnA+wewhuHtDrEIEFCTd6fWU9RJ/4dM0TwPeTmxN+i9sDloD7AFedPfhei73Av8LaEl0RQaBAy+Y2SozW5zoygzA8UAl8GjY5PhzM8uM1ZcpSLrW6ynrJb7MLAt4Bvif7l6T6Pr0l7s3u/s8glmszzKzYdfsaGafBva4+6pE12WQnOvupxM8hfXvw2bh4SgZOB34mbufBhwGYtbPqyDpmqasH4LC/oRngF+7++8SXZ/BEDY5vELwWOnh5lzgs2HfwhLgYjP7VWKr1H/uvjN83wM8S9DEPRyVA+VRV7lPEwRLTChIuqYp64eYsIP6YWCju/9HouszEGaWb2Z54ecM4BLgvcTWqu/c/TvuXuTu0wn+j7zs7tcnuFr9YmaZ4SAOwmagy4BhOdLR3XcBZWZ2Ulj0KYLZ1GMiZtPID3ddTYOf4Gr1i5n9BrgQmGBm5cD33P3hxNaqX84Fvgy8G/YtAPxvd38+gXXqr0LgsXB0YBLwlLsP66GzI8Ak4Nng9xWSgSfc/Q+JrdKAfA34dfiL8Dbg5lh9kYb/iojIgKhpS0REBkRBIiIiA6IgERGRAVGQiIjIgChIRERkQBQkIoPAzJrDGWNbX4N2F7GZTR/uMzfLyKb7SEQGx5FwuhORUUdXJCIxFD7f4p7w2SMrzGxmWH6cmf3RzNaG79PC8klm9mz4nJK/mtknwkNFzOy/wmeXvBDeDS8yJChIRAZHRoemrWui1tW4+1nA/QQz5RJ+ftzdTwV+DdwXlt8HvOruHyOYG6l1NoVZwAPuPgfYD3w+xucj0mu6s11kEJjZIXfP6qR8O3Cxu28LJ5zc5e7jzayK4CFdjWF5hbtPMLNKoMjd66OOMZ1gmvlZ4fK3gRR3/2Hsz0ykZ7oiEYk97+JzV9t0pj7qczPq35QhREEiEnvXRL2/GX5+g2C2XIAvETxqF+CPwG3Q9uCrnHhVUqS/9FuNyODIiJqRGOAP7t46BDjNzN4m+MXturDs68AjZvYtgifZtc7M+g3gITO7heDK4zagIua1FxkA9ZGIxFDYR1Li7lWJrotIrKhpS0REBkRXJCIiMiC6IhERkQFRkIiIyIAoSEREZEAUJCIiMiAKEhERGZD/H1wdvhmETcTWAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt8XOV97/vPbzQjjSzrYluyJd9ix3YCttwYEE4gKZQEjETTwNklBZoEQun2Sdq02YfTnpB9ekJDkrNh79MmIWE3oYkJSZMQSsKrzg7GkBBocwFsE4NvGIwxIFu25Zsutu76nT/WkjyWRnctjUb6vl+vec2aZ13mWVzmq+dZz3qWuTsiIiKjFct0BUREJLspSEREZEwUJCIiMiYKEhERGRMFiYiIjImCRERExkRBIhIRM1tiZm5m8WFs+3Ez+9VYjyOSCQoSEcDMDphZu5mV9infHv6IL8lMzUQmPwWJyFmvAzf1fDCz1UB+5qojkh0UJCJnfQ+4OeXzLcB3Uzcws2Iz+66Z1ZvZG2b2d2YWC9flmNn/Z2bHzGw/8Idp9v22mdWZ2UEz+6KZ5Yy0kmY238w2mtkJM9tnZv85Zd1aM9tqZo1mdsTM/jEsT5rZv5jZcTM7ZWZbzGzeSL9bJB0FichZzwJFZnZ++AN/A/Avfbb5GlAMvB24nCB4bg3X/Wfgg8AFQBVwfZ99HwQ6geXhNuuAPx9FPX8I1ALzw+/4f83sA+G6rwJfdfciYBnwcFh+S1jvRcAc4BNAyyi+W6QfBYnIuXpaJVcBLwMHe1akhMtn3b3J3Q8A/wB8LNzkT4CvuPtb7n4C+G8p+84DaoD/4u6n3f0o8GXgxpFUzswWAe8DPuPure6+HfhWSh06gOVmVuruze7+bEr5HGC5u3e5+zZ3bxzJd4sMREEicq7vAX8KfJw+3VpAKZALvJFS9gawIFyeD7zVZ12PtwEJoC7sWjoFfBOYO8L6zQdOuHvTAHW4DXgH8HLYffXBlPPaDDxkZofM7L+bWWKE3y2SloJEJIW7v0Fw0f0a4Cd9Vh8j+Mv+bSlliznbaqkj6DpKXdfjLaANKHX3kvBV5O6rRljFQ8BsMytMVwd3f9XdbyIIqHuAR8yswN073P3z7r4SuJSgC+5mRMaBgkSkv9uA97v76dRCd+8iuObwJTMrNLO3Abdz9jrKw8Bfm9lCM5sF3JGybx3wBPAPZlZkZjEzW2Zml4+kYu7+FvAb4L+FF9B/L6zv9wHM7KNmVubu3cCpcLcuM7vCzFaH3XONBIHYNZLvFhmIgkSkD3d/zd23DrD6r4DTwH7gV8APgA3hun8m6D56EXiB/i2amwm6xnYDJ4FHgIpRVPEmYAlB6+RR4E53fzJcVw3sMrNmggvvN7p7K1Aefl8jsAd4hv4DCURGxfRgKxERGQu1SEREZEwUJCIiMiYKEhERGRMFiYiIjMm0mJa6tLTUlyxZkulqiIhklW3bth1z97KhtpsWQbJkyRK2bh1oNKeIiKRjZm8MvZW6tkREZIwUJCIiMiYKEhERGZNpcY0knY6ODmpra2ltbc10VSZEMplk4cKFJBKa8FVExte0DZLa2loKCwtZsmQJZpbp6kTK3Tl+/Di1tbUsXbo009URkSlm2nZttba2MmfOnCkfIgBmxpw5c6ZN60tEJta0DRJgWoRIj+l0riIysaZ1kAzl1Jl2jje3ZboaIiKTWqRBYmbVZrbXzPaZ2R1p1t9uZrvN7CUz+0X4oKCedbeY2avh65aU8ovMbEd4zHstwj+1G1o6ONLYRhRT7R8/fpw1a9awZs0aysvLWbBgQe/n9vb2YR3j1ltvZe/eveNeNxGRkYjsYnv4JLb7gKuAWmCLmW10990pm/0OqHL3M2b2SeC/AzeY2WzgTqAKcGBbuO9J4J+A9cCzwGMED/LZFMU5FOcnaGjp4Ex7FwV54/uPas6cOWzfvh2Av//7v2fmzJn8zd/8zTnbuDvuTiyWPu8feOCBca2TiMhoRNkiWQvsc/f97t4OPARcm7qBu//S3c+EH58FFobLVwNPuvuJMDyeBKrNrAIocvffetBM+C5wXVQnUJhMYGY0tHRE9RX97Nu3j8rKSj7xiU9w4YUXUldXx/r166mqqmLVqlXcddddvdu+733vY/v27XR2dlJSUsIdd9zBu971Li655BKOHj06YXUWkektyuG/C4C3Uj7XAu8eZPvbONuySLfvgvBVm6a8HzNbT9ByYfHixYNW9PM/3cXuQ41p17V2dNHtMCM3Z9Bj9LVyfhF3/tGqEe3TY/fu3TzwwAN84xvfAODuu+9m9uzZdHZ2csUVV3D99dezcuXKc/ZpaGjg8ssv5+677+b2229nw4YN3HFHv95EEZFxF2WLJN21i7QXG8zsowTdWP9jiH2HfUx3v9/dq9y9qqxsyMkrBxTPieHudE/gI4mXLVvGxRdf3Pv5hz/8IRdeeCEXXnghe/bsYffu3f32yc/Pp6amBoCLLrqIAwcOTFR1RWSai7JFUgssSvm8EDjUdyMzuxL4v4HL3b0tZd8/6LPv02H5wj7l/Y45UoO1HDq7utlT10RpYS4Vxflj/aphKSgo6F1+9dVX+epXv8rzzz9PSUkJH/3oR9PeD5Kbm9u7nJOTQ2dn54TUVUQkyhbJFmCFmS01s1zgRmBj6gZmdgHwTeBD7p7aqb8ZWGdms8xsFrAO2OzudUCTmb0nHK11M/BvEZ4D8ZwYBXk5NLZ0RDJ6ayiNjY0UFhZSVFREXV0dmzdvnvA6iIgMJrIWibt3mtmnCEIhB9jg7rvM7C5gq7tvJOjKmgn8aziK9013/5C7nzCzLxCEEcBd7n4iXP4k8B0gn+CaSiQjtlIV5yc4eKqF1o5u8kd4rWSsLrzwQlauXEllZSVvf/vbee973zuh3y8iMhTLxF/ZE62qqsr7Pthqz549nH/++cPav6Ormz11jcwtSlJelIyiihNiJOcsImJm29y9aqjtdGf7MCRyYhTkxWmcwGHAIiLZQkEyTMX5CVo7umjt6Mp0VUREJhUFyTAVJYPneKhVIiJyLgXJMOXGY8zIjU/oXe4iItlAQTICRflxWjq6aO9U95aISA8FyQgU5wfdWw0tutlPRKSHgmQE8uI5JBM549K9NR7TyANs2LCBw4cPj7k+IiKjNW2f2T5axfkJjjS20tHVTSJn9Dk8nGnkh2PDhg1ceOGFlJeXj7ouIiJjoRbJCPV0b0U5euvBBx9k7dq1rFmzhr/4i7+gu7ubzs5OPvaxj7F69WoqKyu59957+dGPfsT27du54YYbRtySEREZL2qRAGy6Aw7vGNameTjL27uCZ6AnBpkupXw11Nw94qrs3LmTRx99lN/85jfE43HWr1/PQw89xLJlyzh27Bg7dgT1PHXqFCUlJXzta1/j61//OmvWrBnxd4mIjAcFyQgZRjzHaO90HMfSzmw/ej//+c/ZsmULVVXBrAQtLS0sWrSIq6++mr179/LpT3+aa665hnXr1o3r94qIjJaCBEbccuhq72T/0WYWzspndkHeuFbF3fmzP/szvvCFL/Rb99JLL7Fp0ybuvfdefvzjH3P//feP63eLiIyGrpGMQjKRQ25OLJJhwFdeeSUPP/wwx44dA4LRXW+++Sb19fW4Ox/+8If5/Oc/zwsvvABAYWEhTU1N414PEZHhUotkFMyM4vwEx06309XdTU5s/PJ49erV3HnnnVx55ZV0d3eTSCT4xje+QU5ODrfddhvujplxzz33AHDrrbfy53/+5+Tn5/P888+f84ArEZGJoGnkR+l0Wyev1TezaPYMZs3Ijh9vTSMvIiOhaeQjNiM3h0ROTJM4isi0F2mQmFm1me01s31mdkea9ZeZ2Qtm1mlm16eUX2Fm21NerWZ2XbjuO2b2esq6jIx7NTOK8hM0tXbS1T31W3UiIgOJ7BqJmeUA9wFXAbXAFjPb6O67UzZ7E/g4cM4t3e7+S2BNeJzZwD7giZRN/tbdHxlrHXuuN4xWcTLO8eY2mls7KJ7k3VvToQtTRDIjyhbJWmCfu+9393bgIeDa1A3c/YC7vwR0D3Kc64FN7n5mPCuXTCY5fvz4mH5gC/LixGPRjN4aT+7O8ePHSSaz9zHBIjJ5RTlqawHwVsrnWuDdozjOjcA/9in7kpl9DvgFcIe7t/XdyczWA+sBFi9e3O+gCxcupLa2lvr6+lFU6axTZ9qpa++iuTg5ptZN1JLJJAsXLsx0NURkCooySNL9qo7oz38zqwBWA5tTij8LHAZygfuBzwB39fsi9/vD9VRVVfX73kQiwdKlS0dSnbR+ufcotz2whW/fUsUHzp835uOJiGSbKLu2aoFFKZ8XAodGeIw/AR51996hUe5e54E24AGCLrSMee+yUgqTcTbt1FTuIjI9RRkkW4AVZrbUzHIJuqg2jvAYNwE/TC0IWylY0I90HbBzHOo6arnxGFeeP48ndx+ho2uwSz0iIlNTZEHi7p3Apwi6pfYAD7v7LjO7y8w+BGBmF5tZLfBh4JtmtqtnfzNbQtCieabPob9vZjuAHUAp8MWozmG4qivLaWjp4Nn9xzNdFRGRCRfpFCnu/hjwWJ+yz6UsbyHo8kq37wGCC/Z9y98/vrUcu8vfUcaM3Bw27TzM768oy3R1REQmlO5sHwfJRA5XvHMuT+w6opsTRWTaUZCMk6sryznW3Ma2N05muioiIhNKQTJO3n/eXHLjMTbtrMt0VUREJpSCZJzMzItz2YpSNu88rOlIRGRaUZCMo+rKCg41tPJibUOmqyIiMmEUJOPoqvPnEY+ZurdEZFpRkIyj4hkJLlk2R91bIjKtKEjGWXVlOQeOn+Hlw3qOuohMDwqScbZuZTlmaO4tEZk2FCTjrKwwj4uXzOZxXScRkWlCQRKBmspyXjnSzGv1zZmuiohI5BQkEaiuLAfgcXVvicg0oCCJQEVxPmsWlShIRGRaUJBEpLqynB0HG3jrxLg+al5EZNJRkESkJuze2rxLrRIRmdoUJBF525wCzq8o0jBgEZnyIg0SM6s2s71mts/M7kiz/jIze8HMOs3s+j7rusxse/jamFK+1MyeM7NXzexH4WN8J6WaynK2vXGSI42tma6KiEhkIgsSM8sB7gNqgJXATWa2ss9mbwIfB36Q5hAt7r4mfH0opfwe4MvuvgI4Cdw27pUfJz3dW0+oe0tEprAoWyRrgX3uvt/d24GHgGtTN3D3A+7+EtA9nAOamQHvBx4Jix4Erhu/Ko+vFfMKWVZWoO4tEZnSogySBcBbKZ9rSfMM9kEkzWyrmT1rZj1hMQc45e6dQx3TzNaH+2+tr68fad3HTXVlOc+9foITp9szVgcRkShFGSSWpmwkU+Iudvcq4E+Br5jZspEc093vd/cqd68qKysbwdeOr5rKCrq6nSd3q1UiIlNTlEFSCyxK+bwQODTcnd39UPi+H3gauAA4BpSYWXw0x8yEVfOLWDgrX91bIjJlRRkkW4AV4SirXOBGYOMQ+wBgZrPMLC9cLgXeC+z24CEfvwR6RnjdAvzbuNd8HJkZNZXl/HrfMRpaOjJdHRGRcRdZkITXMT4FbAb2AA+7+y4zu8vMPgRgZhebWS3wYeCbZrYr3P18YKuZvUgQHHe7++5w3WeA281sH8E1k29HdQ7jpbqygo4u55cvH810VURExl186E1Gz90fAx7rU/a5lOUtBN1Tfff7DbB6gGPuJxgRljUuWFTCvKI8Nu2s47oLRjLeQERk8tOd7RMgFjOuXlXOM6/Uc6a9c+gdRESyiIJkglRXltPa0c3TezM3FFlEJAoKkgmydslsZhfkavSWiEw5CpIJEs+JsW7lPJ7ac4TWjq5MV0dEZNwoSCZQdWU5p9u7+PW+Y5muiojIuFGQTKBLl5VSmIyre0tEphQFyQTKjce48vx5PLn7CB1dw5qnUkRk0lOQTLDqynIaWjp4dv/xTFdFRGRcKEgm2OXvKGNGbo66t0RkylCQTLBkIocr3jmXJ3Ydpqt7JJMhi4hMTgqSDKiuLOdYczvb3jiZ6aqIiIyZgiQDrjhvLrnxGJt21mW6KiIiY6YgyYCZeXEuW1HK5p2HCWbGFxHJXgqSDKmurOBQQysv1jZkuioiImOiIMmQq86fRzxm6t4SkaynIMmQ4hkJLlk2h8fVvSUiWS7SIDGzajPba2b7zOyONOsvM7MXzKzTzK5PKV9jZr81s11m9pKZ3ZCy7jtm9rqZbQ9fa6I8hyjVVFbwxvEzvHy4KdNVEREZtciCxMxygPuAGmAlcJOZreyz2ZvAx4Ef9Ck/A9zs7quAauArZlaSsv5v3X1N+NoeyQlMgHWr5mGGbk4UkawWZYtkLbDP3fe7ezvwEHBt6gbufsDdXwK6+5S/4u6vhsuHgKNAWYR1zYjSmXlcvGQ2j+s6iYhksSiDZAHwVsrn2rBsRMxsLZALvJZS/KWwy+vLZpY3tmpmVk1lOa8caea1+uZMV0VEZFSiDBJLUzaiq8pmVgF8D7jV3XtaLZ8FzgMuBmYDnxlg3/VmttXMttbXT97H21ZXlgPwuLq3RCRLRRkktcCilM8LgUPD3dnMioCfAX/n7s/2lLt7nQfagAcIutD6cff73b3K3avKyiZvr1hFcT5rFpUoSEQka0UZJFuAFWa21MxygRuBjcPZMdz+UeC77v6vfdZVhO8GXAfsHNdaZ0BNZTk7Djbw1okzma6KiMiIRRYk7t4JfArYDOwBHnb3XWZ2l5l9CMDMLjazWuDDwDfNbFe4+58AlwEfTzPM9/tmtgPYAZQCX4zqHCZKT/fW5l1qlYhI9rHpcDNcVVWVb926NdPVGFTNV/+DGbk5/PiTl2a6KiIiAJjZNnevGmo73dk+SdRUlrPtjZMcaWzNdFVEREZEQTJJ1Kh7S0SylIJkklgxr5BlZQUavSUiWUdBMonUVFbw3OsnOHG6PdNVEREZNgXJJFJdWU5Xt/PkbrVKRCR7KEgmkVXzi1g4K1+TOIpIVlGQTCJmRk1lOb/ed4yGlo5MV0dEZFiGFSRmtqxnckQz+wMz++s+07rLOKmurKCjy3nq5SOZroqIyLAMt0XyY6DLzJYD3waW0v8ZIjIOLlhUwryiPI3eEpGsMdwg6Q6nPPnfgK+4+/8BVERXrekrFjOqV5XzzCv1nGnvzHR1RESGNNwg6TCzm4BbgP8VliWiqZJUV1bQ2tHN03sn7/T3IiI9hhsktwKXAF9y99fNbCnwL9FVa3q7eMksZhfkavSWiGSF+HA2cvfdwF8DmNksoNDd746yYtNZPCfGupXz+OmLh2jt6CKZyMl0lUREBjTcUVtPm1mRmc0GXgQeMLN/jLZq01t1ZTmn27v41avHMl0VEZFBDbdrq9jdG4H/BDzg7hcBV0ZXLbl0WSmFyTiPaxJHEZnkhhsk8fDJhH/C2YvtEqHceIyrzp/Hk7uP0NHVPfQOIiIZMtwguYvgSYevufsWM3s78Gp01RIIurcaWjp4dv/xTFdFRGRAwwoSd/9Xd/89d/9k+Hm/u//xUPuZWbWZ7TWzfWZ2R5r1l5nZC2bWaWbX91l3i5m9Gr5uSSm/yMx2hMe8N3x2+5R02TvKmJGbo9FbIjKpDfdi+0Ize9TMjprZETP7sZktHGKfHOA+oAZYCdxkZiv7bPYm8HH63CUfXtS/E3g3sBa4MxwtBvBPwHpgRfiqHs45ZKNkIocr3jmXJ3Ydpqt76j8SWUSy03C7th4ANgLzgQXAT8OywawF9oWtl3bgIeDa1A3c/YC7vwT0vQhwNfCku59w95PAk0B1eJ2myN1/68HD5r8LXDfMc8hK1ZXlHGtuZ+uBE5muiohIWsMNkjJ3f8DdO8PXd4CyIfZZALyV8rk2LBuOgfZdEC4PeUwzW29mW81sa3199t4hfsV5c8mNxzR6S0QmreEGyTEz+6iZ5YSvjwJDXQFOd+1iuP0zA+077GO6+/3uXuXuVWVlQ2Xe5DUzL85lK8rYvPMwQSNMRGRyGW6Q/BnB0N/DQB1wPcG0KYOpBRalfF4IHBrm9w20b224PJpjZq2aynIONbTyYm1DpqsiItLPcEdtvenuH3L3Mnef6+7XEdycOJgtwAozW2pmucCNBNdZhmMzsM7MZoUX2dcBm929Dmgys/eEo7VuBv5tmMfMWleeP494zNi0sy7TVRER6WcsT0i8fbCV4bTznyIIhT3Aw+6+y8zuMrMPAZjZxWZWC3wY+KaZ7Qr3PQF8gSCMtgB3hWUAnwS+BewDXgM2jeEcskLxjASXLJvD4+reEpFJaFiTNg5gyPs33P0x4LE+ZZ9LWd7CuV1VqdttADakKd8KVI60stmuprKC//roDl4+3MT5FUWZro6ISK+xtEj0p/EEWrdqHjFDNyeKyKQzaJCYWZOZNaZ5NRHcUyITpHRmHhcvmc3juk4iIpPMoEHi7oXuXpTmVejuY+kWk1GoqSznlSPNvFbfnOmqiIj0GkvXlkywqyvLAXhc3VsiMokoSLJIRXE+axaVaBiwiEwqCpIsU1NZzs6Djbx14kymqyIiAihIsk5NZQUAmzX3lohMEgqSLLN4zgxWVhRpGLCITBoKkixUU1nOtjdOcqSxNdNVERFRkGSj6nD0lrq3RGQyUJBkoRXzCllWVsCmHQoSEck8BUmWqqms4LnXj3PidHumqyIi05yCJEtVV5bT7fDkbrVKRCSzFCRZatX8IhbNztfoLRHJOAVJljIzaior+PW+YzS0dGS6OiIyjSlIstjVq8rp6HKeevlIpqsiItNYpEFiZtVmttfM9pnZHWnW55nZj8L1z5nZkrD8I2a2PeXVbWZrwnVPh8fsWTc3ynOYzC5YVMK8ojyN3hKRjIosSMwsB7gPqAFWAjeZ2co+m90GnHT35cCXgXsA3P377r7G3dcAHwMOuPv2lP0+0rPe3Y9GdQ6TXSxmVK8q55lX6jnT3pnp6ojINBVli2QtsM/d97t7O/AQcG2fba4FHgyXHwE+YGZ9H+F7E/DDCOuZ1aorK2jr7ObpvfWZroqITFNRBskC4K2Uz7VhWdpt3L0TaADm9NnmBvoHyQNht9b/kyZ4ADCz9Wa21cy21tdP3R/ZtUtnM6cgV6O3RCRjogySdD/wfZ/zPug2ZvZu4Iy770xZ/xF3Xw38fvj6WLovd/f73b3K3avKyspGVvMskhMz1q2ax1N7jtDa0ZXp6ojINBRlkNQCi1I+LwQODbSNmcWBYuBEyvob6dMacfeD4XsT8AOCLrRp7epV5Zxu7+JXrx7LdFVEZBqKMki2ACvMbKmZ5RKEwsY+22wEbgmXrweecncHMLMY8GGCayuEZXEzKw2XE8AHgZ1Mc5cuK6UwGVf3lohkRDyqA7t7p5l9CtgM5AAb3H2Xmd0FbHX3jcC3ge+Z2T6ClsiNKYe4DKh19/0pZXnA5jBEcoCfA/8c1Tlki9x4jKvOn8fP9xyho6ubRI5uDxKRiRNZkAC4+2PAY33KPpey3ErQ6ki379PAe/qUnQYuGveKTgHVleX85HcHeXb/cX5/xdS9JiQik4/+dJ0iLntHGTNyc9S9JSITTkEyRSQTOVxx3lye2HWYru6+g+NERKKjIJlCqleVc6y5na0HTgy9sYjIOFGQTCFXnDeX3HhM3VsiMqEUJFPIzLw4l60oY/Ouw4SjqEVEIqcgmWJqKsupa2jlxdqGTFdFRKYJBckUc+X584jHjE076zJdFRGZJhQkU0zxjASXLi/l8Z3q3hKRiaEgmYKqV5XzxvEz7KlrynRVRGQaUJBMQetWzSNm8Pgujd4SkegpSKag0pl5XLxkNo/rOomITAAFyRRVU1nOK0eaea2+OdNVEZEpTkEymH//H/D4Z6F+b6ZrMmLVlRUAPK6bE0UkYgqSwTQdhuf/Ge5bCxtq4MUfQUdrpms1LOXFSS5YXKJhwCISOQXJYP7wH+D2PXDVXdB8GB5dD//wzqxppVSvKmfnwUbeOnEm01URkSlMQTKUmWXw3k/Dp7bBzRth2fvTtFJaMl3LtGrC7q3NGr0lIhGKNEjMrNrM9prZPjO7I836PDP7Ubj+OTNbEpYvMbMWM9sevr6Rss9FZrYj3OdeM7Moz6FXLAZvvxw+/ECaVsp5QSvl6MsTUpXhWjxnBisrijSJo4hEKrIgMbMc4D6gBlgJ3GRmK/tsdhtw0t2XA18G7klZ95q7rwlfn0gp/ydgPbAifFVHdQ4DGqiV8j/fDRuqJ1UrpaaynG1vnORIY3Zc2xGR7BNli2QtsM/d97t7O/AQcG2fba4FHgyXHwE+MFgLw8wqgCJ3/60H8398F7hu/Ks+TKmtlP/z5bCVcuRsK2XTHRlvpdSsLgfUvSUi0YkySBYAb6V8rg3L0m7j7p1AAzAnXLfUzH5nZs+Y2e+nbF87xDEBMLP1ZrbVzLbW19eP7UyGo6A0aKX81Qtwy0+DVsqWb6W0Uh7KSCtl+dxCls+dyaYdChIRiUaUQZKuZdF3FsGBtqkDFrv7BcDtwA/MrGiYxwwK3e939yp3ryorKxtBtcfIDJZelqaV8r9nrJVSvaqc514/zvHmtgn9XhGZHqIMklpgUcrnhcChgbYxszhQDJxw9zZ3Pw7g7tuA14B3hNsvHOKYk0ffVsryD2SklVJdWU63w5d+toedBxs0K7CIjKt4hMfeAqwws6XAQeBG4E/7bLMRuAX4LXA98JS7u5mVEQRKl5m9neCi+n53P2FmTWb2HuA54GbgaxGew/joaaUsvQxOH4PtP4Bt3wlaKZs+A++6CS76OMw9L5KvXzW/iP904QL+bfshfvK7gyyePYNrVldwzepyVi8oZqIGvonI1GRR/nVqZtcAXwFygA3u/iUzuwvY6u4bzSwJfA+4ADgB3Oju+83sj4G7gE6gC7jT3X8aHrMK+A6QD2wC/sqHOImqqirfunVrJOc4au5w4D+CQNm9Ebo7YPElQaCsvBYS+eP+lSdOt/Pk7sP8bMdhfrPvGJ3dzqLZ+VxTWUHN6gretVChIiJnmdk2d68acrvp0M0xKYMkVWor5cRrkCyJvJVy6kw7T+w+wmM76vjVq0GoLCjJ55rV5VyzuoI1i0oUKiLTnIIkxaQPkh7pWimL3gNVt0bWSgFoONPBk3uCUPmPV+vp6HKTUFvuAAASbklEQVTmFyepWV3BNasruGBRCbGYQkVkulGQpMiaIEnVr5VSnNJKOT+yr21o6eDnu4+waWcd//7KMdq7uqkoTlJdWc4frq7gwsWzFCoi04SCJEVWBkmPDLVSABpbO/jFniM8tuMwz7xST3tnN/OK8qipDFoqVW9TqIhMZQqSFFkdJKky1EoBaGrt4KmXj/LYjjqe3ltPW2c3cwvzqK4MrqlcvGQ2OQoVkSlFQZJiygRJD3c48CvY9gDs+Sl0tQetlIs+Dquui7SVAtDc1slTLx9l0446frn3KK0d3ZTOzKO6ch7XrK7g3UvnKFREpgAFSYopFySpTh+DF38YtFKO75vQVgrA6bZOfrk3aKk89XJPqOSyblVwTeXdS2cTz9HTCkSykYIkxZQOkh4ZbqUAnGnv5Om99fxsRx1P7TlKS0cXswtyuXpV0FK55O1zFCoiWURBkmJaBEmqgVopCy4KlpPFwb0qPcuJ/ODu+3HU0t7FM68c5Wc7DvOLPUc4097FrBkJrl5VTs3qCi5dNoeEQkVkUlOQpJh2QdIjXSslnZzclIDpEzL5JWnKS84tz0kMWo3Wji6eeaWex3bU8Ys9R2lu66RkRoJ1K+dRs7qC9y4rJTeuUBGZbBQkKaZtkKRqa4Lmo9ByClpPQWtDyntDWN6Qvry7Y/BjJwqGCJ6z5e3xQrYddZ7c38rj+1qoa0tQmAyuqVyzupz3LS9TqIhMEgqSFAqSMXAPZihODZi0oXNqgPJGBpjpPzg8RkusgBPd+ZzqLuB0rID8wtmUls5l7tx5xGfM6h9KyWLImwm5MyG3IGhRaToXmY7coasj6G3oaofuzrPLXeFy6QqI543q8MMNkihn/5WpwAxyZwSvooqR79/dDW2NA7Z2rLWBGa0N5J05SfJEPY2njtPddABr3EX7/tPEbRjPUInFg0DpCZbe5b6fCwb4nGY5gutGkgW6u6GzJfwh7uj/ozzQj3W/8o6U/TuCVv2Q5X3Wd3cMXd7dOfQ5/eUWKHtHpP/YFCQSrVgs6NbKLxl0sxygNHy1d3bzm9eOBUOKd9XS3dJIeV4bH1iSy+WLc/m9UsjtaoH209DeHL6f7v+58WD/dYO0js5l6cMnb4gAGmw5URD885Dh6+6Gztbg1XEGOlqDH/re9/DV2Xrue0dLn+1aByg7E+7TejZAImFByzknN7im2PseLscS55YnisLyeJ/9UraJpTlOv/JcKCyP6JxSzk5dWzKZdXR189vXjvPYjjo27zrMyTMd5CdyqFxQROWCYirnF1O5oJhlZQVDDy3u6abrF0DNA7wPEVTtzdDWDN41/BNKzDg3ZBL5YDlgMYilvqcriwXlPetjsf5lgx5ngH1iOUHrq19ZbIjj9Cnr7hzih/xM/x/8c7ZPLQtDo2sMT/WM50Mi2ec9fMWT565LzAjLwnXxvGH+WA/zBz6WM/rzyCBdI0mhIJkaOrq6eW7/CX6+5wg7Dzaw61AjLR3Bj3gyEeP8iiIq5xezekExqxYUsWJuYfQX7t2Dv2IHDaBBgqnjDHR3gXcHr+6uIJh6y7qCv8oHKku7T9+yEQRdlOLJc3+se99nhD/q6cryB//BPycY+ryra3LMFCQpFCRTU1e38/qxZnYcbGDnwcbecGluC/qNc3NinFdRyKr5xUELZn4x7ywvJJnIzr8Ox8S9f7j0Bk53mrJRhFUsPshf+El162WhSREkZlYNfJWgC/xb7n53n/V5wHeBi4DjwA3ufsDMrgLuBnKBduBv3f2pcJ+ngQqg52Hn69z96GD1UJBMH93dzhsnzrDzYEPwOhSETENLMIQ5HjNWzCukcn4RqxcWs2p+MSsrisjPnYbhIjKEjI/aMrMc4D7gKqAW2GJmG919d8pmtwEn3X25md0I3APcABwD/sjdD5lZJbAZWJCy30fcXckg/cRixtLSApaWFvBH75oPgLtTe7KlN1h2HGzkFy8f5V+31Qb7GCyfO5PK+cWsWhB0ja2cX8TMPI1FERmOKP9PWQvsc/f9AGb2EHAtkBok1wJ/Hy4/AnzdzMzdf5eyzS4gaWZ57j6GK28yXZkZi2bPYNHsGdSsDoYwuzuHG1vZUdvAzkON7DrYwK/2HeMnvzsY7gNL5xQEF/TDbrFVC4opzh/8Ln6R6SjKIFkAvJXyuRZ490DbuHunmTUAcwhaJD3+GPhdnxB5wMy6gB8DX/Q0/XNmth5YD7B48eIxnopMNWZGRXE+FcX5rFt1dnjk0cZWdh1qDK+7NLDtjZNsfPFQ7/rFs2f0GzE2uyA3E6cgMmlEGSTphkz0/cEfdBszW0XQ3bUuZf1H3P2gmRUSBMnHCK6znHsQ9/uB+yG4RjKyqst0NbcoydyiJFecN7e37HhzG7sONYbXW4JrLo/tONy7fkFJPqvmB+HSM2JsbmEyE9UXyYgog6QWWJTyeSFwaIBtas0sDhQDJwDMbCHwKHCzu7/Ws4O7Hwzfm8zsBwRdaP2CRGS8zJmZx2XvKOOyd5T1ljWc6WDXobMX83cebOCJ3Ud6188tzAtDpbj3wn55URLTkFSZgqIMki3ACjNbChwEbgT+tM82G4FbgN8C1wNPububWQnwM+Cz7v7rno3DsClx92NmlgA+CPw8wnMQSat4RoJLl5dy6fLS3rKm1g721DWx42ADu8IL+7/ce5TusD08pyA3vJhf1NsttnBWvsJFsl7Uw3+vAb5CMPx3g7t/yczuAra6+0YzSwLfAy4gaInc6O77zezvgM8Cr6Ycbh1wGvh3IBEe8+fA7e6D33Gl4b+SKWfaO9lT18SuQw29F/ZfPdJEZ5guBbk5LJiVz4KSfOaHr4Wzzi7PK8zTw8AkYybFfSSThYJEJpPWji72Hm5i56EGXj3SzMFTLRwKXyfPnDtlf07MKC9KMr8kyfySs4HT+z4rX8OUJTIZv49ERNJLJnJ416IS3rWo/0SWp9s6qWto4eCpVg6dauHgySBgDp5qYdsbJ/nZS3W9rZkeRcl4v5ZMT9gsKMmnrDCPnJi6zyQ6ChKRSaQgL87yuYUsn1uYdn1Xt1Pf1MbBMFx6WjIHT7ZQe7KF518/QWPruVOLx2NGRUmS+cXntmSCsAlaOjNy9VMgo6f/ekSySE7MKC9OUl6c5KK3zUq7TVNrB4d6WjR9Aue5109wuLGVrj6tmlkzEv1aMsHnJAtm5VNakEdMrRoZgIJEZIopTCZ4Z3mCd5anb9V0dnVzpKmtN1xqT54NmjeOn+Y3+45xuv3c8Su5OTEqSpLnDApYUJJkQcmM3us303IyTAEUJCLTTjwn1tvqSMfdaWztPHuNpiFs2YSB86tXj3GkqZW+43RmzUgwtzDJ3KK83vd5hXnBTZ6FecwrSlJWmKfAmYIUJCJyDjOjOD9BcX6C8yuK0m7T3tnNkcbW3m6zgydbONzYytGmNo42tbHv6DHqm9r6DQyAYHDAvKKeoElSFgbPvJ4AKsxjblGerttkEf2bEpERy43HeifCHEh3t3PiTDtHG9s42tR69r2pjSNh6Dz3+gnqm9po7+rut39hXpyyMGyCVs7ZVk1v8BQlNfx5EtC/ARGJRCxmlM7Mo3RmHitJ37KBoCvt1JmOcwLmnOBpbOOFN09ytLGNts7+gTMjNyclYIKw6WnV9IRQWWGSomRcswhEREEiIhllZswqyGVWQe6AAwTg7LWboylhc6Sx7ZzA2XmwgV/sOdr7COZUyUSst+usN3hSwqYngIrzEwqcEVKQiEhWSL12s2Le4IHT3NYZhE2fbrUj4fuew40880pb72OZU+XGYxTnJyhKxinKT1CYPLtclExQ2Luc8p5MhNvGyU/kTLsgUpCIyJRiZhQmgwBYVjZz0G3PtHdytDG1Sy0ImsaWDhpbOmls7aDhTDu1J87Q2BqUpbuekyoes96AKUwmKMqPnw2gMHDOruuzXX6CmbnxrLtnR0EiItPWjNw4S0rjLCktGPY+rR1dvaHS2NpBU2tnEDx9lhtbOmlq7Qi745qDda0dnGkfdI5ZzGBmXrrQCctSWkdF+eG6lOXCZJzEBE/0qSARERmBZCKHZCKHAWaxGVJHVzdNrWHI9IbR2eUgiDrPCaODp1rYUxcEVHNbZ797ePqakZvT2wq6/+Yqlo4gKEdDQSIiMoESOTFmF+SO+hHN3d1Oc3vQ8jnbAur5nLochFFBXvQ3gCpIRESySCxmYRdXItNV6aUn5oiIyJhEGiRmVm1me81sn5ndkWZ9npn9KFz/nJktSVn32bB8r5ldPdxjiojIxIosSMwsB7gPqAFWAjeZ2co+m90GnHT35cCXgXvCfVcSPON9FVAN/E8zyxnmMUVEZAJF2SJZC+xz9/3u3g48BFzbZ5trgQfD5UeAD1hwJ8+1wEPu3uburwP7wuMN55giIjKBogySBcBbKZ9rw7K027h7J9AAzBlk3+EcU0REJlCUQZLu1sy+o58H2mak5f2/3Gy9mW01s6319fWDVlREREYvyiCpBRalfF4IHBpoGzOLA8XAiUH2Hc4xAXD3+929yt2rysrKxnAaIiIymCiDZAuwwsyWmlkuwcXzjX222QjcEi5fDzzl7h6W3xiO6loKrACeH+YxRURkAkV2Q6K7d5rZp4DNQA6wwd13mdldwFZ33wh8G/ieme0jaIncGO67y8weBnYDncBfunsXQLpjDlWXbdu2HTOzN0Z5KqXAsVHuO9lMlXOZKucBOpfJaqqcy1jP423D2ch8qElbpjkz2+ruVZmux3iYKucyVc4DdC6T1VQ5l4k6D93ZLiIiY6IgERGRMVGQDO3+TFdgHE2Vc5kq5wE6l8lqqpzLhJyHrpGIiMiYqEUiIiJjoiAREZExUZAMYqpMWW9mG8zsqJntzHRdxsLMFpnZL81sj5ntMrNPZ7pOo2VmSTN73sxeDM/l85mu01iEs3P/zsz+V6brMhZmdsDMdpjZdjPbmun6jIWZlZjZI2b2cvj/zCWRfZeukaQXTln/CnAVwdQsW4Cb3H13Ris2CmZ2GdAMfNfdKzNdn9Eyswqgwt1fMLNCYBtwXZb+OzGgwN2bzSwB/Ar4tLs/m+GqjYqZ3Q5UAUXu/sFM12e0zOwAUOXuWX8zopk9CPyHu38rnAlkhrufiuK71CIZ2JSZst7d/51g5oCs5u517v5CuNwE7CFLZ3/2QHP4MRG+svKvOjNbCPwh8K1M10UCZlYEXEYwewju3h5ViICCZDCasn4SC5+meQHwXGZrMnphd9B24CjwpLtn67l8Bfi/gO5MV2QcOPCEmW0zs/WZrswYvB2oBx4Iuxy/ZWYFUX2ZgmRgw56yXiaWmc0Efgz8F3dvzHR9Rsvdu9x9DcEs1mvNLOu6Hc3sg8BRd9+W6bqMk/e6+4UET2H9y7BbOBvFgQuBf3L3C4DTQGTXeRUkAxv2lPUyccLrCT8Gvu/uP8l0fcZD2OXwNMFjpbPNe4EPhdcWHgLeb2b/ktkqjZ67HwrfjwKPEnRxZ6NaoDallfsIQbBEQkEyME1ZP8mEF6i/Dexx93/MdH3GwszKzKwkXM4HrgRezmytRs7dP+vuC919CcH/I0+5+0czXK1RMbOCcBAHYTfQOiArRzq6+2HgLTN7Z1j0AYLZ1CMR2TTy2W6gafAzXK1RMbMfAn8AlJpZLXCnu387s7UalfcCHwN2hNcWAP6ruz+WwTqNVgXwYDg6MAY87O5ZPXR2CpgHPBr8vUIc+IG7P57ZKo3JXwHfD/8Q3g/cGtUXafiviIiMibq2RERkTBQkIiIyJgoSEREZEwWJiIiMiYJERETGREEiMg7MrCucMbbnNW53EZvZkmyfuVmmNt1HIjI+WsLpTkSmHbVIRCIUPt/invDZI8+b2fKw/G1m9gszeyl8XxyWzzOzR8PnlLxoZpeGh8oxs38On13yRHg3vMikoCARGR/5fbq2bkhZ1+jua4GvE8yUS7j8XXf/PeD7wL1h+b3AM+7+LoK5kXpmU1gB3Ofuq4BTwB9HfD4iw6Y720XGgZk1u/vMNOUHgPe7+/5wwsnD7j7HzI4RPKSrIyyvc/dSM6sHFrp7W8oxlhBMM78i/PwZIOHuX4z+zESGphaJSPR8gOWBtkmnLWW5C13flElEQSISvRtS3n8bLv+GYLZcgI8QPGoX4BfAJ6H3wVdFE1VJkdHSXzUi4yM/ZUZigMfdvWcIcJ6ZPUfwh9tNYdlfAxvM7G8JnmTXMzPrp4H7zew2gpbHJ4G6yGsvMga6RiISofAaSZW7H8t0XUSioq4tEREZE7VIRERkTNQiERGRMVGQiIjImChIRERkTBQkIiIyJgoSEREZk/8flAI6RROCqlAAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -939,7 +930,7 @@ "#### Questions\n", "\n", "1. Look at the *Accuracy plot* above. Which information can you gather from it? What is happening to the *training* and *test* accuracy over epochs?\n", - "2. Is the behaviour of *training* and *test* accuracy that you are observing desirable? \n", + "2. Is the behaviour of *training* and *test* accuracy that you are observing desirable? Is *overfitting* occuring?\n", "3. Should you look at the *training* or at the *test* accuracy to have an estimate of the generalization ability of the model?\n", "4. Compare the *Accuracy plot* with the *Model loss plot* below. Do they show the same qualititive behaviour?\n" ] @@ -951,6 +942,29 @@ "### 4.3 Adding regularization (using dropout layers)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To have a valuable machine learning model, it is of paramount important to make sure that the model generalizes well to unseen samples.\n", + "\n", + "Bengio in Ref. [1] defines regularization as *any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.* In practice, additional terms are added to the training optimization objective to prevent overfitting or help the optimization.\n", + "\n", + "There are numerous ways to regularize a neural network; we refer the interested reader to Chap 7 of Ref. 1: https://www.deeplearningbook.org/contents/regularization.html\n", + "\n", + "Here, we use **dropout layers** to regularize our neural network. To explain in a few word what dropout is, we report below the abstract from the article that introduced dropout (Srivastava et al., J. Mach. Learn. Res. 15 1929 (2014))\n", + "\n", + "*Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this problem.*\n", + "\n", + "*The key idea is to randomly drop units (along with their connections) from the neural network during training. This prevents units from co-adapting too much. During training, dropout samples from an exponential number of different “thinned” networks. At test time, it is easy to approximate the effect of averaging the predictions of all these thinned networks by simply using a single unthinned network that has smaller weights.*\n", + "\n", + "*This significantly reduces overfitting and gives major improvements over other regularization methods. We show that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.*\n", + "\n", + "For the full article \"Srivastava et al., Dropout: A Simple Way to Prevent Neural Networks from Overfitting\", please visit http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf.\n", + "\n", + "\n" + ] + }, { "cell_type": "code", "execution_count": 15, @@ -1012,7 +1026,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - " <span style=\"color:red\"> **Run the cell below to start training your *regularized* convolutional neural network. The full optimization should take approximately 7 minutes; please take this time to read carefully the materials above, and maybe check out some external references.**</span>." + " <span style=\"color:red\"> **Run the cell below to start training your *regularized* convolutional neural network. The full optimization should take approximately 7 minutes (~1 min per epoch); please take this time to read carefully the materials above, and maybe check out some external references.**</span>." ] }, { @@ -1026,21 +1040,21 @@ "text": [ "Train on 60000 samples, validate on 10000 samples\n", "Epoch 1/7\n", - "60000/60000 [==============================] - 73s 1ms/step - loss: 0.2825 - acc: 0.9128 - val_loss: 0.0613 - val_acc: 0.9796\n", + "60000/60000 [==============================] - 74s 1ms/step - loss: 0.2644 - acc: 0.9187 - val_loss: 0.0577 - val_acc: 0.9808\n", "Epoch 2/7\n", - "60000/60000 [==============================] - 71s 1ms/step - loss: 0.0900 - acc: 0.9734 - val_loss: 0.0453 - val_acc: 0.9850\n", + "60000/60000 [==============================] - 71s 1ms/step - loss: 0.0911 - acc: 0.9733 - val_loss: 0.0403 - val_acc: 0.9866\n", "Epoch 3/7\n", - "60000/60000 [==============================] - 70s 1ms/step - loss: 0.0664 - acc: 0.9797 - val_loss: 0.0381 - val_acc: 0.9862\n", + "60000/60000 [==============================] - 74s 1ms/step - loss: 0.0678 - acc: 0.9794 - val_loss: 0.0347 - val_acc: 0.9887\n", "Epoch 4/7\n", - "60000/60000 [==============================] - 70s 1ms/step - loss: 0.0554 - acc: 0.9829 - val_loss: 0.0329 - val_acc: 0.9887\n", + "60000/60000 [==============================] - 74s 1ms/step - loss: 0.0551 - acc: 0.9832 - val_loss: 0.0294 - val_acc: 0.9894\n", "Epoch 5/7\n", - "60000/60000 [==============================] - 68s 1ms/step - loss: 0.0475 - acc: 0.9857 - val_loss: 0.0290 - val_acc: 0.9902\n", + "60000/60000 [==============================] - 73s 1ms/step - loss: 0.0469 - acc: 0.9859 - val_loss: 0.0302 - val_acc: 0.9894\n", "Epoch 6/7\n", - "60000/60000 [==============================] - 71s 1ms/step - loss: 0.0417 - acc: 0.9876 - val_loss: 0.0292 - val_acc: 0.9900\n", + "60000/60000 [==============================] - 73s 1ms/step - loss: 0.0404 - acc: 0.9877 - val_loss: 0.0300 - val_acc: 0.9893\n", "Epoch 7/7\n", - "60000/60000 [==============================] - 71s 1ms/step - loss: 0.0376 - acc: 0.9886 - val_loss: 0.0309 - val_acc: 0.9899\n", - "Test loss: 0.0309031607253899\n", - "Test accuracy: 0.9899\n" + "60000/60000 [==============================] - 71s 1ms/step - loss: 0.0349 - acc: 0.9892 - val_loss: 0.0298 - val_acc: 0.9906\n", + "Test loss: 0.029760151506797776\n", + "Test accuracy: 0.9906\n" ] } ], @@ -1068,7 +1082,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8XdV57//PV/PsQZON5QlswLJNGIxJIMGEwdhObgiQFkiTFpqUH21ocpPQXmhT0tBSSEv6S1J4NZcEciFJQ6nTpLRXwqaOGTJiEwZ5wNg4GMuWLFm2ZUm2xvPcP/aWfCzL1rGs7aNz9Lxfr/PSHtbe59kM+zlr7b3WkpnhnHPOnUhGsgNwzjk39nmycM45NyxPFs4554blycI559ywPFk455wblicL55xzw/Jk4cY9SbMkmaSsBMreKulnpyMu58YSTxYupUh6R1K3pLJB218Lb/izkhOZc+nNk4VLRb8FbulfkbQQyE9eOGNDIjUj50bKk4VLRd8Dfj9u/Q+AJ+MLSJog6UlJzZJ2SPqSpIxwX6akhyTtlbQd+NAQxz4mqUHSLkl/KykzkcAk/ZukRkmtkl6UND9uX76kr4XxtEr6maT8cN/7Jf1C0gFJOyXdGm5/XtKn485xVDNYWJv6jKStwNZw2zfCcxyU9IqkD8SVz5T0F5LeltQW7p8u6RFJXxt0Lf8p6X8mct0u/XmycKnoV0CJpHnhTfwm4PuDyvwTMAE4E1hCkFxuC/f9EfBh4AJgEfCxQcc+AfQCc8IyS4FPk5haYC5QAfwG+EHcvoeAi4BLgcnAnwMxSTPC4/4JKAfOB15L8PsAPgpcAlSH6+vCc0wG/gX4N0l54b4vENTKVgAlwB8Ch8JrviUuoZYBVwE/PIk4XDozM//4J2U+wDvA1cCXgAeAZcBzQBZgwCwgE+gCquOO+/+A58PlnwJ3xO1bGh6bBVSGx+bH7b8FWBsu3wr8LMFYJ4bnnUDww+ww8J4hyt0D/Pg453ge+HTc+lHfH57/ymHi2N//vcAW4LrjlNsMXBMu3wnUJPvft3/GzsfbOF2q+h7wIjCbQU1QQBmQA+yI27YDmBYunwHsHLSv30wgG2iQ1L8tY1D5IYW1nPuB3yGoIcTi4skF8oC3hzh0+nG2J+qo2CR9kaAmdAZBMikJYxjuu54APkGQfD8BfOMUYnJpxpuhXEoysx0ED7pXAP8+aPdeoIfgxt9vBrArXG4guGnG7+u3k6BmUWZmE8NPiZnNZ3gfB64jqPlMIKjlACiMqRM4a4jjdh5nO0AHUBC3PmWIMgNDR4fPJ/4X8LvAJDObCLSGMQz3Xd8HrpP0HmAe8JPjlHPjkCcLl8o+RdAE0xG/0cz6gKeB+yUVS5pJ0Fbf/1zjaeCzkqokTQLujju2AVgNfE1SiaQMSWdJWpJAPMUEiaaF4Ab/d3HnjQGPA/8o6YzwQfP7JOUSPNe4WtLvSsqSVCrp/PDQ14AbJBVImhNe83Ax9ALNQJakewlqFv2+A/yNpLkKnCepNIyxnuB5x/eAH5nZ4QSu2Y0TnixcyjKzt81s/XF2/ynBr/LtwM8IHvQ+Hu77NrAKeJ3gIfTgmsnvEzRjbSJo718JTE0gpCcJmrR2hcf+atD+u4A6ghvyPuCrQIaZvUtQQ/piuP014D3hMf8/0A3sIWgm+gEntorgYflbYSydHN1M9Y8EyXI1cBB4jKNfO34CWEiQMJwbIDOf/Mg5F5B0OUENbFZYG3IO8JqFcy4kKRv4HPAdTxRuME8WzjkkzQMOEDS3fT3J4bgxyJuhnHPODctrFs4554aVNp3yysrKbNasWckOwznnUsorr7yy18zKhyuXNsli1qxZrF9/vLconXPODUXSjuFLeTOUc865BHiycM45NyxPFs4554aVNs8shtLT00N9fT2dnZ3JDuW0ycvLo6qqiuzs7GSH4pxLI2mdLOrr6ykuLmbWrFnEDTedtsyMlpYW6uvrmT17drLDcc6lkbRuhurs7KS0tHRcJAoASZSWlo6rmpRz7vSINFlIWiZpi6Rtku4eYv9MSWskvRHONVwVt++rkjaEn5tOIYaRHpqSxtv1OudOj8iaocJZwx4BrgHqgXWSnjGzTXHFHgKeNLMnJF1JME3mJyV9CLiQYB7hXOAFSbVmdjCqeJ1zITPoaoPD++BQ+OlfPrw/KKMMyMgI/ioTMjKPLCe0r385wX3x5zvlfXHf5RIW5TOLxcA2M9sOIOkpglnE4pNFNfD5cHktR2bmqgZeMLNeoFfS6wRzLT8dYbyjrqWlhauuugqAxsZGMjMzKS8POkq+/PLL5OTkDHuO2267jbvvvptzzjkn0lhdmorFoPPA0Tf8Qy1DLO8/enusJ9mRnyYCKfybEbccrh+zn+HLHnNcgt8xsDzUdwwTW8W58KGvRfpPKspkMY2jJ12pBy4ZVOZ14EaCuX6vB4rDWbteB74s6R8JZhz7IEcnGQAk3Q7cDjBjxozBu5OutLSU1157DYC//uu/pqioiLvuuuuoMv2ToWcc51fOd7/73cjjdCmiryf4ZZ/oDf9QS5AojjfaeEYW5E+GglIomAylZ0HB4mA5fnv8ct6E4EZlseAT6wuX++KW4/f1DSp3vH026ByJ7hsijhPtiz+fxcLlGGDHLg9s61+ODdo+uOzg/ccpe9zjOPF3nCi2WF9k/9n1izJZDNV4PniI27uAhyXdCrxIMMNYr5mtlnQx8AuC6SF/STBV5NEnM3sUeBRg0aJFKTN87rZt2/joRz/K+9//fn7961/zX//1X3zlK1/hN7/5DYcPH+amm27i3nvvBeD9738/Dz/8MAsWLKCsrIw77riD2tpaCgoK+I//+A8qKiqSfDVuRHo6E7/h92/vaj3++bLyght6/mQomARTFoTLk+O2lwb7+pdzi8NfpiOgTCATMv0V7fEiymRRD0yPW68CdscXMLPdwA0AkoqAG82sNdx3P3B/uO9fgK2nEsxX/nMjm3aP7iOP6jNK+PL/mD+iYzdt2sR3v/tdvvWtbwHw4IMPMnnyZHp7e/ngBz/Ixz72Maqrq486prW1lSVLlvDggw/yhS98gccff5y77z7mvQGXTL3dcLAeDrwbfPbvCP52NB3d/t9z6PjnyCkObur9N/nSs+Ju+JPjfu3HJYKcgtN3je606osZHd29tHf20t7VS1tnLx1dwXJ7Zy9tXb1MKsjmhgurhj/ZKYgyWawD5kqaTVBjuBn4eHwBSWXAvnBWrnsI50gOH45PNLMWSecB5xHMGZw2zjrrLC6++OKB9R/+8Ic89thj9Pb2snv3bjZt2nRMssjPz2f58uUAXHTRRbz00kunNWZH0BR0cNfRiWDgswMO7uaoCrQyoWQaFFdCyRlQueD4N/z+bVnDP8tyY5uZcbinb+CGftTf+M/x9sWtH+oevonpvKoJqZsszKxX0p0EE8hnAo+b2UZJ9wHrzewZ4ArgAUlG0Az1mfDwbOCl8DXQg8AnwofdIzbSGkBUCgsLB5a3bt3KN77xDV5++WUmTpzIJz7xiSH7SsQ/EM/MzKS395T+kbih9PUeSQaDE8GBd4N98c8AlBEkg4kzYPblMHFmsNz/KZkGmWnd9zWtdPfGBn61t4U37I6u4Nd7cAPvob2rb2C5o6sv3NcTlu2jLVyOJdAwnpUhivKyKMoNPsV5WUwuzGHG5AKKw+2FcfuKcrMpzM0cWC7Ky6IoJ4vC3MzI/9lE+l+xmdUANYO23Ru3vBJYOcRxnQRvRI0LBw8epLi4mJKSEhoaGli1ahXLli1LdljpKdYX/PofKhEc2AGtu4KHnwMU1AgmzoCZlx2dCCbNDJOBt9uPRb19MVo6umlu66K5rYumts6B5eb2Lva2dw/8gu9PCN29w089LkFhTniDj7vRVxTnHbXev1yclxWUH2JfblZGyvSN8p88Y8CFF15IdXU1CxYs4Mwzz+Syyy5LdkipK9YHbY2DEkFcc1FrPcQG1ciKpwY1gunvhYWDk0GVNwuNIWZGW1fvkZt+WxdNRy0HCWFvexctHd0MNWt0SV4WFSV5TC7M4YyJeQM378LcLIpzj/yaP+rXe27mwHJBdiYZGalxgx9NaTMH96JFi2zw5EebN29m3rx5SYooedL6umMxaN9zdG0g/mFya/2xfQSKKo9tHpo0M9g2oQqycpNzLW5AT1+Mve1DJ4CBJBDu7+w59td/dqYoL8qlvCQv+FucS0Vx8Lf/U1GcS1lRLnnZ0TfZpBJJr5jZouHKec3CjQ19PdB5MHg9tLM1WO5oPpIM+h8mt+6Evu6jjy2sCBLAGRdA9XVhIphxJBlk5yfnmsY5M+NgZy/NbZ3H3PyPSgjtXezr6B7yHBMLsgdu+hfNmBTe9POOSgDlxblMyM9OmeacVOXJwp06M+huD27wna3QdfDIDb/zwKD1Qfv7l0/0KmlBWXDzn7IQzv3QkVrBxBkwYbq/NnqadffGBn7lD/U8ID4JDPUMICcrY+AmP7O0gEWzJh2VAPqTQGlRDrlZXgsYKzxZuKBvwFE38cE3/KHWW4++4R+vl3C/jOyg92/eBMgrCf4WT43bNgFyS47eX1AaJIScwhOf240qM2Nvezc7Wjp4p+UQ74Z/d+wLlvcfGnookMmFOQNJ4MyyQspLcgeahOJrBCV5WV4LSEGeLNJJrA96Dgef1/81vMEfOMENP/zbm8CQ5v038v6/JdOgovrYG/zA+qCbf1beyHsLu1EXixkNBzvZ0dLBjpZDvNPSwbsthwaSQ0fcu/0ZgmmT8plVWsjyhVOZWpJ3TAIoLcohO9MH5ktnnixSmVmQGLoOBqOEdncAFrT1r7r9SLnM3GNv6BOq4tYnDHHDj1vOLQ5G63Qppacvxq79h3knTAjBp4N3WjrYuf/wUU1EOZkZTJ+cz8zSQt575mRmlRYyo7SAWaWFTJuYT06WJ4LxzpNFquntDhJDVxt0tx15DTQrHwrLIbcIWjLgzleCG35uCWTnJTdmF5nOnj7e3Xd0IuhPDLsOHKYvrmdYfnYmM0sLmFtRzNXzKplZWsis0gJmlBYwdUI+mePwdVCXOE8WERqNIcqJ9fH4t/+ZFR+8lCkT8480GWVkHfnVn1t8dMewrBwomzPal+OSpK2zZyABHGku6uDdfYdoaD26CbEkL4tZZYW8Z/pErjv/DGZMLmBWWSEzSwsoL8r1ZwVuxDxZRCiRIcqPYRa8GTRQe+jg8cce48LZ5Uy56KJg/KBcfwaQTsyM/Yd6jkoE/TWFHS2HaBn0WmlZUS6zSgt431mlzCoNEkF/LWFigXcgdNHwZJEkTzzxBI888gjd3d1c+t5LePgf/obY4VZu+5PP89rGLZgZt3/yJirPqOK1TVu56U/vJT8/P6iRZPsNIdXEYkZTW9dAAtixL3zDKFxv6zzSq1yCMybkM2NyAUvnB81FMycHCWFGaQFFuf6/rTv9xs9/dbV3Q2Pd6J5zykJY/uBJH7bhjdf58cqn+UXtv5LVe5jbv/glnnryO5w1exZ7D7RT98qvIbeYA20dTJw4kX967Ac8/PDDnH/++aMbvxt13b0xdrR0sLWpna172tna1Ma2pnbeaek4qudxVoaomhQ8UL5wxqSBmsHM0gKqJhV4L2M35oyfZJFMZkGv46422PsW//3j77Nu/ToWXb4MMjI53NnN9DkLuPampWzZ/iU+d89XWLFiBUuXLk125O44Onv62N7cMZAMtjW1s7WpnXf2dtAbPlSWoGpSPnPKi3j/nLK45qJCzpiYR5a/aupSyPhJFiOoAZyS3q7wucNB6GoPZjxTAVgMyynkD2+9lb/5uwfDuXSPeOONN6itreWb3/wmP/rRj3j00UdPb9zuKB1dvbzdfCQZbN3TzramNt7dd2hgCOoMwazSQuZUFHHt/ErmVhQzp6KIs8qLyM/xGoJLD+MnWUQt1hskhf4H031dwfaMbMifAHkToagUys/l6g/fyMc+9jE+98U/p6ysjJaWFjo6OsjPzycvL4/f+Z3fYfbs2dxxxx0AFBcX09bWlsSLS38HO3uCGkLYdNSfGHYdODxQJjtTzC4rZP4ZE7ju/GnMqShibmURs8sKfVgKl/Y8WYyUWdAJrrsNOtugpyPYrgzIKQr7PBQHI5pKwWB2GUEtYuHChXz5y1/m6quvJhaLkZ2dzbe+9S0yMzP51Kc+hZkhia9+9asA3HbbbXz6058+8oA7kVdu3ZD2d3QHiaCpLawlBMt7DnYNlMnNyuDM8iIumjmJmy+eztzKIuZUFDOztMB7KbtxK9IhyiUtA75BMFPed8zswUH7ZxJMpVoO7COYEa8+3Pf3wIeADOA54HN2gmBPyxDlvV1Hekt3tR+ZJCe7IOzvUBIMaqfk3lDSeojyBJgZze1dYS3hSELY1tTO3vYjr6EW5GQyp6IoqCFUFDM3rClUTSrwDmpu3Ej6EOXhPNqPANcA9cA6Sc+Y2aa4Yg8BT5rZE5KuBB4APinpUuAygrm3AX4GLAGejyreIQ00LYUJon9o7MwcyJ8YJIicYp82M0nMjIbWzoHnCdvC2sLWpnZaDx8Z7K44L4u5FUVcdW4lcyuLOKuiiLkVRZwxIX9cTmLj3EhEeZdbDGwzs+0Akp4CrgPik0U18PlweS3wk3DZgDwgBxDBnNx7Iow1/NYYdB868mC6f9hsZQRJoagi7C2d6x3iTqNYzNh14PBA09HWMDm83dROe9eR/gmTCrKZW1HMh86bGtQSKoqZW1lERbH3XHbuVEWZLKYBO+PW64FLBpV5HbiRoKnqeqBYUqmZ/VLSWqCBIFk8bGabB3+BpNuB2wFmzJgxZBD97f/HFeuFw/uD5w7dbUeG2s4ugKIpYe0h+U1LiUqHmQ+bDnayetMeXtmxf6D5KL6PQnlxLnMrirjxwmnMqQybjyqKKC3yGe+ci0qUyWKoO/TgO9ldwMOSbgVeBHYBvZLmAPOAqrDcc5IuN7MXjzqZ2aPAoxA8sxj8ZXl5ebS0tFBaWnr8hGEEU3Fm5kD+5PDZQ1Ew9lKKMTNaWlrIy0u9gQO3N7ezetMeVm1s5NV3DwAwpSSPs6cU83uXlA48T5hTXsyEguxhzuacG21R3hHrgelx61XA7vgCZrYbuAFAUhFwo5m1hjWGX5lZe7ivFngvQUJJWFVVFfX19TQ3N5+4YCwrfFOpPfykrry8PKqqqoYvmGRmRt2uVlZtbGT1xj1sbQr+uS+cNoG7lp7N0vlTmFtR5M1Hzo0RUSaLdcBcSbMJagw3Ax+PLyCpDNhnZjHgHoI3owDeBf5I0gMENZQlwNdPNoDs7Gxmz5498itwo6qnL8a63+4LEsSmPTS0dpKZIRbPmszvXTKDa+ZPYdpEny/bubEosmRhZr2S7gRWEbw6+7iZbZR0H7DezJ4BrgAekGQEtYbPhIevBK4E6ggaip41s/+MKlYXncPdfbzwVjOrNzWyZnMTrYd7yMvO4PK55Xxx6TlcdW4Fkwq934hzY12k/SxOp6H6Wbjk2N/RzZo3m1i1sZGXtjbT2RNjQn42V82r4Nr5U7h8brkPg+HcGJH0fhZufNl14DDPbWxk1cY9vPzOPvpixtQJedy0aDrXzp/CxbMne+9n51KYJws3ImbG1qZ2Vm0Inj/U7WoFYG5FEX+85CyWzq9k4bQJ/oDauTThycIlLBYzXt15gNUbG1m1sZF3WoJOixfMmMjdy89laXUlZ5YXJTlK51wUPFm4E+rujfGLt/eyetMentu0h+a2LrIzxfvOKuPTHziTpdWVVJSkXr8O59zJ8WThjtHe1cvzW5pYtXEPz7/ZRFtXL4U5mVxxTgVL51dyxTkVTMj3jnHOjSeeLBwAzW1d/PfmPaze2MjPt7XQ3RejtDCHFQuncu2CSi49q8yn+nRuHPNkMY6923Io7CDXyPod+zELpgH95Ptmcu38KVw0c5IP1e2cAzxZjCtmxsbdB1m9KahBvNkYzL43b2oJn7tqLkurpzBvarG/weScO4YnizTX2xdj/Y79A2Mw7TpwmAzBolmT+dKH5nHt/ClMn1yQ7DCdc2OcJ4s01NnTx8+27mXVxkbWvNnEvo5ucrIy+MCcMj571RyumldJmQ/n7Zw7CZ4s0si+jm7+6icbWLuliUPdfRTnZXHlueEQG2eXU5Tr/7qdcyPjd4808t2f/5baDQ3csngG186fwnvPLCUny4fYcM6dOk8WacLM+L91DVwyu5T7r1+Y7HCcc2nGf3amia1N7Wxv7mDFwinJDsU5l4Y8WaSJ2rpGJLh2vicL59zo82SRJmo3NHDxzMk+TpNzLhKeLNLA283tvNnYxnJvgnLORSTSZCFpmaQtkrZJunuI/TMlrZH0hqTnJVWF2z8o6bW4T6ekj0YZayp7dkMjAMsWeLJwzkUjsmQhKRN4BFgOVAO3SKoeVOwh4EkzOw+4D3gAwMzWmtn5ZnY+wVzch4DVUcWa6mrqGrhwxkSmTshPdijOuTQVZc1iMbDNzLabWTfwFHDdoDLVwJpwee0Q+wE+BtSa2aHIIk1hO1o62Lj7ICsWTk12KM65NBZlspgG7Ixbrw+3xXsduDFcvh4ollQ6qMzNwA+H+gJJt0taL2l9c3PzKIScemq9Cco5dxpEmSyGGrrUBq3fBSyR9CqwBNgF9A6cQJoKLARWDfUFZvaomS0ys0Xl5eWjE3WKqa1r4D1VE6ia5IMBOueiE2WyqAemx61XAbvjC5jZbjO7wcwuAP4y3NYaV+R3gR+bWU+Ecaas+v2HeL2+lWULvAnKORetKJPFOmCupNmScgiak56JLyCpTFJ/DPcAjw86xy0cpwnKHXkLark3QTnnIhZZsjCzXuBOgiakzcDTZrZR0n2SPhIWuwLYIuktoBK4v/94SbMIaiYvRBVjqqupa6B6agmzygqTHYpzLs1FOpCgmdUANYO23Ru3vBJYeZxj3+HYB+Iu1NjayW/ePcBdS89OdijOuXHAe3CnqGc3NACw3F+Zdc6dBp4sUlTNhkbOqSzmrPKiZIfinBsHPFmkoKa2Tta9s8/HgnLOnTaeLFLQqo17MMN7bTvnThtPFimotq6Bs8oLmVvhTVDOudPDk0WKaWnv4lfbW1ixcCrSUJ3knXNu9HmySDGrN+0hZrDce207504jTxYppqaugZmlBcybWpzsUJxz44gnixRy4FA3v3y7heULvAnKOXd6ebJIIc9t2kNvzFjhr8w6504zTxYppHZDI9Mm5rNw2oRkh+KcG2c8WaSIg509vLS1mRULp3gTlHPutPNkkSLWbN5DT5/5WFDOuaTwZJEiauoamTohj/OrJiY7FOfcOOTJIgW0d/XywlvNLFswhYwMb4Jyzp1+nixSwE/fbKK7N+ZjQTnnkibSZCFpmaQtkrZJunuI/TMlrZH0hqTnJVXF7ZshabWkzZI2hTPnjUu1dQ1UFOdy0YxJyQ7FOTdORZYsJGUCjwDLgWrgFknVg4o9BDxpZucB9wEPxO17EvgHM5sHLAaaoop1LDvU3cvaLU1cO9+boJxzyRNlzWIxsM3MtptZN/AUcN2gMtXAmnB5bf/+MKlkmdlzAGbWbmaHIox1zHp+SzOdPTGfu8I5l1RRJotpwM649XqOnVP7deDGcPl6oFhSKXA2cEDSv0t6VdI/hDWVo0i6XdJ6Seubm5sjuITkq6lroLQwh8WzJic7FOfcOBZlshiqzcQGrd8FLJH0KrAE2AX0AlnAB8L9FwNnArceczKzR81skZktKi8vH8XQx4bOnj7WvtnE0vlTyMr0dxGcc8kz7B1I0p2SRvJktR6YHrdeBeyOL2Bmu83sBjO7APjLcFtreOyrYRNWL/AT4MIRxJDSXnyrmY7uPh8LyjmXdIn8XJ0CrJP0dPh2U6JPWdcBcyXNlpQD3Aw8E19AUpmk/hjuAR6PO3aSpP7qwpXApgS/N23UbmhkYkE27z2zNNmhOOfGuWGThZl9CZgLPEbQFLRV0t9JOmuY43qBO4FVwGbgaTPbKOk+SR8Ji10BbJH0FlAJ3B8e20fQBLVGUh1Bk9a3T/7yUldXbx//vWkPS6sryfYmKOdckmUlUsjMTFIj0EjwTGESsFLSc2b25yc4rgaoGbTt3rjllcDK4xz7HHBeIvGlo59v20tbV6+PBeWcGxOGTRaSPgv8AbAX+A7wZ2bWEzYfbQWOmyzcyNXUNVKcl8VlZ5UlOxTnnEuoZlEG3GBmO+I3mllM0oejCWt86+6NsXpjI9dUV5KT5U1QzrnkS+ROVAPs61+RVCzpEgAz2xxVYOPZL7e3cLCzlxULvAnKOTc2JJIs/hloj1vvCLe5iNTWNVCYk8n753oTlHNubEgkWcjMBjrTmVmMBB+Mu5PX2xdj1cZGrppXSV72MZ3WnXMuKRJJFtslfVZSdvj5HLA96sDGq1//dh/7D/V4Rzzn3JiSSLK4A7iUYCiOeuAS4PYogxrPajc0kJ+dyZKzK5IdinPODRi2OcnMmgh6X7uI9cWMZzfs4cpzK8jP8SYo59zYkUg/izzgU8B8IK9/u5n9YYRxjUvr39nH3vYuH47cOTfmJNIM9T2C8aGuBV4gGBCwLcqgxqvaDY3kZmXwwXO8Cco5N7YkkizmmNlfAR1m9gTwIWBhtGGNP7GYUbuhgSvOKacw1182c86NLYkki57w7wFJC4AJwKzIIhqnXt25nz0Hu1jhY0E558agRH7CPhrOZ/ElgiHGi4C/ijSqcaimrpGczAyuPNeboJxzY88Jk0U4WOBBM9sPvEgwY50bZWZGbV0Dl59dRnFedrLDcc65Y5ywGSrsrX3naYpl3Hq9vpXdrZ0s87GgnHNjVCLPLJ6TdJek6ZIm938ij2wcqa1rICtDXDOvMtmhOOfckBJ5ZtHfn+IzcdsMb5IaFWZGzYYGLptTxoQCb4Jyzo1NiUyrOnuIT0KJIpyze4ukbZLuHmL/TElrJL0h6XlJVXH7+iS9Fn6eGXxsuti4+yA79x32saCcc2NaIj24f3+o7Wb25DDHZQKPANcQjCm1TtIzZrYprthDwJNm9oSkK4EHgE+G+w6b2fkJXENKq93QQGaGuKbak4VzbuxKpBnq4rjlPOAq4DfACZMFsBjYZmbbASQ9BVwHxCeLauDz4fJa4CcJxJPxPJziAAATVUlEQVQ2zIyaukbed2Ypkwtzkh2Oc84dVyLNUH8a9/kj4AIgkTvbNGBn3Hp9uC3e68CN4fL1QLGk0nA9T9J6Sb+S9NGhvkDS7WGZ9c3NzQmENLZs2dPGb/d2+FhQzrkxbyQTPB8C5iZQTkNss0HrdwFLJL0KLCEYBr033DfDzBYBHwe+LumsY05m9qiZLTKzReXl5QlfwFhRU9dIhmCpN0E558a4RJ5Z/CdHbvIZBE1HTydw7npgetx6FbA7voCZ7QZuCL+nCLjRzFrj9mFm2yU9T1CjeTuB700ZtXUNLJ49mfLi3GSH4pxzJ5TIM4uH4pZ7gR1mVp/AceuAuZJmE9QYbiaoJQyQVAbsCzv/3QM8Hm6fBBwys66wzGXA3yfwnSlj6542tja188n3zU92KM45N6xEksW7QIOZdQJIypc0y8zeOdFBZtYr6U5gFZAJPG5mGyXdB6w3s2eAK4AHJBnBcCL9fTnmAf9bUoygNvPgoLeoUl7thkYArp3vTVDOubEvkWTxbwTTqvbrC7ddPHTxI8ysBqgZtO3euOWVwMohjvsFaT4Mek1dA4tmTqKyJG/4ws45l2SJPODOMrPu/pVw2d/zPAXbm9t5s7GN5T4cuXMuRSSSLJolfaR/RdJ1wN7oQkp//U1QyxZ4E5RzLjUk0gx1B/ADSQ+H6/XAkL26XWKe3dDI+dMnMm1ifrJDcc65hAybLMzsbeC94autMjOff/sU7Nx3iLpdrfzFinOTHYpzziVs2GYoSX8naaKZtZtZm6RJkv72dASXjmo3NACw3OeucM6lkESeWSw3swP9K+GseSuiCym91dQ1snDaBKZPLkh2KM45l7BEkkWmpIEuxpLyAe9yPAK7DhzmtZ0HfCwo51zKSeQB9/eBNZK+G67fBjwRXUjp69nwLShvgnLOpZpEHnD/vaQ3gKsJBgd8FpgZdWDpqLaugXlTS5hdVpjsUJxz7qQkOupsIxAjGE78KmBzZBGlqcbWTtbv2M9y71vhnEtBx61ZSDqbYPC/W4AW4F8JXp394GmKLa2s2hg0Qfn0qc65VHSiZqg3gZeA/2Fm2wAkff4E5d0J1NQ1MLeiiDkVxckOxTnnTtqJmqFuJGh+Wivp25KuYugJjdwwmtu6ePmdfT4WlHMuZR03WZjZj83sJuBc4HmCubIrJf2zpKWnKb60sHpTI2beBOWcS12JzMHdYWY/MLMPE8x29xpwd+SRpZHaukbOLCvknEpvgnLOpaaTmoPbzPaZ2f82syujCijd7Ovo5pfbW1i+cAqSt+I551LTSSWLkyVpmaQtkrZJOqY2ImmmpDWS3pD0vKSqQftLJO2KG/E25Ty3qZG+mHlHPOdcSossWUjKBB4BlgPVwC2SqgcVewh40szOA+4DHhi0/2+AF6KK8XSoqWtkxuQC5p9RkuxQnHNuxKKsWSwGtpnZ9nB2vaeA6waVqQbWhMtr4/dLugioBFZHGGOkWg/18PNte70JyjmX8qJMFtOAnXHr9eG2eK8TvKILcD1QLKlUUgbwNeDPTvQFkm6XtF7S+ubm5lEKe/Q8t3kPvTFjhTdBOedSXJTJYqif0jZo/S5giaRXgSXALqAX+BOgxsx2cgJm9qiZLTKzReXl5aMR86iqrWtg2sR8zquakOxQnHPulCQy6uxI1QPT49argN3xBcxsN3ADQDgT341m1irpfcAHJP0JUATkSGo3s5R5ZfdgZw8vbd3LJ98305ugnHMpL8pksQ6YK2k2QY3hZuDj8QUklQH7zCwG3AM8DmBmvxdX5lZgUSolCoCfbm6iuy/mHfGcc2khsmYoM+sF7gRWEYxS+7SZbZR0n6SPhMWuALZIeovgYfb9UcVzutVuaKCyJJcLpk9KdijOOXfKoqxZYGY1QM2gbffGLa8EVg5zjv8D/J8IwotMR1cvz29p5pbFM8jI8CYo51zqi7RT3ni1dksTXb0xn7vCOZc2PFlEoLaukbKiXBbNmpzsUJxzblR4shhlh7v7+OmbTSxbUEmmN0E559KEJ4tR9sJbTRzu6fOOeM65tOLJYpTV1DUyuTCHxbO9Cco5lz48WYyizp4+1mzew9LqSrIy/R+tcy59+B1tFL20dS8d3X0+fapzLu14shhFtXUNTMjP5tKzSpMdinPOjSpPFqOkuzfGc5v3cE11JdneBOWcSzN+VxslP397L22dvT4WlHMuLXmyGCW1dQ0U52Zx2ZyyZIfinHOjzpPFKOjpi7F60x6urq4kNysz2eE459yo82QxCn61vYUDh3p8LCjnXNryZDEKauoaKczJ5PKzx95sfc45Nxo8WZyi3r4Yqzc2cuW8SvKyvQnKOZeePFmcopff2UdLRzcrvAnKOZfGPFmcotq6RvKyM1hyjjdBOefSV6TJQtIySVskbZN0zBzakmZKWiPpDUnPS6qK2/6KpNckbZR0R5RxjlRfzHh2YyMfPKeCgpxIJx10zrmkiixZSMoEHgGWA9XALZKqBxV7CHjSzM4D7gMeCLc3AJea2fnAJcDdks6IKtaRemXHfprbunwsKOdc2ouyZrEY2GZm282sG3gKuG5QmWpgTbi8tn+/mXWbWVe4PTfiOEespq6BnKwMrjy3ItmhOOdcpKK8CU8Ddsat14fb4r0O3BguXw8USyoFkDRd0hvhOb5qZrsHf4Gk2yWtl7S+ubl51C/gRGIxY9XGRpacXU5RrjdBOefSW5TJYqg5RW3Q+l3AEkmvAkuAXUAvgJntDJun5gB/IKnymJOZPWpmi8xsUXn56X3A/Fr9ARpaO30sKOfcuBBlsqgHpsetVwFH1Q7MbLeZ3WBmFwB/GW5rHVwG2Ah8IMJYT1ptXQPZmeKqecfkMOecSztRJot1wFxJsyXlADcDz8QXkFQmqT+Ge4DHw+1VkvLD5UnAZcCWCGM9KWZGTV0jH5hbTkledrLDcc65yEWWLMysF7gTWAVsBp42s42S7pP0kbDYFcAWSW8BlcD94fZ5wK8lvQ68ADxkZnVRxXqy6na1suvAYR8Lyjk3bkT6ZNbMaoCaQdvujVteCawc4rjngPOijO1U1NQ1kpUhrqn2Jijn3PgwJl9JHcvMjNoNDVw6p4yJBTnJDsc5504LTxYnaVPDQXa0HPImKOfcuOLJ4iTV1jWSIVjqTVDOuXHEk8VJCN6CauC9Z5ZSWpSb7HCcc+608WRxEt7a0872vR0+FpRzbtzxZHESajc0IMG1870Jyjk3vniyOAm1dY1cPGsyFcV5yQ7FOedOK08WCdrW1M6WPW0+I55zblzyZJGgZzc0ALBsgT+vcM6NP54sElRT18hFMycxZYI3QTnnxh9PFgl4Z28HmxoOekc859y45ckiAbUbGgFY5snCOTdOebJIQO2GBt5TNYGqSQXJDsU555LCk8Uwdu47xBv1rd4Rzzk3rnmyGMazYROUP69wzo1nniyGUbOhgflnlDCztDDZoTjnXNJEmiwkLZO0RdI2SXcPsX+mpDWS3pD0vKSqcPv5kn4paWO476Yo4zyehtbDvPruAVZ4E5RzbpyLLFlIygQeAZYD1cAtkqoHFXsIeNLMzgPuAx4Itx8Cft/M5gPLgK9LmhhVrMfjTVDOOReIsmaxGNhmZtvNrBt4CrhuUJlqYE24vLZ/v5m9ZWZbw+XdQBNQHmGsQ6qta+TcKcWcWV50ur/aOefGlCiTxTRgZ9x6fbgt3uvAjeHy9UCxpNL4ApIWAznA2xHFOaSmg52s27GP5T68h3PORZosNMQ2G7R+F7BE0qvAEmAX0DtwAmkq8D3gNjOLHfMF0u2S1kta39zcPHqRA6s2NmIGKxZ6E5RzzkWZLOqB6XHrVcDu+AJmttvMbjCzC4C/DLe1AkgqAf4v8CUz+9VQX2Bmj5rZIjNbVF4+uq1UNXWNzKkoYm5l8aie1znnUlGUyWIdMFfSbEk5wM3AM/EFJJVJ6o/hHuDxcHsO8GOCh9//FmGMQ9rb3sWvf9viD7adcy4UWbIws17gTmAVsBl42sw2SrpP0kfCYlcAWyS9BVQC94fbfxe4HLhV0mvh5/yoYh1s9cY9xAx/XuGcc6GsKE9uZjVAzaBt98YtrwRWDnHc94HvRxnbidRuaGBWaQHzpnoTlHPOgffgPsb+jm5+8XYLyxdORRrqGb1zzo0/niwGeW7THvpixgpvgnLOuQGeLAap3dBA1aR8FkwrSXYozjk3ZniyiNN6uIefbdvLCm+Ccs65o3iyiLNm8x56+sxfmXXOuUE8WcSpqWvkjAl5nD/9tI9Z6JxzY5oni1BbZw8vbm1m2QJvgnLOucE8WYR++mYT3b0xHwvKOeeG4MkiVFvXSEVxLhfOmJTsUJxzbszxZAF0dPWydksTyxZMISPDm6Ccc24wTxbA81ua6eqN+VhQzjl3HJ4sgJoNDZQW5rB49uRkh+Kcc2PSuE8WnT19rH2ziWsXTCHTm6Ccc25I4z5ZHDzcw9XzKvnIe85IdijOOTdmRTpEeSqoKMnjm7dckOwwnHNuTBv3NQvnnHPD82ThnHNuWJEmC0nLJG2RtE3S3UPsnylpjaQ3JD0vqSpu37OSDkj6ryhjdM45N7zIkoWkTOARYDlQDdwiqXpQsYeAJ83sPOA+4IG4ff8AfDKq+JxzziUuyprFYmCbmW03s27gKeC6QWWqgTXh8tr4/Wa2BmiLMD7nnHMJijJZTAN2xq3Xh9vivQ7cGC5fDxRLKk30CyTdLmm9pPXNzc2nFKxzzrnjizJZDNXDzQat3wUskfQqsATYBfQm+gVm9qiZLTKzReXl5SOP1Dnn3AlF2c+iHpget14F7I4vYGa7gRsAJBUBN5pZa4QxOeecG4Eok8U6YK6k2QQ1hpuBj8cXkFQG7DOzGHAP8PhIv+yVV17ZK2nHKcRbBuw9hePHinS5DvBrGavS5VrS5Trg1K5lZiKFIksWZtYr6U5gFZAJPG5mGyXdB6w3s2eAK4AHJBnwIvCZ/uMlvQScCxRJqgc+ZWarTvB9p9QOJWm9mS06lXOMBelyHeDXMlaly7Wky3XA6bmWSIf7MLMaoGbQtnvjllcCK49z7AeijM0551zivAe3c865YXmyOOLRZAcwStLlOsCvZaxKl2tJl+uA03AtMhv8Nqtzzjl3NK9ZOOecG5YnC+ecc8Ma98liuJFxU4WkxyU1SdqQ7FhOlaTpktZK2ixpo6TPJTumkZCUJ+llSa+H1/GVZMd0qiRlSno11UeDlvSOpDpJr0lan+x4ToWkiZJWSnoz/H/mfZF8z3h+ZhGOjPsWcA1Bj/N1wC1mtimpgY2ApMuBdoJRfBckO55TIWkqMNXMfiOpGHgF+Giq/XuRJKDQzNolZQM/Az5nZr9KcmgjJukLwCKgxMw+nOx4RkrSO8AiM0v5TnmSngBeMrPvSMoBCszswGh/z3ivWSQyMm5KMLMXgX3JjmM0mFmDmf0mXG4DNnPsIJRjngXaw9Xs8JOyv87C+WY+BHwn2bG4gKQS4HLgMQAz644iUYAni0RGxnVJJGkWcAHw6+RGMjJhs81rQBPwnJml5HWEvg78ORBLdiCjwIDVkl6RdHuygzkFZwLNwHfD5sHvSCqM4ovGe7JIZGRclyTh4JI/Av6nmR1MdjwjYWZ9ZnY+wUCaiyWlZBOhpA8DTWb2SrJjGSWXmdmFBJOzfSZsxk1FWcCFwD+b2QVABxDJs9fxniyGHRnXJUfYxv8j4Adm9u/JjudUhU0DzwPLkhzKSF0GfCRs638KuFLS95Mb0siFI15jZk3AjwmapFNRPVAfV2NdSZA8Rt14TxYDI+OGD4ZuBp5JckzjXvhg+DFgs5n9Y7LjGSlJ5ZImhsv5wNXAm8mNamTM7B4zqzKzWQT/n/zUzD6R5LBGRFJh+OIEYZPNUiAl3yI0s0Zgp6Rzwk1XAZG8CBLpQIJj3fFGxk1yWCMi6YcEo/iWhaP0ftnMHktuVCN2GcH863Vhez/AX4QDU6aSqcAT4Vt3GcDTZpbSr5ymiUrgx8FvErKAfzGzZ5Mb0in5U+AH4Q/e7cBtUXzJuH511jnnXGLGezOUc865BHiycM45NyxPFs4554blycI559ywPFk455wblicL506CpL5wpNL+z6j1lpU0Kx1GDXbpaVz3s3BuBA6Hw3c4N654zcK5URDOj/DVcP6KlyXNCbfPlLRG0hvh3xnh9kpJPw7nunhd0qXhqTIlfTuc/2J12PPbuaTzZOHcyckf1Ax1U9y+g2a2GHiYYIRWwuUnzew84AfAN8Pt3wReMLP3EIzl0z9ywFzgETObDxwAboz4epxLiPfgdu4kSGo3s6Ihtr8DXGlm28NBEBvNrFTSXoKJnHrC7Q1mViapGagys664c8wiGMZ8brj+v4BsM/vb6K/MuRPzmoVzo8eOs3y8MkPpilvuw58rujHCk4Vzo+emuL+/DJd/QTBKK8DvEUytCrAG+GMYmCCp5HQF6dxI+K8W505OftxIuADPmln/67O5kn5N8CPslnDbZ4HHJf0ZwYxm/SOCfg54VNKnCGoQfww0RB69cyPkzyycGwXhM4tFZrY32bE4FwVvhnLOOTcsr1k455wbltcsnHPODcuThXPOuWF5snDOOTcsTxbOOeeG5cnCOefcsP4fFVMG7P8ShkMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8XfV55/HPo13WakvyguVFBodY2GYzpAGC2UIMJhCWFkjTDiQpQye0TFI6A9MMaUgppEM6WeDVDA1mIE3DENKkYBsMcVhCExYTbAnbGBwDsaxrW5axNmvXM3+cI/v6WrKuZV1d3Xu/79frvnSW3zn3OfDyee7v+Z3F3B0REZEjyUp2ACIiMvEpWYiIyIiULEREZERKFiIiMiIlCxERGZGShYiIjEjJQjKemc01MzeznDja3mBmL49HXCITiZKFpBQze9/MesysMmb5+vCEPzc5kYmkNyULSUXvAdcPzpjZIqAweeFMDPH0jERGS8lCUtEPgT+Nmv9PwKPRDcyszMweNbMmM/vAzL5qZlnhumwzu8/M9pjZNmD5ENs+ZGYRM9thZn9nZtnxBGZmPzGznWbWYmYvmdlJUesKzexbYTwtZvaymRWG684xs1+b2T4z225mN4TLXzCzL0bt45AyWNib+pKZvQu8Gy77TriPVjN7w8w+EdU+28z+h5n9zszawvWzzOwBM/tWzLE8ZWb/NZ7jlvSnZCGp6BWg1MwWhCfxa4F/iWnzPaAMmAcsJUguN4br/gy4DDgVWAJcE7PtI0AfcELY5mLgi8TnaWA+MBX4LfCjqHX3AacDZwFTgP8GDJjZ7HC77wFVwCnA+ji/D+AzwMeA2nD+9XAfU4B/BX5iZgXhuq8Q9MouBUqBzwP7w2O+PiqhVgIXAj8+ijgknbm7PvqkzAd4H7gI+CpwD7AMeA7IARyYC2QD3UBt1Hb/GXghnP4lcHPUuovDbXOAaeG2hVHrrweeD6dvAF6OM9bycL9lBD/MOoGTh2h3B/CzYfbxAvDFqPlDvj/c/wUjxPHh4PcCW4Arhmm3GfhkOH0LsDrZ/7/1mTgf1TglVf0QeAmoIaYEBVQCecAHUcs+AGaG08cB22PWDZoD5AIRMxtclhXTfkhhL+du4A8JeggDUfHkAwXA74bYdNYwy+N1SGxm9lcEPaHjCJJJaRjDSN/1CPA5guT7OeA7xxCTpBmVoSQlufsHBAPdlwL/FrN6D9BLcOIfNBvYEU5HCE6a0esGbSfoWVS6e3n4KXX3kxjZZ4ErCHo+ZQS9HAALY+oCjh9iu+3DLAfoACZFzU8fos2BR0eH4xP/HfgjYLK7lwMtYQwjfde/AFeY2cnAAuDnw7STDKRkIansCwQlmI7ohe7eDzwO3G1mJWY2h6BWPziu8Tjwl2ZWbWaTgdujto0AzwLfMrNSM8sys+PNbGkc8ZQQJJpmghP830ftdwBYAfyjmR0XDjR/3MzyCcY1LjKzPzKzHDOrMLNTwk3XA1eZ2SQzOyE85pFi6AOagBwzu5OgZzHoB8A3zGy+BRabWUUYYwPBeMcPgZ+6e2ccxywZQslCUpa7/87d1w2z+i8IfpVvA14mGOhdEa77Z2ANsIFgEDq2Z/KnBGWsTQT1/ieAGXGE9ChBSWtHuO0rMetvA+oJTsh7gW8CWe7+e4Ie0l+Fy9cDJ4fb/G+gB9hFUCb6EUe2hmCw/J0wli4OLVP9I0GyfBZoBR7i0MuOHwEWESQMkQPMXS8/EpGAmZ1L0AObG/aGRAD1LEQkZGa5wK3AD5QoJJaShYhgZguAfQTltm8nORyZgFSGEhGREalnISIiI0qbm/IqKyt97ty5yQ5DRCSlvPHGG3vcvWqkdmmTLObOncu6dcNdRSkiIkMxsw9GbqUylIiIxEHJQkRERqRkISIiI0qbMYuh9Pb20tDQQFdXV7JDGTcFBQVUV1eTm5ub7FBEJI2kdbJoaGigpKSEuXPnEvW46bTl7jQ3N9PQ0EBNTU2ywxGRNJLWZaiuri4qKioyIlEAmBkVFRUZ1ZMSkfGR1skCyJhEMSjTjldExkdCy1BmtozgbVvZBA8nuzdm/RyCx0ZXETya+XPhM/Uxs28Cy8Om33D3/5fIWEVEJix36GmHzg+H/hROgSU3jryfY5CwZBG+YvIB4JNAA/C6mT3p7puimt0HPOruj5jZBQTvVP4TM1sOnEbw0vl84EUze9rdWxMVbyI0Nzdz4YUXArBz506ys7OpqgpulHzttdfIy8sbcR833ngjt99+OyeeeGJCYxWRcTAwAN0tMSf7fcMngejPQN/w+60+M3WTBXAmsNXdtwGY2WMEr5yMTha1wJfD6ec5+BrHWuBFd+8D+sxsA7CM4KUtKaOiooL169cD8Ld/+7cUFxdz2223HdJm8GXoWVlDVwQffvjhhMcpIkepvw+6Yk/6R/rsDf52tcCRnv6eVwKFk6GwPPg7tTacH+GTW5DwQ05kspjJoW/oagA+FtNmA3A1QanqSqAkfMXjBuBrZvaPBK+nPJ9DkwwAZnYTcBPA7NmzY1dPWFu3buUzn/kM55xzDq+++iorV67k61//Or/97W/p7Ozk2muv5c477wTgnHPO4f7772fhwoVUVlZy88038/TTTzNp0iT+/d//nalTpyb5aOQQA/3Q2wl9XdC7P5ju7QTvT3ZkY8uyAAv+mh06fWDd4DQxy4fY5rDtR7HNaMbr+nqO4oQf1RPobjnyfgvKgtLQ4Ml88tw4TvrlkD1xL3lPZLIY6v9c7PPQbwPuN7MbgJcIXkfZ5+7PmtkZwK8J3iX8G4L3Ch+6M/cHgQcBlixZcsRnrX/9qY1sahzbKlbtcaV87dMnjWrbTZs28fDDD/P9738fgHvvvZcpU6bQ19fH+eefzzXXXENtbe0h27S0tLB06VLuvfdevvKVr7BixQpuv/32oXYv0dyhvzc4eR9yEo+ejl0X9enrPNimN6ZN7Lr+7mQfrRyWrIZJMAP90Ntx5P1En8yLp0LViSOf9AvKICt7TA/J3Wnr7uPDjh6aO3r4sKOHvR09fLi/h70dvVQU5fFn584b0++Mlchk0QDMipqvBhqjG7h7I3AVgJkVA1e7e0u47m7g7nDdvwLvJjDWcXf88cdzxhlnHJj/8Y9/zEMPPURfXx+NjY1s2rTpsGRRWFjIJZdcAsDpp5/Or371q3GNeVwM9EPbTmjdAR17ok7iQ5ys+zoPP7EPt240v+wtC3InQW4h5BQGfwc/BaVQMh1yCsJlkw5dnzspal0hZKXRLU3ugAflFA//4kNMx7Q71m2G3J5h9jXcNhyczso+WO4Z6pNXAsOUh49VZ08/e/cfetJvbh88+Uf97eg90K5vYOjfw7nZxsdqKlI6WbwOzDezGoIew3XAZ6MbmFklsDd8heMdBFdGDQ6Ol7t7s5ktBhYTvGB+1EbbA0iUoqKiA9Pvvvsu3/nOd3jttdcoLy/nc5/73JD3SkQPiGdnZ9PXd4QBr4nIPUgArQ3QsgNaGg5Ot+4I/rZFRj6xZ+fFnLwnBTXb3EnBr7+cgqiT9+C66BP4ECf23MLD12Xnja60IRmlp2+Afft72DvECX5vR+zJP2jX1Tv0uIUZTJ6Ux+RJuUwpymNu5SROKypn8qQ8phTlHfxblMeUSXlMLsqlOD9nXC6ZT1iycPc+M7sFWENw6ewKd99oZncB69z9SeA84B4zc4Iy1JfCzXOBX4X/AVoJLqlNsTNj/FpbWykpKaG0tJRIJMKaNWtYtmxZssM6Ou7B4N3gSf+QhDD4t/HwMk12HpTOhLJqmHsOlM08OF9UCblFh570cwohO41+pcuEMjDgtHT2BqWemBN8cPLvPbB8cF1b9/CnppKCnAMn+WmlBXx0eilTinKZXJRHxRAn/9LCXLKzJuYPlIT+q3P31cDqmGV3Rk0/ATwxxHZdBFdEZYTTTjuN2tpaFi5cyLx58zj77LOTHdLhevZHnfSHSQg97YduY9lQMiNIAMedCgsug9LqqIQwK0gI+vUuCdTV209TWze727ppautid1s3u1u72dPefeiv/v297NvfwzDVHgpys6goymdyUS6TJ+Uxp2LSkL/0B9uUF+aRl5M+9z2nzTu4lyxZ4rEvP9q8eTMLFixIUkTJc9TH3d8b/Oo/pBcQkxA69x6+XdHUQ3sCpTPD+epgvniaegGSEO5Oa1dfcPJvHUwE3eyOSgZN7d3sbu2itevwX/5ZBlOK8oNf90W5B379Vwye+If41V+YN7aD1hOFmb3h7ktGaqd/yeluoB/adx9MAkMlhPZdHHahWkH5wQRQfcYQCWEm5OQn5ZAkffUPOM3tMSf/IZJBU1s33X2H1/3zc7KYWprP1JIC5k8t5qzjK5haEsxXleRTVZLP1NJ8KoryJ2y5Z6JSskgXPgDd7UEpaH8zrFgWDhg3Hn7nZ27RwRP+/AUxpaEwIeQXJ+c4JC119faHv/aP3BNobu8esgxUVpjL1PBkv2TOZKaWFhyYrwqTwdTSfErGabA3EylZpLKBfuhuDQaWu1rDq4gM+rqD8YI5H48pDYXJoKBc4wRyzNyd1s6+gyf8tq4gAYTJ4MB8WzdtQ5SCsrOMyuI8qkrymV5WwOLqsqgEUBD2EPKpLM6nIDc9S0CpRMki1fT3hsmhBbrbAA+u4S8sC5JAXgm0bIEbVyU7Uklx7s6e9h7eb+7gvaYOtu3p4IPmDna2dh3oCfQMUQoqyM0KfumX5HPi9BI+Mb8qqgdwsCQ0pShPpaAUomSRCvq6wwSxD3rCO06z84IriQrKIa9IPQUZtbauXt7fs59te9p5b0/HwU9TxyGXheZmG7OnTGJGWSFn1hQd6AVMLS2gqjj/QE9gvK77l/GlZDERuQd3HQ/2IPo6g+U5hVA8PXicQG6hEoTErbuvn98372dbVCJ4rzmYbmo7eO+LGcwsL6SmsoirTptJTWURcyuLmFdZzMzJheoJZDAliwQ6qkeUDz6vfjBB9PcEy/OKWPHzF7n08iuZPnXOeB+CpJD+AadxXyfb9nTwfpgUguTQzo4POw8ZOK4szqemchLnn1hFTWUxNZVFzKsqYvaUSRofkCEpWSTQiI8oHxgIxh269gUD1QN9gEF+SXCPQkEZZOey4l8/z2lnncf0aiWLTDc4jvBemAS2DfYS9nTwQfN+evoPjiEU5+dQU1nEqbMmc9Wp1cyrKjrQUygtmLhPN5WJSclivA30QVcrjzz8EA/84BF6eno564xTuP9b9zCQV8KNf/5l1m/YgLtz0003MW3aNNavX8+1115LYWFh3C9NktTW2tV7sHfQdHAc4f09h44j5GVnMadiEjWVRVywYCrzKouYW1FETVURVcX5GjuQMZM5yeLp22Fn/djuc/oiuOTekdv19QQD0x1dsPMt3nr7XX721NP8+rmnyCmu4Ka/+CseW/MKxx9/PHuam6mvD+Lct28f5eXlfO973+P+++/nlFNOGdv4Jam6evv5/d79bGvqOHDF0WDpaE/7oeMI1ZMLqaks5rTZ5dRUFlFTVcy8yiKOK9c4goyPzEkW48k9vIJpXzD+0Ls/KDPllkLxVH7x22d5vX4LSy66EoDOzk5mzZ7Npz71KbZs2cKtt97KpZdeysUXX5zkA5Fj5e40tnSxdXc77zW1R40jdLBjXyceM44wr7KICz86lZqwZDSvsohZGkeQCSBzkkU8PYBj4R4kha590Nly8OmquZOCh+lNqoKScig9Ds/O5fOf/zzf+MY3DttNXV0dTz/9NN/97nf56U9/yoMPPpjYuGVM7Wrtoq6hhfqGfdTtaKG+oYXmjp4D60vyc6ipKuL0OZO55vTqoJegcQRJAZmTLBJh8BEbg1cwDfQCBnnFUFwVDlCH4wtRD9S76KKLuOaaa7j11luprKykubmZjo4OCgsLKSgo4A//8A+pqanh5ptvBqCkpIS2trYkHKAcSVNbN2/taAmSw4591DW0sDu8DDU7y5g/tZgLF0xl0cwyTpxeSk1lEZXFeRpHkJSkZHG0Bh+x0dkS/PX+4I1q+aVBcigoHfGtaIsWLeJrX/saF110EQMDA+Tm5vL973+f7OxsvvCFL+DumBnf/OY3Abjxxhv54he/qAHuJPqwo4f6HS3U72ihrmEf9Q0tNLYEL6gygxOqijlnfiWLZ5axqLqc2hmlafuUUslMekR5PIZ7xEZBWfBJ4OsXRyNTH80+Vlo6e9m4o+VAGaluxz627+08sL6msohFM8tYXF3G4upyao8rpThfv7skNekR5ccqeoBaj9hIW+3dfWw80GMI/r63p+PA+llTClk8s5w//tgcFs8s46SZZZQVamxBMo+SxaBDHrGxD/rCd2DnFEJJ+IiNHD1iI5V19vSzKRImhYag5/C7pvYDVyQdV1bAouoyrjm9mkUzy1g0s4zJRSr5iUCCk4WZLQO+Q/AO7h+4+70x6+cAK4AqYC/Bu7YbwnX/ACwHsoDngFt9FDWzwfr/sPp7g5f/HPKIjeLg0d4FZSn3gp90KSseq67eft7e2RZclRT2GN7Z1XbgkRdVJfmcXF3Gpxcfx+LqMhbOLKOqJLX+X4uMp4QlCzPLBh4APgk0AK+b2ZPuvimq2X3Ao+7+iJldANwD/ImZnQWcDSwO270MLAVeOJoYCgoKaG5upqKiYviEYVmwf29QViqeHgxQZ6dmmcHdaW5upqCgINmhjKuevgHe2dV2yFVJW3a20RdmhoqiPBZVl3Fx7TQWVZezuLqMaaWZ9d9I5FglsmdxJrDV3bcBmNljwBVAdLKoBb4cTj8P/DycdqAAyAMMyAV2HW0A1dXVNDQ00NTUdOSGngPWA+wOP6mroKCA6urqZIeRMH39A7y7u/3AwHN9QwubI20HnolUVpjL4uoybjp3HourgyuTjisr0OWqIscokcliJrA9ar4B+FhMmw3A1QSlqiuBEjOrcPffmNnzQIQgWdzv7ptjv8DMbgJuApg9e/ZhAeTm5lJTUzMGhyLJ0D/gbGtqP1BGqmvYx6ZIK129QWIoyc9h4cwybjx7Louqy1g8s5xZUwqVGEQSIJHJYqh/sbEF9duA+83sBuAlYAfQZ2YnAAuAwZ/Iz5nZue7+0iE7c38QeBCCS2fHMHZJkpbOXp7btIvV9RFe2dbM/p5+ACblZbPwuLLgqqTqYPB5bkURWXouksi4SGSyaABmRc1XA43RDdy9EbgKwMyKgavdvSXsMbzi7u3huqeBPyBIKJJmohPEr95torffmVleyDWnV3NyOMYwr6pYD8wTSaJEJovXgflmVkPQY7gO+Gx0AzOrBPa6+wBwB8GVUQC/B/7MzO4h6KEsBb6dwFhlnA2XIG44ay6XLprBKbPKVU4SmUASlizcvc/MbgHWEFw6u8LdN5rZXcA6d38SOA+4x8ycoNfwpXDzJ4ALgHqC0tUz7v5UomKV8aEEIZK60vpxH5J8wyWISxdNZ/ni4zi5ukwJQiSJ9LgPSZoj9SCUIERSk5KFjInBBLGqrpGXt+5RghBJM0oWMmpKECKZQ8lCjspwCeLGs2u4dNEMJQiRNKVkISNSghARJQsZUsv+Xp7dtJPV9RElCBFRspCDlCBEZDhKFhlOCUJE4qFkkYGUIETkaClZZAglCBE5FkoWaexICWL5ohksVoIQkTgpWaQZJQgRSQQlizSy7v29fPYHr9LTN6AEISJjSskijfzwlQ8ozM3mJ//540oQIjKmspIdgIyNrt5+frFpF8tOms7Jei+EiIwxJYs08cKW3XT09HPZyTOSHYqIpCElizSxsi7ClKI8Pj6vItmhiEgaUrJIA509/azdvJtlC6eTk63/pSIy9nRmSQO/fHs3nb39XLZIJSgRSYyEJgszW2ZmW8xsq5ndPsT6OWa21szqzOwFM6sOl59vZuujPl1m9plExprKVtU3Ulmcx8dUghKRBElYsjCzbOAB4BKgFrjezGpjmt0HPOrui4G7gHsA3P15dz/F3U8BLgD2A88mKtZU1tHdxy/f3s0lC2eQnaUroEQkMRLZszgT2Oru29y9B3gMuCKmTS2wNpx+foj1ANcAT7v7/oRFmsLWvr2brt4BLlusEpSIJE4ik8VMYHvUfEO4LNoG4Opw+kqgxMxiaynXAT8e6gvM7CYzW2dm65qamsYg5NSzckMjU0vyWTJ3SrJDEZE0lshkMVRNxGPmbwOWmtmbwFJgB9B3YAdmM4BFwJqhvsDdH3T3Je6+pKqqamyiTiFtXb288E4Tly5SCUpEEiuRj/toAGZFzVcDjdEN3L0RuArAzIqBq929JarJHwE/c/feBMaZsn6xeRc9fSpBiUjiJbJn8Tow38xqzCyPoJz0ZHQDM6s0s8EY7gBWxOzjeoYpQQmsqoswo6yA02ZPTnYoIpLmEpYs3L0PuIWghLQZeNzdN5rZXWZ2edjsPGCLmb0DTAPuHtzezOYS9ExeTFSMqayls5cXwxJUlkpQIpJgCX3qrLuvBlbHLLszavoJ4Ilhtn2fwwfEJfTcpl309rtKUCIyLnQHd4paWdfIzPJCTplVnuxQRCQDKFmkoH37e3j53T1ctniGHkUuIuNCySIFrdm4k74BZ7lKUCIyTpQsUtDKugizp0xi0cyyZIciIhlCySLFNLd38+vfNbNcJSgRGUdKFilmzcZd9A/oKigRGV9KFilmZV0jNZVF1M4oTXYoIpJBlCxSSFNbN69sa9ZVUCIy7pQsUsgzb0UYcHQVlIiMOyWLFLKyLsIJU4s5cVpJskMRkQyjZJEidrV28dr7e1m+SCUoERl/ShYp4un6CO7oKigRSQolixSxsi7CidNKmK8SlIgkgZJFCoi0dLLugw/VqxCRpFGySAGr6iKAroISkeRRskgBq+oj1M4oZV5VcbJDEZEMNWKyMLNbzEzv7UyShg/38+bv96lXISJJFU/PYjrwupk9bmbLTNdtjqvV9UEJSuMVIpJMIyYLd/8qMB94CLgBeNfM/t7Mjh9p2zC5bDGzrWZ2+xDr55jZWjOrM7MXzKw6at1sM3vWzDab2abwndwZZ2VdhEUzy5hTUZTsUEQkg8U1ZuHuDuwMP33AZOAJM/uH4bYxs2zgAeASoBa43sxqY5rdBzzq7ouBu4B7otY9Cvwvd18AnAnsjuuI0sjvm/dT19CiXoWIJF08YxZ/aWZvAP8A/AewyN3/HDgduPoIm54JbHX3be7eAzwGXBHTphZYG04/P7g+TCo57v4cgLu3u/v++A8rPaysbwTg0kVKFiKSXPH0LCqBq9z9U+7+E3fvBXD3AeCyI2w3E9geNd8QLou2gYMJ50qgxMwqgI8A+8zs38zsTTP7X2FP5RBmdpOZrTOzdU1NTXEcSmpZVRfhlFnlzJoyKdmhiEiGiydZrAb2Ds6YWYmZfQzA3TcfYbuhBsI9Zv42YKmZvQksBXYQlLlygE+E688A5hGMlxy6M/cH3X2Juy+pqqqK41BSx3t7OtjY2KoSlIhMCPEki38C2qPmO8JlI2kAZkXNVwON0Q3cvdHdr3L3U4G/CZe1hNu+GZaw+oCfA6fF8Z1pY1WdSlAiMnHEkywsHOAGDpSfcuLY7nVgvpnVmFkecB3w5CE7Nqs0s8EY7gBWRG072cwGuwsXAJvi+M60sbIuwulzJnNceWGyQxERiStZbAsHuXPDz63AtpE2CnsEtwBrgM3A4+6+0czuMrPLw2bnAVvM7B1gGnB3uG0/QQlqrZnVE5S0/vkojy1lbd3dxts721SCEpEJI54ews3Ad4GvEow5rAVuimfn7r6aYMwjetmdUdNPAE8Ms+1zwOJ4vifdrKyLYKYSlIhMHCMmC3ffTVBCknGyqi7CGXOnMK20INmhiIgAcSQLMysAvgCcBBw4e7n75xMYV8basrONd3e3c9cVJyU7FBGRA+IZs/ghwfOhPgW8SHBVU1sig8pkq+oayTJYtnB6skMRETkgnmRxgrv/T6DD3R8BlgOLEhtWZnJ3VtZF+FhNBVNLVIISkYkjnmTRG/7dZ2YLgTJgbsIiymCbI21s29PBZSdrYFtEJpZ4roZ6MHyfxVcJ7pMoBv5nQqPKUCvrGsnOMpadpBKUiEwsR0wW4Q1zre7+IfASwWM3JAHcnVX1Ec46voKK4vxkhyMicogjlqHCu7VvGadYMtpbO1r5oHk/y3VvhYhMQPGMWTxnZreZ2SwzmzL4SXhkGWZlfSM5WcanVIISkQkonjGLwfspvhS1zFFJasy4O6vqIpx9QiWTi/KSHY6IyGHiuYO7ZjwCyWQbGlpo+LCTWy+cn+xQRESGFM8d3H861HJ3f3Tsw8lMKzc0kpttXFyrEpSITEzxlKHOiJouAC4Efkvwjmw5RgMDzur6COfOr6JsUm6ywxERGVI8Zai/iJ43szKCR4DIGHhz+4c0tnTx18tOTHYoIiLDiudqqFj7ARXXx8jKugh5OVlctGBaskMRERlWPGMWT3Hw3dlZQC3weCKDyhSDJajzPlJFSYFKUCIyccUzZnFf1HQf8IG7NyQonoyy7oMP2dXazXK9EU9EJrh4ksXvgYi7dwGYWaGZzXX39xMaWQZYWddIvkpQIpIC4hmz+AkwEDXfHy6TY9A/4Kyu38kFH51KUX48OVtEJHniSRY57t4zOBNOx3WbsZktM7MtZrbVzG4fYv0cM1trZnVm9oKZVUet6zez9eHnyXi+L5W8+l4ze9q7uWzxcckORURkRPEkiyYzu3xwxsyuAPaMtJGZZQMPAJcQDIpfb2a1Mc3uAx5198XAXcA9Ues63f2U8HM5aWZVXYTC3GzO/2hVskMRERlRPPWPm4Efmdn94XwDMORd3THOBLa6+zYAM3sMuALYFNWmFvhyOP088PN4gk51ff0DPPPWTi5cMJVJeSpBicjEN2LPwt1/5+5/QHBiP8ndz3L3rXHseyawPWq+IVwWbQNwdTh9JVBiZhXhfIGZrTOzV8zsM0N9gZndFLZZ19TUFEdIE8Mr2/bS3NHDZboKSkRSxIjJwsz+3szK3b3d3dvMbLKZ/V0c+7YhlnnM/G3AUjN7E1gK7CC4PBdgtrsvAT4LfNvMjj9sZ+4PuvsSd19SVZU65ZyVdY0U5WVz3olTkx2KiEhc4hmzuMTd9w3OhG/NuzSO7RqAWVHz1UAQJ27xAAAQjklEQVRjdAN3b3T3q9z9VOBvwmUtg+vCv9uAF4BT4/jOCa+3f4BnNu7kotppFORmJzscEZG4xJMsss3swHs+zawQiOe9n68D882sxszygOsI3uF9gJlVhq9uBbgDWBEunzz4nWZWCZzNoWMdKes/tu5h3/5eXQUlIiklntHVfwHWmtnD4fyNwCMjbeTufWZ2C7AGyAZWuPtGM7sLWOfuTwLnAfeYmRO843vwBUsLgP9jZgMECe1ed0+LZLGqLkJJfg7nfqQy2aGIiMQtnqfO/oOZ1QEXEYxDPAPMiWfn7r4aWB2z7M6o6SeAJ4bY7tfAoni+I5X09A2wZuNOPnnSNPJzVIISkdQR71NndxLcxX01wfssNicsojT28tYmWrv6dBWUiKScYXsWZvYRgnGG64Fm4P8B5u7nj1NsaWflhgilBTmcc0LqXLklIgJHLkO9DfwK+PTgfRVm9uUjtJcj6Ort57lNu1i2cDp5OaN5jYiISPIc6ax1NUH56Xkz+2czu5Ch752QOLz0ThNt3X1cdrKughKR1DNssnD3n7n7tcBHCe5z+DIwzcz+ycwuHqf40saq+giTJ+Vy1vEVIzcWEZlg4nncR4e7/8jdLyO4sW49cNgTZGV4Xb39/CIsQeVmqwQlIqnnqM5c7r7X3f+Pu1+QqIDS0QtbdtPR08/yRSpBiUhq0s/ccfBUXYSKojz+YN6UZIciIjIqShYJtr+nj19u3s2yhdPJUQlKRFKUzl4J9su3d9PZ269nQYlISlOySLBVdRGqSvI5s0YlKBFJXUoWCdTR3ccv397NpQunk52lW1REJHUpWSTQLzbvortvgOUqQYlIilOySKBVdRGmleazZM7kZIciInJMlCwSpK2rlxfeaeLSRTPIUglKRFKckkWC/GLzLnr6BnQVlIikBSWLBFm5IcJxZQWcOqs82aGIiBwzJYsEaOns5aV3m1i+WCUoEUkPCU0WZrbMzLaY2VYzO+zhg2Y2x8zWmlmdmb1gZtUx60vNbIeZ3Z/IOMfasxt30tvvugpKRNJGwpKFmWUDDwCXALXA9WZWG9PsPuBRd18M3AXcE7P+G8CLiYoxUVbVR6ieXMjJ1WXJDkVEZEwksmdxJrDV3be5ew/wGHBFTJtaYG04/Xz0ejM7HZgGPJvAGMfchx09vPzuHpYvnoGZSlAikh4SmSxmAtuj5hvCZdE2ELyRD+BKoMTMKswsC/gW8NdH+gIzu8nM1pnZuqampjEK+9g8u2knfQPOp1WCEpE0kshkMdTPao+Zvw1YamZvAkuBHUAf8F+A1e6+nSNw9wfdfYm7L6mqqhqLmI/ZyroIcyomcdJxpckORURkzOQkcN8NwKyo+WqgMbqBuzcCVwGYWTFwtbu3mNnHgU+Y2X8BioE8M2t39wn9hr7m9m5+/btmbl46TyUoEUkriUwWrwPzzayGoMdwHfDZ6AZmVgnsdfcB4A5gBYC7/3FUmxuAJRM9UQA8s3En/QOuN+KJSNpJWBnK3fuAW4A1wGbgcXffaGZ3mdnlYbPzgC1m9g7BYPbdiYpnPKyqizCvqogFM0qSHYqIyJhKZM8Cd18NrI5ZdmfU9BPAEyPs4/8C/zcB4Y2pprZuXtnWzC3nn6ASlIikHd3BPUaeeSvCgMNlJ6sEJSLpR8lijDxVF2H+1GI+Mk0lKBFJP0oWY2BXaxevv79XT5gVkbSlZDEGVtdHcIfli2ckOxQRkYRQshgDq+oifHR6CSdMLU52KCIiCaFkcYwa93Wy7oMPuUy9ChFJY0oWx2h1fQRAjyMXkbSmZHGMVtZFOOm4Umoqi5IdiohIwihZHIPte/ezfvs+XQUlImlPyeIYHChBLdJ4hYikNyWLY7CqPsLJ1WXMrpiU7FBERBJKyWKUPmjuoK6hRfdWiEhGULIYpVVhCepSlaBEJAMoWYzSyg0RTp1dTvVklaBEJP0pWYzCtqZ2NkVadRWUiGQMJYtRWFU3WIKanuRIRETGh5LFKKyqj3DG3MnMKCtMdigiIuNCyeIobd3dxts723RvhYhkFCWLo7SyLoKZroISkcyS0GRhZsvMbIuZbTWz24dYP8fM1ppZnZm9YGbVUcvfMLP1ZrbRzG5OZJzxcndW1kU4c+4UppYWJDscEZFxk7BkYWbZwAPAJUAtcL2Z1cY0uw941N0XA3cB94TLI8BZ7n4K8DHgdjNL+qVH7+xqZ+vudr1nW0QyTiJ7FmcCW919m7v3AI8BV8S0qQXWhtPPD6539x537w6X5yc4zritrGsky2DZSboKSkQySyJPwjOB7VHzDeGyaBuAq8PpK4ESM6sAMLNZZlYX7uOb7t4Y+wVmdpOZrTOzdU1NTWN+ANHcnVV1ET5+fAVVJfkJ/S4RkYkmkcnChljmMfO3AUvN7E1gKbAD6ANw9+1heeoE4D+Z2bTDdub+oLsvcfclVVVVYxt9jE2RVrbt6WD5IpWgRCTzJDJZNACzouargUN6B+7e6O5XufupwN+Ey1pi2wAbgU8kMNYRraqLkJ1lLFuoEpSIZJ5EJovXgflmVmNmecB1wJPRDcys0swGY7gDWBEurzazwnB6MnA2sCWBsR7R4FVQZx1fwZSivGSFISKSNAlLFu7eB9wCrAE2A4+7+0Yzu8vMLg+bnQdsMbN3gGnA3eHyBcCrZrYBeBG4z93rExXrSN7a0crv9+7n03oWlIhkqJxE7tzdVwOrY5bdGTX9BPDEENs9ByxOZGxHY2VdIzlZxsUnHTZsIiKSESbEJakT2WAJ6hPzKymfpBKUiGQmJYsRrN++jx37OlmuEpSIZDAlixGsqouQl53FJ2tVghKRzKVkcQQDA86q+gjnfqSSssLcZIcjIpI0ShZH8Ob2D4m0dOmNeCKS8ZQsjuCpDRHycrK4cMHUZIciIpJUShbDGBhwVtdHOP/EKkoKVIISkcymZDGM19/fy+62bl0FJSKCksWwVtVHKMjN4sKPqgQlIqJkMYT+AWd1/U4u+OhUivITepO7iEhKULIYwqvvNbOnvVtXQYmIhJQshrCyLsKkvGzOP1ElKBERULI4TF//AM+8tZMLF0yjMC872eGIiEwIShYxfrOtmb0dPSxfNCPZoYiITBhKFjFW1UUoysvmvBMT+5pWEZFUomQRpbd/gGc27uSTtdMoyFUJSkRkkJJFlP/Yuod9+3t1FZSISAwliygr6yKUFOTwiY9UJjsUEZEJJaHJwsyWmdkWM9tqZrcPsX6Oma01szoze8HMqsPlp5jZb8xsY7ju2kTGCdDTN8CajTu5uHY6+TkqQYmIREtYsjCzbOAB4BKgFrjezGpjmt0HPOrui4G7gHvC5fuBP3X3k4BlwLfNrDxRsQL86t0m2rr6uGyxroISEYmVyJ7FmcBWd9/m7j3AY8AVMW1qgbXh9POD6939HXd/N5xuBHYDCb08aVVdhLLCXM4+QSUoEZFYiUwWM4HtUfMN4bJoG4Crw+krgRIzq4huYGZnAnnA72K/wMxuMrN1Zrauqalp1IF29fbz7KZdfOqkaeTlaBhHRCRWIs+MNsQyj5m/DVhqZm8CS4EdQN+BHZjNAH4I3OjuA4ftzP1Bd1/i7kuqqkbf8XjpnSbau/t0FZSIyDAS+UjVBmBW1Hw10BjdICwxXQVgZsXA1e7eEs6XAquAr7r7KwmMk5V1ESZPyuXjx1eM3FhEJAMlsmfxOjDfzGrMLA+4DngyuoGZVZrZYAx3ACvC5XnAzwgGv3+SwBjp6u3nF5t3sWzhDHKzVYISERlKws6O7t4H3AKsATYDj7v7RjO7y8wuD5udB2wxs3eAacDd4fI/As4FbjCz9eHnlETE2drZy4ULpnHFKSpBiYgMx9xjhxFS05IlS3zdunXJDkNEJKWY2RvuvmSkdqq7iIjIiJQsRERkREoWIiIyIiULEREZkZKFiIiMSMlCRERGpGQhIiIjUrIQEZERpc1NeWbWBHxwDLuoBPaMUTjJlC7HATqWiSpdjiVdjgOO7VjmuPuIT2JNm2RxrMxsXTx3MU506XIcoGOZqNLlWNLlOGB8jkVlKBERGZGShYiIjEjJ4qAHkx3AGEmX4wAdy0SVLseSLscB43AsGrMQEZERqWchIiIjUrIQEZERZXyyMLNlZrbFzLaa2e3Jjme0zGyFme02s7eSHcuxMrNZZva8mW02s41mdmuyYxoNMysws9fMbEN4HF9PdkzHysyyzexNM1uZ7FiOhZm9b2b14Vs4U/qtaWZWbmZPmNnb4b+ZjyfkezJ5zMLMsoF3gE8CDQTvDb/e3TclNbBRMLNzgXaC95YvTHY8x8LMZgAz3P23ZlYCvAF8JtX+v5iZAUXu3m5mucDLwK3u/kqSQxs1M/sKsAQodffLkh3PaJnZ+8ASd0/5m/LM7BHgV+7+AzPLAya5+76x/p5M71mcCWx1923u3gM8BlyR5JhGxd1fAvYmO46x4O4Rd/9tON1G8A73mcmN6uh5oD2czQ0/KfvrzMyqgeXAD5IdiwTMrBQ4F3gIwN17EpEoQMliJrA9ar6BFDwppTMzmwucCrya3EhGJyzbrAd2A8+5e0oeR+jbwH8DBpIdyBhw4Fkze8PMbkp2MMdgHtAEPByWB39gZkWJ+KJMTxY2xLKU/eWXbsysGPgp8F/dvTXZ8YyGu/e7+ylANXCmmaVkidDMLgN2u/sbyY5ljJzt7qcBlwBfCsu4qSgHOA34J3c/FegAEjL2munJogGYFTVfDTQmKRaJEtb4fwr8yN3/LdnxHKuwNPACsCzJoYzW2cDlYa3/MeACM/uX5IY0eu7eGP7dDfyMoCSdihqAhqge6xMEyWPMZXqyeB2Yb2Y14cDQdcCTSY4p44UDww8Bm939H5Mdz2iZWZWZlYfThcBFwNvJjWp03P0Od69297kE/05+6e6fS3JYo2JmReGFE4Qlm4uBlLyK0N13AtvN7MRw0YVAQi4EyUnETlOFu/eZ2S3AGiAbWOHuG5Mc1qiY2Y+B84BKM2sAvubuDyU3qlE7G/gToD6s9wP8D3dfncSYRmMG8Eh41V0W8Li7p/Qlp2liGvCz4DcJOcC/uvszyQ3pmPwF8KPwB+824MZEfElGXzorIiLxyfQylIiIxEHJQkRERqRkISIiI1KyEBGRESlZiIjIiJQsRI6CmfWHTyod/IzZ3bJmNjcdnhos6Smj77MQGYXO8PEdIhlFPQuRMRC+H+Gb4fsrXjOzE8Llc8xsrZnVhX9nh8unmdnPwnddbDCzs8JdZZvZP4fvv3g2vPNbJOmULESOTmFMGeraqHWt7n4mcD/BE1oJpx9198XAj4Dvhsu/C7zo7icTPMtn8MkB84EH3P0kYB9wdYKPRyQuuoNb5CiYWbu7Fw+x/H3gAnffFj4Ecae7V5jZHoIXOfWGyyPuXmlmTUC1u3dH7WMuwWPM54fz/x3Idfe/S/yRiRyZehYiY8eHmR6uzVC6o6b70biiTBBKFiJj59qov78Jp39N8JRWgD8meLUqwFrgz+HAC5JKxytIkdHQrxaRo1MY9SRcgGfcffDy2Xwze5XgR9j14bK/BFaY2V8TvNFs8ImgtwIPmtkXCHoQfw5EEh69yChpzEJkDIRjFkvcfU+yYxFJBJWhRERkROpZiIjIiNSzEBGRESlZiIjIiJQsRERkREoWIiIyIiULEREZ0f8HobFLpgDaJ/oAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -1097,7 +1111,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt4XPV95/H3d0ZX62pLsqyLbxhD8UXGRtAG0pA0hBjsQKBJgSxtSkh50t1ss5unu8tentKQdpe0u90kTZ5N2MRs0kt4aBKn1NxC0iQNIQQbbDC2sTHGxpJlW5KRJVl3zXf/OEfyWJat24xGM/N5Pc88c87vnDPzHbD00e/3O+eMuTsiIiIXE0l1ASIiMvcpLEREZEIKCxERmZDCQkREJqSwEBGRCSksRERkQgoLkRkws2Vm5maWM4l9f9/Mnpvp64ikgsJCsoaZHTazATOrHNO+K/xFvSw1lYnMfQoLyTZvAXeNrJjZWqAwdeWIpAeFhWSbvwF+L27948C343cwszIz+7aZtZrZETP7b2YWCbdFzex/mlmbmR0CNo1z7DfNrMXMms3sz8wsOtUizazWzB43s1NmdtDM/iBu2zVmtsPMOs3shJn9VdheYGZ/a2btZtZhZtvNrHqq7y0yHoWFZJsXgFIzuyL8JX4H8Ldj9vlroAy4BLieIFzuCbf9AbAZWA80Ah8Zc+y3gCHg0nCfG4FPTqPO7wBNQG34Hv/dzN4fbvsS8CV3LwVWAI+F7R8P614MVACfAnqn8d4i51FYSDYa6V18AHgdaB7ZEBcg/9ndu9z9MPC/gN8Nd/kd4IvuftTdTwH/I+7YauAm4N+5+xl3Pwn8b+DOqRRnZouBdwP/yd373H0X8I24GgaBS82s0t273f2FuPYK4FJ3H3b3l9y9cyrvLXIhCgvJRn8DfAz4fcYMQQGVQB5wJK7tCFAXLtcCR8dsG7EUyAVawmGgDuDrwMIp1lcLnHL3rgvUcC9wGfB6ONS0Oe5zPQM8ambHzOwvzCx3iu8tMi6FhWQddz9CMNF9M/D9MZvbCP5CXxrXtoSzvY8WgmGe+G0jjgL9QKW7l4ePUndfPcUSjwELzKxkvBrc/Q13v4sghL4AfNfMitx90N0/5+6rgGsJhst+D5EEUFhItroX+C13PxPf6O7DBHMAf25mJWa2FPgsZ+c1HgP+yMzqzWw+cH/csS3AD4H/ZWalZhYxsxVmdv1UCnP3o8DzwP8IJ60bwnr/DsDM7jazKnePAR3hYcNm9j4zWxsOpXUShN7wVN5b5EIUFpKV3P1Nd99xgc3/FjgDHAKeA/4e2BJu+78EQz2vAC9zfs/k9wiGsfYC7wDfBWqmUeJdwDKCXsZW4AF3fzbcthHYY2bdBJPdd7p7H7AofL9OYB/wM86fvBeZFtOXH4mIyETUsxARkQkpLEREZEIKCxERmZDCQkREJpQxt0OurKz0ZcuWpboMEZG08tJLL7W5e9VE+2VMWCxbtowdOy50JqSIiIzHzI5MvJeGoUREZBIUFiIiMiGFhYiITChj5izGMzg4SFNTE319fakuZdYUFBRQX19Pbq5uNioiiZPRYdHU1ERJSQnLli3DzFJdTtK5O+3t7TQ1NbF8+fJUlyMiGSSjh6H6+vqoqKjIiqAAMDMqKiqyqiclIrMjo8MCyJqgGJFtn1dEZkfGh8VEhoZjnOjso3dAt/0XEbmQrA8LgJNd/XT0DiT8ddvb27nyyiu58sorWbRoEXV1daPrAwOTe7977rmH/fv3J7w2EZGpyOgJ7snIiUYoyc/hdM8gi0oLEjqMU1FRwa5duwD40z/9U4qLi/njP/7jc/Zxd9ydSGT83H7kkUcSVo+IyHSpZwGUFeYyMByjZ5aGog4ePMiaNWv41Kc+xYYNG2hpaeG+++6jsbGR1atX8+CDD47u++53v5tdu3YxNDREeXk5999/P+vWreNd73oXJ0+enJV6RUSypmfxuX/aw95jnRfcfmZgiNxIhLycyefnqtpSHvjQ6mnVs3fvXh555BG+9rWvAfDQQw+xYMEChoaGeN/73sdHPvIRVq1adc4xp0+f5vrrr+ehhx7is5/9LFu2bOH+++8f7+VFRBJKPYtQ1Iyh2Ox9xeyKFSu4+uqrR9e/853vsGHDBjZs2MC+ffvYu3fveccUFhZy0003AXDVVVdx+PDh2SpXRLJc1vQsJuoBdPQM8PapHlZUFVOUn/z/LEVFRaPLb7zxBl/60pd48cUXKS8v5+677x73Wom8vLzR5Wg0ytDQUNLrFBEB9SxGlRTkEjHjdO/grL93Z2cnJSUllJaW0tLSwjPPPDPrNYiIXEzW9CwmEo0YJQU5dPQOUlOW2LOiJrJhwwZWrVrFmjVruOSSS7juuutm7b1FRCbD3GdvnD6ZGhsbfeyXH+3bt48rrrhi0q8xMhR1SVUxxbMwFJUsU/3cIpK9zOwld2+caD8NQ8UZHYrqSfwFeiIi6UxhEWdkKOp07xCZ0uMSEUkEhcUY5fNyGYrFONOvM41EREYoLMYoyQ+GojpScFaUiMhcpbAYIxIxSgtz6ewdJKahKBERQGExrrLCXIZirqEoEZGQwmIcJfk5RM043TOzoahE3KIcYMuWLRw/fnxGtYiIzET6XkyQRCNDUaf7Bql1JzLNC/Qmc4vyydiyZQsbNmxg0aJF06pDRGSmFBYXUFaYyzs9A3T3DVFamJvw1//Wt77FV7/6VQYGBrj22mv5yle+QiwW45577mHXrl24O/fddx/V1dXs2rWLO+64g8LCQl588cVz7hElIjIbsicsnrofju+e9O4lOCsGholGDHKi4++0aC3c9NCUS3nttdfYunUrzz//PDk5Odx33308+uijrFixgra2NnbvDurs6OigvLycv/7rv+YrX/kKV1555ZTfS0QkEbInLKbIMKIRYzjmOI6RuHtF/ehHP2L79u00NgZX2Pf29rJ48WI++MEPsn//fj7zmc9w8803c+ONNybsPUVEZiJ7wmIaPYDBvkHeajvDsoqihA5FuTuf+MQn+PznP3/etldffZWnnnqKL3/5y3zve9/j4YcfTtj7iohMl86Guoii/ByikcRfoHfDDTfw2GOP0dbWBgRnTb399tu0trbi7nz0ox/lc5/7HC+//DIAJSUldHV1JbQGEZGpSGrPwsw2Al8CosA33P2hMds/C3wSGAJagU+4+5Fw2zAwMsnwtrvfksxaxxMxo6wwl46eQWIxJxJJzFDU2rVreeCBB7jhhhuIxWLk5ubyta99jWg0yr333ou7Y2Z84QtfAOCee+7hk5/8pCa4RSRlknaLcjOLAgeADwBNwHbgLnffG7fP+4BfuXuPmf0h8F53vyPc1u3uxZN9v0Tconw8XeFQ1NKKIsqScFZUMugW5SIyWXPhFuXXAAfd/ZC7DwCPArfG7+DuP3H3nnD1BaA+ifVMS3F+DjmRiG5bLiJZLZlhUQccjVtvCtsu5F7gqbj1AjPbYWYvmNmHk1HgZJgZZYU5dPYNEYvpXlEikp2SOWcx3gD/uL9tzexuoBG4Pq55ibsfM7NLgH82s93u/uaY4+4D7gNYsmTJuEWMjP/PRFlhLu1nBujsG6R83tyeL9D3cIhIMiSzZ9EELI5brweOjd3JzG4A/itwi7v3j7S7+7Hw+RDwU2D92GPd/WF3b3T3xqqqqvMKKCgooL29fca/QItGhqLm+G3L3Z329nYKCgpSXYqIZJhk9iy2AyvNbDnQDNwJfCx+BzNbD3wd2OjuJ+Pa5wM97t5vZpXAdcBfTLWA+vp6mpqaaG1tncHHCJzuGaBlYJjusoJp3ytqNhQUFFBfP+emfkQkzSUtLNx9yMw+DTxDcOrsFnffY2YPAjvc/XHgL4Fi4B/CoaKRU2SvAL5uZjGC3s9D8WdRTVZubi7Lly9PyOd58a1T3Pv1X/Llu9Zzy7rahLymiEi6SOp1Fu7+JPDkmLY/iVu+4QLHPQ+sTWZtU9W4dD7Vpflse+WYwkJEso6u4J6kSMS4eW0NPz3QSlff3J67EBFJNIXFFGxuqGFgKMaP9p1IdSkiIrNKYTEF6xfPp7asgCdebUl1KSIis0phMQUjQ1E/O9A650+jFRFJJIXFFG1eV8vgsPPsXg1FiUj2UFhM0br6MurnF7Lt1fOuLxQRyVgKiykyMzY11PDcG2106OaCIpIlFBbT8KGGWoZizjN7jqe6FBGRWaGwmIbVtaUsrZjHNp0VJSJZQmExDWbG5oYann+znfbu/okPEBFJcwqLadq0tpbhmPO0hqJEJAsoLKbpipoSLqkq0gV6IpIVFBbTZGZsXlvDC4faae3SUJSIZDaFxQxsXldLzOHp19S7EJHMprCYgcuqS1i5sJh/0lCUiGQ4hcUMbW6oZfvhU5zo7Et1KSIiSaOwmKFNDTW4w5O71bsQkcylsJihSxcW82uLSnRWlIhkNIVFAmxuqGHHkXc41tGb6lJERJJCYZEAmxqC7+TWUJSIZCqFRQIsryxidW2p7hUlIhlLYZEgmxtq2XW0g6OnelJdiohIwiksEmTT2hpAQ1EikpkUFgmypGIe6+rLeEJhISIZSGGRQJsaani16TRH2s+kuhQRkYRSWCTQzeFQlHoXIpJpFBYJVD9/HuuXlLPtFYWFiGQWhUWCbW6oZW9LJ4dau1NdiohIwigsEuzmtYsAdPsPEckoCosEqykr5Opl8zVvISIZJalhYWYbzWy/mR00s/vH2f5ZM9trZq+a2Y/NbGncto+b2Rvh4+PJrDPRNq2t4fXjXRw82ZXqUkREEiJpYWFmUeCrwE3AKuAuM1s1ZredQKO7NwDfBf4iPHYB8ADw68A1wANmNj9ZtSbazWtrMEO3/xCRjJHMnsU1wEF3P+TuA8CjwK3xO7j7T9x95P4YLwD14fIHgWfd/ZS7vwM8C2xMYq0JtbC0gGuWLWDbqy24e6rLERGZsWSGRR1wNG69KWy7kHuBp6Z57JyzeV0tB092s/+EhqJEJP0lMyxsnLZx/8w2s7uBRuAvp3Ksmd1nZjvMbEdra+u0C02GjasXETGdFSUimSGZYdEELI5brweOjd3JzG4A/itwi7v3T+VYd3/Y3RvdvbGqqiphhSdCVUk+71pRoaEoEckIyQyL7cBKM1tuZnnAncDj8TuY2Xrg6wRBcTJu0zPAjWY2P5zYvjFsSyub1tbyVtsZ9rZ0proUEZEZSVpYuPsQ8GmCX/L7gMfcfY+ZPWhmt4S7/SVQDPyDme0ys8fDY08BnycInO3Ag2FbWtm4ZhHRiOmsKBFJe5YpQySNjY2+Y8eOVJdxnt/95q840t7Dz/7DezEbbypGRCR1zOwld2+caD9dwZ1kH2qo5e1TPexuPp3qUkREpk1hkWQ3rq4mJ2I6K0pE0prCIsnK5+XxmysrdVaUiKQ1hcUs2NRQS3NHL7uOdqS6FBGRaVFYzIIPrKomLxrRWVEikrYUFrOgrDCX91xWyZO7W4jFNBQlIulHYTFLNjfU0nK6j5fffifVpYiITJnCYpa8/4qF5OVoKEpE0pPCYpaUFOTyvsureHJ3C8MaihKRNKOwmEWbG2o52dXPjsNpd+cSEclyCotZ9Fu/tpCCXA1FiUj6UVjMoqL8HN7/a9U89ZqGokQkvSgsZtmmhhraugf41aH2VJciIjJpCotZ9r7LFzIvL8q23RqKEpH0obCYZYV5Ud5/RTVPv3acoeFYqssREZkUhUUKbG6o4dSZAX6poSgRSRMKixS4/rIqivNz2PaKhqJEJD0oLFKgIDfKB1ZV8/Se4wxqKEpE0oDCIkU2ra3hdO8gzx1sS3UpIiITUlikyG9eVklJgYaiRCQ9KCxSJD8nyo2rFvHDvcfpHxpOdTkiIhc1qbAwsxVmlh8uv9fM/sjMypNbWubbvK6Grr4hfn5AQ1EiMrdNtmfxPWDYzC4FvgksB/4+aVVlietWVFJWmMsTukBPROa4yYZFzN2HgNuAL7r7vwdqkldWdsjLibBx9SKe3XuCvkENRYnI3DXZsBg0s7uAjwPbwrbc5JSUXTY11NDdP8TPDrSmuhQRkQuabFjcA7wL+HN3f8vMlgN/m7yysse1KyqYPy9Xty0XkTktZzI7ufte4I8AzGw+UOLuDyWzsGyRE42wcU0N/7irmd6BYQrzoqkuSUTkPJM9G+qnZlZqZguAV4BHzOyvklta9vhQQw09A8P8ZP/JVJciIjKuyQ5Dlbl7J3A78Ii7XwXckLyysss1yxdQWZzHExqKEpE5arJhkWNmNcDvcHaCWxIkJxrhpjU1/Pj1E5zpH0p1OSIi55lsWDwIPAO86e7bzewS4I2JDjKzjWa238wOmtn942x/j5m9bGZDZvaRMduGzWxX+Hh8knWmrU0NNfQNxvjn1zUUJSJzz2QnuP8B+Ie49UPAb1/sGDOLAl8FPgA0AdvN7PFwsnzE28DvA388zkv0uvuVk6kvE1y9bAELS/LZ9uoxPrSuNtXliIicY7IT3PVmttXMTprZCTP7npnVT3DYNcBBdz/k7gPAo8Ct8Tu4+2F3fxXI+vt0RyPGzWtr+Mn+Vro1FCUic8xkh6EeAR4HaoE64J/CtoupA47GrTeFbZNVYGY7zOwFM/vwFI5LW5sbahgYivGjvSdSXYqIyDkmGxZV7v6Iuw+Fj/8HVE1wjI3T5lOobYm7NwIfA75oZivOewOz+8JA2dHamv5XQG9YMp9FpQW6QE9E5pzJhkWbmd1tZtHwcTcw0RdINwGL49brgWOTLczdj4XPh4CfAuvH2edhd29098aqqomya+6LRIxNDTX8y4FWTvcOprocEZFRkw2LTxCcNnscaAE+QnALkIvZDqw0s+VmlgfcSTCUNSEzmx93S/RK4Dpg78WPygybGmoYGNZQlIjMLZMKC3d/291vcfcqd1/o7h8muEDvYscMAZ8mOOV2H/CYu+8xswfN7BYAM7vazJqAjwJfN7M94eFXADvM7BXgJ8BDY86iyljrF5dTV17Itlcn3QkTEUm6SZ06ewGfBb54sR3c/UngyTFtfxK3vJ1geGrscc8Da2dQW9oyC4aitjz3Fqd7Bimbp5v7ikjqzeRrVcebwJYE2NxQw1DMeWbP8VSXIiICzCwspnJmk0zB2royliyYxzZ9g56IzBEXDQsz6zKzznEeXQTXXEgSjAxF/eJgG6fODKS6HBGRi4eFu5e4e+k4jxJ3n8l8h0xg09oahmPO069pKEpEUm8mw1CSRKtrS1leWcQTu3VWlIiknsJijjIzNq2t4ZdvttPa1Z/qckQkyyks5rDN62qIOTyts6JEJMUUFnPY5dUlrKgqYtsrGooSkdRSWMxhZsbmhlpePHyKk519qS5HRLKYwmKO29xQgzs8qWsuRCSFFBZz3MrqEi6vLuEJhYWIpJDCIg1saqhh++F3aDndm+pSRCRLKSzSwKaGGgCe3K2zokQkNRQWaWBFVTFX1JTqtuUikjIKizSxuaGGnW930PROT6pLEZEspLBIE5tHh6I00S0is09hkSaWVhSxtq6MJ15VWIjI7FNYpJHNDTW80nSat9s1FCUis0thkUZuXhsMRemaCxGZbQqLNLJ4wTyuXFyus6JEZNYpLNLM5oYa9hzr5K22M6kuRUSyiMIizYwORal3ISKzSGGRZmrLC7lq6Xy26awoEZlFCos0tLmhhtePd3HwZHeqSxGRLKGwSEM3r63BDF1zISKzRmGRhqpLC7h62QKdFSUis0ZhkaY2N9TwxsluDpzoSnUpIpIFFBZpauOaRUQMfT+3iMwKhUWaWlhSwK8vr2Dbqy24e6rLEZEMp7BIY5vX1XCo7Qz7WjQUJSLJldSwMLONZrbfzA6a2f3jbH+Pmb1sZkNm9pEx2z5uZm+Ej48ns850tXH1IqIR00S3iCRd0sLCzKLAV4GbgFXAXWa2asxubwO/D/z9mGMXAA8Avw5cAzxgZvOTVWu6qijO59oVFTyxW0NRIpJcyexZXAMcdPdD7j4APArcGr+Dux9291eB2JhjPwg86+6n3P0d4FlgYxJrTVub1tZwpL2H15o7U12KiGSwZIZFHXA0br0pbEv2sVnlg6sXkRMxtu3WUJSIJE8yw8LGaZvsWMmkjjWz+8xsh5ntaG1tnVJxmWJ+UR7XXVrJEzorSkSSKJlh0QQsjluvByb75++kjnX3h9290d0bq6qqpl1outvcUEPTO7280nQ61aWISIZKZlhsB1aa2XIzywPuBB6f5LHPADea2fxwYvvGsE3GceOqReRGTRfoiUjSJC0s3H0I+DTBL/l9wGPuvsfMHjSzWwDM7GozawI+CnzdzPaEx54CPk8QONuBB8M2GUfZvFzes7KKJ3e3EItpKEpEEi8nmS/u7k8CT45p+5O45e0EQ0zjHbsF2JLM+jLJpoYafvz6SXYefYerli5IdTkikmF0BXeG+MCqavJyIvpSJBFJCoVFhigpyOX6y4KhqFNnBlJdjohkGIVFBrnz6sWc6Oznmj//EZ/81g6e3N1C3+BwqssSkQyQ1DkLmV3vv6Kapz7zm2zd2cwPdjbzo30nKC3IYVNDDbetr6dx6XwikfEuYRERuTjLlAu5GhsbfceOHakuY84YjjnPv9nG1pebeXrPcXoGhqmfX8ht6+u4bX0dl1QVp7pEEZkDzOwld2+ccD+FReY70z/ED/ce5/svN/OLg23EHNYtLuf29XVsbqihojg/1SWKSIooLGRcJzr7eHzXMb6/s5l9LZ3kRIzrL6vitg113HBFNQW50VSXKCKzSGEhE3r9eCdbX27mB7uaOdHZT0l+DjevreG2DXVcs2yB5jdEsoDCQiZtOOb88s12tu5s5unXWjgzMExdeSEfXl/LbevruXSh5jdEMpXCQqalZ2CIZ/ee4PsvN/PzN1qJOTTUl3Hb+jo+tK6WSs1viGQUhYXM2MmuYH5j685m9hzrJBrOb3x4fR03rtL8hkgmUFhIQh040cX3X27mH3c103K6j+L8HG5as4jbNtTxG8srNL8hkqYUFpIUsZjzwqF2vr+zmad2B/MbtWUF3Lq+jtvX17GyuiTVJYrIFCgsJOl6B4b54d7jbN3ZzM/faGM45qypK+W29fXcsq6WqhLNb4jMdQoLmVWtXf380yvB/Mbu5tNEI8a7L63k9g113LhqEYV5mt8QmYsUFpIyb5zoGr0/1bHTfRTlRdm4pobbN9TxG5dUENX8hsicobCQlIvFnF+9dYqtO5t4avdxuvqHWFRawK3ra7l9fT2XL9L8hkiqKSxkTukbHObZvSfYurOZnx1oZTjmrKop5fYNddyyrpaFpQWpLlEkKyksZM5q6z47v/Fq02kiBu9eWcXt6+u4cXU18/J053yR2aKwkLRw8GQ3W3c28YOdx2ju6GVeXpSNaxZx2/o6rl1RqfkNkSRTWEhaicWc7YdPsXVnM0/sbqGrb4iS/BwuW1TCZdXFrFxYwuWLSlhZXUxVcT5mChGRRFBYSNrqGxzmx/tO8stDbRw40c2BE1109AyObp8/L5eV1SVcXh0GSbg8vygvhVWLpKfJhoUGh2XOKciNsqmhhk0NNQC4O63d/bxxopv9x7t442QXB05084OdzXT1D40eV1mcz+WLgl7IZdUlwXJ1CaUFuan6KCIZQ2EBMNgLuYWprkIuwMxYWFLAwpICrru0crTd3Tne2RcESNgDOXCii8d2HKVnYHh0v5qyAlZWl3DZwuJwWKuElQuLKcrXP3+RydJPS18n/OWlUL0all0HS6+DJe+CwvJUVyYTMDNqygqpKSvkvZcvHG2PxZzmjt4wPM6GyN8caqd/KDa6X/38Qi6rLgkfxVxWXcKlC4t1N12RcWjOoucUvPB/4MgvoGkHDPcDBovWwNJ3w9JrgwApqkh4zTK7hmPO26d6gvA43sWBk90cON7FobZuBoeDn4OIwZIF886GSDjBfkllMXk5kRR/ApHE0wT3dAz2QfMOOPI8HH4Ojr4IQ73BtqorguBYdl0QIiXVMy9a5oTB4RhH2s+w//jZXsiBE10cbu9hOBb8fEQjxvLKotEeyEhvZFlFETlRhYikL4VFIgwNQMuuIDiO/ALefgEGuoNtFZeGvY53BwFSVp/Y95aU6x8a5lDrmbgA6eaNE10cOdXDyI9NXjTCJVVFo+ExcmbW4gXzdI2IpAWFRTIMD8HxV4PgOPwLePt56DsdbCtfcjY4ll4H85eBrgXISL0Dw7zZGpyZdeBk1+hZWs0dvaP75OdEWFldzGULS1hZXcLyynnUlc+jbn4h8+fl6joRmTMUFrMhFoOTe4LgOPJcMHzV0x5sK6k9GxxLr4PKlQqPDNfdP8TBcB7kwIku9p8IguR4Z985+xXmRqmbX0hdeeHoc33c+sKSAvVKZNbMibAws43Al4Ao8A13f2jM9nzg28BVQDtwh7sfNrNlwD5gf7jrC+7+qYu915y4KM8dWvcHwXH4F0EPpPtEsK1oYTjnEU6aV10BEY11Z4PTvYMcPdVD0zu9NHf00vxOL80dPaPL78RdcAiQGzUWlRVQH/ZERkKkPnyuKSvUZLskTMrDwsyiwAHgA0ATsB24y933xu3zr4EGd/+Umd0J3Obud4Rhsc3d10z2/eZEWIzlDqcOnZ3zOPwL6GwKthUuCOc8wrOtFq2FiE7ZzEZn+oc41tFL02iQnPt8oquP+B9TM1hYkh+GyLzzwqSuvFDXkMikzYUruK8BDrr7obCgR4Fbgb1x+9wK/Gm4/F3gK5ZJg7lmULEieFz18aDtnSNng+PIL+D1bUF7fhks+Y2zvY+adRDVlcfZoCg/h5XVJRf8/vKBoRjHT/fR1NEzGiJN7wRB8srRDp5+rWX01N8R5fNygxAZM9RVH4ZLueZNZIqSGRZ1wNG49Sbg1y+0j7sPmdlpYOSChuVmthPoBP6bu/88ibXOnvlLg8eVHwvWTzcHcx1HwvB445mgPbcIFl9z9lTdug2Qo++0zkZ5ORGWVMxjScW8cbfHYs7Jrn6aO8YOdfXyVtsZnjvYds4V7QDz8qLnBMm5cyfzWFiST0TzJhInmWEx3r+0sWNeF9qnBVji7u1mdhXwAzNb7e6d5xxsdh9wH8CSJUsSUHIKlNVBw0eDB0D3yTA4ng96H//8Z0F7TgGQ5tMIAAALnUlEQVTUXx1OmF8bLOeN/8tDskskEsxxLCor4Kql5293dzp6Bs/2SMbMm7xytGPceZOassLzAqW+vJCqknwqi/MpK8xVoGSRZIZFE7A4br0eOHaBfZrMLAcoA055MJHSD+DuL5nZm8BlwDmTEu7+MPAwBHMWyfgQs654Iay+LXhAcIX5kefDx3PwL38BHoNILtRdFfY8roXFvwH5xamtXeYkM2N+UR7zi/JYU1c27j5n+odGQ+TcuZMefv5GKye7+hk7vZkTMSqK86goyqeyJJ/K4jyqivOpKM6jsjgIlIqwbUFRni5eTHPJnODOIZjgfj/QTDDB/TF33xO3z78B1sZNcN/u7r9jZlUEoTFsZpcAPw/3O3Wh95uTE9zJ0Hc6uDhwZN7j2E7wYbAo1F4ZhMb8pVBaC6V1waOoSmdeyYwMDMVoOR0ESGtXP+3dA7R194ePAdrD59bufgbi7r81wgzmz8ujoigMkjBcglA5N1wqi/N1f65ZlPIJ7nAO4tPAMwSnzm5x9z1m9iCww90fB74J/I2ZHQROAXeGh78HeNDMhoBh4FMXC4qsUlAGl30weAD0d0PTi2cnzLd/I7y/VZxILpTWQGl9ECJlYYgoUGSS8nIiLK0oYmlF0UX3c3e6+ofOhknX2UCJD5fdTR20dQ/QHXeL+Xgl+TlUluTHhUteGCb5VBWfXa4szqM4P0eT9bNAF+VlGnc40wadzdB5LHxuDibSO48Fp+52HoPhgXOPU6BICvQNDp8NkzBY2s8M0DoaMmd7MWPnVUbk50TO66FUlow3PJZPueZZzpPy6yxmm8JiChIVKKW1wT2xFCgyCwaHY5w6MzBuuLR19dMaNyTWfmZg9CaQ8XIixoKivNEhr9LCXEoLcikrzKW0MCduOZfSghxKC8P1gtyMvRAy5cNQMoeZQXFV8Ki9cvx93INbl5xuGj9QmnfAPgWKzJ7caITq0gKqSwsm3DcWczp6B2nvPhsibV39tJ/pp61rYDRkmjt66ewdorN3kIHh8+da4hXkRkaD42yInBsopYU54+yTS3FBTtrfwkVhIeMzg6LK4KFAkTQTCXsQC4ryLnixYzx3p38oRmfvIKd7B+nsG6SzdyhuOWzvHaKzL1g+2dXHwZNDo9vH6cico6QgJy5Ecs4LlLFBE78+Ly+a8nkZhYVMX7IDpbg6+NKpeRUwrzJ8rohri2svnA9R/XOW6TEzCnKjFORGWTiJnstYsZhzZmCIzr4hTveMCZi+ofNCqLN3kLdP9Yy2nxlz0eRYOREbd2istDBYX15RxJ3XJPdaM/10SXLNJFC6TgTtPW3BPbZ6TkF/5/ivgQVfhXtOsCwI3ndssIy05xXrTsCSEJGIUVKQS0lBcJuVqRoajtHVd7bXEt+D6QxDZmz7sY7eIJx6B2moK1NYSBaYTKCMGOoPQmMkRHrag/Uzbee2dRyB5peC5dj4Z9EQzYsLkQVhryU+XCrObStcADl5if/8kvVyopHRCyenY3CC+ZZEUFhIesnJD+c7aia3vzv0d4UhEobMaLC0n9ve8krw3Ndx4dfLLxsnWBaMGSaLWy4oU+9Fki53Fq6OV1hIZjODgtLgseCSyR0zPAi974wTLHGPM23BkNnx14LAGeob/7UiOUGPpLA8CI78sJZzlsvD5bJgPX45r0QT/TInKCxExormBvfoKl44uf3dYbAnLlhOxQ2RhcHS1wF9ncFzx5Fgub/zwiEzys6GyoUC5ZzlsvPbcwvVu0lHseHgxI+h/nOfx2vLK4YlY2/qnVgKC5GZMoO8ouAxf5zbvl7MUP/Z4BgJlP7O4B5gfeFzf+e5y53HoG/f2Xa/+Jk0RHLODZTRXk3ZRXo7cfvkl2b2XI37OL+I+2Fo4Py24cExv6jj2y5wzHltF/jFP3b7RP9f49U1wh/8OHn/jVBYiKRWTv7ZCySnwx0GzpwfKH2nxw+akeUzh84G0kDXJOosDHsrJcFNK0e+bWD0DhB+7vLYbaPrfk7TzF9nJu8ZC34pX+gEiOmK5kE0PwjY0ecxbXnzIFoetOfkB23R3HD5Ym15524fee2C8sR+hnEoLETSmVlwa/r84uCixumIDZ8NkvhezTnLI+HTdfYX8ujQlp27PHbblPed5OuMrk/3Pe3iv9DHa4vmjdk+pi2am7FDfgoLkWwXiQYXNRbOT3UlMofpNAsREZmQwkJERCaksBARkQkpLEREZEIKCxERmZDCQkREJqSwEBGRCSksRERkQuajl8enNzNrBY7M4CUqgbYElZNKmfI5QJ9lrsqUz5IpnwNm9lmWuvuE95vJmLCYKTPb4e6Nqa5jpjLlc4A+y1yVKZ8lUz4HzM5n0TCUiIhMSGEhIiITUlic9XCqC0iQTPkcoM8yV2XKZ8mUzwGz8Fk0ZyEiIhNSz0JERCaksBARkQllfViY2UYz229mB83s/lTXM11mtsXMTprZa6muZabMbLGZ/cTM9pnZHjP7TKprmg4zKzCzF83slfBzfC7VNc2UmUXNbKeZbUt1LTNhZofNbLeZ7TKzHamuZybMrNzMvmtmr4c/M+9Kyvtk85yFmUWBA8AHgCZgO3CXu+9NaWHTYGbvAbqBb7v7mlTXMxNmVgPUuPvLZlYCvAR8ON3+v5iZAUXu3m1mucBzwGfc/YUUlzZtZvZZoBEodffNqa5nuszsMNDo7ml/UZ6ZfQv4ubt/w8zygHnu3pHo98n2nsU1wEF3P+TuA8CjwK0prmla3P1fgFOpriMR3L3F3V8Ol7uAfUBdaquaOg90h6u54SNt/zozs3pgE/CNVNciATMrBd4DfBPA3QeSERSgsKgDjsatN5GGv5QymZktA9YDv0ptJdMTDtvsAk4Cz7p7Wn6O0BeB/wjEUl1IAjjwQzN7yczuS3UxM3AJ0Ao8Eg4PfsPMipLxRtkeFjZOW9r+5ZdpzKwY+B7w79y9M9X1TIe7D7v7lUA9cI2ZpeUQoZltBk66+0upriVBrnP3DcBNwL8Jh3HTUQ6wAfg/7r4eOAMkZe4128OiCVgct14PHEtRLRInHOP/HvB37v79VNczU+HQwE+BjSkuZbquA24Jx/ofBX7LzP42tSVNn7sfC59PAlsJhqTTURPQFNdj/S5BeCRctofFdmClmS0PJ4buBB5PcU1ZL5wY/iawz93/KtX1TJeZVZlZebhcCNwAvJ7aqqbH3f+zu9e7+zKCn5N/dve7U1zWtJhZUXjiBOGQzY1AWp5F6O7HgaNmdnnY9H4gKSeC5CTjRdOFuw+Z2aeBZ4AosMXd96S4rGkxs+8A7wUqzawJeMDdv5naqqbtOuB3gd3heD/Af3H3J1NY03TUAN8Kz7qLAI+5e1qfcpohqoGtwd8k5AB/7+5Pp7akGfm3wN+Ff/AeAu5Jxptk9amzIiIyOdk+DCUiIpOgsBARkQkpLEREZEIKCxERmZDCQkREJqSwEJkCMxsO71Q68kjY1bJmtiwT7hosmSmrr7MQmYbe8PYdIllFPQuRBAi/H+EL4fdXvGhml4btS83sx2b2avi8JGyvNrOt4XddvGJm14YvFTWz/xt+/8UPwyu/RVJOYSEyNYVjhqHuiNvW6e7XAF8huEMr4fK33b0B+Dvgy2H7l4Gfufs6gnv5jNw5YCXwVXdfDXQAv53kzyMyKbqCW2QKzKzb3YvHaT8M/Ja7Hwpvgnjc3SvMrI3gi5wGw/YWd680s1ag3t37415jGcFtzFeG6/8JyHX3P0v+JxO5OPUsRBLHL7B8oX3G0x+3PIzmFWWOUFiIJM4dcc+/DJefJ7hLK8C/IvhqVYAfA38Io1+QVDpbRYpMh/5qEZmawrg74QI87e4jp8/mm9mvCP4Iuyts+yNgi5n9B4JvNBu5I+hngIfN7F6CHsQfAi1Jr15kmjRnIZIA4ZxFo7u3pboWkWTQMJSIiExIPQsREZmQehYiIjIhhYWIiExIYSEiIhNSWIiIyIQUFiIiMqH/Dw31iSNd9AmVAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xt0nPV97/v3d0b3uy3JsseSL9gOYGzLGEFWgIak3AkobcO1h92UpGWle2c3PVk9Z9Oz9yoN2T0l7dk9SRrWSWhidtKmIW4oexs2lFshl1KCZeIL2Bgbgy1hyZZkdLEl6zbf88c8ksa2bN1mNJqZz2utWfPMc5n5DizPR7/f73l+j7k7IiIi5xNKdQEiIjL/KSxERGRSCgsREZmUwkJERCalsBARkUkpLEREZFIKC5FZMLMVZuZmljOFfX/XzH4x2/cRSQWFhWQNM3vfzAbNrOqM9TuCH+oVqalMZP5TWEi2eQ+4Z/SFma0HClNXjkh6UFhItvk74HfiXn8W+EH8DmZWbmY/MLN2MztkZv/FzELBtrCZ/T9m1mFmB4FPTXDs98ys1cw+MLP/ambh6RZpZhEz22pmx83sgJn9fty2K8ysycx6zOyomf11sL7AzP7ezDrNrMvMtplZzXQ/W2QiCgvJNq8BZWZ2cfAjfhfw92fs8zdAOXABcA2xcLkv2Pb7wK3ApUADcPsZx34fGAZWB/vcAPzeDOr8EdACRILP+L/N7Npg2zeAb7h7GbAK2BKs/2xQdx1QCXwB6J/BZ4ucRWEh2Wi0dXE98DbwweiGuAD5E3fvdff3gf8G/LtglzuBr7t7s7sfB/4i7tga4Gbgj9z9pLsfA/5f4O7pFGdmdcDVwH9y91PuvgP4blwNQ8BqM6ty9xPu/lrc+kpgtbuPuPt2d++ZzmeLnIvCQrLR3wG/DfwuZ3RBAVVAHnAobt0hYGmwHAGaz9g2ajmQC7QG3UBdwHeARdOsLwIcd/fec9TweeAjwNtBV9Otcd/rOeBxMztiZn9pZrnT/GyRCSksJOu4+yFiA923AP90xuYOYn+hL49bt4zx1kcrsW6e+G2jmoEBoMrdK4JHmbtfMs0SjwALzax0ohrcfb+730MshL4G/MTMit19yN2/4u5rgSuJdZf9DiIJoLCQbPV54Nfd/WT8SncfITYG8OdmVmpmy4EvMz6usQX4QzOrNbMFwANxx7YCzwP/zczKzCxkZqvM7JrpFObuzcCrwF8Eg9Ybgnp/CGBm95pZtbtHga7gsBEz+6SZrQ+60nqIhd7IdD5b5FwUFpKV3P1dd286x+b/CJwEDgK/AP4B2Bxs+1tiXT07gTc4u2XyO8S6sfYAHwI/AZbMoMR7gBXEWhlPAg+6+wvBtpuAt8zsBLHB7rvd/RSwOPi8HmAv8FPOHrwXmRHTzY9ERGQyalmIiMikFBYiIjIphYWIiExKYSEiIpPKmOmQq6qqfMWKFakuQ0QkrWzfvr3D3asn2y9jwmLFihU0NZ3rTEgREZmImR2afC91Q4mIyBQoLEREZFIKCxERmVTGjFlMZGhoiJaWFk6dOpXqUuZMQUEBtbW15OZqslERSZyMDouWlhZKS0tZsWIFZpbqcpLO3ens7KSlpYWVK1emuhwRySAZ3Q116tQpKisrsyIoAMyMysrKrGpJicjcyOiwALImKEZl2/cVkbmR8WExmeGRKEd7TtE/qGn/RUTOJevDAuBY7wAf9g0m/H07OzvZuHEjGzduZPHixSxdunTs9eDg1D7vvvvuY9++fQmvTURkOjJ6gHsqcsIhSvNz6O4fYkl5QUK7cSorK9mxYwcAf/Znf0ZJSQl//Md/fNo+7o67EwpNnNuPPfZYwuoREZkptSyAiqJchkainJyjrqgDBw6wbt06vvCFL7Bp0yZaW1u5//77aWho4JJLLuGhhx4a2/fqq69mx44dDA8PU1FRwQMPPEB9fT0f+9jHOHbs2JzUKyKSNS2Lrzz1FnuO9Jxz+8nBYXJCIfJzpp6fayNlPHjbJTOqZ8+ePTz22GN8+9vfBuDhhx9m4cKFDA8P88lPfpLbb7+dtWvXnnZMd3c311xzDQ8//DBf/vKX2bx5Mw888MBEby8iklBqWQRyQiFGotE5+7xVq1Zx+eWXj73+0Y9+xKZNm9i0aRN79+5lz549Zx1TWFjIzTffDMBll13G+++/P1flikiWy5qWxWQtgJ7+Id7vPMmKymLKCpN/9XNxcfHY8v79+/nGN77B66+/TkVFBffee++E10rk5eWNLYfDYYaHh5Nep4gIqGUxpqQgh3DI6O4fmvPP7unpobS0lLKyMlpbW3nuuefmvAYRkfPJmpbFZEJmlBfm0tU3xNKoEwrN3cVtmzZtYu3ataxbt44LLriAq666as4+W0RkKszdU11DQjQ0NPiZNz/au3cvF1988ZTf48SpIQ52nGTZwiIqivImP2Cemu73FpHsZWbb3b1hsv2S2g1lZjeZ2T4zO2BmZ522Y2ZfNrM9ZrbLzF4ys+Vx20bMbEfw2JrMOkcV5+eQGw6lpCtKRGQ+S1o3lJmFgUeA64EWYJuZbXX3+NN8fgU0uHufmf0B8JfAXcG2fnffmKz6zlEz5YW5dJ4cZCQaJXyOC+VERLJNMn8NrwAOuPtBdx8EHgc+Hb+Du7/s7n3By9eA2iTWMyUVRbm4O939OtNIRGRUMsNiKdAc97olWHcunweejXtdYGZNZvaamf3GRAeY2f3BPk3t7e2zrxgozA2TlxOiKwlzRYmIpKtkng010elEE46mm9m9QANwTdzqZe5+xMwuAP7FzHa7+7unvZn7o8CjEBvgTkjRZlQU5tHee4qhkSi5YXVFiYgk85ewBaiLe10LHDlzJzO7DvjPQKO7D4yud/cjwfNB4BXg0iTWepqKolwcNNAtIhJIZlhsA9aY2UozywPuBk47q8nMLgW+QywojsWtX2Bm+cFyFXAVcPb8F0lSkBumIDdMV9/swiIRU5QDbN68mba2tlnVIiIyG0nrhnL3YTP7IvAcEAY2u/tbZvYQ0OTuW4G/AkqAfwymBj/s7o3AxcB3zCxKLNAePuMsqqSrKMylrecUg8Mj5OWEZ/QeU5mifCo2b97Mpk2bWLx48YzqEBGZraRewe3uzwDPnLHuT+OWrzvHca8C65NZ22QqimJh0dU/xKLSmYXF+Xz/+9/nkUceYXBwkCuvvJJvfetbRKNR7rvvPnbs2IG7c//991NTU8OOHTu46667KCws5PXXXz9tjigRkbmQPdN9PPsAtO2e8u55wJqhERyH3HP8Z1q8Hm5+eNqlvPnmmzz55JO8+uqr5OTkcP/99/P444+zatUqOjo62L07VmdXVxcVFRX8zd/8Dd/61rfYuHFOLzsRERmTPWExAzkhY2DYiboTSuAd9F588UW2bdtGQ0PsCvv+/n7q6uq48cYb2bdvH1/60pe45ZZbuOGGGxL2mSIis5E9YTGDFgAjUd5r7aG6tIDF5QUJK8Xd+dznPsdXv/rVs7bt2rWLZ599lm9+85s88cQTPProown7XBGRmdJFBOeRGw5RnJ9Dd/8giZxw8brrrmPLli10dHQAsbOmDh8+THt7O+7OHXfcwVe+8hXeeOMNAEpLS+nt7U3Y54uITFf2tCxmqKIol5YP++kfGqEoLzH/udavX8+DDz7IddddRzQaJTc3l29/+9uEw2E+//nP4+6YGV/72tcAuO+++/i93/s9DXCLSMpoivJJDI9E2dvWS2VxHpGKwlm911zRFOUiMlXzYoryTJATDlGan0N3/1BCu6JERNKJwmIKKopyGRqJcnJwJNWliIikRMaHRSJaA2UFuYTM0mImWrV+RCQZMjosCgoK6OzsnPUPaChklBXm0t0/RHQe/xi7O52dnRQUJO40XxERyPCzoWpra2lpaSER97o4NTRCx4lBBjvyKMhN/PQfiVJQUEBtbcrvISUiGSajwyI3N5eVK1cm5L0Gh6Nc/ucv8skLq/n63esS8p4iIukio7uhEikvJ8Qt6xfz/J6j9GugW0SyjMJiGm6rj9A3OMJLbx9NdSkiInNKYTENH11ZyaLSfLbuOOuGfyIiGU1hMQ3hkHHrhgiv7GvXLVdFJKsoLKapcWOEwZEoz72l25yKSPZQWExTfW05yyuLeGqnuqJEJHsoLKbJzLhtQ4R/PdBBe+9AqssREZkTCosZaNwYIerwzO7WVJciIjInFBYz8JGaUi5aXMpWdUWJSJZQWMzQbfURth/6kJYP+1JdiohI0iksZqixPgLAUzvVFSUimU9hMUN1C4u4dFmFuqJEJCsoLGbh0/UR9rb2cOBYb6pLERFJKoXFLHxqQ4SQoek/RCTjKSxmobo0nytXVfE/dx7RHepEJKMpLGapsT7Coc4+drV0p7oUEZGkUVjM0o3rFpMXDmmgW0QymsJilsoLc7nmwmqe3nWEkai6okQkMyksEqCxPsLRngFef+94qksREUkKhUUCXHdxDUV5YXVFiUjGUlgkQGFemOvX1vDsm60MDkdTXY6ISMIlNSzM7CYz22dmB8zsgQm2f9nM9pjZLjN7ycyWx237rJntDx6fTWadidBYH6Grb4hfHGhPdSkiIgmXtLAwszDwCHAzsBa4x8zWnrHbr4AGd98A/AT4y+DYhcCDwEeBK4AHzWxBsmpNhF9bU015Ya4u0BORjJTMlsUVwAF3P+jug8DjwKfjd3D3l919dNrW14DaYPlG4AV3P+7uHwIvADclsdZZy8sJccv6xTy/5yj9gyOpLkdEJKGSGRZLgea41y3BunP5PPDsdI41s/vNrMnMmtrbU9/9c1t9hL7BEV56+2iqSxERSahkhoVNsG7CCxHM7F6gAfir6Rzr7o+6e4O7N1RXV8+40ET56MpKFpXmqytKRDJOMsOiBaiLe10LnPUrambXAf8ZaHT3gekcO9+EQ8atGyK8sq+d7v6hVJcjIpIwyQyLbcAaM1tpZnnA3cDW+B3M7FLgO8SC4ljcpueAG8xsQTCwfUOwbt5r3BhhcCTKc2+1pboUEZGESVpYuPsw8EViP/J7gS3u/paZPWRmjcFufwWUAP9oZjvMbGtw7HHgq8QCZxvwULBu3quvLWd5ZRFP6QI9EckgOcl8c3d/BnjmjHV/Grd83XmO3QxsTl51yWFmNNZHeOTlA7T3DlBdmp/qkkREZk1XcCdBY32EqMMzu3V/bhHJDAqLJFhTU8pFi0v5nzs+SHUpIiIJobBIksaNEd443EXz8b7JdxYRmecUFkly24YIAE/t0kC3iKQ/hUWS1C0sYtOyCl2gJyIZQWGRRI31Ed5u62X/0d5UlyIiMisKiyT61IYIIUM3RRKRtKewSKLq0nyuXFXF1p1HcNf9uUUkfSkskqyxPsKhzj52tXSnuhQRkRlTWCTZjesWkxcOqStKRNKawiLJygtzuebCap7edYSRqLqiRCQ9KSzmQGN9hKM9A7z+XlrMhSgichaFxRy47uIaivLC6ooSkbSlsJgDhXlhrl9bw7NvtjI4HE11OSIi06awmCON9RG6+ob4xYHU3ytcRGS6FBZz5NfWVFNRlKvpP0QkLSks5kheToib1y3h+T1H6R8cSXU5IiLTorCYQ431EfoGR3hx79FUlyIiMi0Kizl0xcqF1JTl66woEUk7Cos5FA4Zt26I8NN97XT3D6W6HBGRKVNYzLHG+giDI1Gee7Mt1aWIiEyZwmKObagtZ3llkbqiRCStKCzmmJnRWB/h1Xc7ONZ7KtXliIhMicIiBRrrI0QdntnVmupSRESmRGGRAmtqSrlocam6okQkbSgsUqRxY4Q3DnfRfLwv1aWIiExKYZEit22IAPDULrUuRGT+U1ikSN3CIjYtq9BcUSKSFhQWKdRYH+Httl72H+1NdSkiIuelsEihT22IEDI00C0i857CIoWqS/O5clUVW3cewV335xaR+WtKYWFmq8wsP1j+hJn9oZlVJLe07NBYH+FQZx+7WrpTXYqIyDlNtWXxBDBiZquB7wErgX9IWlVZ5MZ1i8kLh9QVJSLz2lTDIuruw8BvAl939/8dWDLZQWZ2k5ntM7MDZvbABNs/bmZvmNmwmd1+xrYRM9sRPLZOsc60U16YyycurOapnUcYiaorSkTmp6mGxZCZ3QN8Fng6WJd7vgPMLAw8AtwMrAXuMbO1Z+x2GPhdJm6l9Lv7xuDROMU601LjxgjHegf45XudqS5FRGRCUw2L+4CPAX/u7u+Z2Urg7yc55grggLsfdPdB4HHg0/E7uPv77r4LiE6z7oxy7UU1FOeFeUpdUSIyT00pLNx9j7v/obv/yMwWAKXu/vAkhy0FmuNetwTrpqrAzJrM7DUz+42JdjCz+4N9mtrb26fx1vNLYV6Y69fW8MzuNgaHszo3RWSemurZUK+YWZmZLQR2Ao+Z2V9PdtgE66bTKb/M3RuA3wa+bmarznoz90fdvcHdG6qrq6fx1vNP48YI3f1D/Hx/+oaeiGSuqXZDlbt7D/BbwGPufhlw3STHtAB1ca9rgSn3s7j7keD5IPAKcOlUj01HV6+upqIoV2dFici8NNWwyDGzJcCdjA9wT2YbsMbMVppZHnA3MKWzmsxsQdx1HVXAVcCeKX5uWsrLCXHzuiW8sOco/YMjqS5HROQ0Uw2Lh4DngHfdfZuZXQDsP98Bwam2XwyO2wtscfe3zOwhM2sEMLPLzawFuAP4jpm9FRx+MdBkZjuBl4GH3T2jwwJiF+j1DY7w4t6jqS5FROQ0linTTDQ0NHhTU1Oqy5iVkahz5cMvsaG2gr/9nYZUlyMiWcDMtgfjw+c11QHuWjN70syOmdlRM3vCzGpnX6bEC4eMWzdE+Om+drr7h1JdjojImKl2Qz1GbLwhQuz016eCdZJgjfURBkeiPPdmW6pLEREZM9WwqHb3x9x9OHj8dyC9z1WdpzbUlrO8skhnRYnIvDLVsOgws3vNLBw87gU0N0USmBmN9RFefbeDY72nUl2OiAgw9bD4HLHTZtuAVuB2YlOASBI01keIOjyzqzXVpYiIAFOf7uOwuze6e7W7L3L33yB2gZ4kwZqaUi5aXKquKBGZN2Zzp7wvJ6wKOUvjxghvHO6i+XhfqksREZlVWEw095MkyG0bIoDuzy0i88NswiIzruabp+oWFnHZ8gWatlxE5oXzhoWZ9ZpZzwSPXmLXXEgSNdZHeLutl3eO9qa6FBHJcucNC3cvdfeyCR6l7p4zV0Vmq1vWLyFksHWHWhciklqz6YaSJKsuzeeq1VVs3XmETJnDS0TSk8JinrutPsLh433sbOlOdSkiksUUFvPcjZcsJi8cUleUiKSUwmKeKy/M5RMXVvP0riOMRNUVJSKpobBIA40bIxzrHeCX72k6LhFJDYVFGrj2ohqK88K65kJEUkZhkQYK88Jcv7aGZ3a3MTgcTXU5IpKFFBZponFjhO7+IX6+vz3VpYhIFlJYpImrV1dTUZSruaJEJCUUFmkiLyfEzeuW8MKeo/QPjqS6HBHJMgqLNNJYH6FvcIQX9x5NdSkikmUUFmnkipULqSnLV1eUiMw5hUUaCYeM2zZE+Om+drr7hlJdjohkEYVFmmncGGFwJMo/v6X7c4vI3FFYpJn1S8tZUVmkrigRmVMKizRjZjTWR/i3dzs51nsq1eWISJZQWKShxo0Rog7/a5e6okRkbigs0tDqRaVcvKRMXVEiMmcUFmmqsT7Crw530Xy8L9WliEgWUFikqdvqlwCodSEic0JhkaZqFxRx2fIFmrZcROaEwiKNNdZHeLutl3eO9qa6FBHJcEkNCzO7ycz2mdkBM3tggu0fN7M3zGzYzG4/Y9tnzWx/8PhsMutMV7esX0LI0P25RSTpkhYWZhYGHgFuBtYC95jZ2jN2Owz8LvAPZxy7EHgQ+ChwBfCgmS1IVq3pqro0n6tWV7F15xHcdX9uEUmeZLYsrgAOuPtBdx8EHgc+Hb+Du7/v7ruAM2//diPwgrsfd/cPgReAm5JYa9q6rT7C4eN97GzpTnUpIpLBkhkWS4HmuNctwbpkH5tVbrxkMXnhkLqiRCSpkhkWNsG6qfaVTOlYM7vfzJrMrKm9PTtvN1pemMsnLqzm6V1HGImqK0pEkiOZYdEC1MW9rgWm+ufvlI5190fdvcHdG6qrq2dcaLpr3BjhWO8Av3yvM9WliEiGSmZYbAPWmNlKM8sD7ga2TvHY54AbzGxBMLB9Q7BOJnDtRTUU54V1zYWIJE3SwsLdh4EvEvuR3wtscfe3zOwhM2sEMLPLzawFuAP4jpm9FRx7HPgqscDZBjwUrJMJFOaFueGSxTyzu43B4TPPFRARmb2cZL65uz8DPHPGuj+NW95GrItpomM3A5uTWV8maayP8OSvPuBn77Rz3dqaVJcjIhlGV3BniKvXVLGgKFdzRYlIUigsMkRuOMTN65fwwp6jPLu7Vd1RIpJQSe2Gkrn1uatW8Mrbx/iDH77BwuI8fvPSpdx1eR0fqSlNdWkikuYsU6aJaGho8KamplSXkXIjUedn+9v5x6ZmXthzlKERZ2NdBXddXsetG5ZQWpCb6hJFZB4xs+3u3jDpfgqLzNV5YoAnf/UBW5qaeefoCQpzw9yyfgl3XV7H5SsWYDbRtY8ikk0UFjLG3dnR3MWWphae2nmEEwPDrKwq5o6GWm7fVMuisoJUlygiKaKwkAn1DQ7zzO42tjQ18/p7xwmHjE9eWM2dDXV88qJF5IZ1zoNINlFYyKTe6zjJlqZmntjewrHeAapK8vnMpqXc0VDH6kUlqS5PROaAwkKmbHgkyiv72tnS1My/vH2M4ajTsHwBdzbU8akNSyjO10lzIplKYSEz0t47wD+90cKPm5o52H6S4rwwt26IcOfldWxaVqFBcZEMo7CQWXF33jj8IT/e1szTu1rpGxxh9aIS7myo5bc21VJVkp/qEkUkARQWkjAnBob5X7uOsKWphe2HPiQnZFx78SLubKjjmo9Uk6NBcZG0pbCQpDhwrJctTS380xstdJwYpKYsn89squXOhjpWVBWnujwRmSaFhSTV0EiUf3n7GFu2NfPyvmNEHT66ciF3NtRxy/olFOaFU12iiEyBwkLmzNGeU/xkewv/2NTM+519lObncNvGCHc21FFfW65BcZF5TGEhc87def294/y4qZlndrdyaijKhTWl3Hl5Hb956VIWFuelukQROYPCQlKq99QQT+1s5cdNzexs7iI3bNywdjF3NNTya2uqCYfU2hCZDxQWMm/sa+vlx9uaefJXLXzYN0SkvIDbL6vljoY66hYWpbo8kaymsJB5Z3A4yot7j/Ljbc38bH877nDlqkruuryOGy9ZTEGuBsVF5prCQua1I139PLG9hS3bm2k+3k9ZQQ6f3hi7WdO6peWpLk8kaygsJC1Eo85rBzvZ0tTMs2+2MTAcZe2SMu66vI7b6iMaFBdJMoWFpJ3uviG27vyAHzc18+YHPQCsqCyivq6C+toK6usquCRSpu4qkQRSWEhae+tINz97p4OdzV3sbOmitfsUADkh46IlpWPhsbGuglXVJTq7SmSGphoWmnta5qVLIuVcEhkfuzjac2osOHY2d7N15xF++MvDABTnhVlfWx4LjyBElpQX6GJAkQRSy0LSUjTqvNd5MhYgzV3saOlm75EeBkeiAFSX5lNfW8HGuliIbFhaQXlRboqrFpl/1LKQjBYKGauqS1hVXcJvbaoFYGB4hLdbe9nZ0sWOIERe3Ht07JgLqoqD8Y9YgFy8ROMfIlOlloVktJ5TQ+xu6R4Lj50tXRztGQAgN2xcvKQsbvyjnAuqSghp/EOyiAa4Rc6hrftUMPYRC49dzd30DgwDUJKfw4ag5RHrxqpgcXlBiisWSR51Q4mcw+LyAhaXL+bGSxYDsfGPgx0n4wbQu/juzw8yNBL7Q2pRaf7YmVf1tRWsry2nvFDjH5JdFBYjw/Cju2HFVbDmBli0FnQWTVYJhYzVi0pYvaiEz1w2Pv6xt7U3bgC9ixf2xI1/VBePnXkVG/8oJT9H4x+SudQN1dUMj98Dbbtjr8uWwprrY8Gx8hrIL0lsoZK2uvtj4x+jA+g7mrto7x0f/1i7pOy0CwgvqCrW+IfMexqzmK6eI3DgRdj/PLz7Cgz2QjgPll8Ja26MhUflKrU6ZIy70xZc/7GjuZudzV3s/qCbE8H4R2l+DhvqyqmvreAjNaUsqyxi+cIiFhbn6RoQmTcUFrMxPAjNr8E7z8H+F6BjX2z9gpWx0FhzQ6zbKrcwMZ8nGWMk6hxsPxE7+yq4gHBvaw/D0fF/ZyX5OdQtjAXHssoili0sYnllEcsXFhOpKCAnHErhN5BsMy/CwsxuAr4BhIHvuvvDZ2zPB34AXAZ0Ane5+/tmtgLYCwS/0rzm7l8432cl9WyoD9+Phcb+F+C9n8FwP+QUwsqPj3dZLVienM+WtDcwPELz8T4OdfZxOO559DE4HB3bNxwyllYUsryyaCxQxpYriynJ1zCjJFbKw8LMwsA7wPVAC7ANuMfd98Tt8++BDe7+BTO7G/hNd78rCIun3X3dVD9vzk6dHeqH9/811l21/7lYkABUXTgeHMs+BjmaLVUmF406R3tPcbizj0PH+zg8GijH+zjceZIP+4ZO27+yOC8IjliQjIbI8soiqkvyNUYi0zYfwuJjwJ+5+43B6z8BcPe/iNvnuWCffzOzHKANqAaWM1/DIp47dL4bBMfzcOhfYWQQ8krggk8EXVbXQ1lkbuuSjNFzamg8QMZaJCc51NnHka5+4nq3yM8JjXVpjbdKiqlbWETdwkKdrSUTmg/XWSwFmuNetwAfPdc+7j5sZt1AZbBtpZn9CugB/ou7/zyJtc6MGVStjj0+9u9h4ESsm2o0PN5+OrZfzfrxVkft5RBWV4JMTVlBLuuWlk94Q6ihkSgffNgfa4UELZHRQHn13U76BkfG9jWDJWUF462SymKWLRwfL6koUktYzi+Zv1oTtYfPbMaca59WYJm7d5rZZcD/MLNL3L3ntIPN7gfuB1i2bFkCSp6l/BK46JbYwx2O7Q2C4wX412/AL/4aCipg9bWx4Fh1LZRUp7pqSVO54RArqopZUVV81jZ3p+PEIIePnxxvlQRB8vK+dtp7W06uUuOeAAALsElEQVTbv6wgJzhbq3h80D0YgF9SXqgp4CWpYdEC1MW9rgWOnGOflqAbqhw47rG+sQEAd99uZu8CHwFO62dy90eBRyHWDZWMLzFjZlCzNva4+o+gvwsOvjw+UP7mE4DB0k3j3VVLLoWQzoSR2TMzqkvzqS7N57LlC8/a3jc4TPPxfg51nhwbaD/U2cee1h6e39M2dvU6xK4hqV1QNNYSWVJRwJLyAhaXFcauhi8roDBPXVyZLpljFjnEBrivBT4gNsD92+7+Vtw+/wFYHzfA/VvufqeZVRMLjREzuwD4ebDf8XN9XlrNDRWNQtvOIDieh5YmwKGoKuiuuh5W/ToULkh1pZKFRqJOa3f/+KB7MPB+6PhJDnf20XNq+KxjKopyWVxWwOLyWJDUlMU/x0KlrCBH15fMQykf4A6KuAX4OrFTZze7+5+b2UNAk7tvNbMC4O+AS4HjwN3uftDMPgM8BAwDI8CD7v7U+T4rrcLiTCc74d2XYsFx4EXo/xAsDHVXjI911KzTBYEyL/QNDtPWfYq27lO0dp+irWd8+WhP7LnjxMBZxxXmhmMtkqA1cnqwxAKlsjhPZ3TNsXkRFnMprcMiXnQEPtg+PkjeujO2vjQyHhwXXAP5pamtU+Q8BoejHOs9O0Ta4sLlaM+p0y5WhFiX16LSIETKC1gShEp8sNSUFZCrCxcTRmGRKXrb4qYheRkGeiCUG0xDElxNXrVGrQ5JO9Go03FyYOJACUKltbufU0PR044zg6qS/Am7veJbLUV5OutwKhQWmWhkCJp/OT4NSfve2PqK5XHTkFwNeUWprVMkQdydnv5hWnv6Y4HSfXYLpbW7f8JxlPLC8XGU04KlfHSAvoDywtysH0dRWGSDrsNx05D8FIb6YmMdxVVQsghKamKP4upgeVHc86LYabxZ/g9FMkP8OErbBF1e5xpHyQ0blcWxs8aqSvKoKsmnqjSfqpLxddUlsdcVRZkZLAqLbDN0KnYF+eHX4EQbnDgGJ44Gz8cgOnT2MeG884fJ6HLxIk3VLmkvfhxlNEQ6TgzS3jtAx4nxR+eJwbPGUmA8WKpKg1AZC5TxUBl9XV6YmzYD9QoLGeceO8NqNEBOtgdBEhcmo9v6OsCjZ79HbnFcgFSPt1pGwyQ+ZHLy5/47iiRINOp09Q/FwqN3gPYTA0GgDJ4WKu295w6WnJBRGbRUxgMlCJXS/FhrJVhfkeJgmQ/Tfch8YQZFC2OPRRedf9/oCPR1xoVJe1yoHIWTx6BjP7z/i1gATaSgfIIwmaDVUlSlqU9k3gmFjIXFeSwszuMjNec/6zAadbqDYDkrVIKg6TgxwNutvXScGJg0WMYepae3VEZDJ5XBon+pcrpQePwHnfXn33d4MK6VEhcmY11g7XBkR+z1YO8Eb2BQVHlGF1hcq6W4Ogib6th+IV0lLPNLKGQsKM5jQXEeayYJFvdYsLSPhcggHb3jrZSOYN07R2PBEn8V/ahwyKgsHh9bqQ6CZXV1CXc01E3wqYmjsJCZy8mD8qWxx2QG+84IkglaLcffjS0Pn5rgDUaDZVFsAL84CJGS6tjzma91YyqZZ8yMiqI8KoqmHiyxIBk8I1DGWy/7g2Cpr61QWEiGyCuCvBWwYMX593OPXUsyGiQn28cfJ46NLx95I7bPhC0WIK90/Kyw4urxx1jYjAZMVWxalQw8y0XSV3ywrF50/n3d/axrUZJBYSHzi1lszKOgPDb1+2SG+uPCZDRYjsHJjiBcjsHxg7GzxPo6OXviY2IXOY4FSPUkrZcqCOcm/GuLzJSZzclEjgoLSW+5hVCxLPaYzOjg/VgrpSMIljOCpuOd2PaRs8/LB2ItkfjwOGfrZRHkFc+s1eIeOystOgI+AtHhYDlYFx0O1o+MP8cvT7Ru7JjoGe8ZrJvqe44yY+wuAzNaJvZ6wuWp7HPG8mzqGF030bOFzr0NC97qfNun+jzZ+4TOvS23AMprSSaFhWSP+MH7mkvOv687DPRO3AUWHzZH34SD7XCqe+L3ySmMtUzCeef5EZ/gB9lHJn4/kYksbYDffympH6GwEJmIGRSUxR6Vqybff3ggrqXScXq4jF4UaWEI5cRCy0Kx51BOsH503ej2YN1py9PYd+yzQrM8/sxag7+y8VigwsyWIe716LLPYnmqnz3R/lN5jsYtT/fYcz3P4H08evr3Gd1WePY9SxJNYSGSCDn5Uz8zTCQNaZ5fERGZlMJCREQmpbAQEZFJKSxERGRSCgsREZmUwkJERCalsBARkUkpLEREZFIZc6c8M2sHDs3iLaqAjgSVk0qZ8j1A32W+ypTvkinfA2b3XZa7e/VkO2VMWMyWmTVN5daC812mfA/Qd5mvMuW7ZMr3gLn5LuqGEhGRSSksRERkUgqLcY+muoAEyZTvAfou81WmfJdM+R4wB99FYxYiIjIptSxERGRSCgsREZlU1oeFmd1kZvvM7ICZPZDqembKzDab2TEzezPVtcyWmdWZ2ctmttfM3jKzL6W6ppkwswIze93Mdgbf4yuprmm2zCxsZr8ys6dTXctsmNn7ZrbbzHaYWVOq65kNM6sws5+Y2dvBv5mPJeVzsnnMwszCwDvA9UALsA24x933pLSwGTCzjwMngB+4+7pU1zMbZrYEWOLub5hZKbAd+I10+/9iZgYUu/sJM8sFfgF8yd1fS3FpM2ZmXwYagDJ3vzXV9cyUmb0PNLh72l+UZ2bfB37u7t81szygyN27Ev052d6yuAI44O4H3X0QeBz4dIprmhF3/xlwPNV1JIK7t7r7G8FyL7AXSLv7lXrMieBlbvBI27/OzKwW+BTw3VTXIjFmVgZ8HPgegLsPJiMoQGGxFGiOe91CGv4oZTIzWwFcCvwytZXMTNBtswM4Brzg7mn5PQJfB/5PIJrqQhLAgefNbLuZ3Z/qYmbhAqAdeCzoHvyumRUn44OyPSxsgnVp+5dfpjGzEuAJ4I/cvSfV9cyEu4+4+0agFrjCzNKyi9DMbgWOufv2VNeSIFe5+ybgZuA/BN246SgH2AT8f+5+KXASSMrYa7aHRQtQF/e6FjiSolokTtDH/wTwQ3f/p1TXM1tB18ArwE0pLmWmrgIag77+x4FfN7O/T21JM+fuR4LnY8CTxLqk01EL0BLXYv0JsfBIuGwPi23AGjNbGQwM3Q1sTXFNWS8YGP4esNfd/zrV9cyUmVWbWUWwXAhcB7yd2qpmxt3/xN1r3X0FsX8n/+Lu96a4rBkxs+LgxAmCLpsbgLQ8i9Dd24BmM7swWHUtkJQTQXKS8abpwt2HzeyLwHNAGNjs7m+luKwZMbMfAZ8AqsysBXjQ3b+X2qpm7Crg3wG7g/5+gP/L3Z9JYU0zsQT4fnDWXQjY4u5pfcpphqgBnoz9TUIO8A/u/s+pLWlW/iPww+AP3oPAfcn4kKw+dVZERKYm27uhRERkChQWIiIyKYWFiIhMSmEhIiKTUliIiMikFBYi02BmI8FMpaOPhF0ta2YrMmHWYMlMWX2dhcgM9AfTd4hkFbUsRBIguD/C14L7V7xuZquD9cvN7CUz2xU8LwvW15jZk8G9Lnaa2ZXBW4XN7G+D+188H1z5LZJyCguR6Sk8oxvqrrhtPe5+BfAtYjO0Eiz/wN03AD8Evhms/ybwU3evJzaXz+jMAWuAR9z9EqAL+EySv4/IlOgKbpFpMLMT7l4ywfr3gV9394PBJIht7l5pZh3EbuQ0FKxvdfcqM2sHat19IO49VhCbxnxN8Po/Abnu/l+T/81Ezk8tC5HE8XMsn2ufiQzELY+gcUWZJxQWIolzV9zzvwXLrxKbpRXgfyN2a1WAl4A/gLEbJJXNVZEiM6G/WkSmpzBuJlyAf3b30dNn883sl8T+CLsnWPeHwGYz+z+I3dFsdEbQLwGPmtnnibUg/gBoTXr1IjOkMQuRBAjGLBrcvSPVtYgkg7qhRERkUmpZiIjIpNSyEBGRSSksRERkUgoLERGZlMJCREQmpbAQEZFJ/f/Nctzz5QsKlQAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] @@ -1134,11 +1148,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## 5. Opening the black box with saliency maps\n", + "## 5. Opening the black box with attentive response maps\n", "\n", - "In the previous section, we built a model which classifies the handwritten digits of the MNIST dataset with a satisfactory accuracy. But how can we assess which parts of a given image the network utilizes to arrive at its classification decision?\n", + "In the previous section, we built a model which classifies the handwritten digits of the MNIST dataset with satisfactory accuracy. But how can we assess which parts of a given image the network utilizes to arrive at its classification decision?\n", "\n", - "To answer this question, in this tutorial, we will compute **attentive response maps**.\n", + "To answer this question, in this tutorial we will compute **attentive response maps**.\n", "\n", "The main idea is to invert the data flow of a convolutional neural network, going from the last layers activations until image space. Then, an heatmap is constructed to shows which parts of the input image are most strongly activating when a classification decision is made - and thus are the most discriminative. \n", "\n", @@ -1146,23 +1160,21 @@ "\n", "This is not the only technique to explain the classification decisions made by convolutional neural networks; some useful references are listed below:\n", "\n", - "1. M.D. Zeiler, D. Krishnan, G.W. Taylor, and R. Fergus, *ImageNetClassification with deep convolutional neural networks*, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2528–2535 (IEEE, San Fransisco, CA, 2010).\n", - "\n", - "2. M.D. Zeiler, and R. Fergus, *Visualizing and Understanding Convolutional Networks* 818-833, https://doi.org/10.1007/978-3-319-10590-1_53 (2014).\n", + "1. M.D. Zeiler, and R. Fergus, *Visualizing and Understanding Convolutional Networks* 818-833, https://doi.org/10.1007/978-3-319-10590-1_53 (2014).\n", "\n", - "3. K. Simonyan, A. Vedaldi, and A. Zisserman, *Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps* (2014) (https://arxiv.org/pdf/1312.6034v2.pdf)\n", + "2. K. Simonyan, A. Vedaldi, and A. Zisserman, *Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps* (2014) (https://arxiv.org/pdf/1312.6034v2.pdf)\n", "\n", - "4. S. Bach, et al. *On pixel-wise explanations for nonlinear classifier decisions by layer-wise relevance propagation*, PLoS ONE 10, e0130140 (2015).\n", + "3. S. Bach, et al. *On pixel-wise explanations for nonlinear classifier decisions by layer-wise relevance propagation*, PLoS ONE 10, e0130140 (2015).\n", "\n", - "5. G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.R. Müller, *Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognit.* 65, 211–222 (2017).\n", + "4. G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.R. Müller, *Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognit.* 65, 211–222 (2017).\n", "\n", - "6. R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, *Visual Explanations from Deep Networks via Gradient-based Localization*, https://arxiv.org/pdf/1610.02391.pdf (2017)\n", + "5. R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, *Visual Explanations from Deep Networks via Gradient-based Localization*, https://arxiv.org/pdf/1610.02391.pdf (2017)\n", "\n", - "7. Kumar, D., Wong, A. & Taylor, G. W. Explaining the unexplained: a class-enhanced attentive response (CLEAR) approach to understanding deep neural networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1686–1694 (IEEE, Honolulu, HI, 2017).\n", + "6. Kumar, D., Wong, A. & Taylor, G. W. Explaining the unexplained: a class-enhanced attentive response (CLEAR) approach to understanding deep neural networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1686–1694 (IEEE, Honolulu, HI, 2017).\n", "\n", "For an application of convolutional neural network interpretation to a materials science problem:\n", "\n", - "8. A. Ziletti, D. Kumar, M. Scheffler, and L. M. Ghiringhelli, *Insightful classification of crystal structures using deep learning*, Nature Communications 9, 2775 (2018)" + "7. A. Ziletti, D. Kumar, M. Scheffler, and L. M. Ghiringhelli, *Insightful classification of crystal structures using deep learning*, Nature Communications 9, 2775 (2018)" ] }, { @@ -1173,7 +1185,7 @@ { "data": { "text/plain": [ - "<matplotlib.image.AxesImage at 0x7fbffc21b550>" + "<matplotlib.image.AxesImage at 0x7ff084c7db38>" ] }, "execution_count": 19, @@ -1229,12 +1241,12 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAF1CAYAAAAumsuTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFhRJREFUeJzt3X+QXXV5x/HPpySWxIAQICEEaqykVrQaZQedgdE4BRusTqRWhRlsmDrGdoyVjnag2JZMBx3toFJrByf8MDggSAWUMmgNFMR0lJrQGEKDJsWo+UECZDBZQysJT//YG13ibvY+u/fs3efu+zWT2btnn/u937Pn7ofDuff7XEeEAAAT2290ewIAgJER1gBQAGENAAUQ1gBQAGENAAUQ1gBQAGGNnmf787b/9jA/D9unjnLsUd8XyJjS7QkATYuIP+v2HICx4swaAAogrFGG7dfa/i/be23/i+0v277C9kW2Vx9S+8vLE7ZX2r5i0M/+yvYO29tt/+kh9/tN21fa/ontna1LKNPauS/QJMIaJdh+gaQ7JK2UNFPSzZLOG8U4iyR9RNI5kuZLOvuQkk9K+h1JCySdKmmupL9r875AYwhrVPF6DbzG8tmIeDYibpf0n6MY512SvhARGyLi55KWH/yBbUt6n6S/jIjdEbFX0sclnT/SfYGm8QIjqjhJ0rZ4fuexn45ynLWDvv/xoNsnSJouae1AbkuSLOmINu4LNIqwRhU7JM217UGBfYqk/5H0cw2ErCTJ9okjjHPKoO9/a9DtJyU9I+kVEbEteV+gUVwGQRXfkXRA0jLbU2wvlnRG62ffl/QK2wtsH6nDX564VdJFtk+zPV3S5Qd/EBHPSbpG0mdsz5Ik23Nt/8FI9wWaRlijhIj4haQ/kvReSU9LulDSXZL+LyJ+KOnvJd0jaZOk1YcZ5+uSrpL075I2t74Odklr+3dt72mN+bI27ws0xnz4AKqy/aCkz0fEF7o9F6BpnFmjDNtvtH1i6zLIEkmvkvSNbs8LGA+8wIhKXqaB68YzNPDC4h9HxI7uTgkYH1wGAYACuAwCAAUQ1gBQwLhes7anh3RMU6M3NO5BXC7qLU0/XzLnQdnnVtP1Tf5usueHzyVqs/POjN2kpxWxb8TJj/MLjMdIWtrQ2FMbGvegZxseH+Or6efLtJFLfin73NqfrM+O3+TvJvN7kQYWlLYrG2eZsZu0oq2qMV0Gsb3I9g9sb7Z96VjGAgAMb9RhbfsISf8s6VxJp0m6wPZpnZoYAOBXxnJmfYakzRHxWGsp8C2SFndmWgCAwcYS1nP1/BaVW1vbnsf2UttrbK+R9o3h4QBg8hpLWA/16uWvvewcESsioi8i+gZ1sQQAJIwlrLfq+b19T5a0fWzTAQAMZSxh/T1J822/pPX5eOdLurMz0wIADDbq91lHxH7byyT9mwY+9uj6iHikYzMDAPzSmBbFRMTdku7u0FwAAMPooRaprDBERtPPl8yf1kRZSXdQk7+bqmN3H42cAKAAwhoACiCsAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACuih5eZ8YC4ymn6+NDl+0x+Ym5HdzyYjZyL9XjqPM2sAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKKCHeoPUWuePXren2xMYg0y/j+zfHX+no8WZNQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAU0EO9QdB7Mj0qJGlWonZbcuyZyfrM3Hcnx85qsn9H9hhlNTmXWn1KOLMGgAIIawAogLAGgAIIawAogLAGgAIIawAogLAGgAIIawAogLAGgAIIawAogOXmGKN5DdVK0qnJ+szy4W8kx96TrN+fqJ2bHHt2sn5nsj6zr9ml8k0uT6+1fDyLM2sAKICwBoACxnQZxPYWSXslHZC0PyL6OjEpAMDzdeKa9Zsi4skOjAMAGAaXQQCggLGGdUj6pu21tpd2YkIAgF831ssgZ0bEdtuzJK2y/WhEPDC4oBXirSB/0RgfDgAmpzGdWUfE9tbXXZLukHTGEDUrIqJv4MXH6WN5OACYtEYd1rZfaPuog7clvVnShk5NDADwK2O5DDJb0h22D47zpYjILgsDALRh1GEdEY9JenUH5wIAGAa9QUpqsr/CrGT97yVqNyfHfipZPz9ROy059q+9HDOCLYnaXcmx1yfrM31KpFyPjSafixiM91kDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAH0Bikp07thdnLsTH8NKdcD4925oe/JlSvT8/HK3bmxzz49V39Ppn5fbmxtTNZ/K1mfeX5le6xk63cm63sXZ9YAUABhDQAFENYAUABhDQAFENYAUABhDQAFENYAUABhDQAFENYAUABhDQAFsNy8pMwS8rclx25wOfBbk0N/NVk/I1OcWVIt6Z5kvR5M1CaXvqeXYD+TrD86UTszOfZEWm4+NVmffQ50FmfWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAvUEakemtIEmzkvXnJmqPS469J1U9o/+Etmv7L05O5cZc+Ysef7zt2n0feV1q7Gdfn+wjsfnlmeLc2Do7Wf+tZH3G+mR9tk9Jk7rb6yOLM2sAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKIDeII3I/lqn5cpPTPT7ePyzqaHfHC9O1d/31JvaL74213dEOipV/bOPnNh+8YXJqZyfrH80cYy+cn9y8I3J+mwPjJmJ2rnJsbO9QXYl6zPoDQIA6DDCGgAKGDGsbV9ve5ftDYO2zbS9yvam1tdjm50mAExu7ZxZr5S06JBtl0q6NyLmS7q39T0AoCEjhnVEPCBp9yGbF0u6oXX7Bklv7/C8AACDjPaa9eyI2CFJra/DftSJ7aW219heI+0b5cMBwOTW+AuMEbEiIvoiok+a3vTDAUBPGm1Y77Q9R5JaX5t8MyQATHqjDes7JS1p3V4i6WudmQ4AYCjtvHXvZknfkfQy21ttv1fSJySdY3uTpHNa3wMAGuKIGL8H80khLR23x+ue5PJxvTZXPuWc9muPyQ299Il/TNWv8IG2a2f0vyc1dv+yE1L1WvlUonhLbuy+03P1r0zUJo+Rrsou278zWb85UZt9rmdll6dXtEIR2z1SFSsYAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACiCsAaCAKd2eQG/an6xP9nrY//X2a1efmxp6X7bn+JHva7u0/29yQ+uuZP35x7Vfe8u1ubFPTfYGOTJR+9Xc0FLi+Etqtr9G9rn+bCOzGJDtU1Kr7whn1gBQAGENAAUQ1gBQAGENAAUQ1gBQAGENAAUQ1gBQAGENAAUQ1gBQAGENAAUQ1gBQAL1B2jY1UZvtUbA3WT+v7coXzXs8NfIV+miq/sb/ndl+8aJ3pMZOuyVRe/wlubHPypXrK4naLctzY/9usv7R9bn6VO+RidRfI9unpBbOrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAApguXnbMr+q7K81uWS37/S2S392ZG6p8ez+J3Jz2fqH7ddmloNL+dXDTyZq35oc+8pk/YxM8QdzYz+6M1ev7HLzJpdtZ9o2YDDOrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAHqDtC3TvyPZ6yNrzY8SxZtSQx95b24qly+e1nbt9FiWGvvbekOq/ul/Oqbt2tU+JzW2tCpXfnJi/AXH5cZed3WuXnuS9TMTtdk+Jc8m6yeSTF+Tzu8nZ9YAUABhDQAFjBjWtq+3vcv2hkHbltveZntd699bmp0mAExu7ZxZr5S0aIjtn4mIBa1/d3d2WgCAwUYM64h4QNLucZgLAGAYY7lmvcz2+tZlkmOHK7K91PYa22ukfWN4OACYvEYb1ldLeqmkBZJ2SPrUcIURsSIi+iKiT5o+yocDgMltVGEdETsj4kBEPCfpGklndHZaAIDBRhXWtucM+vY8SRuGqwUAjN2IKxht3yxpoaTjbW+VdLmkhbYXSApJWyS9v8E5AsCkN2JYR8QFQ2y+roG5AACGQW+QCeHoZP229kvPekdqZC+OVH18wW3XftKfS439r5fl6r07M/fVqbGlZC+Rrcvbr306UStJJ/95rn7rjbn6VA+MbN+RhvvmNKq7fU1Ybg4ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABdAbpBHTkvXZw3BW+6VX5Eae0fdEqt6rM/04dqbGvvTjub4TM/rbn3v/1sTvUJLu2pqr1wfbL+1/Kjf0hcfl6j//qlx9qt9H7phK+5P13e3HMZFwZg0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAYQ0ABRDWAFAAy81LWtl+6cIlqZH7rzghVX/iRx9ru/ZA5J5uT/zH/FR9/z2J4ruyy6TvT9YvTNTelBv66Uty9couN78tUTs1OTbLx0eLM2sAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKICwBoACCGsAKMARMX4P5pNCWjpuj1dHk/0VsmPPStafmajdnxz7mWT9pkTt5uTYRyfrX56oPTU5dq5nipYlh//c2kTx3uTgmWMkSduS9RnZv42MzN/oCkVs90hVnFkDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAFTuj0BSLk+Ak3L9mK4NVGb7cWQfXpme49kNNmn5Ozk2J/NlZ/8F7n6i09vv/aqG3Njp3qmSNKuRG327yhb32QvkZFxZg0ABYwY1rZPsX2f7Y22H7H9odb2mbZX2d7U+nps89MFgMmpnTPr/ZI+HBEvl/R6SR+wfZqkSyXdGxHzJd3b+h4A0IARwzoidkTEQ63beyVtlDRX0mJJN7TKbpD09qYmCQCTXeqate15kl4j6UFJsyNihzQQ6Bqma73tpbbX2F4j7RvbbAFgkmo7rG3PkHSbpIsjYk+794uIFRHRFxF90vTRzBEAJr22wtr2VA0E9U0RcXtr807bc1o/n6Pce2wAAAntvBvEkq6TtDEiPj3oR3dKWtK6vUTS1zo/PQCA1N6qgzMlvUfSw7bXtbZdJukTkm61/V5JP5H0zmamCAAYMawjYrWk4T559/c7Ox0AwFBYbt7zJtJS9om0HDi7dDg7l8zy9C3JsZPLx6/Nlc9Y90Tbtf3XXpgbvP+pXL1mJmrvSY6dbSHQZDuDkbHcHAAKIKwBoADCGgAKIKwBoADCGgAKIKwBoADCGgAKIKwBoADCGgAKIKwBoADCGgAKoDdII7r7kfXPN5F6gzQts6/ZY3R0sj4zl/XJsefnyjevTZX3rzu97dqZT29Ljb17yqpUvY6/qP3aJzfnxtbDyfru4swaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAqgN0gjsv04sn0qJlO/j6Zkn/p7kvUzE7W5/hrSj3Llx7ff60OSdFb7z68/iS+mhr7qG3+dm8ui+xPFTfZv6T7OrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAAogrAGgAMIaAApwRIzfg/mkkJaO2+N1VmZJeNPLzTNqLakdP5nl4KPxTINjZ5dVvy1Zn1haf/9pqZFf/cbvpuq/75MT1bemxs4fo6b+llYoYrtHquLMGgAKIKwBoADCGgAKIKwBoADCGgAKIKwBoADCGgAKIKwBoADCGgAKIKwBoADCGgAKmNLtCdTRZI8N+nd0RqbHyt7GZjGgyWOa7WmxLVn/uvZLF345NfL3L3p3ci5bE7XZfi+7k/UZnT/+nFkDQAEjhrXtU2zfZ3uj7Udsf6i1fbntbbbXtf69pfnpAsDk1M5lkP2SPhwRD9k+StJa26taP/tMRFzZ3PQAAFIbYR0ROyTtaN3ea3ujpLlNTwwA8Cupa9a250l6jaQHW5uW2V5v+3rbx3Z4bgCAlrbD2vYMSbdJujgi9ki6WtJLJS3QwJn3p4a531Lba2yvkfZ1YMoAMPm0Fda2p2ogqG+KiNslKSJ2RsSBiHhO0jWSzhjqvhGxIiL6IqJPmt6peQPApNLOu0Es6TpJGyPi04O2zxlUdp6kDZ2fHgBAau/dIGdKeo+kh22va227TNIFthdICklbJL2/kRkCANp6N8hqSUN98u7dnZ8OAGAorGAEgALoDYIeUrXHSqaniZTfz43J+kwsTMsNvfJjuXq9OFE7Lzn2zmR9d59fnFkDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUQFgDQAGENQAUwHJzoOuaXsa8pcH6mcmxs58ImFmKvz459jPJ+u7izBoACiCsAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACiCsAaAAwhoACnBEjN+D2U9I+vEQPzpe0pPjNpHuYT97z2TZV/azOS+OiBNGKhrXsB52EvaaiOjr9jyaxn72nsmyr+xn93EZBAAKIKwBoICJEtYruj2BccJ+9p7Jsq/sZ5dNiGvWAIDDmyhn1gCAw+hqWNteZPsHtjfbvrSbc2ma7S22H7a9zvaabs+nU2xfb3uX7Q2Dts20vcr2ptbXY7s5x04YZj+X297WOqbrbL+lm3PsBNun2L7P9kbbj9j+UGt7Tx3Tw+znhD2mXbsMYvsIST+UdI6krZK+J+mCiPjvrkyoYba3SOqLiJ56r6rtN0jql/TFiHhla9s/SNodEZ9o/Uf42Ii4pJvzHKth9nO5pP6IuLKbc+sk23MkzYmIh2wfJWmtpLdLukg9dEwPs5/v0gQ9pt08sz5D0uaIeCwifiHpFkmLuzgfjEJEPCBp9yGbF0u6oXX7Bg38EZQ2zH72nIjYEREPtW7vlbRRA59y21PH9DD7OWF1M6znSvrpoO+3aoL/ssYoJH3T9lrbS7s9mYbNjogd0sAfhaRZXZ5Pk5bZXt+6TFL60sChbM+T9BpJD6qHj+kh+ylN0GPazbD2ENt6+a0pZ0bEayWdK+kDrf+tRm1XS3qppAWSdkj6VHen0zm2Z0i6TdLFEbGn2/NpyhD7OWGPaTfDequkUwZ9f7Kk7V2aS+MiYnvr6y5Jd2jgMlCv2tm6Jnjw2uCuLs+nERGxMyIORMRzkq5RjxxT21M1EGA3RcTtrc09d0yH2s+JfEy7GdbfkzTf9ktsv0DS+ZLu7OJ8GmP7ha0XMWT7hZLeLGnD4e9V2p2SlrRuL5H0tS7OpTEHw6vlPPXAMbVtSddJ2hgRnx70o546psPt50Q+pl1dFNN6W8xVko6QdH1EfKxrk2mQ7d/WwNm0JE2R9KVe2VfbN0taqIFuZTslXS7pq5JulfRbkn4i6Z0RUfrFuWH2c6EG/nc5JG2R9P6D13Wrsn2WpG9LeljSc63Nl2ngem7PHNPD7OcFmqDHlBWMAFAAKxgBoADCGgAKIKwBoADCGgAKIKwBoADCGgAKIKwBoADCGgAK+H+zX+hTtceQXwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAF1CAYAAAAumsuTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFy9JREFUeJzt3X+QnWV5xvHrEmghJClEJECCRiUV8EcjkwFbGEmrWKDaiFaEGR3SaiNWptpqR8ahEjvasR0Vx5kKDYJJK4JUfsgwVI0oYloEExqTYFCiXTQ/SMQMkwBJJeTuH3uim5jNnnvPeffsffb7mWF29+x1nn3e8+65ePOe8z7riBAAYHx7Tq8nAAAYGWUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1uh7tq+x/fcH+X7YPmmUY4/6vkDGob2eANC0iLi013MAOsWRNQAUQFmjDNun2f4f2zts/4ftL9n+qO0Ftpfvl/3V6QnbS2x/dMj3/s72ZtubbP/Ffvf7bdufsP1T21tap1COaOe+QJMoa5Rg+7ck3SZpiaRpkm6UdMEoxjlX0gcknSNptqTX7hf5J0m/K2mOpJMkzZD04TbvCzSGskYVr9LgayyfiYhnIuJWSQ+MYpwLJX0+ItZGxFOSFu39hm1L+ktJfxMR2yJih6R/lHTRSPcFmsYLjKjiBEkbY9+Vx342ynFWDvn60SGfP0/SJEkrB3tbkmRJh7RxX6BRlDWq2Cxphm0PKewTJf1Y0lMaLFlJku3jRhjnxCFfP3/I549L2inppRGxMXlfoFGcBkEV90l6VtJltg+1PV/S6a3vfV/SS23PsX24Dn564mZJC2yfanuSpCv3fiMi9ki6VtJVto+VJNszbP/xSPcFmkZZo4SI+KWkN0l6h6QnJL1N0p2S/i8ifiTpHyR9Q9IjkpYfZJz/lPRpSd+UtL71cagPtm7/ru3trTFf0uZ9gcaYPz6AqmzfL+maiPh8r+cCNI0ja5Rh+2zbx7VOg1wi6RWSvtrreQFjgRcYUclLNHjeeLIGX1j8s4jY3NspAWOD0yAAUACnQQCgAMoaAAoY03PW9qSQjhrLHwn0oUNGjuwje6pzTzKPzjyhiKc9UmqMX2A8StLCsf2RQN+Zmsw/k8zvTObRmcVtpTo6DWL7XNs/tL3e9uWdjAUAGN6oy9r2IZL+RdJ5kk6VdLHtU7s1MQDAr3VyZH26pPUR8ZPWpcA3SZrfnWkBAIbqpKxnaN8lKje0btuH7YW2V9heIT3dwY8DgImrk7I+0KuXv/Gyc0Qsjoi5ETF3yCqWAICETsp6g/Zd23empE2dTQcAcCCdlPX3JM22/cLW38e7SNId3ZkWAGCoUb/POiJ2275M0tc0+C796yPioa7NDADwKx1dFBMRd0m6q0tzAQAMo4+WSD0smc9e1YWxl92nTWry9+WIZH57w+M3+bjzvBstFnICgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAIoawAooI8uN+cy1vEvexnzlGQ+84dks7/6TV6CPdDg2JK0O5mf1lBWkrYk8zsS2f7uAI6sAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaCAPlobBONfdu2Gbcl8Zv2OY5Njn5HMz0hk1yfHzj6O/5XMZ9ZYyco8LpK0M5HNrCMi5dcp6S2OrAGgAMoaAAqgrAGgAMoaAAqgrAGgAMoaAAqgrAGgAMoaAAqgrAGgAMoaAAqgrAGggD5aGySzLoSUX18Bncvuo6yXtx896qzc0E9syOV1VTKfMSWZz66xklljI1shmbU+sqYl87U6gyNrACiAsgaAAihrACiAsgaAAihrACiAsgaAAihrACiAsgaAAihrACiAsgaAAsb55eaZy0Gzm5LN705kx9Ol7FOT+eylzJl9lB07c9mzlNrWOcmh187M5R/PXPqcfVw2JvPTk/ktiWz2dz07l+2J7Nbk2LVwZA0ABVDWAFBAR6dBbA9o8N+qz0raHRFzuzEpAMC+unHO+g8j4vEujAMAGAanQQCggE7LOiR93fZK2wu7MSEAwG/q9DTImRGxyfaxkpbZfjgi7h0aaJV4q8h/p8MfBwATU0dH1hGxqfVxq6TbJJ1+gMziiJg7+OLjpE5+HABMWKMua9tH2p6y93NJr5O0tlsTAwD8WienQaZLus323nG+GBFf7cqsAAD7GHVZR8RPJP1eF+cCABjGOF8bJCP7J+6PSOYzD1V2vYTM+hpSbu5NrvWRld1H25L5xDoS96xOjv3yZP6k9qMXnZUbeiAX16pkfteyRHhdcvCBZD7z+5h9Tje5hk/3x+Z91gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQwDhfG6TJa/d3J/PZdQcymlyPIzv2QDJ/RiKbXV9jejK/IZFNrjuy3Ln8osR6HzctyY09c0Euf08urkXntJ/96prk4E0+j7Kyz41sZ3QXR9YAUABlDQAFUNYAUABlDQAFUNYAUABlDQAFUNYAUABlDQAFUNYAUABlDQAFjPPLzac2OPb2ZL7Jhyo7l8wlu9mxs4/5yYnstOTY2cf824ls7tL32Wd+P5V/9bLvtJ39K302NfYm/Xsq/wbfnco/57Gn2s7uOe6C1NjSF5P5zO9McgmB8V5/++HIGgAKoKwBoADKGgAKoKwBoADKGgAKoKwBoADKGgAKoKwBoADKGgAKoKwBoADKGgAKcESM3Q/zCSEtTNwjswZG9s/KZ9fMyMjMW8qvmTErkc2u9XFPMn9hIvtocuydyfwvEtnZuaFnnZHLz2s/uuHzz00Nfa1za2B8ZHnyOX54Intnbmgt2pK8ww2JbJPP6SYtVsQmj5TiyBoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACji01xM4uMzaENl1JLIya49k57I7mc+sgbAmOfaCZP7pRPYFybGzMmtmJB+Xx5Jrg3yj/ejMKZk1TaRYPuIyEvtY9Itc3vOfaj98+6TU2Hrt9Fz+G5nfmdyaKdLWZD5Tl93vI46sAaAAyhoAChixrG1fb3ur7bVDbptme5ntR1ofj252mgAwsbVzZL1E0rn73Xa5pLsjYraku1tfAwAaMmJZR8S9+s0z9/MlLW19vlTSG7s8LwDAEKM9Zz09IjZLUuvjscMFbS+0vcL2itw7BwAAezX+AmNELI6IuRExV0q+zQcAIGn0Zb3F9vGS1PqYfcMiACBhtGV9h6RLWp9fIukr3ZkOAOBA2nnr3o2S7pP0EtsbbL9D0sclnWP7EUnntL4GADRkxOsnI+LiYb71mi7PpUOZy8El6ZlGZjHoiGQ+c/m4JE1JZC/MDX148nLgXZnHcSA3tu5J5jOX7U/LDb0rF9dRiewxuaF9U6Ty8Ybc5eb3xR+0nf19fyA1tvTWZD5z2fbU5Ng7kvns87S7uIIRAAqgrAGgAMoaAAqgrAGgAMoaAAqgrAGgAMoaAAqgrAGgAMoaAAqgrAGgAMoaAApwRG6dgY5+mE8IaeGY/bw6mlzXJLnWx8nvzuUzf9BtQW5oaUsyn1m7YWNy7ORaIjqp/ejrk+u837kyFT8ucn8i9Qa9re3saz7236mxdcU9ubxOSWRXJ8del8xn1p7JrGnyWUVsHHEBF46sAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaCAQ3s9gf40NZnPrH8gSSe3H33ZC1MjH758Wyq/69LMmhmfSY0t/XUyn1lLZENy7Oy6Ew+2H71zQXLs01Lpx5zbp1fER9sPP5waehSOTWSza+zkHpfc+Jn1e9pbn4kjawAogLIGgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAK43LwRRyTzM5L5b7ed/KM1D6VG/uaP/yQ3lccS2dcnLx+/MxfPXRK+NTn29mQ+4+lc/NBJufzuB1Lx+354XvvhS3NT0ap5ufzaJYlwZukDKf883Z3MdxdH1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGuDtC3zZ+izD+u2ZP7stpMf1kWpkb+56/W5qbyzoawk6f5k/tHsD0jIrjsxL5HNrvWRXEsku/bMkkR2Xm7oZu1M5rNrg2TGfyY59sg4sgaAAihrAChgxLK2fb3trbbXDrltke2Ntle1/ju/2WkCwMTWzpH1EknnHuD2qyJiTuu/u7o7LQDAUCOWdUTcq/wrYACALurknPVltle3TpMcPVzI9kLbK2yvSP9FDACApNGX9dWSXixpjqTNkj45XDAiFkfE3IiYm36LEgBA0ijLOiK2RMSzEbFH0rWSTu/utAAAQ42qrG0fP+TLCyStHS4LAOjciJfa2b5Rg9cpHWN7g6QrJc2zPUdSSBqQ9K4G5wgAE96IZR0RFx/g5usamAsAYBisDdKI7JoDv8jFj5nXdvTsux5IDf2C8x9O5R/9wsnth3etTo0tbUnmpySymbVeJGlWMp+ZyyPJsZPvpD3qjFw+8yvw5dzQWr8keYdZieyG5Ng7kvnur/eRweXmAFAAZQ0ABVDWAFAAZQ0ABVDWAFAAZQ0ABVDWAFAAZQ0ABVDWAFAAZQ0ABVDWAFAAa4M0Ymoyn1xLZFYie0Ju6Ee/lFjrQ9LkK37edvbJm16Rm8zAjFx+8p+2n52TG1rLk+u3aGn70cP/Njd09ln7xP/m8rfvTIS35sbWxmQ+89zIzFvq9VofWRxZA0ABlDUAFEBZA0ABlDUAFEBZA0ABlDUAFEBZA0ABlDUAFEBZA0ABlDUAFDCBLzc/LJnPPFTZsdfn4jPPaT97ZG7orFOP/EHb2QeuOTs3+Lnbc/knE5cbL09eyq4HcvHMJeS7ckNL7T/mo/NgIrstOXZyaQVlfgd2JMeuhSNrACiAsgaAAihrACiAsgaAAihrACiAsgaAAihrACiAsgaAAihrACiAsgaAAihrACigj9YGya7H0eSfoZ+SzJ+Wi9+eyH4mN/S73/qpVP7qP0+sgXFWbi7pffq2me1nH84NrcfPy+UH7kiEM2txSFLiMZckTU3mb05kT0mOnVi/RVJubZDkWjLjqjNGxpE1ABRAWQNAAZQ1ABRAWQNAAZQ1ABRAWQNAAZQ1ABRAWQNAAZQ1ABRAWQNAAZQ1ABTgiBi7H+YTQlrY0OhNX+d/RCI7LTn2rGT+gbaT8+NFqZE/oitT+Tkf+1H74Ssy62VI+cclsybLjuTY2XUn2t9H6bU+ZuXiGvhC8g67E9km1/qQcnPp7dodo7dYEZs8UoojawAoYMSytn2i7W/ZXmf7Idvvbd0+zfYy24+0Ph7d/HQBYGJq58h6t6T3R8Qpkl4l6T22T5V0uaS7I2K2pLtbXwMAGjBiWUfE5oh4sPX5DknrJM2QNF/S0lZsqaQ3NjVJAJjoUuesbc+S9EpJ90uaHhGbpcFCl3TsMPdZaHuF7RXS053NFgAmqLbL2vZkSbdIel9EtP2SbkQsjoi5ETFXmjSaOQLAhNdWWds+TINFfUNE3Nq6eYvt41vfP17S1mamCABo590glnSdpHURMfQP9N0h6ZLW55dI+kr3pwcAkNr7g7lnSnq7pDW2V7Vu+5Ckj0u62fY7JP1U0luamSIAYMSyjojlkoa7uuY13Z0OAOBA+uhy88oyl7JL0kntRw9/c2rk2Tu/n8pfqn9tO/v+r302NbbOvSWX1/RE9sHk2LOS+SatS+bPTOYzl+KvTo6dvTw9s4wEl5sDAHqMsgaAAihrACiAsgaAAihrACiAsgaAAihrACiAsgaAAihrACiAsgaAAihrAChgAq8Nkl2PI2NqMj8lmV+fyF6YG/qiU1PxyZ/7edvZeUfekxr7zruTCzl+OZHdkBtad2afJ0tHjvzKtOTY2TUwMmt9SNJAMo/OsDYIAPQNyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaAAyhoACqCsAaCACbw2SNZhieyhybGza4lsS2RPTo69Jpl/Z/vRi2bmhj4qF9c1mfD9ycFXJ/MbE9lTkmNn9r8kbU/mdyey2XVKmpR5jkrjZ+6sDQIAfYOyBoACKGsAKICyBoACKGsAKICyBoACKGsAKICyBoACKGsAKICyBoACstdFj2PZS02b3PRpyfybcvFXPbf97BO5oaU35+LrE9nbc0Nr19PJO2Rk91E2n7Euma96WXXT+ns7ObIGgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAL6aG2QrJ0Njr01mf9cLv7dTPiI3NhpiXUqdmfHzv56Zh73pn/1m/z9ypooa4n093ZyZA0ABYxY1rZPtP0t2+tsP2T7va3bF9neaHtV67/zm58uAExM7fxbcLek90fEg7anSFppe1nre1dFxCeamx4AQGqjrCNis6TNrc932F4naUbTEwMA/FrqnLXtWZJeKen+1k2X2V5t+3rbR3d5bgCAlrbL2vZkSbdIel9EbJd0taQXS5qjwSPvTw5zv4W2V9heITX5lz8AoH+1Vda2D9NgUd8QEbdKUkRsiYhnI2KPpGslnX6g+0bE4oiYGxFzpUndmjcATCjtvBvEkq6TtC4iPjXk9uOHxC6QtLb70wMASO29G+RMSW+XtMb2qtZtH5J0se05kkLSgKR3NTJDAEBb7wZZLskH+NZd3Z8OAOBAuIIRAAqYwGuDNLlmxtRkfkoyPyuRza5RsSWZ35bIZtduyMq8/T/7uGxP5jPbml2jotaaFmOnvx8XjqwBoADKGgAKoKwBoADKGgAKoKwBoADKGgAKoKwBoADKGgAKoKwBoADKGgAK6KPLzcfTJbtNX+K9PpkHUB1H1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQAGUNAAVQ1gBQgCNi7H6Y/XNJjx7gW8dIenzMJtI7bGf/mSjbynY25wUR8byRQmNa1sNOwl4REXN7PY+msZ39Z6JsK9vZe5wGAYACKGsAKGC8lPXiXk9gjLCd/WeibCvb2WPj4pw1AODgxsuRNQDgIHpa1rbPtf1D2+ttX97LuTTN9oDtNbZX2V7R6/l0i+3rbW+1vXbIbdNsL7P9SOvj0b2cYzcMs52LbG9s7dNVts/v5Ry7wfaJtr9le53th2y/t3V7X+3Tg2znuN2nPTsNYvsQST+SdI6kDZK+J+niiPhBTybUMNsDkuZGRF+9V9X2qyU9KenfIuJlrdv+WdK2iPh463/CR0fEB3s5z04Ns52LJD0ZEZ/o5dy6yfbxko6PiAdtT5G0UtIbJS1QH+3Tg2znhRqn+7SXR9anS1ofET+JiF9KuknS/B7OB6MQEfdK2rbfzfMlLW19vlSDT4LShtnOvhMRmyPiwdbnOyStkzRDfbZPD7Kd41Yvy3qGpJ8N+XqDxvmD1aGQ9HXbK20v7PVkGjY9IjZLg08KScf2eD5Nusz26tZpktKnBvZne5akV0q6X328T/fbTmmc7tNelrUPcFs/vzXlzIg4TdJ5kt7T+mc1arta0oslzZG0WdInezud7rE9WdItkt4XEdt7PZ+mHGA7x+0+7WVZb5B04pCvZ0ra1KO5NC4iNrU+bpV0mwZPA/WrLa1zgnvPDW7t8XwaERFbIuLZiNgj6Vr1yT61fZgGC+yGiLi1dXPf7dMDbed43qe9LOvvSZpt+4W2f0vSRZLu6OF8GmP7yNaLGLJ9pKTXSVp78HuVdoekS1qfXyLpKz2cS2P2llfLBeqDfWrbkq6TtC4iPjXkW321T4fbzvG8T3t6UUzrbTGflnSIpOsj4mM9m0yDbL9Ig0fTknSopC/2y7bavlHSPA2uVrZF0pWSbpd0s6TnS/qppLdEROkX54bZznka/OdySBqQ9K6953Wrsn2WpO9IWiNpT+vmD2nwfG7f7NODbOfFGqf7lCsYAaAArmAEgAIoawAogLIGgAIoawAogLIGgAIoawAogLIGgAIoawAo4P8BeYAYhZZFqmQAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1296x432 with 1 Axes>" ] @@ -1246,7 +1258,6 @@ } ], "source": [ - "#for modifier in [None,'guided', 'relu']:\n", "for modifier in ['guided']:\n", " grads = visualize_saliency(model, layer_idx, filter_indices=class_idx,\n", " seed_input=x_test[idx], backprop_modifier=modifier)\n", @@ -1257,12 +1268,12 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuU3WV5L/DnaWYg4SaGawRsvKCtepRqihzxQqtQansKtOqRHnuwVdG2rlV7erMeq7ZLW9viZfW0x4pKsadWbYvWy1KrpVplWcBAg0RAiTVKuCNFiBKYJO/5I0NXCgnv78nMnj3Z8/msxcpkz3eeefbsyez3y94zk621AAAAgAfzfeNeAAAAgMVPeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAgBHLzD/PzN95kNe3zHz0Hs7e47eFiqlxLwAAAJOutfaKce8Ac+WRRwAAALqURwAAGCgzn5yZ/5qZd2Xm32bmBzPzjZn54sy86H7Z/3g6aWaen5lv3Ol1v5GZN2bmDZn5C/d7u30z85zM/FZm3jz7lNcVQ94WRkl5BACAATJzn4j4cEScHxErI+L9EXHGHsw5NSJ+PSJOjohjI+I594v8YUQ8JiKOi4hHR8RREfG6gW8LI6M8AgDAMCfEjp8Z8iettZnW2oci4tI9mPOCiPiL1tr61tp3I+IN970iMzMiXhYRv9pau721dldE/H5EvLD3tjBqfmAOAAAM87CIuL611na67Lo9nHPZTn//5k4vHxYR+0XEZTt6ZEREZEQsG/C2MFLKIwAADHNjRByVmblTgTwmIr4eEd+NHaUvIiIy88jOnGN2+vvDd3r5toi4OyIe31q7vvi2MFKetgoAAMP8S0Rsi4hXZuZUZp4WEcfPvu6KiHh8Zh6XmcvjwZ9O+jcR8eLMfFxm7hcRr7/vFa217RHxroh4W2YeHhGRmUdl5o/13hZGTXkEAIABWmv3RsRPR8RLIuKOiHhRRHw8Iu5prX0tIn4vIv4xIq6NiIseZM4nI+LtEfFPEbFh9s+d/dbs5Rdn5p2zMx878G1hZPI/P2UbAAAYKjMviYg/b639xbh3gVHzyCMAAAyUmc/KzCNnn7Z6VkQ8MSI+Ne69YCH4gTkAADDcY2PH9x0eEDt+UM7zWms3jnclWBietgoAAECXp60CAADQpTwCAADQtaDf87hP7tuWx/4L+S4BFrUt8d24t92T494DlpLMQ1vE6nGvAbCIbIzWbuueRxa0PC6P/eOp+eyFfJcAi9ol7cJxrwBL0OqI+NK4lwBYRH54UGpOT1vNzFMz86uZuSEzXz2XWQAAe8J5BGBh7HF5zMxlEfFnEfHjEfG4iDgzMx83X4sBAPQ4jwAsnLk88nh8RGxorf1ba+3eiPhARJw2P2sBAAziPAKwQOZSHo+KiOt2+vum2cv+k8w8OzPXZubambhnDu8OAOAByueRiFsXbDmASTKX8rirn8bTHnBBa+e21ta01tZMx75zeHcAAA9QPo9EHLYAawFMnrmUx00RccxOfz86Im6Y2zoAACXOIwALZC7l8UsRcWxmPiIz94mIF0bER+dnLQCAQZxHABbIHv+ex9ba1sx8ZUT8Q0Qsi4jzWmtfmbfNAAA6nEcAFs4el8eIiNbaJyLiE/O0CwBAmfMIwMKYU3kEAGCp2tXPKtobzIw4f3chu7U4u3p0XzGi7EKofGxUmoUyl+95BAAAYIlQHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcCAACweG0dYX6mOJvxyEK2jWyLxcAjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjXsBAACGyhHObsX89wrZrcXZVSsK2ena6IOL+UMPGp5dXhsdW4r5mwrZzcXZ5c+X6udu8eNeUt19ppCd7HrlkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6psa9AOzOsoMfUsp/9U8fOTh7zY+8uzT7tbc8pZS/8n88ZnB221VfK80GYJLkuBfYydZi/u5C9vbi7Jli/uhCdLo2+jm1eDy9kF1dnL2pmP+7QvbjxdlxVzF/UC2+vJDdUhtd/1yvfD5W69Uovwa0eZ/okUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6psa9AOzO9kccXcpfedI7B2dnWm2XNx5+WSn/pDOeNjh7zFVfqy0DwAQp3iGN1HQxf0ghu7I4++5ifr/h0dXF0U8o5p8+PHrYY79VGn3rVx9e22VtLV7z7WK+eJtuObwQztrs8uf6KCvTYvoa0OeRRwAAALqURwAAALrm9BhsZm6MiLsiYltEbG2trZmPpQAAhnIeAVgY8/EE3h9prd02D3MAAPaU8wjAiHnaKgAAAF1zLY8tIj6dmZdl5tnzsRAAQJHzCMACmOvTVk9srd2QmYdHxGcy85rW2ud3Dsx+ET87ImJ55ccoAwAMUzqPRBR/3QEAETHHRx5bazfM/nlLRHw4Io7fRebc1tqa1tqa6dh3Lu8OAOABqueRiMMWekWAibDH5TEz98/MA+97OSJOiYj187UYAECP8wjAwpnL01aPiIgPZ+Z9c/66tfapedkKAGAY5xGABbLH5bG19m8R8aR53AUAoMR5BGDhzMfveYRBpo45upR/xLkbRrQJAFTkCGd/r5i/vZBdURt98CG1/JrK7OLHcHPxhyxuLmQPrY2Om4r5zw2P3rqu+MObqrtsLOZLKp+LERGXF/MHFbJPLM4+ohafKnz+bq2NjpipvkHB/Fc9v+cRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlxL8De7Vuve9rg7FNOvao0+49WfaG6zqJxwNNuHZy97neGfwwjIg798tZSfsVHLi3lAVhIta/pEXcXsitro4+rxeNFhezq4uybivl1hew1xdkXFfMfL2Q3F2dvKear80uOKOarn+uLyKJafbz1zSOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2NewH2bl9++f8ZnJ1p20a4yeLyuSe9b3j4SbXZH/7uqlL+vLtOL+Wn/umyUh5g8rURzj6wmD9oePTRxdEnFfNrhke/79DvlkZv37J/bZetheym2uhYX8xvmSmEby8O/3YxX/nArK6NPuHoWv55xXylpfxVbXSs/UbxDSq307HF2YV/02Xz/7XLI48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17ARaX6c+tquVz2Yg2WVz+9d7tpfzGmcMGZ8/Y//bS7BcccEst///OLeV/8qinlPIAk+/u0Y1evl8t/5xC9vTa6DihFp8+8s7B2ZmNB9WGr6vFY20he01x9pZivnS8Xlmc/e1i/vJC9sDa6HNqt+mnT3xGKX9I4bo+5fQrSrNjde3sFfGxQvYFtdEHPK6Wr3w+bq2NHsIjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjXsBRuvu048v5X9+1d+W8jNt20iyo/aEC19Ryh924b6l/L7fGX5df/uk2v/DufL5f1LKV2367acNzh79B18c4SYAi8XdhezW2ujV+9XyrxoeffqzP1MafXDcUcpfGf9lcPabFx9Umh1ra/FSfvNMcXjR1PTw7AGFbETEHYfU8nFzIXtXafKTT7yolD/5ZbV8/MPw6F9/6/ml0T/7A39f2+WaywvhyteLiNhci4+bRx4BAADoUh4BAADo6pbHzDwvM2/JzPU7XbYyMz+TmdfO/vnQ0a4JACxlziMA4zfkkcfzI+LU+1326oi4sLV2bERcOPt3AIBROT+cRwDGqlseW2ufj4jb73fxaRHx3tmX3xsRp8/zXgAA/8F5BGD89vR7Ho9ord0YETH75+G7C2bm2Zm5NjPXzsQ9e/juAAAeYI/OIxG3LtiCAJNk5D8wp7V2bmttTWttzXTUft0BAMB82Pk8EnHYuNcB2CvtaXm8OTNXRUTM/nnL/K0EADCI8wjAAtrT8vjRiDhr9uWzIuIj87MOAMBgziMAC2jIr+p4f0T8S0Q8NjM3ZeZLIuLNEXFyZl4bESfP/h0AYCScRwDGb6oXaK2duZtXPXued2GgZY9/7ODsG996bmn2mn3urW5TzA/34e+uKuVf+9mfGZz9wd+8pjR72513lvIVj732MaX8pT+1vJQ/ft8tpfwnf/GPBmdPWf6bpdmrf/+yUr7d44dsATuM9zxSuQ+4uzb60UeU4v/12f80OPu6+L3S7G3F+/S/jP85OPvNQ3+gNLtsayU8Uxw+XYt3T9c7qd2lR8SKYr64+yjdXIu/67rh2Ze9s/akgz+8+uJS/opnvGx4+KJvl2ZHfKOYP6SQPbA4u2/kPzAHAACAvZ/yCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBegbvs+w2+2NfvcO8JNan7hm6eW8nf99xWl/GM2XTo4u600ebS2XfW1Uv6Xzn9FKb/25W8v5VctG/5xv/wltdk/86GzSvl2xdWlPMBo3D2ibEQcWos/I74wOHvyJRfVhi+rxb+3Zr/B2bVPfUpp9rXHPam2zLpCdsPwvXeYqcW3FLJ31EaXd4mVhWzt3HXlt1eX8vHztfhJHyuE31+b/bcvf34p/8SPXzE4u+W4Q2rLbLy+lo/pQvbA4uw+jzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXuBdi7vebmNYOzd770kNLsbZuura6zJKy+4LZS/ndOP6GUf/ORXyrlAdjZ1lq8eBI7OO4YHl5Xmx3Fu92fXv7JwdkNT3hUafZvveittWXWTw/P3lQbHZtHeFzeMrrROxxRyK4oTZ65+KBS/uIznlTKn/CmK4aH9y+Njn3inlL+mQ/5wuDsp195Wm2Zc55Yy5c+f1tt9gAeeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBratwLMFrTuWyk87/85FZIXzuyPZaUzFJ86vu2l/Kj/Jy54Xdr+SNPH80eAKNTPFptrcXvjX2Gh7fUZsfFxXzBS895dyl/6fc/tZS/4NQXDQ+vL42OWF+7342onI2qs1cU84ePbva6WvzdP/HSUn7ra/5icPaWOKI0+x/jOaX8HXHw4Ozyl95emr3lgJWlfLy9kL2mNnoIjzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXuBaj76i/uNzg707aNcBPGYeNPH1LK/91hl5byM21ZIVv7/HrY60vx2F6LA+x9ltfiB8cdw8M31GbHt4v5m4dHV67bUhr9Y8f9Qyn/+bOeOTh768UPL82O9bV4xO2F7EHF2dPFfHV+wTW1+Ie3nVHK37Zs+HnnujimNPuq7zyulD/wIZsHZ495yHWl2dc+fWUpHx8oZIu30RAeeQQAAKBLeQQAAKCrWx4z87zMvCUz1+902Rsy8/rMXDf733NHuyYAsJQ5jwCM35BHHs+PiFN3cfnbWmvHzf73ifldCwDgPzk/nEcAxqpbHltrn4/ad/4CAMwr5xGA8ZvL9zy+MjO/PPs0kofuLpSZZ2fm2sxcOxP3zOHdAQA8QPk8EnHrQu4HMDH2tDy+IyIeFRHHRcSNEfGW3QVba+e21ta01tZMx757+O4AAB5gj84jEYct1H4AE2WPymNr7ebW2rbW2vaIeFdEHD+/awEAPDjnEYCFtUflMTNX7fTXM2IPfn0qAMBcOI8ALKypXiAz3x8RJ0XEoZm5KSJeHxEnZeZxEdEiYmNEvHyEOwIAS5zzCMD4dctja+3MXVz8nhHsAgCwS84jAOPXLY8sPq99xsfGvQIdU8ccPTh711MeVpr95z//f6vrjMyl9ywv5fPerSPaBGCUKl+7il/nht9dRETE0+KLw8P/XJtddsLw6JZja6MfFV8v5X8qPjo4+55TX1lb5gO1eNxR+Y0y08XhBxbzBxXzBRtq8ds/dVQp/8WfOLH2Dgru3VL7IZ53bB1emW7dcnhtmbW1eNxWzM+zufyqDgAAAJYI5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuqXEvAJPoqt89cnD2K6f86Qg3qbtg86GDs+/49eeXZi+/+tLqOgCLwMyIshEx/O4iIiKO+876wdlvXFKbvXplLZ+PGJ79+v6PLM3+Xqwo5Q+OO4aHh9/N7aHK58DdxdkHFfOVj2OxFhQ+5BERsaEWv/X6wwdnv/+ojbXhRxR3ueLhw8P/WJsdnyrmix/H+eaRRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0A7A2mP7eqlP+DVReMaJPRO//6pw3OLv/YpSPcBGAJ2FKLbyuc3G6pjY7Lb6/lf+b9w7Orn72xNPvv9n1eKf/ue146PPyB0uiIzcV8HFLIrqgOLzqwkM3a6ANq8ernety0fHD0huUPK42euaPycYmIiwvZj9dGx0XF/NZWfIP55ZFHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuqbGvQB1y3L74Ox0LhvhJhF3/uwJI5v9u7/3nlL+R1ZsGdEm9Y/jTNtWSI/2NqpqP3r9uFcAWGSmC9mttdEba/HP7f+swdlTH/HPpdmf/EZtlyP+anj26T83/OwSEfGJU55byn/nOUcOD1/0vdLs2u0fEXFEMV/RivkcHj24OPrQYr74TyM2DI/ObDhoZLMjIuLiQnZdcfbW6m1a+UDOf9XzyCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdU+NegLo3f/B5g7MveMnbR7hJxOf/+M8GZ2fathFuEjHTRjq+ZNTXteIJF76ilD82Lh/RJgB7q5WF7N210etq8TfF/x6cPfVD/1ya/ZtPr+1y5Xdr+YpLv/7M2htcdEkhXL2fe0EtvvyQ4dkttdEjtbyYr+6+qZi/bUTZiIhrivkNhewdxdmxtfoGY+WRRwAAALq65TEzj8nMz2bm1Zn5lcz8ldnLV2bmZzLz2tk/Hzr6dQGApch5BGD8hjzyuDUifq219oMRcUJE/HJmPi4iXh0RF7bWjo2IC2f/DgAwCs4jAGPWLY+ttRtba5fPvnxXRFwdEUdFxGkR8d7Z2Hsj4vRRLQkALG3OIwDjV/qex8xcHRE/FBGXRMQRrbUbI3Z8QY+Iw3fzNmdn5trMXDsT98xtWwBgyZvreSTi1oVaFWCiDC6PmXlARFwQEa9qrd059O1aa+e21ta01tZMx757siMAQETMz3kk4rDRLQgwwQaVx8ycjh1fqN/XWvvQ7MU3Z+aq2deviohbRrMiAIDzCMC4DflpqxkR74mIq1trb93pVR+NiLNmXz4rIj4y/+sBADiPACwGUwMyJ0bEz0XElZl536+yfU1EvDki/iYzXxIR34qI549mRQAA5xGAceuWx9baRRGRu3n1s+d3HQCAB3IeARi/IY88ssg88oO3Dc5e+qLlpdnH77ulug67cOk9wz/u5970rNLsf/+lI0v5H/jGhlJ+WykNsBSsLGS31kZfXItf9BsnD84+9Y8/V5r98c0/Wco/9Z2bB2e/csojS7Pjgt39f4LdGfyzk6J+/J2uxUd6ui5+flV2H3683KF2vKjPr7ijmK/uUjoet+LwqvHWt9Kv6gAAAGBpUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADomhr3AtRtu+prg7Ov+18vLc2+7r9tL+W/9uPvLOWXil867xWDs8e86YvF6f9ezAMwN/uNbvTm79Xy5wyPXnrRs0qjj/z7m0r5X3352wZnvxqPLc2O9bV4xBML2ZXF2QfW4luL40uqR/eZ4dGtxdmbspivxUerjXuBnexddcwjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjXsBRmvFRy4t5R/zkdr8Z575y4Oz0y++uTT7U4//YCl/yvoXDs5uP//w0uyWpXisXnfr4Oy22mgAJsrdxfyG4dGLjypN3v7Co0v5t7z4tcPDW0ujIy4q5qNyv76iOLt4CNhSHL9oVG+kmRHPr6hWmukRz59cHnkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgK1trC/bODsqV7an57AV7fwCL3SXtwriz3Z7j3gOWksw1LeJLlbcY2S4RM8X8nSPZYodDavEjC9mp2ui4rZjfUglXz76L6Uv0wp3b+7aOe4E5qH5CLgU/HK2t7X6ye+QRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlxLwAAsLi1Ec6eLuYPGckWO8zU4jfdOZo1IiJixYjzFaO8/fdm1c/dxcRtuqc88ggAAEBXtzxm5jGZ+dnMvDozv5KZvzJ7+Rsy8/rMXDf733NHvy4AsBQ5jwCM35CnrW6NiF9rrV2emQdGxGWZ+ZnZ172ttXbO6NYDAIgI5xGAseuWx9bajRFx4+zLd2Xm1RFx1KgXAwC4j/MIwPiVvucxM1dHxA9FxCWzF70yM7+cmedl5kPneTcAgAdwHgEYj8HlMTMPiIgLIuJVrbU7I+IdEfGoiDgudvyfwLfs5u3Ozsy1mbl2Ju6Zh5UBgKVqPs4jEbcu2L4Ak2RQeczM6djxhfp9rbUPRUS01m5urW1rrW2PiHdFxPG7etvW2rmttTWttTXTse987Q0ALDHzdR6JOGzhlgaYIEN+2mpGxHsi4urW2lt3unzVTrEzImL9/K8HAOA8ArAYDPlpqydGxM9FxJWZuW72stdExJmZeVzs+C2bGyPi5SPZEADAeQRg7Ib8tNWLIiJ38apPzP86AAAP5DwCMH6ln7YKAADA0jTkaasAAHA/03vpbGBPeeQRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlxLwAAsHS1cS+wk+qx8MCRbMHeYjF97rJQPPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAV7bWFu6dZd4aEd/cxasOjYjbFmyR8XE9J89Sua6u5+h8f2vtsAV+n7CkOY+4nhNmqVzPiKVzXRfteWRBy+Nul8hc21pbM+49Rs31nDxL5bq6nsBSsFS+Briek2WpXM+IpXNdF/P19LRVAAAAupRHAAAAuhZLeTx33AssENdz8iyV6+p6AkvBUvka4HpOlqVyPSOWznVdtNdzUXzPIwAAAIvbYnnkEQAAgEVsrOUxM0/NzK9m5obMfPU4dxm1zNyYmVdm5rrMXDvufeZLZp6Xmbdk5vqdLluZmZ/JzGtn/3zoOHecD7u5nm/IzOtnb9N1mfncce44HzLzmMz8bGZenZlfycxfmb18om7TB7meE3ebAn1L5TwyqWeRCOeRSbvvch5ZvLfp2J62mpnLIuJrEXFyRGyKiC9FxJmttavGstCIZebGiFjTWpuo302Tmc+MiM0R8ZettSfMXvZHEXF7a+3Ns3fCD22t/dY495yr3VzPN0TE5tbaOePcbT5l5qqIWNVauzwzD4yIyyLi9Ih4cUzQbfog1/MFMWG3KfDgltJ5ZFLPIhHOIzFh913OI4v3PDLORx6Pj4gNrbV/a63dGxEfiIjTxrgPe6C19vmIuP1+F58WEe+dffm9seMfwV5tN9dz4rTWbmytXT778l0RcXVEHBUTdps+yPUElh7nkQngPDJZnEcWr3GWx6Mi4rqd/r4pFvkHa45aRHw6My/LzLPHvcyIHdFauzFixz+KiDh8zPuM0isz88uzTyPZq586cX+ZuToifigiLokJvk3vdz0jJvg2BXZpKZ1HltJZJGKC77t2YWLvu5xHFtdtOs7ymLu4bJJ/9OuJrbUnR8SPR8Qvzz7tgL3bOyLiURFxXETcGBFvGe868yczD4iICyLiVa21O8e9z6js4npO7G0K7NZSOo84i0ymib3vch5ZfLfpOMvjpog4Zqe/Hx0RN4xpl5Frrd0w++ctEfHh2PE0mUl18+xzuO97LvctY95nJFprN7fWtrXWtkfEu2JCbtPMnI4dX8De11r70OzFE3eb7up6TuptCjyoJXMeWWJnkYgJvO/alUm973IeWZy36TjL45ci4tjMfERm7hMRL4yIj45xn5HJzP1nvwk2MnP/iDglItY/+Fvt1T4aEWfNvnxWRHxkjLuMzH1fvGadERNwm2ZmRsR7IuLq1tpbd3rVRN2mu7uek3ibAl1L4jyyBM8iERN237U7k3jf5Twy8BdaAAAA10lEQVSyeG/Tsf201YiI2R87+/aIWBYR57XW3jS2ZUYoMx8ZO/4PX0TEVET89aRc18x8f0ScFBGHRsTNEfH6iPj7iPibiHh4RHwrIp7fWturv7l7N9fzpNjxdIIWERsj4uX3PQ9/b5WZT4+IL0TElRGxffbi18SO599PzG36INfzzJiw2xToWwrnkUk+i0Q4j8SE3Xc5jyze88hYyyMAAAB7h3E+bRUAAIC9hPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA1/8HuxXzMNXblFgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH81JREFUeJzt3XuU3WdZL/DnMTNN2qa1lN5CG0ihhVLqIdCs0gUeqHKxstQWBU7rZRVFSxWWeBc5yMUFylFBlkdFi5T2eBBQClJdIGLlYo/SktZKS1vaioGm9xhjEuglSd/zR6as0CR9f09m9uzJns9nra5M9nz3M8+ePcm83+49O9laCwAAAHg03zbuBQAAAFj4lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAABixzPzjzPz1R3l/y8wT9nH2Pl8XKqbGvQAAAEy61toF494BZssjjwAAAHQpjwAAMFBmPjMz/yUzt2TmX2bmhzLzrZn5isy84hHZbz6dNDMvzsy37vK+X87MOzPzjsz8iUdcb2lm/m5mfi0z7555yuuBQ64Lo6Q8AgDAAJl5QER8NCIujojDI+IDEfGSfZhzZkT8UkS8MCJOjIgXPCLyvyLiyRGxOiJOiIhjI+KNA68LI6M8AgDAMKfHztcM+f3W2rbW2kci4qp9mPPyiHhfa+361trXI+LND78jMzMifioifr61trG1tiUifjMizuldF0bNC+YAAMAwj4uI21trbZfLbtvHOVfv8vuv7vL2kRFxUERcvbNHRkRERsSSAdeFkVIeAQBgmDsj4tjMzF0K5MqI+LeI+HrsLH0REZGZx3TmrNzl94/f5e0NEXFfRDyttXZ78bowUp62CgAAw/xzROyIiNdk5lRmnhURp828718j4mmZuTozl8WjP530LyLiFZl5cmYeFBFvevgdrbWHIuI9EfF7mXlURERmHpuZ39O7Loya8ggAAAO01h6MiB+MiFdGxKaI+NGI+JuIeKC1dnNE/EZE/H1E3BIRVzzKnE9ExLsi4h8i4taZX3f1qzOXfz4zN8/MfMrA68LI5Lc+ZRsAABgqM6+MiD9urb1v3LvAqHnkEQAABsrM52XmMTNPWz0vIv5bRPztuPeC+eAFcwAAYLinxM6fO1weO18o56WttTvHuxLMD09bBQAAoMvTVgEAAOhSHgEAAOia1595PCCXtmVx8Hx+SIAF7f74ejzYHshx7wGLSeYRLWLVuNcAWEDWRWsbuueReS2Py+LgeFY+fz4/JMCCdmW7fNwrwCK0KiLWjnsJgAVkzaDUrJ62mplnZuaXM/PWzHzdbGYBAOwL5xGA+bHP5TEzl0TEH0bE90bEyRFxbmaePFeLAQD0OI8AzJ/ZPPJ4WkTc2lr7SmvtwYj4YEScNTdrAQAM4jwCME9mUx6PjYjbdvn9+pnLvkVmnp+ZazNz7bZ4YBYfDgBgN+XzSMS987YcwCSZTXnc06vxtN0uaO3C1tqa1tqa6Vg6iw8HALCb8nkk4sh5WAtg8symPK6PiJW7/P64iLhjdusAAJQ4jwDMk9mUxy9ExImZeXxmHhAR50TEZXOzFgDAIM4jAPNkn/+dx9ba9sx8TUR8MiKWRMRFrbUvzdlmAAAdziMA82efy2NERGvt4xHx8TnaBQCgzHkEYH7MqjwCAAC7+kYhu6U4e1sxf3ghe1Bx9qjt9rpXj2JPr5vFKMzmZx4BAABYJJRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuqbGvQAAAEyO7YXsN0a2xU6VXaDPI48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17AQAA+FatmN8+ki12mq7Fjzt0ePaUQjaifnK/qZC9tTg7vlHMH1TMZzE/SpWvx4W099zzyCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdU+NeAPZmyWHfXsp/+Q+eODh703f9aWn2G+45tZS/7keePDi744abS7MBYPJtL+Y3F7L31UZPHVfLXzA8+oT/eVNp9GGxqZT/1z85fXi4sPdO64r5p9biR+Tw7Nba6Li/mC99PU5Xh+9XPPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA19S4F4C9eej440r56874k8HZba22y1uPurqUf/pLnj04u/KGm2vLAMDEmy7mH1vIbquNrh1HIl4wPPrj8b7S6MfFHaX8z57z5MHZ+99weGl2bNhYy8e64vzji/NHqfr1OLk88ggAAECX8ggAAEDXrJ62mpnrImJLROyIiO2ttTVzsRQAwFDOIwDzYy5+5vG7Wmsb5mAOAMC+ch4BGDFPWwUAAKBrtuWxRcTfZebVmXn+XCwEAFDkPAIwD2b7tNXntNbuyMyjIuJTmXlTa+1zuwZm/hI/PyJiWRw0yw8HALCb0nkk4vHzvyHABJjVI4+ttTtmfr0nIj4aEaftIXNha21Na23NdCydzYcDANhN9TwSceR8rwgwEfa5PGbmwZl5yMNvR8SLIuL6uVoMAKDHeQRg/szmaatHR8RHM/PhOX/eWvvbOdkKAGAY5xGAebLP5bG19pWIePoc7gIAUOI8AjB/5uLfeYRBplYeV8off+GtI9oEANjdN4r57cOjU4fWRp9Si8cRhezW6dHNjojYOjx6XXxHafSGeGxxmYLq5/wzhxevcE0xXzkHPrM2eqr4eaw0pvtro3e+WHRFVj/AnPLvPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Ne4F2L997Y3PHpw99cwbSrN/e8U/VtdZMJY/+97B2dt+ffjnMCLiiC9uL+UP/NhVpTwAi1Xt+0vJEcX86cX8KYXshuLsu4r5K4ZHL93+o7XZx9TicVMhe1xx9vKTa/mtxfmxsZAtfu1Wv9Q1pm/yyCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdU+NegP3bF1/1vwdnt7UdI9xkYfnM098/PPz02uyPfn1FKX/RlrNL+al/uLqUB2BSHFqLLytkT6qNjuOK+cMK2U3F2RuK+ZsK2c8XZ1dtLWSrreCCYn7NybV85X7609roWLu+lr9/YyF8Qm12HFTMj5dHHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcCLCzTn1lRy+eSEW2ysPzLgw+V8uu2HTk4+5KDN5Zmv3z5PbX8n11Yyn/fsaeW8gDMRivmtxey07XRq2rxWFPInlScXT2hXl/IXlucfVMxv7WQrd7Ou4r5uKWQPbE2+uJtpfg/PuH0Uv6Q2DI4u/oFXy7NjhNur+XjE4Xsj9RGH1b8vN8/ouxAHnkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga2rcCzBa9519Win/4yv+spTf1naMJDtqp1x+QSl/5OVLS/ml/zX8tv7aGbX/h3Pdy36/lK9a/2vPHpw97rf+aYSbACwG24v5jYXs0bXRp9ficU4he1hx9hUjzH++OHt7K14hh0eXF0fHfxTzf1/IbitNPu4J06X8d158TSkflw+PvuPPXl0a/Yur/6i2y7V31/IVm0Y3ehQ88ggAAECX8ggAAEBXtzxm5kWZeU9mXr/LZYdn5qcy85aZXx8z2jUBgMXMeQRg/IY88nhxRJz5iMteFxGXt9ZOjJ3PSH7dHO8FALCri8N5BGCsuuWxtfa52P2ns8+KiEtm3r4kIs6e470AAL7JeQRg/Pb1Zx6Pbq3dGREx8+tRewtm5vmZuTYz126LB/bxwwEA7GafziMR987bggCTZOQvmNNau7C1tqa1tmY6av/cAQDAXNj1PBJx5LjXAdgv7Wt5vDszV0REzPx6z9ytBAAwiPMIwDza1/J4WUScN/P2eRHxsblZBwBgMOcRgHk05J/q+EBE/HNEPCUz12fmKyPi7RHxwsy8JSJeOPN7AICRcB4BGL+pXqC1du5e3vX8Od6FgZY87SmDs29954Wl2WsOeLC6TTE/3Ee/vqKUf8Onf2hw9qm/clNp9o7Nm0v5iqfc8uRS/qofWFbKn7b0/lL+Ez/924OzL1r2K6XZq37z6lK+PeBFtoCdJvc8cl8xX/l+dHRt9Jpa/AlnDf9euqN4Xli/9sTaMtf3I9+0/T9qs2O6mD90eHR7cXTZISObvP7K2n101yu+vZQ/5mv/NTj78xvfXZr9yX/5nlL+737trOHh8v/CWl/MF76+StlhRv6COQAAAOz/lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6psa9AHUPHTD8bltzwIMj3KTmJ756Zim/5X8cWMo/ef1Vg7M7SpNHa8cNN5fyP3PxBaX82le9q5RfsWT45/2aV9Zm/9BHzivl27/eWMoD7H+2FfObR7JFREScUoufEZ8enN0Uh5Vmr19+Ym2ZTZXwxtrsOLYWr5yut9dGRxxazD+rkD26NvoPavHvftY/lPLvfuNPD84+77PDz4AREZ88+uxS/lW/Nfy8c+Gtry3Njg/fXcvHfYVs9eulzyOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2NewH2b6+/e83g7OaffGxp9o71t1TXWRRWXbqhlP/1s08v5d9+zBdKeQBmY3sxf9/waPWUt6oWPzluGJz9jziiNvyYWny0Dhzd6OrdH9PF/AmFbNZG/1UtfuO5zyzlz/vAJYOzn33ec0uzn/CBe0v5Hz7pzwdnL7zgtaXZ8eFTa/nYXMzPLY88AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0DU17gUYrelcMtL5X3xmK6RvGdkei0pmKT71bQ+V8qP8mrnjLbX8MWePZg+AhaN6FDtwePSw2uTlx91byh8f6wZnD4kttWVW1eKl27rp0OLwou2jHV9TOzOUbN1cy3/wkFL8q8edNDj7ht95W2n2W859Yyl/X+HP3ROf/6XS7K9c8LRSPj5Y+PrdVBs9hEceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wLUffmnDxqc3dZ2jHATxmHdDz62lP/wkVeV8tvakkK29vX1uDeV4vFQLQ6wHzqwmH/q8OjptcknH3xDKf+k+LfB2cNiU2n2MU//Sil/1+onDg9/5ujSbPZmczG/vhb/8MmDo//3nJ8qjV566gOl/FFxz+Ds0XF3afZXXvC0Uj6uKGRrf+wG8cgjAAAAXcojAAAAXd3ymJkXZeY9mXn9Lpe9OTNvz8xrZ/578WjXBAAWM+cRgPEb8sjjxRFx5h4u/73W2uqZ/z4+t2sBAHyLi8N5BGCsuuWxtfa5iNg4D7sAAOyR8wjA+M3mZx5fk5lfnHkayWP2FsrM8zNzbWau3Ra1VzYCAOgon0ci7p3P/QAmxr6Wx3dHxJMiYnVE3BkR79hbsLV2YWttTWttzXQs3ccPBwCwm306j0QcOV/7AUyUfSqPrbW7W2s7WmsPRcR7IuK0uV0LAODROY8AzK99Ko+ZuWKX374kIq7fWxYAYBScRwDm11QvkJkfiIgzIuKIzFwfEW+KiDMyc3VEtIhYFxGvGuGOAMAi5zwCMH7d8thaO3cPF793BLsAAOyR8wjA+HXLIwvPG/77X497BTqmVh43OLvl1MeVZv/xj/9RdZ2RueqBZaV8Prh9RJsA7K8OqsVPKGTPqY1+UXyylH/mbTcOzt67cnlp9jPi2lL+E6ufODxcGx2xqZhfNKaL+QNr8crn/TO10Zed+gOl/PHx74Oz/x7H15bZz76+ZvNPdQAAALBIKI8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17AZhEN7zlmMHZL73oD0a4Sd2lW48YnH33L72sNHvZjVdV1wFYANroRi/LWn718Oi3v/Su0uiXxodru7xvePTINVtLo5/04ltruxxWyDr9zpGjRzv+hEJ2e230vVc/vpZfVsjfVNslrijmNxTzc8wjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjXsB2B9Mf2ZFKf9bKy4d0Sajd/Htzx6cXfbXV41wEwB2Uzi5rVx6W2n006+8pZTf/JvDs4e+rDQ6lr74wdoV1hayGzbXZseBxfx0MV/RRjg7a/FVxfEnFfOrC9kjirNvLebvKmQrX4v7kt9QzM8xjzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXuBahbkg8Nzk7nkhFuErH5h08f2ey3/MZ7S/nvOvD+EW1S/zxuazsK6dHeR1Xtu28f9woAC0yObnT1W9e64dFNcVht9nW1+DsfGJ5982drszfEY2tX+JtK+BO12fGCWnx5YfettdER24v5wlG/+OUSJxXz3zni+RXrivm1hezni7PXFfNj5pFHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuqbGvQB1b//QSwdnX/7Kd41wk4jP/c4fDs5uaztGuEnEtjbS8SWjvq0Vp1x+QSl/Ylwzok0A2N03avHPHzQ4uv7/nVib/R21+OGV8GNrs/8tTqhdIa4oZG8szj6jFl9eyFZP4pumi1coWGitYGshu6k4+6YR5tcVZ8e2Yr5yR2Vxdp9HHgEAAOjqlsfMXJmZn87MGzPzS5n52pnLD8/MT2XmLTO/Pmb06wIAi5HzCMD4DXnkcXtE/GJr7akRcXpEvDozT46I10XE5a21EyPi8pnfAwCMgvMIwJh1y2Nr7c7W2jUzb2+JnU8UPzYizoqIS2Zil0TE2aNaEgBY3JxHAMav9DOPmbkqIp4REVdGxNGttTsjdv6FHhFH7eU652fm2sxcuy0emN22AMCiN9vzSMS987UqwEQZXB4zc3lEXBoRP9da2zz0eq21C1tra1pra6Zj6b7sCAAQEXNzHok4cnQLAkywQeUxM6dj51/U72+tfWTm4rszc8XM+1dExD2jWREAwHkEYNyGvNpqRsR7I+LG1to7d3nXZRFx3szb50XEx+Z+PQAA5xGAhWDIvzL5nIj4sYi4LjOvnbns9RHx9oj4i8x8ZUR8LSJeNpoVAQCcRwDGrVseW2tXRETu5d3Pn9t1AAB25zwCMH5DHnlkgXnihzYMzl71o8tKs09ben91HfbgqgeGf94vvOt5pdn/+TPHlPIn/futpfyOUhqA2dlSzK8bHv3Tk0uT//J931fK/+z3/83w8A+WRscNO2q7R6wvZA8tzj6wFl9eyB5WGx21Y13EpkJ2a3H29cV8df4Rhez24uy7ivnKl9eEK/1THQAAACxOyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdU+NegLodN9w8OPvGX/jJ0uzbvv+hUv7m7/2TUn6x+JmLLhicXfm2fypO/89iHoCFa1sxf/vw6IdPLk3+hfe9s5Rfddm6wdlb40ml2Rs/eWwpH9EK2e8ozj6kmC9YXsxXT+73F7KbirPXVz7nEbE+ix+gYFkxX/08bi/mS6ZHOXzOeeQRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlxL8BoHfixq0r5J3+sNv+55756cHb6FXeXZv/t0z5Uyr/o+nMGZx+6+KjS7JaleKy69t7B2R210QBMlEOL+cOHR7duK01e/8snlvLPfcNnB2fv33RIaXZ8sBaPOLqQrX1eIoqHgE3F8RX3F/PbR7LFjC3FfPXzPj08en/x66t6n/JNHnkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgK1tr8/bBDs3D27Py+fP28QAWuivb5bG5bcxx7wGLSeaaFrF23GvMqJ7D7itkD6yNPqL4V9GqQnZ7bXSsK+Y3VcLVz/kI/4qeKuarn8eRqn4eR7l89RPp2+7u1kRra7ufGI88AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0DU17gUAABavLOYPGskWERGxYVsxv7EQrh45Dy3mpwvZ6ud8hLa3EX+AUd7W6uzKfcRC5ZFHAAAAurrlMTNXZuanM/PGzPxSZr525vI3Z+btmXntzH8vHv26AMBi5DwCMH5DnkOwPSJ+sbV2TWYeEhFXZ+anZt73e6213x3degAAEeE8AjB23fLYWrszIu6ceXtLZt4YEceOejEAgIc5jwCMX+lnHjNzVUQ8IyKunLnoNZn5xcy8KDMfM8e7AQDsxnkEYDwGl8fMXB4Rl0bEz7XWNkfEuyPiSRGxOnb+n8B37OV652fm2sxcuy0emIOVAYDFai7OIxH3ztu+AJNkUHnMzOnY+Rf1+1trH4mIaK3d3Vrb0Vp7KCLeExGn7em6rbULW2trWmtrpmPpXO0NACwyc3UeiThy/pYGmCBDXm01I+K9EXFja+2du1y+YpfYSyLi+rlfDwDAeQRgIRjyaqvPiYgfi4jrMvPamcteHxHnZubqiGgRsS4iXjWSDQEAnEcAxm7Iq61eERG5h3d9fO7XAQDYnfMIwPiVXm0VAACAxWnI01YBAOARDhz3AsA888gjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXVPjXgAAgIVgesR5dpfjXgBKPPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAV7bW5u+DZd4bEV/dw7uOiIgN87bI+Lidk2ex3Fa3c3Se0Fo7cp4/JixqziNu54RZLLczYvHc1gV7HpnX8rjXJTLXttbWjHuPUXM7J89iua1uJ7AYLJa/A9zOybJYbmfE4rmtC/l2etoqAAAAXcojAAAAXQulPF447gXmids5eRbLbXU7gcVgsfwd4HZOlsVyOyMWz21dsLdzQfzMIwAAAAvbQnnkEQAAgAVsrOUxM8/MzC9n5q2Z+bpx7jJqmbkuM6/LzGszc+2495krmXlRZt6TmdfvctnhmfmpzLxl5tfHjHPHubCX2/nmzLx95j69NjNfPM4d50JmrszMT2fmjZn5pcx87czlE3WfPsrtnLj7FOhbLOeRST2LRDiPTNr3LueRhXufju1pq5m5JCJujogXRsT6iPhCRJzbWrthLAuNWGaui4g1rbWJ+rdpMvO5EbE1Iv5Pa+2Umct+OyI2ttbePvNN+DGttV8d556ztZfb+eaI2Npa+91x7jaXMnNFRKxorV2TmYdExNURcXZEvCIm6D59lNv58piw+xR4dIvpPDKpZ5EI55GYsO9dziML9zwyzkceT4uIW1trX2mtPRgRH4yIs8a4D/ugtfa5iNj4iIvPiohLZt6+JHb+Idiv7eV2TpzW2p2ttWtm3t4SETdGxLExYffpo9xOYPFxHpkAziOTxXlk4RpneTw2Im7b5ffrY4F/smapRcTfZebVmXn+uJcZsaNba3dG7PxDERFHjXmfUXpNZn5x5mkk+/VTJx4pM1dFxDMi4sqY4Pv0EbczYoLvU2CPFtN5ZDGdRSIm+HvXHkzs9y7nkYV1n46zPOYeLpvkl359TmvtmRHxvRHx6pmnHbB/e3dEPCkiVkfEnRHxjvGuM3cyc3lEXBoRP9da2zzufUZlD7dzYu9TYK8W03nEWWQyTez3LueRhXefjrM8ro+Ilbv8/riIuGNMu4xca+2OmV/viYiPxs6nyUyqu2eew/3wc7nvGfM+I9Fau7u1tqO19lBEvCcm5D7NzOnY+RfY+1trH5m5eOLu0z3dzkm9T4FHtWjOI4vsLBIxgd+79mRSv3c5jyzM+3Sc5fELEXFiZh6fmQdExDkRcdkY9xmZzDx45odgIzMPjogXRcT1j36t/dplEXHezNvnRcTHxrjLyDz8l9eMl8QE3KeZmRHx3oi4sbX2zl3eNVH36d5u5yTep0DXojiPLMKzSMSEfe/am0n83uU8snDv07G92mpExMzLzr4rIpZExEWttbeNbZkRyswnxs7/wxcRMRURfz4ptzUzPxARZ0TEERFxd0S8KSL+KiL+IiIeHxFfi4iXtdb26x/u3svtPCN2Pp2gRcS6iHjVw8/D319l5ndGxD9GxHUR8dDMxa+Pnc+/n5j79FFu57kxYfcp0LcYziOTfBaJcB6JCfve5TyycM8jYy2PAAAA7B/G+bRVAAAA9hPKIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3/HwWbpr6v15SkAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1274,7 +1285,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHqRJREFUeJzt3X2QpWdZJvDr3kxnMkkmwATyHUmACIQPBxkDVaEE5ZtFERcVdnFDyRq2JFtgsVtQVq1SruuixYeluGAQCK4QRT4k6wKCAQVqY2QSIwQiBDDAJFMZk0hmgMkwkzz7x3TcMZnJ8z4zffrMdP9+VanuPn2du593Tp8+z5X39OlqrQUAAADuy7+a9wIAAAA4/CmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAwY1X11qr6r/fx+VZVDzvI2Qd9XRixZt4LAACAla619h/nvQY4VM48AgAA0KU8AgDARFX1g1X1t1W1o6r+pKr+uKp+rapeUlWfuUf2n59OWlWXVNWv7fO5/1JVW6vqpqr6uXtcb21Vvb6qvlFVNy8+5XXdlOvCLCmPAAAwQVUdneSDSS5JsiHJpUmefxBznpXkPyd5epJzkjztHpHfSPL9STYmeViS05P88sTrwswojwAAMM0Ts/c1Q367tba7tfaBJH9zEHN+Osk7W2vXtta+k+S1d3+iqirJzyf5xdbaba21HUl+PckLe9eFWfOCOQAAMM1pSW5srbV9LvvmQc65ap+Pv77P+w9KcmySq/b2yCRJJTlqwnVhppRHAACYZmuS06uq9imQZyb5apLvZG/pS5JU1SmdOWfu8/H37fP+LUl2JnlUa+3GwevCTHnaKgAATHNFkjuTXFRVa6rqeUnOW/zc3yV5VFVtrKpjct9PJ31vkpdU1blVdWySX7n7E621u5K8LcmbquqkJKmq06vqmb3rwqwpjwAAMEFr7XtJfjLJS5N8K8mLk/xZkl2ttS8n+dUkf5Hk+iSfuY85H0nyW0k+keQri2/39erFy/+6qrYvznz4xOvCzNS/fMo2AAAwVVVdmeStrbV3znstMGvOPAIAwERV9eSqOmXxaasXJHlsko/Oe12wHLxgDgAATPfw7P29w+Oz94VyXtBa2zrfJcHy8LRVAAAAujxtFQAAgC7lEQAAgK5l/Z3Ho2ttOybHLeeXBDis3ZHv5HttV817HbCaVJ3YkjPmvQyAw8iWtHZrdz+yrOXxmByXJ9RTl/NLAhzWrmyXz3sJsAqdkeRj814EwGHkGZNSh/S01ap6VlV9qaq+UlWvOZRZAAAHw34EYHkcdHmsqqOS/G6SZyc5N8mLqurcpVoYAECP/QjA8jmUM4/nJflKa+1rrbXvJfmjJM9bmmUBAExiPwKwTA6lPJ6e5Jv7fLxl8bJ/oaourKrNVbV5d3YdwpcDALiX4f1IctuyLQ5gJTmU8ri/V+Np97qgtYtba5taa5sWsvYQvhwAwL0M70eSDcuwLICV51DK45YkZ+7z8RlJbjq05QAADLEfAVgmh1IeP5vknKo6u6qOTvLCJJctzbIAACaxHwFYJgf9dx5ba3uq6qIkf57kqCTvaK19YclWBgDQYT8CsHwOujwmSWvtw0k+vERrAQAYZj8CsDwOqTwCALBS7B7ML8xkFXuNblF3DmS3D85eNxY//uzp2eeOjc4Zg/lrB7J/OTj7jpsHrzD67z5i8Daa6ffuynYov/MIAADAKqE8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0LVm3gsAAOBItHsge8Lg7NEt6vaB7HWDs88Yi7/w7MnRZ7/tA0Ojn5a/GMr/Qf795Ozf/eITh2bnrSeP5e84aSw/ZMdgfudgfuR7fdTCDGcvPWceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Foz7wUAALDSjW451w3m9wxkbxycvTAWf8T06H/I7w+N/slrPjKUf+jGr07OvvC1lw7NvuNhG4bySY3FbxnI/ukJY7Ov2T2Wz80D2fWDs0e/10eM3C+mceYRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArjXzXgCsRPX4R03O/p/L/tfQ7Me89aKh/Jn/7f8O5QFYrXYP5hdmsorZ2zOY3zkWv2Nw/IhtY/Fz88XJ2X93v/cMzf7uy48dyj8mnx/KfzUPnZx9+8PG9kZ58bqxfK4fyJ41OPvEwfyI0e/1PmceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Foz7wXASrTth06YnN2TO4dmH3tTG10OAEywMMPZe2Y4e9T6wfyGsfgp06P3z7fGZt8+Fj8xt0zOfn++NDT73HxxKP/caz8xlP/HRx8/OfvBFz5/aPZtLz5pKJ9sG8iePDh7tI7N977kzCMAAABdyiMAAABdh/S01aq6IcmOJHcm2dNa27QUiwIAmMp+BGB5LMXvPP5Ia236E6oBAJae/QjAjHnaKgAAAF2HWh5bko9V1VVVdeFSLAgAYJD9CMAyONSnrZ7fWrupqk5K8vGq+vvW2qf2DSz+EL8wSY7JsYf45QAA7mVoP5KcsfwrBFgBDunMY2vtpsW325J8MMl5+8lc3Frb1FrbtJC1h/LlAADuZXQ/Mvx3+wBIcgjlsaqOq6r1d7+f5BlJrl2qhQEA9NiPACyfQ3na6slJPlhVd895T2vto0uyKgCAaexHAJbJQZfH1trXkvzAEq4FAGCI/QjA8lmKv/MI3MM/PfbOydkte3YNzT7x7VeMLgcAjjA7B/MjW9rRF0x6+lD6lJd+bXL2Rz8x+Jj++2PxDRvvmJy99ZwHDs3emtPGFjPYOu5/+7cnZ9ffb8fQ7Nty0thisnswP0vzrW/+ziMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABda+a9ADgStPM3DuU//dw3Ts4++VP/aWj2w/K3Q3kAmGZhhrN3znB2Mrb2J4+NfslY/DX5jenhV43NvuyasfyPXzk9+71zjh6a/bd53FD+s48YW/yOrJ+c/fqNZw3NHrduIDvL+1GS7Jnx/PvmzCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABda+a9ADgS3HbuuqH8qUcdOzl7+vsWRpcDwKq1eyA7+vgyy23hbYP5nYP5h02PPmv6Y3SSPOid3xjK/8LtF0/O/sM1Q6Nzw1g8uXx69N+8+H1Do/8mTxjKX5ONQ/nN2TQ9/BfHDM1OvjuYP3kgO7ZnTPYM5ufLmUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC61sx7AXAkeOovXDGU/9Pv3H9y9vi//NLQ7DuH0gAc3nbPewH7WJjh7O2D+W2D+cdOj75ybPLr8pqh/MIHp2fPfvTYWl5y/Vg+106PPukNVw+NftxF1wzlf3ftLwzl/3jXz0wPf3RodJKdg/mTB7LrBmcfTj8D+px5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGvNvBcA83DUox4+lP/1ky4dyr99+xmTs3d+6/ah2QAwG+sG87sHsjsGZ28ZzE93yjO/NpT/mV1/PPYFRh7WXzE2+oTvjOVz2UD298dGH/eQu4byNzz/7KH87b91yvTwR4dGJ9kzmN8wkB29H42uZb6ceQQAAKBLeQQAAKCrWx6r6h1Vta2qrt3nsg1V9fGqun7x7QNmu0wAYDWzHwGYvylnHi9J8qx7XPaaJJe31s5JcvnixwAAs3JJ7EcA5qpbHltrn0py2z0ufl6Sdy2+/64kP7HE6wIA+Gf2IwDzd7C/83hya21rkiy+PelAwaq6sKo2V9Xm3dl1kF8OAOBeDmo/cu8OCsAUM3/BnNbaxa21Ta21TQtZO+svBwBwL/vuR8Zedh+Aux1seby5qk5NksW325ZuSQAAk9iPACyjgy2PlyW5YPH9C5J8aGmWAwAwmf0IwDKa8qc6Lk1yRZKHV9WWqnppktcleXpVXZ/k6YsfAwDMhP0IwPyt6QVaay86wKeeusRrgWVz49NPnOn8q3Y8eCC9c2brAFgp7EfutnsguzA4u7stvIeRtYw+1o0+A7lNTj4g3xqafNy2u8aWcs706Neec8rQ6B1ZP5T/gftdPz38J0Ojk0eOxf93fmzsCm8eyH5r4DiTJOsG8yO/J71ncPbI/SgZv18vrZm/YA4AAABHPuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArjXzXgDMw/Zzd890/jVv3jg5e/9cMcOVAMCsLMx7Afuoycn751tjo28dXMqJ06Ofzg8Pjf5izh3Kn/mS103Obth1x9Dszz7i0UP5Le8+ZyifLVcNhL8yNjvnD+ZPGMjuHJw9uicdyS/9fdSZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALrWzHsBsFR2PfuHJmc/9IzfGZr9q7c8fii/4f2fm5y9a2gyAKvbwgxn7xnM7x7Irhuc/eCx+Mbp0Wfmz8dmXzoWz/2mR098wi1Do787+O94ax44Obvh1C1Ds7+ZM4fyuXYsnnx+ILt9cPbI926iMv1/zjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtWbeC4ClsuVHp387P/boY4ZmX3DDY4byJ33n74fyAKxWC4P53TNZxV47B/MjazlpcPbY424umh59WX5vaPSW3xxbyhmnTc8+8+WfGJq99X4Dw5OcfOfN08O7hkYvg5GaMno/4mA58wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDXmnkvAJbKgx69bXL2znbX0Ow1H3rA6HIAYAYWZjj71hnOPncs/oKx+JNe+vHJ2VMuuX1o9h+OLSWPvGl69vGfGJt93vOvHMqvv3339PDZY2u5IWeNXeGOsXhy4ugVBozej/bMZBVHImceAQAA6FIeAQAA6OqWx6p6R1Vtq6pr97nstVV1Y1Vds/jfc2a7TABgNbMfAZi/KWceL0nyrP1c/qbW2sbF/z68tMsCAPgXLon9CMBcdctja+1TSW5bhrUAAOyX/QjA/B3K7zxeVFWfW3wayQFfirKqLqyqzVW1eXd2HcKXAwC4l+H9iA4KcHAOtjy+JclDk2xMsjXJGw4UbK1d3Frb1FrbtJC1B/nlAADu5aD2I8mG5VofwIpyUOWxtXZza+3O1tpdSd6W5LylXRYAwH2zHwFYXgdVHqvq1H0+fH6Saw+UBQCYBfsRgOW1pheoqkuTPCXJA6tqS5JfSfKUqtqYpCW5IcnLZrhGAGCVsx8BmL9ueWytvWg/F799BmsBANgv+xGA+euWR5iXNWc/eCj/+of/yeTs224/c2j2hndcMZQHYCXZPcPZ6wbzCwPZ7YOzbxzMD6x949lDk4+/5B+H8v8jr5keHnxy808eN5Y/duRQ7xibfWa+OZT/hw2nTM5+ecPDh2a/O/92KJ+/H4sn60evMEMjPwNm+fNi/g7lT3UAAACwSiiPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdK2Z9wLgQK5/2WlD+SeunZ79+at/ZGj2mbl2KA8A0ywM5tcNZLcPzr5xMH/C9OgTxya/+rjfGMo/6dKrp4f3jK3l2F8ey2dk+3K/sdEbbrpjKP/p0x47Ofum/OLQ7Kt/70lD+WweiycbBrIj94uDsXPG80eM/sxYWs48AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0LVm3guAA7nrzDtmNnvnt46Z2WwAmJ2Fgezuwdk3Dua3T4+eMTb5BXnf2BUuHchuGhu9/VUj/+bJrqPWTs4+6GPfHlvMP4zFbzrt1MnZv/qrZ40Nf/NYPLd8d/AK62aUTcbuR0myZzA/YnQt8+XMIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF1r5r0AOJD/+YQ/nNns0z9y1MxmA7Ca7R7MH05bse2zG33KWPwR13997ApXDmSfPDb6k0f9yFD+2Hx3cvbp3/nM2GK+MRbfcf766eE/G5uda28dvMJtg/kNg/kRewbzI/frhcHZRxZnHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhaM+8FsHrc8WPnDeWfdMzfDH4F384AzNvCvBdwCEbXftL06MbB0Z8Yi39k2/Tss7eOzf5u1g3l12bX9PBNY2vJrWPx72Xt9PDmsdnJ6D5t/WD+9MH8iB0znL17MH9k/cxw5hEAAICubnmsqjOr6pNVdV1VfaGqXrF4+Yaq+nhVXb/49gGzXy4AsBrZjwDM35Qzj3uSvKq19sgkT0zy8qo6N8lrklzeWjsnyeWLHwMAzIL9CMCcdctja21ra+3qxfd3JLkue5+E/Lwk71qMvSvJT8xqkQDA6mY/AjB/Q7/zWFVnJXlckiuTnNxa25rs/YGeA/zWdFVdWFWbq2rz7pFfIAYA2I9D3Y8kty3XUgFWlMnlsaqOT/L+JK9srW2fer3W2sWttU2ttU0LI6/4BABwD0uxH0k2zG6BACvYpPJYVQvZ+4P63a21DyxefHNVnbr4+VOTDLxIMgDAGPsRgPma8mqrleTtSa5rrb1xn09dluSCxfcvSPKhpV8eAID9CMDhYMpfVT8/yc8m+XxVXbN42S8leV2S91bVS5N8I8lPzWaJAAD2IwDz1i2PrbXPJKkDfPqpS7scAIB7sx8BmL8pZx5hSXzjx9tQfm2NfXv+6i2PmZw9/kNXDc0eWzkATLVnMD/yiLQwOPvBg/mnTE4+5PFfGBv95rH4lQPZZ395bPZp2TqUv3/+aXr4prG1jH677Mj66eGvjM1Orh/MnzP6BQasG8zvGMzvHsiO3u+OLEN/qgMAAIDVSXkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga828F8CR7agTTpicffX5H57hSpL3fOSHJ2cfsueKGa4EAKbaPZjfOZNV7HXWWHzNGZOja7NtbPamsfgFlwyEnzg2+3s5eih/7MhttGtsLVk7Ft+R9dPDt4zNTm4bzI9+ry8M5lkOzjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtWbeC+DIdteuXZOzX/zuaUOzn3bjpqH8Ob/+hcnZO4cmA7C6LQxkdw/O3jOY3zmYH3HyWHxg6dd96AeHRv/myy8ayr/g5e+bnH1Lnjk0+/I8bSj/krxzcvack7YMzc5RY/EdWT89PPqtyKrkzCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABda+a9AI5sbdeuydkvbRqbfXS+PpS/c2w8AMzAwozn7xnIznot26dHLzphaPKrP/o7Y/mzBvK3DI1OHjYWP+pl03ckz33xJ8aGT992JUm+modOD498ayVJxm7T8e/H3YN5loMzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHStmfcCAAA4Et06PbrlhrHRb905ls9IfsPY6Ac+dij+3jMumJw96l/fOTR7fXYM5a+4/EeH8mMePJgf/HfPnsH8LC3MewGHDWceAQAA6OqWx6o6s6o+WVXXVdUXquoVi5e/tqpurKprFv97zuyXCwCsRvYjAPM35Wmre5K8qrV2dVWtT3JVVX188XNvaq29fnbLAwBIYj8CMHfd8tha25pk6+L7O6rquiSnz3phAAB3sx8BmL+h33msqrOSPC7JlYsXXVRVn6uqd1TVA5Z4bQAA92I/AjAfk8tjVR2f5P1JXtla257kLUkemmRj9v6fwDcc4HoXVtXmqtq8O7uWYMkAwGq1FPuR5LZlWy/ASjKpPFbVQvb+oH53a+0DSdJau7m1dmdr7a4kb0ty3v6u21q7uLW2qbW2aSFrl2rdAMAqs1T7kfE/GQBAMu3VVivJ25Nc11p74z6Xn7pP7PlJrl365QEA2I8AHA6mvNrq+Ul+Nsnnq+qaxct+KcmLqmpjkpbkhiQvm8kKAQDsRwDmbsqrrX4mSe3nUx9e+uUAANyb/QjA/A292ioAAACr05SnrQIAsOItzHD26JZz9wzzO8dG37J9LH/RCZOjl/7hz43NPmYsnr8eCQ8eZx45mF83mB+5TUe/X2Zplvej+XPmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK41814AAABHooWB7ImDs0fzs7RzLH7DQP6GsdGHl1nfRntmPH/EyPf6yubMIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3VWlu+L1b1j0m+vp9PPTDJLcu2kPlxnCvPajlWxzk7D26tPWiZvyasavYjjnOFWS3HmayeYz1s9yPLWh4PuIiqza21TfNex6w5zpVntRyr4wRWg9XyM8Bxriyr5TiT1XOsh/NxetoqAAAAXcojAAAAXYdLebx43gtYJo5z5Vktx+o4gdVgtfwMcJwry2o5zmT1HOthe5yHxe88AgAAcHg7XM48AgAAcBiba3msqmdV1Zeq6itV9Zp5rmXWquqGqvp8VV1TVZvnvZ6lUlXvqKptVXXtPpdtqKqPV9X1i28fMM81LoUDHOdrq+rGxdv0mqp6zjzXuBSq6syq+mRVXVdVX6iqVyxevqJu0/s4zhV3mwJ9q2U/slL3Ion9yEp77LIfOXxv07k9bbWqjkry5SRPT7IlyWeTvKi19sW5LGjGquqGJJtaayvqb9NU1Q8n+XaSP2itPXrxst9Mcltr7XWLD8IPaK29ep7rPFQHOM7XJvl2a+3181zbUqqqU5Oc2lq7uqrWJ7kqyU8keUlW0G16H8f501lhtylw31bTfmSl7kUS+5GssMcu+5HDdz8yzzOP5yX5Smvta6217yX5oyTPm+N6OAittU8lue0eFz8vybsW339X9t4JjmgHOM4Vp7W2tbV29eL7O5Jcl+T0rLDb9D6OE1h97EdWAPuRlcV+5PA1z/J4epJv7vPxlhzm/1iHqCX5WFVdVVUXznsxM3Zya21rsvdOkeSkOa9nli6qqs8tPo3kiH7qxD1V1VlJHpfkyqzg2/Qex5ms4NsU2K/VtB9ZTXuRZAU/du3Hin3ssh85vG7TeZbH2s9lK/mlX89vrf1gkmcnefni0w44sr0lyUOTbEyyNckb5rucpVNVxyd5f5JXtta2z3s9s7Kf41yxtylwQKtpP2IvsjKt2Mcu+5HD7zadZ3nckuTMfT4+I8lNc1rLzLXWblp8uy3JB7P3aTIr1c2Lz+G++7nc2+a8nplord3cWruztXZXkrdlhdymVbWQvT/A3t1a+8DixSvuNt3fca7U2xS4T6tmP7LK9iLJCnzs2p+V+thlP3J43qbzLI+fTXJOVZ1dVUcneWGSy+a4npmpquMWfwk2VXVckmckufa+r3VEuyzJBYvvX5DkQ3Ncy8zc/cNr0fOzAm7Tqqokb09yXWvtjft8akXdpgc6zpV4mwJdq2I/sgr3IskKe+w6kJX42GU/cvjepnN7tdUkWXzZ2d9KclSSd7TW/vvcFjNDVfWQ7P0/fEmyJsl7VsqxVtWlSZ6S5IFJbk7yK0n+NMl7k3xfkm8k+anW2hH9y90HOM6nZO/TCVqSG5K87O7n4R+pqupJST6d5PNJ7lq8+Jey9/n3K+Y2vY/jfFFW2G0K9K2G/chK3osk9iNZYY9d9iOH735kruURAACAI8M8n7YKAADAEUJ5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoOv/AeFESJqzh/ijAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHV5JREFUeJzt3XuQpWddJ/Dvb9NDLoQYMuSeQCLGcAkYYQysoSQK0cjqRnZFSZVUqEXD1oorlrslxV6gXGXdLURK3RUDiWRXRJFb0A1ouLiYMiCTmCXBgGF1gFzMdWMuJsNM8uwf07GGZCbP+8z06dN9+vOpSnX36e95zu+d093n+eY9fbpaawEAAIDH84/mPQAAAABrn/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAAAzVlXvqKr/8Difb1X1Lfu49j5fF0YszXsAAABYdK21fznvGWB/OfMIAABAl/IIAAATVdXzquovqureqvr9qvq9qvqFqnp1VV3xqOw/PJ20qt5dVb+w2+f+bVXdUlU3V9W/eNT1Dqyqt1bVV6vq1uWnvB485bowS8ojAABMUFVPSPKhJO9OckSS9yZ5+T6sc06Sf5Pk7CSnJHnpoyL/Jcm3Jjk9ybckOT7Jf5x4XZgZ5REAAKZ5YXa9ZsivttZ2tNY+mOTP92GdH0nyW62161pr9yd58yOfqKpK8hNJfqa1dldr7d4kb0nyyt51Yda8YA4AAExzXJKbWmttt8u+to/rXLXbx1/Z7f0jkxyS5KpdPTJJUkkOmHBdmCnlEQAAprklyfFVVbsVyBOT/N8k92dX6UuSVNUxnXVO3O3jp+72/h1JHkjy7NbaTYPXhZnytFUAAJjmyiQPJXldVS1V1blJzlj+3P9J8uyqOr2qDsrjP530fUleXVXPqqpDkrzpkU+01h5O8s4kv1JVRyVJVR1fVd/Xuy7MmvIIAAATtNa+nuSfJXlNkruT/FiSP0yyvbX2V0l+PsnHk9yQ5IrHWeejSd6e5JNJvrz8dnc/t3z5Z6rqnuU1T514XZiZ+sanbAMAAFNV1WeTvKO19lvzngVmzZlHAACYqKpeXFXHLD9t9fwkz03ysXnPBavBC+YAAMB0p2bX7x0eml0vlPPDrbVb5jsSrA5PWwUAAKDL01YBAADoUh4BAADoWtXfeXxCHdgOyhNX8yYB1rQHc3++3rbXvOeAjaTqKS05ad5jAKwh29LaHd39yKqWx4PyxLygXrKaNwmwpn22fWLeI8AGdFKSz817CIA15DsmpfbraatVdU5VfamqvlxVb9iftQAA9oX9CMDq2OfyWFUHJPlvSb4/ybOSnFdVz1qpwQAAeuxHAFbP/px5PCPJl1trf91a+3qS301y7sqMBQAwif0IwCrZn/J4fJKv7fbxjcuXfYOquqCqtlbV1h3Zvh83BwDwGMP7keT2VRsOYJHsT3nc06vxtMdc0NqFrbUtrbUtm3LgftwcAMBjDO9HkiNXYSyAxbM/5fHGJCfu9vEJSW7ev3EAAIbYjwCskv0pj59LckpVnVxVT0jyyiQfWZmxAAAmsR8BWCX7/HceW2s7q+p1Sf4oyQFJLm6tfWHFJgMA6LAfAVg9+1wek6S1dlmSy1ZoFgCAYfYjAKtjv8ojAACsvJ2D+bW0pR2dfcSm2S196GB+1v/kD84om2QPr6nVMcv7dC197fbtz+88AgAAsEEojwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtzXsAAAAW3c55D7AxPWMge9rg2icN5kdbx7aB7GdmuHaS5J6B7MGDa6+vOubMIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF1L8x4AAAAWx46B7MFjSz9lLJ4XDmR/bGzpp73ki0P543LzUP7a+58zOXvfvz9yaO28vcbyuWsge8Tg2ocM5ke0FV/RmUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6luY9ACyiev6zJ2f/10f+59Daz3nH64byJ/6nPxvKA8DKm/WWc+cM1x6d/eDp0YNqbOnTxuI5Z3r0RS+5fGjpf51fHcp/Z8b2I5964ndPzr7q1e8fWjtvH4snNw1kB+7/dciZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqW5j0ALKLbvuOwydmdeWho7UNubqPjAMAEO2e49lracj4wmB+c/dBDpmfPGls6rxyLf/OPfmFy9ofz/qG1X3HNH44N89tj8R979QcmZ9/ybVcPrX19njc2TG4dyB4/uPb64swjAAAAXcojAAAAXfv1HIKq2pbk3iQPJdnZWtuyEkMBAExlPwKwOlbiCejf3Vq7YwXWAQDYV/YjADPmaasAAAB07W95bEn+uKquqqoLVmIgAIBB9iMAq2B/n7Z6Zmvt5qo6KsnlVfXF1tqndw8s/xC/IEkOysBLFwMATDO0H0meuvoTAiyA/Trz2Fq7efntbUk+lOSMPWQubK1taa1t2ZQD9+fmAAAeY3Q/khy52iMCLIR9Lo9V9cSqetIj7yf53iTXrdRgAAA99iMAq2d/nrZ6dJIPVdUj6/xOa+1jKzIVAMA09iMAq2Sfy2Nr7a+TfNsKzgIAMMR+BGD1rMTfeQQe5f8996HJ2Rt3bh9ae/NFV46OA8B+2TnDtWe5FZvl3KNq3gPs5tbB/GFj8dMHXiDyzWNL//Pn//ZQ/qz8yeTs9+WPxob57Fg81w7mb5gePfy0uwcXH7VjRtn1x995BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGtp3gPAetDOPH0o/6c/8LbJ2Rd/+qeG1v6W/MVQHgAW346B7F0zmyJJcvrRk6PnPf/ioaX/c94wlH/aDbdPD982tHRy62B+82D+5OnRO4YXH7VpRtn1x5lHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupbmPQCsB3c96+Ch/LEHHDI5e/z7N42OAwB8g50D2XsG1z5iLH7S9OhL8/GhpZ/2m7ePzfK/B7IHjC097OSx+E2nT/9333bn4OLDDhvILna9cuYRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqV5DwDrwUv+1ZVD+Q/ff/jk7KF/8qWhtR8aSgPARjCypT14cO3B/KHTo4fn7rG1rx2L3/PB6dkdO8fW3rxlLJ+XjcX/KN83Obtj62GDw4w6YiC7aWZTrAXOPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANC1NO8BYB4OePapQ/m3HPXeofxF95wwOfvQ3X83tDYAsD+OGMwfPRZ/cHr0Sxnbj+Q5Hx2KLw3s9LdtHxtl81Fj+dvPO3Qo/678+PTwx8ZmGTfyNXPwzKZYC5x5BAAAoEt5BAAAoKtbHqvq4qq6raqu2+2yI6rq8qq6Yfntk2c7JgCwkdmPAMzflDOP705yzqMue0OST7TWTknyieWPAQBm5d2xHwGYq255bK19Osldj7r43CSXLL9/SZIfWuG5AAD+gf0IwPzt6+88Ht1auyVJlt/u9fWWquqCqtpaVVt3ZPBlnAAA9m6f9iPJ7as2IMAimfkL5rTWLmytbWmtbdmUA2d9cwAAj7H7fiQ5ct7jAKxL+1oeb62qY5Nk+e1tKzcSAMAk9iMAq2hfy+NHkpy//P75SS5dmXEAACazHwFYRVP+VMd7k1yZ5NSqurGqXpPkl5KcXVU3JDl7+WMAgJmwHwGYv6VeoLV23l4+9ZIVngVWzU1nb57p+lfd+7SB9AMzmwNgUcx3P9LdLq1Ro3PvnMkUu7TBfA3mDx7InjK29OGbxvL3TY9+fPDL98df+66h/JGfmT7Mc7cOLZ28aiz+lrxxKH/lb37P9PCHx2YZ/3o8eiA78rWYjM8yXzN/wRwAAADWP+URAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqV5DwDzcM+zdsx0/Wt+/fTJ2cNz5QwnAWBt2znDtUe3ebPcFo4e5+jj9CHTo8dsGlv6hWPxHDM9+lc5dWjpy/Kyofz5L3/f9PDmoaXzt6/4pqH822/6mbEbeMNA9u4bx9bO0YP5wwaybXDttfQzoM+ZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqW5j0ArJTt3/8dk7OXfu+vDa3983c8fyh/xAc+Pzn78NDKADArNcO175lx/uTp0RcNLv36sfgJZ94wOfv8bB1ae3PuGBvmroHsfWNL35nNY1f4+EFj+buvGgjfNrZ2jhjMbxrIzvL7aP6ceQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBrad4DwEq58Xumfzk/9wkHDa19/rbnDOWPuv+LQ3kAWGwPDOZvG8yfPD16ztjK55753qH8P8llk7MnZdvQ2md/7Yqh/MAoyd+MLb05d45dYedYPLlrIHvP6OJjRhrT8HHuGMxvGr2BFeXMIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF1L8x4AVsqRp902OftQe3ho7aVLnzw6DgDwD3bMdvlDB7JntaGlfzS/N5R/5V2XTs7WV4eWTrYO5m8eyB44tvS9edLYFXaOxZNNA9n1XGlGjnP+nHkEAACgS3kEAACgq1seq+riqrqtqq7b7bI3V9VNVXXN8n8vm+2YAMBGZj8CMH9Tzjy+O8k5e7j8V1prpy//d9nKjgUA8A3eHfsRgLnqlsfW2qeT3LUKswAA7JH9CMD87c/vPL6uqj6//DSSvb4UZVVdUFVbq2rrjmzfj5sDAHiM4f1IcvtqzgewMPa1PP5GkqcnOT3JLUl+eW/B1tqFrbUtrbUtm0ZfAxgAYO/2aT+SHLla8wEslH0qj621W1trD7XWHk7yziRnrOxYAACPz34EYHXtU3msqmN3+/DlSa7bWxYAYBbsRwBW11IvUFXvTXJWkqdU1Y1J3pTkrKo6PUlLsi3Ja2c4IwCwwdmPAMxftzy21s7bw8UXzWAWAIA9sh8BmL9ueYR5WTr5aUP5t576+5Oz7/y7E4fWPuLiK4fyAMDuNg3mnzQWP2F69Jin/83Q0s/NtUP5+sxAePSPzzw0mH/xQPa0saX/ID84doVtY/Hhr4Ehg1+PO2czxXq0P3+qAwAAgA1CeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBrad4DwN7c8NrjhvIvPHB69ieu/u6htU/MdUN5AGB3B882f8z06CF5YGjpA/LQ2Cx3DWRvHls6Rw3mz5se/eRp/3ho6XfktWOzXDMWTw4byG4aXZx95MwjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXUvzHgD25uETH5zZ2g/cfdDM1gaAjaENZDcNrn3wWHxgR3vn9s1DS9984HFD+Wc8+JXp4a1DSydPHYvff97080Tvyo8PrX3De75tbJgvjsWTIwayD4wuPkMj3xfrjzOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC3NewDYm//+gt+e2drHf/SAma0NANOtpa1Ym+HaTxqLL9VY/tDp0b+74/Chpbcdf9LYLNuvnBz9+8vGlj7kuLF8fnF69ON56djavzsWz7bBfA6eUXZfzPJ7Y31x5hEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICupXkPwMbx4A+eMZR/0UF/PngLvpwBmIWdM1x7lo9do3M/MJgfmH3pkLGlzxqL55zp0WOOv3lw8UF3To/+wf1jS590w1j+mUsHTM7efulTxxb/w7H40D9MkmTz6A0MaIP59fozYOU58wgAAEBXtzxW1YlV9amqur6qvlBVP718+RFVdXlV3bD89smzHxcA2IjsRwDmb8qZx51Jfra19swkL0zyk1X1rCRvSPKJ1topST6x/DEAwCzYjwDMWbc8ttZuaa1dvfz+vUmuT3J8knOTXLIcuyTJD81qSABgY7MfAZi/od95rKqTknx7ks8mObq1dkuy6wd6kqP2cp0LqmprVW3dke37Ny0AsOHt734kuX21RgVYKJPLY1UdmuQDSV7fWrtn6vVaaxe21ra01rZsyoH7MiMAQJKV2Y8kR85uQIAFNqk8VtWm7PpB/Z7W2geXL761qo5d/vyxSW6bzYgAAPYjAPM25dVWK8lFSa5vrb1tt099JMn5y++fn+TSlR8PAMB+BGAtmPJXKc9M8qok11bVNcuXvTHJLyV5X1W9JslXk7xiNiMCANiPAMxbtzy21q5IUnv59EtWdhwAgMeyHwGYvylnHmFFfPWftqH8gTX25fnzdzxncvbQS68aWntscgCYlb3155Uw+fWHlm2aHj3pkLGlXzkWP+E1N0zOfmf+bGjto3Lr2DADv3V7/djKwxv3Qw84cXr4w4OL5/LB/NGD+c2D+VnaMZAd+L5Yh4b+VAcAAAAbk/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA19K8B2B9O+CwwyZnf+7My2Y4SfI7H/2uydlv3nnlDCcBgPVox+yWPnww/4yx+LfmS5Ozx+XmobUPzNfHhhnYXW8aWzmbB/N/k5Omhz8zuHiuHsy/YPQGpjtoMP/gTKbYEJx5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGtp3gOwvj28ffvk7F/+/XFDa7/0pi1D+VPe8oXJ2YeGVgaAjeCQwfzANvJvB5f++Fj8k0/5gcnZW04d249szp1D+bNfcMXk7IuHVk5e8E1j+XflxOnh0fsoDwzmd4zeAGuQM48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0Lc17ANa3tn375OyXtoyt/YR8ZSj/0NjyALAOtRmufcTslr5xMP/WwfzHpkevP+d5Q0u/602HDOV/+Lz3T86+6JNje52cPBa/KgObr+FWcPRg/rDRG5hu5+yW5hs58wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX0rwHAABY22a5Xdo5w7VH566ZTLHLnWPx++4ay3/m4OnZL58wtPRXlp4xlD//310yOftT7/y1obXvzaFD+Yu+8trp4QeHlk7yzMH8UaM3MN0sv42SJJtmfQPrhjOPAAAAdHXLY1WdWFWfqqrrq+oLVfXTy5e/uapuqqprlv972ezHBQA2IvsRgPmb8nyGnUl+trV2dVU9KclVVXX58ud+pbX21tmNBwCQxH4EYO665bG1dkuSW5bfv7eqrk9y/KwHAwB4hP0IwPwN/c5jVZ2U5NuTfHb5otdV1eer6uKqevIKzwYA8Bj2IwDzMbk8VtWhST6Q5PWttXuS/EaSpyc5Pbv+T+Av7+V6F1TV1qrauiPbV2BkAGCjWon9SHL7qs0LsEgmlceq2pRdP6jf01r7YJK01m5trT3UWns4yTuTnLGn67bWLmytbWmtbdmUA1dqbgBgg1mp/Uhy5OoNDbBAprzaaiW5KMn1rbW37Xb5sbvFXp7kupUfDwDAfgRgLZjyaqtnJnlVkmur6prly96Y5LyqOj1JS7ItycBfIQUAGGI/AjBnU15t9YoktYdPXbby4wAAPJb9CMD8Db3aKgAAABvTlKetAgCw8NoM1z54MH/YTKZIktwxeJy/vqcT3nv359e8eHL2VadNzyZJdo7Fc8VA9r7BtfPMwfzo18DI/TR2H7HvnHkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga2neAwAAbFwbZSt28IzzM/S3bSz//hll15yj5j3Abgbvo2Eb5fu0z5lHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuqq1tno3VnV7kq/s4VNPSXLHqg0yP45z8WyUY3Wcs/O01tqRq3ybsKHZjzjOBbNRjjPZOMe6Zvcjq1oe9zpE1dbW2pZ5zzFrjnPxbJRjdZzARrBRfgY4zsWyUY4z2TjHupaP09NWAQAA6FIeAQAA6For5fHCeQ+wShzn4tkox+o4gY1go/wMcJyLZaMcZ7JxjnXNHuea+J1HAAAA1ra1cuYRAACANWyu5bGqzqmqL1XVl6vqDfOcZdaqaltVXVtV11TV1nnPs1Kq6uKquq2qrtvtsiOq6vKqumH57ZPnOeNK2Mtxvrmqblq+T6+pqpfNc8aVUFUnVtWnqur6qvpCVf308uULdZ8+znEu3H0K9G2U/cii7kUS+5FFe+yyH1m79+ncnrZaVQck+askZye5McnnkpzXWvvLuQw0Y1W1LcmW1tpC/W2aqvquJPcl+R+ttdOWL/uvSe5qrf3S8oPwk1trPzfPOffXXo7zzUnua629dZ6zraSqOjbJsa21q6vqSUmuSvJDSV6dBbpPH+c4fyQLdp8Cj28j7UcWdS+S2I9kwR677EfW7n5knmcez0jy5dbaX7fWvp7kd5OcO8d52AettU8nuetRF5+b5JLl9y/Jrm+CdW0vx7lwWmu3tNauXn7/3iTXJzk+C3afPs5xAhuP/cgCsB9ZLPYja9c8y+PxSb6228c3Zo3/Y+2nluSPq+qqqrpg3sPM2NGttVuSXd8USY6a8zyz9Lqq+vzy00jW9VMnHq2qTkry7Uk+mwW+Tx91nMkC36fAHm2k/chG2oskC/zYtQcL+9hlP7K27tN5lsfaw2WL/NKvZ7bWnpfk+5P85PLTDljffiPJ05OcnuSWJL8833FWTlUdmuQDSV7fWrtn3vPMyh6Oc2HvU2CvNtJ+xF5kMS3sY5f9yNq7T+dZHm9McuJuH5+Q5OY5zTJzrbWbl9/eluRD2fU0mUV16/JzuB95Lvdtc55nJlprt7bWHmqtPZzknVmQ+7SqNmXXD7D3tNY+uHzxwt2nezrORb1Pgce1YfYjG2wvkizgY9eeLOpjl/3I2rxP51keP5fklKo6uaqekOSVST4yx3lmpqqeuPxLsKmqJyb53iTXPf611rWPJDl/+f3zk1w6x1lm5pEfXstengW4T6uqklyU5PrW2tt2+9RC3ad7O85FvE+Brg2xH9mAe5FkwR679mYRH7vsR9bufTq3V1tNkuWXnX17kgOSXNxa+8W5DTNDVfXN2fV/+JJkKcnvLMqxVtV7k5yV5ClJbk3ypiQfTvK+JE9N8tUkr2itretf7t7LcZ6VXU8naEm2JXntI8/DX6+q6kVJ/jTJtUkeXr74jdn1/PuFuU8f5zjPy4Ldp0DfRtiPLPJeJLEfyYI9dtmPrN39yFzLIwAAAOvDPJ+2CgAAwDqhPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAAND1/wE08O+nPadBlwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1286,7 +1297,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X2U3XV9J/DPJwwQIMiDCU8BpQqCqCVo1mK1q9VaLdsV7bFVVi10bWlPy9Z27VaPp7vq1j7t8em0unq0Wunxqdan2srSKoqWFtFAQaKAoI2CRCBCJBEDTPLdPzJ4IiR8f59kfnMnM6/XOZzM3Hnfz/3+5t6Z+31z79ybrbUAAACAB7Nk0gsAAABg/lMeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQBgZJn59sz8nw/y9ZaZJ+zm7N0+L1RMTXoBAACw0LXWfmPSa4A95ZFHAAAAupRHAAAYKDMfn5n/lpmbMvNvM/NvMvN1mXlOZl5yv+wPn06ame/JzNft8LX/kZnrM/PmzPyv9zvf/pn5+sz8VmbeMvOU1wOGnBfGpDwCAMAAmblfRHwsIt4TEYdHxAci4nm7MefZEfF7EfHMiDgxIn7mfpE/i4hHRcSqiDghIlZGxP8aeF4YjfIIAADDnB7bXzPkz1tr97bWPhoRX9yNOb8UEX/VWlvbWvt+RLzmvi9kZkbEr0XE77bWbm+tbYqIP46IF/bOC2PzgjkAADDMMRHx7dZa2+G0G3dzzuU7fP7NHT5eEREHRsTl23tkRERkROwz4LwwKuURAACGWR8RKzMzdyiQx0XE1yPi+7G99EVERGYe1Zlz3A6fP2yHjzdExA8i4jGttW8Xzwuj8rRVAAAY5tKI2BoR52XmVGaeGRFPnPnaVRHxmMxclZlL48GfTvqhiDgnM0/JzAMj4tX3faG1ti0i3hkRb8rMIyIiMnNlZj6rd14Ym/IIAAADtNbuiYhfiIiXRsTGiHhxRPxDRNzdWvtaRPzviPh0RFwfEZc8yJz/FxFvjojPRMQNM//u6BUzp38hM++cmXnSwPPCaPJHn7INAAAMlZmXRcTbW2t/Nem1wNg88ggAAANl5lMz86iZp62eHRE/HhEXTnpdMBe8YA4AAAx3Umz/u8Nlsf2Fcp7fWls/2SXB3PC0VQAAALo8bRUAAIAu5REAAICuOf2bx/1y/7Y0DprLiwSY17bE9+OedndOeh2wmOSS5S2mjp/0Mrar/vXQtkJ2n+Ls6hZtaSFbPc4fFPNbCtnK93B3+I3O3mh6XbRtG7q33jktj0vjoPiJfMZcXiTAvHZZu2jSS4DFZ+r4iCPXTHoV21VKTzV/aHH26mL+5EJ2ujh7bTF/bSG7uTi7ulv2cpTsjW4Z9gtgj562mpnPzszrMvOGzHzlnswCANgd9iMAc2O3y2Nm7hMRb42In4uIUyLirMw8ZbYWBgDQYz8CMHf25JHHJ0bEDa21b7TW7omID0bEmbOzLACAQexHAObInpTHlRFx4w6f3zRz2o/IzHMzc01mrrk37t6DiwMAeIDyfiS23TZniwNYSPakPO7s1Xge8FparbV3tNZWt9ZW7xv778HFAQA8QHk/EktWzMGyABaePSmPN0XEcTt8fmxE3LxnywEAKLEfAZgje1IevxQRJ2bmj2XmfhHxwoj4xOwsCwBgEPsRgDmy2+9E01qbzszzIuIfY/vb0L67tfaVWVsZAECH/QjA3NmjtzFtrV0QERfM0loAAMrsRwDmxh6VRwAA5qnqLm9ZMX/ySNmIiBcX8xsL2e8UZ08X88cWsidsqc3euLSW/3Ah+97a6FhXzFdvX4cW8xXV67Sar9jL2tie/M0jAAAAi4TyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUpBcAALBoVXdihxayJxRn/0wtfuLZVw3OviD+pjT7J+KyUv7A+MHg7Lo4vjR7Qzy0lP/J+NfB2afceEVp9jcfs6KUP/MxnxicverC00uz44bv1vIba9/HWF7IVn+ONhfz/JBHHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiamvQC2Lute92TBme3Lm2l2Ssec1spf+mpHynlKx75mV8p5Q/+4gGDs0f++b9WlwPAXJoecfayYv7kQvbFtdE/94KPlvKviD8bnH3qjV+sLeZ7tfi9xw3PHnfIjaXZW2OfUv7kG785PPyF0ug45iG1vdGBh9xVu4CSMX8wmK888ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1KQXwPxyxydPLOXXrnrLSCupu7eNN/van/7LUv59q48enP3Qp55amr31mutLeQD20PSIs5cV808ZHn38Cy4pjX5n/Fopv/L3bh8ePqg0Om57be0b83/jNwdnN8RDS7OPifWl/MHHbRqcveW4I0qzL4gzSvkrzi/cYDaWRkfEkbV49bZe+bkb82eUH+GRRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmJr0AxnXHJ08s5f9l1QdHWknd2zc+opR/46XPHJw9/uG3lWb/0ykfLeVfdPD6wdk/Omd5afYjXnF9KQ/AHJou5qs7sWXDoyfE10ujV37u9tpaKneNP1sb/ffxn0v513zlz4aHb6qtZcmq75fy26b3GR6+eGltMRfW4rG2kN1cnH1UMV9V/Vkak8b0Qx55BAAAoEt5BAAAoGuPHoTNzHURsSkitkbEdGtt9WwsCgBgKPsRgLkxG8/g/enW2oZZmAMAsLvsRwBG5mmrAAAAdO1peWwR8U+ZeXlmnjsbCwIAKLIfAZgDe/q01Se31m7OzCMi4lOZeW1r7fM7BmZ+iZ8bEbE0DtzDiwMAeIDSfiT2edgElgiw99ujRx5bazfP/HtrRHwsIp64k8w7WmurW2ur94399+TiAAAeoLofiSUr5nqJAAvCbpfHzDwoMw++7+PY/vavlbciBQDYI/YjAHNnT562emREfCwz75vz/tbahbOyKgCAYexHAObIbpfH1to3IuLUWVwLAECJ/QjA3JmN93lkjk0/4wmDs5859a3F6fuW0m++41GDs599QfE9m2++tRR/1B1rBmeXLF1amv3Hlz2ulH/V8qsHZ6cPmy7NBmCOVXZL1Z1V9Z0pLx4e/fDzn18a/aWnvr6U/w8vKTw7+LGl0XFdnFQ7w/AtQMSna6O3XXxQ7QwnFLLLaqOjuJWKyhbjC8XZG4v52tZrfrWUyvdxPq17BN7nEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6pSS+Aus0r9xucXVL8/wNvvuNRpfzFz3nc4OzWb1xXmj2mG157Win//sPfULyE/Qcnj73Q/8MBmNeWjjh7QzH/4eHRbdMHlUa/6GPvLeXf+trzBmcPiLtKs6+L2n6kdB1N10bHd4r5pw2PPvpZV5RG7xf3lPJXHX/68PDa0uiIdcV89fu+rJCtNpotxXxF9Tj3sjZm1woAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1KQXQN2hf33p4Ozz17y4NDvvuLOUn16/rpSfL371jE+X8suW7D/SSgBYUKo7qy3VCyjcT3/8IaXJ17/21FL+Ra9+3+DskXFLafbar68u5WNDIfvY2uhq/thnXT84+7i4ujR7YxxaW8zSWhx6PPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA19SkF8C4tn71a5NewpxZ90dPGpx96aGvL05fWkq/fP3pg7MHf/qa0uytpTQAc2q6mF9WzG98yPBsdZd3YS1+24aHDc/G8GxERNxUi8dRheyv1kY//Qn/UMofFzcOzn4tTirNvvQrTy/lS9fpltro4taonq/+LDEnPPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA19SkFwC7svElTyrl/+WXXz84e8iSpaXZl969Tyl/5etOG5w94M4vlmYDMMemR5y9bMR8dZd3UzF/QyG7sTi7djcd8cLh0Yc/4drS6GfFP5byt8aRg7Pnf/OnSrPjdbV4fKGQ3VKcvbyYH9OYP6MRGtMOPPIIAABAl/IIAABAV7c8Zua7M/PWzFy7w2mHZ+anMvP6mX8PG3eZAMBiZj8CMHlDHnl8T0Q8+36nvTIiLmqtnRgRF818DgAwlveE/QjARHXLY2vt8xFx+/1OPjMizp/5+PyIeO4srwsA4IfsRwAmb3f/5vHI1tr6iIiZf4/YVTAzz83MNZm55t64ezcvDgDgAXZrPxLbbpuzBQIsJKO/YE5r7R2ttdWttdX7xv5jXxwAwAPsuB+JJSsmvRyAvdLulsdbMvPoiIiZf2+dvSUBAAxiPwIwh3a3PH4iIs6e+fjsiPi72VkOAMBg9iMAc2jIW3V8ICIujYiTMvOmzHxpRPxpRDwzM6+PiGfOfA4AMAr7EYDJm+oFWmtn7eJLz5jltcCP2PD4VsofsmTpSCuJOPviXy3lH/XxL460EoDFaaL7kekRZ1fvuir56ro3FPObC9nqcZ5ezP/88Ojxsa40+ruxvJRfE6uHhy/ctzQ7LqnF46ZC9qji7Op1Wr09binmK7oNiF0Z/QVzAAAA2PspjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNTXoBLB73fOrhpfylJ7+heAlLBydPvfTs0uRHv/zrpfzWUhoABpouZLcUZ1fzlV3kU4qzz6vFTzzzqsHZfUrfxIh/jGeV8ldddvrw8MWl0RGbi/kxd/q1b2M9z7zkkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6pia9APZuU484fnD2D0/429Lsw5YsLeUvv3t49uF/uLU0e+sdd5TyACwgld3SdHH2mPktxdlVywvZ02ujjz3z+lL+tLhycPa6OKk0+6pPFhf/wUJ2bW101LZGtdtutRVUb7vzyd689rG0YTGPPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1NekFsHd75Ie+PTh72n7j/r+Ksy76jcHZR131pRFXAsCiNfbOanrE2YcW8ycUsqtqox8ZXy/lD4i7Bme//v1H1hbz4Vo8Lixkq9dn9TqqGPO2NRfzmRMeeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBratILYH654+wnlfKvPfINhfT+pdlnr/uZUv7Rv3/D4OzW0mQAGMn0iLOXFfPHFvNPKWRX31safXBsKuW/G8sHZzevXVGaHVfW4rGhFcJZm31oLV7a6Vdvi2PediO0lLk28KbokUcAAAC6lEcAAAC6uuUxM9+dmbdm5todTntNZn47M6+c+e+McZcJACxm9iMAkzfkkcf3RMSzd3L6m1prq2b+u2B2lwUA8CPeE/YjABPVLY+ttc9HxO1zsBYAgJ2yHwGYvD35m8fzMvPLM08jOWxXocw8NzPXZOaae+PuPbg4AIAHKO9HYtttc7k+gAVjd8vj2yLikRGxKiLWR8Qu36+htfaO1trq1trqfYtv1QAA8CB2az8SS4pv1QBAROxmeWyt3dJa29pa2xYR74yIJ87usgAAHpz9CMDc2q3ymJlH7/Dp8yJi7a6yAABjsB8BmFtTvUBmfiAinhYRyzPzpoh4dUQ8LTNXRUSLiHUR8esjrhEAWOTsRwAmr1seW2tn7eTkd42wFgCAnbIfAZi8bnlk7za18phS/qd++7JSftmS8V4E6dKvnlDKP+qOL420EgCYJyo7t+XF2acX888dHn3Ew79WGr0pDi7lb4zjhoevLY2O2FLMR1bPMFx5LQXTI86OqLeOSn7M2YvFhmGxPXmrDgAAABYJ5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuqUkvgHFd86rjSvmPH/X3I60k4qev/sVS/tG/f0Mpv7WUBoC9UGXndlRx9mNr8WWPvW1wdp+YLs2+8u5Vpfz3Pl042C+URkdx6RHLCtmxd+LzaadfXUv1+z5fZu+ttg2LeeQRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlJL4BxXf6cNxXPsf8o64iIOOQ3t5Xy03fcMdJKAKBgesTZ1Z3YskL20OLspbX45u8sH5y9fuOK2vB/qMVL+XXF2VWV73vl+owoX0elfPV2vrmY3zji/Opa2G0eeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBratILYPG498hDSvl971k50krGt/W2DYOz7e67S7Nz//1L+X1WLC/lK7auOLSUv/7l+420krq2NUv5k//bDYOzW++8s7ocYLGq7sSWjrKK7YbfdW13beH36Nri7I8X81feWwhXshGx9MBafllldm30qPnp4uxqvmrLmMOLt4FyvmLfEWdXtEEpjzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXpBbB4fPLD7570EubMT/7bWYOzG255SGn2YSs2lfKXPeH9pTw7d8ofnDc4+4jfv3TElQBzbszd0nQxv3mkbET9OI8tZI8qzl5azF+y7/DsTYVsRP37uLGQvbY4e0sxH62Qzdro6u2lehtYVcguL85eVrwNTBXy1Z/pqrHmXzzs+vfIIwAAAF3d8piZx2XmZzPzmsz8Sma+bOb0wzPzU5l5/cy/h42/XABgMbIfAZi8IY88TkfEy1trj46I0yPitzLzlIh4ZURc1Fo7MSIumvkcAGAM9iMAE9Ytj6219a21K2Y+3hQR10TEyog4MyLOn4mdHxHPHWuRAMDiZj8CMHmlv3nMzOMj4rSIuCwijmytrY/Y/gs9Io7YxXnOzcw1mbnm3rh7z1YLACx6e7ofiW23zdVSARaUweUxM5dFxEci4ndaa3cOPV9r7R2ttdWttdX7xv67s0YAgIiYnf1ILFkx3gIBFrBB5TEz943tv6jf11r76MzJt2Tm0TNfPzoibh1niQAA9iMAkzbk1VYzIt4VEde01t64w5c+ERFnz3x8dkT83ewvDwDAfgRgPhjy9p5PjoiXRMTVmXnlzGmviog/jYgPZeZLI+JbEfGL4ywRAMB+BGDSuuWxtXZJROQuvvyM2V0OAMAD2Y8ATN6QRx7Zi5351ReV8hc99sMjrWRx+dfTPjDpJey2u9o9g7P3tm0jriTijC+fMzj7vSuXj7eQiFh5yfSo84EForqz2jhivvpr8dha/GdPHf4M4WfEp0uzD3zCD0r5r77slMHZC+KM0uxvvuvkUj7eUsjedFNtdvH7GLGukD28Nnr6BbX8qiNr+d8YHl3xn75VGn1SXFfKHxybBme3xj6l2Zvi4FL+rjhwlLXcsPr7g3Klt+oAAABgcVIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Jqa9AIY1wHP+vdS/jF/fF4p3+bRLejgk28fnL3sCe8fcSU1j/nnXynl27cOGmkl2z3iw5uHh7949XgLiYjD4vpRsgAlY97XTRfzhV/R8Z3i7KLHxfD7gN/93ltKs/d9b3ExhwyPXvXit5dG//eXvrGU/8yynx8e/stjS7Pj4nNq+envFsIPrc1+cS2+9C3D92kREb99yF8Mzp4RF5RmnxJfLeUP/d7wH7ytxd8X3z3o8FL+ljhycHZTHDw4e258a1DOI48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0ZWttzi7sIXl4+4l8xpxdHsB8d1m7KO5st+ek1wGLSe63usWRa4afYWq8tcTGEfNHFWefU4uf+CdXDc6+M84tzX7qW79YW0zh6ozn1UZ/4TmnlvJXx+MGZ/eLe0qzD4y7Svm74sBSvuJxcXUp//jrr6ldwJWF7HRtdCwt5rcUsluLs4+pxduq4dlbDj9kcPZZqzfHVWumu/sRjzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXpBQAAzGvTI85eWswfNcoqtvt4LX795lMHZ8/+i/NLs9/7Wy8q5Z/yuSuGh4vf89NvvKqW/1wh/6raWv78xlr+9kJ2ZW103FTMV0vHj68qhM8pDn9OMX9QIfu92uh7j6jlLz9k+M/dv8fxg7Ob4uJBOY88AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0DU16QUAAMxr0yPOXlrMV3Zum4uzry3m1w2PfnP65NLoX3jbx0r5X37qXw/OHhM3l2YfEbeW8i864yODs3lBaXQ8+QO1/A2F7Am10fGEY4pneHox/yvDo597+hNLoy+IM0r5TXHw4OzBR2wabXZExFfjlMHZm+PoQva/DMp55BEAAICubnnMzOMy87OZeU1mfiUzXzZz+msy89uZeeXMf7UKDwAwkP0IwOQNefLDdES8vLV2RWYeHBGXZ+anZr72ptba68dbHgBARNiPAExctzy21tZHxPqZjzdl5jURsXLshQEA3Md+BGDySn/zmJnHR8RpEXHZzEnnZeaXM/PdmXnYLK8NAOAB7EcAJmNweczMZRHxkYj4ndbanRHxtoh4ZESsiu3/J/ANuzjfuZm5JjPX3Bt3z8KSAYDFajb2I7HttjlbL8BCMqg8Zua+sf0X9ftaax+NiGit3dJa29pa2xYR74yInb5GbmvtHa211a211fvG/rO1bgBgkZmt/UgsWTF3iwZYQIa82mpGxLsi4prW2ht3OH3HNw55XkSsnf3lAQDYjwDMB0NebfXJEfGSiLg6M6+cOe1VEXFWZq6KiBbb3yb210dZIQCA/QjAxA15tdVLIiJ38qULZn85AAAPZD8CMHmlV1sFAABgcRrytFUAAMYwPeLs6i5vWTFfWfuna6Nve8nDSvk3PPYPhocPra0lltfiL1nVBmdPff9l/dAOTnr/daX8AXHX4OwP4sDS7A3x0FJ+fRxTyl93y0mDs9s+eVBpdtxQi8eWQrb6c1f9HbChkN1cyH7rgEExjzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXpBQAAzGvzabc0PeLsQ0ecvaWYv3jk/KhycPKqOL00uZqHwTYOi3nkEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK5src3dhWXeFhHf3MmXlkfEhjlbyOQ4zoVnsRyr4xzPw1trK+b4MmFRsx9xnAvMYjnOiMVzrPN2PzKn5XGXi8hc01pbPel1jM1xLjyL5VgdJ7AYLJbfAY5zYVksxxmxeI51Ph+np60CAADQpTwCAADQNV/K4zsmvYA54jgXnsVyrI4TWAwWy+8Ax7mwLJbjjFg8xzpvj3Ne/M0jAAAA89t8eeQRAACAeWyi5TEzn52Z12XmDZn5ykmuZWyZuS4zr87MKzNzzaTXM1sy892ZeWtmrt3htMMz81OZef3Mv4dNco2zYRfH+ZrM/PbMdXplZp4xyTXOhsw8LjM/m5nXZOZXMvNlM6cvqOv0QY5zwV2nQN9i2Y8s1L1IhP3IQrvvsh+Zv9fpxJ62mpn7RMTXIuKZEXFTRHwpIs5qrX11IgsaWWaui4jVrbUF9d40mfkfI2JzRPx1a+2xM6f9n4i4vbX2pzN3woe11l4xyXXuqV0c52siYnNr7fWTXNtsysyjI+Lo1toVmXlwRFweEc+NiHNiAV2nD3KcvxQL7DoFHtxi2o8s1L1IhP1ILLD7LvuR+bsfmeQjj0+MiBtaa99ord0TER+MiDMnuB52Q2vt8xFx+/1OPjMizp/5+PzY/kOwV9vFcS44rbX1rbUrZj7eFBHXRMTKWGDX6YMcJ7D42I8sAPYjC4v9yPw1yfK4MiJu3OHzm2Kef7P2UIuIf8rMyzPz3EkvZmRHttbWR2z/oYiIIya8njGdl5lfnnkayV791In7y8zjI+K0iLgsFvB1er/jjFjA1ymwU4tpP7KY9iIRC/i+aycW7H2X/cj8uk4nWR5zJ6ct5Jd+fXJr7fER8XMR8VszTztg7/a2iHhkRKyKiPUR8YbJLmf2ZOayiPhIRPxOa+3OSa9nLDs5zgV7nQK7tJj2I/YiC9OCve+yH5l/1+kky+NNEXHcDp8fGxE3T2gto2ut3Tzz760R8bHY/jSZheqWmedw3/dc7lsnvJ5RtNZuaa1tba1ti4h3xgK5TjNz39j+C+x9rbWPzpy84K7TnR3nQr1OgQe1aPYji2wvErEA77t2ZqHed9mPzM/rdJLl8UsRcWJm/lhm7hcRL4yIT0wZnj7fAAABMklEQVRwPaPJzINm/gg2MvOgiPjZiFj74Ofaq30iIs6e+fjsiPi7Ca5lNPf98prxvFgA12lmZkS8KyKuaa29cYcvLajrdFfHuRCvU6BrUexHFuFeJGKB3XftykK877Ifmb/X6cRebTUiYuZlZ98cEftExLtba380scWMKDMfEdv/D19ExFREvH+hHGtmfiAinhYRyyPiloh4dUR8PCI+FBEPi4hvRcQvttb26j/u3sVxPi22P52gRcS6iPj1+56Hv7fKzKdExD9HxNURsW3m5FfF9uffL5jr9EGO86xYYNcp0LcY9iMLeS8SYT8SC+y+y35k/u5HJloeAQAA2DtM8mmrAAAA7CWURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALr+P5CZ986+zuy5AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH+hJREFUeJzt3XmUpWddJ/Dvj1QnnZCEpMlCCIEOkEBYk9CHRZwZFBFkGAFHEQY1OCh6lFHm4MIwLqjgOHPY1HH0gCA4wyq7yrAYQIzEQAcCCQRMxIZsZiHp6YSQpZtn/ugKpyHd/bxPd9261VWfzzl9qurW9z739/atrvt8+711q1prAQAAgL25y7wHAAAAYOVTHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAYMaq6k+q6tf38vlWVfffx7X3+bowYmHeAwAAwGrXWvvZec8A+8uZRwAAALqURwAAmKiqzqyqz1TVjVX1F1X1tqp6aVU9p6rO+Y7st55OWlVvqKqX7vK5X66qq6rqyqr6j99xvUOq6uVV9dWqunrxKa+HTrkuzJLyCAAAE1TVwUneneQNSTYkeUuSp+/DOk9K8ktJnpDklCTf9x2R/57k1CSnJ7l/khOT/MbE68LMKI8AADDNo7PzNUP+oLV2e2vtXUk+uQ/rPCPJn7XWLmqtfT3JS+74RFVVkp9O8p9ba9e31m5M8rtJntm7LsyaF8wBAIBp7pnkitZa2+Wyy/ZxnfN3+fgru7x/bJLDkpy/s0cmSSrJQROuCzOlPAIAwDRXJTmxqmqXAnlSkn9K8vXsLH1Jkqq6R2edk3b5+N67vH9dkm8keXBr7YrB68JMedoqAABMc26SHUmeX1ULVfXUJI9c/Nxnkzy4qk6vqvXZ+9NJ357kOVX1oKo6LMlv3vGJ1to3k7w2yauq6rgkqaoTq+qJvevCrCmPAAAwQWvttiQ/lOS5SbYm+bEkf5Xk1tbaPyb57SR/k+SSJOfsZZ3/m+TVST6S5NLFt7v61cXL/6Gqti2u+YCJ14WZqW9/yjYAADBVVZ2X5E9aa38271lg1px5BACAiarq31TVPRaftnpWkocl+cC854Ll4AVzAABgugdk588dHp6dL5Tzw621q+Y7EiwPT1sFAACgy9NWAQAA6FIeAQAA6FrWn3k8uA5p63PX5bxJgBXtlnw9t7Vba95zwFpSdUxLNs57DPbmkMH8UQPZ48d+ZOvQdTcP5b9x22HTw5cNfvvfumMsn5H8wYNrs7psSWvXdb8gl7U8rs9d86h6/HLeJMCKdl47e94jwBq0McnmeQ/B3pw0mH/aQPYFtwwtfeqJFwzlP/uVRwzMsm5o7bxn21g+I/l7Da7N6rJpUmq/nrZaVU+qqi9V1aVV9aL9WQsAYF/YjwAsj30uj1V1UJI/SvIDSR6U5FlV9aClGgwAoMd+BGD57M+Zx0cmubS19uXW2m1J3prkqUszFgDAJPYjAMtkf8rjiUku2+Xjyxcv+zZV9byq2lxVm2/PrftxcwAAdzK8H0muXbbhAFaT/SmPu3s1nju9fFVr7TWttU2ttU3rhl86CwBgr4b3I8mxyzAWwOqzP+Xx8nz7a2HdK8mV+zcOAMAQ+xGAZbI/5fFTSU6pqpOr6uAkz0zyvqUZCwBgEvsRgGWyz7/nsbW2vaqen+SDSQ5K8vrW2ueXbDIAgA77EYDls8/lMUlaa+9P8v4lmgUAYJj9CMDy2K/yCADACrV+MH//wfxDBrKbBtcezG/47ismZx900BeG1r7n4I/QHn+fqydnP/PuM4bWvvZt9x7K5w1HTs9+YGzp5ObB/KGD+d29Fhbztj8/8wgAAMAaoTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtTDvAQAAmIGNg/kXjcW/99l/NTn7E/nfQ2s/NBcO5XfkoMnZy3LS0No35oih/MjsZ1558dDan/7R04byT/rRD0zOXnvsvYfWznWfHsuPfkEu3GsgO7Z0bhnM8y3OPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANC1MO8BOLBteeljJmd3rG9Dax/74GuH8uc+/J1D+RH3+8hPDuWP+OShk7PH/8EnRscBYNXYNpj/2vTo+pOHVj7z2ecM5c++5t9ND//+0NLJcYP5J0+P3v2U64aWvi2HDOUfeMlXpoc3Dy2dB/zQl4byxxwy/VivXbj32DDZPphnNXDmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6FeQ/AynLDX58ylL/o9P85o0nG3d5mt/YXv+dPh/Jv2nTC5OzbP/xvhtbecfElQ3kA9tPIbml0Z3XL1wav8Onp0ZtOHlr5B/OXY6M8Y3r0a+eMLX33N4zlP3DK9MfSm3PY0NoPzYVD+S+ecp/J2Y+e8rihtf8wvzCUv/i3zpwe3jq0dJLTBvNHjMW3zyjLfnHmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6FeQ/AbN3w16cM5f/+9LfOaJJxf7L1vkP5V577hMnZjfe5dmjtDz3oXUP5Zx9x1eTsy55zzNDa9/3VS4byAOynkd3S8M7qxsH8F6dHrxtb+aG5cCj/4b+dnt02Nkr+/feP5X87vzE5e2huHlr7ifngUP7CPGxy9v+86aeH1s7zx+LZOnKshw0ufvxgntXAmUcAAAC6lEcAAAC69utpq1W1JTufb7EjyfbW2qalGAoAYCr7EYDlsRQ/8/g9rbXBZ9UDACwp+xGAGfO0VQAAALr2tzy2JB+qqvOr6nlLMRAAwCD7EYBlsL9PW31sa+3KqjouyYer6outtY/vGlj8Jv68JFk//BLAAABdQ/uR5N7LPyHAKrBfZx5ba1cuvr0mybuTPHI3mde01ja11jatyyH7c3MAAHcyuh9Jjl3uEQFWhX0uj1V116o64o73k3x/kouWajAAgB77EYDlsz9PWz0+ybur6o513txa+8CSTAUAMI39CMAy2efy2Fr7cpKHL+EsAABD7EcAls9S/J5Hltn2xz9icvYjD/+jwdXXDaVffcOpk7Mf/dHB39l85TVD8VNv2Dw5e5f164fW/t3zHjqUf/ExF07Obj96+9DaAKxgwzur22eXH3x4OTi3DuWvH8iO/rV85bixn0s99/zvnR6+YGyWj2x6ytgVRp40/WtjS2freYNXOHQgO7bXyUKN5W13VgW/5xEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuhXkPwLibTjx4cvYug/8/8OobTh3Kf+wHHzo5u+PLXxpae5Yu/a0zhvJv3vCKwVs4ZHLyXh/wfzgAq8b20SscOpjfMD06uMu7MA8byv+X0z8ydgMD3puxx+mcM5B99djSw/fpLQPZ6wbXzvR9107rBrI1tvTw1zqrgV0rAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXQvzHoBxR/35uZOzP7z5x4bWrhu2DeW3X7VlKL9S/NST/2Yof/hdDpnRJACseNtnlE2S3H0wf9r06C1jK/+v/NxQ/umfeffYDQz47fz62BU+NpDd0sbWzjcG84cN5gcsDK49/PUIe+fMIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF0L8x6A2drxhX+c9wjLZsvLHjM5+9yjXj64+vqh9AuvevTk7BF/c/HQ2juG0gDst+2zXHzDYP7M6dFbxla+/KdPGcqf9swt08M3jc2Stw7mPzaQXV9ja9/jsLH8yO76urGls3UwD0vMmUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6FuY9AOzJ1h9/zFD+73/i5ZOzd7vL+qG1z731oKH8BS89Y3L20G2fHFobgNVk3WD+7jOZIknyp7cP5rcNhLePrZ1DB/NHTo9uGlx642B+64yySZI2mB/5ex/9WmQtcuYRAACALuURAACArm55rKrXV9U1VXXRLpdtqKoPV9Uli2+Pnu2YAMBaZj8CMH9Tzjy+IcmTvuOyFyU5u7V2SpKzFz8GAJiVN8R+BGCuuuWxtfbxJNd/x8VPTfLGxfffmORpSzwXAMC32I8AzN++/szj8a21q5Jk8e1xewpW1fOqanNVbb49t+7jzQEA3Mk+7UeSa5dtQIDVZOYvmNNae01rbVNrbdO6HDLrmwMAuJNd9yPJsfMeB+CAtK/l8eqqOiFJFt9es3QjAQBMYj8CsIz2tTy+L8lZi++fleS9SzMOAMBk9iMAy2jKr+p4S5Jzkzygqi6vqucm+b0kT6iqS5I8YfFjAICZsB8BmL+FXqC19qw9fOrxSzwLfJvrzmxD+bvdZf2MJknO+thPDeVPfc8nZzQJwNpkP7Kou3PbxfbRxbfMMH/82NILDxvLbxrIHjO2dLYO5i+f4drDRr5goG/mL5gDAADAgU95BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGth3gOwdtz24fsM5c994CsGb2H95OTDzz1raOXTXvhPQ/kdQ2kAmGj7LBc/fjC/YXr08LuPLf2ksXg2DmQvHVx782B+axu8woia4drQ58wjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXQvzHoAD28J9N07O/s79/2Jo7aPvsn4of/6t07P3+Z0dQ2vvuOGGoTwAHHiOnN3SGwfzRw3mtw9k/2Vw7a2D+VwzkD1icO3DBvOwtJx5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGth3gNwYLvf26+YnD3j4Nn+X8Wzzv7ZydlTP/upGU4CAHyb6wbzFw3m1w9kLx9ce9ihA9l1M5sCZsGZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALoW5j0AK8sNZz1mKP9bx79iIH3I0Npnbfm+ofxpv3Lp5OyOoZUBgP1y02B+yyyGWDQ6y7AjZ30DMDfOPAIAANClPAIAANDVLY9V9fqquqaqLtrlspdU1RVVdcHinyfPdkwAYC2zHwGYvylnHt+Q5Em7ufxVrbXTF/+8f2nHAgD4Nm+I/QjAXHXLY2vt40muX4ZZAAB2y34EYP7252cen19Vn1t8GsnRewpV1fOqanNVbb49t+7HzQEA3MnwfiS5djnnA1g19rU8/nGS+yU5PclVSfb4+xpaa69prW1qrW1aN/irGgAA9mKf9iPJscs1H8Cqsk/lsbV2dWttR2vtm0lem+SRSzsWAMDe2Y8ALK99Ko9VdcIuHz49yUV7ygIAzIL9CMDyWugFquotSR6X5JiqujzJbyZ5XFWdnqQl2ZLkZ2Y4IwCwxtmPAMxftzy21p61m4tfN4NZAAB2y34EYP665ZED28KJ9xzK/6tfOG8of/hdZvciSOd+4f5D+VNv+NSMJgGANWB0V3j4QHb94Nqjtg9kR49zdPaRWUaya83I/TTrr69bBrKzvk9n9fdy87TY/vyqDgAAANYI5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuhXkPwGxd/OKThvLvucdfzmiS5Hsu/JGh/Gm/culQfsdQGgBYNressDwr3/aB7E0zm2LlmfPfizOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC3MewBm6/wffNXgNQ6ZyRxJcref++ZQfvsNN8xoEgDgTra3sfzW6wfCI9kkuXowv30ge8Tg2hsG80cOZA8dXHvdYH7E7TNcO0m+MZjfNpAd/foatXEge/dZDbHo8oHsyL+jmyelnHkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga2HeA7B23H783Yby6247cUaTzN6Oa6+bnG233jq0dh1yyFD+oGOPGcqP2HHsUUP5S1548IwmGdd21FD+gf/p0snZHdu2jY4DsALcOJi/YkbZJJnl99FvDObXzTg/YvsM15610dmvH8huGVx79D46c3r00YNL3zKYv+DIgfCFA9nbJ6WceQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBrYd4DsHb89TteP+8Rls13feZZk7PXXX3k0NpHH3vjUP68R7x5KM/uPejXnj85e99fOXeGkwDMyDFjj0fZ+LDp2XsNZJPkqLF4tg9krxtc+18G81sHsjcNrj1ynKP50VawfjB/+ODX18LxA+FHjK29cSyepwxkn9TG1r6pxvLvGfh73PwD07N/d7dJMWceAQAA6OqWx6o6qao+WlUXV9Xnq+oXFy/fUFUfrqpLFt8ePftxAYC1yH4EYP6mnHncnuSFrbXTkjw6yc9X1YOSvCjJ2a21U5KcvfgxAMAs2I8AzFm3PLbWrmqtfXrx/RuTXJzkxCRPTfLGxdgbkzxtVkMCAGub/QjA/A39zGNVbUxyRpLzkhzfWrsq2fkNPclxe7jO86pqc1Vtvj237t+0AMCat7/7keTa5RoVYFWZXB6r6vAk70zygtbatqnXa629prW2qbW2aV0O2ZcZAQCSLM1+JDl2dgMCrGKTymNVrcvOb9Rvaq29a/Hiq6vqhMXPn5DkmtmMCABgPwIwb1NebbWSvC7Jxa21V+7yqfclOWvx/bOSvHfpxwMAsB8BWAmm/DrQxyb58SQXVtUFi5e9OMnvJXl7VT03yVeT/MhsRgQAsB8BmLdueWytnZOk9vDpxy/tOAAAd2Y/AjB/U848cgB76heePZQ/+yHvmNEka8snznjLvEfYZze32yZnb2/fnOEkyZM/95zJ2f93wTGzGyTJiedsn+n6wFp1+2D++oHs8WNL/9RY/JT/9tnJ2V/IHw6t/V35xFD+thw8OfvBPHFo7TflPwzlL/nbh08Pf3Fo6eS6wfzIQ9fhg2vfazD/kLH4fR/8+cnZR+W8obU3ZfNQ/tR8aXL2mHxtaO0bc8RQ/rKHnzQ5uzVHTc6+atNXJ+WGflUHAAAAa5PyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQFe11pbtxo6sDe1R9fhluz3G/fPvPmYo3xZmNMg+OOKB10/OnveIN89wkjEP/rufHMq3r951RpPsdN933DQ9/MkLZzfIGnFeOzvb2vU17zlgLana1JLN8x5j0bbB/Jbp0YWHjS39sbH4ex77xMnZp/7Sh4bW/udXjM0y4uQXj+U//7L7DuXflGdPzl6ZE8aGGbSQHZOzR+TGobVPymVD+YdmbM/wfdefMzlbbxlaOvngYH7kn+mGwbXvPpg/aDA/0aZ3Jpuvbd39iDOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC3MewBWlpNffO68R1gWT8kj5j3Ct5ycz817BAAOGDPcum0djR81PXzI2NpfGYvn8oHsyX8/tvaDN395KP9fH/qyydm7XvjNsWEGZ89lA9mbBtf++mD++sH8V6dHv3bx2NKX7hjL3z6Q3TC2dDbedSx/2HED4ZG1J97/zjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtTDvAQAA1q5DB/PHT49uH1z6A2Pxl/3bF0/ObnzZlqG1H3faJ8eGuWAg+71jS287Y91Q/shLbp8efuXYLOe8ZSz/twPZgamTJBsG86cM5s8cyB7/kLG1737cWD63DmS/Prj2SYP57x7Ijvyl//K0mDOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdFVrbdlu7Mja0B5Vj1+22wNY6c5rZ2dbu77mPQesJVWbWrJ53mPso5F92+C3lgeOxfOUgewLbhla+hknvm0of2q+NDn7tRwztPbWHDWU/658YnL2+de8bmjt/P5YPBcMZLcPrn3PwfxDBvMDleHLp99jaOl/yv2H8ofm5snZo7N1aO3rBr8ez8sjJ2e35OTJ2XdselWu2XxZ95uGM48AAAB0dctjVZ1UVR+tqour6vNV9YuLl7+kqq6oqgsW/zx59uMCAGuR/QjA/C1MyGxP8sLW2qer6ogk51fVhxc/96rW2stnNx4AQBL7EYC565bH1tpVSa5afP/Gqro4yYmzHgwA4A72IwDzN/Qzj1W1MckZSc5bvOj5VfW5qnp9VR29xLMBANyJ/QjAfEwuj1V1eJJ3JnlBa21bkj9Ocr8kp2fn/wS+Yg/Xe15Vba6qzbfn1iUYGQBYq5ZiP5Jcu2zzAqwmk8pjVa3Lzm/Ub2qtvStJWmtXt9Z2tNa+meS1ye5fN7a19prW2qbW2qZ1OWSp5gYA1pil2o8kxy7f0ACryJRXW60kr0tycWvtlbtcfsIusacnuWjpxwMAsB8BWAmmvNrqY5P8eJILq+qOXzX64iTPqqrTs/O31W5J8jMzmRAAwH4EYO6mvNrqOUlqN596/9KPAwBwZ/YjAPM39GqrAAAArE3VWlu2GzuyNrRH1eOX7fYAVrrz2tnZ1q7f3dkUYEaqNrVk87zHWHmm/DDTro4ZyG4cXPv+g/mRWbYPrj3qXgPZR48tvf7064fyx9zta5OzB2XH0No357Ch/LVXHDeUz5b1A9mxpXPdYH7k38bhg2vfMpi/fCC7dSD7tk1p12zu7keceQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBrYd4DAACwAmwfzP/LjLJJ8g+D+TXilmwYyl8+kl8/OMzo18tonhXJmUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6qrW2fDdWdW2Sr+zmU8ckuW7ZBpkfx7n6rJVjdZyzc5/W2rHLfJuwptmPOM5VZq0cZ7J2jnXF7keWtTzucYiqza21TfOeY9Yc5+qzVo7VcQJrwVr5HuA4V5e1cpzJ2jnWlXycnrYKAABAl/IIAABA10opj6+Z9wDLxHGuPmvlWB0nsBasle8BjnN1WSvHmaydY12xx7kifuYRAACAlW2lnHkEAABgBZtreayqJ1XVl6rq0qp60TxnmbWq2lJVF1bVBVW1ed7zLJWqen1VXVNVF+1y2Yaq+nBVXbL49uh5zrgU9nCcL6mqKxbv0wuq6snznHEpVNVJVfXRqrq4qj5fVb+4ePmquk/3cpyr7j4F+tbKfmS17kUS+5HV9thlP7Jy79O5PW21qg5K8o9JnpDk8iSfSvKs1toX5jLQjFXVliSbWmur6nfTVNW/TnJTkj9vrT1k8bL/keT61trvLT4IH91a+9V5zrm/9nCcL0lyU2vt5fOcbSlV1QlJTmitfbqqjkhyfpKnJXlOVtF9upfjfEZW2X0K7N1a2o+s1r1IYj+SVfbYZT+ycvcj8zzz+Mgkl7bWvtxauy3JW5M8dY7zsA9aax9Pcv13XPzUJG9cfP+N2fmP4IC2h+NcdVprV7XWPr34/o1JLk5yYlbZfbqX4wTWHvuRVcB+ZHWxH1m55lkeT0xy2S4fX54V/pe1n1qSD1XV+VX1vHkPM2PHt9auSnb+o0hy3JznmaXnV9XnFp9GckA/deI7VdXGJGckOS+r+D79juNMVvF9CuzWWtqPrKW9SLKKH7t2Y9U+dtmPrKz7dJ7lsXZz2Wp+6dfHttbOTPIDSX5+8WkHHNj+OMn9kpye5Kokr5jvOEunqg5P8s4kL2itbZv3PLOym+NctfcpsEdraT9iL7I6rdrHLvuRlXefzrM8Xp7kpF0+vleSK+c0y8y11q5cfHtNkndn59NkVqurF5/Dfcdzua+Z8zwz0Vq7urW2o7X2zSSvzSq5T6tqXXZ+A3tTa+1dixevuvt0d8e5Wu9TYK/WzH5kje1FklX42LU7q/Wxy35kZd6n8yyPn0pySlWdXFUHJ3lmkvfNcZ6Zqaq7Lv4QbKrqrkm+P8lFe7/WAe19Sc5afP+sJO+d4ywzc8c3r0VPzyq4T6uqkrwuycWttVfu8qlVdZ/u6ThX430KdK2J/cga3Iskq+yxa09W42OX/cjKvU/n9mqrSbL4srOvTnJQkte31l42t2FmqKrum53/w5ckC0nevFqOtarekuRxSY5JcnWS30zyniRvT3LvJF9N8iOttQP6h7v3cJyPy86nE7QkW5L8zB3Pwz9QVdV3J/m7JBcm+ebixS/Ozuffr5r7dC/H+ayssvsU6FsL+5HVvBdJ7Eeyyh677EdW7n5kruURAACAA8M8n7YKAADAAUJ5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoOv/Aw39t/TY64opAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1298,7 +1309,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X2Y3WV5L/r7hgkESAKEdwEFEVF0a9TRcNRr626wVbc9VItVd+1Gdyu1lVZbrXq0Kqen9aiXL33BrfWtuLdWbdWqddNWzakvtBodEDXyUlBRwzummEQNZpLn/JFxX1ESnt+dzJo1mfl8ritXZtZ81/17flkzs55v1po12VoLAAAAuDsHjHsBAAAAzH/KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAjFhmvjUzX3E3H2+ZeZ+9nL3X14WKiXEvAAAAFrrW2nPHvQbYVx55BAAAoEt5BACAgTLzoZn55czcnJl/m5kfyMw/zsxnZealP5P9308nzcyLM/OPd/nYH2TmTZl5Y2b+t5+53sGZ+frM/E5m3jLzlNdDhlwXRkl5BACAATLzoIj4u4i4OCJWRsT7IuLJezHn8RHxooh4XEScHhFn/0zktRFx34hYFRH3iYgTI+KVA68LI6M8AgDAMGfFztcM+fPW2rbW2ocj4ot7MedXIuKvWmvrW2s/iIgLf/KBzMyIeE5E/F5rbWNrbXNEvDoint67LoyaF8wBAIBh7hERN7TW2i6XfXcv51y2y/vf3uXtYyLi0Ii4bGePjIiIjIgDB1wXRkp5BACAYW6KiBMzM3cpkCdHxDci4gexs/RFRERmHt+Zc/Iu799zl7dvj4gfRcQDWms3FK8LI+VpqwAAMMznI2J7RFyQmROZeU5EPGLmY1+JiAdk5qrMXBp3/3TSv4mIZ2XmmZl5aES86icfaK3tiIi3R8SbMvPYiIjMPDEzf6F3XRg15REAAAZorf04Ip4SEb8eEXdExDMj4uMRcWdr7d8i4o8i4lMRcW1EXHo3c/4hIv40Iv6/iLhu5u9dvWTm8i9k5qaZmWcMvC6MTP70U7YBAIChMnNdRLy1tfZX414LjJpHHgEAYKDMfExmHj/ztNXzIuJBEfGP414XzAUvmAMAAMOdETt/7nBZ7HyhnHNbazeNd0kwNzxtFQAAgC5PWwUAAKBLeQQAAKBrTn/m8aA8uC2Nw+bykADz2tb4Qfy43ZnjXgcsJnnA0S0OOGX4FbaPbCkRy4v5k/uRnzjqkNtKo5fFllK+xfBvXd+Pw0uzv7/pyFI+bilkf1gbHX7Ci8Vgx/XRdtze/aKe0/K4NA6L1blmLg8JMK+ta2vHvQRYfA44JWL51PD8HSNbScTqYv71w6NPevBbSqMfFf9ayk/HgYOzl8R/Ls3++D89tZSPPy1kCzd9RERMF/OwP9o8OSi2T09bzczHZ+Y1mXldZr50X2YBAOwN+xGAubHX5TEzD4yIN0fEEyLizIh4RmaeOVsLAwDosR8BmDv78sjjIyLiutbaN1trP46I90fEObOzLACAQexHAObIvpTHEyPiu7u8v2Hmsp+Smedn5lRmTm2LO/fhcAAAd1Hej8SO2gvJALDTvpTH3b0az11ej6q19rbW2mRrbXJJHLwPhwMAuIvyfiQOOGYOlgWw8OxLedwQP/2C0SdFxI37thwAgBL7EYA5si/l8UsRcXpmnpqZB0XE0yPiY7OzLACAQexHAObIXv+ex9badGZeEBH/FBEHRsS7Wmtfn7WVAQB02I8AzJ29Lo8REa21SyLikllaCwBAmf0IwNzYp/IIAMCu7vJaPXfv+N293s+ePfTBlw7OPjf+sjR79cavlPLfWnn84Oz1cWpp9seHj67bUsxvHckqdjqimF9azE+PKLs3ea1jQdiXn3kEAABgkVAeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6JoY9wIAAOa3bYXsj2qjT1lRij87Lh6cPet1X6mt5Qu1+L2fePPg7Lm/8cHS7H998CNL+Uuf9Ljh4Q2l0RHri/mKrcX8spGsYqfpEc7em/layrzkkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6Jsa9AACA+a2yXSpurbbU4t+I04aHH1ObHdPFfOFUH371+tLot9/vOaX8B5937uDsm577e6XZG196YikfHyxkr6+Njg3FfOXTcekIZ++NyuejRjNnPPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAV7bW5uxgK3JlW51r5ux4+4sDjzyylN9++kmDs9f+9kHV5ZSc9lc7BmcP+MyXR7gS2D+ta2tjU9uY414HLCY5Mdli+dTwK2wpDJ8uLmaymH/B8Oj9f/Xy0ugnxiWl/C/EPw3OPm7dpaXZ8Y5avPTv/sra6Ged+t9L+Xe/87eGh19aW0vcvqF4hRXDo0sL2YiII2rx8tfG1mK+YmKEs/dXmyejTU919yMeeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKArW2tzdrAVubKtzjVzdrxxOfDII0v5a151Ril/9VPfXMqP0p1t2+DsI6eeXZp98m/9eyk/fdPNpTzMB+va2tjUNua41wGLSU5Mtlg+NfwKE6NbS9xRzE8X9m0TxW8tT6/FV158w+Dshw98Smn2Y170xVL+h28dnj30gaXREYXZERG/seovBmff+doLasP/sBaP6eH7tFi6pDb7iFo8pov5rcV8xSi/pvdXmyejTU91v2l45BEAAIAu5REAAICufXrQNjOvj4jNEbE9IqZba5OzsSgAgKHsRwDmxmw84/c/tdZun4U5AAB7y34EYMQ8bRUAAICufS2PLSI+kZmXZeb5s7EgAIAi+xGAObCvT1t9VGvtxsw8NiI+mZlXt9Y+u2tg5pv4+RERS+PQfTwcAMBdlPYjkfccwxIB9n/79Mhja+3Gmb9vjYi/i4hH7CbzttbaZGttckkcvC+HAwC4i+p+JA44Zq6XCLAg7HV5zMzDMnP5T96OiJ+PiPWztTAAgB77EYC5sy9PWz0uIv4uM38y569ba/84K6sCABjGfgRgjux1eWytfTMiHjyLawEAKLEfAZg72Vqbs4OtyJVtda6Zs+ONy7UXrS7lr3nyfx/RSvZvn916UCn/ipc9Z3B2+Qe+UF0OjMS6tjY2tY057nXAYpITky2WTw2/QuW/2qv/LX9zMR/fKmQ3F2c/qBZ/ViF74bbS6Avu9aZS/uXx6sHZ41/3/dLsuKoWj+cNj/725BtKo9/y7t+vreWthex1tdGxtZivfm3Mxm+j35PpEeZHue5R2jwZbXqqux/xex4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoytbanB1sRa5sq3PNnB1vXG588SNL+cuf/xel/I7YMTh7v088tzT7sKsPrq1lYnj2/c95Y2n2/ZcsKeW/v2Pr4OzqD76wNPuMV11Zym/ftKmUZ/Fa19bGprYxx70OWExyYrLF8qnRDC/cL0ZExPC7rp22FPMVRxTzywrZO4qzq2v54+HR/3neuaXRz3zJh2pruXF4dNtFtdHnHF5byz/82VOGh19fW0tsKOarXxtHF/MV1a+76UK2ep7zxebJaNNT3f2IRx4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADomhj3Ahaik59w/UjnP/LyXx2cve+zLxvhSmp+56u/W8q/8c8vKuUfdNDSwdmrf+XNpdkPO/WZpfw9nnbn4Gy7c3gWgDGYHlF2b/KVndsRxdknFfPD73YjthZnb9hWy1+0ZHD0D857XWn0Ga+9ppR/+NXrB2dvPXxlafYpcX0pH6fU4jWbavHpFbX8lkK28rm4Nypfd9Wv6aoxtzePPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Me4FLESXnHFJKb+t1eYf9epDaleYJ5b+/RdL+Rduf14pf9orrxqcfevJnynNvuzh7ynlJz/wzMHZE576jdLstu3HpTwA+6iyW5ouzt5azMcPh0dvP7Q2+tG1eAy/q4t4YHH21iW1/B3DozevvXdp9COO/lopf8yDvzM4e2p8qzT7xrhHKR8bCtnq527Ztlq8+jlQsT83oMrtNILz9MgjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXRPjXsBC9CvfXFPKv/fUT5TyE5u2Ds5uL02eXw6+5Eul/De3Tw7Ofv2ta0uzH3BQ7Utl6uHvGZw9679dUJp99F9+vpQHYB9V7gKWFmdPF/NbDx2evU9x9tNr8Sf98t8Ozj4tPlCavTw2l/KXxBMHZ9/2oeeXZscv1eK3bTlheHbVPWvDh291dtpQzFcsXVHMF+cvK2TLX0fFfGX+Am9XHnkEAACgS3kEAACgq1seM/NdmXlrZq7f5bKVmfnJzLx25u8jR7tMAGAxsx8BGL8hjzxeHBGP/5nLXhoRa1trp0fE2pn3AQBG5eKwHwEYq255bK19NiI2/szF50TEu2fefneUf5QYAGA4+xGA8dvbn3k8rrV2U0TEzN/H7imYmedn5lRmTm2LO/fycAAAd7FX+5HYcducLRBgIRn5C+a01t7WWptsrU0uiYNHfTgAgLvYdT8SBxwz7uUA7Jf2tjzekpknRETM/H3r7C0JAGAQ+xGAObS35fFjEXHezNvnRcRHZ2c5AACD2Y8AzKEhv6rjfRHx+Yg4IzM3ZOavR8RrIuJxmXltRDxu5n0AgJGwHwEYv4leoLX2jD18aM0sr2XBmLrulNoVTh3JMvbKjX/wyFL+wU++cnD2yv9x/+pyRuYpn/2tUv6as98+opVEbDqtlj96NMsAmNfGuh9ZWsieVJx9RDFfuRN4Um30zz3t46X878afD86evfHS0ux/X1n5R4+4Ju47PFy9I91SzMeHh0evOKQ2+oqH1vJLC5+QD6yNvssvzumpfm1U/t2vKM5e34/8lK2FbLdd/Yzap3rE9IiyA438BXMAAADY/ymPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2MewEL0fIvH1y7wuNq8dsnVw7Orjz0P5Rmf/Z3X1/KLzugcK6vWFuavVi85pfeW8r/v9f+ail/7EeuK+W333ZbKQ+w4FV2S8cXZ59VzJ89PPqIh32mNPrJ8ZFS/r5xzeDsncWt0U1xj1J+e+FGuv9jLi/NvuodDy3l46KnDc9e0Wqzq1YVss+tjT7+vG+W8mfGlaX8rXHc4Oz6//Xw0uy4qBaPqUJ2ujh71PlZ5pFHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAurK1NmcHW5Er2+pcM2fHG5cDjz6qlL/xGWeU8vd4z1WDs+2ex5dm/9nH3lHKnzqxtJRn7t2y/Uel/C++5sWDsye8Z31p9vZNm0r5xWBdWxub2sYc9zpgMcmJyRbLp4ZfYVlh+AOLi3lSLb70mRsHZ88+fG1p9plxZSl/VNw+OHto1O6LDo47S/lDCvOXx+bS7B/HQaX8l+Mhg7P/Go8szf5unFzKnxLfGpw9O2qfL0+L95fy977i5lJ+6+nDs689bPjeJSLiwq+/tpSPPyxkP1UbHVuK+YlCtvK9a/NktOmp7n7EI48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0ZWttzg62Ile21blmzo5H3fefeVYpv+UpmwdnTzz8+6XZH7/fR0t55t4bN96vlF97/iNL+fz8V0r5/dG6tjY2tY057nXAYpITky2WTw2/wkRh+EnFxZxdzJ87PHrM6u+URv/4zoNK+c13LB+cvcdxN5Zm/0L8Uyn/rPirwdlHf+Ly0uz421o8Kqd6bHH2/Yv5yvzaNi1ibS2+7bO1/JITCuFX12a/7skXlPIvWfsXw8PPqq0lNnyveIWjhkePKIzdPBlteqq7H/HIIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF0T414A88vh7/lCMT88mxO1T7dzjnpCKV+x4+Rja1dorRQ/YMNttfkFV73m5FL+M2v+rJQ/4cBDBmd/f+XVpdnrXntKKb/5FQ8ZnD3gM18uzQYYbLqQvb04e6qYL9yV3nb1PWuzl9XisXR4dMP97lMafc1p15fy/xZnDM4++p6Xl2bH1lp8278Mz17//drs4w6u5VesKoRPr82u3P4REUuq8ytfdx+rjX7xqotK+a+tedDg7Hue9ZzaYl5zVC1f+XcZAY88AgAA0KU8AgAA0NUtj5n5rsy8NTPX73LZhZl5Q2ZeMfPniaNdJgCwmNmPAIzfkEceL46Ix+/m8je11lbN/LlkdpcFAPBTLg77EYCx6pbH1tpnI2LjHKwFAGC37EcAxm9ffubxgsz86szTSI7cUygzz8/Mqcyc2hZ37sPhAADuorwfiR2je0VsgIVsb8vjWyLitIhYFRE3RcQb9hRsrb2ttTbZWptcEsXXFwYA2LO92o/EAcfM1foAFpS9Ko+ttVtaa9tbazsi4u0R8YjZXRYAwN2zHwGYW3tVHjPzhF3efXJErN9TFgBgFOxHAObWRC+Qme+LiMdGxNGZuSEiXhURj83MVRHRIuL6iPjNEa4RAFjk7EcAxq9bHltrz9jNxe8cwVoAAHbLfgRg/LK1NmcHW5Er2+pcM2fHo27ipBNL+R886B6Dswdf8qXqcpgFdz7x4aX8E1776cHZ3195dXE1Nb983X8enL3zMTePcCWjs66tjU1tY457HbCY5MRki+VTw6/Q/a/2vcxGREwX80sL2bOKs19Uiz969ScHZ4+IO0qzvxGnlfL/HkcMzj4ovlaa/Yvx96X82fGpwdkzNn67NDt/UIrHthXDs984/F6l2VfGmaX8HYXbKCLizLhycPasdV8pzY5ra/Grnzn83+Yp8eHS7Kt+56G1xXy8kK182W2ejDY91d2P7Muv6gAAAGCRUB4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADomhj3AhitO/7r/1HK/97L31/Kn33ohsHZJ77iRaXZR178+VKe3Tv4ki+V8p9Zd/Lg7An/8u+l2c9Yfksp//pTPjQ4e94zXliaveJ9XyjlgUVslLul26tXKHwfveK40uRlD7ytlP/teHMpX/GH8Sel/M2/de/h2U8Pz0ZEfOKIc0r5WFXInlUbXZodEUtXbByc3frt5bXhH19Sy1fvds8dHr3wnJeURr/q2NeV8qd9/9uDs794+N+XZl917kNL+VhfyF5RGz2ERx4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADomhj3AhitHy/PUv7sQzeU8ocfsHRw9nN/8uel2b9wy2+X8gf/w5dKeXZv+/c2Ds5efME5pdnnXvyWUv7UieGfX6f/7pWl2be8rxQHmCc2DY/eflxp8pabjy7lv3fa8Pzy2FyavT0OLOXj+kL26nW12fEPtfgXDhmefevZtdlLH1aKb121sjC7tpSobRkjbi/mtwyP/tFZr6wt5dSjSvlD40eDs5+Ox5Zml/9dxswjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjHsBjNaxb/7XUv5RJ7yolF//7IsGZw+o/l+F/9qY925bdXApf2DmiFYS8bmrTy/l7xuXjWglwIIzPe4F7OqU0Y1+f+179Gtf/pLB2YfFVGn2cXFLKf/tF9xvePjq1aXZcf31tXzcUMyP0NZC9uji7HOL+QcW88uGR3d85LDS6Is2vLi2lsq/YyUbEbFhxPlZZnsOAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAV7bW5uxgK3JlW51r5ux41B149FGl/IqPDv/8+Z+nfLI0+0Nbji7l/++vPmlw9l6v2VGa3S77eik/n3znVY8s5Z/z1H8cnH3m4V8rzT7ygKWlfMV9P3F+Lf/sy0a0kpp1bW1sahtz3OuAxSQnJlssnxr3MvbOdCFb/ZZbu9uNOHt4dMmFm0qjf++oN5XyJ8d3B2f/Ov5Lafbn//LnSvn4dCF7fG10PLCYv8/w6LLJ20qj1xz2qVJ+dXyxlL8yzhycfc8HnlOaHU+vxSPWFbInFmefVIsvK2QnCtnNk9Gmp7r7EY88AgAA0NUtj5l5cmb+c2ZelZlfz8znz1y+MjM/mZnXzvx95OiXCwAsRvYjAOM35JHH6Yh4YWvt/hFxVkQ8LzPPjIiXRsTa1trpEbF25n0AgFGwHwEYs255bK3d1Fq7fObtzRFxVex8Mu85EfHumdi7I+KXRrVIAGBxsx8BGL/Szzxm5ikR8ZDY+VOjx7XWborY+Q09Io7dw3XOz8ypzJzaFnfu22oBgEVvX/cjsaP2wiAA7DS4PGbmsoj4UES8oLU2+CWzWmtva61NttYml8TBe7NGAICImJ39SBxwzOgWCLCADSqPmbkkdn6jfm9r7cMzF9+SmSfMfPyEiLh1NEsEALAfARi3Ia+2mhHxzoi4qrX2xl0+9LGIOG/m7fMi4qOzvzwAAPsRgPlgyK+OfFRE/FpEfC0zr5i57GUR8ZqI+JvM/PWI+E5EPHU0SwQAsB8BGLdueWytXRoRuYcPr5nd5QAA3JX9CMD4ZWttzg62Ile21en7+0Jy4JHDfxfzf/3CFf3QLn7u0A2l/JEHLB2c3da2l2Zvi1p+Pjk0Dxr3EvbaS29++ODs1f/n8aXZ0zfcWF3OSKxra2NT27inDTEwAjkx2WL51PArTI9uLTH8rmunZYXsHcXZd/ywll966PDsp2ujL1t9Zin/0FddNTx8cm0t3/6N2gssXRJPHJy9NY4rzT4karfRqXH94OzDovA1ERH3nrq5lI/i3e43C/frj4tP1Wb/hwfUFrN+XSH8o9rsuH8xX/icOaIwdvNktOmp7n6k9Ks6AAAAWJyURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqytTZnB1uRK9vqXDNnx2P/dvMLHlnK3+vJ3xycveDEtaXZ/+mQraX8YnHBDY8u5dd+ZlUpf8abbxicnb7+O6XZ88W6tjY2tY057nXAYpITky2WTw2/wvTo1hLLRpi/uTh7y7XFK6wcHv3gUaXJ3/jlE0r5e997+Mle+q3S6Fh9eC2/5D8WwvevzY7DivkbC9n1xdnVT5eDi/nnDo9+9GU/Xxr9lFs+XMrveEHhH/5TpdERtxfzS0eU3TwZbXqqux/xyCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABd2Vqbs4OtyJVtda6Zs+PBnkyceq9SfvsRy0r5a37zsMHZ4z5X+z+c2x9aiseK67KUP/YLmwZn85pvlWbv+OEPS/nFYF1bG5vaxtqNBOyTnJhssXxq+BWmR7eWWDrC/B3F2Vu+V7zCkuHRF6woTf71N11Uyr/jX35nePglpdHx1X+p5a8qZH9UGx2HFPPHjXD28N3C3nns4cOzS15cm/31l927lP+jeOXg7N+sO6+2mHfU4vHpQvb2QnbzZLTpqe5+xCOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdGVrbc4OtiJXttW5Zs6OBzDfrWtrY1PbmONeBywmOTHZYvnUuJexdyYK2a3F2VuK+cpa7lec/fRa/PSXf2Vw9s1xQWn2495waSl/y4uGZ99RmhyxrZg/u5B99D2Kww+sxTd8t5bfWMg+6Nja7Pi1WnzTa5cMzv7+gW8szX7n2trnY/xxIXtFIbt5Mtr0VHc/4pFHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuibGvQAAAAbaWshWd3lHF/MVVxfzf1iLX/vxBw/O/vyffq40+/964StL+Vf/2v8zOPvyt5ZGR3y3mH9gIbuqOHt7LX7S14r5awvh6uf66lr8WweeMjh7exxVG35HLR7Txfws88gjAAAAXd3ymJknZ+Y/Z+ZVmfn1zHz+zOUXZuYNmXnFzJ8njn65AMBiZD8CMH5DHuSdjogXttYuz8zlEXFZZn5y5mNvaq29fnTLAwCICPsRgLHrlsfW2k0RcdPM25sz86qIOHHUCwMA+An7EYDxK/3MY2aeEhEPiYh1MxddkJlfzcx3ZeaRs7w2AIC7sB8BGI/B5TEzl0XEhyLiBa21TRHxlog4LXa+NtNNEfGGPVzv/MycysypbXHnLCwZAFisZmM/Ejtum7P1Aiwkg8pjZi6Jnd+o39ta+3BERGvtltba9tbajoh4e0Q8YnfXba29rbU22VqbXBIHz9a6AYBFZrb2I3HAMXO3aIAFZMirrWZEvDMirmpr6eoIAAAGN0lEQVStvXGXy0/YJfbkiFg/+8sDALAfAZgPhrza6qMi4tci4muZecXMZS+LiGdk5qqIaBFxfUT85khWCABgPwIwdkNebfXSiMjdfOiS2V8OAMBd2Y8AjF/p1VYBAABYnLK1NmcHW5Er2+pcM2fHA5jv1rW1salt3N2jKcCI5MRki+VT417G3pkuZIf8cNK+5Cu2FPNbi/mlheyq4uwnFfPnDo8+4ozPlEbfN/6tlF8emwdnD40flmYfFd8r5Y+LW0r5ytrviCNKs78cDynl/z5+cXB2w1+eXpodH6zF4+pCtvJ1t3ky2vRUdz/ikUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6Jsa9AAAABhrlzm16hLOXjjhfsb6Yv66Y/8jw6BdXPaY0+ouPruXjrOHRk864tjT65PhuKb88Npfyd8bBg7PfjZNLs7/5lQeU8vHBQrZw+0dExNXFfMWy2R/pkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6srU2dwfLvC0ivr2bDx0dEbfP2ULGx3kuPIvlXJ3n6NyrtXbMHB8TFjX7Eee5wCyW84xYPOc6b/cjc1oe97iIzKnW2uS41zFqznPhWSzn6jyBxWCxfA9wngvLYjnPiMVzrvP5PD1tFQAAgC7lEQAAgK75Uh7fNu4FzBHnufAslnN1nsBisFi+BzjPhWWxnGfE4jnXeXue8+JnHgEAAJjf5ssjjwAAAMxjYy2Pmfn4zLwmM6/LzJeOcy2jlpnXZ+bXMvOKzJwa93pmS2a+KzNvzcz1u1y2MjM/mZnXzvx95DjXOBv2cJ4XZuYNM7fpFZn5xHGucTZk5smZ+c+ZeVVmfj0znz9z+YK6Te/mPBfcbQr0LZb9yELdi0TYjyy0+y77kfl7m47taauZeWBE/FtEPC4iNkTElyLiGa21K8eyoBHLzOsjYrK1tqB+N01m/seI2BIR/6O19sCZy14XERtba6+ZuRM+srX2knGuc1/t4TwvjIgtrbXXj3NtsykzT4iIE1prl2fm8oi4LCJ+KSKeFQvoNr2b8/yVWGC3KXD3FtN+ZKHuRSLsR2KB3XfZj8zf/cg4H3l8RERc11r7ZmvtxxHx/og4Z4zrYS+01j4bERt/5uJzIuLdM2+/O3Z+EezX9nCeC05r7abW2uUzb2+OiKsi4sRYYLfp3ZwnsPjYjywA9iMLi/3I/DXO8nhiRHx3l/c3xDz/x9pHLSI+kZmXZeb5417MiB3XWrspYucXRUQcO+b1jNIFmfnVmaeR7NdPnfhZmXlKRDwkItbFAr5Nf+Y8IxbwbQrs1mLajyymvUjEAr7v2o0Fe99lPzK/btNxlsfczWUL+aVfH9Vae2hEPCEinjfztAP2b2+JiNMiYlVE3BQRbxjvcmZPZi6LiA9FxAtaa5vGvZ5R2c15LtjbFNijxbQfsRdZmBbsfZf9yPy7TcdZHjdExMm7vH9SRNw4prWMXGvtxpm/b42Iv4udT5NZqG6ZeQ73T57LfeuY1zMSrbVbWmvbW2s7IuLtsUBu08xcEju/gb23tfbhmYsX3G26u/NcqLcpcLcWzX5kke1FIhbgfdfuLNT7LvuR+XmbjrM8fikiTs/MUzPzoIh4ekR8bIzrGZnMPGzmh2AjMw+LiJ+PiPV3f6392sci4ryZt8+LiI+OcS0j85NvXjOeHAvgNs3MjIh3RsRVrbU37vKhBXWb7uk8F+JtCnQtiv3IItyLRCyw+649WYj3XfYj8/c2HdurrUZEzLzs7J9GxIER8a7W2p+MbTEjlJn3jp3/wxcRMRERf71QzjUz3xcRj42IoyPiloh4VUR8JCL+JiLuGRHfiYinttb26x/u3sN5PjZ2Pp2gRcT1EfGbP3ke/v4qMx8dEZ+LiK9FxI6Zi18WO59/v2Bu07s5z2fEArtNgb7FsB9ZyHuRCPuRWGD3XfYj83c/MtbyCAAAwP5hnE9bBQAAYD+hPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAAND1/wMjkWE2LUIFUQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuYnWV5L+DnJTOEEI4BCZBEQgGhHDTiKBboBstBtCrQeqLFolURldZTu7W2Vtrait1I0Uur4qWCBVFbtVA3VZQqigI1wVQiAUGMEA7hECHhFHJ49x8ZulNIeL8nmTVrMnPf15VrZtb81jPvN2vNzPvLt2ZNqbUGAAAAPJUt+r0AAAAAxj7lEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAeqyU8slSyvue4v21lLL3Rs7e6OtCxkC/FwAAAONdrfW0fq8BNpUzjwAAADQpjwAA0FEp5eBSyo9LKctLKf9cSvlSKeUDpZTXllKufEL2vx9OWko5r5TygXXe96ellDtLKXeUUv7wCdebXEo5q5RyayllyfBDXqd0uS70kvIIAAAdlFK2jIivRcR5ETEtIi6KiBM3Ys5xEfEnEXFMROwTEUc/IfKhiHhGRMyJiL0jYkZE/GXH60LPKI8AANDN82Ptc4Z8tNa6stb61Yj4z42Y88qI+FytdUGt9aGIOOPxd5RSSkS8MSLeUWtdWmtdHhF/FxGvbl0Xes0T5gAAQDe7R8Tttda6zmW3beSceeu8/ct1Xn9aRGwdEfPW9siIiCgRManDdaGnlEcAAOjmzoiYUUop6xTIWRHx84h4KNaWvoiIKKXs2pgza523n77O6/dGxCMRcUCt9fbkdaGnPGwVAAC6uSoiVkfE6aWUgVLK8RHxvOH3/VdEHFBKmVNK2Sqe+uGkX46I15ZS9i+lbB0R73/8HbXWNRHx6Yj4h1LKLhERpZQZpZQXtq4LvaY8AgBAB7XWxyLidyLi9RFxf0ScHBFfj4gVtdafRcRfR8S3I+KmiLjyKeb8e0ScExH/ERE3D79c17uHL7+6lLJseOa+Ha8LPVP+50O2AQCArkop10TEJ2utn+v3WqDXnHkEAICOSilHlFJ2HX7Y6ikR8cyI+Ea/1wWjwRPmAABAd/vG2t873CbWPlHOy2utd/Z3STA6PGwVAACAJg9bBQAAoEl5BAAAoGlUf+dxyzK5bhVTR/NDAoxpj8ZD8VhdUfq9DphISplWI2YkrpH5FZ/srwNNTsYT/++/XW70///z9h1NSmQfS85+MJlfnsiuXpMcvjKZh83R7VHr0uZ+ZFTL41YxNQ4pR43mhwQY066pl/d7CTABzYiISxL5RxLZVcm17J2Lz0o0vKNzo2Momd8hkV2UnL3Bv5C4Ad9NZO9/ODl8STKfvQ9keK5LeuVlnVKb9LDVUspxpZQbSyk3l1LesymzAAA2hv0IwOjY6PJYSpkUER+PiBdFxP4RcVIpZf+RWhgAQIv9CMDo2ZQzj8+LiJtrrbfUWh+LiC9GxPEjsywAgE7sRwBGyaaUxxkRcds6by+O9fz2eSnl1FLK3FLK3JWxYhM+HADAk6T3IxFLR21xAOPJppTH9T0bz5OeYqzWem6tdajWOjSYfUYxAICnlt6PREwbhWUBjD+bUh4XR8Ssdd6eGRF3bNpyAABS7EcARsmmlMcfRcQ+pZQ9SylbRsSrI/e81wAAm8p+BGCUbPQfi6m1riqlnB4R34y1fyb2s7XWn47YygAAGuxHAEbPJv2l0VrrpRFx6QitBQAgzX4EYHRsUnkEABj/tktkZ+ZGH5iLxwmJ7Guf9LxBT+nwvb6dyu8VN3fO3h3TU7O/84YjU/lHz0s8CdLXt07Njqv3zOUfXJYIL8nNjkeS+YzBZF6NmIg25XceAQAAmCCURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJoG+r0AAICxbXr36FBy9Gtz8V3fekvn7GnxqdTsP4qPpvLT/vnR7uHkjvOeE7dJ5T/1tjf1JBsRsfgj+6Tycd523bPzs1vxhcl8xmCP8yuTecYiZx4BAABoUh4BAABoUh4BAABoUh4BAABoUh4BAABoUh4BAABoUh4BAABoUh4BAABoUh4BAABoUh4BAABoUh4BAABoGuj3AgAAxrbEdmmr3o2OiHhkxdads/dP3iE1+/7I5aetuqt7eH5qdDzt1gdT+b944Yc7Zw/Z75rU7I+/7S2p/MV7n9Q9/Bfdb8+IiJg/M5ePJcn8WLKq3wtYh8r0OGceAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaBro9wKImLTjjqn86n1mds7e9JYts8tJ2etzazpnt7jixz1cCQD0yvLu0bnb5UY/mIs/8N1dO2fPOfzPUrPPOeEdqfzxJ32tc/b34wup2Sc88PVUfnBe9+wxD1yZmj37kEWp/La/3f1GveD+N6Zmx3um5/KLM1v9ZbnZ8Ugyn7UykR3s2SrWWpXIju965cwjAAAATcojAAAATcojAAAATcojAAAATcojAAAATcojAAAATcojAAAATcojAAAATcojAAAATcojAAAATaXWOmofbLsyrR5Sjhq1j9cvk3bcMZW/8f37pvI3vOLjqXwvragrO2cPnfu61OxZb/5VKr/qzrtSeRgLrqmXx7K6tPR7HTCRlHJQjbgkcY1VPVtLRPefo2v1ci3b5uI77Nk9e05u9OtP+Vgq/8H4s87Zp132YG4x03Lx/xj6jc7ZP42/T82+9m8Pzy0m83m/d3FudixN5geS+SmJ7GBydi+/7rLHOVa8LGq9rrkfceYRAACAJuURAACApk06r1pKWRQRyyNidUSsqrUOjcSiAAC6sh8BGB0j8aDcF9Ra7x2BOQAAG8t+BKDHPGwVAACApk0tjzUiLiulzCulnDoSCwIASLIfARgFm/qw1cNqrXeUUnaJiG+VUm6otX5v3cDwN/FTIyK2iq038cMBADxJaj8SsfvorxBgHNikM4+11juGX94dEV+LiOetJ3NurXWo1jo0GJM35cMBADxJdj+S/sN9AETEJpTHUsrUUsq2j78eEcdGxIKRWhgAQIv9CMDo2ZSHrU6PiK+VUh6f84Va6zdGZFUAAN3YjwCMko0uj7XWWyLiWSO4FgCAFPsRgNEzEn/nkSe44W+ekcrfeOLHe7SS3ptcBjtn5z33gtTs7125ZSr/vve+sXN22y9dnZoNwES2MpFdnpz9SA/zS5KzF+Xi92/XPfuGd6ZGf2a/01P5WYfc1jn7e8d+ITf7ocW5fHRfy6viS6nZt/3501P5e25I5C+YkpodsTSZn5HMT0/mM7Jrz1iVzG9edczfeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBJeQQAAKBpoN8LGI+m3jqpp/PXxJrO2f0uOy01e+oNk3NrSdyDvvjGs1Oz/9dWqXhcctaHO2cPef67UrP3ff/1qfzqZctSeQDGssFEdtvk7GnJfGbrtkty9pRkPmFVMn9lLn7JIS/tnJ0Uq1OzD5p6XSo/PZZ0zu4bP0vNfkF8J5X/8tAp3cMXZO7nERHZvU72vj6WZO/A45czjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQN9HsB49GsFy3q6fxDr/39ztlnvG5eD1eS80c/+eNU/uyPfiyVf+aWW3XO3vDKj6dmP2fPk1P53V+1onO2ruieBaAfMtulXm+tViWy2yVnH5bMz+wefXVy9HG5+PS4u3N2RWyZmn1H7JbKL49tO2fvi51Ss5fE9FQ+dXeJKbnZsSyZ/0kyvySRzd7Xs1+nmc/NYHL25sWZRwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJqURwAAAJoG+r2A8ejSfS9N5VfW3Pyd/m5K7gpjxFb/9p+p/LtWvzWV3+svF3bOfnLWFanZ8557QSo/9KWTO2d3e8XPU7PrysdSeQDGsuXJ/JJEdrvc6IFDcvnTukcHz1iWGv0HO30+lT8qvt05u3Pcl5p9f+yQyv84nt05+804NjX72ssPT+UTn5aIWJmbHdn96O3J/NJEdlpy9sxkfjCRzX5eMrMj8rfTyHLmEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgCblEQAAgKaBfi9gPHrlLUel8hfueVkqP7Ds0c7Z1anJY8vkS3+Uyt+yeqhz9qefvDw1+4Atc18qc597Qefs8//w9NTsnT91VSoPwGgaTOanJPPTE9nZudHPz8XjJd2jL9zpm6nRL41/S+UPjR92zq6OSanZ34/fTOV/GId2zl77mcNTs+PMXDxuXpYIL0kOPySZz9x3I3JfSzU5e2ky/0iPshERq5L5jJGves48AgAA0KQ8AgAA0NQsj6WUz5ZS7i6lLFjnsmmllG+VUm4afrljb5cJAExk9iMA/dflzON5EXHcEy57T0RcXmvdJyIuH34bAKBXzgv7EYC+apbHWuv34sm/VXp8RJw//Pr5EXHCCK8LAOC/2Y8A9N/G/s7j9FrrnRERwy932VCwlHJqKWVuKWXuylixkR8OAOBJNmo/kn+mRQAiRuEJc2qt59Zah2qtQ4MxudcfDgDgSdbdj0RM6/dyADZLG1sel5RSdouIGH5598gtCQCgE/sRgFG0seXxkog4Zfj1UyLi4pFZDgBAZ/YjAKOoy5/quCgiroqIfUspi0spr4+IMyPimFLKTRFxzPDbAAA9YT8C0H8DrUCt9aQNvOuoEV7LuDH35tm5K+zZk2VslDv+9NBU/lknXt85e/3nfz27nJ75ne+9OZW/8ehP92glEcv2yuV37s0yAMa0zWc/MiUXH5iZy8/pUTYi4sBkftfu0cdiy9Toh5Ofx8z8+2OH1OybY+9U/of3JfZSF6RGR9x8ZfIKP0hkD86NPvyYXP6TufgeB9zQOfvLefvlhp+1Uy7/L4nsql/kZqefwCvztdGsemk9f8IcAAAANn/KIwAAAE3KIwAAAE3KIwAAAE3KIwAAAE3KIwAAAE3KIwAAAE3KIwAAAE3KIwAAAE3KIwAAAE3KIwAAAE0D/V7AeLTtjyfnrnBMLn7v0LTO2WlbH5Sa/b0/PiuV32aLxLG+7/LU7InizBMuTOU/eNPvp/K7/OvNqfzqe+5J5QHGv8FEdqfc6KNz8XhD9+jgkctSo1evmpTKr0nk748dUrPvi51T+cz8FZHbp02KVan8Djvd3zl7z+ztUrMjfj2ZX57IJjekH8vF//2AI1P54267onP24uccm5r9xos+ncrfE0/vHv7izNTsiLuT+dz9caQ58wgAAECT8ggAAECT8ggAAECT8ggAAECT8ggAAECT8ggAAECT8ggAAECT8ggAAECT8ggAAECT8ggAAECT8ggAAEDTQL8XMB7NuPDGVP65a/4old/9koWds/Xpu6Zm37OmpvLb+O+HTfayqb/K5c/4WCq/5H2PpPIvPfN/d87udsGC1OzVy5al8gBjw7Tu0b2To5+fi29x+EOds8/e6cep2ZNidW4xCXNifiq/f1yfyh9wxy3dw3ekRsdB+3Tfd0VE7Lv9zzpn/+lzr0nN/soHXp7Kx/wXdc/OeTQ1+owZ70/lj5t7RSof/9Y9evxvXZYaffcRf57Kn/qBz3cPLxhMzY4Fu+TysTyZH1m2/gAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADQpjwAAADSVWuuofbDtyrR6SDlq1D4eeQ+c/PxU/sHfWd45O2P7B1Kzv77fxak8o+/spful8pefemgqX676r1R+c3RNvTyW1aWl3+uAiaSUg2rEJYlr7Nk9enRyMSck80d2j/7aAT9NjT4ofpLKD8W8ztmj49up2c+/Ifn9//8msvNzoyO3fYnYPZEdSs5O5lcm7rqPbZU7p7T1Q2tS+XJ3Kh5xayL7aG70o8k6ctrUf+ycPf99b84N/8DKXD5uSmSnJLIvi1qva+5HnHkEAACgSXkEAACgSXkEAACgSXkEAACgSXkEAACgSXkEAACgSXkEAACgSXkEAACgSXkEAACgSXkEAACgSXkEAACgaaDfC2Bs2f6Cq5P57tkykLu7Hb/Ti1L5jDWzdsldodZUfIvF9+TmJyw8c1Yqf8VRH0nld5s0pXP2ndNuSM2+5kOzU/nl73t25+wWV/w4NRtgTFiUzH+je/SWew9IjZ5+xJJUfnZi8c954L9Ss2NhLh4PJbLZ3e/qZH5+IntFcnZyLYPbJ7LPWZMb/oZc/Mqhg1P5x/ab3Dn7mw9clZq91QOpeOw99efdwzNzsyMGs1foK2ceAQAAaFIeAQAAaGqWx1LKZ0spd5dSFqxz2RmllNtLKfOH/724t8sEACYy+xGA/uty5vG8iDhuPZf/Q611zvC/S0d2WQAA/8N5YT8C0FfN8lhr/V5ELB2FtQAArJf9CED/bcrvPJ5eSvnJ8MNIdtxQqJRyaillbill7spYsQkfDgDgSdL7ER0UYONsbHn8RETsFRFzIuLOiPjwhoK11nNrrUO11qHB6P6UuwAADRu1H4mYNlrrAxhXNqo81lqX1FpX11rXRMSnI+J5I7ssAICnZj8CMLo2qjyWUnZb580TI2LBhrIAAL1gPwIwugZagVLKRRFxZETsXEpZHBHvj4gjSylzIqJGxKKIeFMP1wgATHD2IwD91yyPtdaT1nPxZ3qwFgCA9bIfAei/ZnlkYhmYOSOVf+iZu3fOTr70R6nZq5fcncqn9HJ2RKzu4exnvC639j948TtS+Rd96Luds++cdkNq9pf2+kYq/7t//dudsyuOSI0GSHi4e3T+1rnRN+fiqZ3bUG70VbN/M5V/4R7f7JxdtP3M1Oy9j1icyq84tnt20dQ9UrPvjx1S+dmxqHN218seSM2OH+TiKYfl4lcM5X7F+FPJBwY8HFM6ZxdtPzs1e6/tf57Kz4853cPpB88vSeYfSWS7fw672pQ/1QEAAMAEoTwCAADQpDwCAADQpDwCAADQpDwCAADQpDwCAADQpDwCAADQpDwCAADQpDwCAADQpDwCAADQpDwCAADQNNDvBdBb9//Bb6Ty7/jzL6byR2+9uHP2xe/7k9TsHc+7KpVn/SZf+qNU/oprZnXO7vaDX6Vmn7TtklT+rNlf6Zw95aR3pWZvd9HVqTwwkS3tHr13eW70vQ/n8rGqe3TRPrnRQ4Op+CXvemnn7KqYlJq99bRHUvlr4nmdsxf/8uWp2fGN3OclDuwePeLYb6RGv+zYS1L5baP7/fH62D81+5vxwlR+4byDU/nYoXaO3r/XjqnRs+MXqfwl972sezi9vei+l14r8T2gB5x5BAAAoEl5BAAAoEl5BAAAoEl5BAAAoEl5BAAAoEl5BAAAoEl5BAAAoEl5BAAAoEl5BAAAoEl5BAAAoGmg3wugtx7btqTyR2+9OJXffoutOme//7cfTc1+4ZK3pPKT//1HqTzrt/q+pZ2z551+fGr2y8/7RCq/50D3+9c+f3x9avaSi1JxYEJ7JJHt/j104/KJtayakhv97Zmp+LUHHt45e93QM1OzV968XSofFySyH8uNjvhuMr935+QVQ8elJl9xQi4fOySyd+VGp/NZQ933sPN2fU5q9B1Td0vlV16duD/2+vPSZ848AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0KQ8AgAA0DTQ7wXQW7t8/Iep/GG7/Ukqv+B1H+uc3SL7fxX+a2PMu2fO5FR+Uik9WknE92/YJ5V/Rszr0UqA8SezXZqSnJ3NZ6zMxRckx1/QPbryi9vlZl+di8cNSxLhbyWH357ML+oenXtwbvTcg3L5SPzc3SY5emYyP5TM79A9umrVpNTo+1bvnFvLXYnsqtzoiMHsFfrK9hwAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAICmgX4vgLFlr3N+lsq/5gXHdM7+0+xvpWafdva/pPJ/9dqXdM7uceaa1Ow676ep/Fhy6/sPTeXf+IpvdM6evP3/Sc3eIrZK5QE2P1OS+WnJ/MpEdjA3enEuHt9OZFclZ9+bzKc+jyfnRs/MxWPXRHbnHs6OiNg7kT0wOXtO5r4YscceP0/ld487UvmM61fsn7vCokT2rtzoiNuT+W2zH2BEOfMIAABAU7M8llJmlVK+U0pZWEr5aSnlbcOXTyulfKuUctPwyx17v1wAYCKyHwHovy5nHldFxLtqrb8eEc+PiLeWUvaPiPdExOW11n0i4vLhtwEAesF+BKDPmuWx1npnrfXa4deXR8TCiJgREcdHxPnDsfMj4oReLRIAmNjsRwD6L/U7j6WU2RHx7Ii4JiKm11rvjFj7DT0idtnAdU4tpcwtpcxdGSs2bbUAwIS3qfuRiKWjtVSAcaVzeSylbBMRX4mIt9dal3W9Xq313FrrUK11aDAmb8waAQAiYmT2I/lnOAUgomN5LKUMxtpv1BfWWr86fPGSUspuw+/fLSLu7s0SAQDsRwD6rcuzrZaI+ExELKy1nr3Ouy6JiFOGXz8lIi4e+eUBANiPAIwFAx0yh0XEayLiulLK/OHL3hsRZ0bEl0spr4+IWyPiFb1ZIgCA/QhAvzXLY631yogoG3j3USO7HACAJ7MfAei/LmcemUBW33tfKr/sJd3/FvNXrt45Nfu3tl6cyv/uoed1zq68eHVq9srI5ceSrcu8Hk7fqoezI95z13M7Z/f/iztTs1dlFwPQE9mtWCa/Mjl7SS5+13qf2Hb9dt5Q79+Al+Ti8ZLBztFtTr4nNfrIqd9N5feP6ztnd487UrNnx6JUfijmds7OWJB8FuIbc/G4Kxdfekj3PcaX4lWp2R+anPtzsA8s2jWRzu67bkrm90nmR1bqT3UAAAAwMSmPAAAANCmPAAAANCmPAAAANCmPAAAANCmPAAAANCmPAAAANCmPAAAANCmPAAAANCmPAAAANCmPAAAANA30ewFs3lb/6leds5/bd4/U7A++/aRUfo8Tb+mcPX3G5anZL5jyaCo/UZx+++Gp/OVXzEnl9/347Z2zq26/NTUboLtVPcpG5Ldig4nsI8nZS5L5hF2n5/Kn5eIn/fZnO2ffHWemZj/rkptyi7k0kV2QG/3w/Fz+2w91z346Nzp1T4yIOCKZP/yl3fdeb/7k+anZ83d/dip/7pH7dQ9f8JzU7IilyfyUZH5kOfMIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABA00C/FwAbsus5P0zlV5zTPfuRPV+cmn32Dtuk8je+aWrn7PTv5/4P596DU/HY7uaSyu9y9bLO2XLjL1Kz93r4qlR+VSoNwKZZmcw/3D2a+zEacWBuLYdG9z3Ds35wU24tZ+fi11zRPfuD3Ojo/hN6rcFEdnpy9rbJfPpn+jWJbPI2+shfvT2V3+n193XOfvDIv8ot5j3H5PL/kgnn9mldOPMIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABAk/IIAABA00C/FwD9sOoXv+zp/Gec1rvZ21/Yu9kREbVHWQAmsPuT+ZsHU/Hr99i/c/ahody5k6lz1qTyB8/vnh14IDU6ZubiMf3FifBvJYdnW8TCZP6mRPbHudFbvTuX/7tX/E3n7NARc1OzTznv/FT+wRue1j28IDW6E2ceAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaFIeAQAAaBro9wIAAMa2sbRdWtnD2VOS+cHu0UXJ0Rfk4p+Y+c7O2cf23TI1+y3n/GMqf/ArFnbOPmdBanTEdrl4fWH37NxpB6Zmbx0Pp/IH/OKWVD6uSGTvyI2OnZL5p3ePLo9tU6NXrZqUXEx/OfMIAABAU7M8llJmlVK+U0pZWEr5aSnlbcOXn1FKub2UMn/434t7v1wAYCKyHwHovy6Pw1gVEe+qtV5bStk2IuaVUr41/L5/qLWe1bvlAQBEhP0IQN81y2Ot9c6IuHP49eWllIURMaPXCwMAeJz9CED/pX7nsZQyOyKeHRHXDF90einlJ6WUz5ZSdhzhtQEAPIn9CEB/dC6PpZRtIuIrEfH2WuuyiPhEROwVEXNi7f8EfngD1zu1lDK3lDJ3ZawYgSUDABPVSOxHIpaO2noBxpNO5bGUMhhrv1FfWGv9akRErXVJrXV1rXVNRHw6Ip63vuvWWs+ttQ7VWocGY/JIrRsAmGBGaj8SMW30Fg0wjnR5ttUSEZ+JiIW11rPXuXy3dWInRkT2L9UAAHRiPwLQf12ebfWwiHhNRFxXSpk/fNl7I+KkUsqciKix9k+/vqknKwQAsB8B6Lsuz7Z6ZUSU9bzr0pFfDgDAk9mPAPRf6tlWAQAAmJi6PGwVAIDNTnabl82v7B59dElu9HnTc/m53aOfOfn01OgLT/u9VP7Ew/61c/bQw36Ymj07fpHKZwzE6lR+UjK/dM+tUvmtd3m0c/a2qTNTs78fv5nKfyle1Tl72RXHp2bHWbl4v3+r25lHAAAAmpRHAAAAmpRHAAAAmpRHAAAAmpRHAAAAmpRHAAAAmpRHAAAAmpRHAAAAmpRHAAAAmpRHAAAAmgb6vQAAgIlrVQ9nj6Vt3n3J/OJcfMHM7tmPTU+NfvT+aan8Ra/9w87Z2/adlZp9aPwwlT8oruucnR2/SM3eKe5N5bN+PvXXOme/Ey9Izf6neE0q/5/nH9EuyMfIAAAE0klEQVQ9fGZqdMQN2a+NpYnsyH8PcOYRAACAJuURAACAJuURAACAJuURAACAJuURAACAJuURAACAJuURAACAJuURAACAJuURAACAJuURAACAJuURAACAplJrHb0PVso9EfHL9bxr54i4d9QW0j+Oc/yZKMfqOHtnj1rr00b5Y8KEZj/iOMeZiXKcERPnWMfsfmRUy+MGF1HK3FrrUL/X0WuOc/yZKMfqOIGJYKJ8D3Cc48tEOc6IiXOsY/k4PWwVAACAJuURAACAprFSHs/t9wJGieMcfybKsTpOYCKYKN8DHOf4MlGOM2LiHOuYPc4x8TuPAAAAjG1j5cwjAAAAY1hfy2Mp5bhSyo2llJtLKe/p51p6rZSyqJRyXSllfillbr/XM1JKKZ8tpdxdSlmwzmXTSinfKqXcNPxyx36ucSRs4DjPKKXcPnybzi+lvLifaxwJpZRZpZTvlFIWllJ+Wkp52/Dl4+o2fYrjHHe3KdA2UfYj43UvEmE/Mt5+dtmPjN3btG8PWy2lTIqIn0XEMRGxOCJ+FBEn1Vqv78uCeqyUsigihmqt4+pv05RS/ldEPBgRn6+1Hjh82d9HxNJa65nDP4R3rLW+u5/r3FQbOM4zIuLBWutZ/VzbSCql7BYRu9Vary2lbBsR8yLihIh4bYyj2/QpjvOVMc5uU+CpTaT9yHjdi0TYj8Q4+9llPzJ29yP9PPP4vIi4udZ6S631sYj4YkQc38f1sBFqrd+LiKVPuPj4iDh/+PXzY+0XwWZtA8c57tRa76y1Xjv8+vKIWBgRM2Kc3aZPcZzAxGM/Mg7Yj4wv9iNjVz/L44yIuG2dtxfHGP9kbaIaEZeVUuaVUk7t92J6bHqt9c6ItV8UEbFLn9fTS6eXUn4y/DCSzfqhE09USpkdEc+OiGtiHN+mTzjOiHF8mwLrNZH2IxNpLxIxjn92rce4/dllPzK2btN+lseynsvG81O/HlZrPTgiXhQRbx1+2AGbt09ExF4RMSci7oyID/d3OSOnlLJNRHwlIt5ea13W7/X0ynqOc9zepsAGTaT9iL3I+DRuf3bZj4y927Sf5XFxRMxa5+2ZEXFHn9bSc7XWO4Zf3h0RX4u1D5MZr5YMP4b78cdy393n9fRErXVJrXV1rXVNRHw6xsltWkoZjLXfwC6stX51+OJxd5uu7zjH620KPKUJsx+ZYHuRiHH4s2t9xuvPLvuRsXmb9rM8/igi9iml7FlK2TIiXh0Rl/RxPT1TSpk6/EuwUUqZGhHHRsSCp77WZu2SiDhl+PVTIuLiPq6lZx7/5jXsxBgHt2kppUTEZyJiYa317HXeNa5u0w0d53i8TYGmCbEfmYB7kYhx9rNrQ8bjzy77kbF7m/bt2VYjIoafdvaciJgUEZ+ttf5t3xbTQ6WUX4u1/8MXETEQEV8YL8daSrkoIo6MiJ0jYklEvD8i/jUivhwRT4+IWyPiFbXWzfqXuzdwnEfG2ocT1IhYFBFvevxx+JurUsrhEfH9iLguItYMX/zeWPv4+3Fzmz7FcZ4U4+w2Bdomwn5kPO9FIuxHYpz97LIfGbv7kb6WRwAAADYP/XzYKgAAAJsJ5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAIAm5REAAICm/wcRKdGYicL2kAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1310,7 +1321,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmU5Wd5H/jv6+5G+4IQaq0gDAIhgSOgjySPcMCWwQqeMSIJHuNA5Aw2zolJTIwnIhwnMI7tgYyMl7GDDQGEh8XBEVs8WGYJDMgY4ZbSBhkBElKDlkZCyEIt0NLLO390yadB3Xp/T3fdutVVn885Ol1d9b1PPbduVdf71b11q/XeAwAAAA/n++a9AAAAAMuf8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAADPWWvuD1tq/e5i399baE/Zx9j5fFirWznsBAABY6Xrv/3zeO8D+cs8jAAAAQ8ojAABM1Fp7emvtf7TWtrbW/qS19l9aa7/WWvuZ1toV35P9u4eTttYuba392m5v+99ba1taa7e21v6377ncQa21S1prX2ut3bbwkNdDplwWZkl5BACACVprj0jyviSXJjkmybuTvGAf5lyQ5JeTPCfJaUl+9Hsir0/yxCRnJXlCkpOS/PuJl4WZUR4BAGCac7PrOUN+t/e+rff+3iSf3Yc5P5nkbb33a3rv307y2gff0FprSX4uyb/uvd/Ze9+a5DeS/NTosjBrnjAHAACmOTHJLb33vtvrbtrHOVft9vev7vbyo5McmuSqXT0ySdKSrJlwWZgp5REAAKbZkuSk1lrbrUCekuQrSb6dXaUvSdJaO34w55Td/v6Y3V6+I8m9Sc7svd9SvCzMlIetAgDANH+ZZEeSl7fW1rbWnp/k7IW3/XWSM1trZ7XWDs7DP5z0PUl+prV2Rmvt0CSvefANvfedSd6c5Ldaa8clSWvtpNbaj40uC7OmPAIAwAS99weS/MMkL01yV5IXJ/nTJPf33r+c5FeTfDTJdUmueJg5f5bkt5P89yTXL/y5u4sXXv+Z1trdCzOfNPGyMDPtux+yDQAATNVauzLJH/Te3zbvXWDW3PMIAAATtdae1Vo7fuFhqxcl+YEkl897L1gKnjAHAACme1J2/dzh4dn1RDn/uPe+Zb4rwdLwsFUAAACGPGwVAACAIeURAACAoSX9mcdHtIP6wTlsKd8lwLJ2X76dB/r9bd57wGrS2rE9eey81wBYRr6a3u8YnkeWtDwenMNyTjt/Kd8lwLJ2Zf/YvFeAVeixST4z7yUAlpFzJ6X262GrrbULWmtfaq1d31p71f7MAgDYF84jAEtjn8tja21Nkt9P8g+SnJHkRa21MxZrMQCAEecRgKWzP/c8np3k+t77Db33B5L8cZLnL85aAACTOI8ALJH9KY8nJblpt7/fvPC679Jae1lrbWNrbeO23L8f7w4A4CHK55HkjiVbDmAl2Z/yuKdn4+kPeUXvb+q9b+i9b1iXg/bj3QEAPET5PJIcuwRrAaw8+1Meb05yym5/PznJrfu3DgBAifMIwBLZn/L4V0lOa609rrX2iCQ/leSDi7MWAMAkziMAS2Sff89j7317a+3lSf48yZokb+29/82ibQYAMOA8ArB09rk8Jknv/UNJPrRIuwAAlDmPACyN/SqPAADsj20znL1utvnKKXJ7bXTyzWL+tuo7KDikmD90hrOr+VneSHcW89XbtOJRxfwxxXzla+Mhz9c1UP7imKv9+ZlHAAAAVgnlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgKG1814AAGD12l7M31vIHlcbfXotnqcUsncUZ3/iUcULXF/IVj6GSfnjmEOL+dWi+rm+bUbZRAXad+55BAAAYEh5BAAAYEh5BAAAYEh5BAAAYEh5BAAAYEh5BAAAYEh5BAAAYEh5BAAAYEh5BAAAYEh5BAAAYEh5BAAAYGjtvBcAAFjeZnlcureYv62QPaY2+pnravlXFLIH99rs/9pq+fefMz17R210Di7m7ylkNxdn5+4Z5o+sjT52fS1/VjFf+bLbVBudr1c/jpWvu+LHMUcU88Wv00XmnkcAAACGlEcAAACGlEcAAACGlEcAAACGlEcAAACGlEcAAACGlEcAAACGlEcAAACGlEcAAACGlEcAAACGlEcAAACG1s57AQCAlaMV83cX87cUsk+ojX7mulL8pWf+3uTsM7KxNHvTxU8r5T918Q9Nzt62Y31p9l13HF3K77z8sOnh6R/CXTZ+s3iBqwvZZ9dGv6oWf+4rP1DKH5Gtk7OXvfPFtWWK8eTKQva04uwnF/O1r9PF5p5HAAAAhpRHAAAAhpRHAAAAhpRHAAAAhpRHAAAAhpRHAAAAhpRHAAAAhpRHAAAAhpRHAAAAhpRHAAAAhtbOewEObDt++OmTsy9/03tKs9942hOq67AHW//Xc0v5ozfdMTm740vXV9cBOAC1Gc6uHsUq+UNro8+qxc/PRydn//G3PlCafddRl5XyX8gZk7Nb1xxemv2V9bXzyB9e9POTs9deMf0clSTZuLWWz1cL2SNLk49/5Q2l/J/femEpny9Oj77kn9xbGv2OS36utsum0wrhk2qzix/3mm2LPtE9jwAAAAwpjwAAAAzt18NWW2ubk2xNsiPJ9t77hsVYCgBgKucRgKWxGD/z+MO99+k/JAUAsPicRwBmzMNWAQAAGNrf8tiTfLi1dlVr7WWLsRAAQJHzCMAS2N+HrZ7Xe7+1tXZcko+01r7Ye//k7oGFf8RfliQHV58yGgBgrHQeSR6z9BsCrAD7dc9j7/3WhT9vT/K+JGfvIfOm3vuG3vuGdTlof94dAMBDVM8jybFLvSLAirDP5bG1dlhr7YgHX07y3CTXLNZiAAAjziMAS2d/Hra6Psn7WmsPznlX7/3yRdkKAGAa5xGAJbLP5bH3fkOSv7eIuwAAlDiPACydxfg9j6xiX/2x6T/Hesyae2a4CXvz9R9/oJTf9pLpj2Y/5n+ubgNwIOqFbCvOXj+7/Lm1yd93/LdL+XsLT4R47+HrSrOP+HbtzPDUwz43Obt2x47S7BPXbCnlP55nT85ee/TTS7PrjpgePb52G/1Y/ry2ym/U4vnQ9OjvX/cLpdHvuvynS/mdrzhnevjrpdFJ9Xi8qZDdXpw9gd/zCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwNDaeS/A8tLWPaKU/5Ef2TSjTVgsR/yPg0v5n3zp/zc5+/GjTy7N3nHXt0p5gOXh3hnOPrQWP7eQfXFt9Inrby3lv5QnTc5+fM0P13Y5rLbLEdk6ObtmzY7S7JtySim/JSdOD99RGp3kkGL+vOnRC2qTfyCfr13ga7X4VTdOzz7jF7eVZl/+e7Ur+5p3/x+Ts3951Y+UZuePa/FsLmTLn19j7nkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgaO28F2B52fqCp5fyv3vS/z05++T3v7w0+7RcWcqzZ/c/spfy/+qRX5yc/cQRT64tc9e3anmAZeHOQvbu2ujDz6jlf2p69ORfuK40+pzi993v5JDJ2S/liaXZD+QRpfwh+c7k7FfyhNLsD+Z/KeU/e9mzpoc/URqdZH0tfvKR07M/Wxt9Qm6tXaB4ZDj5vxXCf1Kb/ZwTryjlT3z1z03O/tIz3lCa/eGNzy/lc3Atvtjc8wgAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMDQ2nkvwGz1884q5X//9b9Tyr/j7sdOzp7+K18uzd5RSrM3P/jca+a9AsAB7u5C9vba6GPPKMXXvXj6Lv8i/6k0+5TcVMrfnuMmZx+RB0qz1xRPAVty4uTsu/LTpdmfff2zSvn8SiG7/bra7JxWi//z6dFnnXd5afSJ2VLb5fxafH3hQ3P3h2qzj/yDWv7MDTdMzp763M214ffV4uX8InPPIwAAAEPKIwAAAEPKIwAAAEPKIwAAAEPKIwAAAEPKIwAAAEPKIwAAAEPKIwAAAEPKIwAAAEPKIwAAAEPKIwAAAENr570As/W3//Y7pfzJa7eX8r/0L398cnbd315Vms2erT3h+FL+bY+5vJTf1v0/JYB9d0wt/uxa/J896m2Ts//29t+uDa8dAfKZE//e5OxtWV+afUS2lvKbc+rk7Ge/8vdLs/PaWjzbf7cQPrI2++TTSvGDX37n5OzP5j+XZp+RL5TyeUotnhdOjx55a3H27cX8QdOjlc/FJMk1tXjuKOYXmVMiAAAAQ8ojAAAAQ8Py2Fp7a2vt9tbaNbu97pjW2kdaa9ct/PnI2a4JAKxmziMA8zflnsdLk1zwPa97VZKP9d5PS/Kxhb8DAMzKpXEeAZirYXnsvX8yyff+tO3zk7x94eW3J7lwkfcCAPg7ziMA87evP/O4vve+JUkW/jxub8HW2staaxtbaxu35f59fHcAAA+xT+eRuT9dIcABauZPmNN7f1PvfUPvfcO6yvPcAgAskt3PI8mx814H4IC0r+XxttbaCUmy8Gf1t6UAAOwv5xGAJbSv5fGDSS5aePmiJB9YnHUAACZzHgFYQlN+Vce7k/xlkie11m5urb00yeuSPKe1dl2S5yz8HQBgJpxHAOZv7SjQe3/RXt50/iLvwkTf/LkfnJz9k6f+X6XZf/StHyjl1330qlKe/feFXz2llN/Wd5TyF23+0cnZHbd/ozQbYF/N9zyyfnr08EfVRv9yLf7q/Pr08Ctrs3NiLX7OxX89ObvxmKeUZn8nh84u//VWmp37ei3/kCcFfjiH1EY/oRb/8aM+NDn74lsvqw3fVIvnqcX8MwvZyoc8Sb5di1/xrKdPzn74r59fG/6ntXjynUJ2XXX40MyfMAcAAIADn/IIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADA0Np5L0Dd9114x+TsiWsPKs1+y7suKOVPzqdLeR5qzZlPKuXfcf4flvL3922l/Nfe8MTJ2cPuv7I0G+DA9Kjp0Qtrk//Rme8o5R/7O9+YnL2yNjrnPK6Wbz8xPfud8w4tzf5ypn8vSpIv5Izp4XtKo5ODWy1/36mF8BG12cfX4s/IVdPDxc+X3FDMF76MkuQb5xw+OXv0i2s36u1HHVPK/3b+9fTwJaXRyddvLF5geyF7anH2mHseAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFIeAQAAGFo77wVI1jz60aX8rzzx/53RJsnJv/Hpmc1mz774L44u5TcctKOU//2/PaOUP+yyK0t5gBXv4EL29NroZ+Sq2gU+PD36Z7XJOfXGWn79YdOzn8oPlWa/LxeW8ld/6ZnTw58oja7d/kly30mF8N212dtr8WNzx/Twptrs3FDMf7MWvyvTz0e3HnVCafZX8oRS/sqcMz28sTQ6yVeL+WOq72BRuecRAACAIeURAACAIeURAACAIeURAACAIeURAACAIeURAACAIeURAACAIeURAACAIeURAACAIeURAACAobXzXoCkHXpwKf9jh35rcvbsv/qnpdnH59pSnv137Kl3znT+O2/cUMofmy/PaBOAVWB7Lf6dHFK7wInTo0+tTc762reLfPGsx07Ovi3/rDT7hl8/s7bM5YXs5tro3FXMl27T4hlgcy1+Yx43PVyIJknuKeYP4NaxJjumh2vH+tQ/MPP9QLrnEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgCHlEQAAgKG1816AZOedd5Xy/+EbT5+c/enHbyzN/uQJjy/lt2/5eim/Wqx97CmTs39x1h8Xp9f+n8+9nzm2OP/LxTzACndfIXt9bfR/y0+U8q/6vddPzv6j03bWlnlhLf66XDw5e8PvnFkdXnPPjYXwocXhx8wwf29t9M21+P+Tl0zO/tNf/6PS7NOv/GptmeNq8fU7bpucvX/NQaXZN2X6OS1J1mTH9PDRpdGpf36tq76DReWeRwAAAIaURwAAAIaG5bG19tbW2u2ttWt2e91rW2u3tNY2Lfz3vNmuCQCsZs4jAPM35Z7HS5NcsIfX/1bv/ayF/z60uGsBAHyXS+M8AjBXw/LYe/9kkjuXYBcAgD1yHgGYv/35mceXt9Y+t/AwkkfuLdRae1lrbWNrbeO23L8f7w4A4CHK55HkjqXcD2DF2Nfy+MYkj09yVpItSX5zb8He+5t67xt67xvWpfY0ugAAD2OfziNJ9VcYAZDsY3nsvd/We9/Re9+Z5M1Jzl7ctQAAHp7zCMDS2qfy2Fo7Ybe/viDJNXvLAgDMgvMIwNJaOwq01t6d5NlJjm2t3ZzkNUme3Vo7K0lPsjnJz89wRwBglXMeAZi/YXnsvb9oD69+ywx2AQDYI+cRgPkblkdmb+fWraX8h285fXL2U2e9qzR7y58eVcp/6g9/sJRfLu46o5fyh5/6rVL+3BM3T87uzM7S7KpWu6oA7I8ravG/fv25pfwTLr5ucnbDv7mqNPsLOaOUv+EtZ04PX1oandxzd/EClbPU9uLsQ4r5UwvZk2ujv16L3/zC0yZnn/zazaXZrzjn/yzl/2V+t5T//k2FK3vcttLse088tJT/5v2Pmh6+rzQ69c+v+dqfX9UBAADAKqE8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMNR670v2zo5sx/Rz2vlL9v5WrLOfOjn6rdfeWxr9vqdcWsofs+agUn652Hj/mlJ+R/H/s2x4xAOTs2taK82uuvD0Hynld27dOqNN2JMr+8dyd79ztp8EwHdp7Rk9+cyMpq8t5otf/kcXsgfXRue+Yv6uSrh63qydX5LtxXxF9TY9dCZb7HJ3MX91IXt2bfQVtev5qfOeUco/8x2F3TeURufXTn9lKf/v/uKS6eEX13bJ5huLF1hXyK4vZM9N71cN/0FyzyMAAABDyiMAAABDyiMAAABDyiMAAABDyiMAAABDyiMAAABDyiMAAABDyiMAAABDyiMAAABDyiMAAABDa+e9APvgs5+fHD3qebXRL3n2vyrl7zrtoNo7WCYe9ea/nOn8W9575uTsVedcOrtFkuzcunWm8wFWvm2F7J3F2d+sxe+6pRC+uzY7hxbzxxWyJxdnH1PMV3bvxdnbi/nK50v1Nrq6mP9sIVusBdufWYqfkptq82+dHt12Qm30p/M/1S7wiUL2jtro+tfdfOubex4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYUh4BAAAYWjvvBVhe1nzi6lL+UZ+YzR4Huns3HzE9fM7s9kiSft5ZpXz7i00z2gRgNTikmD9yJlvssr6Yrx4LK7tXPy5VvZBtxdnVj8vthezNxdlVF0yPPvMZpcnPfdYHSvnHXvmNUj73TY9++ajvL43+1Ld/qLbLZwrZe2qjZ/+1sbjc8wgAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMCQ8ggAAMDQ2nkvACtSmx79vhn/P5z2F5tmOh9g5Vs3o2ySHFHMn1zMz1IvZLfPbItd7i1kq7tUj8vrp0cPL2ST5PRaPD86PXrMr91SGv3LuaS2y2dq8Rw8PXpjTi2Nvuf6R9d2+XotXnNg1TH3PAIAADA0LI+ttVNaax9vrV3bWvub1tovLrz+mNbaR1pr1y38+cjZrwsArEbOIwDzN+Wex+1JXtl7f3KSc5P8QmvtjCSvSvKx3vtpST628HcAgFlwHgGYs2F57L1v6b1fvfDy1iTXJjkpyfOTvH0h9vYkF85qSQBgdXMeAZi/0s88ttZOTfK0JFcmWd9735Ls+gc9yXF7uczLWmsbW2sbt+X+/dsWAFj19vc8ktyxVKsCrCiTy2Nr7fAklyV5Re/97qmX672/qfe+ofe+YV0O2pcdAQCSLM55JDl2dgsCrGCTymNrbV12/UP9zt77exdefVtr7YSFt5+Q5PbZrAgA4DwCMG9Tnm21JXlLkmt772/Y7U0fTHLRwssXJfnA4q8HAOA8ArAcTPmtlOcleUmSz7fWHvxt469O8rok72mtvTTJ15K8cDYrAgA4jwDM27A89t6vSNL28ubzF3cdAICHch4BmL8p9zwCVX16dGd2zm4PAJa5vfXhlWbdjOffW8jeXJx9ZC1+7qHTs5fURj/rvMtL+afmc5OzT8umcWg3z7n1ilK+/NPIJ06PPlB9Us5qAzq4mC/ZXszPt76VflUHAAAAq5PyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwJDyCAAAwNDaeS8AK9HOg3fObPY3dtw/s9kALLVt815gN7Pc5dAZzq66pZjfXotfcPLk6GvPu7g0+jW3/8dSfttB07M3HXV8aXZurcXzzWK+sPvRuas2+/Di5/radbX8TFU+Hxd/b/c8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMKQ8AgAAMLR23gvASvSOC/5gcvbaB3aWZr/o0n9Tyj8mny7lAdgf2+a9wG62F/PV3dcV87NU2f3O4uwja/HTp0eflw/VZr+vFl/3gunZTXlaafYpp/1ZbZdbS/HkxunRE1Mcfk/xc/eOSrjXZh9gdcw9jwAAAAwpjwAAAAwpjwAAAAwpjwAAAAwpjwAAAAwpjwAAAAwpjwAAAAwpjwAAAAwpjwAAAAwpjwAAAAytnfcCsBL96o0/MTn77f90Umn2Yy77dHUdAJatdfNeYBWqHn+L+fumR2/LcbXZz63F33jcRZOz/zk/W5q99agjSvmLnvieUj7XTo/elaNrszfV4vliJby1OPyQYn6+3PMIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADAkPIIAADA0Np5LwAr0vk3T44elulZAJa7dfNeYDfLaZdezLdivnJd1xdnH1mLXzE9+h8u+vel0e9/3AtK+bfc8rPTw5ceXJr9S696XCl/yiU3lfJn5AuTs6/LxaXZubwWz/ZthXAlmyRHFPPbi/nF5Z5HAAAAhoblsbV2Smvt4621a1trf9Na+8WF17+2tXZLa23Twn/Pm/26AMBq5DwCMH9THra6Pckre+9Xt9aOSHJVa+0jC2/7rd77JbNbDwAgifMIwNwNy2PvfUuSLQsvb22tXZvkpFkvBgDwIOcRgPkr/cxja+3UJE9LcuXCq17eWvtca+2trbVHLvJuAAAP4TwCMB+Ty2Nr7fAklyV5Re/97iRvTPL4JGdl1/8J/M29XO5lrbWNrbWN23L/IqwMAKxWi3EeSe5Ysn0BVpJJ5bG1ti67/qF+Z+/9vUnSe7+t976j974zyZuTnL2ny/be39R739B737AuBy3W3gDAKrNY55Hk2KVbGmAFmfJsqy3JW5Jc23t/w26vP2G32AuSXLP46wEAOI8ALAdTnm31vCQvSfL51tqmhde9OsmLWmtnZddvfd2c5OdnsiEAgPMIwNxNebbVK5K0PbzpQ4u/DgDAQzmPAMxf6dlWAQAAWJ2mPGwVAIAVb90MZ28v5qtH1Er+tBnOTvL+6dHP3vWs0ujPHl3LZ9M48nc210bf+Ynar1k9/8JP195B5XmtPlobnT8t5rOtkD2kOLv6tTFf7nkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgaO28FwAAgO+2vZhfV8geU5xddMe26dn/Ors1dinsUvoYJvloLZ6PLqfaUf38qih+HA8w7nkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgSHkEAABgqPXel+6dtfaNJF/dw5uOTXLHki0yP67nyrNarqvrOTuP7b0/eonfJ6xqziOu5wqzWq5nsnqu67I9jyxpedzrEq1t7L1vmPces+Z6rjyr5bq6nsBqsFr+DXA9V5bVcj2T1XNdl/P19LBVAAAAhpRHAAAAhpZLeXzTvBdYIq7nyrNarqvrCawGq+XfANdzZVkt1zNZPdd12V7PZfEzjwAAACxvy+WeRwAAAJaxuZbH1toFrbUvtdaub629ap67zFprbXNr7fOttU2ttY3z3mextNbe2lq7vbV2zW6vO6a19pHW2nULfz5ynjsuhr1cz9e21m5ZuE03tdaeN88dF0Nr7ZTW2sdba9e21v6mtfaLC69fUbfpw1zPFXebAmOr5TyyUs8iifPISvve5TyyfG/TuT1stbW2JsmXkzwnyc1J/irJi3rvX5jLQjPWWtucZEPvfUX9bprW2t9Pck+SP+q9P2Xhdf8xyZ2999ctfBN+ZO/94nnuub/2cj1fm+Se3vsl89xtMbXWTkhyQu/96tbaEUmuSnJhkp/JCrpNH+Z6/mRW2G0KPLzVdB5ZqWeRxHkkK+x7l/PI8j2PzPOex7OTXN97v6H3/kCSP07y/Dnuwz7ovX8yyZ3f8+rnJ3n7wstvz64vggPaXq7nitN739J7v3rh5a1Jrk1yUlbYbfow1xNYfZxHVgDnkZXFeWT5mmd5PCnJTbv9/eYs8w/WfupJPtxau6q19rJ5LzNj63vvW5JdXxRJjpvzPrP08tba5xYeRnJAP3Tie7XWTk3ytCRXZgXfpt9zPZMVfJsCe7SaziOr6SySrODvXXuwYr/vOuxZAAACA0lEQVR3OY8sr9t0nuWx7eF1K/mpX8/rvT89yT9I8gsLDzvgwPbGJI9PclaSLUl+c77rLJ7W2uFJLkvyit773fPeZ1b2cD1X7G0K7NVqOo84i6xMK/Z7l/PI8rtN51keb05yym5/PznJrXPaZeZ677cu/Hl7kvdl18NkVqrbFh7D/eBjuW+f8z4z0Xu/rfe+o/e+M8mbs0Ju09bauuz6B+ydvff3Lrx6xd2me7qeK/U2BR7WqjmPrLKzSLICv3ftyUr93uU8sjxv03mWx79Kclpr7XGttUck+akkH5zjPjPTWjts4Ydg01o7LMlzk1zz8Jc6oH0wyUULL1+U5ANz3GVmHvzHa8ELsgJu09ZaS/KWJNf23t+w25tW1G26t+u5Em9TYGhVnEdW4VkkWWHfu/ZmJX7vch5Zvrfp3J5tNUkWnnb2t5OsSfLW3vuvz22ZGWqtfX92/R++JFmb5F0r5bq21t6d5NlJjk1yW5LXJHl/kvckeUySryV5Ye/9gP7h7r1cz2dn18MJepLNSX7+wcfhH6haa89M8qkkn0+yc+HVr86ux9+vmNv0Ya7ni7LCblNgbDWcR1byWSRxHskK+97lPLJ8zyNzLY8AAAAcGOb5sFUAAAAOEMojAAAAQ8ojAAAAQ8ojAAAAQ8ojAAAAQ8ojAAAAQ8ojAAAAQ8ojAAAAQ/8/SzQGy7UdH7UAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmU5WV5J/DnCVWybw3SYINiBAVcptU+qAMzGnEhxgnKiQs5YzBjQpyERBOT6BgTGWM8OuM2ySQmKAo5bmMOuESNirjiQmwIERQVxjTK2kIHu9Gmre5+548uMi108/6errp1q299Pudwurrqe596bt2i6v32vXUrW2sBAAAA9+Vnxr0AAAAAi5/yCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAI5aZf52Zf3wfb2+Zecwuzt7ly0LF1LgXAACASddae/G4d4C5cs8jAAAAXcojAAAMlJmPycx/yswNmfl3mfl/MvO1mfnCzLz0Htl/ezhpZp6fma/d7m1/kJk3Z+ZNmflf7nG5PTPzjZn5vcy8dfYhr3sPuSyMkvIIAAADZOb9IuKDEXF+RCyLiPdFxLN3Yc6pEfH7EfHUiDg2Ip5yj8gbIuKhEbEyIo6JiBUR8ScDLwsjozwCAMAwj49tzxny5621mdbaRRHxj7sw57kR8a7W2tWttR9FxDl3vyEzMyJ+PSJ+t7W2rrW2ISJeFxHP710WRs0T5gAAwDAPiIgbW2ttu9d9fxfnXL7d36/f7uX7R8Q+EXH5th4ZEREZEXsMuCyMlPIIAADD3BwRKzIztyuQR0XE/42IH8W20hcREZl5eGfOUdv9/YHbvXxbRGyMiIe31m4sXhZGysNWAQBgmK9ExJaIODszpzLztIg4cfZt/xwRD8/MlZm5V9z3w0k/EBEvzMwTMnOfiHj13W9orW2NiLdHxFsy87CIiMxckZlP710WRk15BACAAVprP4mI0yPiRRFxR0T854j4aERsaq19JyJeExGfjohrI+LS+5jzDxHx1oj4TERcN/vn9l4++/qvZub62ZkPG3hZGJn86YdsAwAAQ2XmZRHx1621d417Fxg19zwCAMBAmfnEzDx89mGrZ0bEoyLiE+PeCxaCJ8wBAIDhHhbbfu5wv9j2RDm/1Fq7ebwrwcLwsFUAAAC6PGwVAACALuURAACArgX9mcf75Z5tr9h3Id8lwKJ2V/woftI25bj3gKUkc1mLWDHuNQAWkRujtXXd88iClse9Yt94XJ6ykO8SYFG7rF0y7hVgCVoREReNewmAReT0Qak5PWw1M0/NzG9n5nWZ+Yq5zAIA2BXOIwALY5fLY2buERF/GRE/HxEnRMQZmXnCfC0GANDjPAKwcOZyz+OJEXFda+27rbWfRMT7I+K0+VkLAGAQ5xGABTKX8rgiIr6/3d9viB389HlmnpWZqzNz9UxsmsO7AwC4l/J5JGLdgi0HMEnmUh539Gw87V6vaO3c1tqq1tqq6dhzDu8OAOBeyueRiGULsBbA5JlLebwhIo7a7u9HRsRNc1sHAKDEeQRggcylPH4tIo7NzAdn5v0i4vkR8ZH5WQsAYBDnEYAFssu/57G1tjkzz46IT0bEHhHxztbaN+ZtMwCADucRgIWzy+UxIqK19vGI+Pg87QIAUOY8ArAw5lQeAQCgr3rk3FzMzxSyG0Y4u+qAYn7vYr7yca9+zDeOOD/Kj3vVdCE7ytsoorbL/JvLzzwCAACwRCiPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2NewEAABaDmRHOXlbMHzKSLba5tZi/tpjfWMjuXZy9fzG/mFQ/vzaPcPZ0MV9RrVe7Vx1zzyMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdU+NeAABgcZsZ4ey9i/npQnZ9cfb1xXzhGDl1Qm30K2rxOLmQXb28Nvvdxfy3flwI31qbHRuL+c2FbLUWrCjmH1WL71fIVle/a5T5yu0fEbGumK9+Dswv9zwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXuBQAAlq7pYn7vQnZ9cfaaYr6wy8m1yT//pxeV8i+PNwzOXv70x5Zmv+LFry/lZ84+YHj4/Q8uzY64vJhfW8geVhu93yG1/Atr8Ti1kD2yOPu2Yv6rhexH9ynOLubjhkJ2Y3F2n3seAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wLs3rb83GMGZ88+9wOl2W879pjqOuzAhuc9vpQ/6MrbBme3fPu66joA/JSZYn7vkWyxzf7F/PHDoy+uTX5z/F4pf9yLrx+cfeIT/7G2zBm1+Mt+7a+Gh79amx1rNlQvUMguq41eWYvHK+4qxV+64i2DsyfGZaXZdxY/199/yvMGZz9zzDNLs+O1tXhcfUAhvLE4vM89jwAAAHQpjwAAAHTN6WGrmbkmIjZExJaI2NxaWzUfSwEADOU8ArAw5uNnHn+utTb8h6QAAOaf8wjAiHnYKgAAAF1zLY8tIj6VmZdn5lnzsRAAQJHzCMACmOvDVk9qrd2UmYdFxMWZ+a3W2he2D8x+ET8rImKv2GeO7w4A4F5K55GIByz8hgATYE73PLbWbpr9c21EfDAiTtxB5tzW2qrW2qrp2HMu7w4A4F6q55Hy77MDICLmUB4zc9/M3P/ulyPiaRFx9XwtBgDQ4zwCsHDm8rDV5RHxwcy8e857W2ufmJetAACGcR4BWCC7XB5ba9+NiH83j7sAAJQ4jwAsnPn4PY8sYdc/ffjPsS7b484RbsLO3PILPynlZ14w/NHsy55Z3QZgdzQ9wtkbR5yvOL0Wf9bwJ0J88vM+Whp93Oevr+1yZSFbfL6kh8a3axc47q7h2YP2qs2OmWJ+/ehmH12LP23FJ0v5P47XDM4ue1PhYx4RsaUWf9ofDt/99OddVJp9xadPri1z9QGF8K212QP4PY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17ARaXnL5fKf/kJ185ok2YL/v/016l/HNf9PnB2c8edGRp9pY7fljKAywOozwurS/m1xayx9VGP2ufUvzwD353cPYP4o21XarfLk4vZJ9TG31lPLp2gVsK33c310bXbSxki8scXos/Ni4v5Zf9zV2Dszf8fm2XW2vxeOxdPxicffaffKg0+4pVJ9eWeUctPt/c8wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgXYHHZ8OzHlPJ/vuIvBmeP/9DZpdnHxmWlPDu26eBWyv/Owd8anP3c/sfXlrnjh7U8wKIwPcLZG4r52wvZQ2qjX1iL/1G8bnD21Js+Xxv+0Fr8W7/4oMHZv41fKc3+q02/WVvmQ4XsLbXRo/1c3FiLH1SLPzr+qXaBjw2P/n1tctljhx+N4mHx7drwY2rx0sf9juLsAdzzCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBdgtNpJK0v5v3zD/yrl373+QYOzx73qO6XZW0ppduYJT7t63CsA7OZmCtnp4uzqUeyA4dGDCtmIOPa0fy7lf3XTu4aHv1QaHbc858BS/s/ijwZn3/35X68t89ZaPC4tZG9rxeHVz5fq52PBkbX4Y2N17QKF48v+tclxUjEfjxsevSMOqs3eqxYfd3tzzyMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdU+NegNH61//241L+yKnNpfzv/fYvDM5O/+vlpdns2NQRh5fy73rgJ0r5mebflAB+WuV7Y+37aMTyYv7k4dFX1Sb/bryllN/3TVuHh2+q7bLpOfcr5b8Y/2F4+K21XeJDtxcvsKaQPaA4e+9i/kGF7CNro09upfjPXntLKf/jtcOzTy1Njlj+W7X8LS85cHD2Y/GM2vAra/G4s5ifZ06JAAAAdCmPAAAAdHXLY2a+MzPXZubV271uWWZenJnXzv558GjXBACWMucRgPEbcs/j+RFx6j1e94qIuKS1dmxEXDL7dwCAUTk/nEcAxqpbHltrX4iIdfd49WkRccHsyxdExLPmeS8AgH/jPAIwfrv6M4/LW2s3R0TM/nnYzoKZeVZmrs7M1TOxaRffHQDAvezSeeTeHRSAIUb+hDmttXNba6taa6umY89RvzsAgHvZ/jwSsWzc6wDslna1PN6amUdERMz+WfhNLAAA88J5BGAB7Wp5/EhEnDn78pkR8eH5WQcAYDDnEYAFNORXdbwvIr4SEQ/LzBsy80UR8fqIeGpmXhsRT539OwDASDiPAIzfVC/QWjtjJ286ZZ53YaDbf/0Jg7N/98j/WZr9tz98VCk//enLS3nm7puvOaqUn2lbSvkz1zxlcHbL2h+UZgPsqvGeR9YXspuLsx9Xi792ePTMl72tNPq/fuSCfmg7618zPHvAA0qj40Hfr31/WX7UrYOz18dxtWVi+Oxt1hSyRxZnV39e96Th0UfUdjn5IRfXVvm7Wny621L+v+VPrM2Ol9fir4k/GZz98Cd39qVqJ86vxeOuHxcvML9G/oQ5AAAA7P6URwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0AdT/zrNsGZx8wtWdp9nnvPbWUPzK+XMpzb3s8/GGl/LtP+ZtSflObKeW/9+aHDs7uu+my0myA3dO6QnZjbfRxtfgT/ugzg7Pnr/7N0uz1z63tcv6m4dlfW1ubvc9dtfx+sWF4+PDa7Ijlxfx1hWzx8yX2rsWnjhyefX5t9FPi07ULXF2Ll6ysxT9z1BNK+Xfc/mvDw6+q7RKr/6V4gcLnevXzZQD3PAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Ne4FiNjj/vcv5V/10I+NaJOII1/35ZHNZse+9ZsHlfKr9txSyv/lv55Qyu974WWlPMDkW1fIrq+NfkQt/rvxluHhX67NfvOmWv4xhew+L67Nft+xp5Xyn/nGM4eHr67tEjFdzC8vZGeKs4sOL2SLn4sPjW/XLvDdWnzdD4dnKx/xiIg7onb2mrn6gOHh1cVl4opivrBLHF2c3eeeRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0AEbnPXqX80/f54eDsiV/7ldLsw+OaUp65O/TodSOd/55/WVXKHxrfGdEmALurjSPKRsShtfjKuHJw9tpra7OPqcXjF58zPHvxG08uzf7lb3yotsyzCtnrbq/NjvXF/LJCtvj5EjO1+J2F7F210VuqNWJLLV75qC9fW5t9SBQ/Byr/n1bb1eZifszc8wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgXIGLrujtK+T/9wWMGZ3/5IatLs79wxENK+c0331LKLxVTDzpqcPZLK99fnF77N5+NXz20OP87xTzApNt7dKNvq8U/GU8fnD37z84rzT62eCq89A+Hn0d+4faP1YY/sxaPNR8phNcXhx9fzC8vZKtH8c21eOWIWTsyxlXPe2TtAisvLMWP+WQhvGdtlf1jQyk/ffjwz5mZQw+oLXNLMR/Txfz8cs8jAAAAXcojAAAAXd3ymJnvzMy1mXn1dq87JzNvzMwrZ/97xmjXBACWMucRgPEbcs/j+RFx6g5e/5bW2srZ/z4+v2sBAPyU88N5BGCsuuWxtfaFiFi3ALsAAOyQ8wjA+M3lZx7Pzsyvzz6M5OCdhTLzrMxcnZmrZ2LTHN4dAMC9lM8jOijArtnV8vi2iHhIRKyMiJsj4k07C7bWzm2trWqtrZquPo8uAMDO7dJ5JGLZQu0HMFF2qTy21m5trW1prW2NiLdHxInzuxYAwH1zHgFYWLtUHjPziO3++uyIuHpnWQCAUXAeAVhYU71AZr4vIp4UEYdm5g0R8eqIeFJmroyIFhFrIuI3RrgjALDEOY8AjF+3PLbWztjBq88bwS4AADvkPAIwft3yyOht3bChlP/UjccNzn5x5XtLs2/+6IGl/Bf/5gml/GJxxwmtlN/v6B+W8o9/wJrB2a2xtTS7KmtXFYB7WV7IztRGf64W/+3Pv2Nw9u9f+Z9KszfE/qX8V7705OHhc0qjI9bcULzA+kJ27+LsUZou5jcW84WP46VHliZ/Mp5eyr/hjHNK+by2EF5VGh1r47BSfubOwudMuV1VPwfGW9/m8qs6AAAAWCKURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0AdQf/970GZ594zhml2R98xPml/Bte/ZVSfrFYvWmPUn5L8d9ZVt3vJ4V0lmZXPfAvrirlt45oD4Dd12GjG33bDbX8k5YNjn4qTisuU/XjQnZDcfbGYv5RxXxF9bhc2X3UR/GZ4dE7a5O/v+WoUv5bRz2olD/uidcPD68sjY5vxgm1C9wwPTxb/DjubtzzCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBdgF/zjVYOjBz6jNvoFT/qdUv6OY/esvYNF4pC3f2Wk82+86OGDs5c/7vzRLRIRWzdsGOl8gMm39whn31jM/8MIZ08X8ysK2aNHODsiYnkxX/HjYn6U33f3r8X3evDw7C/VRj99j0+W8sfddH3tHdw1PDpzVG30N+OE2gW+VcjeURtdV/3/dH655xEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuqXEvwOKyx+euKOUP+dxo9tjdbVyz//Dw40a3R0REO2llKZ9funJEmwDsrjYXstWj1d7F/NGF7AHF2dXdK/ML3xcjImJmhPnp4uyqjSPKRtRu/4h4/vDo8a+unQH/e7y6tsuba/G4fXh06vTa6JviAbULrKnFa6pfA8Zb39zzCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBeAiZTDoz8z4n/DyS9dOdL5AGxvYzG/dzF/fCE7XZxdNVPIVj8uldm7Mn+U1hey64qz96/Fnz88+sp4XWn0sa+7oZSfeUcpHtMPHp7Nu2qzN1Q/jnfU4pPMPY8AAAB0dctjZh6VmZ/NzGsy8xuZ+ZLZ1y/LzIsz89rZPw8e/boAwFLkPAIwfkPuedwcES9rrR0fEY+PiN/KzBMi4hURcUlr7diIuGT27wAAo+A8AjBm3fLYWru5tXbF7MsbIuKaiFgREadFxAWzsQsi4lmjWhIAWNqcRwDGr/Qzj5l5dEQ8OiIui4jlrbWbI7Z9QY+Iw3ZymbMyc3Vmrp6JTXPbFgBY8uZ6Hqk/SQkAEYXymJn7RcSFEfHS1trgp5FqrZ3bWlvVWls1HXvuyo4AABExP+eRiGWjWxBggg0qj5k5Hdu+UL+ntXbR7KtvzcwjZt9+RESsHc2KAADOIwDjNuTZVjMizouIa1prb97uTR+JiDNnXz4zIj48/+sBADiPACwGUwMyJ0XECyLiqsy8+7eNvzIiXh8RH8jMF0XE9yLiOaNZEQDAeQRg3LrlsbV2aUTkTt58yvyuAwBwb84jAOM35J5HoKoNj26NraPbA4B5MDPC2dWj2PQIZ49S9WM4yo955WO4KzYWstVn/t3Zv5/s2IFPumVw9pd+dGFtlffV4pf9sJY/+Ue1PAuj9Ks6AAAAWJqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0ATKKte20d2ewfbNk0stkA7Mj0CGdvLubXj2SL0ZsZ9wLbqR5/q7tX8qP9uByy5+2Ds3tdU5vdbqrlq5/pceDw6My+1eFFGtO/cc8jAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXVPjXgAm0btP/evB2Wt+srU0+4zz/7CUf2B8uZQHYCHNjHD25mJ+qRwLqx+Xqn0K2QNqo4s30R1bDhqc/dHxtfuU9n1k7fxyzOdL8Yhlw6O3H3hgafTtcUhtlzsq4VabvZv9f+eeRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0ATKLX/MsvDs7+6K9WlGY/8MIvV9cBYNGaLuZnClnHvB2rfAx3Jb93Ibu8NnpzLb7uc8PPGO865VdLs89+5Xml/JHHluIRq4ZHvxz/vjT6musfWdtlTSW8sTa7/DVgvNzzCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBeAiXTKDYOj+8bwLABL3fS4F1ggM4to9uZifv8RZSMiWi3+jhwc/e3j/ndp9Lef9tBS/ilPu6SUXxuHDc7+efxOaXa8o/j/0ZWV8Iba7N2sjrnnEQAAgK5ueczMozLzs5l5TWZ+IzNfMvv6czLzxsy8cva/Z4x+XQBgKXIeARi/IfeTbo6Il7XWrsjM/SPi8sy8ePZtb2mtvXF06wEARITzCMDYdctja+3miLh59uUNmXlNRKwY9WIAAHdzHgEYv9LPPGbm0RHx6Ii4bPZVZ2fm1zPznZl58DzvBgBwL84jAOMxuDxm5n4RcWFEvLS1tj4i3hYRD4mIlbHtXwLftJPLnZWZqzNz9UxsmoeVAYClaj7OIxHrFmxfgEkyqDxm5nRs+0L9ntbaRRERrbVbW2tbWmtbI+LtEXHiji7bWju3tbaqtbZqOvacr70BgCVmvs4jEcsWbmmACTLk2VYzIs6LiGtaa2/e7vVHbBd7dkRcPf/rAQA4jwAsBkOebfWkiHhBRFyVmXf/isxXRsQZmbkytv220jUR8Rsj2RAAwHkEYOyGPNvqpRGRO3jTx+d/HQCAe3MeARi/0rOtAgAAsDRla23B3tkBuaw9Lk9ZsPcHsNhd1i6J9W3dju5NAUYk85Et4qJxr8HEmhnh7AOK+SOHR48pjj65mF9ZzG8uZC8tzv5EMX/X7YXw7vpszqdHa1d1zyPueQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBratwLAADA5Jge4ez1xfzXh0evK9aC646s5eOAYr7ix8X8jcX8xkK2Wq9G+fky/9zzCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQFe21hbunWX+ICKu38GbDo2I2xZskfFxPSfPUrmurufoPKi1dv8Ffp+wpDmPuJ4TZqlcz4ilc10X7XlkQcvjTpfIXN1aWzXuPUbN9Zw8S+W6up7AUrBUvga4npNlqVzPiKVzXRfz9fSwVQAAALqURwAAALoWS3k8d9wLLBDXc/IslevqegJLwVL5GuB6Tpalcj0jls51XbTXc1H8zCMAAACL22K55xEAAIBFbKzlMTNPzcxvZ+Z1mfmKce4yapm5JjOvyswrM3P1uPeZL5n5zsxcm5lXb/e6ZZl5cWZeO/vnwePccT7s5Hqek5k3zt6mV2bmM8a543zIzKMy87OZeU1mfiMzXzL7+om6Te/jek7cbQr0LZXzyKSeRSKcRybte5fzyOK9Tcf2sNXM3CMivhMRT42IGyLiaxFxRmvtm2NZaMQyc01ErGqtTdTvpsnM/xgRd0bE37bWHjH7uv8REetaa6+f/SZ8cGvt5ePcc652cj3PiYg7W2tvHOdu8ykzj4iII1prV2Tm/hFxeUQ8KyJeGBN0m97H9XxuTNhtCty3pXQemdSzSITzSEzY9y7nkcV7HhnnPY8nRsR1rbXvttZ+EhHvj4jTxrgPu6C19oWIWHePV58WERfMvnxBbPufYLe2k+s5cVprN7fWrph9eUNEXBMRK2LCbtP7uJ7A0uM8MgGcRyaL88jiNc7yuCIivr/d32+IRf7BmqMWEZ/KzMsz86xxLzNiy1trN0ds+58iIg4b8z6jdHZmfn32YSS79UMn7ikzj46IR0fEZTHBt+k9rmfEBN+mwA4tpfPIUjqLREzw964dmNjvXc4ji+s2HWd5zB28bpKf+vWk1tpjIuLnI+K3Zh92wO7tbRHxkIhYGRE3R8SbxrvO/MnM/SLiwoh4aWtt/bj3GZUdXM+JvU2BnVpK5xFnkck0sd+7nEcW3206zvJ4Q0Qctd3fj4yIm8a0y8i11m6a/XNtRHwwtj1MZlLdOvsY7rsfy712zPuMRGvt1tbaltba1oh4e0zIbZqZ07HtC9h7WmsXzb564m7THV3PSb1Ngfu0ZM4jS+wsEjGB37t2ZFK/dzmPLM7bdJzl8WsRcWxmPjgz7xcRz4+Ij4xxn5HJzH1nfwg2MnPfiHhaRFx935farX0kIs6cffnMiPjwGHcZmbu/eM16dkzAbZoUw8QDAAABAUlEQVSZGRHnRcQ1rbU3b/emibpNd3Y9J/E2BbqWxHlkCZ5FIibse9fOTOL3LueRxXubju3ZViMiZp929q0RsUdEvLO19mdjW2aEMvNnY9u/8EVETEXEeyflumbm+yLiSRFxaETcGhGvjogPRcQHIuKBEfG9iHhOa223/uHunVzPJ8W2hxO0iFgTEb9x9+Pwd1eZeXJEfDEiroqIrbOvfmVse/z9xNym93E9z4gJu02BvqVwHpnks0iE80hM2Pcu55HFex4Za3kEAABg9zDOh60CAACwm1AeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Pp/19/eNsddcsYAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1322,7 +1333,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuU5GV5J/DngW6uchsmDDigoBKvUZQRUNyNK9EYY4LkJAb2kOBZE0xWvG1IZI2bsInZo3u8JdHV4CWaVTGuVzREg8QcwyrIQIygIxcVBcEhMKtchKF7ePePaXImMMP7e7q7unqqP59zONNT/a2nnurqmX6/VE13ttYCAAAAHswu414AAACA5U95BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BACAEcvMd2bmf3uQ97fMfNQ8Z8/7ulAxNe4FAABg0rXWfmvcO8BCeeYRAACALuURAAAGysynZOY/Zebtmfl/MvOvM/N1mfmizLzoftl/fTlpZr4vM1+3zft+NzNvyswbM/M/3e96u2fmGzPze5m5ce4lr3sOuS6MkvIIAAADZOZuEfGJiHhfRKyKiHMj4qR5zHluRJwZEc+OiCMj4mfuF3lDRPxkRBwVEY+KiLUR8QcDrwsjozwCAMAwx8XW7xnyZ621mdbaxyPiK/OY88KI+MvW2pWttTsj4uz73pGZGRG/GRGvaq1taq3dHhH/IyJO7l0XRs03zAEAgGEeGhHfb621bS67fp5zLtvm99/d5u2fiIi9IuKyrT0yIiIyInYdcF0YKeURAACGuSki1mZmblMgD4uIb0XEnbG19EVERGYe3Jlz2Da/f9g2b98SEXdFxONba98vXhdGystWAQBgmC9HxJaIOCMzpzLzxIg4Zu59/xwRj8/MozJzj3jwl5N+JCJelJmPy8y9IuIP73tHa+3eiHhXRLwlMw+KiMjMtZn5s73rwqgpjwAAMEBr7Z6I+KWIeHFE/DAiTo2Iz0TE5tba1RHxRxHx+Yi4JiIuepA5fxsRb42Iv4+Ia+d+3dar5y6/ODNvm5v56IHXhZHJf/uSbQAAYKjMvCQi3tla+8tx7wKj5plHAAAYKDN/OjMPnnvZ6mkR8cSI+Oy494Kl4BvmAADAcI+Orf/u8CGx9Rvl/HJr7abxrgRLw8tWAQAA6PKyVQAAALqURwAAALqW9N887pa7tz1i76W8SYBl7e64M+5pm3Pce8BKkrm6RTx83GsALCPfjdZu6Z5HlrQ87hF7x7F5wlLeJMCydkm7cNwrwAr08Ii4eNxLACwjxw1KLehlq5n53My8KjOvzcyzFjILAGA+nEcAlsa8y2Nm7hoRb4+In4uIx0XEKZn5uMVaDACgx3kEYOks5JnHYyLi2tbat1tr90TEhyPixMVZCwBgEOcRgCWykPK4NiKu3+b3N8xd9m9k5umZuT4z18/E5gXcHADAA5TPIxG3LNlyAJNkIeVxe9+Npz3ggtbOaa2ta62tm47dF3BzAAAPUD6PRKxegrUAJs9CyuMNEXHYNr8/NCJuXNg6AAAlziMAS2Qh5fHSiDgyM4/IzN0i4uSIOG9x1gIAGMR5BGCJzPvnPLbWZjPzjIj4XETsGhHvba19fdE2AwDocB4BWDrzLo8REa218yPi/EXaBQCgzHkEYGksqDwCAMDiqx5RZ0eyxfxMj3uBeZop5jcV87cV83cV8xXV+zrKXfYt5h/wzaQXcXbfQv7NIwAAACuE8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgXAAAAJt1MMX/XCGfPFvOVXaqmi/nq7ovLM48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17AQAAloPqsXB2JFuMfvaoj78bR5SNiLirmD+okD2iNvrwNbX8o4r5gwvZh9RGxx7F/P6FbPXT65vF/GcL2VtmisP7PPMIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA19S4F4CVburgNaX8PUc+dESb1E1f/f1S/qr/+ohSfv9v5ODsqg13l2bv8o//VMoD7Hx25mPeTDG/ZyE7/GvLVq2Yv6GQ/b/F2bcX888dHl13RG302bX4037+70v5p8eXBmcPio2l2avj1lL+p+KKwdm94sel2X8WLy/lz3nVK4aH31oaPYhnHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcCsDP40anHlfK3Pu/uwdmznvzZ0uxf3/f8Un6U3vOjh5Xyv7TPJ0r5A35lj1K+4vlrjx7ZbIDlYXbcCyzA9AhntxHOjoh4YiH7lNrog7OWP3l4dJez7iyNftWat5TyvxHvLuUfc813h4d/VBodcXMx/3eFbO3DGGe+642l/DnrXlG7gUXmmUcAAAC6lEcAAAC6FvSy1cy8LiJuj4gtETHbWlu3GEsBAAzlPAKwNBbj3zz+h9baLYswBwBgvpxHAEbMy1YBAADoWmh5bBHxd5l5WWaevhgLAQAUOY8ALIGFvmz1+NbajZl5UERckJnfbK19cdvA3F/ip0dE7BF7LfDmAAAeoHQeiaj9mCEAtlrQM4+ttRvnfr05Ij4REcdsJ3NOa21da23ddOy+kJsDAHiA6nkkYvVSrwgwEeZdHjNz78zc5763I+I5EXHlYi0GANDjPAKwdBbystU1EfGJzLxvzodaa59dlK0AAIZxHgFYIvMuj621b0fEkxZxFwCAEucRgKWzGD/nEUZilyc9tpT/5sv2Hpz9x+e8tTT7J3a9tJTfZYX8FJwX7/e94jX2GMkeAKO1sx6XZov5mWJ+ekTZ+ajsvrE4e20tfsbw+/qUP7+oNPqseEMp//T40uDsgXduKs3e48ZSvOzOhw0/S12/+2Gl2Ztjt1L+0T99zeDsrsU/dh+K/1i7wjdr8cW2Mk64AAAALIjyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBeAHbnziH1K+at/7h2F9J61ZVaQd/7wEYOzH/zuU0e4yWjtF9eOewUAFs1MIfv94uy1tfiZw3e57Dv/rjR64/Av0RERsaGQXbuuNjteU4tffNKTSvm/il8fnP18nFCafd2tR5Tyu07NDs5uma3Vq5m/3reUj8/U4ovNM48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17AUZr6tC1pfyGVx9ayq/5Ug7O7nvuxaXZu2xupfzVM/cMzl4/u39p9mFTPyzlX3TlaYOz/2/DgaXZay6tfVz2/9L1pXy7447B2f1+eG1pNsDO6a5CdnZkW2y1TyE7XZxdPRZWPi7V2cPPF1uN+uNecMvwj/sPjt6vNPrg5/yolF9zZyH80tLouOCkZ5TyfxR/UMpf9DfPHh7+aGl0xJW1+EzlGFj9VKwdMev5ReaZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0Adbvuv9/g7DF/853S7E+uPq+UP379GaV8xe5/e2kp/7s//6LB2S1fv6o0e9fHHlnKr7rqW8Oz915dml01O9LpACtB5W/Su0a2xVb7jHB2jnB29eMyPZIttlpbzBe/kr5u+O6HvO6HpdHP+NwFtV0Krtj8U6X8jz51cO0GPluLx0WF7LXF2XcX8zEzoux8jPLPRp9nHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcCROyyxx6l/OaP7jc4+5rVf1+a/eiP/+dS/jGf+Prg7JbS5LotX79qdLM3XDOy2QAsd/sUsvuObIutZkaUnY89Rzy/ovIYVbLz8MlbC9mNpdEXjfTz6+Zi/q5ifq9ivvL5NerPxUplWk71anbRJ3rmEQAAgC7lEQAAgK5ueczM92bmzZl55TaXrcrMCzLzmrlfDxjtmgDASuY8AjB+Q555fF9EPPd+l50VERe21o6MiAvnfg8AMCrvC+cRgLHqlsfW2hcjYtP9Lj4xIt4/9/b7I+IFi7wXAMC/ch4BGL/5/pvHNa21myIi5n49aEfBzDw9M9dn5vqZ2DzPmwMAeIB5nUciblmyBQEmyci/YU5r7ZzW2rrW2rrp2H3UNwcA8ADbnkciVo97HYCd0nzL48bMPCQiYu7X6g+GAQBYKOcRgCU03/J4XkScNvf2aRHxqcVZBwBgMOcRgCU05Ed1nBsRX46IR2fmDZn54oh4fUQ8OzOviYhnz/0eAGAknEcAxm+qF2itnbKDd52wyLtMjF0PqP2YqW/+8U+W8lc99n8Nzl5W/B5Fj/mjb5fyW267rXYDADAPYz2PrM7h2eOKs+8u5j8/XQh/rTh832L+yOHR/YujZ4v5O4r5klbMbyxkLy/OvraYr1hVzB9ezK8t5tcUst1Kcz+VP0dsa+TfMAcAAICdn/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA19S4F5hEN5762FL+qpP+vJQ/784DBmff8/xnl2Zv+ZdvlfIAMPGOKmRfV5xdPYmdVch+Zt/i8E3F/Mzw6N3TtdGztfjycnghe2Bx9vHFfEXxMYo9Rzy/8oejOntnNt4/HJ55BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGtq3AtMotuPvWuk8//0OycMzu559bdGuAkArADHDY/+9pPeXBq9LtaX8n/y6d8fnP32Lzy+NDs+c2stH5cMj9492rNRxJ6F7Kri7DXF/IHDo1N71UbvUYuP1N3F/OxItpjTivnqMiNdfqfimUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6psa9wCQ69/hziteodfiPPu4Dg7NPe/PvlGYfcd49pfyu/3B5KQ8AO53Dh0d/OT5aGv2s879cyj/zeV8YnD310x8szf7ybz6rlI93rymEP16bHbPF/MML2eni7AOL+Znh0dniLnfU4iM96VcforJWyI58GeZ45hEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuqXEvMImO2X26lJ9pW0r5A3bZY3D2m7/69touL6zt8oQLf2twdr9Lh+8dEXHHoa2U3/fbw7Orv3ZnaXbVLU/ce3B2zT/cXJq95epvVdcBYCGuGx69In6qNPpZs18u5R/xph8Mzn7plBNKs8981x+X8m86+bXDw297dWl23FCLx92F7C3F2cM/5HMq55eZ4uxifnZk4ajXiNr5mOXJM48AAAB0KY8AAAB0dctjZr43M2/OzCu3uezszPx+Zn517r/njXZNAGAlcx4BGL8hzzy+LyKeu53L39JaO2ruv/MXdy0AgH/jfeE8AjBW3fLYWvtiRGxagl0AALbLeQRg/Bbybx7PyMyvzb2M5IAdhTLz9Mxcn5nrZ2LzAm4OAOAByueR+rfbBCBi/uXxHRHxyIg4KiJuiog37SjYWjuntbautbZuOnaf580BADzAvM4jEauXaj+AiTKv8tha29ha29Jauzci3hURxyzuWgAAD855BGBpzas8ZuYh2/z2pIi4ckdZAIBRcB4BWFpTvUBmnhsRz4yI1Zl5Q0T8YUQ8MzOPiogWEddFxEtGuCMAsMI5jwCMX7c8ttZO2c7F7xnBLgAA2+U8AjB+2VpbshvbN1e1Y/OEJbu9cbn6L55ayz//nSPahJ3BVzZnKf/Kb5xcyq96/tWlPEvrknZh3NY21T4JgAXJPLpFXDz8Co+aHp59W22XN/zsy0r533tf4QbeUNslHlrM/8bw6KZT9iiN/kocW8qfF784OPuOq/5LaXacWYvHZyrhmeLwar7y023uKs7uPgd1PwcW8/sU8xWzI5y9szouWrusex5ZyI/qAAAAYIVQHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOjK1tqS3di+uaodmycs2e2NS05NlfL3PPNJpfyvv+3Tg7N77bK5NPv5e/1LKT+du5byLNy9cW8p//gPvbyUf+TvfrmUZ2EuaRfGbW1TjnsPWEkyj24RFxeucU0hu2dtmbcdUYpf9tLHDc4++cANpdn/fVMpHtOF7GNqo+MX96vlp984PPvff+P3SrPPfvsbasucVcjeMVObHbUzZsRdhexscXZVdffin6WSUd/XndFx0dpl3fOIZx4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADomhr3ApOozc6W8tOfv6yUP/cxDy3lK/7sl08u5bdM5+Ds08/8Smn26w++tJRfKXYp/j+fQ59004g2AVgpNhWyl9dGn/nyUvzUl35gcPbSG59amn322+4t5eM7I8pGRNxazBceoofGjbXZ+9fiUToGVj63IiIOqsUP3auQrY2OHxbz1xbzsz+uhIvD9yzmR1mZqruPl2ceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wIsL3t/9JKRzf70k55Wyr/+1y4t5X/c7hmcPfqLv12a/fB371rK3/LyHw/Orn/qB0qzAVhqhxey07XRd8+U4htOesrg7ENesKW2yxNq8Xjm8Ogzjr6gNPol8Rel/OHxncHZf4onl2bH/rV4HFzIXlecHVmLH1XI/kxtdNxQzH+4Ov+uQriSjYjYs5ivfNxbcfbOxTOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2NewFWjod9bnPtCr9Wi++Vuw3Obvjp99RWefizS/nzD/9cIT3a/4fzvR+sKuWPjOtGswjATuvQEWXn4ZMbC9nLi8O/VswPd1H8di3/2trX3YP/+NuDs0+Or5ZmP+XnLyrlL599xvDwa9eUZseVtXjcUcjOFmdXlVvHqBdiPjzzCAAAQFe3PGbmYZn5hczckJlfz8xXzF2+KjMvyMxr5n49YPTrAgArkfMIwPgNeeZxNiJ+p7X22Ig4LiJempmPi4izIuLC1tqREXHh3O8BAEbBeQRgzLrlsbV2U2vt8rm3b4+IDRGxNiJOjIj3z8XeHxEvGNWSAMDK5jwCMH6lf/OYmYdHxJMj4pKIWNNauyli61/oEXHQDq5zemauz8z1M1H8hikAAPez0PNIxC1LtSrARBlcHjPzIRHxsYh4ZWvttqHXa62d01pb11pbNx27z2dHAICIWJzzSMTq0S0IMMEGlcfMnI6tf1F/sLX28bmLN2bmIXPvPyQibh7NigAAziMA4zbku61mRLwnIja01t68zbvOi4jT5t4+LSI+tfjrAQA4jwAsB0N+XOfxsfXHtV+Rmff9VNXXRMTrI+IjmfniiPheRPzKaFYEAHAeARi3bnlsrV0UEbmDd5+wuOsAADyQ8wjA+A155hEWxfT6a0r54y4/pZS/+CnnlvIV//vwC4rXGP6NjDe3mdLk53/j5FL+MS//Vim/pZQGYGFaMX9rITv4+wnN02wh+8Ha6Nf9Qin+gzseMTi721suKc1+e5xRyq8/cd3g7Mse9e7S7Di1Fo8rC9kfFGdXHv6IiOuK+dinkK0uU1X9czq5Sj+qAwAAgJVJeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBratwLsHLce/vtpfzBLzuglP+F9/7i4OxrDv+b0uyn7b6llP/YHasHZ3///F8tzX7Uqy4u5WubA/BAbYSzZ4v5w0eUjYjYq5ivfFwuL86+pBb/wKGDo9e/5bDS6KN/9M+l/HHfGZ7f/ajNpdmnf/SvSvl4ZQ7PfqY2OmJjMb9nMb9PMV9R/XNXzU8uzzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQla21JbuxfXNVOzZPWLLbgx3Z+PKnl/K3P/WuUv4xr71lcHb2u9eXZjNZLmkXxm1tU457D1hJMo9uERePaPpMMT89uvxUcfTqYr7iB9Xz5uXF/BOHR19f+5if+up3lfJv3/LSwdl9z6t9vsw8qxSPE/f72ODs357yS7XhH/5xLR+1s1TEgcV8RfXzcXYkWywvx0Vrl3XPI555BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoCtba0t2Y/vmqnZsnrBktwew3F3SLozb2qYc9x6wkmQe3SIuHvca8zQ97gWWqVsL2U210U84shR/4RXvH5z96zNfVJo98+5SPKa/MTybM/fUhj+j+Ll4w0wtH1PFfMXsCGfvrI6L1i7rnkc88wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgXAACYHKM+Ws2MKBsRcVcxX3FgLf6Q4vg7pgvhj9dmX7lnKf6RP3354Ozr3vja0uwjV91Qyn/zoQ8fHv5W8XN3/1o8bqg8RhH1z1+WgmceAQAA6OqWx8w8LDO/kJkbMvPrmfmKucvPzszvZ+ZX5/573ujXBQBWIucRgPEb8vz0bET8Tmvt8szcJyIuy8wL5t73ltbaG0e3HgBARDiPAIxdtzy21m6KiJvm3r49MzdExNpRLwYAcB/nEYDxK/2bx8w8PCKeHBGXzF10RmZ+LTPfm5kHLPJuAAAP4DwCMB6Dy2NmPiQiPhYRr2yt3RYR74iIR0bEUbH1/wS+aQfXOz0z12fm+pnYvAgrAwAr1WKcRyJuWbJ9ASbJoPKYmdOx9S/qD7bWPh4R0Vrb2Frb0lq7NyLeFRHHbO+6rbVzWmvrWmvrpmP3xdobAFhhFus8ErF66ZYGmCBDvttqRsR7ImJDa+3N21x+yDaxkyLiysVfDwDAeQRgORjy3VaPj4hfi4grMvOrc5e9JiJOycyjIqJFxHUR8ZKRbAgA4DwCMHZDvtvqRRGR23nX+Yu/DgDAAzmPAIxf6butAgAAsDINedkqAAATb3qEs1stfsf2nmR+MJUj7fHF2bO1+OuHR39y9fWl0bu8+M5S/t5P7T08/O7S6Ihri/nq5wDLkmceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wIAAJNjdtwLbGN6xPmKUX9cKrsfO7ItIiLiBzPDs6fWRt8bu9WuEIVdYADPPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANCVrbWlu7HMf4mI727nXasj4pYlW2R83M/Js1Luq/s5Og9vrf3EEt8mrGjOI+7nhFkp9zNi5dzXZXseWdLyuMMlMte31taNe49Rcz8nz0q5r+4nsBKslL8D3M/JslLuZ8TKua/L+X562SoAAABdyiMAAABdy6U8njPuBZaI+zl5Vsp9dT+BlWCl/B3gfk6WlXI/I1bOfV2293NZ/JtHAAAAlrfl8swjAAAAy9hYy2NmPjczr8rMazPzrHHuMmqZeV1mXpGZX83M9ePeZ7Fk5nsz8+bMvHKby1Zl5gWZec3crweMc8fFsIP7eXZmfn/uMf1qZj5vnDsuhsw8LDO/kJkbMvPrmfmKucsn6jF9kPs5cY8p0LdSziOTehaJcB6ZtK9dziPL9zEd28tWM3PXiLg6Ip4dETdExKURcUpr7RtjWWjEMvO6iFjXWpuon02Tmf8+Iu6IiL9qrT1h7rL/GRGbWmuvn/sifEBr7dXj3HOhdnA/z46IO1prbxznbospMw+JiENaa5dn5j4RcVlEvCAiXhQT9Jg+yP18YUzYYwo8uJV0HpnUs0iE80hM2Ncu55Hlex4Z5zOPx0TEta21b7fW7omID0fEiWPch3lorX0xIjbd7+ITI+L9c2+/P7b+Idip7eB+TpzW2k2ttcvn3r49IjZExNqYsMf0Qe4nsPI4j0wA55HJ4jyyfI2zPK6NiOu3+f0Nscw/WAvUIuLvMvOyzDx93MuM2JrW2k0RW/9QRMRBY95nlM7IzK/NvYxkp37pxP1l5uER8eSIuCQm+DG93/2MmODHFNiulXQeWUlnkYgJ/tq1HRP7tct5ZHk9puMsj7mdyyb5W78e31p7SkT8XES8dO5lB+zc3hERj4yIoyLipoh403jXWTyZ+ZCI+FhEvLK1dtu49xmV7dzPiX1MgR1aSecRZ5HJNLFfu5xHlt9jOs7yeENEHLbN7w+NiBvHtMvItdZunPv15oj4RGx9mcyk2jj3Gu77Xst985j3GYnW2sbW2pbW2r0R8a6YkMc0M6dj619gH2ytfXzu4ol7TLd3Pyf1MQUe1Io5j6yws0jEBH7t2p5J/drlPLI8H9NxlsdLI+LIzDwiM3eLiJMj4rwx7jMymbn33D+CjczcOyKeExFXPvi1dmrnRcRpc2+fFhGfGuMuI3PfX15zTooJeEwzMyPiPRGxobX25m3eNVGP6Y7u5yT53n4eAAAA7klEQVQ+pkDXijiPrMCzSMSEfe3akUn82uU8snwf07F9t9WIiLlvO/vWiNg1It7bWvuTsS0zQpn5iNj6f/giIqYi4kOTcl8z89yIeGZErI6IjRHxhxHxyYj4SEQ8LCK+FxG/0lrbqf9x9w7u5zNj68sJWkRcFxEvue91+DurzHxGRPxjRFwREffOXfya2Pr6+4l5TB/kfp4SE/aYAn0r4TwyyWeRCOeRmLCvXc4jy/c8MtbyCAAAwM5hnC9bBQAAYCehPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAAND1/wGoHgbj7z3FfQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuY3XV9J/DPhySSgAQIaEBAUUGRagUbQRdbrZd6KfW22oVnVdjVom3VWrHquu7WXh/drdq6rlq8FGotrkWxaFGrWC+sQgnIyiVcLco1CBGTYIBM+O4fGfqkkOT7+0zmzJnMvF7Pw5PJmff5nO/vnMmc75vfmTPZWgsAAADYnl3GvQAAAABmP+URAACALuURAACALuURAACALuURAACALuURAACALuURAABGLDM/kpn/bTufb5l5yBRnT/m6ULFw3AsAAIC5rrX2unGvAXaUM48AAAB0KY8AADBQZj4pM7+Xmesy8+8y8/9k5h9n5omZee79sv/6ctLMPDUz/3iLz/1eZt6cmTdl5n++3/V2zcw/y8wfZebqyZe8LhlyXRgl5REAAAbIzAdFxJkRcWpELIuI0yPiJVOY87yIeEtEPCciDo2IZ98v8p6IeExEHBERh0TEARHx3wdeF0ZGeQQAgGGeEpvfM+QDrbWNrbXPRcQ/T2HOr0fEX7XWLm2t3RkR77rvE5mZEfEbEfG7rbU1rbV1EfGnEXFc77owat4wBwAAhnlYRNzYWmtbXHb9FOdcuMXff7jFxw+JiN0i4sLNPTIiIjIiFgy4LoyU8ggAAMPcHBEHZGZuUSAPiohrI+LO2Fz6IiIiM/frzDloi78/fIuPb4uIDRHxc621G4vXhZHyslUAABjmuxGxKSJen5kLM/NFEXHU5Of+X0T8XGYekZmLY/svJ/1MRJyYmYdn5m4R8fv3faK1dm9EfDQi3p+ZD42IyMwDMvO5vevCqCmPAAAwQGvtnoh4aUS8OiLuiIhXRMQXI+Lu1tpVEfGHEfG1iLg6Is7dzpwvRcSfR8TXI+KayT+39LbJy8/LzLWTMx878LowMvlvX7INAAAMlZnnR8RHWmt/Ne61wKg58wgAAANl5tMzc7/Jl62eEBE/HxFfHve6YCZ4wxwAABjusbH55w4fHJvfKOdlrbWbx7skmBletgoAAECXl60CAADQpTwCAADQNaM/8/ig3LUtjt1n8iYBZrW74s64p92d414HzCeZe7WIh417GcB2zaYfratUpgUjW8VmE4XsvYXsTdHaHd39yIyWx8Wxexydz5rJmwSY1c5v54x7CTAPPSwiPjnuRQDbVSlJo7ZsRNmpWF3IbihkXzkotUMvW83M52XmlZl5TWa+fUdmAQBMhf0IwMyYcnnMzAUR8b8j4vkRcXhEHJ+Zh0/XwgAAeuxHAGbOjpx5PCoirmmt/aC1dk9EfDoiXjQ9ywIAGMR+BGCG7Eh5PCAirt/i7zdMXvZvZOZJmbkyM1dujLt34OYAAB6gvB+J+MmMLQ5gLtmR8ri1d+N5wNsitdZOaa2taK2tWBS77sDNAQA8QHk/ErH3DCwLYO7ZkfJ4Q0QctMXfD4yIm3ZsOQAAJfYjADNkR8rjBRFxaGY+MjMfFBHHRcRZ07MsAIBB7EcAZsiUf89ja20iM18fEV+Jzb8N8xOttcumbWUAAB32IwAzZ8rlMSKitXZ2RJw9TWsBACizHwGYGTtUHgEAmCsmxr2AHVDZ0i4rzt6nmN+jkN3a+z1tx361eBxcyB5WnP34Yv7AYr7ykN5RnF11xPDo4kPWlEbf9bXi1+PrC1+Pt1xYmz3AjvzMIwAAAPOE8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDXwnEvAACA2aC6LZwoZDeOcHZExLJC9sDa6P0W1fKPL2QPq42Op9Xie774lsHZF+96Zmn2q+KTpfwzb/puKR9rhkfvPLR2PmzBxL2l/OJTC+H3lEbHms8sLuX3uW3D8PDrKl+7OSjlzCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdC8e9AAAAhpooZKvbvCXF/KJCdkNx9tpivqJ4v+xVHH9gIXtEcfaKVoo/etdrBmcPiWtrS9m0spSPv6nF4+rh0d0Purc2++5afPWfDs9+qjY63vzeu2pXKH3NVP4dbRqUcuYRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACAroXjXgDMdwv3W17K33Pow0a0krpFV91Yyl/5Xx5Vyu91eQ7OLlt1V2n2Lt/+XikPMBoT417AFpYU8/sUshuKs6tb1Mr8NbXRt1WOMyIqT0fVh/+64c+LEREX3fa0wdmLDz6yNPv85UeX8q9661+X8kfExYOzm2JBafY+cXspv/yR6wdn3/x/S6PjByfvV7vCH1TC6wrZTYNSzjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtXDcC4CdwU9f8ZRS/vYX3DU4+/Yjv1ya/aqlZ5fyo/Txnz68lH/pHmeW8nu/fHEpX3HsAb8wstkAo7OxkK1u8xYV80uK+dliohav3o0HF7K17UXsst+dpfy9V+w+PPv54dmIiC8e/PJS/uLnHlHKHx6XD84uiZ+VZi+PW0v5Z7/ma4Ozj37NtaXZH4rfKuXjikr4gEL2QYNSzjwCAADQpTwCAADQtUMvW83M6yJiXURsioiJ1tqK6VgUAMBQ9iMAM2M6fubxl1trt03DHACAqbIfARgxL1sFAACga0fLY4uIf8zMCzPzpOlYEABAkf0IwAzY0ZetHtNauykzHxoRX83MK1pr39oyMPlN/KSIiMWx2w7eHADAA5T2IxH7zfwKAeaAHTrz2Fq7afLPWyPizIg4aiuZU1prK1prKxbFrjtycwAAD1Ddj0TsPdNLBJgTplweM3P3zNzjvo8j4lci4tLpWhgAQI/9CMDM2ZGXrS6PiDMz8745f9ta+/K0rAoAYBj7EYAZMuXy2Fr7QUQ8cRrXAgBQYj8CMHOm4/c8wkjs8sTHlfJXvGH3wdlv/8qfl2Y/ZMEFpfwu8+S34Lx6zx8Vr7F4JOsAYDpsKObXFLJri7PXFfOVLe3y2uhn1+KL3jL8WN+4zwdKs58Ql5Ty1yx/9ODshU9fUZr9s+IbYe4btV/D+uDC18CmYqV5UNxdyt9deN+WdbFHafaC2FTKxxGF7Jd/fnh23ZJBsfmxwwUAAGCHKI8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0LRz3AmBb7nzkHqX8Vc//cCG9pLaYeeQjdzxqcPZTP3zyCFcyWnvGNeNeAsAULCpkJ4qzN4wwv7Y4e10xf8Dw6IHF0c+uxV+2zxmDs2+ID5RmP+LrP64tZtnw6C1H7FkafV0cXMrfEXuV8rfFvoOzt8ZDS7MXxKZS/qC4fnD2YXFTafbBcV0pH08pZJ9RyH5jWMyZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALoWjnsBjNbCAw8o5Ve97cBSfvl3cnB26ennlWbvcncr5a/aeM/g7PUTe5VmH7TwjlL+xEtPGJz9yap9SrOXX1C7X/b6zvWlfFu/fnB2zzuuKc0G4P5GuRVbVMzPprUsKeb3GB5dXBxdtDoeOjh7STyhNHuPZ36nlL8ndh2cvTwOL82+Mh5Tyl8fDy/mDxqcvSn2L83eVPxa/14cMTi7b9xemv3t+MVSPi4tZIdv6SI2DYs58wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDXwnEvgLoFe+05OHvUP/xLafbn9z2rlD9m5etL+Ypdv3RBKf97v3ri4Oymy64szV7wuENL+WVXXjs8e+9VpdlVEyOdDsDsVd3mLRnJKqamuvZFw6O3FEd/uRb/+uJjB2e/8YxfLs3eZ/ntpfwdt+81OLvxiqWl2XFFLR43FPOVx2l9cXbRN4ffjRGLi8OvK+bPK2Sr9/kAzjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtXDcCyBil8WLS/m7z9hzcPYd+369NPuxn/utUv6wMy8bnN1Umly36bIrRzd71dUjmw0Aw00UsuuKs9cU8xWVdUdEbBzd/PXF0Z8+sJb/4vDovQt3L43+8R21fMTPCtnLi7NvLeY3FPPVr4GKRcX8bFrLkkK2UvWG/cNw5hEAAIAu5REAAICubnnMzE9k5q2ZeekWly3LzK9m5tWTf+492mUCAPOZ/QjA+A0583hqRDzvfpe9PSLOaa0dGhHnTP4dAGBUTg37EYCx6pbH1tq34oE/Qf2iiDht8uPTIuLF07wuAIB/ZT8CMH5T/ZnH5a21myMiJv986LaCmXlSZq7MzJUb4+4p3hwAwANMaT8S8ZMZWyDAXDLyN8xprZ3SWlvRWluxKHYd9c0BADzAlvuRCD8aCTAVUy2PqzNz/4iIyT+rv+gFAGBH2Y8AzKCplsezIuKEyY9PiIi/n57lAAAMZj8CMIOG/KqO0yPiuxHx2My8ITNfHRHvjojnZObVEfGcyb8DAIyE/QjA+C3sBVprx2/jU8+a5rXMGQv2rv0sxRV/9JhS/srHfWhw9sLiexQd9oc/KOU3rV1buwEAmIK5ux+ZKOY3FLK3F2dXX/W7upivWFLMLytkbyjOvqQWX9/dXm+h8nhGRFT3XZXHtDp7UTFffUwr92N1LRuL+erjVFG9X5YXsksL2U2DUiN/wxwAAAB2fsojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXQvHvYC56KZXPK6Uv/Il/6uUP+vOvQdnP37sc0qzN/342lIeAJhJla3b0pGtYrMlI5xd3aJW1rJbcfYoVe/DRcX8PoXsxuLs6lqqxzrKmjJRzFfvm4rq/Vi5Xyqzh8115hEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuheNewFy07ugNI53/F//yrMHZJVddO8KVAMB8MDHC2XsU8wcOj+61tDb6abV4PL6QXVycfd0I87cUZ68fYb46u/qlOMqd/sTG4hWuLubXFLJLirOL/zZK86v3S/VBrcyvzB52TtGZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALoWjnsBc9Hpx5xSvEatw59x+N8Mzj71fSeXZj/yrHtK+QXfuKiUB4Cdz8ZCdqI4++BafMXS4dk/ro1+xXM/Wsr/p/irwdk9Yl1p9rfjF0v5r8RzB2e/H08ozb7l2keW8nFFDs9eUxsd64v5BxeydxVnf3FRLX9u4Ws3IiIqe8wlxdmHFvOVylT9HrChmB8vZx4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoytbajN3Y0lzWjs5nzdjtjctXbrq4lN/YNo1oJXXVtTz+nNcNzu55weLS7PUH1r42l/5geHbf799Zml1128/vPji7/Bu3lmZvuura6nKYxc5v58TatibHvQ6YTzIPbxGfLFyj8n16Y3E1L6zFzxge/aN//5bS6Hee9d7aWt5WyK6tjY5fK+ZfMzx69YoDS6MviSeU8itjxeDsVfGY0uyqg+L6wdmJWFCa/Ze3D98DRkRsPHZpKR/nnVsIr67NjtrXQMSSQrb6PWCimK9YWMi+Mlq7vLsfceYRAACALuURAACArm55zMxPZOatmXnpFpe9KzNvzMyLJ/97wWiXCQDMZ/YjAOM35MzjqRHxvK1c/v7W2hGT/509vcsCAPg3Tg37EYCx6pbH1tq3ImLNDKwFAGCr7EcAxm9Hfubx9Zn5/cmXkey9rVBmnpSZKzNz5ca4ewduDgDgAcr7kYifzOT6AOaMqZbHD0fEoyPiiIi4OSK2+d7OrbVTWmsrWmsrFsWuU7w5AIAHmNJ+JGKbHROA7ZhSeWytrW6tbWqt3RsRH42Io6Z3WQAA22c/AjCzplQeM3P/Lf76koi4dFtZAIBRsB8BmFkLe4HMPD0inhER+2bmDRHx+xHxjMw8IiJaRFwXEa8d4RoBgHnOfgRg/LrlsbV2/FYu/vgI1gIAsFX2IwDjl621GbuxpbmsHZ3PmrHbG5er/vLJtfyxHxnRStgZ/PPdWcq/6fLjSvllx15VyjOzzm/nxNq2pvZFAOyQzMNbxCcL17imkN1QW8whJ5biT73664Oz31lZ3HP9ai3+vluHZ9fWRsfRxfzzDyqEX1AcXt26HjM8esvD9iyN3u+mn9bW8oVCtjj6src+qpQ/8vbvlfIbVywdHr7u8tLsiHXF/HxwYrS2qrsf2ZFf1QEAAMA8oTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtXDcC5iLHvvb3yvln/t3J5Xyr/rgFwZnd9vl7tLsY3f7cSm/KBeU8jzQUbu2Uv7cIz9Vyv/c/3xjKf/o3/tuKQ8w920YUTYi9q3Fj47zh4fPrs2+4dZa/gmFbPFeiSXF/O03Dc/uU8hGRMREMV/YXe91509rs79Zi8efDI+ef31t9NF3/qCUf+0ffKSU/+Cxby2EDy3Njvh+MV/5Cl5UnD1b6lgOSjnzCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfCcS9gLmoTE6X8oq9dWMqfftjDSvmKD7zsuFJ+06IcnP13b/nn0ux373dBKT9f7FL8fz4HPvHmEa0EYL6obJeKW6v1tfiV8djh4eNrsw8sLv3AynanuuOs5g8bHr3ihY8ojf5YvKaU/0o8d3B2UywozX7N8R8r5d+8+MODs0f/RWl0xNNr8cvj8NoVrqiE19Rmly0Z8fydhzOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC0c9wKYXXY/4/yRzf7CE59ayr/7lReU8j9r9wzO/sK3frM0+xEfW1DK3/bGnw3Ornzy35RmAzDTlhayS2qjr6nFv/TNlw7Onvj0D5VmH/mOi0v5TTH8ufFnsVtp9h2xVym/MlYMzn7znOeVZsc7a/E4b3UhvLE0+uSX1R7TM/7uZYOzv/uS95dmfy2eXcp//T3HlvLxtcr9eFFtdiwr5vcoZCeKszcU8+Otb848AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0LVw3Atg/nj4V+6uXeGVtfhu+aDB2VVP/3htKY94Til/9sFfKaRH+/9wfnTLslL+0LhuNAsB2GktLWQ31kbftbaWf+fwtZz2st8sjT7tkNpSSm4p5q8p5i8tZC8uzr6h+JiWnkeLj/8Ztef07778mcOzzx6ejYiIlbV4fKx6P36pkK1Wmtr9OLtMFLLTX/WceQQAAKCrWx4z86DM/KfMXJWZl2Xm70xeviwzv5qZV0/+uffolwsAzEf2IwDjN+TM40REnNxae1xEPCUifjszD4+It0fEOa21QyPinMm/AwCMgv0IwJh1y2Nr7ebW2kWTH6+LiFURcUBEvCgiTpuMnRYRLx7VIgGA+c1+BGD8Sj/zmJkHR8SREXF+RCxvrd0csfkbekQ8dBvXOSkzV2bmyo1RfMMUAID72dH9SMRPZmqpAHPK4PKYmQ+OiM9GxJtaa4PfGqq1dkprbUVrbcWi2HUqawQAiIjp2Y9E+LFIgKkYVB4zc1Fs/kb9qdba5yYvXp2Z+09+fv+IuHU0SwQAsB8BGLch77aaEfHxiFjVWnvfFp86KyJOmPz4hIj4++lfHgCA/QjAbDDkN0ceE5t/XfslmXnfr1V9R0S8OyI+k5mvjogfRcTLR7NEAAD7EYBx65bH1tq5EZHb+PSzpnc5AAAPZD8CMH5DzjzCtFi08upS/ikXHV/Kn/ek00v5ik8e/NXiNYa/kfHdbWNp8rGXH1fKH/bGa0v5TaU0wHywZETZiIgbavFzDx2evXhRbfa+tXjJddUrFO+XOGB49MXb+n8Q2/Dp2v34kGP2H5zdcOejSrPXf2O3Uj4+Vsi+rtVmxzeL+dXF/B6F7NLi7KoNI5y9c9Wx0q/qAAAAYH5SHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhaOO4FMH/cu25dKb/fG/Yu5X/tEy8cnH3Hwf9Qmv3UXTeV8p9dv+/g7H89+z+UZh/yu+eV8rWVA/BAo9wu1Z4bIy4aHl2/pDZ6/R61fEwUsquKs28s5l86PPqy5aXJ7znmDaX8W6/44PBw8W656CWPK+V/4ZDLh4c/f2ttMfGNYv6QYv4Jheyi4uy1xXzla71q56pjzjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtXDcC4BtmbjuR7UrPHN49I1v/K3S6HVP3lDKH/bO2wZnD/nheaXZAMxnleejtcXZa4r5itrzaH2LWjjWc5eXJn/7P/5SKf/WiQ8OD7+nNDqedPaqUv69Hx2+3zn5uA/VFvPp59fy5a+BJYXsRHE2U+XMIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3ZWpuxG1uay9rR+awZuz2A2e78dk6sbWty3OuA+STz8BbxyXEvY9LECGdvHOHs2WZJIXtwbfRx+5Tiv3n6+wZnP/Tek2tr+UItvvacRYOze9/2k9Lse5+2e20x19xQy8fqQrb672hhMT8fvDJau7y7H3HmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6F414AAMD8Ncqt2Gza5i0t5qtrv7GQPa02+tNPKMU//Iw3D86+8OSzSrOfd+Q3S/nvLxi+9gctvrs0+679di/l45oltXysK+Yr9ijmFxWyG4uzdy7OPAIAANDVLY+ZeVBm/lNmrsrMyzLzdyYvf1dm3piZF0/+94LRLxcAmI/sRwDGb8hrAiYi4uTW2kWZuUdEXJiZX5383Ptba382uuUBAESE/QjA2HXLY2vt5oi4efLjdZm5KiIOGPXCAADuYz8CMH6ln3nMzIMj4siIOH/yotdn5vcz8xOZufc0rw0A4AHsRwDGY3B5zMwHR8RnI+JNrbW1EfHhiHh0RBwRm/9P4Hu3cb2TMnNlZq7cGLV3cQIA2NJ07EcifjJj6wWYSwaVx8xcFJu/UX+qtfa5iIjW2urW2qbW2r0R8dGIOGpr122tndJaW9FaW7Eodp2udQMA88x07UcinJwEmIoh77aaEfHxiFjVWnvfFpfvv0XsJRFx6fQvDwDAfgRgNhjybqvHRMQrI+KSzLx48rJ3RMTxmXlERLSIuC4iXjuSFQIA2I8AjN2Qd1s9NyJyK586e/qXAwDwQPYjAONXerdVAAAA5qchL1sFAIAdsLGYH+UWtTr7xlr81OHR33jtR0ujX/zMM0v5r8RzB2fvevey0uw4rxaPWFPMz6aaUv36nbuceQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBr4bgXAADAbDAxi2ZvGMkqNltWzO9Ti98yPHrDPxxaGv2xp72mlL/r84VjPaM0OmLihuIV1hbzS4p5ZoIzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRla23mbizzxxHxw618at+IuG3GFjI+jnPumS/H6jhH5xGttYfM8G3CvGY/4jjnmPlynBHz51hn7X5kRsvjNheRubK1tmLc6xg1xzn3zJdjdZzAfDBfvgc4zrllvhxnxPw51tl8nF62CgAAQJfyCAAAQNdsKY+njHsBM8Rxzj3z5VgdJzAfzJfvAY5zbpkvxxkxf4511h7nrPiZRwAAAGa32XLmEQAAgFlsrOUxM5+XmVdm5jWZ+fZxrmXUMvO6zLwkMy/OzJXjXs90ycxPZOatmXnpFpcty8yvZubVk3/uPc41TodtHOe7MvPGycf04sx8wTjXOB0y86DM/KfMXJWZl2Xm70xePqce0+0c55x7TIG++bIfmat7kQj7kbn23GU/Mnsf07G9bDUzF0TEVRHxnIi4ISIuiIjjW2uXj2VBI5aZ10XEitbanPrdNJn5SxGxPiL+urX2+MnL/kdErGmtvXvySXjv1trbxrnOHbWN43xXRKxvrf3ZONc2nTJz/4jYv7V2UWbuEREXRsSLI+LEmEOP6XaO89djjj2mwPbNp/3IXN2LRNiPxBx77rIfmb37kXGeeTwqIq5prf2gtXZPRHw6Il40xvUwBa21b0XEmvtd/KKIOG3y49Ni8z+Cndo2jnPOaa3d3Fq7aPLjdRGxKiIOiDn2mG7nOIH5x35kDrAfmVvsR2avcZbHAyLi+i3+fkPM8jtrB7WI+Mdi6JYNAAACWUlEQVTMvDAzTxr3YkZseWvt5ojN/ygi4qFjXs8ovT4zvz/5MpKd+qUT95eZB0fEkRFxfszhx/R+xxkxhx9TYKvm035kPu1FIubwc9dWzNnnLvuR2fWYjrM85lYum8tv/XpMa+1JEfH8iPjtyZcdsHP7cEQ8OiKOiIibI+K9413O9MnMB0fEZyPiTa21teNez6hs5Tjn7GMKbNN82o/Yi8xNc/a5y35k9j2m4yyPN0TEQVv8/cCIuGlMaxm51tpNk3/eGhFnxuaXycxVqydfw33fa7lvHfN6RqK1trq1tqm1dm9EfDTmyGOamYti8zewT7XWPjd58Zx7TLd2nHP1MQW2a97sR+bZXiRiDj53bc1cfe6yH5mdj+k4y+MFEXFoZj4yMx8UEcdFxFljXM/IZObukz8EG5m5e0T8SkRcuv1r7dTOiogTJj8+ISL+foxrGZn7vnlNeknMgcc0MzMiPh4Rq1pr79viU3PqMd3Wcc7FxxTomhf7kXm4F4mYY89d2zIXn7vsR2bvYzq2d1uNiJh829k/j4gFEfGJ1tqfjG0xI5SZj4rN/4cvImJhRPztXDnWzDw9Ip4REftGxOqI+P2I+HxEfCYiHh4RP4qIl7fWduof7t7GcT4jNr+coEXEdRHx2vteh7+zysynRcS3I+KSiLh38uJ3xObX38+Zx3Q7x3l8zLHHFOibD/uRubwXibAfiTn23GU/Mnv3I2MtjwAAAOwcxvmyVQAAAHYSyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABd/x8ZbEoN4XjnhgAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1334,7 +1345,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmU5WV5J/DnobugWRqhFRpsW0BoF9xQW9DBQR2XoJkJakajowZndHAmOtEkZMIxGeXkJBOdEbdgdDASmIzrRInEMG7EDRW0UWSxVRBBNhuxg91iA72880cXOR3p5v09VXXrVld9PudwuurW9z71/ureqvt++d26la21AAAAgPuyx7gXAAAAwNynPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAwIhl5nsz87/dx8dbZh41xdlTvi5ULB73AgAAYL5rrf2nca8BpsuZRwAAALqURwAAGCgzH5+Z38rMjZn5fzPzI5n5J5n5isy86Jey//R00sw8JzP/ZIeP/X5m3pKZN2fmf/il6+2VmW/NzB9l5rrJp7zuPeS6MErKIwAADJCZe0bEeRFxTkQsi4gPRcTzpzDnxIg4NSKeFRGrIuKZvxR5S0Q8NCKOiYijImJFRLxx4HVhZJRHAAAY5kmx/TVD3tVa29xa+3hEfH0Kc14UEX/VWruytXZHRJx+zwcyMyPiP0bE77TW1rfWNkbEf4+IF/euC6PmBXMAAGCYB0bETa21tsNlN0xxzqU7vH/9Dm8fFBH7RMSl23tkRERkRCwacF0YKeURAACGuSUiVmRm7lAgV0bEDyLijthe+iIiIjMP6cxZucP7D97h7dsiYlNEPLK1dlPxujBSnrYKAADDfC0itkbEazNzcWaeFBHHTn7s2xHxyMw8JjOXxH0/nfSjEfGKzDw6M/eJiDfd84HW2raIeF9EvD0zD46IyMwVmfkrvevCqCmPAAAwQGvt7oh4QUS8MiJuj4iXRcQnI+Ku1tr3I+KPI+JzEXF1RFx0H3P+X0S8IyL+ISKumfx3R38wefnFmblhcubDBl4XRib/+VO2AQCAoTLzkoh4b2vtr8a9Fhg1Zx4BAGCgzHxqZh4y+bTVkyPiMRHxqXGvC2aDF8wBAIDhHhbbf+9wv9j+Qjn/trV2y3iXBLPD01YBAADo8rRVAAAAupRHAAAAumb1dx73zL3akth3Nj8lwJx2Z9wRd7e7ctzrgIUk88AWsWLcywCYQ26K1v6xux+Z1fK4JPaN4/IZs/kpAea0S9qF414CLEArYvvrnQCw3YsGpab1tNXMPDEzv5eZ12TmadOZBQAwFfYjALNjyuUxMxdFxLsj4jkRcXREvCQzj56phQEA9NiPAMye6Zx5PDYirmmtXdtauzsiPhwRJ83MsgAABrEfAZgl0ymPKyLihh3evzF28tvnmXlKZq7JzDWb465pfDoAgHsp70ci1s/a4gDmk+mUx529Gk+71wWtndVaW91aWz0Re03j0wEA3Et5PxKxbBaWBTD/TKc83hgRK3d4/0ERcfP0lgMAUGI/AjBLplMevxERqzLziMzcMyJeHBHnz8yyAAAGsR8BmCVT/juPrbUtmfnaiPh0RCyKiLNba1fN2MoAADrsRwBmz5TLY0REa+2CiLhghtYCAFBmPwIwO6ZVHgEAmI4tI5y9dzF/VC1+yM5eq2hX2droWFLMV1S/5HcW8z8vZG8b4eyIiPhpIVt9FeJNxbzaMR9M53ceAQAAWCCURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALoWj3sBAABz28QIZ28s5jcUso+ojX5m1vJ/NDx62FO/Wxq9T/yilP9F7DM4u3Hr0tLs9TceXMrHlYX7yxdqo8v5NfcvhNcXh28u5qv2HuHsUa99/nLmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK7F414Au7c99tlncPYJX91Ymv2mgy4r5Z/9nRcMzu75rOtLswFYyCrbpYni7A3F/NpC9vDa6BfX4n/01DcMzv5m/HVp9t2xZyl/eTx6cPb7ix5Wmn3FYcNnR0R87pBnDs7+7JpDSrMXls2FbPX7jqly5hEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuxeNeAHPLHvvsU8p//6yHDc7+7UFnlWZvK6Ujbvj2oYOzR8b1xekALFwTI8pGRGwq5tcXssVt3ol3luKn3fWWwdl9/7j4qL6qFj/0FTcPzt4de5VmfyuOKeV/duUhw8NfKI2OWFPMx9WF7Obi7L2L+VGqrn2Utox4/njrmzOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC0e9wKYW679w8eW8t95+rsGZ1967XNKs3/6p0eU8kd+6uJSHgCG2TyibETE/sX844dHD6k9jj55xT+U8vt+cdvw8IWl0RFra/Flq+4cnF10/NbS7EtjdW0x/6eQ/dva6IhLivlNheyy4uylxfyWYr76vTRXzO965cwjAAAAXcojAAAAXdM6r5qZ10XExojYGhFbWmvF8/oAANNjPwIwO2biSblPb63dNgNzAACmyn4EYMQ8bRUAAICu6ZbHFhGfycxLM/OUmVgQAECR/QjALJju01aPb63dnJkHR8RnM/O7rbUv7RiY/CF+SkTEkthnmp8OAOBeSvuRiENnf4UA88C0zjy21m6e/PfWiDgvIo7dSeas1trq1trqidhrOp8OAOBeqvuR+t+zAyBiGuUxM/fNzKX3vB0Rz46IK2dqYQAAPfYjALNnOk9bXR4R52XmPXM+2Fr71IysCgBgGPsRgFky5fLYWrs2Ih47g2sBACixHwGYPTPxdx6ZR+4+eMvIZl/+5VWl/BGf+tqIVgIAFetHOPvxtfjq/Ydn31wb/S/iq7UrPLiQfUhtdKwp5s8bHl16/MbS6Bu/Utu/xIcr4atrs2NzMb93IVutBaPbM9aNei2Vr2MlOxWV+0Dl65KDUv7OIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF2Lx70A5paJ/e4u5TduG55/8Gfvqi4HAOaAjYXsptroA55Qy585PPr64/6sNPpfxpdL+R8fcb/B2UOO+1lpdnyxFo81w6N7RXE/8rlaPH58dSF8U3H4imK+stUv3ndjczE/SnOp0lS/LhMjWcWoOPMIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA1+JxL4DRWnTUEaX8VSecXcq/7uZnDF/L579Zmg0Ac8OmQvYXtdGH1OKrjvv24Oyvx9+UZq++o/Y4vWR9IXxXaXTEvsX8A4dHvxcPq82+uBaPuKR6hYKDi/nKVn+iOLvyfTEVexeyo640lTv7rSNbxXZLC9nK13DroJQzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtHvcCGK3vnX7AuJfADLvrOU8s5TeuHN23+UGXbijl26VXjWglAAvD4tg6OLsybijNXnJ+cTGXFbJri7OPKOZfNTx6QTy3NrtynBERsb6QnRjh7IiIZcX87mqfYn5zMb+pkL2xOHtLMb+ikK3c/tsGpZx5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGvxuBfAaL39uI+MdP5XPvj4wdlD4qsjXMnc8oMPPG5w9p3Hfag0+9F7XlTKL1+0Vylfcc3mLaX8SX/zO6X8kadeXMoDzHd7xt2Dsw/82U9qwy8oLuYrhWz1oehFtfjF/+qxg7Ofueqk2vAft1o+9i9kDy/Ofkwxv7mQXV+cXdsD1GtHZe03FmdPFPMrCtnhe+Op2VjI/qKQHfY1ceYRAACALuURAACArm55zMyzM/PWzLxyh8uWZeZnM/PqyX8PHO0yAYCFzH4EYPyGnHk8JyJO/KXLTouIC1trqyLiwsn3AQBG5ZywHwEYq255bK19Ke79G7QnRcS5k2+fGxHPm+F1AQD8E/sRgPGb6u88Lm+t3RIRMfnvwbsKZuYpmbkmM9dsjrum+OkAAO5lSvuR+qtKAhAxCy+Y01o7q7W2urW2eqL8Os0AANO3434kYtm4lwOwW5pqeVyXmYdGREz+e+vMLQkAYBD7EYBZNNXyeH5EnDz59skR8YmZWQ4AwGD2IwCzaMif6vhQRHwtIh6WmTdm5isj4s0R8azMvDoinjX5PgDASNiPAIzf4l6gtfaSXXzoGTO8FgZatP/+g7P77lF7kaLPbNq3lD/k7V8t5UcpJ/YcnL376Y8pzf7D9/xVKX/CkksHZydyUWn21++q/e7wb373haX87x7xmcHZX9v3F6XZf/G895fy7zj7+YOzW7/z/dJsYPcy3v3I5kJ2S230AbX40fGdwdmJ4T/Ot7ukFt9ceN2hieNqs+PZtfjfx3OHhz9Xm11/gaVjh0ePOro2+phaPNYUstdtKA7fVMwvLeYrX/crirOLv/d81G8Mz55ZGx0PKObfsc/w7CcLczcO21+O/AVzAAAA2P0pjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtHvcCqPvh6x81OPuUJReWZh/9+d8s5Y+Kb5XyFYuOOqKU/95rlg/OfudFf15dTsmFm/YbnP2tT7+iNPvh77ytlN/r+z8o5d8dDx2c/fMLV5Zmf/LhHy/l/+zB9xuc3fM7pdEABZtGlI2IB9Tiq2PN8HBtCxDtp7X8xPDtSMQLa7O/e/xhpfzaOHp4eEltLfHw+9fyhxfyr6qNjkOK+TML2ev2KQ7fUMzvXcxXbC7mD6/FTx8ePeNXfqs0emlsLOVPOe2vh4dvLwz+8rCYM48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0LR73AqjLx2wY2eyJH+w9stlV3zv9gFL+u09/9+DstuJaXnrtc0r5Df91xeDsqq9dUpq9tZQerWuuPaR2hYePZh0Ao7W5kN1UG72kFj84bh0eXl+bnQ+s5eOFw6PXv+qg0ujz4vml/MZYOjj7kFdfVZr9i1fX9kYHxu2Ds3vG3aXZV6x7dCm/bcm+pXxN8b5ezj9ieHTxU2qjX1uLn/TSDw3O/kZ8pDT7hlhZyu93+E8GZ3/+oML33Z7DYs48AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0LV43Aug7uEHrxv3EqYkn/DIUv68p7yn+BkmBicf+YVTSpNXvXJtKZ93fruUXyjeeOsTS/klX7hicHZbdTEAc8Eod2L3K+ZX1+Lt5cOzfxGvKc2+IJ5byi+NjYOzp8WbS7N/Pf6mlL81lg/OvjVOLc3+9mVPKuXjykp4c2122aZa/ID7D8+eUxt9yknvLOVPjbcOzq64dX1p9ucOfmYp//PrDiqEC4O3Dos58wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX4nEvgLoH7XP74Owe1f8/kK24muG+/9t7lfKPmJgo5Z/wjZcNzh750m+VZm8rpReOif3uLuXv2FK7D2y7885SHoAd3K+YP7QW//yyJw/OfjD+XWn2jR9YVcrv8cw7BmffuPyPS7OX/a/aY9Gy468fnF33qOWl2fHhWjzWVMKbi8Nr+7Ty/EOGRx9y0lWl0W+IPy3lDzvjJ8PD+5VGx/JXr6td4ceF7HcL2YF3c2ceAQAA6FIeAQAA6OqWx8w8OzNvzcwrd7js9My8KTMvm/zvuaNdJgCwkNmPAIzfkDOP50TEiTu5/O2ttWMm/7tgZpcFAPDPnBP2IwBj1S2PrbUvRcT6WVgLAMBO2Y8AjN90fufxtZl5+eTTSA7cVSgzT8nMNZm5ZnPcNY1PBwBwL+X9iA4KMDVTLY/viYgjI+KYiLglIs7YVbC1dlZrbXVrbfVE1F6mHwDgPkxpPxKxbLbWBzCvTKk8ttbWtda2tta2RcT7IuLYmV0WAMB9sx8BmF1TKo+ZueOfkX1+RFy5qywAwCjYjwDMrsW9QGZ+KCKeFhEPyMwbI+JNEfG0zDwmIlpEXBcRrx7hGgGABc5+BGD8uuWxtfaSnVz8/hGsBQBgp+xHAMavWx6Ze7a14c823hbbasNbFlcz3KHLby/lq2s/+qB1g7P/WJq8sCw66ojB2atOOLs0+4TLX1TK7x8/KOUB2EH1dQrvV4v/II4cnL3xwlW14WfW4tu+sO/g7Lvf95rS7Ee/+opS/ltxzODsJ7/9wtLsOKcWj7i8kK3WgqXF/KZa/Lbh0Rt+urI2+/61eJw3PPrDr9RGn3jEF2tXWF7IrqmNHmI6f6oDAACABUJ5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGvxuBfAwnHAK+8s5S/58kQpf+aD/25w9slvObU0+6Hvur6U33LTzaX8XPKIjww/1nVbN5VmL3nnsuJqflDMA4xbcWtVe2iM2+OA4eGDa7PjgbX4ulg+PPzd2uy4ePPI8p886oWl0b/6BytL+evuOnx4+LTS6Ii4qJjfWMgeVpxd26fV1hIRtw2Pbr54/9Lotb96dCl/2M++ODh7bmlyxOkXFK/wnyvhqwvZuwalnHkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga/G4F0DEoqOOKOVPuN8/jGglo7XlpptL+bc883ml/GM/du3g7JUve1dp9m899eml/C2/umxwdutP15dm3/7yJ5fyT3n9JaX8G5d/ZXD2CR8+tTT7yE9dXMoDzA17j2707bX4ZXHM8PALarPvOLh2TuGGWDk8fGdtLRGbivnCY90fPas0+dvXPKm2lMpt+qna6IiNxfwI77uxYcT5ggfU4otia+0KzxgePX3f2ugNZ0zUrnBmJVzZY24ZlHLmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK7F414AEVuv+WEp/+EfHzs4+/wjP1WafdhTflTKL9p//8HZrRs2lGZvufa6Uv7Sxw3/fyEnvPy3S7OXXX57KZ8P2Dw4+8MzV5ZmX3XCmaX8uq2bSvknfPjUwdkjT724NBtg97TP6EbfWIufH782OPu+lZeUZm+JRaX8ZXFMZXjR8P3FdhPDo1sur43+y0fX8iXXFfPLRpyvqO3ryvn9hkeXrb6pNHrv+EUpf8dbhu8xz9/r35Rmn3LH+0r5eG8lvHchO+wYnXkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga/G4F0Ddna/af3D2bR97eGn2Jx/+iVL+dRcePzj79fc+uTR7v5u3lPIVP3nitlL+ib99bSl/xgMvGpzdo/j/cM762eGl/Dlv/del/JFnf62UB5j/lhaye9dGX1eL/+SMBw/O/v5r/2dp9p573V1byxeHryWuKY2OWFLM37msEF5fHP6VYr5yHyjeX+LgYn6fQnZDcfZEMV+5jSJiv+HR2287oDT675b/Win/1r1OHZz9xLkvKc2O4aO3u+3GQrhy/xq2H3XmEQAAgK5ueczMlZn5+cxcm5lXZebrJi9flpmfzcyrJ/89cPTLBQAWIvsRgPEbcuZxS0T8XmvtERHxpIh4TWYeHRGnRcSFrbVVEXHh5PsAAKNgPwIwZt3y2Fq7pbX2zcm3N0bE2ohYEREnRcS5k7FzI+J5o1okALCw2Y8AjF/pdx4z8/CIeFxEXBIRy1trt0Rs/4Eeu/gN3sw8JTPXZOaazXHX9FYLACx4092P1F8wBYCIQnnMzP0i4mMR8frW2uCXY2qtndVaW91aWz0Re01ljQAAETEz+5Hyqz4CEBEDy2NmTsT2H9QfaK19fPLidZl56OTHD42IW0ezRAAA+xGAcRvyaqsZEe+PiLWttbft8KHzI+LkybdPjojaHwgEABjIfgRg/BYPyBwfES+PiCsy87LJy94QEW+OiI9m5isj4kcR8cLRLBEAwH4EYNy65bG1dlFE5C4+/IyZXQ4AwL3ZjwCMX7bWZu2T7Z/L2nHp5/tsWvyQw0v5k/7+66X8yftfX8qP0h6FFw/eFttGuJKax1z0ylL+qN+9rZTfctPNpTyz65J2YWxo63e1IQZGIPNRLeKjhWtsGtlaIlbV4ofvPzz7qNroWFLM/7iQvaY6e3PxCtcVstVX262uZaKQXVqcvXcxX1G9n28p5ovHesARw7Mvq42O1cX8Zf3IP3lvcfadlxevULk/Fn5exAuitSu6+5HSn+oAAABgYVIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6MrW2qx9sv1zWTsunzFrn4+6RcsPLuV/9O+PGpy944jNpdmfPvEdpfyvfPr1w8Mjvts/7C/vHJxt37hihCthrrukXRgb2voc9zpgIcl8VIv46LiXMUUThezika2ibsuI59f2GAtH5etevb/cv5hfXsxXVDd2txbzGwrZ3fW++KJo7crufsSZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALoWj3sBzC1b191ayq94cy1f8V/i+FL+ofGNEa2kro17AQDMoIkRzt5UzFced6uzNxfzla/L0uLsvUeYH+XtOWqjvk0rqjWiujvaWMheXpy9tpiv3L9WFWcfXMxvKWRn/vZ35hEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICuxeNeAADA3LZ5hLOrW7GlhezexdmjVD3OiZGsYrvq7TmX1jLKrXt19oZiflMxX/naVO/rq4r5ytemupYtxfx4OfMIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA1+JxLwAAgKH2H+Hs6rZwy0hWMTWbd9PZozbKrf7GEc6uqn5fLBvJKrarfl/sXvcvZx4BAADo6pbHzFyZmZ/PzLWZeVVmvm7y8tMz86bMvGzyv+eOfrkAwEJkPwIwfkPOZW+JiN9rrX0zM5dGxKWZ+dnJj729tfbW0S0PACAi7EcAxq5bHltrt0TELZNvb8zMtRGxYtQLAwC4h/0IwPiVfucxMw+PiMdFxCWTF702My/PzLMz88AZXhsAwL3YjwCMx+DymJn7RcTHIuL1rbUNEfGeiDgyIo6J7f8n8IxdXO+UzFyTmWs2x10zsGQAYKGaif1IxPpZWy/AfDKoPGbmRGz/Qf2B1trHIyJaa+taa1tba9si4n0RcezOrttaO6u1trq1tnoi9pqpdQMAC8xM7UdG+zL9APPXkFdbzYh4f0Ssba29bYfLD90h9vyIuHLmlwcAYD8CMBcMebXV4yPi5RFxRWZeNnnZGyLiJZl5TES0iLguIl49khUCANiPAIzdkFdbvSgicicfumDmlwMAcG/2IwDjV3q1VQAAABamIU9bBQBg3tsy7gXsYPO4F0BXtUZU719qylzkzCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdi8e9AAAAhto87gXAFI2ydlS/L3wfTZUzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRla232PlnmTyLi+p186AERcdusLWR8HOf8s1CO1XGOzmGttYNm+XPCgmY/4jjnmYVynBEL51jn7H5kVsvjLheRuaa1tnrc6xg1xzn/LJRjdZzAQrBQfgY4zvlloRxnxMI51rl8nJ62CgAAQJfyCAAAQNdcKY9njXsBs8Rxzj8L5VgdJ7AQLJSfAY5zflkoxxmxcI51zh7nnPidRwAAAOa2uXLmEQAAgDlsrOUxM0/MzO9l5jWZedo41zJqmXldZl6RmZdl5ppxr2emZObZmXlrZl65w2XLMvOzmXn15L8HjnONM2EXx3l6Zt40eZtelpnPHecaZ0JmrszMz2fm2sy8KjNfN3n5vLpN7+M4591tCvQtlP3IfN2LRNiPzLfHLvuRuXubju1pq5m5KCK+HxHPiogbI+IbEfGS1tp3xrKgEcvM6yJidWttXv1tmsw8ISJ+HhH/u7X2qMnL/kdErG+tvXnyQfjA1tofjHOd07WL4zw9In7eWnvrONc2kzLz0Ig4tLX2zcxcGhGXRsTzIuIVMY9u0/s4zhfFPLtNgfu2kPYj83UvEmE/EvPssct+ZO7uR8Z55vHYiLimtXZta+3uiPhwRJw0xvUwBa21L0XE+l+6+KSIOHfy7XNj+zfBbm0XxznvtNZuaa19c/LtjRGxNiJWxDy7Te/jOIGFx35kHrAfmV/sR+aucZbHFRFxww7v3xhz/Is1TS0iPpOZl2bmKeNezIgtb63dErH9myIiDh7zekbptZl5+eTTSHbrp078sswApcXrAAACMUlEQVQ8PCIeFxGXxDy+TX/pOCPm8W0K7NRC2o8spL1IxDx+7NqJefvYZT8yt27TcZbH3Mll8/mlX49vrT0+Ip4TEa+ZfNoBu7f3RMSREXFMRNwSEWeMdzkzJzP3i4iPRcTrW2sbxr2eUdnJcc7b2xTYpYW0H7EXmZ/m7WOX/cjcu03HWR5vjIiVO7z/oIi4eUxrGbnW2s2T/94aEefF9qfJzFfrJp/Dfc9zuW8d83pGorW2rrW2tbW2LSLeF/PkNs3Midj+A+wDrbWPT148727TnR3nfL1Ngfu0YPYjC2wvEjEPH7t2Zr4+dtmPzM3bdJzl8RsRsSozj8jMPSPixRFx/hjXMzKZue/kL8FGZu4bEc+OiCvv+1q7tfMj4uTJt0+OiE+McS0jc88Pr0nPj3lwm2ZmRsT7I2Jta+1tO3xoXt2muzrO+XibAl0LYj+yAPciEfPssWtX5uNjl/3I3L1Nx/ZqqxERky87+46IWBQRZ7fW/nRsixmhzHxIbP8/fBERiyPig/PlWDPzQxHxtIh4QESsi4g3RcTfRsRHI+LBEfGjiHhha223/uXuXRzn02L70wlaRFwXEa++53n4u6vMfEpEfDkiroiIbZMXvyG2P/9+3tym93GcL4l5dpsCfQthPzKf9yIR9iMxzx677Efm7n5krOURAACA3cM4n7YKAADAbkJ5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoOv/A1V3Mhae861WAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmU5WV5J/DnsbuhWUKwWVoElA4QWyTaSitxMCghrjFBcuLCqNEMBk3iRBOZ6CQzkZOTdY57zOigIs5EURPXEMYNMYoRtNEW2ZRFlAZsxE6nQbZe3vmji0wL3by/p6tu3epbn885nKq69b3PfX91i1vvt3+3bmVrLQAAAOCBPGjcCwAAAGDuUx4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAGDEMvOdmfnfH+DzLTOP2MnZO31dqFg47gUAAMCka629YtxrgOly5hEAAIAu5REAAAbKzMdl5jcy87bM/PvM/FBm/llmvjQzL7xP9t+fTpqZZ2fmn23zuf+SmTdn5k2Z+Z/uc73dM/MNmfn9zFw79ZTXPYZcF0ZJeQQAgAEyc7eI+FhEnB0RSyLinIg4eSfmPCMiTo+Ip0bEkRHxS/eJ/HVE/GxErIiIIyLi4Ij4k4HXhZFRHgEAYJifj62vGfK21trG1tpHI+KrOzHneRHx3tbaZa21H0fEGfd+IjMzIn4rIn6/tbautXZbRPxFRLygd10YNS+YAwAAwzw0Im5srbVtLrthJ+dcss3H39vm/QMiYs+IuGRrj4yIiIyIBQOuCyOlPAIAwDA3R8TBmZnbFMhDI+LaiPhxbC19ERGRmQ/pzDl0m48fts37t0bEnRHxqNbajcXrwkh52ioAAAzzlYjYHBGvzMyFmXlSRDxh6nPfjIhHZeaKzFwcD/x00g9HxEsz86jM3DMiXn/vJ1prWyLiXRHx5sw8MCIiMw/OzKf3rgujpjwCAMAArbV7IuLXIuLUiFgfES+KiHMj4u7W2nci4k8j4nMRcXVEXPgAc/5vRLwlIj4fEddMvd3Wa6cuvygzN0zNfMTA68LI5E8+ZRsAABgqMy+OiHe21t477rXAqDnzCAAAA2XmkzPzIVNPW31JRDw6Ij417nXBbPCCOQAAMNwjYuvvHe4dW18o59dbazePd0kwOzxtFQAAgC5PWwUAAKBLeQQAAKBrVn/ncbfcvS2OvWbzJgHmtLvix3FPuzvHvQ6YTzL3bxGHjXsZAHPI9dHard39yKyWx8WxVxybJ87mTQLMaRe388e9BJiHDouIVeNeBMAcsnJQalpPW83MZ2TmtzPzmsx83XRmAQDsDPsRgNmx0+UxMxdExN9GxDMj4qiIOCUzj5qphQEA9NiPAMye6Zx5fEJEXNNau661dk9EfDAiTpqZZQEADGI/AjBLplMeD46IG7b5eM3UZT8hM0/LzFWZuWpj3D2NmwMAuJ/yfiTih7O2OIBJMp3yuL1X42n3u6C1M1trK1trKxfF7tO4OQCA+ynvRyIOmIVlAUye6ZTHNRFx6DYfHxIRN01vOQAAJfYjALNkOuXxaxFxZGYuy8zdIuIFEfHJmVkWAMAg9iMAs2Sn/85ja21TZr4yIj4dEQsi4qzW2uUztjIAgA77EYDZs9PlMSKitXZeRJw3Q2sBACizHwGYHdMqjwAATIr7vc5Qx/Zeq2gHjiiOfkYxv7yQXV+cfVkx/4NC9vbi7Gq+spbq14V5aTq/8wgAAMA8oTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtXDcCwAAYKDKzm1Tdfi6Yn6/4dGX1Saf8tqzSvnnx4cGZ1fHitLsd8bLS/kffOJnhoevL42u5y8sZFcVZ0cr5rN6A8xBzjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtXDcC2DX9qA99xycPeZfbivNfv0Bq0v5p13xa4Ozuz31e6XZADD59qjFjxgeXXL6jaXRZ/341FJ+8Z8Oz570is+UZn932WGl/PsO++3h4R+URtd37pV8dfamYp6J4MwjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXQvHvQDmlgftuWcp/50zHzE4+/EDzizN3lJKR9zwzYMGZw+P7xWnA8AcsGmEsx9S2wPEywrRBe8ujV5ci0d8vpA9pTb6hji0doXPFbJfqI2OHxTzawrZ8vdWVq/ABHDmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6F414Ac8t1f/yYUv6KE942OPvC655Zmv2jP19Wyh/+qYtKeQAYv1bM31bI7lMb/Zxa/MjXfnNw9uXxztrw1bV4HDQ8euOKJaXRX/rR8bW1fLyQvbA2GsbNmUcAAAC6lEcAAAC6pvW01cy8PrY+f2JzRGxqra2ciUUBAAxlPwIwO2bidx5PaK3dOgNzAAB2lv0IwIh52ioAAABd0y2PLSI+k5mXZOZpM7EgAIAi+xGAWTDdp60e11q7KTMPjIjPZuZVrbUvbhuYehA/LSJicew5zZsDALif0n4k4mGzv0KACTCtM4+ttZum3t4SER+LiCdsJ3Nma21la23loth9OjcHAHA/1f1IxAGzvUSAibDT5TEz98rMn7r3/Yh4WkRcNlMLAwDosR8BmD3Tedrq0oj4WGbeO+cDrbVPzciqAACGsR8BmCU7XR5ba9dFxGNmcC0AACX2IwCzZyb+ziMT5J4DN41s9qVfOrKUX/apr4xoJQAwItWd1aY7i1dYOzy67z610S+rxf88/tvg7M/8rx/Uht9Ui8eJw6MXxAml0RtXFb+OayrhVptdliOeP09U/r9ePLJVbHVXITuCbb2/8wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDXwnEvgLll0d73lPK3bRmef9hn764uBwDGr7Jbqu6sNt1ZvMLa4dGFR5YmP+aYi0r55/7zucPD7yyNjnhoMX/y8Oin4+m12ZfV4rGpEs7icMaicp+W7v9djzOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC0c9wIYrQVHLCvlLz/+rFL+VTedOHwtF3y9NBsA5oTKbqm8s9pQzF8zPHrrk0qTj6jMjoj4++HR766ujV52bC3/+SOfODh73uZn1YavqsVjTSW8sTi8+g2WoxtdtWnE80fqjuHRu9aNbhkREbGkkN1jxm/dmUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6Fo57AYzWt8/Yd9xLYIbd/czHl/K3HTq6/80PuGRDKd8uuXxEKwEYocrDaPkh985ifm31BgbbL35Uu8KVw6PrapNj2WNr+fPiWcPX8g8H14avqsUjKj8bq/fnkmJ+v+HRUW8Z1xfzm0ayip1U+Q6+ZmSr2OrhhezSQnbLoJQzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtHPcCGK03H/uhkc7/8gceNzj7kPiXEa5kbrn2/Y8dnH3rseeUZv/cbheW8ksX7F7KV1yzcVMpf9I//H4pf/jpF5XyACNRe6gr2qeYf+Tw6NG1yUfFFbUr3DA8Wj3KWFGLfyl+YXj4C7XZsaaYjz0K2SNro/evxWPvYr7i9hHOnmv2PWQ02Yj640vl617Jbhp2TtGZRwAAALqURwAAALq65TEzz8rMWzLzsm0uW5KZn83Mq6fePni0ywQA5jP7EYDxG3Lm8eyIeMZ9LntdRJzfWjsyIs6f+hgAYFTODvsRgLHqlsfW2hcjYt19Lj4pIt439f77IuI5M7wuAIB/Zz8CMH47+zuPS1trN0dETL09cEfBzDwtM1dl5qqNcfdO3hwAwP3s1H4k4oeztkCASTLyF8xprZ3ZWlvZWlu5KEb3JwMAAHZk2/1IxAHjXg7ALmlny+PazDwoImLq7S0ztyQAgEHsRwBm0c6Wx09GxEum3n9JRHxiZpYDADCY/QjALBrypzrOiYivRMQjMnNNZp4aEX8VEU/NzKsj4qlTHwMAjIT9CMD4ZWtt1m5sn1zSjs0TZ+32JtWCffYZnH3NN75cmn1XW1TKv+2I5aX8KOWi3QZn7znh0aXZf/yO95byxy++Z3B2US4ozf7q3RtL+T+8+rml/B8s+8zg7K/udUdp9mfuqH1/veVXTx6c3XzFd0qz54qL2/mxoa3Lca8D5pPMlS1i1biXsXP2LmT/rjZ6zUn7lfIL874vfjtzlqwv5hcOf8by7S8o/s7r6lo8jihkn1KcvW8xX/k2/1xx9g+K+ZGq7Udi/z1r+bcMjz75hZ8qjd4ctX3ghR966vDwBwuDv7Ay2r+u6u5HRv6COQAAAOz6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6Fo57AdR999VHD84+afH5pdlHXfAbpfwR8Y1SvmLBEctK+W//7tLB2Sue9zfV5ZScf+feg7O/8+mXlmYvf+utpfzu37m2lP/b+NnB2b85/9DS7HOXf7SU/8uH/fTg7G5XlEYDzA37FvMvGh592kmfKI0++Jx1pfxnC9mnPrQ0Or7208P3OhERt19ywPDwIbW1xMpi/tnDow855rrS6PX/VvuGuWv9kuHhj5dGR8Qdxfye1Rso2FSLL6/FT3rhOYOzH//n/1gbvrgW/5Xnf3hw9tzbnzt88MAtvTOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC0c9wKoy0dvGNnsRdfuMbLZVd8+Y99S/qoT/nZwdktxLS+87pml/IY/PHhw9sivXFyavbmUHq1rrntI7QrLR7MOgNFqoxu9d9byRw+ProjVtdnFeGk3sqI2+5PxK7UrrCpkX1QbfcpxZ5Xyj4hvD85+MX6hNPvzFz27lI+LCtnba6Mj5s6eMWKfWrz4/fjLcd7w8Ftrs+PAWnzFsd8YnD33sOcOH7z7sJgzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtHPcCqFt+4NpxL2Gn5DGPKuU/9qR3FG9h0eDko75wWmnykadeWcrnXd8s5eeLP7nl8aX84i98a3B2S3UxAEzL0kr4F2uz/0/8Ru0Kq4ZHn/3yvy+N/sB5p9bW8rDh0RVHn1yb/YpaPK5fUwgfUpu9MGv5UVpezD+nFj80bhgeLtz/ERFxdC1+Qxw6PHx7YfDmYTFnHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhaOO4FUHfInusHZx9U/feBbMXVDPed39u9lH/kokWl/DFfe9Hg7OEv/EZp9pZSev5YtPc9pfyPN9W+B7bcdVcpDzDxNg2P3hO71WYfWIsft6QQ/rXa7O+9f3ntClcNjz4/PlQafcUv15Zy1LOGZ9f/07614dd/pJaPawrZP6iNXlzbp8XttXgsLmR/vTb6aSd+opRfEasr4ZINL659Hf8l/sPw8GWFwXcOiznzCAAAQJfyCAAAQFe3PGbmWZl5S2Zets1lZ2TmjZm5euq/wgl6AIAa+xGA8Rty5vHsiHjGdi5/c2ttxdR/583ssgAAfsLZYT8CMFbd8tha+2JErJuFtQAAbJf9CMD4Ted3Hl+ZmZdOPY3kwTsKZeZpmbkqM1dtjLuncXMAAPdT3o9E/HA21wcwMXa2PL4jIg6PrS9Ge3NEvHFHwdbama21la21lYui9jL9AAAPYKf2IxEHzNb6ACbKTpXH1tra1trm1tqWiHhXRDxhZpcFAPDA7EcAZtdOlcfMPGibD0+O2p+gBACYNvsRgNm1sBfIzHMi4ikRsX9mromI10fEUzJzRUS0iLg+Il4+wjUCAPOc/QjA+HXLY2vtlO1c/J4RrAUAYLvsRwDGr1semXu2tOHPNt4SW2rDWxZXM9xBS9eX8tW1H3XA2sHZfy1Nnl8WHLFscPby488qzT7+0ueV8vvEtaU8wPhtqsUXLqrl9x0e3S3uqc1eWovnzw/Pfm3Z0bXhf1GLx63Do4fFd0ujP1xcyh9/eXh2z7ijOL3612ruLGSLteD2Wjzi0lp84aMHRxe9ckNp9F/Gfy3lH3LOvw0PLymNjk8veHopf/UljxkeXl0YPPBbZTp/qgMAAIB5QnkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga+G4F8D8se+pd5XyF39pUSn/9of94+DsE//69NLsn33b90r5TTfeVMrPJY/80PBjXbv5ztLsxW9dUlzNtcU8wC6muhMb5c5tr2K+8JB+R+xZHF60fnj0q3FsafR/XvD1Un7RLw7P3h27l2ZHPLKY36OQzeLsjaPNLx8ePXm/j5VGP+4zV9bWckkh+7La6AvihNoVLixkrypkB27pnHkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga+G4F0DEgiOWlfLH//TnR7SS0dp0402l/F//0nNK+cd85LrB2cte9LbS7N958gml/M2/vGRwdvOP1pVmr3/xE0v5J7364lL+T5Z+eXD2mA+eXpp9+KcuKuUB5oYsZItbq/W1eFw2PHrt8w8vDi8a/uMinnzVV2uzn12Lx7uHR1/z7f9ZGv2sTeeV8pfF0sHZ6/75UaXZEWuL+YpWzC+qxfc9ppZ/6fDoz8W3arP3qsXjacOjn19e26f9Y/xKbS2VrdSaQnbjsJgzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtHPcCiNh8zXdL+Q/+4AmDsycf/qnS7Ic/6ful/IJ99hmc3bxhQ2n2puuuL+Uveezwfws5/sW/V5q95NL1pXzuv3Fw9rtvP7Q0+/Lj317Kr918Zyl/zAdPH5w9/PSLSrMBJl/W4rcWx39uePSCM06ozT6wFr+0sH159Ltrsw95w9Wl/JoYvh+J5UtLsx/5hutL+TikkP272uiIJcX8wdUbGG55Mf+CWnzJK24cnL07divN/vxxTyzlb4jhe7X3xm+WZq95/5GlfFxVyNa2r4M48wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDXwnEvgLq7XrbP4OybPrK8NPvc5Z8o5V91/nGDs1995xNLs/e+aVMpX/HDx28p5R//e9eV8m986IWDsw8q/hvOmf92WCl/9hueXcofftZXSnkApqPV4hfl4Oi6sw8ujf76qY8s5R/35CuHh5eVRscecUftCqUt7Rm10acP3+ts9ZRCdlFxdjW/XyE7/HsrIiIOq8Xj52vx/RbcOjj7pTi+NPsf41dL+St+dNTg7MZzh+/TIyLi3Fo81hTzM8yZRwAAALq65TEzD83MCzLzysy8PDNfNXX5ksz8bGZePfX2waNfLgAwH9mPAIzfkDOPmyLiNa21R8bWE86/m5lHRcTrIuL81tqREXH+1McAAKNgPwIwZt3y2Fq7ubX29an3b4uIKyPi4Ig4KSLeNxV7X0Q8Z1SLBADmN/sRgPEr/c5jZh4WEY+NiIsjYmlr7eaIrQ/oEXHgDq5zWmauysxVG+Pu6a0WAJj3prsfifjhbC0VYKIMLo+ZuXdEfCQiXt1a2zD0eq21M1trK1trKxfF7juzRgCAiJiZ/UjEAaNbIMAEG1QeM3NRbH2gfn9r7aNTF6/NzIOmPn9QRNwymiUCANiPAIzbkFdbzYh4T0Rc2Vp70zaf+mREvGTq/ZdERO0PBAIADGQ/AjB+Q/6i6nER8eKI+FZmrp667I8i4q8i4sOZeWpEfD8injuaJQIA2I8AjFu3PLbWLoyI3MGnT5zZ5QAA3J/9CMD4DTnzyByz+TvXDs5+8aRHlWY/+J9+XMq/+aFfGh7+00J2Jzyo8OLBW2LLCFdSc/SFv1nKH/EHt5byS278SikPwDRUd1abNhWvcOfw6Af3KU3+rVPPLOXf+YXfHpy9Io4qzb76/MeU8hFrC9mlxdmDX5dpyppC9rDi7B39+8mOFL4HRt0KKl+WiLj64uHfA1evKX6/rO5HfsJVhWzxOMv59cX8DCv9qQ4AAADmJ+URAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArmytzdqN7ZNL2rF54qzdHnULlh5Yyn//N48YnP3xso2l2Z9+xltK+ad/+tXDwyP+tn/Eu+8anG1f+9YIV8Jcd3E7Pza0dTnudcB8krmyRawa9zKmVH8grRseXbhfbfQra/F4USG7vjj77cX8xytfx1uKw2t7o4hd9CF932J+eTE/fMtYd1Uxv7qY31TM75JWRmurut+8zjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQla21WbuxfXJJOzZPnLXbA5jrLm7nx4a2Lse9DphPMle2iFXjXsZOuqOQ3aM2ev/iQ9Fhheym2ui4vphfX8xX7DvC2bcX89WvY8XexXz167K4mL+rkF1TnB0/ql6hYJ9iftFIVlG3Mlpb1X0QcOYRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACAroXjXgAAAEPtObrRt444v6u6fYSzN41wdlX1OO8aySr+v5F+bZaMcHaOcPb4OfMIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA18JxLwAAAOasTeNewBy1S39dctwL2GU58wgAAEBXtzxm5qGZeUFmXpmZl2fmq6YuPyMzb8zM1VP/PWv0ywUA5iP7EYDxG/K01U0R8ZrW2tcz86ci4pLM/OzU597cWnvD6JYHABAR9iMAY9ctj621myPi5qn3b8vMKyPi4FEvDADgXvYjAONX+p3HzDwsIh4bERdPXfTKzLw0M8/KzAfP8NoAAO7HfgRgPAaXx8zcOyI+EhGvbq1tiIh3RMThEbEitv5L4Bt3cL3TMnNVZq7aGHfPwJIBgPlqJvYjET+ctfUCTJJB5TEzF8XWB+r3t9Y+GhHRWlvbWtvcWtsSEe+KiCds77qttTNbaytbaysXxe4ztW4AYJ6Zqf1IxAGzt2iACTLk1VYzIt4TEVe21t60zeUHbRM7OSIum/nlAQDYjwDMBUNebfW4iHhxRHwrM1dPXfZHEXFKZq6IiBYR10fEy0eyQgAA+xGAsRvyaqsXRkRu51PnzfxyAADuz34EYPxKr7YKAADA/KQ8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0JWttdm7scwfRsT3tvOp/SPi1llbyPg4zskzX47VcY7Ow1trB8zybcK8Zj/iOCfMfDnOiPlzrHN2PzKr5XGHi8hc1VpbOe51jJrjnDzz5VgdJzAfzJfHAMc5WebLcUbMn2Ody8fpaasAAAB0KY8AAAB0zZXyeOa4FzBLHOfkmS/H6jiB+WC+PAY4zskyX44zYv4c65w9zjnxO48AAADMbXPlzCMAAABz2FjLY2Y+IzO/nZnXZObrxrmWUcvM6zPzW5m5OjNXjXs9MyUzz8rMWzLzsm0uW5KZn83Mq6fePnica5wJOzjOMzLzxqn7dHVmPmuca5wJmXloZl6QmVdm5uWZ+aqpyyfqPn2A45y4+xTomy/7kUndi0TYj0zazy77kbl7n47taauZuSAivhMRT42INRHxtYg4pbV2xVgWNGKZeX1ErGytTdTfpsnM4yPi9oj43621o6cu+x8Rsa619ldTP4Qf3Fp77TjXOV07OM4zIuL21tobxrm2mZSZB0XEQa21r2fmT0XEJRHxnIh4aUzQffoAx/m8mLD7FHhg82k/Mql7kQj7kZiwn132I3N3PzLOM49PiIhrWmvXtdbuiYgPRsRJY1wPO6G19sWIWHefi0+KiPdNvf++2Po/wS5tB8c5cVprN7fWvj71/m0RcWVEHBwTdp8+wHEC84/9yASwH5ks9iNz1zjL48ERccM2H6+JOf7FmqYWEZ/JzEsy87RxL2bElrbWbo7Y+j9FRBw45vWM0isz89Kpp5Hs0k+duK/MPCwiHhsRF8cE36f3Oc6ICb5Pge2aT/uR+bQXiZjgn13bMbE/u+xH5tZ9Os7ymNu5bJJf+vW41trjIuKZEfG7U087YNf2jog4PCJWRMTNEfHG8S5n5mTm3hHxkYh4dWttw7jXMyrbOc6JvU+BHZpP+xF7kck0sT+77Efm3n06zvK4JiIO3ebjQyLipjGtZeRaazdNvb0lIj4WW58mM6nWTj2H+97nct8y5vWMRGttbWttc2ttS0S8KybkPs3MRbH1Aez9rbXr2prHAAABaklEQVSPTl08cffp9o5zUu9T4AHNm/3IPNuLREzgz67tmdSfXfYjc/M+HWd5/FpEHJmZyzJzt4h4QUR8cozrGZnM3Gvql2AjM/eKiKdFxGUPfK1d2icj4iVT778kIj4xxrWMzL0PXlNOjgm4TzMzI+I9EXFla+1N23xqou7THR3nJN6nQNe82I/Mw71IxIT97NqRSfzZZT8yd+/Tsb3aakTE1MvOviUiFkTEWa21Px/bYkYoM38mtv4LX0TEwoj4wKQca2aeExFPiYj9I2JtRLw+Ij4eER+OiIdFxPcj4rmttV36l7t3cJxPia1PJ2gRcX1EvPze5+HvqjLzSRHxpYj4VkRsmbr4j2Lr8+8n5j59gOM8JSbsPgX65sN+ZJL3IhH2IzFhP7vsR+bufmSs5REAAIBdwziftgoAAMAuQnkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACg6/8Bwu4Bt92XiuwAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1346,7 +1357,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH6ZJREFUeJzt3XmU5WV5J/DvE6pkN4IIAqK4EI/oGNQO6iEZSdS4jcF9mROHJBrMRGbELBPjxOhkshiPW8yi0UgwiUFj1Ohx1ERJjDFRFB0UEA3GoDZLI5IEBIRueeePLjMtNLy/t7tu3epbn885nK6+9a2nnl/fWt4v93Z1tdYCAAAAt+W75r0AAAAA65/yCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAM1ZVr6+qF9/G61tV3WsXZ+/y28KIpXkvAAAAi6619lPz3gF2l0ceAQAA6FIeAQBgoqp6YFX936q6pqreXlVvq6pfraofq6qP3iz7708nraozqupXd3jdz1fVZVV1aVX9xM3ebu+qekVVfaWqtqw85XXfKW8Ls6Q8AgDABFV1uyTvSnJGkoOTnJnkibsw59FJfi7JI5Mck+QRN4v8ZpLvSXJcknslOTLJL098W5gZ5REAAKZ5SLb/zJDXtta2ttbemeQTuzDnaUn+sLV2fmvt2iQv/fYrqqqS/GSSF7TWrmqtXZPk15M8o/e2MGt+YA4AAExzRJJLWmtth9u+uotzPrXD77+8w8t3SrJfkk9t75FJkkqy14S3hZlSHgEAYJrLkhxZVbVDgTwqyT8luTbbS1+SpKru3Jlz1A6/v+sOL1+Z5Pok922tXTL4tjBTnrYKAADTfCzJt5KcWlVLVXVSkuNXXveZJPetquOqap/c9tNJ/yzJj1XVsVW1X5KXfPsVrbWbkrwxyaur6tAkqaojq+pRvbeFWVMeAQBggtbajUmelOTZSf41yY8meW+SG1pr/5jkV5J8KMlFST56G3Pen+Q1Sf46yRdXft3RL6zc/vGqunpl5r0nvi3MTH3nU7YBAICpqursJK9vrf3hvHeBWfPIIwAATFRVD6uqO688bfXkJPdP8oF57wVrwQ/MAQCA6e6d7X/v8IBs/0E5T2mtXTbflWBteNoqAAAAXZ62CgAAQJfyCAAAQNea/p3H29XebZ/sv5bvEmBd+2auzY3thpr3HrCRVB3SkrvNew2AdeTLae3K7nlkTcvjPtk/D66Hr+W7BFjXzm5nzXsF2IDuluTj814CYB15yKTUbj1ttaoeXVVfqKovVtULd2cWAMCucB4BWBu7XB6raq8kv5vkMUmOTfLMqjp2tRYDAOhxHgFYO7vzyOPxSb7YWvtSa+3GJG9NctLqrAUAMInzCMAa2Z3yeGSSr+7w+80rt32Hqjqlqs6pqnO25obdeHcAALcwfB5Jrlyz5QAWye6Ux539NJ52ixtae0NrbVNrbdNy9t6NdwcAcAvD55HkkDVYC2Dx7E553JzkqB1+f5ckl+7eOgAAQ5xHANbI7pTHTyY5pqruXlW3S/KMJO9ZnbUAACZxHgFYI7v87zy21rZV1alJ/jLJXklOb61dsGqbAQB0OI8ArJ1dLo9J0lp7X5L3rdIuAADDnEcA1sZulUcAgMW3dSB7/cy22G7fgezy4OzRY+G2wTysFyOf07M2+nk6X7vzdx4BAADYIJRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupbmvQAAwOLYto7mL89sC2C1bB3Mz/fz2iOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdC3NewEAgPVtv+nRQwayu+LKkfDWweHXD+aXB7KjR85tg3nW3ujH18jHy6jRj69Z7jJrbSC7+p9HHnkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga2neCwAArGtHD2T/0+DsfQbzHxrInrt1cPhVg/mDB7KjR87R/LbB/Hqxnq5z9ONl1vOXB7I1NnqWH46jd9Ee9qHrkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lua9AADAunaHgez9BmfvM5g/dzA/5PrB/LaBbA3OboP5PdXIn+GsLQ/mR2vELK/1urH46Crr6W4avp9Wl0ceAQAA6FIeAQAA6Nqtp61W1cVJrknyrSTbWmubVmMpAICpnEcA1sZq/J3HH2ytXbkKcwAAdpXzCMCMedoqAAAAXbtbHluSv6qqT1XVKauxEADAIOcRgDWwu09bPaG1dmlVHZrkg1X1+dbaR3YMrHwRPyVJ9sl+u/nuAABuYeg8ktx17TcEWAC79chja+3SlV+vSPKuJMfvJPOG1tqm1tqm5ey9O+8OAOAWRs8jySFrvSLAQtjl8lhV+1fVgd9+OckPJzl/tRYDAOhxHgFYO7vztNXDkryrqr49509bax9Yla0AAKZxHgFYI7tcHltrX0ryvau4CwDAEOcRgLWzGv/OIwDA4rp8IPvxwdmjJ7HNg/kh+w7mR5Zvg7M3iq0znj9yn9bMtthueTB/3UD2wsHZo/lrBrKjn0dHD+bvM5A9eHB2n3/nEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6leS9A8vWffOhQ/q7P+uLk7OevOGxo9o03LA/ljzxzen6/zd8Ymn3TuZ8bygPATFw+kP2TwdmjJ7FvjoTHvqcnBw/mR+ZvG5zNzo3epxvFvoP5O85w/n6Dsw8czM+3vnnkEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6leS9A8j9+/k+H8k/e/1+mh+85uMyoE6dHL9523dDo3/raD47twqr4xBV3m5zd/5XfPTR76axPja4DsA5cPT26bSCbJNu2juVz+xllk2Tfwfy2wfxGMXK8Xp7ZFtuNfDxuHpx91WB+9OPrQdOjTzl2bPQTBvP3GshePjY6HxrMv3Uge+Xo15c+jzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQtTTvBUhe+6JnDOV/+f7TO/9BF7ah2f9ynxrK3+7+/zo5+/L7vXNo9qsPP3so/3+uO2By9nH7fWNo9ixd324cyp99w/5D+RP32TqUz8Cf+72e/tyh0d9z1tgqAOvDyHFpeXD2rPPc0uD3xeE/87Gz1GyNXOslg7P/fjC/71j8zg+aHH3o2/96aPQ/XPHwsV3eM5D9kbHR//mkNw3lz/zGT0wPnzG2yxQeeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBrad4LkOz/52cP5me0SJLbz250fvvOJw7lf/WEo4fyt//bL07OvvzEew3NnqWl628ayu//2cuG8nf8yDuG8v/hdsuTs/tdPD0LsOca+Vp36My22G7bHjp7Pdl3xvOvHshePzj74LH4IXccCD9ybPaVR47lM/2cliR5xPToq/IzQ6M/e9jYKu8cyL70zLHZjzjrQ0P5M+/8E2PvYJV55BEAAIAu5REAAICubnmsqtOr6oqqOn+H2w6uqg9W1UUrvx402zUBgI3MeQRg/qY88nhGkkff7LYXJjmrtXZMkrNWfg8AMCtnxHkEYK665bG19pEkV93s5pOSvHnl5TcnecIq7wUA8O+cRwDmb1f/zuNhrbXLkmTl11v90WJVdUpVnVNV52zNDbv47gAAbmGXziPJlWu2IMAimfkPzGmtvaG1tqm1tmk5e8/63QEA3MKO55HkkHmvA7BH2tXyuKWqDk+SlV+vWL2VAAAmcR4BWEO7Wh7fk+TklZdPTvLu1VkHAGAy5xGANTTln+o4M8nHkty7qjZX1bOTvCzJI6vqoiSPXPk9AMBMOI8AzN9SL9Bae+atvOrhq7wLC27b5VuG8vu/Yyz/rZHZf/71odnryZbnPHQof9/bdT/Nv8Mrrrr35OzRf/ilodnbhtIA/998zyMjX0drZltsN7LLnvxVd+tgft+B7Kzvo4sGsucNzn7MWPyXDpscvcfzLxga/aVP3Xdsl1ccO5Z/zvTog6/6zNDoD41tkqeNhP9gbPZL8r/G3uDDY/HVNvMfmAMAAMCeT3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga2neC8BGt3S3o4byv/Oi3xnKL9deQ/m3/9YjJmfveNnHhmYD7Jm2zXuBBbB13gusoZGPl8Gj+F0OG4r/0PPfOzn79jx1aPZ5D7r/UP5nznzlUP7AfGNytr46NDqPPGEsn1+bHj3q7v84NHrzUceM7bL56oHwvmOzJ/DIIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF1L814ANrrPv+DIofz37V1D+QtuvH4of/DnrhvKA0Df8oznj3yv2zazLbZ78PToEwaySb77rZcP5X8tvzQ5e/CZ3xya/bBNnxjKP++Y3xvK35DbTQ9/fWh08sSx+J887MmTs5t//Jix4ZvfNpbPYQPZEwZn93nkEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6leS8Ai+iGx33f5Oynn/Lqwel7D6X/6/OfP5Tf9x8+MZQHYFFsHcwvzyi7K64fyH56cPahY/FTj50cPfm3Xzc0+vXX/vRQfp+/Hwg/YGh0Ljnm4KH8sfncUP7wXDo9fO3Q6ORRY/EP58Tp4YvHZo/XsX1H38Gq8sgjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXUvzXgAW0VceM/3/yxxQew/NfuY/P3Iov98HPjOUb0NpANbWyNFt28y22G7rQHZ5bPToCXXoUrcMDj9wLP6U6dHXX/vTQ6P3edbYKnnq9OgHf+j7h0ZvyWFD+R/IR4bydzv/a5Oz7T5Do/OWg588lH/btU+fHv7m2C7Jg0ffYK488ggAAECX8ggAAEBXtzxW1elVdUVVnb/DbS+tqkuq6tyV/x472zUBgI3MeQRg/qY88nhGkkfv5PZXt9aOW/nvfau7FgDAdzgjziMAc9Utj621jyS5ag12AQDYKecRgPnbnb/zeGpVfXblaSQH3Vqoqk6pqnOq6pytuWE33h0AwC0Mn0eSK9dyP4CFsavl8XVJ7pnkuCSXJXnlrQVba29orW1qrW1aztg/SQAAcBt26TySHLJW+wEslF0qj621La21b7XWbkryxiTHr+5aAAC3zXkEYG3tUnmsqsN3+O0Tk5x/a1kAgFlwHgFYW0u9QFWdmeTEJIdU1eYkL0lyYlUdl6QluTjJc2e4IwCwwTmPAMxftzy21p65k5vfNINdAAB2ynkEYP665RFIvuvAA4fyz/qBj07OXn3TN4dmX/Hr9xjK733DJ4fyALDn2Xcge9jg7GPG4kdvnRzd59rBVY4Yi2997PTs+zIQTnJ0Lh7K3+2fvzaUzxXTo2+930lDo5/1hT8f2+W0gey5Y6OTIwfz20bfwaranX+qAwAAgA1CeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBrad4LwJ7gopfedyj/3kN+b3L2pIuePDR77/d9cigPwCLZNsPZyzOc3cbiw5c5cqR92NjoTTUUXz7g6snZd9/xh4dm/8DvfGQo/448ZXL20hwxtkv+biifc8biOXR69Iz8+NjsE8fiufz9A+F7DQ4/ZjA/8nm6dXB2n0ceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Fqa9wIwD//2ow8Zyn/26a8dyv/Ttq2Ts9/4zbsMzd47lw3lAWCa5RnO3jKY3zyYP3p69MQ7jo3+ubH4EXe8dHL21XnB0Ozfz3OH8vvlusnZ43Lu0OzH/9v7h/K5cCye46ZHz/nWprHZl180ls/ZA9mDB2fvWTzyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfSvBeA1bJ05BGTs6e9+G1Ds/eusU+VZ3zmWZOzd3r/J4dmA7CRbR3ILs9si3FfH8x/cTB/n+nRnxqb/LTHvXkof00OnJx9/98+aWyZwT+WBz77o5Oz/ysvGZq9/PaxXbL/WPyCY+4xOXvVBUcOLnP1YP7ogez0+39P5JFHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupbmvQDcmloa+/D83vdunpx96gFfH5r9lmsOHcof9uLp/1/mpqHJALAn2ncwf6+x+Kb9Jkcf+vS/Hhr9c3nFUP5DecTk7Ps3P2lodj46Ft/v2ddPzt73n780NvxbY/GrT1seyv9Kfnl6+ANjuyS3H8yfMJA9eHD2qDbj+bfNI48AAAB0dctjVR1VVX9TVRdW1QVV9fyV2w+uqg9W1UUrvx40+3UBgI3IeQRg/qY88rgtyc+21u6T5CFJnldVxyZ5YZKzWmvHJDlr5fcAALPgPAIwZ93y2Fq7rLX26ZWXr0lyYZIjk5yU5M0rsTcnecKslgQANjbnEYD5G/o7j1V1dJIHJDk7yWGttcuS7V/Qk+z0J4pU1SlVdU5VnbM1N+zetgDAhre755HkyrVaFWChTC6PVXVAknckOa21dvXUt2utvaG1tqm1tmk5e+/KjgAASVbnPJIcMrsFARbYpPJYVcvZ/oX6La21d67cvKWqDl95/eFJrpjNigAAziMA8zblp61WkjclubC19qodXvWeJCevvHxyknev/noAAM4jAOvBlH+F/YQkz0pyXlWdu3Lbi5K8LMmfVdWzk3wlyVNnsyIAgPMIwLx1y2Nr7aNJ6lZe/fDVXQcA4JacRwDmb8ojjzAf33vvofj/PvSPZ7RI8ru/PvY/su/wmY/NaBMANrblGc6+boaz7z4W3zSYf/306H/La4dGf9+55w/l//W4O0wPn/jNodnZts9Q/Nh8bmz+gKufM/ax+Iy93jqUf/8vPml6+Iyh0bvgXgPZbYOztw7m52von+oAAABgY1IeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Fqa9wJsHHsd+z1D+VPe+u4ZbZIce/rzhvJH//HHZ7QJABvb6FGsBrJbB2dfMpjfd3r0uP3GRr9+LP6LD/rlydkfzIfHhh86Fr8u06/1oUf+w9DsS08+Yih/dC6enL3g7vcYmv0Hec5Q/v0vftJQPi/73ED4qrHZeeBgfuTjd3lw9nWD+dH5q8sjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtzXsBNo7P//RBQ/nH73f1jDZJ7vLhG8feoLXZLALAgtk6mF+eyRbbje6yZTB/8PToiWOTT33Qy4fyL8irJ2evyKFDs197xH8fyp+d4ydnD8w1Q7Mfm/cN5ffKtsnZP8hzhma/5gu/OJTP68fiyXkD2dsPzp7+58J38sgjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXUvzXoA92zcff/zk7FmPf+Xg9P0G8wAwb8vzXmA37DuYP3Z69Dljk1+QVw/l7/Seb0zO/sWPPGFo9m+c9StD+XxzevSZjzt9aPSj8pdD+XPyoMnZ11zygqHZeelYPFcO5vPAgexopRnNt8H8iD3ra4ZHHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhamvcC7NkuPWGvydm7Lu03w02St1xz6OTs8tU3Ds1uo8sAwCRbZ5hfHht9hweN5U+bHj31vi8fGn2Pd10+tstXpke35LCx2Z8fi+fE6dHn5veHRj/s3E8M5c897rjp4dfsMzQ7bx392L1+MH/MYH7ELHcf/Lzbw3jkEQAAgK5ueayqo6rqb6rqwqq6oKqev3L7S6vqkqo6d+W/x85+XQBgI3IeAZi/KU9b3ZbkZ1trn66qA5N8qqo+uPK6V7fWXjG79QAAkjiPAMxdtzy21i5LctnKy9dU1YVJjpz1YgAA3+Y8AjB/Q3/nsaqOTvKAJGev3HRqVX22qk6vqoNWeTcAgFtwHgGYj8nlsaoOSPKOJKe11q5O8rok90xyXLb/n8BX3srbnVJV51TVOVtzwyqsDABsVKtxHkmuXLN9ARbJpPJYVcvZ/oX6La21dyZJa21La+1brbWbkrwxyfE7e9vW2htaa5taa5uWs/dq7Q0AbDCrdR5JDlm7pQEWyJSftlpJ3pTkwtbaq3a4/fAdYk9Mcv7qrwcA4DwCsB5M+WmrJyR5VpLzqurcldtelOSZVXVctv/76Rcnee5MNgQAcB4BmLspP231o0lqJ6963+qvAwBwS84jAPM39NNWAQAA2JimPG0V5uI3vn7sUP5jjzp6crZddt7gNgBsXCPHpZ09OHpbvj6Y3zKQHfs+mtPG4k9+yZ9Mzr7q335hbPjfjsVzzPToEbl0aPTdnvf5ofxz8/uTsw/7n58Ymp3B48sR7xm41g+PzU7eNpi/z1h86UGD8wdsG61A189kje2WZzh79XnkEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6leS/Anu0eL/zY5OxjX/jAGW6SJJfPeD4AG1PNcPb1g/mrZrJFkuT7x+JPyF9Mzi6/a3CXKwbz95sePTRbhkY/Ih8ayv+X/NH08BlDo7P12rH8AblmevjKsdnJlwfzh43Ftw1kNZo145FHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuqq1tnbvrOprSb68k1cdkuTKNVtkflzn4tko1+o6Z+durbU7rfH7hA3NecR1LpiNcp3JxrnWdXseWdPyeKtLVJ3TWts07z1mzXUuno1yra4T2Ag2ytcA17lYNsp1JhvnWtfzdXraKgAAAF3KIwAAAF3rpTy+Yd4LrBHXuXg2yrW6TmAj2ChfA1znYtko15lsnGtdt9e5Lv7OIwAAAOvbennkEQAAgHVsruWxqh5dVV+oqi9W1QvnucusVdXFVXVeVZ1bVefMe5/VUlWnV9UVVXX+DrcdXFUfrKqLVn49aJ47roZbuc6XVtUlK/fpuVX12HnuuBqq6qiq+puqurCqLqiq56/cvlD36W1c58Ldp0DfRjmPLOpZJHEeWbTvXc4j6/c+ndvTVqtqryT/mOSRSTYn+WSSZ7bWPjeXhWasqi5Osqm1tlD/Nk1V/cck30jyR621+63c9vIkV7XWXrbyTfig1tovzHPP3XUr1/nSJN9orb1inrutpqo6PMnhrbVPV9WBST6V5AlJfiwLdJ/exnU+LQt2nwK3bSOdRxb1LJI4j2TBvnc5j6zf88g8H3k8PskXW2tfaq3dmOStSU6a4z7sgtbaR5JcdbObT0ry5pWX35ztnwR7tFu5zoXTWrustfbplZevSXJhkiOzYPfpbVwnsPE4jywA55HF4jyyfs2zPB6Z5Ks7/H5z1vkf1m5qSf6qqj5VVafMe5kZO6y1dlmy/ZMiyaFz3meWTq2qz648jWSPfurEzVXV0UkekOTsLPB9erPrTBb4PgV2aiOdRzbSWSRZ4O9dO7Gw37ucR9bXfTrP8lg7uW2Rf/TrCa21ByZ5TJLnrTztgD3b65LcM8lxSS5L8sr5rrN6quqAJO9Iclpr7ep57zMrO7nOhb1PgVu1kc4jziKLaWG/dzmPrL/7dJ7lcXOSo3b4/V2SXDqnXWautXbpyq9XJHlXtj9NZlFtWXkO97efy33FnPeZidbaltbat1prNyV5YxbkPq2q5Wz/AvaW1to7V25euPt0Z9e5qPcpcJs2zHlkg51FkgX83rUzi/q9y3lkfd6n8yyPn0xyTFXdvapul+QZSd4zx31mpqr2X/lLsKmq/ZP8cJLzb/ut9mjvSXLyyssnJ3n3HHeZmW9/8VrxxCzAfVpVleRNSS5srb1qh1ct1H16a9e5iPcp0LUhziMb8CySLNj3rluziN+7nEfW7306t5+2miQrP3b2NUn2SnJ6a+3X5rbMDFXVPbL9//AlyVKSP12Ua62qM5OcmOSQJFuSvCTJXyT5syR3TfKVJE9tre3Rf7n7Vq7zxGx/OkFLcnGS5377efh7qqr6/iR/l+S8JDet3PyibH/+/cLcp7dxnc/Mgt2nQN9GOI8s8lkkcR7Jgn3vch5Zv+eRuZZHAAAA9gzzfNoqAAAAewjlEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK7/B3wpcUW/u+N/AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHexJREFUeJzt3X2U3XddJ/D3x04amrSVPtAH0mKAFpYipbCxoq1rXeVBUAurKD0HtpxViy49Cx51ZTmrsLs+4YKg4uIWQboeBB8A4SgqWEWWFSqhFloI2oKVPoSWUqEFapu03/0j093QJvn+vsncucmd1+ucnJm5877f+/nNTeZ+3/nduVOttQAAAMC+fM28BwAAAODgpzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAMCMVdVvVNVP7+PzrapO28+19/u6MGJp3gMAAMCia639yLxngAPlzCMAAABdyiMAAExUVU+sqr+tqjuq6ver6ner6mer6vlV9YH7Zf/f00mr6k1V9bO7fe4nq2p7Vd1UVf/uftdbX1WvrKrPVNXNy095PWLKdWGWlEcAAJigqg5P8o4kb0pybJK3JHnWfqzztCQ/keTJSU5P8h33i7wiyaOSnJXktCSbkvzMxOvCzCiPAAAwzZOy6zVDfrW1tqO19vYkf7Mf63x/kt9qrV3dWvtykpff94mqqiQ/nOTHWmu3tdbuSPLzSZ7Tuy7MmhfMAQCAaR6a5MbWWtvtsuv3c52P7PbxP+72/kOSbEjykV09MklSSQ6bcF2YKeURAACm2Z5kU1XVbgXy1CSfSvLl7Cp9SZKqOqmzzqm7ffyw3d6/NcmdSR7bWrtx8LowU562CgAA03wwyT1JLq6qpao6P8nZy5/7aJLHVtVZVfWg7PvppL+X5PlVdUZVbUjysvs+0Vq7N8nrk7y6qk5IkqraVFVP7V0XZk15BACACVprdyf5N0l+MMkXkjw3yR8luau19vdJ/muSP09yTZIP7GOdP0nymiR/keTa5be7+6nlyz9UVbcvr/noideFmamvfso2AAAwVVVdnuQ3Wmu/Ne9ZYNaceQQAgImq6lur6qTlp61emOTMJH8677lgNXjBHAAAmO7R2fVzh0dm1wvlfF9rbft8R4LV4WmrAAAAdHnaKgAAAF3KIwAAAF2r+jOPh9f69qBsXM2bBDio/XO+nLvbXTXvOWAtqTq++b3qALv7TFq7tbsfWdXy+KBszDfWt6/mTQIc1C5vl817BFiDHpZ9/Ao+gDXo3EmpA3raalU9rar+rqquraqXHMhaAAD7w34EYHXsd3msqsOS/HqS70xyRpILquqMlRoMAKDHfgRg9RzImcezk1zbWvt0a+3uJG9Ncv7KjAUAMIn9CMAqOZDyuCnJ9bt9fMPyZV+lqi6qqq1VtXVH7jqAmwMAeIDh/Uhy66oNB7BIDqQ87unVeNoDLmjtktbaltbalnVZfwA3BwDwAMP7keT4VRgLYPEcSHm8Icmpu318SpKbDmwcAIAh9iMAq+RAyuOHk5xeVQ+vqsOTPCfJu1ZmLACASexHAFbJfv+ex9bazqq6OMmfJTksyRtbax9fsckAADrsRwBWz36XxyRprb07ybtXaBYAgGH2IwCr44DKIwAAwHztnPcAq2i+9e1AfuYRAACANUJ5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGtp3gMAAAAwxc6B7MpXPWceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Fqa9wAAAMChZueM1x+pKUfMcO0kqYFsG1x79Ou4YzC/spx5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGtp3gMAAACLbsdgfqSmjFaaGszPcu11M5lil9GveZ8zjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQtzXsAAADgUDNaI2ZZO+4YzO+YyRT7Z90M1175r7kzjwAAAHQpjwAAAHQd0LnMqrouu84T35NkZ2tty0oMBQAwlf0IwOpYiSfCfltr7dYVWAcAYH/ZjwDMmKetAgAA0HWg5bEleU9VfaSqLlqJgQAABtmPAKyCA33a6jmttZuq6oQk762qT7bW3r97YPmb+EVJ8qBsOMCbAwB4gKH9SHLq6k8IsAAO6Mxja+2m5be3JHlHkrP3kLmktbaltbZlXdYfyM0BADzA6H4kOX61RwRYCPtdHqtqY1Uddd/7SZ6S5OqVGgwAoMd+BGD1HMjTVk9M8o6qum+d32mt/emKTAUAMI39CMAq2e/y2Fr7dJLHr+AsAABD7EcAVs9K/J5HAADgoLNzIDtaC2b9QphfGcheM7j2tsH8bQPZowfX3jSYf8xA9tjBtfv8nkcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6luY9AMnnf/ibhvIPe961k7OfvOXEobXvvmvdUH7TW6bnN9zwpaG1773yE0N5AABWSxvM10ym2OWIwfxxg/mR/fHoLEcP5sf26ivNmUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6luY9AMl//MnfGcp/78Z/mh5+5OAwo86bHr1u51eGlv6Vz33b2CysiL+55esmZze+6muH1l667COj4wDAAts5mB/duh8xkL1zcO1tg/nbBvNnTo+ee8bY0s8ZzG8eyN46tnT+fDD/hwPZL43tvadw5hEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICupXkPQPKrL33OUP5nzpze+Y/Z1obW/qfH1FD+8DO/MDn7S1//9qG1X33y5UP5P/7KkZOzz9jwpaG1Z+nOdvdQ/vK7Ng7lz3vQjqF8Br7up/3AC4aWftRlY6MAwKFn5wzXXjfD/O2Da181mL92MH/u5OSx77txaOUPHfakofzp/+eGydkbn3Hs0Nr/9sJLh/J/8ezvmh7+g6GlJ3HmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6leQ9AsvEPLh/Mz2iQJEfPbun82knnDeV/9pzNQ/mj/+raydlfOu+0obVnaenOe4fyGz+2fSh/3PvfNpR/3OHrJmc3XDc9CwDc347B/BEzmWKX4wbzmwbzg7vM50yPvvawFw4tffo33DCU/9jW6dkzX3Tb0NpPfc2fDeX/4pTvGsqvNGceAQAA6FIeAQAA6OqWx6p6Y1XdUlVX73bZsVX13qq6ZvntMbMdEwBYy+xHAOZvypnHNyV52v0ue0mSy1prpye5bPljAIBZeVPsRwDmqlseW2vvT3L/n/w8P8mly+9fmuSZKzwXAMD/Yz8CMH/7+zOPJ7bWtifJ8tsT9hasqouqamtVbd2Ru/bz5gAAHmC/9iPJras2IMAimfkL5rTWLmmtbWmtbVmX9bO+OQCAB9h9P5IcP+9xAA5J+1seb66qk5Nk+e0tKzcSAMAk9iMAq2h/y+O7kly4/P6FSd65MuMAAExmPwKwiqb8qo63JPlgkkdX1Q1V9YNJfjHJk6vqmiRPXv4YAGAm7EcA5m+pF2itXbCXT337Cs/Cgtv52ZuH8hvfNpa/Z2TtP/j80NoHk5t/6JuG8o89vPvP/Ku88rZHT85u/q1PD629cygN8P/Zj6w1o48YY491s7VjIDvjR8YHD2Q3D679oHPH8meNxR/zuismZy+4fvBJB18ci5/5r6dnP/eaI4fW/rX8h7Fhto7FV9rMXzAHAACAQ5/yCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfSvAeAtW7p604dyr/2pa8dyq+rw4byv/8r3zE5e9z2Dw6tDQDzt24wv2Mwv3Mg+5XBtU8ci581kH3u2NLrnnn7UP7px/3xUP7H8prp4b8aWjp51lj8xlccOzn72Ls+PrT2F889aWyYrW0sv8KceQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBrad4DwFr3yR/bNJT/hvU1lP/43XcO5Y/9xFeG8gDQt3PeA+xm1tvfkcfRO8aWftBYPM+fHn3Khe8cWvqZecdQ/gm5cij/pGs+Oj386aGlk4eNxX83PzA5+8WLTxpbfOv7xvI5YiD7uMG1+5x5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGtp3gPAIrrrGd8wOXvF9716cPX1Q+kffdGLhvJH/PXfDOUBgN3dObul/8VY/PQLPzo5+wv5T0NrP/H6bUP5HUcPxZN7BrIbB9cezH8lG6aHbx1bO/n8YP7E0RtYUc48AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0LU07wFgEX3mO6f/v8yRtX5o7Qv+4clD+Q1/+tGhfBtKA8ChZueM1z96IHvi2NLnjsW/Le+bnH3ildvGFt86Fl/3uLF8Hj6Q/Z6xpT97+tcO5f863zw9PPzXa/Ngft3oDawoZx4BAADoUh4BAADo6pbHqnpjVd1SVVfvdtnLq+rGqrpy+c/TZzsmALCW2Y8AzN+UM49vSvK0PVz+6tbaWct/3r2yYwEAfJU3xX4EYK665bG19v4kt63CLAAAe2Q/AjB/B/IzjxdX1ceWn0ZyzN5CVXVRVW2tqq07ctcB3BwAwAMM70eSW1dzPoCFsb/l8XVJHpnkrCTbk7xqb8HW2iWttS2ttS3rMvYrCQAA9mG/9iPJ8as1H8BC2a/y2Fq7ubV2T2vt3iSvT3L2yo4FALBv9iMAq2u/ymNVnbzbh89KcvXesgAAs2A/ArC6lnqBqnpLkvOSHF9VNyR5WZLzquqsJC3JdUleMMMZAYA1zn4EYP665bG1dsEeLn7DDGYBANgj+xGA+euWRyD5mqOOGso/71s+MDl7+73/PLT2LT//iKH8+rs+PJQHgJU36y3nzhllk/HZT5ke3TK49HeNxU/IzdPDG8fWzhcH89vG4u306dnfPP25Q2v/9/zEUP6an3v89PCHhpZOsnkwP/r3d2UdyK/qAAAAYI1QHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhamvcAcCi45uWPHcr/0fH/Y3L2/Gu+d2jt9e/+8FAeAKbZOZif5TZy3WB+ZPbbB9c+Yix+0obp2aeNLf215312KH/PwH104+nHDq296bjbhvK5ZixeA3fpr+eFY6M85vFjw3zyYwPhsa9jsmkwP/J3fcfg2n3OPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANC1NO8BYB6++NwnDeU/9gO/OpT/1M4dk7NfesUpQ2uvz/ahPADMxs6B7BGDa49uUUfytw+ufedYfOm46dnNY0ufuv76ofxhA/fRrRmYO8mmjbcN5fPlsfiIq25+3NgVPvmJwVt4+0D2OwbXHtsHJusGstP3o1M58wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX0rwHgJWytOmhk7Mv/unfHVp7fY39U3nOR583OfuQP/nw0NoAwIE4erb54weyDx5b+qjcMZQ/Jl+Y2drZOBbPY8binz7hpMnZez+1YXCY4wbzJw5kjxhce1Sb8fr75swjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXUvzHgD2ppbG/no+/o9umJx99pGfH1r7zXecMJQ/8aen/7/MvUMrA7C27RzIjm7zZrktvH0wf+dg/tjp0ZNOGVv63LF4zhvIntWGln5wvjCUf2Q+NTn7iJs+O7R2HjoW/8enP2Qo/4q8ZHr4fTU2TE4czJ89w7V3DObny5lHAAAAurrlsapOraq/rKptVfXxqnrR8uXHVtV7q+qa5bfHzH5cAGAtsh8BmL8pZx53Jvnx1tpjkjwpyQur6owkL0lyWWvt9CSXLX8MADAL9iMAc9Ytj6217a21K5bfvyPJtiSbkpyf5NLl2KVJnjmrIQGAtc1+BGD+hn7msao2J3lCksuTnNha257s+oaeZI+vKFJVF1XV1qrauiN3Hdi0AMCad6D7keTW1RoVYKFMLo9VdWSStyV5cWtt8ktmtdYuaa1taa1tWZf1+zMjAECSldmPJMfPbkCABTapPFbVuuz6Rv3m1trbly++uapOXv78yUlumc2IAAD2IwDzNuXVVivJG5Jsa6398m6feleSC5ffvzDJO1d+PAAA+xGAg8GU3wZ7TpLnJbmqqq5cvuylSX4xye9V1Q8m+UySZ89mRAAA+xGAeeuWx9baB5LUXj797Ss7DgDAA9mPAMzflDOPMB+Pf/RQ/L+d8NszGiT59Z8f+4/sB3/0gzOaBIDFsnPeA+zmiBmufd1g/sbB/DnToz8ytvLXv+zDQ/nNA8d6R44aWvvUXD+UPyOfmB6+sh/Z3eeefuRQ/qK8fij/nv9y/vTwbw4tvR8eM8O1d8xw7ZU39Ks6AAAAWJuURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqW5j0Aa8dhZzxqKH/RW985o0mSM974wqH85t/+0IwmAYCDRQ3m20B25+Datw/mN0xOrrt4bO2fzX8eyp+Ymydn/yxPHVr7rqwfym/IV6aHNw4tPTz7e15x/tgNvPzygfBtY2vnnMH80QPZkX8XSXLHYH7Eylc9Zx4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoWpr3AKwdn/z3xwzlv3vD7TOaJDnlfXePXaG12QwCAAeN0ce6nQPZYwfXPncs/rTp0Scc97dDS5+Wa4fyx+Xzk7On5vqhtf8hm4fyW7Nl+trfeuvQ2v8zLxjK561j8eTygewRg2vvGMxzH2ceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Fqa9wAc2v75u8+enL3su181uPqGwTwAHGoOpq3YbTNc+5Sx+LmDy188PfrIfGpo6X/Kg4fyD84XJmcflb8bWvuuHD6Uf1/Om5x9f75laO0rLh28k64biyffOHqFAesG820gu3Nw7UOLM48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0Lc17AA5tN51z2OTsw5Y2zHCS5M13nDA5u+72u4fWbqPDALBAds5w7SMG8yNbtzsG1755MD8w+2nHjS39E2PxpzzjnZOz35y/Hlr7qMGv46ZP3jY9++np2STZ8q1XDOV/eOMlk7NXvOrcobXzyrF4vjCYz9kD2dF/ozsG83cO5kccWnXMmUcAAAC6uuWxqk6tqr+sqm1V9fGqetHy5S+vqhur6srlP0+f/bgAwFpkPwIwf1POk+5M8uOttSuq6qgkH6mq9y5/7tWttdGT1gAAo+xHAOasWx5ba9uTbF9+/46q2pZk06wHAwC4j/0IwPwN/cxjVW1O8oQkly9fdHFVfayq3lhVx6zwbAAAD2A/AjAfk8tjVR2Z5G1JXtxauz3J65I8MslZ2fU/ga/ay/UuqqqtVbV1R+5agZEBgLVqJfYjya2rNi/AIplUHqtqXXZ9o35za+3tSdJau7m1dk9r7d4kr89eXk+3tXZJa21La23LuqxfqbkBgDVmpfYjyfGrNzTAApnyaquV5A1JtrXWfnm3y0/eLfasJFev/HgAAPYjAAeDKa+2ek6S5yW5qqquXL7spUkuqKqzsuv3p1+X5AUzmRAAwH4EYO6mvNrqB5LUHj717pUfBwDggexHAOZv6NVWAQAAWJumPG0V5uIXPn/GUP6DT908Odu2XzU4DQAcDPZ08nWl3DGY3zk9etrYyqef/9Gh/A/lNydn/2W2Dq39iH/47FA+r50e/fxvjC193PeM5U97+7XTw28dWzuffdfgFTYP5s8cyK4bXHvHYP7OgezoLIdWHXPmEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6leQ/Aoe0RL/ng5OzTX/LEGU6SJJ+d8foAsMjuHMwPbCOPHFv54bluKP+4XDU5+4ibBvcL14zF81fTo792z9jSP/qOsfxDc9P08A1jaydXDObXDebPHMyzGpx5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoKtaa6t3Y1WfS/KPe/jU8UluXbVB5sdxLp61cqyOc3a+rrX2kFW+TVjT7Ecc54JZK8eZrJ1jPWj3I6taHvc6RNXW1tqWec8xa45z8ayVY3WcwFqwVr4HOM7FslaOM1k7x3owH6enrQIAANClPAIAANB1sJTHS+Y9wCpxnItnrRyr4wTWgrXyPcBxLpa1cpzJ2jnWg/Y4D4qfeQQAAODgdrCceQQAAOAgNtfyWFVPq6q/q6prq+ol85xl1qrquqq6qqqurKqt855npVTVG6vqlqq6erfLjq2q91bVNctvj5nnjCthL8f58qq6cfk+vbKqnj7PGVdCVZ1aVX9ZVduq6uNV9aLlyxfqPt3HcS7cfQr0rZX9yKLuRRL7kUV77LIfOXjv07k9bbWqDkvy90menOSGJB9OckFr7RNzGWjGquq6JFtaawv1u2mq6l8l+VKS/9Va+/rly34pyW2ttV9cfhA+prX2U/Oc80Dt5ThfnuRLrbVXznO2lVRVJyc5ubV2RVUdleQjSZ6Z5PlZoPt0H8f5/Vmw+xTYt7W0H1nUvUhiP5IFe+yyHzl49yPzPPN4dpJrW2ufbq3dneStSc6f4zzsh9ba+5Pcdr+Lz09y6fL7l2bXP4JD2l6Oc+G01ra31q5Yfv+OJNuSbMqC3af7OE5g7bEfWQD2I4vFfuTgNc/yuCnJ9bt9fEMO8i/WAWpJ3lNVH6mqi+Y9zIyd2Frbnuz6R5HkhDnPM0sXV9XHlp9Gckg/deL+qmpzkickuTwLfJ/e7ziTBb5PgT1aS/uRtbQXSRb4sWsPFvaxy37k4LpP51keaw+XLfJLv57TWntiku9M8sLlpx1waHtdkkcmOSvJ9iSvmu84K6eqjkzytiQvbq3dPu95ZmUPx7mw9ymwV2tpP2IvspgW9rHLfuTgu0/nWR5vSHLqbh+fkuSmOc0yc621m5bf3pLkHdn1NJlFdfPyc7jvey73LXOeZyZaaze31u5prd2b5PVZkPu0qtZl1zewN7fW3r588cLdp3s6zkW9T4F9WjP7kTW2F0kW8LFrTxb1sct+5OC8T+dZHj+c5PSqenhVHZ7kOUneNcd5ZqaqNi7/EGyqamOSpyS5et/XOqS9K8mFy+9fmOSdc5xlZu775rXsWVmA+7SqKskbkmxrrf3ybp9aqPt0b8e5iPcp0LUm9iNrcC+SLNhj194s4mOX/cjBe5/O7dVWk2T5ZWdfk+SwJG9srf3c3IaZoap6RHb9D1+SLCX5nUU51qp6S5Lzkhyf5OYkL0vyh0l+L8nDknwmybNba4f0D3fv5TjPy66nE7Qk1yV5wX3Pwz9UVdW5Sf53kquS3Lt88Uuz6/n3C3Of7uM4L8iC3adA31rYjyzyXiSxH8mCPXbZjxy8+5G5lkcAAAAODfN82ioAAACHCOURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArv8Lpz0lHvc/wK0AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1358,7 +1369,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuU5GV5J/DnkW7mwiUyKAMZMKgQURNEnaAuZCUaE2IwiLtJJJsETzSYCx41xqPrJiub25qNlyQmq8EFMccLq8ZrYowKRqNBIiDKIBguog6XQZlFUAaYnnn3j2mSEWZ4f093V1dP9edzDme6q7/19Pvrqu56v/yqq7O1FgAAAPBAHjTuBQAAALD0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AADBimfnmzPzdB/h4y8wj5jh7zteFiqlxLwAAACZda+3Xxr0GmC9nHgEAAOhSHgEAYKDMfEJmfiEz78jM92Tm/83MP8jM52XmZ+6T/benk2bmuZn5Bzt97OWZeVNm3piZv3Kf663IzNdm5tczc9PsU15XDbkujJLyCAAAA2Tm3hHx/og4NyLWRMS7IuKUOcw5MSJ+OyKeERFHRsSP3yfyxxHxgxFxTEQcERHrIuK/D7wujIzyCAAAwzw5drxmyJ+31ra21t4XEf8yhzk/FxFvba1taK19NyLOvPcDmZkR8asR8dLW2ubW2h0R8UcR8dzedWHUvGAOAAAM8/0RcUNrre102TfmOOeSnd7/2k5vPzQiVkfEJTt6ZEREZETsNeC6MFLKIwAADHNTRKzLzNypQB4WEddGxHdjR+mLiIjMPLgz57Cd3n/YTm9/KyK2RMRjW2s3FK8LI+VpqwAAMMyFEbEtIs7IzKnMPDkijp392Bcj4rGZeUxmrowHfjrpuyPieZn5mMxcHRGvvvcDrbXtEfGWiHhDZh4UEZGZ6zLzJ3vXhVFTHgEAYIDW2j0R8ZyIeH5E3BYRvxgRfxsRd7fW/jUifi8iPhERV0fEZx5gzt9HxJ9GxAURcc3svzt7xezln8vM22dnPmrgdWFk8nufsg0AAAyVmRdFxJtba28d91pg1Jx5BACAgTLzqZl58OzTVk+LiKMj4qPjXhcsBi+YAwAAwz0qdvze4b6x44Vy/nNr7abxLgkWh6etAgAA0OVpqwAAAHQpjwAAAHQt6u887p0r2srYZzE/JcCSdld8N+5pd+e41wHLSeaB7Xv/xjrAcveNaO3W7n5kUcvjytgnnpRPX8xPCbCkXdTOH/cSYBk6LCJ87wH8u2EdbV5PW83MEzPzK5l5TWa+cj6zAADmwn4EYHHMuTxm5l4R8ZcR8VMR8ZiIODUzH7NQCwMA6LEfAVg88znzeGxEXNNau661dk9EnBcRJy/MsgAABrEfAVgk8ymP6yLiGzu9v3H2su+Rmadn5sWZefHWuHsenw4A4H7K+5GIWxdtcQCTZD7lcVevxtPud0FrZ7XW1rfW1k/Hinl8OgCA+ynvRyIOXIRlAUye+ZTHjfG9r3N9aETcOL/lAACU2I8ALJL5lMfPR8SRmfnwzNw7Ip4bER9amGUBAAxiPwKwSOb8dx5bazOZeUZE/ENE7BUR57TWrliwlQEAdNiPACyeOZfHiIjW2kci4iMLtBYAgDL7EYDFMa/yCAAALEczI55fqSnTI5xdVf26bB3JKkZlPr/zCAAAwDKhPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Ne4FAAAAzF210kyPZBWLY+tYP7szjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjXsBAABMuplxL2Ae9uTtcuXrXj3OUX9dthSym4qz7yjmK8e6qjh7/2J+upBd+NvImUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6psa9AAAA+F53FvPThez+xdn7FfMVW4r5O0ayirmpfM3n4vZC9obi7Gq+UpnWFmdXVe6/C1/1nHkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga2rcC4CF0p7yuOHZqdH+f5MH/dMXRjofgOVqppBdStu8rSOev2Z49CGra6MPr8XjO4XsVcW1xOZivvJ1r65l1PYvZI8rzl5VzFe+76r39crsucxfWM48AgAA0KU8AgAA0DWv5zNk5vURcUdEbIuImdba+oVYFADAUPYjAItjIZ4M/2OttW8twBwAgLmyHwEYMU9bBQAAoGu+5bFFxMcy85LMPH0hFgQAUGQ/ArAI5vu01eNaazdm5kER8fHMvKq19umdA7M/xE+PiFi55F4CGACYAKX9SMShi79CgAkwrzOPrbUbZ/+9JSLeHxHH7iJzVmttfWtt/XSsmM+nAwC4n+p+JOLAxV4iwESYc3nMzH0yc797346In4iIDQu1MACAHvsRgMUzn6etro2I92fmvXPe2Vr76IKsCgBgGPsRgEUy5/LYWrsuIh63gGsBACixHwFYPAvxdx5hkAftt18p/7UX/3Apf+GvvW5wdnXuXZpd9Se3PmZwdnvkCFdS99YvPmVw9vvfX/s67vepq0v5bbduLuUBJt+eunWbLubX1uKHFuY/tzY6nlzMV540/X+KszduLV5hSyFbfWHL6mN0ZS0RsfLo4dkza6OnX3B7Kb/1tsIe9rziff3ttXhc1Qrhhd9H+TuPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2NewHs2R60336Dsyv+dnVp9uVH/EUpvz32LuVH6RUHXjk4uz3aCFdS91+f9uXB2e1Pq639zbc9opT/6LMePzg7c931pdkAk2+mmL+zmJ8uZA+tjT6+Fo/nFrLPvqs0es3Bt5bym2Pd8PC+pdFRv00rt1G1Fmwebf7QowdHH/2KS0uj3xS/XsrfeuCBg7O/89/+oDT7ypufUMrHVVnLLzBnHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcCWFru+cn1pfxTXvMvg7O/f9CnqsspefnNTxqc/fCnasdZdegF2wdnv/2I2rfh1JZWyq+4bfhaIiI2Pfuewdk/+pH3lWb/xoO/Wsr/1WuPH5xd95zSaICCmRHOXlXMVx4z7ijOvqGYL6z9yYeWJj/ovd8t5X9h7TsHZ2+Jg0qzP/bFk0v5eG8he1VtdMT+xfx+1U9QsKWY31SLf2t49O5YURq9V/F7eu+4uzB7W2n2nsaZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0AlpbrT6n9/4SPHfSFwdntxbW8/OYnlfJX/8xBg7NH3PC54mpGZ+W4F3Af+75nePZ3zju5NPuUH31rKf8rP3jh4Ow/xP6l2QBLQ3UrtrqQ3VycfWUxv2Z49NlPLE3+4NqfKeVP+uwFg7OvP+7XS7M/dm7tsS7Ou7oQvr02Ox5dzFfuL604u3rfLeZv2zo4et1fPbY0+owX/mUpf2esGpy9+h2PK82OpbMlHcSZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxr0A2J2rf/rAUn7m5htHtJLl5dv/5cmDs3//lNcWp68q5gH2NFuL+emRrGJubhjd6OEPLRERcdJ7Lijlbz11ePa3vv6m0uyXPfl/l/K17fVMcXZV5f64uTh7TTG/rhafKnxvfKI2+ou3Fe+QNxeyxbXEhmI+bq1eYUE58wgAAECX8ggAAEBXtzxm5jmZeUtmbtjpsjWZ+fHMvHr23wNGu0wAYDmzHwEYvyFnHs+NiBPvc9krI+L81tqREXH+7PsAAKNybtiPAIxVtzy21j4d9/8N2pMj4m2zb78tIp69wOsCAPg39iMA4zfX33lc21q7KSJi9t+DdhfMzNMz8+LMvHhr3D3HTwcAcD9z2o+M+9UKAfZUI3/BnNbaWa219a219dOxYtSfDgDgfnbej0TU/hQUADvMtTxuysxDIiJm/71l4ZYEADCI/QjAIpprefxQRJw2+/ZpEfHBhVkOAMBg9iMAi2jIn+p4V0RcGBGPysyNmfn8iHhNRDwjM6+OiGfMvg8AMBL2IwDjN9ULtNZO3c2Hnr7Aa2EJWP217l1i0XzttEeW8uv+eNOIVrJne9DRR5Xyf/h7bxmcfdjUqupySs7+ylMGZw+NK0a4EmDc7EeWopnRjS4+AfmN24Znzzy+NvvD19XuYs96yPnDwy94eG0x13+5lo9rCtn9i7OPrcWPWV3Ln1DIHlEbXb7rXl/IXlWcHRurVyhY+H3ayF8wBwAAgD2f8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgXwNJy6P/851L+qMe8YHD2X592dmn2n53+V6X8n1zwC4Oz7fOXl2aPUj7xsaX8tS+bLuWveuo5pXxNltI//ZVnlfKHv/y7g7MzpckAo1L7GR2xdcTzK9YW82uGRy+rTb79jNpxPueM4V/H13+1tpbfOv6CUv7Dn3n64Oyzzji/tpjfvqGWj8p+56m10YeuruVPqsXjxEL24FabvbG2f4mravGaLcV8pb6tKs7uc+YRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlxL4A921Gv3DQ4+9IPPqk0+w2HXFTKX3j25wdnP3vcQ0uz4+HrSvHbHvvgwdm/+KM/L80+eu+9SvntpXTE3935fYOzL73g1NLsR7/q2lJ+5tYbSnmAPc9MMb+1kF1VnP2EYr4w/wO1yce9+LOl/Oe/c+zg7NHH19Zy52W1/EnfuGB4+Kja7PptOvzrEocXvzAn1eKxbzG/oZC9Pmuzb6vF4+ZCtvotvYfVMWceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wLYs83ccOPg7LUnrS3N/rNPHFHKv+LAKwZnz77oYaXZT9vno6X8I6dWDc5uj71Ks79wz/ZS/tQPvKiUP+qPvzo4+4M3f740e1spDbBUjHK7tHWE+eni7B8u5gv+8c5SfMMBP1LKrzq3Dc5++AtPL80+6e0XlPJXHPaI4eF/KY2OiCfU4ketHp49szY6Vhbz5xXznyjmKx5czN9WCQ+/L+5Q/T4dL2ceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wJYPr522iNL+cet+sSIVhLx/O/7evEaK0vp87esGJz93d97QWn2gX/3lVL+iFs/V8rPlNIAzE/1p+7WEc7er5ivzP9sbfRtV9byzx7+WPqsDeeXRr/xF2uP09fH4cPDte1FxI+vruVPKGSPqY2Oy4r5zxTz3/rHQnhLcfYP1PKxtpivmC7mx1vfnHkEAACgS3kEAACgq1seM/OczLwlMzfsdNmZmXlDZl42+98zR7tMAGA5sx8BGL8hZx7PjYgTd3H5G1prx8z+95GFXRYAwPc4N+xHAMaqWx5ba5+OiM2LsBYAgF2yHwEYv/n8zuMZmfml2aeRHLC7UGaenpkXZ+bFW+PueXw6AID7Ke9HIm5dzPUBTIy5lsc3RcQjY8eL+t4UEa/bXbC1dlZrbX1rbf10DP/zBQAAHXPaj0QcuFjrA5gocyqPrbVNrbVtrbXtEfGWiDh2YZcFAPDA7EcAFtecymNmHrLTu6dExIbdZQEARsF+BGBxTfUCmfmuiDghIh6SmRsj4tURcUJmHhMRLSKuj4gXjnCNAMAyZz8CMH7d8thaO3UXF589grUAAOyS/QjA+HXLI3u2O37+yaX89tO+Vcp/9nHvLqQvLc2uyxHPH+6M97xgcPbhf31hafa26mIAWEQz417ATm4v5jeNcH51y/nUWnzf/YdnP1ob/eqj/kcpf+Behb3UMXfVFvOSlbX8zYXsebXR8YlifuPW4hVGaUsxX7mvry7O3rPq2Hz+VAcAAADLhPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAV7bWFu2T7Z9r2pPy6Yv2+cZlryMeXspf9aK1pfw5J501OPujK2dKs7fH6O4PP3/tiaX8FZ86opQ/6NLtg7On/P7HS7NfdMDVpfx3tt89OPuL/+HnSrNnvrGxlGdpu6idH7e3zTnudcByknlMizi/cI3aY2nN1AhnbynmN41kFTs8sRY/oTh+fSG7sjh732L++OHRQ4+r7S/u3La6lN/82nXDw2eWRkfc9eXiFaaL+TXFfMUov6erRvkzoOLp0dpl3f2IM48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17AXuKb37oUYOzb/yhd5VmH7uiVZcz2P/bflcp/2MX/2opf/Dr9h6cnb7y66XZj9jyxVL+5l85ZnD21P2/VJodsaqU3v9BKwdn73zsIaXZe39jYykPwHxVtkvTxdm1x5fS/OEPRTscemgtf/iIshERBxfztxWynxvh7GJ+4+GHlUZPr7yntpbrC9m7rq7NjsuL+UcX82sK2SzOvrOY31LMTy5nHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcC9hTfvvaAwdljn9hGuJKat3776FJ+r08+uJS/7jnbB2dXPOz7S7Ofc8QXS/lXP/SNhfSq0uyq87esGJxddcn1pdnbimsBYL6mC9nq40tldkTsW8geXxsdz6vF9z3pm4Oz3/lWbX8Rby5+Xd5eyN62qTY71tTi+xbWfvDK0uit+9bycVUlvH9tdqwt5qvfG1sK2eL9JWaKee7lzCMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdyiMAAABdU+NewJ7iiJd+bnD2UXv/Rmn2x096XSl/+NTqwdmXr7m2NPu3XvEXpfzSkiObfP6WFaX8G57znwZnt3/zqupyAFiyqlurVovfVXise3Bt9MoTN5fyv7DPOwdnL9/nh0uzL5x5Wikft321EL60NjuOrsU3HDk8+97a6PLd65pKeE1x+A8U89PF/JYRZSMiZor5ismuV848AgAA0NUtj5l5WGZ+MjOvzMwrMvPFs5evycyPZ+bVs/8eMPrlAgDLkf0IwPgNOfM4ExEva609OiKeHBG/mZmPiYhXRsT5rbUjI+L82fcBAEbBfgRgzLrlsbV2U2vt0tm374iIKyNiXUScHBFvm429LSKePapFAgDLm/0IwPiVfucxMw+PiMdHxEURsba1dlPEjh/oEXHQbq5zemZenJkXb42757daAGDZm+9+JOLWxVoqwEQZXB4zc9+I+JuIeElr7fah12utndVaW99aWz8dtVesBADY2ULsRyIOHN0CASbYoPKYmdOx4wf1O1pr75u9eFNmHjL78UMi4pbRLBEAwH4EYNyGvNpqRsTZEXFla+31O33oQxFx2uzbp0XEBxd+eQAA9iMAS8GQv2J5XET8UkRcnpmXzV72qoh4TUS8OzOfHxFfj4ifHc0SAQDsRwDGrVseW2ufiYjczYefvrDLAQC4P/sRgPEbcuaRoiN/86JS/kV/+sul/LW/vHZw9p61M6XZz3vSZ0v5Udort5fy29rwFw9++z88tTT7yD+5ppTf/s2rSnkAJkXtcTdi8Gv+zI6fHp7dsH9p9F0b15Tyd37f6sHZvWJbaXbsW4vXXgSp+oJJxe3ydwrZz9VGl5XujluLw2v3r/r3RjXPYij9qQ4AAACWJ+URAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlxL4CIbVdfV8of/ru1fMU/x94jm72UPCIuLOW3jWgdAEyaLcX87cX85uHRDU+sjX5vLf6Ro545OHvPXcX9xV21eEztPzw78+ji8FXF/J3DozMzxdlbi/mlRO2YBM48AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0DU17gUAACxtW0c4e2aEs2+txT9wYCm+eWbd8HB1x3lxMV+yppiv3v6V23RLcfYo74vTxbwasRw58wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgXAACwfO1fzFe2bjO10ZfV4nFVMV9xV/UKWwvZLSOcPWrT414Ay5wzjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjXsBAADLV3UrdmAhu7U4e2MtfteWQri6llXF/PSIsnNRuU1txdmzOPMIAABAV7c8ZuZhmfnJzLwyM6/IzBfPXn5mZt6QmZfN/vfM0S8XAFiO7EcAxm/IufKZiHhZa+3SzNwvIi7JzI/PfuwNrbXXjm55AAARYT8CMHbd8thauykibpp9+47MvDIi1o16YQAA97IfARi/0u88ZubhEfH4iLho9qIzMvNLmXlOZh6wwGsDALgf+xGA8RhcHjNz34j4m4h4SWvt9oh4U0Q8MiKOiR3/J/B1u7ne6Zl5cWZevDXuXoAlAwDL1ULsRyJuXbT1AkySQeUxM6djxw/qd7TW3hcR0Vrb1Frb1lrbHhFviYhjd3Xd1tpZrbX1rbX107FiodYNACwzC7Ufqf25CwDuNeTVVjMizo6IK1trr9/p8kN2ip0SERsWfnkAAPYjAEvBkFdbPS4ifikiLs/My2Yve1VEnJqZx0REi4jrI+KFI1khAID9CMDYDXm11c9ERO7iQx9Z+OUAANyf/QjA+JVebRUAAIDlacjTVgEAWBK2jnsBczS9h88HIpx5BAAAYADlEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6pcS8AAIClYNWI88CezplHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAurK1tnifLPObEfG1XXzoIRHxrUVbyPg4zsmzXI7VcY7OD7TWHrrInxOWNfsRxzlhlstxRiyfY12y+5FFLY+7XUTmxa219eNex6g5zsmzXI7VcQLLwXL5GeA4J8tyOc6I5XOsS/k4PW0VAACALuURAACArqVSHs8a9wIWieOcPMvlWB0nsBwsl58BjnOyLJfjjFg+x7pkj3NJ/M4jAAAAS9tSOfMIAADAEjbW8piZJ2bmVzLzmsx85TjXMmqZeX1mXp6Zl2XmxeNez0LJzHMy85bM3LDTZWsy8+OZefXsvweMc40LYTfHeWZm3jB7m16Wmc8c5xoXQmYelpmfzMwrM/OKzHzx7OUTdZs+wHFO3G0K9C2X/cik7kUi7Ecm7bHLfmTp3qZje9pqZu4VEf8aEc+IiI0R8fmIOLW19uWxLGjEMvP6iFjfWpuov02Tmf8xIr4TEX/dWvuh2cv+V0Rsbq29ZvZB+IDW2ivGuc752s1xnhkR32mtvXaca1tImXlIRBzSWrs0M/eLiEsi4tkR8byYoNv0AY7z52LCblPggS2n/cik7kUi7Ediwh677EeW7n5knGcej42Ia1pr17XW7omI8yLi5DGuhzlorX06Ijbf5+KTI+Jts2+/LXZ8E+zRdnOcE6e1dlNr7dLZt++IiCsjYl1M2G36AMcJLD/2IxPAfmSy2I8sXeMsj+si4hs7vb8xlvgXa55aRHwsMy/JzNPHvZgRW9tauylixzdFRBw05vWM0hmZ+aXZp5Hs0U+duK/MPDwiHh8RF8UE36b3Oc6ICb5NgV1aTvuR5bQXiZjgx65dmNjHLvuRpXWbjrM85i4um+SXfj2utfaEiPipiPjN2acdsGd7U0Q8MiKOiYibIuJ1413OwsnMfSPibyLiJa2128e9nlHZxXFO7G0K7NZy2o/Yi0ymiX3ssh9ZerfpOMvjxog4bKf3D42IG8e0lpFrrd04++8tEfH+2PE0mUm1afY53Pc+l/uWMa9nJFprm1pr21pr2yPiLTEht2lmTseOH2DvaK29b/biibtNd3Wck3qbAg9o2exHltleJGICH7t2ZVIfu+xHluZtOs7y+PmIODIzH56Ze0fEcyPiQ2Ncz8hk5j6zvwQbmblPRPxERGx44Gvt0T4UEafNvn1aRHxwjGsZmXt/eM06JSbgNs3MjIizI+LK1trrd/rQRN2muzvOSbxNga5lsR9ZhnuRiAl77NqdSXzssh9Zurfp2F5tNSJi9mVn/zQi9oqIc1prfzi2xYxQZj4idvwfvoiIqYh456Qca2a+KyJOiIiHRMSmiHh1RHwgIt4dEQ+LiK9HxM+21vboX+7ezXGeEDueTtAi4vqIeOG9z8PfU2Xm8RHxTxFxeURsn734VbHj+fcTc5s+wHGeGhN2mwJ9y2E/Msl7kQj7kZiwxy77kaW7HxlreQQAAGDPMM6nrQIAALCHUB4BAADoUh4BAADoUh4BAADtsfgCAAAAH0lEQVToUh4BAADoUh4BAADoUh4BAADoUh4BAADo+v9gZrJruV67aAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XuU3WV5L/DnkQlJuERuEjBgUUCtWkWbolY8UtRKra1CbSuntriqpV0tLrWtS2uPR1ZrWz2K2tYeLSpqT609Wq/HeingralADYgCgnJplHAPNFwTyCTv+SNDV4SE9/dkZs+ezHw+a7Ey2fPdzzw7O5l5v+w9e7K1FgAAAPBgHjLuBQAAAJj7lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAABixzHxvZr7xQd7fMvOInZy909eFiolxLwAAAPNda+13xr0DTJdHHgEAAOhSHgEAYKDMfEpmfisz78jMj2fm/83MN2fmyzJz1f2y//V00sz8UGa+eZv3vTYzr8/M6zLzN+93vcWZ+fbM/GFm3jj1lNelQ64Lo6Q8AgDAAJm5e0R8KiI+FBH7RcRHI+KEnZhzfET8YUQ8NyKOjIjn3C/y1oh4dEQcFRFHRMSKiPifA68LI6M8AgDAME+Lra8Z8lettU2ttU9GxL/vxJxfiYgPttYuaa3dFRGn3feOzMyI+K2IeE1r7dbW2h0R8ecR8ZLedWHUvGAOAAAM8/CIuLa11ra57JqdnHPBNr//wTZvPywi9oiIC7b2yIiIyIjYbcB1YaSURwAAGOb6iFiRmblNgTw0Iq6KiLtia+mLiIjMPKgz59Btfv+Ibd5eFxEbIuLxrbVri9eFkfK0VQAAGObciNgcEadm5kRmvjAijp5637cj4vGZeVRmLokHfzrpxyLiZZn5uMzcIyLedN87WmtbIuJ9EfHOzDwwIiIzV2Tm83rXhVFTHgEAYIDW2r0RcWJEvDwi1kfESyPicxFxT2vt+xHxJxFxdkRcERGrHmTOFyLiXRHx5Yi4curXbb1u6vLzMvP2qZmPGXhdGJn80adsAwAAQ2Xm+RHx3tbaB8e9C4yaRx4BAGCgzHxWZh409bTVkyPiiRHxxXHvBbPBC+YAAMBwj4mt33e4V2x9oZwXt9auH+9KMDs8bRUAAIAuT1sFAACgS3kEAACga1a/53H3XNyWxJ6z+SEB5rSNcVfc2+7Jce8BC0nmAc3PVQfY1g+jtXXd88islsclsWc8NZ89mx8SYE47v50z7hVgAXpEPMiP4ANYgI4ZlJrW01Yz8/jM/F5mXpmZr5/OLACAneE8AjA7dro8ZuZuEfE3EfFzEfG4iDgpMx83U4sBAPQ4jwDMnuk88nh0RFzZWru6tXZvRPxjRLxwZtYCABjEeQRglkynPK6IiGu2+f3aqct+RGaekpmrM3P1prhnGh8OAOAByueRiHWzthzAfDKd8ri9V+NpD7igtTNaaytbaysXxeJpfDgAgAcon0ciDpiFtQDmn+mUx7URceg2vz8kIq6b3joAACXOIwCzZDrl8ZsRcWRmPjIzd4+Il0TEZ2dmLQCAQZxHAGbJTv+cx9baZGaeGhFfiojdIuLM1tqlM7YZAECH8wjA7Nnp8hgR0Vr7fER8foZ2AQAocx4BmB3TKo8AALBrmSzmNxTzm4p5tm9RIbu0OLuan0vG+/drOt/zCAAAwAKhPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Me4FAADgRy0q5jeNZIvR21X3nmuWjnj+KCvT5AhnzzyPPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Me4FAACY7yaL+Q0j2WKr/WrxiWW1/F6F7JLa6F1a9a/AnYXsxlYcflMxf3cxX7FHMb+0kJ35queRRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALomxr0AAABDTRay1WPeomK+4o5i/pZifv/h0QOyNvrYWjweW8juVZxdNZdO+ncW81cWsquK9+mapbV8rC1kNxRnLyvmlxeyexdn93nkEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6JcS8AM6U9/UnDsxOj/f8mD/nXb410PgDMb0uL+eXDo8cUR7+0mD+ikN1YnL2+mK+otoLJYn5dMX9AIXtIcfaaZbX8RT85PHt5bXTE3cV89Q9+ZnnkEQAAgC7lEQAAgK5pPW01M9dExB0RsTkiJltrK2diKQCAoZxHAGbHTHzP48+01qrPYgYAmEnOIwAj5mmrAAAAdE23PLaI+JfMvCAzT5mJhQAAipxHAGbBdJ+2+ozW2nWZeWBEnJWZl7fWvr5tYOqT+CkREUtij2l+OACAByidRyIOnf0NAeaBaT3y2Fq7burXmyLiUxFx9HYyZ7TWVrbWVi6KxdP5cAAAD1A9j9R+gBwA99np8piZe2bm3ve9HRE/GxGXzNRiAAA9ziMAs2c6T1tdHhGfysz75vxDa+2LM7IVAMAwziMAs2Sny2Nr7eqIeNIM7gIAUOI8AjB7ZuLnPMIgD9l771L+B6/6iVL+3N85fXB2j9y9NLvqbbc8bnB2S+QIN6n74LefPjj78E/V/hz3/toVpfzmW24t5QHmv1Ee3TYU85Vd9iuOXl7LH1PIvrg2etExt5fym+5cOjy8elFtmYtq8ZK9ivnqT1Wt5lcOjz70tBtKo5+z+OxS/rp4+ODsueccV5od7yq+oOjnKuG7a7MH8HMeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6JoY9wLs2h6y996Ds4s/t0dp9sVHvLuU3xK7l/Kj9Lr9Lxuc3RJthJvU/dFx3x2c3XJcbff3rn9UKf/FX3jy4Ozk1WtKswFGY7KYrx7FFhWyG4qzby/mC7vss7w2+iW1eCW/18qbS6Pv2bi4tsuqwp/L+2ujY1UxX7GkmN94S/EKtxbnHzk4+rzXfak0+u9ve1kpv2Gv4ffpa5/9ttLsM9a+qpSP1YXsDbXRQ3jkEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6JcS/A3HLv81aW8k9/y78Pzv7pgV+rrlPy2hueOjj7/75Wu51Vh3x5y+DsbY+q/TOc2NBK+cXrh+8SEXHji+4dnP3zn/pkafbv7vMfpfzfvv2YwdkVJ5ZGAxRMjnD2ohHmNxRnX1vMLx0efdry0uSD3nN1Kf/i+KfB2YviyaXZq/7puaV8vLmQvfKW2uy4tZhfNjy68e7i7LOL+eLfr7NPGxy9Lh5eGr252IDu2W3x4Oz62Kc2fF0tHhuL+RnmkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6Jsa9AHPLmhNq/z/hXw781uDsluIur73hqaX8Fb944ODsEdeeV9xmdJaMe4H72evjw7P/4x9fWJp9wjM/WMr/5qPPHZz9UiwrzQaYG+bSUeyKYn7/4dFjn1ia/Ddxail/4uVfGJz9w8f+aWn2qk8/t5SPK8+q5UtqZ6MofW28ZYSzIyJuqsU33j04uuprtfvoVc96Vyl/TRw6OPuFj5xYmh3vrsVj/abiFWaWRx4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADoUh4BAADomhj3ArAjV/z8/qX85A3XjWiTheW2X3va4OwXnv724vSlxTzArmZTMZ+1eOXkNlnd5aZiftHw6PAvLRERceKXv1C7wu8Mj77u+28tjT79Of+jtsunVxTCG2qzY+9ivmJZMf+MYv7YWvyQPYZnz6uNPmPiVbUrnF3IvqU2OjZ+p3iFyt+B5cXZfR55BAAAoEt5BAAAoKtbHjPzzMy8KTMv2eay/TLzrMy8YurXfUe7JgCwkDmPAIzfkEcePxQRx9/vstdHxDmttSMj4pyp3wMAjMqHwnkEYKy65bG19vWIuPV+F78wIj489faHI+JFM7wXAMB/cR4BGL+d/Z7H5a216yMipn49cEfBzDwlM1dn5upNcc9OfjgAgAfYqfNIxLpZWxBgPhn5C+a01s5ora1sra1cFItH/eEAAB5g2/NIxAHjXgdgl7Sz5fHGzDw4ImLq1+oPBgIAmC7nEYBZtLPl8bMRcfLU2ydHxGdmZh0AgMGcRwBm0ZAf1fHRiDg3Ih6TmWsz8+UR8ZaIeG5mXhERz536PQDASDiPAIzfRC/QWjtpB+969gzvwhywxw+6fyVmzQ9OPryUX/HWG0e0ya7tIU98bCn/Z3/yvsHZR0wsra5T8oHvPX1w9pC4dISbAOM2f88jrRafzNGsERERm0Y3uvptpsXHkE+7opD9qTtLs//6m68o5V8Z7x8e/sPS6IiN3y1e4Y5C9rDa6EMOqeXv/4N2eo4tZIurxJpifnUhu/H24vD7v4h0z2jPXj0jf8EcAAAAdn3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF0T416AueWQv/hGKf/Yx71icPb7x32gNPsvT/nbUv5tX/7vg7PtmxeXZo9S/uTjS/mr/mBRKX/5s84s5WuylP757/1CKX/Ya+8anJ0sTQYYldrn6Lllv2J+6fDo5cXRJ9biR/zx8Ow7Vtdm//6v184vm//PboOzr15TO+vE22+q5WNtIXt0bfQLavF4dS3+Y48Z/pdm/T37lGbfdvZBtWWWVMLLarPjx4r5PYr5meWRRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqytTZrH2xZ7teems+etY/H6E2sePjg7OGfubk0+50Hn1/K/8Utjxuc/bdnPKw0Ox65ohRf//h9Bmff/ed/VZr9xN13K+Wr/vnuhw7OvubLJ5Vm//gbrirlN99yaym/Kzq/nRO3t1tz3HvAQpL5lBaxqnCNyUJ2orjN0mK+8uni7uLsfy/mC7f1mGNKk5/+r18u5b9xeeF8WTyKrr2ulj/km8OzefCG4vAltXzFqcX8S4r5wzbW8hsXD89eWfwyuroWj7ML2fOKszdW/52O6vPRMdHahd0/SI88AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0DUx7gXYtU1ee93g7FUvWF6a/ZdnH1HKv27/SwdnP3D+I0qzj9vzi6X84RNLB2e3xG6l2d+6d0spf9KnX1nKP/at/zE4++gbvlmavbmUBpgrRnlcmizmK7ssKs7+iWL+9uHRVd8tTT43jyvl84ttcPaqaw8uzX7Us28o5eOi4dFfWvlPpdGfePNLa7scNjx60K9dXRp97+bFpfyt719Rykflj2ZtbXRsLObXj3D2LsYjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjHsBFo4fnHx4Kf+kpWePaJOIlz/0h8VrLCmlz9mweHD2jX/yitLs/f/5e6X8EbecV8pPltIA/KjqZ9ENI8wvK87evxZfUshvvKI2Oz5Uix//ssHRX24fL42+4P3PrO1y2/DoT8c3SqO/9cdPLuUXxz2Ds/vE+tLscy8/rpSPv6/FY1Xl78ytxeErivn9ivmKXevk5ZFHAAAAupRHAAAAurrlMTPPzMybMvOSbS47LTOvzcyLpv57/mjXBAAWMucRgPEb8sjjhyLi+O1c/s7W2lFT/31+ZtcCAPgRHwrnEYCx6pbH1trXo/5dqAAAM8Z5BGD8pvM9j6dm5nemnkay745CmXlKZq7OzNWbCq/4BAAwQPk8ErFuNvcDmDd2tjy+JyIOj4ijIuL6iDh9R8HW2hmttZWttZWLYviPLwAA6Nip80jEAbO1H8C8slPlsbV2Y2ttc2ttS0S8LyKOntm1AAAenPMIwOzaqfKYmQdv89sTIuKSHWUBAEbBeQRgdk30Apn50Yg4NiIOyMy1EfGmiDg2M4+KiBYRayLit0e4IwCwwDmPAIxftzy21k7azsUfGMEuAADb5TwCMH7d8siu7Y5ffVopv+Xk2ivQ/duTPlZIX1iaXZcjnj/cqR9/xeDsI//u3NLszdVlAJimyUJ2Q3H2LcX8HYXsptrog5bV8scWsnsdWZu9vpg/Ynj0+3c9pjT6jY/8o1J+ZVwwOHtg3FSa/Yvx2VL+S/G8wdlz//m40ux4by0eq4r50r+laqWp/jut/LtbWpxdNd76Np0f1QEAAMACoTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTHuBeaj3Y54ZCl/+SuXl/JnvuCMwdlnLrmwNHtLtGJ+uF+96vjS7Eu/dkQpf+CFw7c54U/PKs1+5b5XlPLnv/T0wdmX/u9fKc2evGZtKQ/AdFWOS0uLs6v5yUJ2/9ro2pfdiBcPjx7yS7Wvo4fHVaX8vbH74OyVxRv6rrteU8r/9J7fGJx9fny+NHufWF/KX3bpU4aHX1YaHbHuguIVlhXzP17MV2wo5jeNZIutdq065pFHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuibGvcCu4ubPPmZw9q+f8NHS7KMXt+o6g/3nlo2l/M+s/q1S/qDTdx+cXXTZD0uzH7Xh26X8Db951ODsScu+U5odsbSUXvaQJYOzdz/+4NLs3a9ZW8oDMF17DI/uUxw9sayWnyxkD6uNjuNr8SXPuXVw9tHxvdLsfWN9KX9NHDo4e/NVw7MREXF5luJfP+aZg7N7P/SO0uz/rP4F+2Ihu+6K2uy4uJh/SjG/qJivqFagDSPZYlfkkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6Jsa9wK7itqv2HZw9+ifbCDep+eBtTyzld/vKPqX81SduGZxd/IiHl2afeMS3S/k3PeyvC+mlpdlV52xYPDi79II1pdmbi7sAME2V09ITirMfW8xXvkwXZz/kBXeV8k986MWDs+tLi0d8+drnlPLx1SXDs3fWRscBtfjGtfsNzn5q4wml2Vsu2bO2zNmV8LLa7DiimB/+57JV5TydxdmTxTz38cgjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXRPjXmBXccRrzhucfczuv1uafdYLTi/lD5vYY3D2tftdVZr9+697dyk/t+TIJp+zYXEp/84Tf2lwdsvNl1fXAWCuqp6sDirmVw6P7vWcm0ujn73n2aX8I2PN4OzqyuIREectqeUrq1f/zA8p5m8YHt3yuT1rs79ai8fqSnh5cfjSYr5qwwhnT45w9vyuVx55BAAAoKtbHjPz0Mz8SmZelpmXZuarpi7fLzPPyswrpn7dd/TrAgALkfMIwPgNeeRxMiL+oLX24xHxtIj4vcx8XES8PiLOaa0dGRHnTP0eAGAUnEcAxqxbHltr17fWLpx6+46IuCwiVkTECyPiw1OxD0fEi0a1JACwsDmPAIxf6XseM/OwiHhyRJwfEctba9dHbP2EHhEH7uA6p2Tm6sxcvSnumd62AMCCN93zSMS62VoVYF4ZXB4zc6+I+EREvLq1dvvQ67XWzmitrWytrVwUtVesBADY1kycRyIOGN2CAPPYoPKYmYti6yfqj7TWPjl18Y2ZefDU+w+OiJtGsyIAgPMIwLgNebXVjIgPRMRlrbV3bPOuz0bEyVNvnxwRn5n59QAAnEcA5oIhP8XyGRHx6xFxcWZeNHXZGyLiLRHxscx8eUT8MCJ+eTQrAgA4jwCMW7c8ttZWRUTu4N3Pntl1AAAeyHkEYPyGPPJI0ZG/d34p/8p3/UYpf9VvLB+cvXf5ZGn2y576b6X8KO2WW0r5zW34iwf//ZeeVZp95NuuLOW33Hx5KQ/AHDbZhmcv2lG/3YF9avE4anj0sD3XlEY/OS7qh7bx6PheKV/xjWN+upTfsmbP4eElxWWqKkeAs4uzq/nYVMhWa8HexfyGYr52hh0tlek+pR/VAQAAwMKkPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Me4FiNh8xdWl/GFvrOUrvhG7j2z2XPKoOLeU3zyiPQDYFdw0PLq+OPqry2v5xw6PXvOCQ0uj1y3ev5R/eOw9OLt73FuafdjyNaX81U94/PDwDaXREWuK+dWF7EXF2XFLMb+hkF1WnL20mJ9LVKCd5ZFHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuibGvQAAwPxxey2+fr9a/quLBkdve+9BpdHvfsFrS/mDDv+Pwdk779q7NPvOVQ8r5eO8QnZtbXSsK+YvH+HsmKxeYYQ2jXi+mjIXeeQRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArolxLwAAMLctLWSrR6tNtfh5i4Znr6yNjvdnKX7DXo8aHp4s7rJ+hPmNxdnVfOm2Fu//0t/FCEd9ZppHHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGPcCAABzW+W4tLQ4e1Mxf8vw6Lrba6PXbajlY7KYr6j+OVbuo0XF2dX8KHepHt0d9ZlZHnkEAACgq1seM/PQzPxKZl6WmZdm5qumLj8tM6/NzIum/nv+6NcFABYi5xGA8RvyWPZkRPxBa+3CzNw7Ii7IzLOm3vfO1trbR7ceAEBEOI8AjF23PLbWro+I66feviMzL4uIFaNeDADgPs4jAONX+p7HzDwsIp4cEedPXXRqZn4nM8/MzH1neDcAgAdwHgEYj8HlMTP3iohPRMSrW2u3R8R7IuLwiDgqtv6fwNN3cL1TMnN1Zq7eFPfMwMoAwEI1E+eRiHWzti/AfDKoPGbmotj6ifojrbVPRkS01m5srW1urW2JiPdFxNHbu25r7YzW2srW2spFsXim9gYAFpiZOo9EHDB7SwPMI0NebTUj4gMRcVlr7R3bXH7wNrETIuKSmV8PAMB5BGAuGPJqq8+IiF+PiIsz86Kpy94QESdl5lER0SJiTUT89kg2BABwHgEYuyGvtroqInI77/r8zK8DAPBAziMA41d6tVUAAAAWpiFPWwUAYJBN415gG4uK+cmRbLFVdZfqEbUyv7oLcB+PPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Me4FAAAYaumIsgB9HnkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgK1trs/fBMm+OiB9s510HRMS6WVtkfNzO+Weh3Fa3c3R+rLX2sFn+mLCgOY+4nfPMQrmdEQvnts7Z88islscdLpG5urW2ctx7jJrbOf8slNvqdgILwUL5HOB2zi8L5XZGLJzbOpdvp6etAgAA0KU8AgAA0DVXyuMZ415glrid889Cua1uJ7AQLJTPAW7n/LJQbmfEwrmtc/Z2zonveQQAAGBumyuPPAIAADCHjbU8Zubxmfm9zLwyM18/zl1GLTPXZObFmXlRZq4e9z4zJTPPzMybMvOSbS7bLzPPyswrpn7dd5w7zoQd3M7TMvPaqfv0osx8/jh3nAmZeWhmfiUzL8vMSzPzVVOXz6v79EFu57y7T4G+hXIema9nkQjnkfn2tct5ZO7ep2N72mpm7hYR34+I50bE2oj4ZkSc1Fr77lgWGrHMXBMRK1tr8+pn02Tmf4uIOyPi71prT5i67H9FxK2ttbdMfRHet7X2unHuOV07uJ2nRcSdrbW3j3O3mZSZB0fEwa21CzNz74i4ICJeFBEvi3l0nz7I7fyVmGf3KfDgFtJ5ZL6eRSKcR2Kefe1yHpm755FxPvJ4dERc2Vq7urV2b0T8Y0S8cIz7sBNaa1+PiFvvd/ELI+LDU29/OLb+I9il7eB2zjuttetbaxdOvX1HRFwWEStint2nD3I7gYXHeWQecB6ZX5xH5q5xlscVEXHNNr9fG3P8D2uaWkT8S2ZekJmnjHuZEVveWrs+Yus/iog4cMz7jNKpmfmdqaeR7NJPnbi/zDwsIp4cEefHPL5P73c7I+bxfQps10I6jyyks0jEPP7atR3z9muX88jcuk/HWR5zO5fN55d+fUZr7SkR8XMR8XtTTztg1/aeiDg8Io6KiOsj4vTxrjNzMnOviPhERLy6tXb7uPcZle3cznl7nwI7tJDOI84i89O8/drlPDL37tNxlse1EXHoNr8/JCKuG9MuI9dau27q15si4lOx9Wky89WNU8/hvu+53DeNeZ+RaK3d2Frb3FrbEhHvi3lyn2bmotj6CewjrbVPTl087+7T7d3O+XqfAg9qwZxHFthZJGIefu3anvn6tct5ZG7ep+Msj9+MiCMz85GZuXtEvCQiPjvGfUZNyJpnAAABMElEQVQmM/ec+ibYyMw9I+JnI+KSB7/WLu2zEXHy1NsnR8RnxrjLyNz3yWvKCTEP7tPMzIj4QERc1lp7xzbvmlf36Y5u53y8T4GuBXEeWYBnkYh59rVrR+bj1y7nkbl7n47t1VYjIqZedvZdEbFbRJzZWvuzsS0zQpn5qNj6f/giIiYi4h/my23NzI9GxLERcUBE3BgRb4qIT0fExyLiERHxw4j45dbaLv3N3Tu4ncfG1qcTtIhYExG/fd/z8HdVmXlMRPxrRFwcEVumLn5DbH3+/by5Tx/kdp4U8+w+BfoWwnlkPp9FIpxHYp597XIembvnkbGWRwAAAHYN43zaKgAAALsI5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICu/w+gLPOHwMsopwAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ] @@ -1370,7 +1381,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAH7dJREFUeJzt3X2U3XV9J/DPRyaQQsIChqciSsujWCtqimytlV1Ki1oPYqvVrRYsR+xWrbRKdTnd6tnWXe2Cut22drE+UFetWETZHnUFfEC2QBuUKhIVsCgPEYiUEtCEDPnuHxl6Ukj4/j4zc+dO7rxe5+Rk5s77fu/nd29m5vvO786dbK0FAAAAPJrHjHsAAAAAFj/lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAARiwz/zwz//OjfLxl5mGzXHvW14WKqXEPAAAAk6619hvjngHmyplHAAAAupRHAAAYKDOflplfycwNmfmxzPxoZv5hZp6WmVc8LPsvTyfNzA9k5h9u87GzMnNdZt6emb/+sOvtlpnnZOZ3M/OOmae8/siQ68IoKY8AADBAZu4aERdFxAciYp+I+EhEnDKLdU6KiDdExIkRcXhE/NzDIm+PiCMi4piIOCwiDoqI3x94XRgZ5REAAIY5Lra+Zsgft9Y2t9Y+HhF/N4t1XhwR72+tXddauz8i3vLQBzIzI+KVEfHbrbW7W2sbIuK/RsRLeteFUfOCOQAAMMyPRsRtrbW2zWW3zHKda7Z5/zvbvL1vROweEdds7ZEREZERscuA68JIKY8AADDMuog4KDNzmwJ5cETcFBH3x9bSFxERmXlAZ52Dt3n/8du8vT4ifhgRT2qt3Va8LoyUp60CAMAwV0bEgxHxmsycysyTI+LYmY/9Q0Q8KTOPyczl8ehPJ70gIk7LzKMzc/eIePNDH2itbYmI90TEOzNzv4iIzDwoM3+hd10YNeURAAAGaK09EBEvjIjTI+KeiHhZRPxNRGxqrX0rIv5LRFwaETdExBWPss6nI+JdEfG5iLhx5u9tvXHm8qsy896ZNY8ceF0YmfzXT9kGAACGysyrI+LPW2vvH/csMGrOPAIAwECZ+ezMPGDmaaunRsRPRsRnxj0XLAQvmAMAAMMdGVt/7nBFbH2hnF9ura0b70iwMDxtFQAAgC5PWwUAAKBLeQQAAKBrQX/mcdfcrS2PPRbyJgEWtY1xfzzQNuW454ClJJetarH8kHGPAbB4bLw52ub13f3IgpbH5bFHPCNPWMibBFjUrm6XjXsEWHqWHxKxes24pwBYPNasHhSb09NWM/OkzPxmZt6YmW+ay1oAALNhPwKwMGZdHjNzl4j404h4TkQcHREvzcyj52swAIAe+xGAhTOXM4/HRsSNrbVvt9YeiIi/ioiT52csAIBB7EcAFshcyuNBEXHLNu/fOnPZv5KZZ2Tmmsxcszk2zeHmAAAeobwfic13LdhwAJNkLuVxe6/G0x5xQWvntdZWt9ZWL4vd5nBzAACPUN6PxLJ9F2AsgMkzl/J4a0QcvM37j4uI2+c2DgBAif0IwAKZS3n8+4g4PDN/LDN3jYiXRMTF8zMWAMAg9iMAC2TWv+extTadma+JiP8bEbtExPtaa1+ft8kAADrsRwAWzqzLY0REa+1TEfGpeZoFAKDMfgRgYcypPAIAwEQb5W55eoRrwwjM5WceAQAAWCKURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxj0AAAAsmJ159ztdzO/Mx8qi5MwjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXVPjHgAAABbMfcX8dDFf2V0vL65dzVdUj3OU9wuLljOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2NewAAACbcqHecG0eUnU1++Yiys8lPjyg7G9X1tZRFyZlHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuqbGPQAAABNuesTrV3a0q0Y2RV31frlnJFNsVW0FWsSS5MwjAAAAXcojAAAAXXM64ZyZN0fEhoh4MCKmW2ur52MoAICh7EcAFsZ8PFv537XW1s/DOgAAs2U/AjBinrYKAABA11zLY4uIz2bmNZl5xnwMBABQZD8CsADm+rTVZ7bWbs/M/SLiksz8Rmvt8m0DM1/Ez4iIWB67z/HmAAAeobQfid0eP4YRAXZ+czrz2Fq7febvOyPioog4djuZ81prq1trq5fFbnO5OQCAR6juR2LZvgs9IsBEmHV5zMw9MnPlQ29HxM9HxHXzNRgAQI/9CMDCmcvTVvePiIsy86F1Ptxa+8y8TAUAMIz9CMACmXV5bK19OyKeMo+zAACU2I8ALJz5+D2PMMguqx5byn/znbUXNDj+8BsGZ2979ubS2m3TplIeAHY60yPMbxzh2hERjytkVxfXPqyY/14he2lx7RuL+RWFbOU+jIhYXsxX/w1U8xUa0Kz5PY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17AHZud77mpwdn3/y6vyyt/bzdP1sdZ7AXrHp+KT992+0jmgQAFolR7gqni/n7ivnK7MfVlt7npNtK+btvPGh4+ObaLPGNYr5yP1YfoyqtYyI48wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgHYHHZ5YhDS/m/eP27BmeP2bX2z21LKV2z7t0rS/kDX3VAKT+97nulPABL1PQI167u8lYV88sL2fXFtUf5bbR4n++1yz2l/GOPHH6wN5z2lOIwtXisKWSrj1HtbolYUcxX/n1VjfLzbsI58wgAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAECX8ggAAEDX1LgHYHFZ+6a9S/mf3HWXEU0yWlc//cOl/LeufKCUf+EHf2dw9sff+pXS2ls2bizlAVhA1Z1V9Ut6Jb+quPYhxfxRhez64tprivl7Rrf2t496Uil/7JFfHJz9xWd8rLT2N59xRCl/w3ufMjz8J6WlI24u5h834nzF9AjzE96unHkEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACga2rcAzBauxx9RCl/6QnvKt7CjwxOvv37TyytvOaex5fyHz30M6V8xRHLdi3l3/Or7x6cffv7Ti6tveUfv1PKAzBHo9wtTRfz9xWyq4prr67F9/nl2wZn71m/V2ntLbFHbZhPFLKX1paO2uix4ciVg7O/Eh8trf1zxeHPOf0Ng7O3XnV4ae24pxYvq3xuaDQLxplHAAAAupRHAAAAurrlMTPfl5l3ZuZ121y2T2Zekpk3zPy992jHBACWMvsRgPEbcubxAxFx0sMue1NEXNZaOzwiLpt5HwBgVD4Q9iMAY9Utj621yyPi7oddfHJEnD/z9vkR8YJ5ngsA4F/YjwCM32x/5nH/1tq6iIiZv/fbUTAzz8jMNZm5ZnNsmuXNAQA8wqz2I7H5rgUbEGCSjPwFc1pr57XWVrfWVi+L3UZ9cwAAj7DtfiSW7TvucQB2SrMtj3dk5oERETN/3zl/IwEADGI/ArCAZlseL46IU2fePjUiPjk/4wAADGY/ArCAhvyqjo9ExJURcWRm3pqZp0fE2yLixMy8ISJOnHkfAGAk7EcAxm+qF2itvXQHHzphnmdhBNYf+9hS/pCp3Uv5M2752cHZW4+7r7T2Y/b4QSn/9N947eDsG155QWntX11ZeybUzy4fnv0/F363tPb1zzuglJ9e971SHmAx2mn2I92d1cNsLObvKWSLszzm+PtL+Vfs8v7B2fX71/Yj5x/3H0v5+N+F7DdqS8eqWvybLztycHbT/rXXA3lqfKWUf0FcNDj7J7/326W1Y9WyWv7aWrz0b72qsE+LiPrn9QQb+QvmAAAAsPNTHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcAjNaDu9XyW6KV8l/9X08enN0nrqzNcv/9pfyB5/7t4OwFz/+p0tovXfk3pXy0LYOjd2xaWVt646baLADMTWW3VN1ZbSzm1xeyy2tLP2v/L5Xyr40/HpxdFz9aWvsTx51Syv/zxgOGh6d/UFo7bty9FN9yxR6Ds1/6pWeV1t4r/qmUf2pcOzh7xhP+rLT2X77p5aX8xj/cp5SPzxSy07WlY1Uxv6KQrc5SzY+ZM48AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0KY8AAAB0TY17AEZr5S+tG+n6//wL9w/O7vP+EQ5S9PtPuLh4jdH9P8uXvnJUKX/EP/3diCYBYLsqu6XqzmpjMR+bh0enlpVWflZcXso/4dy7hmefODwbEXH0c68v5a/ceEAhvaG0dty3ey1/1fDopw95YWnpDU9fWcr/cvz14Ozx8fnS2t//N48t5S885mWlfFxayFY/jxZTA5ou5sc8uzOPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdCmPAAAAdE2NewBGa8OFB9au8KRa/LSjrx6cvfynji2tfddTV5Ty7RfvHpz9iWV/V1p77ebNpfyTlu06OHvRc/5nae03HvfKUj6u+motD8DCma5e4YeF7LLSyofFTbVRPlfI3ltb+rHP/X7tCiUra/G9istfV8i+rbb0FS87sZR/8slfG5x9VnyptPaxMXwPGBFx4SEvK+VLNo5u6YioNaby53RRZf0RND1nHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOhSHgEAAOiaGvcAjNYBF/9jKf+t//RAKX/WY68fnH3jJ9aW1t4SrZSv+JWbnlfK//C39i3lT/nIFwZnX7HnLaW1b/qt2v/5HHpVKQ7AQirvxFaOYoqIiLg+jq5d4UWF7DG1pW+KQ2tXWF7J7l5be69aPG4uZL9RXHtFMX/y8OjT7qzt0+7cb7/aLBtr8bi2mK94XDG/qpCdLq69k3HmEQAAgC7lEQAAgK5ueczM92XmnZl53TaXvSUzb8vMa2f+PHe0YwIAS5n9CMD4DTnz+IGIOGk7l7+ztXbMzJ9Pze9YAAD/ygfCfgRgrLrlsbV2eUTcvQCzAABsl/0IwPjN5WceX5OZX515GsneOwpl5hmZuSYz12yOTXO4OQCARyjvR2LzXQs5H8DEmG15fHdEHBpbX3h5XUScu6Nga+281trq1trqZbHbLG8OAOARZrUfiWW1X78EwFazKo+ttTtaaw+21rZExHsi4tj5HQsA4NHZjwAsrFmVx8w8cJt3T4mI63aUBQAYBfsRgIU11Qtk5kci4viIWJWZt0bEmyPi+Mw8JiJaRNwcEa8a4YwAwBJnPwIwft3y2Fp76XYufu8IZgEA2C77EYDx65ZHdm7T675Xyp9x1pml/PvPecfg7BHL9iitHW1LKX7YZ185OHvUa75RWnvL/deX8m/73PMHZ09/wbtLa7999cdL+b94yvNK+S3/sLaUB5h4GwvZ6s5qr2J+Yw7P3ldb+o9ue2Mpv+G0lYOzd8Z+pbXXfvJppXzpflxRW7qcL20x7q2tPbVnKf7k+Orw8EW1UQ591U21K9xci0dcUcjuU1t649G1/PLK2rWldzZz+VUdAAAALBHKIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF1T4x6AxWXFx64u5V8RvzM4e/eLf1Bae+M/71bKP/GsmwZnH7z//tLaVUe+6frB2RMOf2Fp7UuedGEp/+Y31/6P6KDaOACTb3pE2YiIvUaY31hc+8zlpfi7VwzfA5Tvl/XF/IpCtnqfV2cv5VfW1l5Vi+8WD1TCJbvGptoVjqrFI55RyG6uLV37pz7arwE7GWceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wDs3FZ87OpCdoSDRMSDo12+ZMuGDYOz9170E7XFn1SLv/0nLyzl/+zA4wdnp9d9rzYMwKSbLuaXF/OVndt9xbWvKuZvLeYrDivmDylkq7vfjcX8qkJ2edbWvqcWPyfeMDj7I6f9oLT2/nFnKf97zzy7lP9g+7XB2e+cf1Rp7fhMLT7Sf+s7WRtz5hEAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAIAu5REAAICubK0t2I3tmfu0Z+QJC3Z7sFN4zC6l+F2fOKyUv/rpHy7ln/hXrx6cPfT1V5XW5pGubpfFve3uHPccsJTkytUtVq8Z9xizM1XIThfXXl/M31PIVuaOiFhVzK8oZKuzVO/HyvrVWTYW8xUvq8XffvprS/nf/R9/UruBTcOj/+13zywtffZr31mb5c8L2UNqS8dRxXzl32Pl38ua1dE2rOnuR5x5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoEt5BAAAoGtq3APAkrflwVL8sefuXsqv/+APS/m1L/nTwdnnf/jXSmu3a75eygPwMNMjXPuAYv6QUQwxo3qc940oGxGxvJiv3I8rimtfWszffMnw7BeeWVr6ltMPLuWvP7MUjwsK2Vf87odKa5993Ttrw0wX7sdbT6ytvboWL31ubCyuPYAzjwAAAHR1y2NmHpyZn8/MtZn59cx83czl+2TmJZl5w8zfe49+XABgKbIfARi/IWcepyPi9a21J0bEcRHx6sw8OiLeFBGXtdYOj4jLZt4HABgF+xGAMeuWx9bautbal2fe3hARayPioIg4OSLOn4mdHxEvGNWQAMDSZj8CMH6ln3nMzEMi4qkRcXVE7N9aWxex9Qt6ROy3g+uckZlrMnPN5tg0t2kBgCVvrvuR2HzXQo0KMFEGl8fMXBERF0bEma21e4der7V2XmttdWtt9bLYbTYzAgBExPzsR2LZvqMbEGCCDSqPmbkstn6h/lBr7eMzF9+RmQfOfPzAiLhzNCMCANiPAIzbkFdbzYh4b0Ssba29Y5sPXRwRp868fWpEfHL+xwMAsB8BWAymBmSeGREvj4ivZea1M5edHRFvi4gLMvP0iPhuRLxoNCMCANiPAIxbtzy21q6IiNzBh0+Y33EAAB7JfgRg/IaceQQWkcd88Sul/PHnn1XKX//rfzo4u+GtPyytveeLVpbyWzZsKOUBJt50IVvd5Y06X1E5zlFbTLOUDX5NqYiofc99cMQ1Ys9C9ltxZG3xL9TiEf9veHTjibWll9fisbGYn2elX9UBAADA0qQ8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0DU17gGA0TrsvFtK+Q++6IDB2cuf/NeltU96yq+X8o+54tpSHmDijXLntnHE+VGq3C/V+7CaH+X9sqJ6hROHRw/Ys7TyzXFIKX/0W0vxOLqwBXhHPLm2+PG1eHzh1OHZVcW17yvmp4v5eebMIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF1T4x4AGK3pW24t5S845dmDsy+/9KOltdeftbGU3++KUhyAuZge9wDbGOUOdfkI146IuK+QrX1bjFhRzB+25/Ds42pLf/qLLyzlf/Psc0v5/xAfGpz96fjb0tp/8Pk3lPLvfPC3B2fvri0dcWkxX/nc2Ku49gDOPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANCVrbUFu7E9c5/2jDxhwW4PGK2VX1pVyr/rCZ8o5U9/8W8OD1/11dLai8XV7bK4t92d454DlpJcubrF6jXjHmPnNz3CtadGuPaojfJ+WT7ifMWtxfwBtfi+n/7u4Oydtzyhtvira/HNHxye3fXGYrf6mVq89JgeU8iuWR1tw5rufsSZRwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqURwAAALqmxj0AsPP6wSmtlL/6b3+0lP+nI/cYnN37qtLSAMyVXeTcTY94/RWF7D3Fta8t5uOGUvqusw4fnP3Mf392ae2TjvhiKf/AcufbHuKeAAAAoKtbHjPz4Mz8fGauzcyvZ+brZi5/S2belpnXzvx57ujHBQCWIvsRgPEb8oSD6Yh4fWvty5m5MiKuycxLZj72ztbaOaMbDwAgIuxHAMauWx5ba+siYt3M2xsyc21EHDTqwQAAHmI/AjB+pZ95zMxDIuKpEXH1zEWvycyvZub7MnPveZ4NAOAR7EcAxmNweczMFRFxYUSc2Vq7NyLeHRGHRsQxsfV/As/dwfXOyMw1mblmc2yah5EBgKVqPvYjsfmuBZsXYJIMKo+ZuSy2fqH+UGvt4xERrbU7WmsPtta2RMR7IuLY7V23tXZea211a231sthtvuYGAJaY+dqPxLJ9F25ogAky5NVWMyLeGxFrW2vv2ObyA7eJnRIR183/eAAA9iMAi8GQV1t9ZkS8PCK+lpkP/TrQsyPipZl5TES0iLg5Il41kgkBAOxHAMZuyKutXhERuZ0PfWr+xwEAeCT7EYDxK73aKgAAAEvTkKetAmzXg+u/X8qfd8SPl/J7x5WlPADsVKo78eli/r4Rrv24Yv57h9fy1/YjD3nOP3yhtPS/Pedzpfz1m44eHv7r0tIRhxTzY25vzjwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXuAQAAYGIspt31fSNc+7AR56cL2TNrS18Z/752hVE6YNwD1DjzCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQFe21hbuxjLviojvbOdDqyJi/YINMj6Oc/IslWN1nKPzhNbavgt8m7Ck2Y84zgmzVI4zYukc66LdjyxoedzhEJlrWmurxz3HqDnOybNUjtVxAkvBUvka4Dgny1I5zoilc6yL+Tg9bRUAAIAu5REAAICuxVIezxv3AAvEcU6epXKsjhNYCpbK1wDHOVmWynFGLJ1jXbTHuSh+5hEAAIDFbbGceQQAAGARG2t5zMyTMvObmXljZr5pnLOMWmbenJlfy8xrM3PNuOeZL5n5vsy8MzOv2+ayfTLzksy8Yebvvcc543zYwXG+JTNvm3lMr83M545zxvmQmQdn5uczc21mfj0zXzdz+UQ9po9ynBP3mAJ9S2U/Mql7kQj7kUn73mU/sngf07E9bTUzd4mIb0XEiRFxa0T8fUS8tLV2/VgGGrHMvDkiVrfWJup302Tmz0bEfRHxl621n5i57I8i4u7W2ttmvgnv3Vp74zjnnKsdHOdbIuK+1to545xtPmXmgRFxYGvty5m5MiKuiYgXRMRpMUGP6aMc54tjwh5T4NEtpf3IpO5FIuxHYsK+d9mPLN79yDjPPB4bETe21r7dWnsgIv4qIk4e4zzMQmvt8oi4+2EXnxwR58+8fX5s/STYqe3gOCdOa21da+3LM29viIi1EXFQTNhj+ijHCSw99iMTwH5kstiPLF7jLI8HRcQt27x/ayzyO2uOWkR8NjOvycwzxj3MiO3fWlsXsfWTIiL2G/M8o/SazPzqzNNIduqnTjxcZh4SEU+NiKtjgh/Thx1nxAQ/psB2LaX9yFLai0RM8Peu7ZjY7132I4vrMR1necztXDbJL/36zNba0yLiORHx6pmnHbBze3dEHBoRx0TEuog4d7zjzJ/MXBERF0bEma21e8c9z6hs5zgn9jEFdmgp7UfsRSbTxH7vsh9ZfI/pOMvjrRFx8DbvPy4ibh/TLCPXWrt95u87I+Ki2Po0mUl1x8xzuB96LvedY55nJFprd7TWHmytbYmI98SEPKaZuSy2fgH7UGvt4zMXT9xjur3jnNTHFHhUS2Y/ssT2IhET+L1reyb1e5f9yOJ8TMdZHv8+Ig7PzB/LzF0j4iURcfEY5xmZzNxj5odgIzP3iIifj4jrHv1aO7WLI+LUmbdPjYhPjnGWkXnoi9eMU2ICHtPMzIh4b0Ssba29Y5sPTdRjuqPjnMTHFOhaEvuRJbgXiZiw7107Monfu+xHFu9jOrZXW42ImHnZ2XdFxC4R8b7W2lvHNswIZeaPx9b/4YuImIqID0/KsWbmRyLi+IhYFRF3RMSbI+ITEXFBRDw+Ir4bES9qre3UP9y9g+M8PrY+naBFxM0R8aqHnoe/s8rMn4mIL0XE1yJiy8zFZ8fW599PzGP6KMf50piwxxToWwr7kUnei0TYj8SEfe+yH1m8+5GxlkcAAAB2DuN82ioAAAA7CeURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArv8PRZu+pfOQ9swAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAF1CAYAAABI/99ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+Q3XV5L/DnkQ1ECJSfAgWUFtAK1qKmwFSq3LFWrLWArT+otlqt6Fy5Raterb0t9IcddVCZe2utoAjtVJQWUeqo9UerlqqxAVHBVEEaJRJBRIQgwSz53D+yOBESPt9nd8+ezdnXa4bJ7tn3efY5Oezu551zdjdbawEAAAAP5EHjXgAAAIDFT3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAACgS3kEAIARy8y/zcw/eYC3t8w8fJazZ31dqJga9wIAADDpWmsvHfcOMFceeQQAAKBLeQQAgIEy87GZ+cXMvCMz/zEz35eZf5mZL8jMy++T/fHTSTPzgsz8y63e9urMXJ+ZN2bmC+9zvV0y8+zM/FZm3jTzlNcHD7kujJLyCAAAA2TmzhFxaURcEBF7R8RFEXHKLOacGBGviognR8QREfEr94m8MSIeHhFHR8ThEXFQRPzpwOvCyCiPAAAwzHGx5WeG/N/W2qbW2vsj4guzmPOsiHh3a+3q1tqdEXHWvW/IzIyIF0fEK1prt7bW7oiIv4qI5/SuC6PmB+YAAMAwPx0R326tta0uu2GWc67Y6vVvbvXyfhGxa0RcsaVHRkRERsROA64LI6U8AgDAMOsj4qDMzK0K5CER8Y2IuDO2lL6IiMjMAzpzDtnq9Ydu9fItEXFXRBzVWvt28bowUp62CgAAw3wuIu6JiNMzcyozT4qIY2be9qWIOCozj87M5fHATye9OCJekJlHZuauEXHmvW9orW2OiPMi4q2Z+ZCIiMw8KDOf0rsujJryCAAAA7TWfhQRz4iIF0XEbRHxvIj4UETc3Vr7ekT8eUR8IiKujYjLH2DORyLinIj414i4bubPrb1m5vLPZ+btMzMfMfC6MDL5k0/ZBgAAhsrMVRHxt621d497Fxg1jzwCAMBAmfnEzDxg5mmrz4+IR0fER8e9FywEPzAHAACGe0Rs+b7DFbHlB+X8Vmtt/XhXgoXhaasAAAB0edoqAAAAXcojAAAAXQv6PY875y5teey2kO8SYFHbGHfGj9rdOe49YCnJ3LfFgw4d9xoAi8fmtdHaLd3zyIKWx+WxWxybT1rIdwmwqK1qnxz3CrD0POjQiF1Xj3sLgMXjhysHxeb0tNXMPDEzv5aZ12Xma+cyCwBgNpxHABbGrMtjZu4UEW+LiKdGxJERcWpmHjlfiwEA9DiPACycuTzyeExEXNdau7619qOIeG9EnDQ/awEADOI8ArBA5lIeD4qIG7Z6fd3MZT8hM0/LzNWZuXpT3D2HdwcAcD/l80i07y7YcgCTZC7lcVs/jafd74LWzm2trWytrVwWu8zh3QEA3E/5PBK53wKsBTB55lIe10XEIVu9fnBE3Di3dQAASpxHABbIXMrjf0bEEZn5M5m5c0Q8JyIum5+1AAAGcR4BWCCz/j2PrbXpzDw9Iv4lInaKiPNba9fM22YAAB3OIwALZ9blMSKitfbhiPjwPO0CAFDmPAKwMOZUHgEAYIdSPf2O8rS8sZifHskWW2gFDDCX73kEAABgiVAeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wIAALBgqqffan66mIcdiEceAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wIAAEy4UZ84pwvZW6rDWzGfw6MriqP3LOYrfy8bi7NZkjzyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBcAAGARmB7h7OqJc3kxf1sl/MPi8LXF/P6F7D610XvW4rGxkK3e/5XZs6GlLEoeeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBratwLAACwCIzyVDhdzG8o5iu777trbfbyI2v5ym2t3s61xXxF9f7XIpYkjzwCAADQpTwCAADQNacHnDNzbUTcERH3RMR0a23lfCwFADCU8wjAwpiPZyv/j9baLfMwBwBgtpxHAEbM01YBAADommt5bBHxscy8IjNPm4+FAACKnEcAFsBcn7b6+NbajZn5kIj4eGb+V2vtM1sHZj6JnxYRsTyKPxoZAKCvdB6JfOgYVgTY8c3pkcfW2o0zf94cEZdGxDHbyJzbWlvZWlu5LHaZy7sDALif6nkkcr+FXhFgIsy6PGbmbpm5+70vR8SvRsTV87UYAECP8wjAwpnL01b3j4hLM/PeOe9prX10XrYCABjGeQRggcy6PLbWro+IX5jHXQAASpxHABbOfPyeRxhkp333KeW/9tbaDzQ44YhrB2e//cRNpdnt7rtLeQAYielCtnrKW1HMV3yneoXba/ED9hiePbs2+uDnDj9fRESsW3XE8PBzarvE2o8Ur7B3IXtsbfShtXhsLOZvK+YrNKBZ83seAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6FIeAQAA6Joa9wLs2G4+/ZcGZ8884+9Ks5+268eq6wx28r5PL+Wnv33jiDYBgEVieTE/XQlvKg5fW4vv+ejB0cc+9/LS6PPitFL+X459yuDs65731tLs+MtaPOLW6hWGW0otonJbSx8XOx6PPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Ne4FWFx2evhhpfw7X3nO4OzRO9f+d9tcStesf/vupfyBLzmglJ9e/51SHgAGGeXJbUMxv7ESvqs4vPZ1OvYsji/YPe4o5U+JSwdnV/3FMaXZHzz41FI+Lihkr6uNjnXFfNViainT415g8fDIIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF3KIwAAAF1T416AxWXNa/cq5R+9804j2mS0Vj3uPaX81z/3o1L+GX//h4OzP/v6L5Zmb964sZQHYIJUTm7Txdm3FfOl+bsXh+9Rixd2ufJ9x5dG/+Gz31LK/3G8fnD2A//926XZ17zk/5Tyv/GSywZnr3/MUaXZcdW6Wj4OqsX3zeHZaqPZUMxX/l+f8HblkUcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6lEcAAAC6psa9AKO105EPL+U/8aRziu/hwYOTb/zeI0uTV9/20FL+fYd9tJSvePiynUv585779sHZN55/Umn25v/+ZikPwASZHuHsPYv5yilyOmuzN9TisbqQfWlt9IeufmYp/4i/+Nrg7HH/8aXS7KPef30pf8orLx2cffPUUaXZEdcV88PPjBERsXyf4dlqo6n+/1VR/RjdwdqYRx4BAADoUh4BAADo6pbHzDw/M2/OzKu3umzvzPx4Zl478+deo10TAFjKnEcAxm/II48XRMSJ97nstRHxydbaERHxyZnXAQBG5YJwHgEYq255bK19JiJuvc/FJ0XEhTMvXxgRJ8/zXgAAP+Y8AjB+s/2ex/1ba+sjImb+fMj2gpl5WmauzszVm+LuWb47AID7mdV5JNp3F2xBgEky8h+Y01o7t7W2srW2clnsMup3BwBwP1ufRyL3G/c6ADuk2ZbHmzLzwIiImT9vnr+VAAAGcR4BWECzLY+XRcTzZ15+fkR8cH7WAQAYzHkEYAEN+VUdF0XE5yLiEZm5LjNfFBFviIgnZ+a1EfHkmdcBAEbCeQRg/KZ6gdbaqdt505PmeRdG4JZj9inlD53atZQ/7YYnDM6uO25DafaDdvthKf+4l/6vwdlXvfji0uzn7l57JtQTlg/P/vMl3yrN/urTDijlp9d/p5QHWIzGeh7pnpbmoPalMWK6kN2zOPv4Yv7oQnZtcfYFxXx8ZHj0tk210X/7G6X4m1/6qsHZY5+3qjT7IcVnZv9T/Nbw8C2l0fEAP59qO/auxUf5cVedXfm4G+Xei8DIf2AOAAAAOz7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgC7lEQAAgK6pcS/AaN2zSy2/OVop/+V3/Pzg7N7xudoud95Zyh/45s8Ozl789F8szT519w+V8tE2D47edPfutdEb767tAsDcjPK0NF29wu3Do1N71EY/pxZ/7LMvH5xde8/PlGbfuvGg2jLvfVghfHNt9i21eLx8+eDos379n2uz9y3ucl0he1xx9ooja/nq3+NthWz546hIY/oxjzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQNTXuBRit3X9z/Ujn/+Apdw7O7v3uES5S9KcPu6x4jdH9O8u/f/HnSvmHf/8LI9oEgDkb+cnqpuHR5XuUJu/37G+V8m+L0wdnD91pbWn2Wy96RSn/pledOTx89pGl2fGJWjz+6fZC9q7a7EftX8tfMDz6xDM+Whp9xZ2PK+U3PG+/Uj4+8L1avmL5PrX8noXsxtromC7mx8wjjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHQpjwAAAHRNjXsBRuuOSw6sXeGoWvwFR64anP3MLx5Tmv3dx6wo5duv3zo4+6hlXyjNXrNpUyl/1LKdB2cvfer/K81+zXEvLuXj81+u5QH4SSM9LbVi/q6RbBERcXhcV8of9+EvDQ//cW2XNz7yrFL+T9/954OzT7jo06XZV/7y8aV8XH5ZIXxzbfa+f1iK/9XjXjE4+0eXnlOafeUpjyzlH/frXy3l4wNrCuHix8X0k2v52pG05rYRzh7B5y6PPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANClPAIAANA1Ne4FGK0DLvvvUv7rf/SjUv7V+3x1cPY1H1hTmr05Wilf8exvPK2Uv+sP9ivlT7noU4Ozv7fHDaXZ3/iD2r/5HPb5UhyA+5ouZMsnqyzmH1x9B4PdEIfUrrCykP2p2uj4Yi2+2z9uHpz9ped9tjT7yn2Pry0TNxeyt9dGH12Lv/bWcwZnVz2jNvvYV9bOdQecfX0p/53fP7SQvq40u/xxqjH9mEceAQAA6FIeAQAA6OqWx8w8PzNvzsyrt7rsrMz8dmZeNfPfr412TQBgKXMeARi/IY88XhARJ27j8re21o6e+e/D87sWAMBPuCCcRwDGqlseW2ufiYhbF2AXAIBtch4BGL+5fM/j6Zn55Zmnkey1vVBmnpaZqzNz9aa4ew7vDgDgfsrnkWjfXcj9ACbGbMvj2yPisNjyA4PXR8SbtxdsrZ3bWlvZWlu5LHaZ5bsDALifWZ1HImu/fgmALWZVHltrN7XW7mmtbY6I8yLimPldCwDggTmPACysWZXHzDxwq1dPiYirt5cFABgF5xGAhTXVC2TmRRFxQkTsm5nrIuLMiDghM4+OiBYRayPiJSPcEQBY4pxHAMavWx5ba6du4+J3jWAXAIBtch4BGL9ueWTHNr3+O6X8aa9+eSn/7rPfMjj78GW7lWZH21yKH/6xFw/O/tzp/1WavfnOr5byb/jXpw/Ovujkt5dmv3Hl+0v5d/7C00r5zV9aU8oDTLzpcS+wtUOHRzfWJq972xGl/C+/7GODs8/+1PtKs/ePm0r51bFycPYd33tpaXbcUotHPKyQvbk6vGR6p+HZdcXZx/5LLf+ys/+mlP+T5509PPzeg2vLLK/FY0MhW/y429Ha2Fx+VQcAAABLhPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAV7bWFuyd7ZF7t2PzSQv2/hi9Dc88dnD21mf9sDR74w92KeUf+epvDM7e8/3vl2ZXPWj33Qdn77pkn9Lsjx91SSn/mFW/W8of9IxrSnnmZlX7ZNzebs1x7wFLSe60ssWuq8e9xuxMF7JTxdl7jjC/ojh7MVlXzVeusLY2++TjS/FzLn3J4OwZv3dubZcba/FNF9fyT/6pjwzOfvrPTqwN/+taPG4pZKsfd6P82Kh8vvjhymj3rO6eRzzyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQJfyCAAAQNfUuBdgx7biH1cVsiNcJCLuGe34ks133DE4e/ulj6oNP6oWf+OjLynl/+bAEwZnp9d/p7YMAD+pehJbXshuLM5e14r5NYXwN2uz4/Zifv9C9pja6OW71vJxcCFb2Tsirq7FX/4f7xgefndt9hkfO7eUX/aa2vxPvfSpg7NHnnlFafaaNzy2tkx8anh0+vG10SuW1fLTheyG2ughPPIIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABAl/IIAABA19S4F4Clbr93fKGUP/apv13Kr3rce0r5M1516ODsYa/8Tmk2AHM0PcrhWcwfUcjuU5y9qZh/8Iiys3BAITu1rDb7ulo8jm+Doy///XeURh9y3g2l/K/8xkdK+dsL67yqnV2a/aKp2tko4spC9vDa6OUH1/KVzwEbaqOH8MgjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXVPjXgCWvM33lOL7vHnXUv6Wv7+rlF/znLcNzj79Pb9bmt2uuKaUB5h40+NeYCt7FvPLlxWy+xeHF1X+Hm8b4eyIiBUjykZErGvFK/zZ8Og7H1+a/M7zfr+UP3HqI6X8hXcPz74oPlyaHcfX4vHRhxXCD67Nrv7/NebPGR55BAAAoKtbHjPzkMz8t8xck5nXZOYZM5fvnZkfz8xrZ/7ca/TrAgBLkfMIwPgNeeRxOiJe2Vp7ZEQcFxEvy8wjI+K1EfHJ1toREfHJmdcBAEbBeQRgzLrlsbW2vrV25czLd0TEmog4KCJOiogLZ2IXRsTJo1oSAFjanEcAxq/0PY+ZeWhEPCYiVkXE/q219RFbPqFHxEO2c53TMnN1Zq7eFIXvfAUA2Ia5nkeifXehVgWYKIPLY2auiIhLIuLlrbXbh16vtXZua21la23lsthlNjsCAETE/JxHIvcb3YIAE2xQeczMZbHlE/U/tNbeP3PxTZl54MzbD4yIm0ezIgCA8wjAuA35aasZEe+KiDWttbds9abLIuL5My8/PyI+OP/rAQA4jwAsBlMDMo+PiN+JiK9k5lUzl70uIt4QERdn5osi4lsR8czRrAgA4DwCMG7d8thauzwicjtvftL8rgMAcH/OIwDjN+SRR2ARedCnv1jKn3Dhq0v5r77wbYOzd7z+rtLsPZ65eym/+Y47SnkA5qB6KqzkRzk7ImLjCGdPjzBfnb3dfz/Znj0K2doyn737l0r5XV9Xiscr/qow+8Yf1IafU4vHyb85PLu2OPu2Yn7MSr+qAwAAgKVJeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBLeQQAAKBratwLAKN1+Lk3lPJ//8wDBmc/8/P/VJp94i+8sJR/0OVXlfIAzMHGEeZHfeKcHlE2or575e+lukvZ0wvZw0uTf/DRLOUvet1Jpfypx31weLh21IkPHPuUUv6FV58/OHvryQfVlvlQLV6yYv5HeuQRAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACALuURAACArqlxLwCM1vQN60r5i0954uDs73zifaXZt7x6Yyn/kMtLcQAW0nQhW/v0X7eYTrQbRjh7RfUKR4xu9l/X4r8dHyjlv37SawZnz3zbm0qzT3rNx0r5L3/q0YOzB5/8vdLs+NC1tXzsUcjuX5zd55FHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAupRHAAAAuqbGvQCwuNyz5trB2Wdf/6ul2f/8mHeW8i867n8OD3/+y6XZAMzRYjpFLqZdpkeUjYhYUcwfUMhuKM7+xE3FfO1OOuuqNw7Onjn9ptrsT5ficdYf3zo8/Kza7Iji32NsKmT3L87u88gjAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXcojAAAAXVPjXgDYcf3wlFbKr/rsT5fy33/EboOze32+NBqAhbSYTpzVXaZHssXsjPLvcWP1CmuL+TW1+BteMDj66YuOKY0+6z++UMpv+t+F8CdKoyNi72J+j+o7mFceeQQAAKCrWx4z85DM/LfMXJOZ12TmGTOXn5WZ387Mq2b++7XRrwsALEXOIwDjN+TB7+mIeGVr7crM3D0irsjMj8+87a2ttbNHtx4AQEQ4jwCMXbc8ttbWR8T6mZfvyMw1EXHQqBcDALiX8wjA+JW+5zEzD42Ix0TEqpmLTs/ML2fm+Zm51zzvBgBwP84jAOMxuDxm5oqIuCQiXt5auz0i3h4Rh0XE0bHlXwLfvJ3rnZaZqzNz9aa4ex5WBgCWqvk4j0T77oLtCzBJBpXHzFwWWz5R/0Nr7f0REa21m1pr97TWNkfEeRGxzZ+R21o7t7W2srW2clnsMl97AwBLzHydRyL3W7ilASbIkJ+2mhHxrohY01p7y1aXH7hV7JSIuHr+1wMAcB4BWAyG/LTVx0fE70TEVzLzqpnLXhcRp2bm0RHRYstvCX3JSDYEAHAeARi7IT9t9fKIyG286cPzvw4AwP05jwCMX+mnrQIAALA0DXnaKsA23XPL90r5cx/+s6X8XvG5Uh4AuqZHPH+Up+vq7reNcHY8tpgv/lrWy4dHT7hkVT+0lYMvvraUX3fFEcPD7yyNjogjq1cYK488AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0KU8AgAA0DU17gUAAGBJqp7Ep4v5DcV8xYplxSscXIvfVsi+oDZ63QuOqF1hlFaMe4EajzwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQpTwCAADQla21hXtnmd+NiG9u4037RsQtC7bI+Lidk2ep3Fa3c3Qe1lrbb4HfJyxpziNu54RZKrczYunc1kV7HlnQ8rjdJTJXt9ZWjnuPUXM7J89Sua1uJ7AULJXPAW7nZFkqtzNi6dzWxXw7PW0VAACALuURAACArsVSHs8d9wILxO2cPEvltrqdwFKwVD4HuJ2TZanczoilc1sX7e1cFN/zCAAAwOK2WB55BAAAYBEba3nMzBMz82uZeV1mvnacu4xaZq7NzK9k5lWZuXrc+8yXzDw/M2/OzKu3umzvzPx4Zl478+de49xxPmzndp6Vmd+euU+vysxfG+eO8yEzD8nMf8vMNZl5TWaeMXP5RN2nD3A7J+4+BfqWynlkUs8iEc4jk/a1y3lk8d6nY3vaambuFBFfj4gnR8S6iPjPiDi1tfbVsSw0Ypm5NiJWttYm6nfTZOYTImJDRPxda+1RM5e9KSJuba29YeaL8F6ttdeMc8+52s7tPCsiNrTWzh7nbvMpMw+MiANba1dm5u4RcUVEnBwRL4gJuk8f4HY+KybsPgUe2FI6j0zqWSTCeSQm7GuX88jiPY+M85HHYyLiutba9a21H0XEeyPipDHuwyy01j4TEbfe5+KTIuLCmZcvjC0fBDu07dzOidNaW99au3Lm5TsiYk1EHBQTdp8+wO0Elh7nkQngPDJZnEcWr3GWx4Mi4oatXl8Xi/wva45aRHwsM6/IzNPGvcyI7d9aWx+x5YMiIh4y5n1G6fTM/PLM00h26KdO3FdmHhoRj4mIVTHB9+l9bmfEBN+nwDYtpfPIUjqLREzw165tmNivXc4ji+s+HWd5zG1cNsk/+vXxrbXHRsRTI+JlM087YMf29og4LCKOjoj1EfHm8a4zfzJzRURcEhEvb63dPu59RmUbt3Ni71Ngu5bSecRZZDJN7Ncu55HFd5+Oszyui4hDtnr94Ii4cUy7jFxr7caZP2+OiEtjy9NkJtVNM8/hvve53DePeZ+RaK3d1Fq7p7W2OSLOiwm5TzNzWWz5BPYPrbX3z1w8cffptm7npN6nwANaMueRJXYWiZjAr13bMqlfu5xHFud9Os7y+J8RcURm/kxm7hwRz4mIy8a4z8hk5m4z3wQbmblbRPxqRFz9wNfaoV0WEc+fefn5EfHBMe4yMvd+8ppxSkzAfZqZGRHviog1rbW3bPWmibpPt3c7J/E+BbqWxHlkCZ5FIibsa9f2TOLXLueRxXufju2nrUZEzPzY2XMiYqeIOL+19vqxLTNCmfmzseVf+CIipiLiPZNyWzPzoog4ISL2jYibIuLMiPhARFwcEQ+NiG9FxDNbazv0N3dv53aeEFueTtAiYm1EvOTe5+HvqDLz+Ij494j4SkRsnrn4dbHl+fcTc58+wO08NSbsPgX6lsJ5ZJLPIhHOIzFhX7ucRxbveWSs5REAAIAdwziftgoAAMAOQnkEAACgS3kEAACgS3kEAACgS3kEAACmk9xQAAAAGklEQVSgS3kEAACgS3kEAACgS3kEAACg6/8DBBPaud6AKNoAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1296x432 with 2 Axes>" ]